Изменение № 1 ГОСТ 17083-87 Электротепловентиляторы бытовые. Общие технические условия

Утверждено и введено в действие Постановлением Государственного комитета СССР по стандартам от 25.04.89 № 1088

Дата введения 01 09 89

Вводная часть Последний абзац исключить

Пункт 14 исключить

Сункт 17 Пример условного обозначения Заменить слово «электротепловентилятора» на «тепловентилятора».

ису лючить слово «фирменным»:

ı

заменить обозначение ЭТВ на ТВ

П пкты 21, 331, 42 Заменить ссылку: ГОСТ 27570 0-87 на ГОСТ 27570 15-88.

Пункт 21 Заменить ссылку ГОСТ 14087-80 на ГОСТ 14087-88

Пункт 24 изложить в новой редакции: «2.4. Номинальные значения клима-

тическух факторов внешней среды — по ГОСТ 15150—69 и ГОСТ 15543—70» Раздел 2 дополнить пунктом — 2.5а: «2 5а. Снижение производительности тепловентиляторов от максимальной на минимальной ступени ее регулирования (при ступенчатом регулировании) или в минимальном положении регулятора (при плавном регулировании) должно быть не менее

20 ° - с конденсаторным электродвигателем,

10 % — с электродвигателями других типов»

Пункты 28 (кроме черт 1), 210 изложить в новой редакции: «28. Нагрев по ГОСТ 2757015—88 со следующим дополнением Температура поверхностей тепловентилятора (черт 1), за исключением решеток для выхода теплого воздуха и зоны вблизи них, доступных для испытательного пальца 27570 0-87, в условиях нормальной эксплуатации не должна превышать температуру окружающего воздуха более чем на:

60°C — для неметаллического корпуса; 80°С — для металлического корпуса

2 10 Корректированный уровень звуковой мощности тепловентиляторов на максимальной скорости должен быть не более указанного в табл 1а

Таблица 1а

			aonnuala
Исполнение тепловентиляторов по принци-	ности, дБА.	инный уровень з при номинально тельности, м ^а /м	эй производи-
пу действия	1,0	1,6	2,5
Центробежные Осевые и диаметральные	48	53 53/ 58	60

Примечание Значение показателя в знаменателе допускается ОД 01 01 92 для изделий, поставленных на производство до 01 01 89».

Пункты 2 21, 2 22, 2 24 исключить

Пункт 2 25 изложить в новой редакции «2 25 Присоединение к источнику питат и внешние гибкие кабели и шнуры — по ГОСТ 27570 15-88 Соединительный шнур тепловентилятора может быть несъемным, армированным неразборной штепсельной вилкой, или съемным, армированным неразборными вилкой и приборной розеткой

Длина шнура должна быть не менее 2,00 м, номинальное поперечное сече-

ние — не менее 0.75 мм^2 »;

примечание исключить.

Пункт 2.29. Четвертый абзац изложить в новой редакции: «наличие регулирования производительности»;

восьмой абзац. Заменить слово: «механизма» на «механизм»;

Пункт 2.31.1 изложить в новой редакции: «2.31.1. Маркировка тепловентиляторов должна соответствовать ГОСТ 27570.15—88 с дополнением розничной цены».

Пункт 2.31.2. Исключить слово: «фирменное».

примечание 4 исключить.

Пункт 3.3.1. Таблица 2. Заменить ссылки: 2.4 и 4.3 на «По ГОСТ 14087— -88»; СТ СЭВ 4139—83 на ГОСТ 27734—88; СТ СЭВ 4921—84 на ГОСТ 27805—88; 2.24, 4.6, 4.13, 4.16, 4.21 на «по ГОСТ 27570.15—88»;

графу «технических требований». Для испытания «Испытания при ненормальной работе» дополнить ссылкой: «и по ГОСТ 27570.15—88»:

для испытания «Проверка конструкции» исключить слова: «н по пп. 2.21, 2.22»;

графа «методов испытаний». Для испытания «Проверка конструкции» исключить слова: «и по пп. 4.14, 4.15»;

графа «Программа испытаний». Исключить испытания: «Измерение сопротивления изоляции в холодном состоянии», «Испытание электрической прочности изоляции в холодном состоянии», «Измерение тока утечки в холодном состоянии» и соответствующие им обозначения стандартов;

наименования испытаний «Испытания на функционирование», «Измерение

длины шнура питания» дополнить знаком сноски: *;

для испытаний «Проверка на механическую опасность», «Проверка конструкции», «Проверка внутренней проводки», «Проверка комплектующих изделий», «Испытание на теплостойкость, огнестойкость и стойкость к образованию токопроводящих мостиков», «Стойкость к коррозии» исключить знак сноски:*;

графа «методов испытаний». Заменить ссылку: ГОСТ 16617-87 на «Прило-

жение 4»;

таблицу дополнить программой испытания: «Определение снижения производительности*»:

		ие стандарта или пункт настоя- щего стандарта		
Программа испытаний	технических требо- ваний	методов испытаний		
Определение снижения производитель- ности*	2.5a	4.21		

примечание 1 исключить.

Пункт 3.7. Первый абзац. Исключить слова: «за исключением определения производительности и мощности нагревательного элемента при отклонении напряжения в сети».

Пункт 4.1. Первый, второй абзацы изложить в новой редакции:

«Общие условия испытаний — по ГОСТ 27570.15—88».

Пункты 4.3, 4.6 исключить.

Пункт 4.8. Первый абзац. Заменить слова: «в нормативных климатических условиях» на «в нормальных климатических условиях».

Пункт 4.9. Заменить ссылку: СТ СЭВ 4139—83 на ГОСТ 27734—88.

Пункты 4.13—4.13.3, 4.14, 4.15, 4.16, 4.20 исключить.

(Продолжение см. с. 189)

Пункт 4 19 Третий абзац и формулу (7) исключить

Раздел 4 дополнить пунктом — 421 «421 Снижение производительности (Q_c) в процентах рассчитывают по формуле

$$Q_{\rm c} = \frac{Q - Q_1}{Q} \cdot 100, \tag{7}$$

где Q — фактическая производительность при номинальном напряжении и максимальном числе оборотов в установившемся режиме, м 3 -мин $^{-1}$,

 Q_1 — фактическая производительность при номинальном напряжении и минимальном числе оборотов в установившемся режиме, м⁸-мин $^{-1}$ »

Приложение 2 исключить

Стандарт дополнить приложениями — 4—6

«ПРИЛОЖЕНИЕ 4

Рекомендуемое

ОПРЕДЕЛЕНИЕ ВЕРОЯТНОСТИ ВОЗНИКНОВЕНИЯ ПОЖАРА ОТ ТЕПЛОВЕНТИЛЯТОРОВ

Испытания проводят на десяти тепловентиляторах при квалификационных испытаниях

1 Испытание тепловентиляторов в режиме перенапряжения проводят по

FOCT 27570 15—88

Регулирующие устройства по мощности у тепловентиляторов установлены на максимальнои уставке Приборы включены в сеть при напряжении, составляющем 1,2 номинального напряжения, и работают до установивы гося режима При этом определяют максимальные значения температуры на всех частях корпуса из горючих материалов, соединительном шнуре, а также на полу и стенках испытательного угла

Критической температурой $T_{\rm K}$ считается температура размягчения частей тепловентиляторов из горючих материалов, если она ниже 175°C Если температура размягчения выше 175°C, то за критическую принимают температуру

175°C

2 Испытание тепловентиляторов в режиме заторможенного электродвигателя проводят по ГОСТ 27570 15—88 Двигатели тепловентиляторов заторможены, регулирующие устройства по мощности установлены на максимальной уставке Тепловентиляторы включают в сеть с номинальным напряжением и они работают до срабатывания термовыключателя или до достижения установившегося режима

3 Испытание тепловентиляторов в режиме ненормальной теплоотдачи про-

водят в два этапа

31 Испытание на срабатывание термовыключателей проводят по п 46 со следующим дополнением У тепловентиляторов полностью перекрывают входное и выходное отверстия, а регулирующие устройства по мощности устанавливают на максимальные уставки Тепловентиляторы включают в сеть при номинальном напряжении, и они работают до срабатывания термовыключателей или до установившегося режима

32 Испытание тепловентиляторов с закороченными термовыключателями проводят по п 31 данного приложения со следующим дополнением У тепло-

вентиляторов перекрывают 1/2 площади выходного отверстия.

4. Расчет вероятности возникновения пожара

4 1 Вероятность возникновения пожара (Q_n) от одного тепловентилятора в год определяют по формуле

$$Q_n = 1 - (1 - Q_{B,n})(1 - Q_{B,n})(1 - Q_{B,n})(1 - Q_{B,n})(1 - Q_{m}),$$
 (8)

где $Q_{B,n}$ — вероятность воспламенения в режиме перенапряжения;

(Продолжение см. с. 190)

 $Q_{{_{\rm B}}{_{\,{_{\rm 3}}}}{_{\,{_{\rm J}}}}}-$ вероятность воспламенения в режиме заторможенного двигателя,

 $Q_{{}_{\rm B}}{}_{{}_{\rm H}}{}_{{}_{\rm T}}$ — вероятность воспламенения в режиме ненормальной теплоотдачи,

 $Q_{\rm III}$ — вероятность воспламенения шнура, определяемая по таблице приложения 5 в зависимости от максимального значения температуры шнура из всех режимов (перенапряжение, заторможенный двигатель, ненормальная теплоотдача)

4.2 Вероятность воспламенения в режиме перенапряжения ($Q_{\rm B}$ п) рассчитывают по формуле

$$Q_{\rm B \ n} = \left[1 - \prod_{t=1}^{n} (1 - Q_{t \, \rm nep}) \right] Q_{\rm B \ T}, \tag{9}$$

где n — чисто объектов (все части корпуса из горючих материалов, стенд), на которых измеряется температура,

 Q_{inep} — вероятность достижения критической температуры на *i*-том объекте на котором измерялась температура в режиме перенапряжения, $Q_{\text{B-T}}$ — вероятность выхода из строя термовыключателя, определяется на основе статистических данных о надежности термовыключателя Вероятность Q_{inep} определяют из соотношения

$$Q_{inep} = 1 - \Theta_{inep}, \tag{10}$$

где $\Theta_{\ell \pi e p}$ — параметр, значение которого выбирают по табличным данным в зависимости от безразмерного параметра $\alpha_{\ell \pi e p}$ в распределении Стьюдента (приложение 6)

Параметр стпер для режима перенапряжения рассчитывают по формуле

$$\alpha_{inep} = \frac{\sqrt{\overline{m} (T_{iR} - T_{icp nep})}}{\sigma_{inep}}, \qquad (11)$$

где m — число испытываемых приборов (m = 10),

 T_{IK} — критическая температура ι -того объекта (части корпуса из горючих материалов, стенд),

 $T_{i \text{ ср пер}}$ — средняя температура i-того объекта, на котором измеряется температура, в режиме перенапряжения;

 σ_{inep} — среднее квадратическое отклонение температуры i-го объекта в режиме перенапряжения.

Средняя температура ι -того объекта в режиме перенапряжения ($T_{i \text{ ср пер}}$) рассчитывают по формуле

$$T_{tcp,nep} = \frac{\sum_{j=1}^{m} T_{tjnep}}{m} , \qquad (12)$$

где $T_{i,\text{пер}}$ — максымальная температура i-того объекта в j-ом приборе в режиме перенапряжения,

m — число испытываемых приборов (m=10).

Среднее квадратическое отклонение температуры в режиме перенапряжения (σ_{tnep}) рассчитывают по формуле

$$\sigma_{i,\text{nep}} = \sqrt{\frac{\sum_{j=1}^{m} (T_{i,\text{jnep}} - T_{i,\text{cp.nep}})^2}{m-1}} . \tag{13}$$

(Продолжение см. с. 191)

Примечание Если $\alpha_t > 5$, то $Q_t = 0$, если $T_{t \in p} > T_{t \in k}$ то $Q_t = 1$.

4 3 Вероятность воспламенения в режиме заторможенного электродвигателя ($Q_{\mathrm{B}\ 3\ \mathrm{J}}$) рассчитывают по формуле

$$Q_{\rm B 3 A} = [1 - \prod_{i=1}^{n} (1 - Q_{i3 A})] Q_{\rm B T}, \tag{14}$$

где n — число объектов (части корпуса из горючих материалов, стенд), на которых измеряется температура;

 Q_{134} — вероятность достижения критической температуры на t-том объекте, на котором измерялась температура в режиме затормыженного электродвигателя,

 $Q_{\rm B-T}$ — вероятность выхода из строя термовыключателя, определяємая на основе статистических данных о надежности термовыклю изтеля

Вероятность Q_{137} рассчитывают по формуле

$$Q_{i3,n} = 1 - \Theta_{i3,n} , \qquad (15)$$

где Θ_{i3} — параметр, значение которого выбирается по табличным данным в зависимости от безразмерного параметра α_{i3} в распределении Стьюдента (приложение 6);

$$\alpha_{t3} = \frac{\sqrt{m} (T_{tk} - T_{tcp 3 \mu})}{\sigma_{t3 \mu}}, \qquad (16)$$

где $T_{\rm \ fcp\ 3\ A}-$ средняя температура ι -того объекта (все части корпуса из горючих материалов, стенд), на которых измеряется температура в режиме заторможенного двигателя,

 $\sigma_{\ \ i \ \ 3 \ \ 4}$ — среднее квадратическое отклонение температуры $\emph{i-}$ того объекта в режиме заторможенного двигателя

Вычисление этих величин проводят также, как и в режиме перенапряжения $4\ 4$ Вероятность воспламенения в режиме ненормальной теплоотдачи $(Q_{\mathrm{BH},\mathrm{T}})$ рассчитывают по формуле

$$Q_{\rm B \ H \ T} = [1 - \prod_{t=1}^{n} (1 - Q_{t \rm H \ T})] Q_{\rm B \ T}, \tag{17}$$

где n — число объектов (все части корпуса из горючих материальв, стенд), на которых измеряется температура,

 $Q_{I_{H-T}}$ — вероятность достижения критической температуры на t-том объекте в режиме ненормальной теплоотдачи,

режиме ненормальной теплоотдачи, $Q_{\mathbf{B},\mathbf{T}}$ — вероятность выхода из строя термовыключателя

Если во время испытаний по п 31 настоящего приложения термовык точатель сработал до достижения каким либо объектом критической тенпературы, то расчет вероятности воспламенения в режиме ненормальной теплоотдачи проводят по результатам испытаний по п 32, и в этом случае вероятность выхода из строя термовыключателя $(Q_{\rm B,T})$ определяют на основе статистических длиных

о надежности термовыключателя

Если во время испытаний по п 31 настоящего приложения термовыключатель не сработал, то расчет вероятности воспламенения в режиме ненорматьной теплоотдачи проводят по результатам испытаний по п 31 (испытание по п 32 не проводят), а вероятность выхода из строя термовыключателя ($Q_{\rm B}$ т) прини-

мают равной 1

Вероятность Q_{in} трассчитывают по формуле

$$Q_{i_{H,T}} = 1 - \Theta_{i_{H,T}} \,, \tag{18}$$

где $\Theta_{l\,H.T}$ — параметр, значение которого выбирают по табличным данным в зависимости от безразмерного параметра $\alpha_{l\,H.T}$ в распределении Стьюдента (приложение 6).

$$\alpha_{lH,T} = \frac{\sqrt{m} \left(T_{lK} - T_{lcp,H,T}\right)}{\sigma_{lH,T}} , \qquad (19)$$

где $T_{i\text{ср H.T}}$ — средняя температура i-того объекта (все части корпуса из горючих материалов, стенд), на которых измеряется температура в режиме ненормальной теплоотдачи;

 $\sigma_{i_{\rm H.T}}$ — среднее квадратическое отклонение температуры i-того объекта в режиме ненормальной теплоотдачи.

Вычисление этих величин проводят так же, как и в режиме перенапряжения 5. Тепловентилятор считается выдержавшим испытания, если значение $Q_n \ll 10^{-6}$.

ПРИЛОЖЕНИЕ 5 Справочное

Значение вероятности воспламеняющего импульса в шнуре $Q_{\text{m}} \times 10^{-6}$

		Температура, °С					
Сечение шнура, мм²	Длина шнура, м	40	50	60	70	80	90
			Вероятн	ость воспла	меняющего и	импульса	
0,5—1,0	0,5 1,0 1,5 2,0 2,5 3,5 4,0	0,018 0,037 0,055 0,074 0,092 0,111 0,129 0,150	0,037 0,074 0,111 0,148 0,185 0,222 0,259 0,296	0,074 0,148 0,222 0,296 0,370 0,444 0,518 0,593	0,091 0,282 0,423 0,564 0,705 0,846 0,987 1,130	0,295 0,5900 0,885 1,180 1,475 1,770 2,065 2,360	1,1777 2,3550 3,5320 4,7100 5,8870 7,0650 8,2420 9,4200
1,5-2,5	0,5 1,1 1,5 2,0 2,5 3,0 3,5 4,0	0,0562 0,1120 0,1680 0,2240 0,2800 0,3360 0,3920 0,4500	0,102 0,205 0,307 0,410 0,512 0,615 0,717 0,819	0,204 0,409 0,613 0,818 1,022 1,227 1,431 1,638	0,409 0,818 1,227 1,636 2,045 2,454 2,863 3,274	0,821 1,643 2,464 3,286 4,107 4,929 5,750 6,547	3,362 6,725 10,080 13,450 16,810 20,170 23,530 26,190

(Продолжение см. с. 193)

(Продолжение изменения к ГОСТ 17083—87) ПРИЛОЖЕНИЕ 6 Справочное

Значение функции $\Theta = f(\alpha)$

α	Θ	α	Θ	α	Θ
0,0	0,000	1,2	0,736	2,8	0,975
0,1	0,078	1,3	0,770	3,0	0,984
0,2	0,154	1,4	0,800	3,2	0,988
0,3	0,228	1,5	0,826	3,4	0,990
0,4	0,300	1,6	0,852	3,6	0,992

(Продолжение см. с. 194)

(Продолжение изменения к ГОСТ 17083-87)

Продолжение

α	0	α	9	α	е
0 5 0,6 0,7 0,8 0,9 1,0	0 370 0 434 0 496 0,554 0,606 0,654 0,696	1,7 1,8 1,9 2,0 2,2 2,4 2,6	0,872 0,890 0,906 0,920 0,940 0,956 0,968	3,8 4,0 4,2 4,4 4,6 4,8 5,0	0,994 0,996 0,996 0,998 0,998 0,998 1,000

(ИУС № 7 1989 г)