Государственное санитарно-эпидемиологическое нормирование Российской Федерации

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение вредных веществ в биологических средах

Сборник методических указаний МУК 4.1.2102—4.1.2116—06

Издание официальное

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение вредных веществ в биологических средах

Сборник методических указаний МУК 4.1.2102—4.1.2116—06

Определение вредных веществ в биологических средах: Сборник методических указаний.—М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2008.—183 с.

- 1. Рекомендованы к утверждению Комиссией по санитарно-эпидемиологическому нормированию при Федеральной службе по надзору в сфере защиты прав потребителей и благополучия человека (протокол от 11.07.06 № 2).
- 2. Утверждены и введены в действие Руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главным государственным санитарным врачом Российской Федерации 9 августа 2006 г.
 - 3. Введены впервые.

ББК 28.072

[©] Роспотребнадзор, 2008

[©] Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2008

Содержание

абсорбщионной спектрометрии: МУК 4.1.2102—06	4
Определение массовой концентрации ванадия в пробах крови методом атомно-абсорбционной спектрометрии с электротермической атомизацией: МУК 4.1.2103—06	.14
Определение массовой концентрации меди, магния, кадмия в пробах мочи методом атомно-абсорбционной спектрометрии: МУК 4.1.2104—06	.25
Определение массовой концентрации марганца, свинца, магния в пробах волос методом атомно-абсорбционной спектрометрии: МУК 4.1.2105—06	.37
Определение массовой концентрации марганца, свинца, магния в пробах крови методом атомно-абсорбционной спектрометрии: МУК 4.1.2106—06	.50
Определение массовой концентрации фенола в биосредах (моча) газохроматографическим методом: МУК 4.1.2107—06	.63
Определение массовой концентрации фенола в биосредах (кровь) газохроматографическим методом: МУК 4.1.2108—06	.74
Определение массовой концентрации 2-хлорфенола в биосредах (моча) газохроматографическим методом: МУК 4.1.2109—06	.85
Определение массовой концентрации формальдегида, ацетальдегида, пропионового альдегида, масляного альдегида и ацетона в пробах мочи методом высокоэффективной жидкостной хроматографии: МУК 4.1.2110—06	.96
Измерение массовой концентрации формальдегида, ацетальдегида, пропионового альдегида, масляного альдегида и ацетона в пробах крови методом высокоэффективной жидкостной хроматографии: МУК 4.1.2111—06	.10
Определение массовой концентрации хлороформа, 1,2-дихлорэтана, тетрахлорметана, хлорбензола в биосредах (кровь) газохроматографическим методом: МУК 4.1.2112—06	.25
Определение массовой концентрации хлороформа, 1,2-дихлорэтана, тетрахлорметана в биосредах (моча) методом газохроматографического анализа равновесного пара: МУК 4.1.2113—06	.37
Определение массовой концентрации хлороформа, 1,2-дихлорэтана, тетрахлорметана, хлорбензола в биосредах (моча)	.49
Определение массовой концентрации хлороформа, 1,2-дихлорэтана, тетрахлорметана в биосредах (кровь) методом газохроматографического анализа равновесного пара: МУК 4.1.2115—06	.62
Определение массовой концентрации стирола в пробах крови методом	.74

УТВЕРЖДАЮ

Руководитель Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главный государственный санитарный врач Российской Федерации

Г. Г. Онищенко

9 августа 2006 г.

Дата введения: 1 сентября 2006 г.

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение массовой концентрации 2-хлорфенола в биосредах (моча) газохроматографическим методом

Методические указания МУК 4.1.2109—06

1. Область применения

Методические указания по определению концентраций химических веществ в биологических средах предназначены для использования Федеральной службой по надзору в сфере защиты прав потребителей и благополучия человека, лечебными и научными учреждениями, работающими в области профпатологии и экологии человека, научно-исследовательскими институтами, занимающимися вопросами гигиены окружающей среды.

Методические указания разработаны с целью обеспечения контроля за содержанием органических соединений в биологических средах у населения, проживающего в районах с повышенным уровнем загрязнения окружающей среды.

Методические указания разработаны в соответствии с требованиями ГОСТ Р 8.563—96 «ГСОЕИ. Методики выполнения измерений», ГОСТ Р 1.5—92 «ГСС. Общие требования к построению, изложению, оформлению и содержанию стандартов». Методика анализа обеспечивает выполнение измерений массовой концентрации 2-хлорфенола в моче в диапазоне концентраций: от 0,05 до 1,80 мкг/см³ с погрешностью 23,0 % при доверительной вероятности 0,95.

2-Хлорфенол СІС₆Н₄ОН Молекулярная масса 128,56

2-Хлорфенол – бесцветная жидкость с резким неприятным запахом.

Температура кипения — 175 °C. Кумулятивные свойства выражены умеренно. Вызывает нарушения функции почек и печени, при периодическом попадании на кожу — новообразования [1].

2. Сущность метода

Методика основана на предварительном концентрировании анализируемого соединения из биологического материала (моча) экстракцией бутилацетатом и последующем газохроматографическом анализе экстракта.

Выполнение измерений массовой концентрации 2-хлорфенола выполняют методом газовой хроматографии с использованием детектора электронного захвата.

Определению не мешают хлороформ, тетрахлорметан и другие хлорфенолы (температура кипения 3-хлорфенола – 214 °C) в количествах, не превышающих верхнюю границу измеряемой концентрации 2-хлорфенола.

Длительность анализа одной пробы мочи, включая экстракцию – 40 мин.

3. Средства измерений, вспомогательные устройства, материалы и реактивы

При выполнении измерений применяют следующие средства измерений, вспомогательные устройства, материалы, реактивы и растворы. Допускается применение других типов средств измерений, вспомогательного оборудования и химреактивов с аналогичными или лучшими метрологическими и техническими характеристиками.

3.1. Средства измерений

Хроматограф газовый с детектором	
электронного захвата	
Весы лабораторные ВЛР-200 аналитические	ΓΟCT 24104—01
Разновесы Γ_2 -210	ΓΟCT 7328—01
Секундомер «Агат»	ТУ 25-1894.003—90
Микрошприцы МШ-10	ТУ 2.833.106—00
Линейка измерительная	ГОСТ 427—75
Лупа измерительная	ΓΟCT 25706—83
Колбы мерные, вместимостью 25, 50, 100 и	
$1000{\rm cm}^3$	ГОСТ 1770—74
Пипетки мерные 5, 10 см ³	ΓΟCT 29227—91

3.2. Вспомогательные устройства

Хроматографическая колонка стеклянная длиной

1,5 м и внутренним диаметром 3 мм

 Бидистиллятор стеклянный БС
 ТУ 25-11.1592—81

 Редуктор кислородный
 ТУ 26-05-236—73

Центрифуга СМ-4, 3 000 об./мин

Воронка делительная ГОСТ 23932—90

3.3. Материалы

Азот газообразный ГОСТ 9293—74

3.4. Реактивы

3 % XE-60 на хроматоне N-супер фракции 0,16—0,20 мм – неподвижная фаза для заполнения хроматографической колонки (производство

Германии)
2-хлорфенол, ч
Натрия хлорид, хч
Соляная кислота, хч
Бутилацетат, ч

Бутилацетат, ч Камфара фарм.

Серная кислота, осч Калия дихромат, чда Ацетон, осч ТУ 6-09-2875 ГОСТ 4233—77 ГОСТ 3118—77 ГОСТ 22300—76

ΓΟCT 14262—78 ΓΟCT 4220—75

ТУ 2633-039-44493179---00

3.5. Растворы

Раствор калия дихромата, 3 %-й Раствор камфары, 20 %-й Соляная кислота раствор (1:3)

4. Требования к безопасности

- 4.1. При выполнении работ должны быть соблюдены меры противопожарной безопасности в соответствии с требованиями ГОСТ 12.1.004—85 и правила техники безопасности в соответствии с ГОСТ 12.1.007—76.
- 4.2. При работе необходимо соблюдать «Правила по технике безопасности и производственной санитарии при работе в химических лабораториях» (Утверждены МЗ СССР 20.12.82) и «Правила устройства и безопасной эксплуатации сосудов, работающих под давлением» (Утверждены Госгортехнадзором СССР 27.11.87).

- 4.3. При работе с реактивами соблюдают требования безопасности, установленные для работ с токсичными, едкими и легковоспламеняющимися веществами по ГОСТ 12.1.005—88.
- 4.4. При выполнении измерений с использованием газового хроматографа соблюдают правила электробезопасности в соответствии с ГОСТ 12.1.019—79 и инструкцией по эксплуатации прибора.

5. Требования к квалификации оператора

К выполнению измерений допускаются лица, имеющие квалификацию не ниже инженера-химика и опыт работы на газовом хроматографе и в химической лаборатории, прошедшие соответствующий инструктаж, освоившие метод в процессе тренировки и уложившиеся в нормативы оперативного контроля при выполнении процедур контроля погрешности.

6. Условия измерений

- 6.1. При проведении процессов приготовления растворов и подготовки проб к анализу соблюдают следующие условия:
 - температура воздуха (20 ± 5) °C;
 - атмосферное давление 630—800 мм рт. ст.;
 - влажность воздуха не более 80 % при температуре 25 °C.
- 6.2. Выполнение измерений на газовом хроматографе проводят в условиях, рекомендуемых технической документацией по прибору.

7. Подготовка к выполнению измерений

Перед выполнением измерений проводят следующие работы: подготовка посуды, подготовка хроматографической колонки, приготовление аттестованных смесей, установление градуировочной характеристики.

7.1. Подготовка посуды

Используемую посуду замочить на 1 ч в свежеприготовленном 3 %-м растворе дихромата калия в серной кислоте (3 г дихромата калия на $100~{\rm cm}^3$ концентрированной серной кислоты), отмыть в проточной водопроводной воде, ополоснуть бидистиллированной водой и просущить при температуре $120~{\rm ^{\circ}C}$.

7.2. Подготовка хроматографической колонки

Хроматографическую колонку перед заполнением неподвижной фазой промывают дистиллированной водой, ацетоном, высушивают в токе инертного газа. Заполнение хроматографической колонки насадкой

проводят под вакуумом. Концы колонки закрывают стекловатой, устанавливают в хроматограф и, не подключая к детектору, кондиционируют в токе газа-носителя (азота) с расходом $30~{\rm cm}^3/{\rm mun}$ при температуре $250~{\rm ^{\circ}C}$ в течение $18~{\rm ^{\circ}H}$. После охлаждения колонку подключают к детектору, записывают нулевую линию в рабочем режиме. При отсутствии мешающих влияний колонка готова к работе.

7.3. Приготовление растворов и реактивов

- 6.3.1. Раствор соляной кислоты (1:3). В мерный стакан объемом $100~{\rm cm}^3$, содержащий $75~{\rm cm}^3$ бидистиллированной воды, вводят $25~{\rm cm}^3$ соляной кислоты $(\rho=1,19)$. Раствор переносят в стеклянную склянку с притертой пробкой.
- 6.3.2. Раствор камфары 20 %-й. Растворяют 2 г кристаллической камфары в 10 см³ бутилацетата. Раствор хранят в стеклянной посуде с притертой пробкой не более 1 месяца.
- 6.3.3. Peazeнm для экстракции. К 100 см^3 бутилацетата прибавляют 0.4 см^3 20 %-го раствора камфары.

7.4. Приготовление аттестованных смесей

Для построения градуировочного графика собирают мочу, не содержащую определяемого компонента, и готовят серию аттестованных растворов.

Uсходный аттестованный раствор. В мерную колбу объемом 100 см^3 , содержащую 50 см^3 мочи, вводят 2 мм^3 2-хлорфенола и заполняют колбу до метки мочой. Весовое содержание определяемого вещества в исходном аттестованном растворе составляет (с учетом плотности) $25,27 \text{ мкг/см}^3$. Срок хранения -12 ч.

7.5. Установление градуировочной характеристики

Градуировочную характеристику устанавливают методом абсолютной калибровки. Она выражает зависимость площади пика на хроматограмме (Mm^2) от массы 2-хлорфенола (Mkr) и строится по 5 сериям рабочих аттестованных растворов. Каждую серию, состоящую их 5 рабочих аттестованных растворов, готовят в мерных колбах объемом 50 см³. В колбу объемом 50 см³, содержащую 30 см³ мочи, добавляют исходную аттестованную смесь для градуировки в соответствии с табл. 1. Затем объем в колбе доводят мочой до метки.

Таблица 1 Рабочие аттестованные растворы для установления градуировочной характеристики при определении концентрации 2-хлорфенола

Номер смеси для градуировки	1	2	3	4	5
2-Хлорфенол, объем исходного аттестованного раствора (25,27 мкг/см³), см³	0,1	0,5	1,0	2,0	3,5
Содержание 2-хлорфенола, мкг/см ³	0,05	0,25	0,5	1,0	1,77

Для построения градуировочной характеристики 2-хлорфенола аттестованный раствор в объеме 50 см³ помещают в делительную воронку объемом 250 см³, добавляют 30 г высаливателя (хлорид натрия), подкисляют раствором соляной кислоты (1:3) до рН 2 и приливают 5 м³ реагента для экстракции (раствор камфары в бутилацетате). Содержимое воронки интенсивно встряхивают 10 мин, после отстаивания эфирный экстракт сливают в пробирку и центрифугируют для денатурации белка 10 мин.

В хроматографическую колонку через испаритель вводят по 2 м³ каждого экстракта аттестованного раствора и анализируют в условиях:

температура термостата колонок – 110 °C;

температура испарителя – 170 °C;

температура детектора – 250 °C;

расход газа-носителя (азот) – 30 см³/мин;

скорость диаграммной ленты – 240 мм/ч;

время удерживания 2-хлорфенола – 1 мин.

На полученной хроматограмме определяют площади пиков 2-хлорфенола и по средним результатам из 5 серий строят градуировочную характеристику. Градуировку проверяют 1 раз в квартал и при смене партии реактивов.

7.6. Отбор проб

Отбор проб мочи в объеме не менее 200 см³ производится в тщательно вымытый стеклянный сосуд с притертой пробкой. Анализ мочи проводить сразу или хранить в холодильнике не более 12 ч после отбора пробы.

8. Выполнение измерений

Для определения 2-хлорфенола мочу в объеме 50 см³ помещают в делительную воронку объемом 250 см³, добавляют 30 г высаливателя (хлорид натрия), подкисляют раствором соляной кислоты (1:3) до pH 2

и приливают 5 см 3 реагента для экстракции (раствор камфары в бутилацетате). Содержимое воронки интенсивно встряхивают 10 мин, после отстаивания эфирный экстракт сливают в пробирку и центрифугируют для денатурации белка 10 мин.

Полученный центрифугат хроматографируют и проводят количественное определение анализируемого соединения в подготовленной пробе по калибровочному графику. Процедуру повторяют аналогично для второго образца и проводят выполнение измерений двух параллельных проб мочи. Условия выполнения измерений аналогичны условиям при установлении градуировочной характеристики (п. 7.5).

9. Вычисление результатов измерений

На хроматограмме рассчитывают площадь пика и по градуировочной характеристике определяют концентрацию 2-хлорфенола в моче.

За результат измерения принимают среднее арифметическое значение двух параллельных определений X_{max}, X_{min} , расхождение между которыми не должно превышать значения предела повторяемости r_n (табл. 3).

Расчет концентраций 2-хлорфенола ведут по формуле:

$$X = \frac{A \cdot V_{\mathfrak{I} \kappa cm.}}{V_1 \cdot V_2}$$
, где

A — количество компонента, найденное по калибровочному графику, мкг;

 V_{I} – объем экстрагируемой мочи, см³;

 V_2 – объем хроматографируемой пробы, см³.

Результат измерений представляют в виде ($\overline{X} \pm \Delta$) мкг/см³, \bot где

$$\overline{X}$$
 – средний результат анализа, мкг/см³, $\overline{X} = \frac{X_{max} + X_{min}}{2}$

при условии:
$$X_{max} - X_{min} \le \frac{r_n}{100} \cdot \frac{X_{max} + X_{min}}{2}$$
, где

 X_{max} — максимальный результат из 2-х параллельных измерений; X_{min} — минимальный результат из 2-х параллельных измерений;

 r_n – значение предела повторяемости, %;

 Δ – характеристика погрешности, мкг/см³ при P = 0,95, равная:

$$\Delta = \frac{\delta \cdot \overline{X}}{100}$$
, где

 δ – относительное значение характеристики погрешности, %.

10. Внутренний контроль качества результатов измерений

Внутренний контроль качества (ВКК) результатов измерений – повторяемость, внутрилабораторная прецизионность (воспроизводимость), точность – осуществляют с целью получения оперативной информации о качестве измерений и принятия при необходимости оперативных мер по его повышению в соответствии с нормативным документом МИ 2335—2003 «ГСОЕИ. Внутренний контроль качества результатов количественного химического анализа».

Методика выполнения измерений обеспечивает получение результатов измерений с погрешностью, не превышающей значений, приведенных в табл. 2 и 3.

Таблица 2 Диапазон измерений, значения показателей точности, повторяемости, воспроизводимости

Наименование определяемого компонента и диапазон измерений, мкг/см³	Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости), $\sigma_{\rm r}, \%$	Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости) $\sigma_{R_{\overline{X}_{\ell}}},\%$	Показатель точности (границы относительной погрешности при вероятности $P=0.95$), $\pm \delta$, %
2-Хлорфенол, от 0,05 до 1,80 вкл.	11,7	12,3	23,0

Таблица 3 Значения пределов повторяемости и воспроизводимости при доверительной вероятности P=0.95

Наименование определяемого компонента и диапазон измерений, мкг/см³	Предел повторяемости (относительное значение допускаемого расхождения между двумя результатами параллельных определений), r_n , %	Предел внутрилабораторной воспроизводимости (относительное значение допускаемого расхождения между двумя результатами измерений, полученными в одной лаборатории, но в разных условиях), $R_{\overline{\chi}\ell}$, %
2-Хлорфенол, от 0,05 до 1,80 вкл.	22,3	28,4

10.1. Контроль стабильности градуировочной характеристики

Контроль стабильности градуировочного графика проводят раз в квартал в анализируемой серии измерений, определяют содержание исследуемого соединения в градуировочных растворах, которые соответствуют началу, середине и концу градуировочного интервала. Градуировка признается стабильной, если расхождение между заданным и измеренным значением концентраций не превышает 5 %.

10.2. Контроль повторяемости

Относительное расхождение между результатами двух измерений, выполненных в соответствии с методикой одним оператором при измерении образцов одной и той же рабочей пробы, с использованием одних и тех же средств измерений и реактивов, в течение возможно минимального интервала, не должно превышать значения предела повторяемости r_n (табл. 3).

Повторяемость результатов параллельных измерений признают удовлетворительной, если

$$X_{max} - X_{min} \le \frac{r_n}{100} \cdot \frac{X_{max} + X_{min}}{2}$$
 , где

 r_n – значение предела повторяемости, %;

 X_{max} – максимальный результат из 2-х параллельных измерений;

 X_{min} – минимальный результат из 2-х параллельных измерений.

Если условие не выполняется, эксперимент повторяют. При повторном получении отрицательного результата выясняют причины, приводящие к неудовлетворительным результатам, и устраняют их.

10.3. Контроль воспроизводимости

Внутренний контроль воспроизводимости проводят с использованием рабочей пробы. Пробу делят на две равные части и анализируют в соответствии с методикой, максимально варьируя условия проведения анализа (разные операторы, разное время, разные партии реактивов одного типа, разные наборы мерной посуды и т. д.). Воспроизводимость результатов контрольных измерений признают удовлетворительной, если выполняется условие:

$$\left| \overline{X}_1 - \overline{X}_2 \right| \le \frac{R_{\overline{X}\ell}}{100} \cdot \frac{\overline{X}_1 + \overline{X}_2}{2}$$
 , где

 \overline{X}_1 — средний результат анализа рабочей пробы из 2-х параллельных измерений, мкг/см³;

 \overline{X}_2 – средний результат анализа рабочей пробы из 2-х параллельных измерений, полученный в других условиях, мкг/см³;

 $R_{\overline{X}\ell}$ – значение предела внутрилабораторной воспроизводимости, % (табл. 3).

Расхождение между результатами измерений \overline{X}_1 и \overline{X}_2 , полученных в разных условиях, не должно превышать значений показателя воспроизводимости $R_{\overline{X}\ell}$ при доверительной вероятности P=0,95, указанных в табл. 3.

Если условие не выполняется, эксперимент повторяют. При повторном получении отрицательного результата выясняют причины, приводящие к неудовлетворительным результатам, и устраняют их.

10.4. Оперативный контроль точности

Контроль точности с использованием метода добавок состоит в сравнении результата контрольной процедуры, равного разности между результатом контрольного измерения содержания 2-хлорфенола в пробе с известной добавкой (\overline{X}^1), в рабочей пробе без добавки (\overline{X}) и величиной добавки C (добавка должна составлять не менее 40 % от содержания 2-хлорфенола в рабочей пробе) с нормативом точности K.

Результаты контроля признаются удовлетворительными, если выполняется условие:

$$\left| \overline{X}^1 - \overline{X} - C_{\scriptscriptstyle O}
ight| = K_k$$
 , где

 \overline{X}^1 — средний результат контрольного измерения содержания определяемого компонента в рабочей пробе с известной добавкой из 2-х параллельных измерений, мкг/см 3 :

 \overline{X} — средний результат контрольного измерения содержания определяемого компонента в рабочей пробе из 2-х параллельных измерений, мкг/см³;

 C_{δ} – величина добавки к пробе, мкг/см³.

$$K = 0.84 \cdot \sqrt{\left(\frac{\delta}{100} \cdot \overline{X}\right)^2 + \left(\frac{\delta}{100} \cdot \overline{X}^1\right)^2}$$

Качество контрольной процедуры признают удовлетворительной при выполнении условия: $K_k \le K$.

При превышении оперативного контроля погрешности эксперимент повторяют. При повторном превышении указанного норматива выясняют причины, приводящие к неудовлетворительным результатам контроля, устраняют их и процедуру контроля повторяют.

Периодичность ВКК регламентируется в Руководстве по качеству лаборатории.

Литература

1. Бандман А. Л., Войтенко Г. А., Волкова Н. В.и др. Вредные химические вещества. Углеводороды. Галогенпроизводные углеводородов: Справ. изд. /Под ред. В. А. Филова и др. Л.: «Химия», 1990.

Методические указания разработаны Пермским научно-исследовательским клиническим институтом детской экопатологии (Т. С. Уланова, Т. В. Нурисламова, Н. А. Попова).