ТИПОВЫЕ КОНСТРУКЦИИ И ДЕТАЛИ ЗДАНИЙ И СООРУЖЕНИЙ СЕРИЯ 3505-9

ПОРТОВЫЕ ПОДКРАНОВЫЕ ПУТИ
НА ЖЕСТКОМ ОСНОВАНИИ

IKOW OCHORAHNN

Альбом І

Строительная часть

типовые конструкции и детали зданий и сооружений СЕРИЯ 3.505-9

ПОРТОВЫЕ ПОДКРАНОВЫЕ ПУТИ НА ЖЕСТКОМ ОСНОВАНИИ

Альбом І

Строительная часть

РАЗРАБОТАНЫ

Государственным институтом проектирования на речном транспорте ГИПРОРЕЦТРДНС

Главный инженер ГИПРОРЕЧТВАНСА: — /Яковлев П.А/ И.о. начальника отдела НИЗП: /Яковлев В.П./ Главный инженер проекта: //Матлин А.Г./ УТВЕРЖДЕНЫ И ВВЕДЕНЫ В ДЕЙСТВИЕ МИНИСТЕРСТВОМ РЕЧНОГО ФЛОТА С $I.\overline{M}$. 1972г.

Согласованы с ЦК Професоюза рабочих торского и речного флота 16 декабря 1971г.

меф вофор ГИПРОРЕЧТРЯНС с Москва Альбом I. Портовые подкрановые пути на жестком основании. Строительная часть.

Яльбом $\overline{\mathbb{U}}$. Портовые подкрановые пути на жестком основании. Механическая часть троллейного питания кранов.

Содержание альбома -

Наименование	Juen	Cmp.
Введение	<u></u>	3
Указания о перядке притенения рабочих чертежей		3
Пояснительная записка	1.1	5
Номенклатура железобетонных деталей	V/	7
Номенклатура металлических деталей	VII, VIII	8,9
4epmeseu		
Подкрановые пути для кранов с кабельным питанием, Располо- жение подкрановых путей. План, Разрезы Ведомость объемов работ	1	10
Подкрановые пути для кранов с кабельным питанием. Сжема расположения подкрановых балок	2	11
Ποθκρακοδώε ηγην όλη κρακοδ ε προππεύκων ηνπακνεκ. Ρατηοποχεκνε ποθκρακοδώς ηγηρώ. Ππακ. Ραзρεзώ. Βεθοκοτης οδτεκιοδ ραδοπ	3	12
Подкрановые пути для кранов с троллейным питанием при колее крана 10,5 м. Схема расположения подкрано- вых балок и элементов канала шинопровода	4	13
Подкрановые пути для кранов с троллейным питанием при колее крана 15,3 м. Схема расположения подкрано - вых балок и элементов канала шинопровода	5	14
Подкрановые пути для кранов с троллейным питанием. Подкрановый путь для перегона кранов	6	15
Подкрановые пути для кранов с кабельным и троллейным питанием. Монтажные узлы	7	16
Подкрановые пути для кранов с троллейным питанием. Монтаж канала шинопровода	8	17
Подкрановые пути для кранов с кабельным и троллей- ным питанием. Балка Б-1-12.49. Опалубочный чертеж и армирование	9	18
Подкрановые пути для кранов с кабельным и троллейным питанием. Балка 5-1-12.49. Спецификация арматуры, Выборка арматуры	10	19
Подкрановые пути для кранов с кабельным и троллейным питанием. Балка 5-1-6,24. Опалубочный чертеж и армирование	11	20

Подкрановые пути для кранов с кабельным и троллейным питанием. Балка 5-1-6,24. Спецификация арматуры. Выборка арматуры	12	21
Подкрановые пути для кранов строллейным питанием.		
Балка Б-2-12.49. Опалубочный чертеж и армирование	13	وح
Подкрановые пути для кранов с троллейным питанием.	—	
Banka 5-2-1249. Chequepukayun apmamypsi. Bestopka apmarypsi	14	23
Подкрановые пути для кранов с троллейным питанием		
Балка Б-2-6.24. Опалубочный чертеж и армирование	15	24
Подкрановые пути для кранов с троллейным питанием.		
Балка 5-2-6.24. Спецификация арматуры, выборка арматуры	16	25
Ποσκρακοδωε ημπά δης κρακοδ ε προπηεύκων πυπακύεν.		
Балка Б-3-3.12. Опалубочный чертеж и артирование	17	26
Подкрановые пути для кранов с троллейным питанием.		
Балка Б-3-3.12. Спецификация арматуры, выборка арматуры, Подкрановые пути для кранов с троллейным питанием.	18	27
Плита канала шинопровода П.Г. Опалубочный чертеж и		
apmupobanue. Budopka apmamypu	19	28
POURMOK DOD JACKMPOKOJOHKY. OSWUU BUD.		
Βεδοποςπό οδδεποβ ραδοπ. Αρπυροβαμύς. Σπεμυφυκαμύν αρπαπυρού	20	29
Κοποδεί τεκιμομμότο ραзδεθυμύπεπα τ πρυμπικοί δπα επό- κα βοθό. Οδιμού βυδ. Βεδοπός οδδειμόδ ραδόπ . Επεμοφυκάμοα βακπάδμως ο μομπαχιμώς πεπάππουβθεπού	21	30
Колодец секционного разъединителя. Ярмирование.		
Спецификация артатуры. Выборка артатуры	22	31
Закладные металлоизделия.		
M3A-1, M3A-2, M3A-3 v M3A-4	23	32
Закладные металлоизделия.		
M3A-5 u M3A-6	24	33
Закладные теталлоизделия.		
M3.Q-7, M3.Q-8 v M3.Q-9	25	34
Зоклодные метоллоизделия.		
M312-11	26	35
Монтажные метаплоизделия.		
MA-2, MA-3, MA-4 & MA-6.	27	36
Монтажные металлоизделия.		
MA-13, MA-14 U MA-15	28	37
Подкрановые пути для кранов с кабельным и троллей- ным питанием. Спецификация закладных металло - изделий. Выборка металла. Выборка арматуры	29	38
	L	
Подкрановые пути для кранов с кабельным и троллей-	30	39

TK 1971 Портовые подкрановые пути на жестком основании

505-9

Пиповые конструкции и детали серии 3.505-9 "Портовые подкрановые numu на жестком основании "разработаны на основании типового проекта nodkpanobux nymev, bunyщенного Гипроречтрансом в 1970-от году на emaduu mexuuveekoro negekma.

В качестве жесткого основания подкрановых путей применяются сборные железобетонные балки таврового сечения, укладываемые на уплотненное и выровненное пекчаное основание без правийной или щебеночной подготовки.

При разработке типовых конструкций учтен опыт проектирования строитель ства и эксплуатации подкрановых путей из сборных тавровых балок в Mockobekom Hownom, Mermekom, Todonbekom u dryrum pernoix nopman Corosa. Procken bungekaemen & coemabe empoumenous vacens (andoord) u mexanu-

ческой части троллейного питания кранов (альбом 1) Злектрическая часть троллейного питания привязывается по типовому

проекту Ленгипрорентраней 505-41 "Подзетный троплейный шинопровод для питания портальных кранов речных портов".

YKUBUHUR O NOPROKE NPUMEHEHUR POGOYUX YEPMENEN

1. Назначение и область применения типовых KOHEMAYKUUU NOOKPOHOBUX NYMEU

 $\mathsf{Munobile}$ конструкции портовых подкрановых путей на жестком основании предустатриваются для привязки их в речных портох и на причалах промышленных предприятий.

Podkpanobije nymu needrastavenij din nepedbujeenun u padomij na nux nepereysoundix normanders keanob reysonodsemecombro ne dance 16 monn, umero-WUX POCLEMHOR SOBREHUE HO KOMOK HE SOREE 26 MONH

Пути рассчитаны на работу на насыпном или естественном основани с модулем деформации не менее $100\ \mathrm{kr/cm^2}$.

KONEMPYRYUR NOOKPONOGUE NYMEU NECCYCHOMPUBAEM BOBNOSTHOCMB NEUMENE. HUR KUK KUTENBHOTO, MUK U MPONNEUNOTO NUMUHUA NOPMUNBHOKE KPUHUB.

Подкрановые пути с троллейным питанием рекомендуется применять на прича-TOE DEPENDENT MODEL - WINDERNEY KOHMETHEPHOES, TECHOLE U OPYTUE TPUSOB, TOE OMEUMEMвует опосность засорения канала шинопровода. Nodkpanoble numu na meemkom ocnobanuu us mabpabbix menesodemon-

HAIR TOJOK HE PEROMENDYEMER DEVINEHAMB DEV TRYSODOGSEMHOCHU DOPMOJO-HOLX KROHOB MENCE 5 MONN .

2. Номенклатура конструкций и деталей. Маркировочные индексы.

ΠΛΑ επρουπερρεπόα ποθκραμοδοία πύπευ να жестκοм οσκοδάκου προμάκα. PMER CREQUEQUE COOPHUE MERESOGEMENHOE MONEMPURUUU - болко Б-1-для путей с кабельным питанием кранов, а также для тыло-800 HUMKU NYMEU E MPONNEUHOM NUMBHUEM; SONKU 6-1 POSPOSOMOHOI 8

dbyx bapvanmax: 5-1-12,49 v 5-1-6.24; - Janku 6-2-dng npukopdonnoù numku nymeù c mponneŭnom numanvem, paz-

POGOMBHHOLE & 284x ESPURHMOX: 5-2-12,49 v 5-2-6.24; - Sanku 5-3-3.12 - BAR YEUNEHUR MECMO NEPECEYEHUR NEUKOPBOHHOÙ HUMKU NYтей с троллейным питаниеми путей для перегона кранов с прикордонного

חעודוע אם משונת ספסע ע ספערואס: - noumbi 17-1 - dar cosdanur emenok kanasa wunonpoboda nymeu e MPONNEUNDIM DUMANUEM.

В маркировочных индексах балок вторая часть индекса (цифры 1,2 или 3)

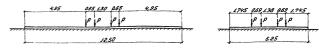
-1-балка сиптетричного тавроваго сечения высотой 40 ст; 2-балка асимметричного таврового сечения высотой 65см с развитой в одну сторону полкой, образующей днище троллейного канала;

-3-балка усиленного коробчатого сечения, выполненная заодно с троллейным каналом.

Третья часть маркировочного индекса обозначает блину балки в метрах. Номенклатура железобетонных конструкций, а также металличе-CRUX 30KNOCHOIX U MOHMOJEHOIX CEMOJEŬ NEUBECENO NO SUCMOX VI, VII, VIII настоящего альбота.

В номенклатуру металлических деталей не включены детали приям-KOB NOO SACKMADAKONONKU U KONOQUEB CEKUUDHYBIX POSBEDUNUMENEU, HE UMENO -WIVE MUCCOBORD DRUMPNENUR

Металлоизделия замаркированы следующими индексами:

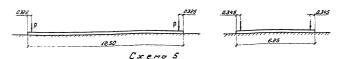

- закладные детали - МЗД - (номер детали); - монтажные детали - МД - (номер детали).

Подкрановые балки рассчитаны на нагрузки от портального крана KMT-16-30-10,5 308000 ATO un. Kupo80 e mokeumanenem dalinenuem na kamok P=260 morn. The smar opename, chedyrougue cheros pachanomenua narpusky; Exemp 1. Odha nora kpana (4 kamka) haxodumca na cepedune danku; катки расположены симметрично относительно середины.

CXEMO 2. ABE HOLU POSHOL TOPOHOB HOXOGRAPER HO MUHUMOJOHOM POCEMORHOU одна от другой, синтетрично относительно середины балки.

Схема 3. Две ноги разных кранов (по 4 катка) расположены по краям балки; эта схема принята только для балки длиной 12,5 м.

Exema 4. No oba kamka pashbix kpanob pachonoskenbi na kpasm danku. Exerta 5. No odnory kariky pashow kpanab pacnonowents no kpant danky. Partemelie exembi nouledenti na pur. 1.


Cxema 2

Cxemo

0325 065 1.30 0.65 12.50

Cxema 3

0.65 4325 0.345 0.65 12.50 Cxemo

PUR. 1. PREYEMMBIE EXEMBI

Схемы 1 и 2 вызывают положительный изгибающий томент в балке (растянута полка), схемы 3,4 и 5 - отрицательный момент (растянуто ребро).

1071

Портовые подкрановые пути на жестком основании

CEPUR 3.505-9

Введение. Чингания о порядке применения выблит инатежей

CHHOTYBOOK

3.505-5

954-A

Подкрановые балки рассчитаны как конструкции на упругом основании при модуле деформации прина Езгоборов и ве значение изгибающих можентов nonyveno: nonoxumentroro - neu exerte 1, omputamentroro - neu exerte 4. Для болок длиной 12.5 и 6.25 м максимальные расчетные моменты близ-KU U NOMOMY NAUHRMAI OBUNGKOBAIMU: a) dan danku 5-1 Bucomoù 40 cm.

- nonoxumenthili momenm - 17.0 mm, - ompuyamenthili momenm - 13,5 mm;

5) das danku B-2 Bucomoù 65 cm -- положительный момент - 32.8 тм

- отрицательный момент - 27,6 тм.

Pactem padoted appartyph nodkpatobbux danok negusbeden & roombem-בשפעה בס כלעות ב-4.14-69 חם הפסיאסכתע ע חם פרפשאעינפאערם שעופעונט פסכ-KADIMUR MACHUH.

4. Pacxod ochobnoix mamerianos

HUME POUSOGRACE OCCEPANENTIE POKOZOTAENU POCEOGO OCHOBNIE CAPOUmenonos mamenuanos na 100 nos m nodepanosoix nymeu us coopens rospo-BUX SUNOK.

ANA NUMBU C KOGENDHOIM NUMBHURM KARNOB: - CEOPHOID XETE30EEMON M300 - 48,5 M3,

- apriamypa - 11,1 ms

- 30KJOŽNOSE V MONTOSENDIE METOJJOUSŽEJUS - 4.2 m.

- PENBOBI C KPENNEHUAMU - 13,0 m.

Для путей с троллейным питанием кранов: - сборный железобетон M300 - 70,9 m3,

- apmamupa - 16,8 m.

- Закладные и тонтожные металлоизделия, BKNHOYOR KPHIWKU KOHONO WUHONPOBODO-19,5m.

- PENBEBI E KPENNEHURMU - 13,0m:

5. Рекомендации по защите конструкций от коррозуи

Bee Semannie nobepenarmu konempykyvů, conpukacanowycea c roynmom. 30 UCKNOTERUEM NOCOUBLI GANOK, DO BACKINKU NOKPUBALOMER GUMUMHO - SEHBUHOBOU гидроизоляцией, которая наноситья в 3 слоя.

1 m c noù (neynmobka) - 30% d'umyma u 70% бензина,

EUMYMHO-GENZUHOBOR UZATRYUR HOHOCUMER HO YUEMYPO, CYXYPO NOBERXHOCTE при положительной температуре.

Монтажные металлоизделия, а также открытые повержности заклад-NUX DEMOREU PORPUBARONCA SMUHOREBOU RPOCKOU SKACC-40 & 3 CROR. KROME moro, nobepzenomu, nodbepzenenie bosdevemburo chemo (наружные плоскости KOBINEK MEDINEUHOTO KAHANA, DOUKUMHBIE KNEMMBI U M.D.), DOBEPE KEACKU NOKEBBATOM. CA & 2 CLOS SUMYMHOIM JOKOM NO177 (FOCT 5631-70).

Reped Hanecenuem kpacky 3K. XC-40 nobepshocimb memanna Jon X Ha Shimb officeна, обезжирена и просушена. Очистку рекомендуется производить пескоструйным annapamom unu emantrelmu wemtamu.

OKPOCKO BENDONHREMCA DAY DOMOWY POCHENDINUMENA UNU KUCMAMU; KOKOBU DOCHE-DIPOLIULI ELIOLI HONOCUMER NOCHE NONHORO BUREIXANVA NEEDUCUMERO.

6. Порядок привязки рабочих чертежей

Neubraka munobux kokemenkuui nodkeakobux numei ka meemkom ockobaнии выполняется в следующем порядке:

1. Выбирается вариант конструкции путей в зависимости от способо питаnus reares (raderanes unu mporneinos), drunsi nodreanosaix danor (1249+ uni 5,24+) u konsu kaana (10,54 unu 15,34). 2. Burgardenomer unu ngusasulanamas s combemembus e budaannon bapu-

OHMOM OTHUR BUTSI NUMBY V EXEMSI POCNONOMERUA TOLOK (TUCMS) 1-5).

THE SMOM OFFERENCA:

- POOMAKEHHOEMS PRUKORDONHSIX U MSINOBSIX NYMEÜ (Ln. U Lr.), - κορυνες πδο ποπερενικία πυπεύ σην περεποία κρακοδί να

протяженность и привязка в плане,

- ONA NYMEU C MPONNEUNGIM NUMBHUEM - KONUYECMBO NPUNMKOB NOD BNEKTPO-KOJOHKU U KOJODUES CEKUUOHHBIX POZZEDUHUMEJEU UUX JPYBAZKO. - APMATYPA NOGRPAHOSBIX SANOK & COOPSETCTSUU C NPUNATSIM MODUNEM GEODOPMAUUU COUNTA

HUKHAA PPODONOMOA OPMOTYPO GONOK (CEMKU C-1, NUCMS) 10,12,14 u 16) NOUHUMOEMCA Apr 150 € E, < 200 ×7/cm2 - \$25 AII; npu 100 € E = < 150 M/cm2 - \$ 28 A II

1971

3. Выбирается вариант конструкции крепления рельса к балке: оз стандартных железнодорожных деталей или из деталей, разработанных в настоящем проекте (пист 7)

4. Подсчитываются объемы работ на устройство прикордонных, тыловых и поперечных перегонных подкрановых путей и заполнянотся соответствующие ведотосту на листах 1,3 у 6

5. Выбираются и привязываются в соответствии с принятой конструкцией чертежи подкрановых балок, плиты канала шинопровода. приямка под электроколонку, колодуа секционного разъединителя, закладных и монтажных металлоизделий (листы 9-28)

HOSE O MINIMATOLE MENDEDGRAFOR NEPERHU NUCMOS, HEOGEOGYMSIE DAR HUSE S MOGNOCOLE NYMEU S 308UCUMOCMU OM NAUHRMOTO SAPUCHMO KOHEMPYKYUU.

808 NUMBHUR KRBHOS	Длина подкрано- вых балок М	Колея кранов М	NNº nuemoß
Кабельное	12.49	10.5 15.3	1, 2, 7, 9, 10, 23, 27, 29, 30
71888378786	6,24	10,5 15.3	1, 2, 7, 11, 12, 23, 27, 29, 30
	12.49	10.5	3.4,6,7,8,9,10,13,14,15,16,17,18, 19,20,21,22,23,24,25,26,27,28,29,30
Троллейное	12,43	.15,3	3, 5, 6, 7, 8, 9, 10, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30
, , , , , , , , , , , , , , , , , , , ,	6.24	10,5	3, 4, 6, 7, 8, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30
	0,27	15.3	3, 5, 6, 7, 8, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30

B. B CAYTER, ECAU B COCMOBE NOOKPOHOBOIX AYMED UMCHOMER, KAUBOAUHED-HUE YHEEMKU, BEAKU DAR SMUX YHEEMKOB PROEKMURYHOMER OMDEROHO, KPUBOJUHEUHDIMU B NJOHE, C MREGYEMBIM PODUYCOM ZOKPYTJEHUA. NPU SMOM длина балок по оси, форма сечения, армирование, расстановка закладμειχ δεπαπεύ υ πρ. πρυκυνισκοποπ πακυνιυ κο, κακ οσκοδικού τυποδού δαπκυ.

7. Стоимость строительства подкрановых путей

Huse prubadamea emouraemu empoumentemba form nodkranoboix numeu & pyd., onpedenembie no edunoir pationnoirs edunurnoirs pacyemars 19-10 meppumopuantaro pavaka, nodpavon 19. Pacyenka emounocmu edophoro железобетона произведена по базисным ценам, в качестве которых DOWNAMO CHEMNOS WENDS II DORCO MOCKOBCKOU OGRACINU.

Bud numanus	Длина подрановых баз				
KROHOB	12.5 m	6.25m			
Кабельное	153	156			
Τροππεύμοε	267	273			

MIPOPEYTPRHC

Портовые подкрановые пути на жестком основании

SKABAHUR O DODANER DOUMANANIO DESTOUTE LOOMANE.

1. Технология изготовления сборных элементов подкрановых питей. Требования к материалам

Usramabnerue nadkparabbux danak u nnum karana wuranpabada hknova. επ δ ceda απεσυνομίνε προμέσσω; - υ3τοποδρεμίε 3σκησάμως δεπαπεί.

- изготовление и сборка арматирных каркасов,

- бетонирование элементов и термовлажностная обработка,

- маркировка, складирование и жранение. LIA USTOMOBJENUA SOKTOONISK SEMOJEŬ NOUTENAEMOR CTOKOŬNOA UJU NOJUCIOKOŬ-HAR CHANGO (PAYANS), B", OMBERGANGURA MPEGOBERURA (POET 535-58. CBAPKO DETO-REŬ NPOUZBODUMCA ZNEKMPODOMU 342 (POET 9487-60)

Особое внитание следует обращать на точность изготовления и установ-KU 30KNOONEN BEMOLTEN TAR TOEGUHEHUR GOLDEN 1934-E. OMBERCHUR NOO GON-ME B HUX GONKHE CEEPIUMOTH NO KOHOYKMOPY, & ONONYOKE BEMOLU GONKHE! semenashusamben no wadnonam, emporo pukcupyrowum uz nonowenue u ofeeneчивающим перпендикулярность к продольной оси балки.

Περεά νεπακοβκού κα πεεπο 3ακρασκωε δεπαπυ δολοκκώ δωπο ονυщены οπ

PXCOBYUHBI, PRABU, MOCARHBIX DAMEN, HOARDU U M. A.

Αρπαπυρα δολοκ υ πρυπ σοδυρασμοκ δ προσπρακοπθεκκού καρκας υз πλοςких арматурных элементов (сеток и каркасов), Заронее изготовляетых в соответствии с тредованиями ГОСТ 10922-64. Сдорку пространственных KARKACOR PEROMENGUENCE RECTU NA CHONAX-WAGNOHAX, OGECNEYURANUULT MOYное расположение закладных деталей и артатурных элетентов. Элетенmbi u omdenbube emergenu kapkaca ceapusaromen memely codou so seen nepereye. μυρχ ργνιού επεκπροδύτοβού εξαρκού. Αλκερα 3ακποδιοία δεπαπεύ πρυδαρυβο. HOMER K OPMOKOPKOCY.

AAR USTOMOBREHUR GODOK U DAUM APUMEHREMER TUDPOMEXHUYECKUU σεβναπορικώς κομετηρικτμού, σεπομ παρκο 300", 30μω περεπεμμότο γρόβιμα βοδώ, μεπατευδικώ, οπβενακοιμού πρεσοβαμοίλη ΓΟΟΤοβ 4795-68; 4797-69 ο CHUNI -8.3-62. Mapka demona no moposocmoukocmu u Bodonenponugamocru ONPEGENTEMEN NEU NEUBASKE NEOEKMO & 308UCUMOCMU OM KNUMOMU 4ECKUS UCNO-Bui paiona empoumentemba.

FEMOHUPOBAHUE GANOK V NAVM BONSKHO BECMUCO & MEMANAVYECKUX DOD-MAX, KOHEMPYKUUA KOMOPBIX OGEENEVUBAEM UX MEEMKOEMB, MHOTOKPAMμίγο οδορανυβαενίος πό, προσποπή ρασδορκύ υ εδορκύ υ γδοδεποδο γκραθκύ

Banku pekomendyemen demonupobamo pedpom brus (Ha noddor), 4mo nosbonaem dodumber donée mouhoro pachonomienus no bucome zaknadhbix dema-JEY OAR KPENSEHUR PENSET MILE-I V MOTOROU MOHMOTEROU NOBERTHOCHU.

При этом конструкция форм должно обеспечивать возможность USBNEYEHUR UZ BRECINE C POMOBOU TONKOU UZ KOMEPSI NPONOPUBOHUR υ περεκαμποβκυ σαποκ.

Температура и режим пропаривания должны соответствовать "Texhureckum ykasahurm no npousbodemby u npuemke padom npu bosbedemuu mopekux u perhbix nopmobbix coopymehuu": [naba VIII. Usromobnemue cdop-HUX HEREBOSEMONNUX KONEMPYKUVU.

Μαρκυροβκα, πρυαπκα, εκπασυροβακύε, πρακεπορπυροβκα υ πρακεκύε romobbie uzdenuú donekko bojnonkambea b coombemembuu e npedobaku. AMU CHUN I-8.5-62 " Henezodemonnose uzdenua. Odujue ykazarua." Cknadupoвание балок более, чем в три яруса, не рекомендуется.

Nodkpanobole danku munob 6-1 u 6-2 neu neverike donoknoj dojimo uchojтаны на максимальный расчетный момент обоих знаков. Испыта-HUHO nodneskum 2% om odwero konuyeemba Ganak Kaskdoro muna, Ho HE MENEE & WMYK. UCHSIMANUE NOUSBOOUMCA NYMEM SOLDYKENUA CONTSI-BORMOÙ GANKU HO CMENDE & COOMBEMEMBUU CO CREMANU, NOUBEDENHOMUNO PUCZ. Для испытаний отбираются балки с наименьшей прочностью и наибольшим количеством внешних дефектов.

Usrugaroujue momenmoi and venoimanui ganok, coombemembyroujue exercar (pur. 2), ADUNAMBI NO 10% BOWE PORVEMHOIX.

Полажительный изгибающий мотент (растянута полка)						PUU								
, 0	c A	<u>_</u>	8	Q	["			-	Q ø	A	8	<u></u>		a
J						¥		}						_ _
Mua	161190			epb1.	. ~	<u>'</u>		מער	Kanga		Pasm	epbi.	, 14	→
MUN	Heresa Ka Am			e p 61.	. 17	* Ø		א	Kanega Ka Qm	0	00311	еры в	, , ,,	<i>→</i>
11140	an	e	0311	8		-	do.		Qm	8	ø	8	, M C 1.25	d 10,0
Janku	7.6	e 12.49	03m 0	10.0	c 2.85	6,80	5-s	nku	Qm 7.6	E 12,49	3,25	60	1.25	10,0
500KU 5-1-12,49	7.6	2 12.49 5.24	03m 0 1.25 0,15	8 10,0 5,95	c 2.85	6,80	5-s	1-12.49	26 76	E 12,49 5,24	σ 3,25 2,15	8 60 1.95	1.25	10,0

Pur 2. Cxembi ventimanus danak

2. Технология монтажа подкрановых путей

До начала монтажа подкрановых путей грунт основания должен Sumb muamenter vanomner & coombenembus c meedobanuams appekma. APERTA BETA PENALTIL & 3006/AKE POSYS APUYONONON COOPYSCHUU (OAR APUKAD. CONHEST NYMEU) UNU K HOCEINHEIM NOPMOBERM MERPUMOPURM (GAR MELINO Soix numer).

Монтаж подкрановых балок возможен двутя способати. 1. TPYHM nod danku BolpabruBaemen TPYdo; danku yknadojBaromen B Decembe nonomenue no depelantue nodknodku, noche vero reyem nod-MUBBEEMER NOT BENKU NEU POMOWU HECCEE UNU PUTPOMOHUMOPE TO COSTO -HUR NOMHORO KOHMOKMO NODOWBU BONOK C OCHOBOHUEM NO BCEU NNOWOOV. 2. Tourn nod Sanku boingbrubgemen become myamenono u nokosibaemen MONKUM CADEM (2-3cm) PEIXADED NECKO DAR COSTONUR GONES NONHORD KOMMOK-חם, חסכתב עברם עאתם לשלמים שבת למתאע.

8 ofoux chuverx peromendyemes yrnadubamb nymu na 5-10 cm bowe PROEKMHOTO DODOJKENUR, C MEM, VMOĐU OĐECNEVUMO BODOC NO OCOĐAY. Nocne yknodku danok u Boibepku uz nanomenua npousbodumca coedune-

HUE SANOK MERKOY CODOÙ, MONMOR NODROCHOBOLO PENERO U UNODOB U LUCIPO-UBONALUA MEMONNOUBDENUÜ.

Прижитные клеммы МД-2 у стыков рельсов (в одном сечении с наклад. коми) стовятся укороченными (пист 27).

COEDUNENUE SONOK MERCY COSOU BONONHAEMCA & COOMBEMCHBUU CUROSOниями главы СНиП #-8.5-62 "Металлические конструкции. Правила из-готовления, понтажа и приетки", по правилат монтажь соединений NO BUCCHONDOUNDER GONMOX. PREDERDUMENTO BEE NOBERXHOCHU CONONUES, CONPURGEOROQUECA C MOMMORNION DEMONAMU (BEAUSU OMBERCAUU) BANKHOI SUMB 34 YULENDI EMANDHOIMU WEMKAMU UNU NECKOCINDYÜHDIM ANNAPAMOM U OGEZ HELLBERGI . BUTTAKKO GORMOR PROUBBOOUNER MURUPOBOUNDINU KANOYO-5,0m

Μοκπαχε καναπα ωυνοπροδοδα (πρυ επρουπεποεπόε πυπεύ ε προππεύνων numanuem) makem bunonnambea kak do yknadku banok, mak u naene, 308ucumormu om rpy30nodsemnormu kpana u rpagouka empoumenbroix pador. ECAJ NO MEREZMOĜOPOMHINE AUTAR, POCAOROMENNIE MEMBU ADDROMO выти балкати, требуется создание стрелочного перевода, то тяга стрелки (в случае необходимости вывода ее за тыловую нитку подкрано. Boro nymu) moskem dumb neonywena verez omberemne b pedre danku, KOMOPOE CREPIUMCH UNU NEOTURIEMCH NEPODEMOPOMO NO MECMY, NOCINE MOHMOSKO NUMEU.

INPOPEYTPRIFIC

NORMOBUE RODERANDBUE RUMU HA MECMEAN OCHOBAHUU

CEPUA

954-A

NEW VEMPOURME MOHMONHOUX KONEMPUNUU (NEVEMBO POR BARKMEO -KONOHKU U KONODUO CEKUUOHHOTO POZZEDUHUMENA) ZOKNODHWE DEMONU. ADMANUSA U JEMAH BANKHAI OMBEVAMO MERJABANUSA, UZAAKEKHAM B npedbidywem naparpage.

Makeumanbubie omknowerus nodkparobbix nymeū om neakmutoro noложения не должны превышать следующих величин:

- ρατεποπινε "" οπ φακπυνετκύ δωπορμένησυ πύμυυ κορδομά δο οτύ πρυκορδομμότο ποδκραμοδοπό ρεπότα ± 50 mm,
- οπκλομένυε β ρατεπολήμου πεχέζο οτλίπο ποδικρανό -βοίχ ρελότοβ (μυρύκα κολέυ) ±5 μm,
- OMKROHENUE OCU RODKPOHOBORO PERBEO OM RAPMOŬ 10MM NO COUNE 30M.
- смещение оси подкранового рельса относительно Dry BODKU - + 10 MM.
- разность отметок головок подкрановых рельсов
- 8 ODNOM CEVENUU 10 MM,
- продольный уклон головки рельга 1:1000.
- OMNOCUMENDADE CMEMENUE TONOBOK PENDEOS NO EMB-

3. Ochobnue neabuna skannyarayuu nodkeanabbux nymeü

IKENNUMBUUR NOOKPAHOBIIX NUMBU HA WEEMKOM OEHOBAHUU MPEGUEM POCTORNHOTO MEXHUVECHOTO HODZOPO ZO UX COCTORHUEM, OCOGENHO - 6 POPвые 2-3 года посте постройки. Репулярно, не реже одного раза в два месяца надлежит проверять высотное положение головок рельсов и WUPUNY KONEU NYMEU NO CEVENUAM, POCNOJOSKENNOM C WOTOM HE PESKE, YEM

οδούκακ όπιμα ποθκραμοδού δαπκυ (25 υπυ 12,5 m). Πρυ οδκαργγκεκύυ οπκπομεκύυ δ ππακε υπυ πο δωτοme, πρεδωιμανοιμύχ допуски, установленные "Провилани устройства и дезоласной эксплуата-ции грузоподземных кронов", утвержденных Госгортехнадзорот 30 декабря 1969 г. (табл. 6), следует производить ристовку путей на гредуетых учестах. Ристовна выполняется при потощи имеющихся портальных кранов ע להחים עספרה בהפלעים שעום סברים לאום המלסוחטו:

- Pastopka rokpoimus meppumopuu & soke nodkpakoboix nymeu, - VOORE PRINTE C NOOKPOHOSOIX GONOK U OM UX JOKOSOIX
- nobeexHormed.
- разбалчивание соединений балок и рельсовых скреплений, а также разбединение шинопровода на стыках балок,
- подвем балок и перекладка их на монтажную площадку.
- nodebinka unu epeska rpykma u nnakupobka ochobakun

nod Sankanu, Pocemanobnewe nymu. Posmobny pekonendyeman npousbodumo nocnedobamenono, nedonowumu участками пути, одновременно на обеих нитках.

B HEGONDWUX NEEDENAX (OO 10 MM NO BUROME U & NAME) DUXMOBKA MOKEM dumb bunonnena des nepeknadku danok, nymem nodbustkú penoca meskay KPERESKHAIMU GOAMAMU U RODKAADKAÜ DOROAHUMERAHAIX RAACMUH MEEGU CMOU MOSHUNDI.

ΤρεδοβαμμΑ πο εκσπλυαπαμυυ προππεύμοτο καμαπα πρυβεθαμώ β πορομυ-MENDHOU BUNCKE MEXUHUYECKOÙ YUCMU NPOEKMU (UNDSOM I.). NOMUMO BUnonnerua smux mpedobarui enedyem odpawamb ocodoe brumarue na COCMORNUE OMBERCANUI ANA BUNYEKO BODU UZ MRONNEUHORO KONONO, HE BONUEKOR UX BOCOPEHUR .

4. Texhuka Sesonachocmu

Bee padomb no uscomobnerum snemermob u mormane nockparobbix numeŭ na mecmkom ocnobanuu, a makme puzmobna numeŭ b rpoyecce эκεπηγαπαμού, δοιπκικό προυσδοσύπησες τρο επροτοίς εσόπισσεκου προδυπ πέχκυνο δέξοποεκισεπού, προδεδέκτησε ε επίδε Chu Π 111-8. 14-70 [Εχωνίκη δέξοποεκιστου δ επρουπέρεστηδε

To Havana skennyamayuu kpanob nodrpanobbie penocoi donsenoi doimo zażemnenu 8 coombernembuu'e "Skrazarunnu no empoumentnomy POCKMUPOŠTKUO PPEDPURMUU, BOTHUU U COOPYJE EKUU PETKOTO POCKCOOP ma" (n. 7.18).

TPOPESTYPAHC

CEPUR Πορποδώε ποσκρανοδώε πύπυ μα жестκοπ οςκοδακύυ 3.505-9 MORCHUMENONOR BONUCKO

Шифр 954-A РАСЧЕПНЫЙ МОМЕНТ ТМ АЛЛАМЯМ ДОХЗАЧ PACXOA 886 MAPKA Дпина Эскиз ветона - при растяже- при растяжеичетичи качатары Качатар илатэд M нин полки нин ребра m Подкрановые балки 69,1 12,49 17,5 14,5 8,863 5-1-12.49 3.03 7,6 (78.3) 5-1-8 50,9 5-1-6,24 6,24 17,5 14,5 1,52 3,8 347,2 (55,5) 297,9, 1276,3 12.4 5-2-12.49 12,49 33,0 26,0 4.96 (307,1) 5-2-6 165,3 634,5 B-2-6,24 6,24 33,0 26,0 2,48 6,2 (169,9) 5-3-3,12 Плита канала 72,2 5-3-3,12 3,08 270.7 3,45 7,7 (74,5) N-1 3,115 0,22 0,6 59,0 35,0 Марка Бетона 300 MPPPEHTPHCPING COMPAND THE CO Данные в скобках приведены для крепления

PENBER K BANKE NO BAPHAHMY 2 (CM. NHCM 7)

7

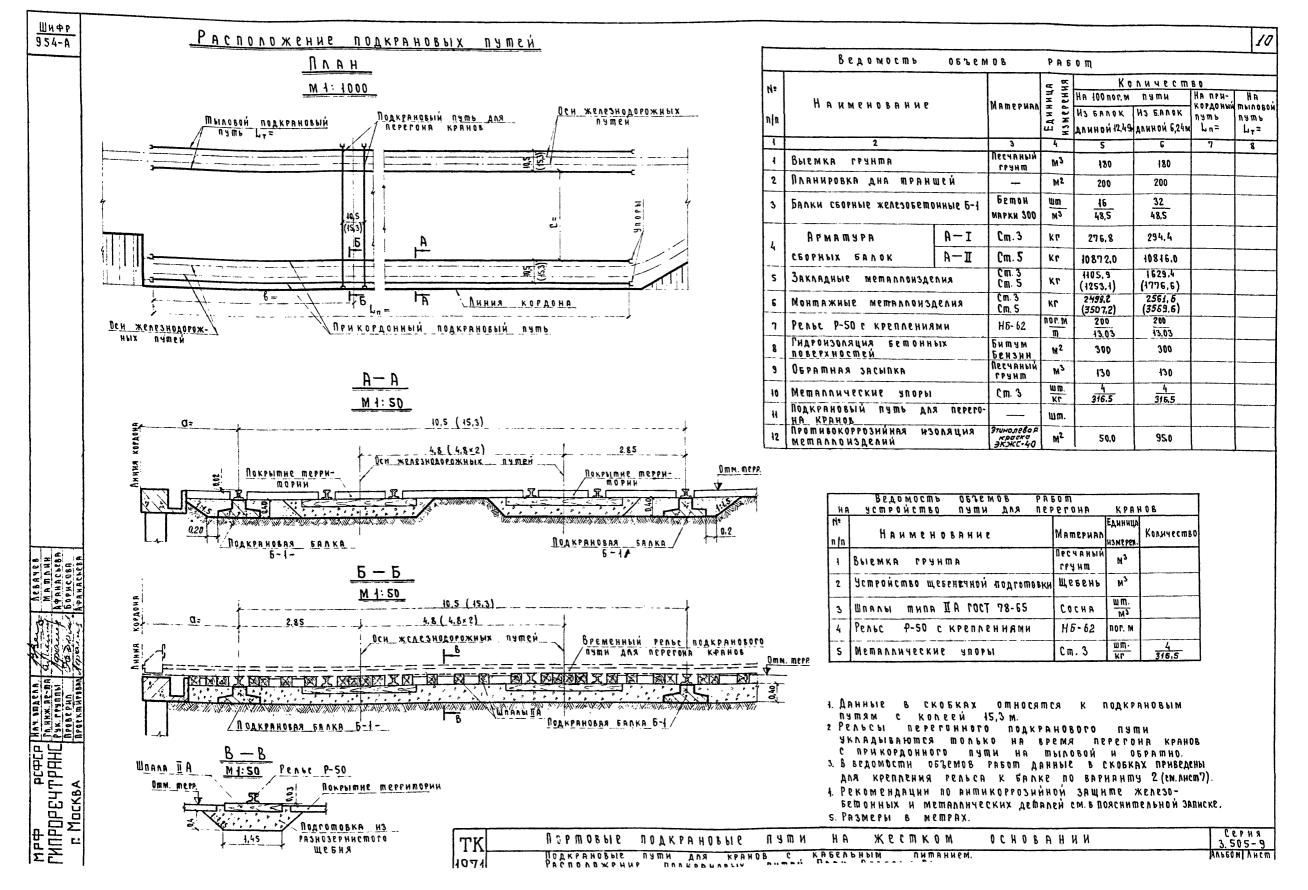
K	Портовые по	дкрановые	u N un hu	H R	жесшком	основании	Серия. 3.505-9
	Homphkhamypa	** 0 N D 3 N E 0 N		A D to			IAALEOMI Nucm

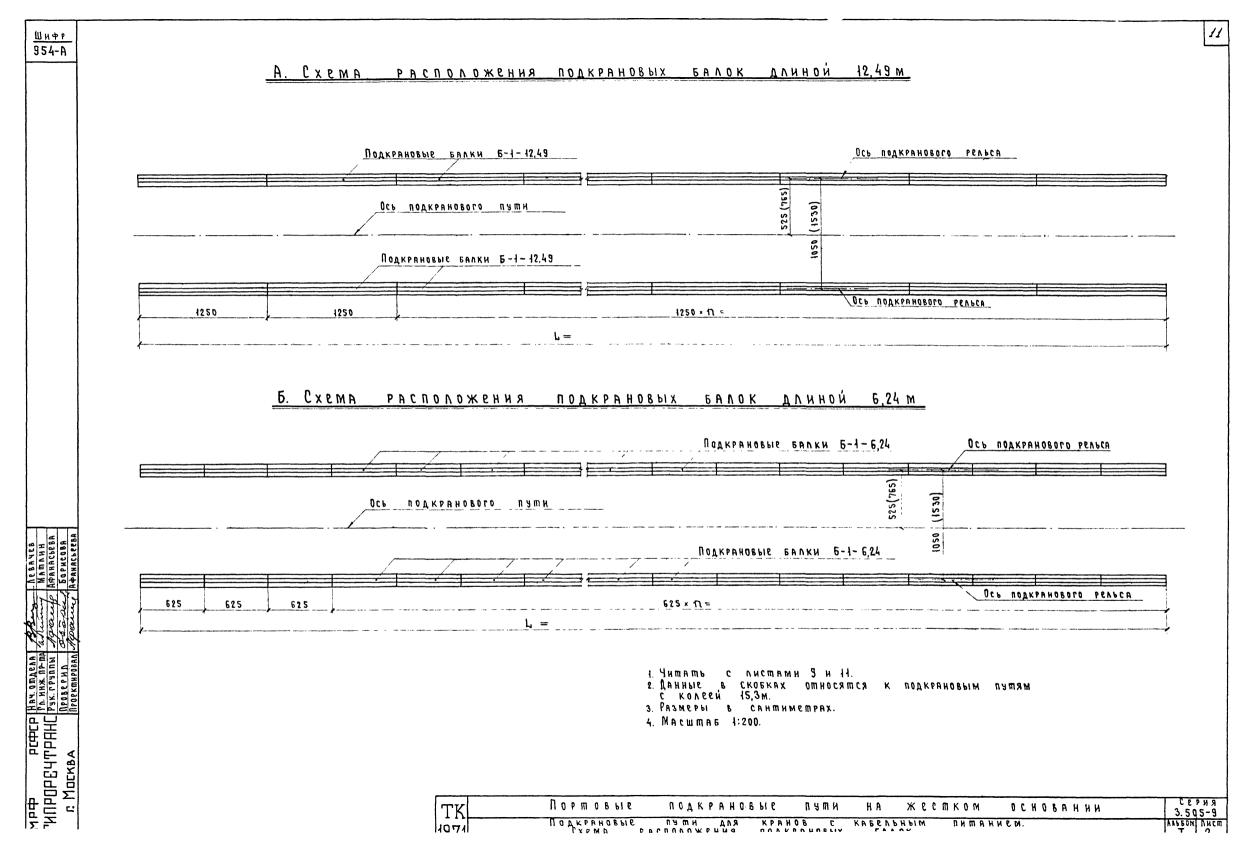
8

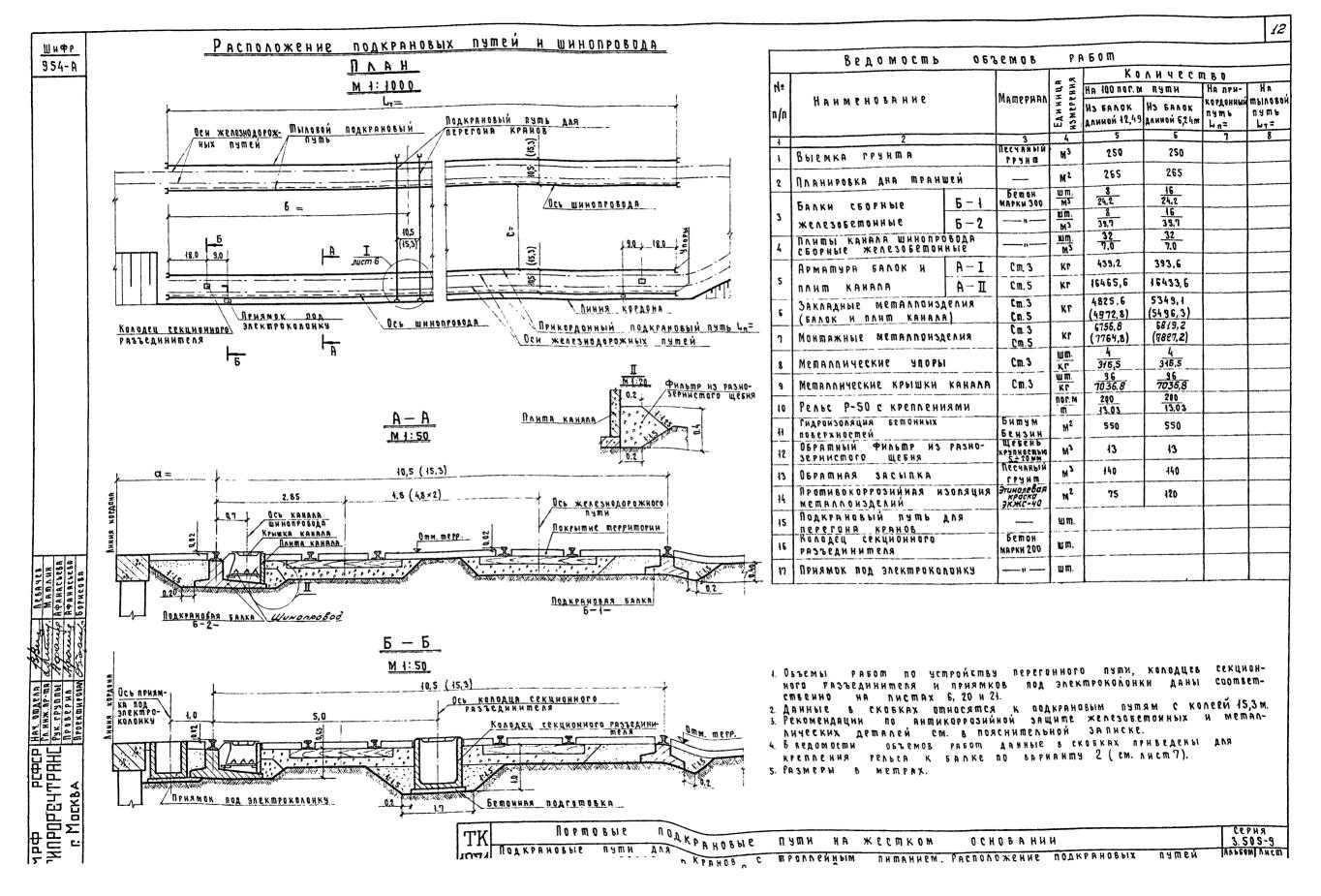
Bec MAPKA Н а и м е н ование эскиз Auem илатрд ΚP M3A-7 иишоними в д д О мзд-б 24 30,05 ALOVOK M3A-6 Закладная клд алатэд МЗД-Л 4,22 25 ПРИВАРКИ плишы ЗАКЛАДНАЯ кид влятя M3A-8 RNHABNPNNOHOMO 3,19 25 UVNWPI 2-AM МД-6 8-AEM M H-5 Knemma 0,97 27 0 009 Накладка MA-4 7,06 27 M.A-4 МД-3 MA-3 26,50 27 CHIKA 550 Кронштейн MA-8 8,19 27

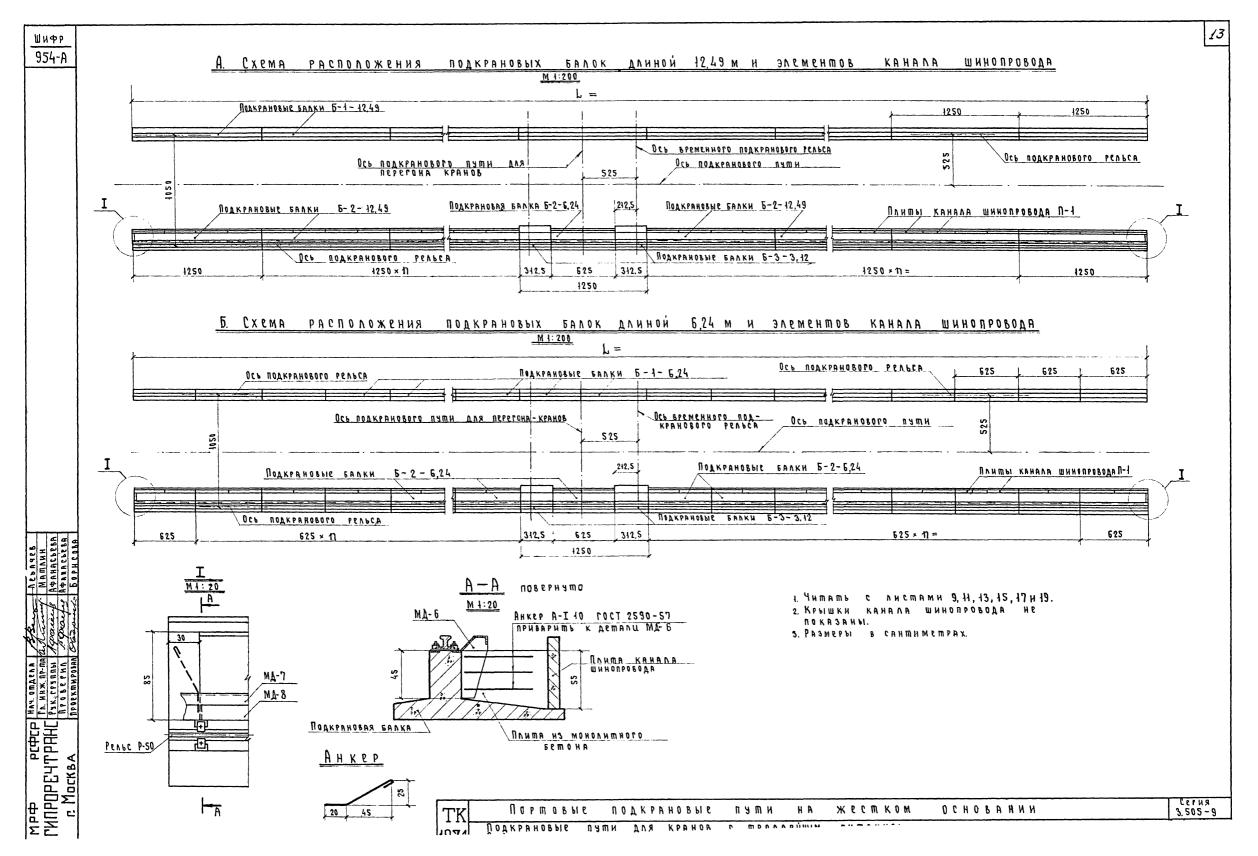
ТК Портовые подкрановые пчти на жестком основании 3.505-9 3.505-9 Номенклатура закладных и монтажных металлоизделий I W

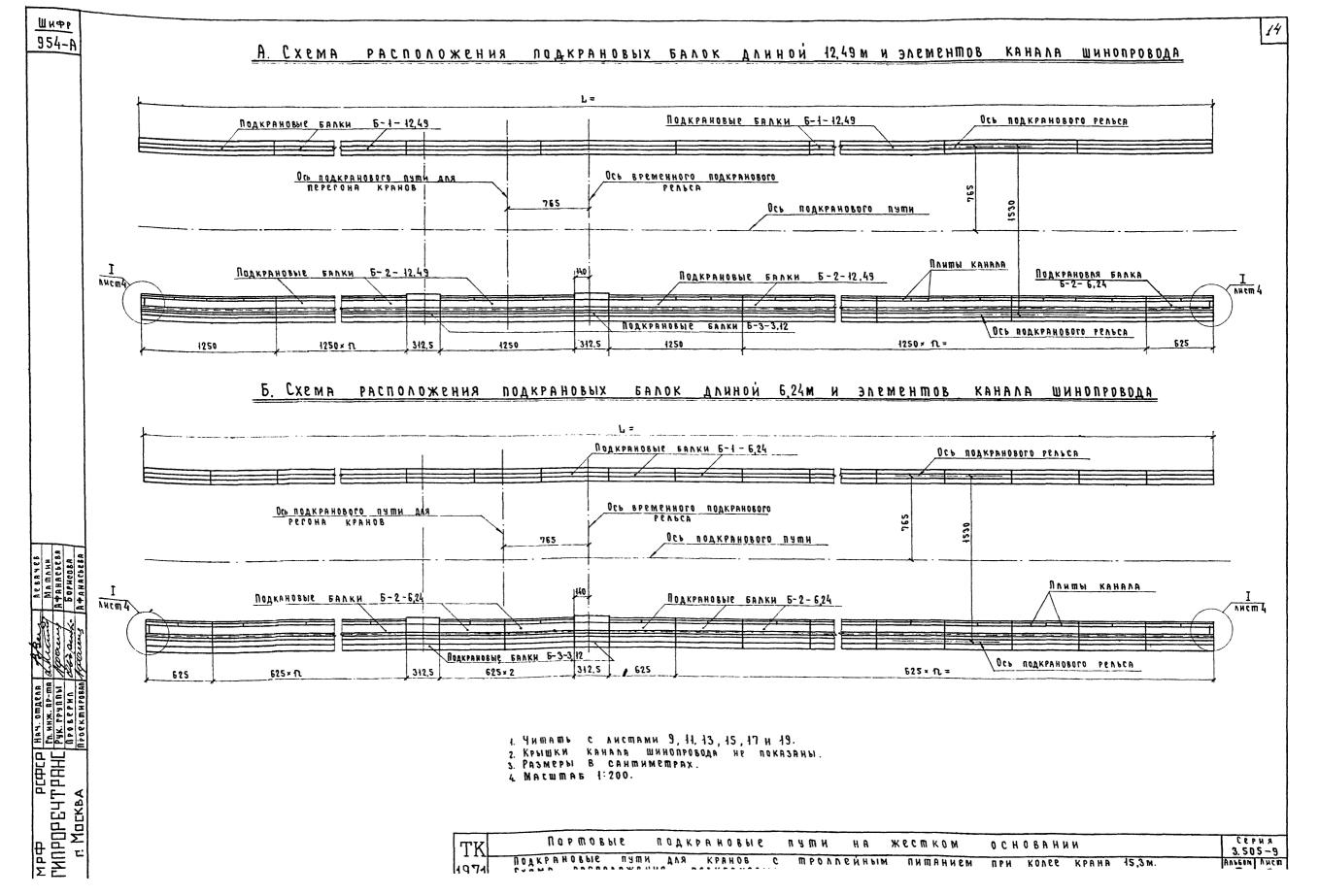
MPP PCHTPHH PAR. RP. MAR. NP-MA CALLESTON PORCES OF MARK NP-MA CALLESTON PORCES OF MARK NP-MARK NP-MAR

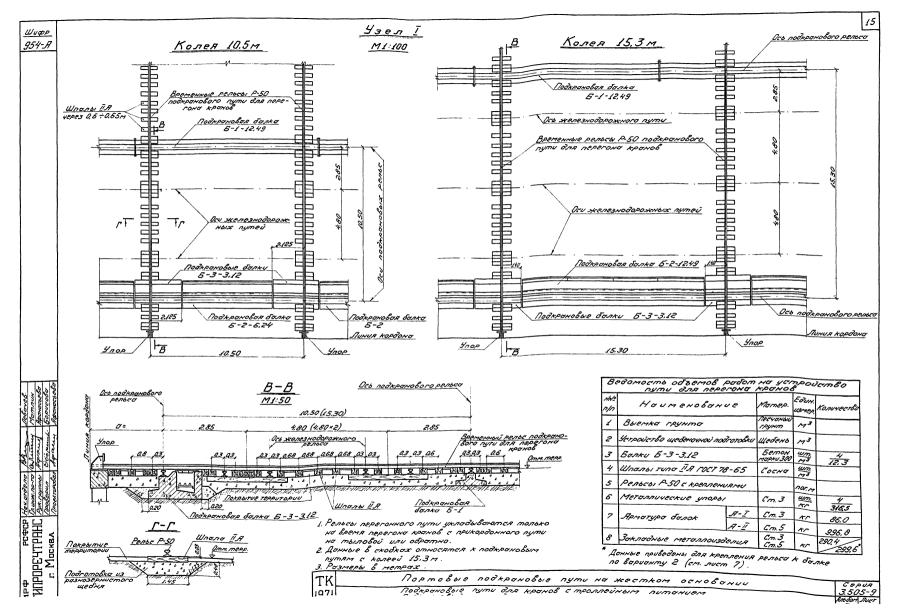

<u>Шифр</u> 954-А

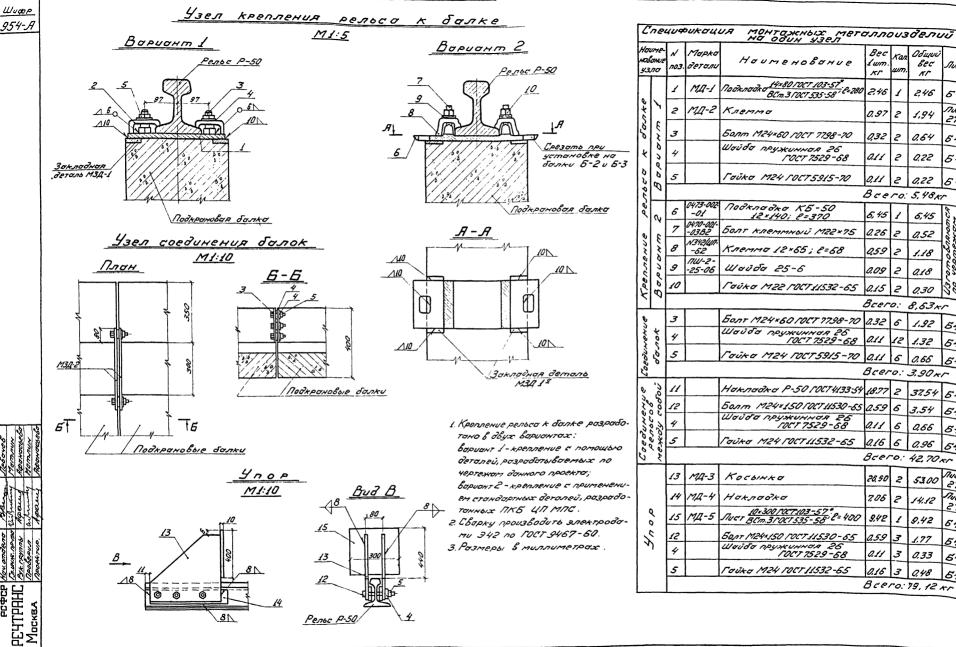

		и-			
ASE. Nebbueb	MAMAN MAMAN	Agrace of AGAHACEEBA	arlumy MAMAHH	Apacus APRHACOEBA	
AP CO DCOCO HAY OMARA CO	LA HAM. NP. NP. NP. NP. NP. NP. NP. NP. NP. NP	MIPUPELLIPHHU PYK, PP 3 NIN 1/4	M RPOBLPUN A	F. I'I DEK B.A. NPORKMUPOBAN AS	


Эскиз	Наименование	Марка Дешали	В е с кг	Лист
M3A-1 (M3A-19)	ЗАКПАДНАЯ Деталь для Крепления Рельса	ь — ДСМ)	ન. 82 (2.28)	23
	Закпадная детапь дпя соединения Балок	м3Д—2	16,36	23
<u>M3A-3</u>	Закладная Деталь для Крепления Плимы канала	е—дем	8,04	23
<u>M3A-5</u>	Закладная деталь для крепления кронштейна	мэд—4	3,40	23
	ЗАКЛВДНАЯ ДЕМАЛЬ ДЛЯ КРИНОЛИЯЧЯ АДОВОЯПОНИШ	г—д <i>с</i> м	1,51	24


ДАННЫЕ В СКОБКАХ ПРИВЕДЕНЫ ДЛЯ КРЕПЛЕНИЯ РЕЛЬСА К БАЛКЕ ПО ВАРИАНМУ 2 (СМ. ЛИСТ 7)


ТК		PH8 505-9
1084	HOMPHKDAMYPA BAKDADHAY MPMADDU YEEKUY DOMADDU 1	N Nucm

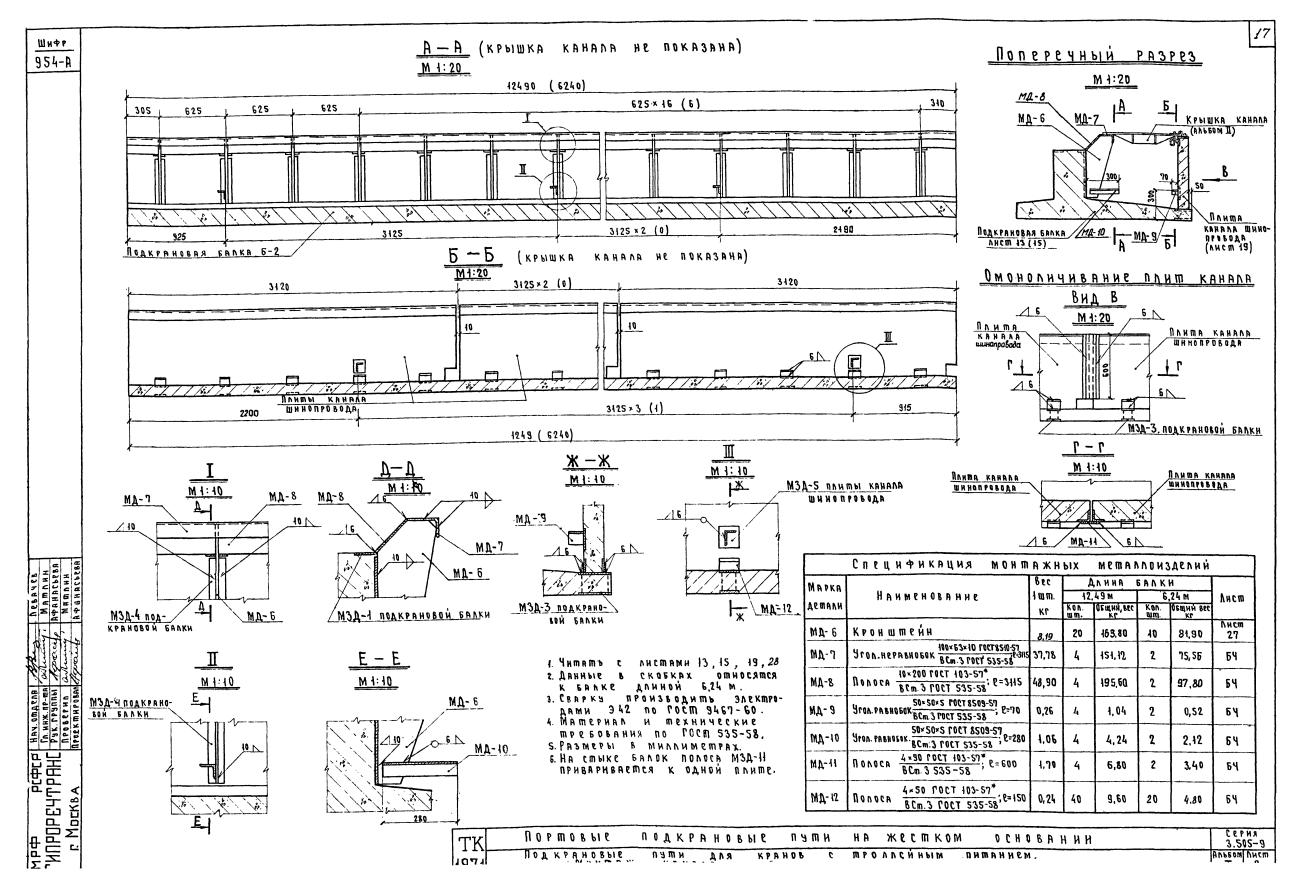


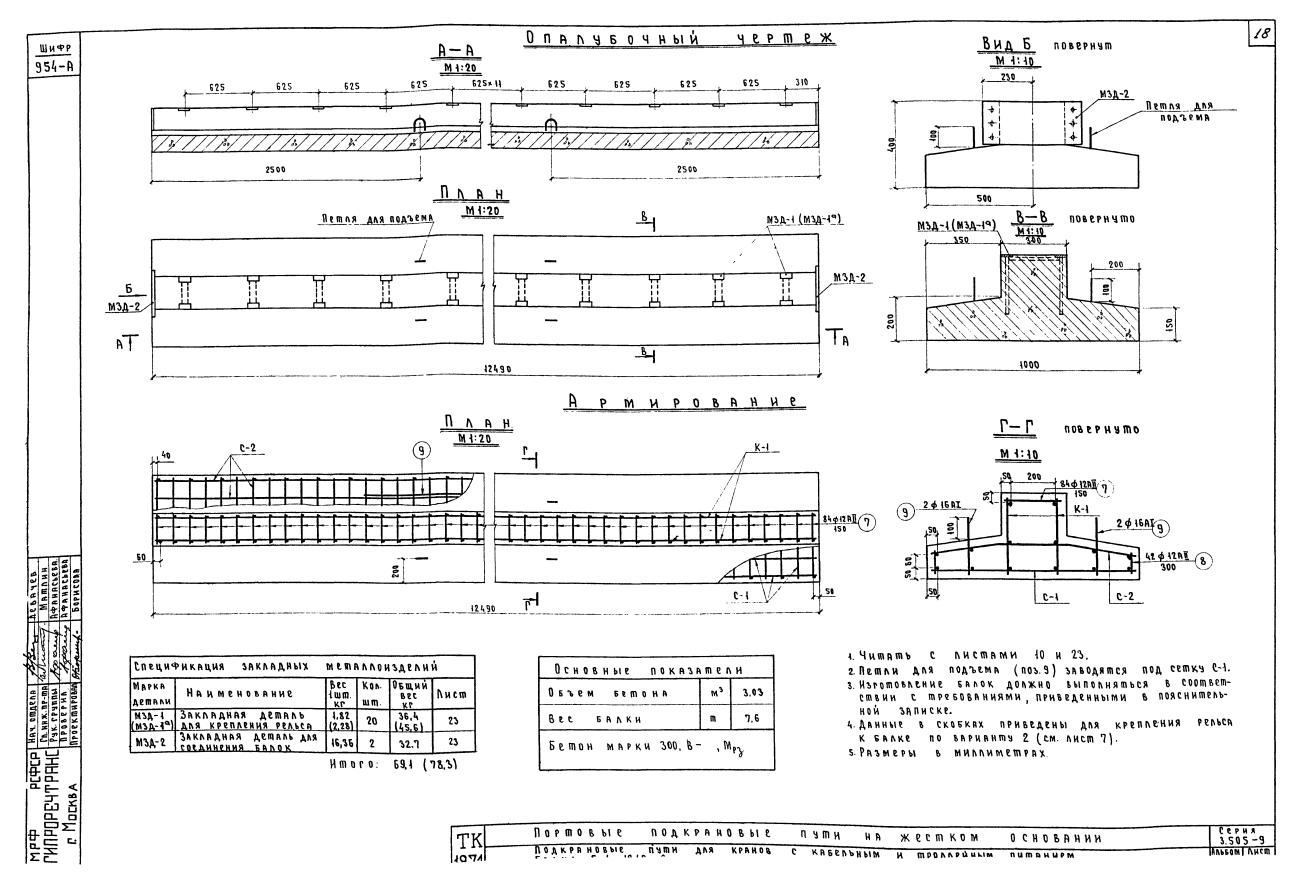


Turr

27

54

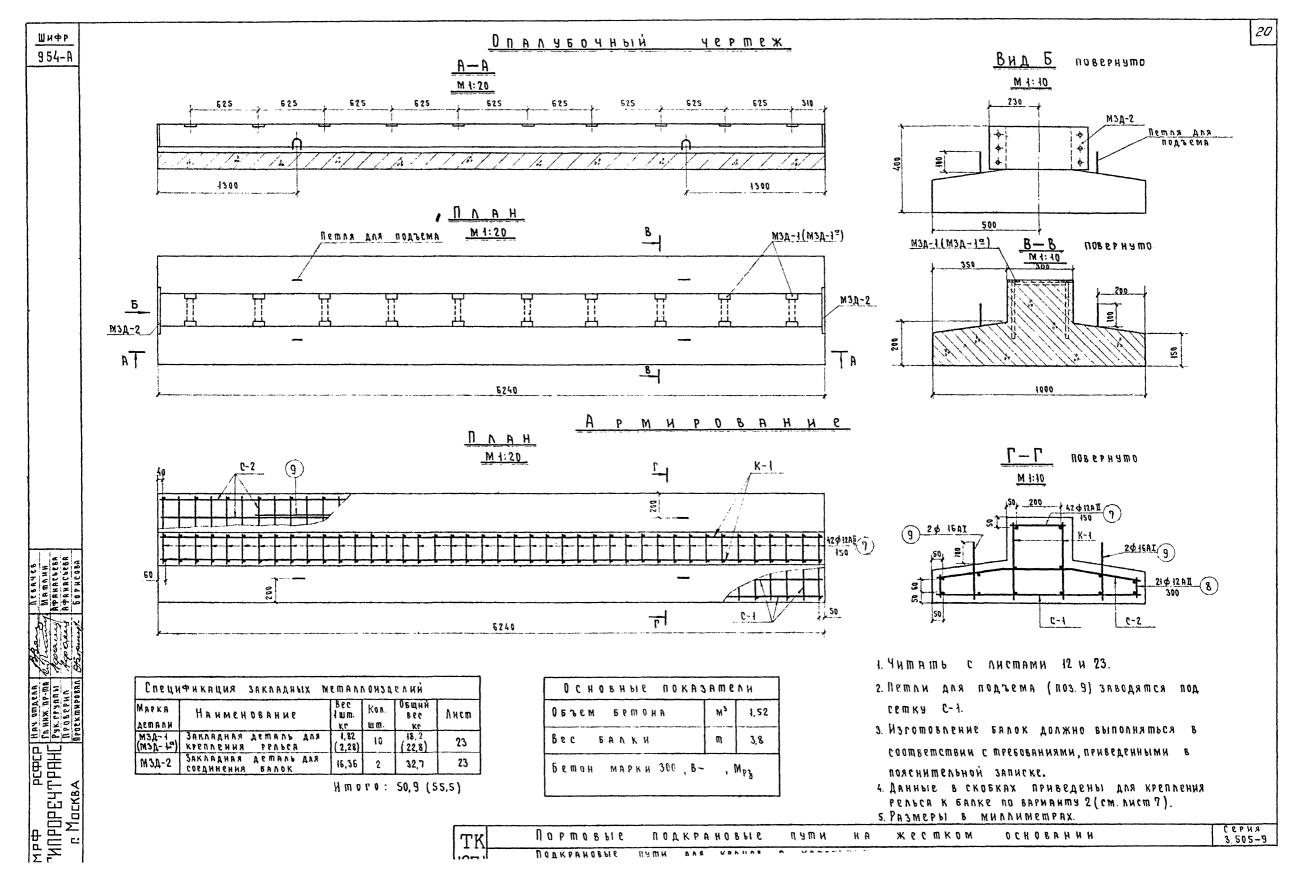



KINPOPEYTPRIKE

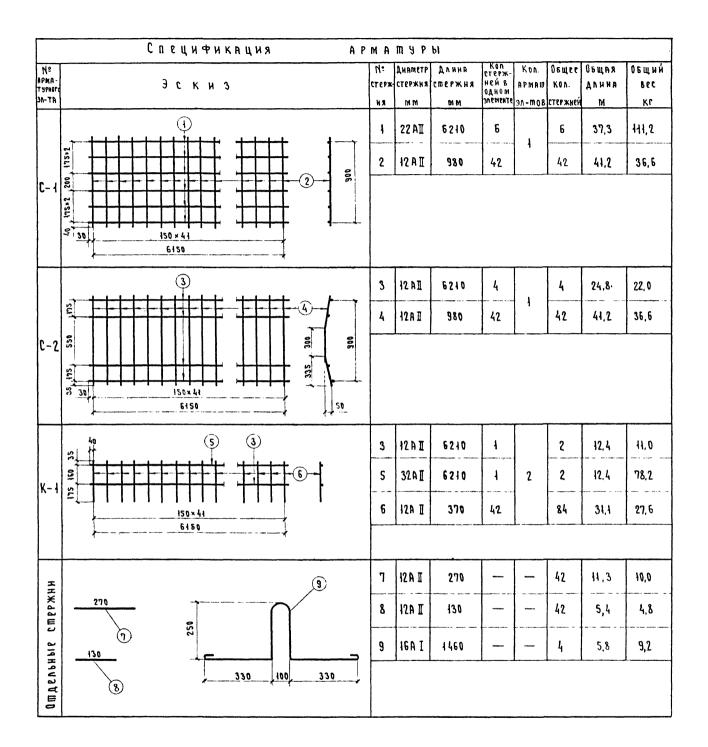
OCHOBOHUU Normobbie nodkranobbie nymu na meemkom Подкрановые пути для кранов с кабельным и троллейным питанием. 1971

CEPUR 3.505-9

27


<u>Шифр</u> 954-А

	Спецификация а і	P M	A M	ј РЫ	-				
olbhaci Vanaci Wana Wana Wana			ЧТЭМАНД КНЖЧЭТЭ ММ		Квп етерж- ней в одном элементе	KON. APMAM 3N-MOB	ОБЩЕЕ КОП. СТЕРЖНЕЙ	RA <i>∭∃0</i> АНИЛД М	Кг В Б С В Б Ц И Н Н
		4	22 AI	12460	6	ı	Е	74.8	222,9
	132	2	12AI	980	84	.	84	82,4	73,2
6-1	30 J00 150 × 82 124,00								
	3	3	12 A II	12460	4		4	49,8	44,2
	£	4	12AI	980	84	\	84	82,4	73,2
e-2	25 30 100 150×82 12400 50		.				Y		
	S 3	3	12 A I	12460	4		2	24,9	22,1
K-1	<u>s</u>	5	32A II	12460	1	2	2	24,9	157,1
	100 150×82	6	12A I	370	84		168	62,2	55,2
	<u> </u>								
нн	9	7	12A I	270			84	22,6	20,0
инжааш э	270	8	12AI	130		_	84	10,8	11,6
1	130	9	20 AI	1760	_		4	0,7	17,3
OMACABHEIC	(8)						•		


Выбо	PKA	АРМА <i>М</i> ЧРЫ					
K n a c u	рной	Дин- метр	Bec Indr. M	8 в с 0 в Щ и й			
<u>O A M D</u>	И	MM	KL	KL			
Cm.5		12	888,0	299,5			
POCT 57	84-61	22	2,98	222,9			
		32	6,31	157,1			
6.m3 1878 7301	-61, A-I	20	17,3				
Bcero	A-II	8,9,5					
Loceto	8 −I	47.3					
PACXOA HA 1 M ³	H-H		224,0				
ано ты Ветона	H-I		5,7				

- очи в которино собирает в пространственный каркас и сваривается. Скиноменто во всех пересечениях.
- 2. Арматурные сетки выполняются в соответствии с Гост 10922-64.

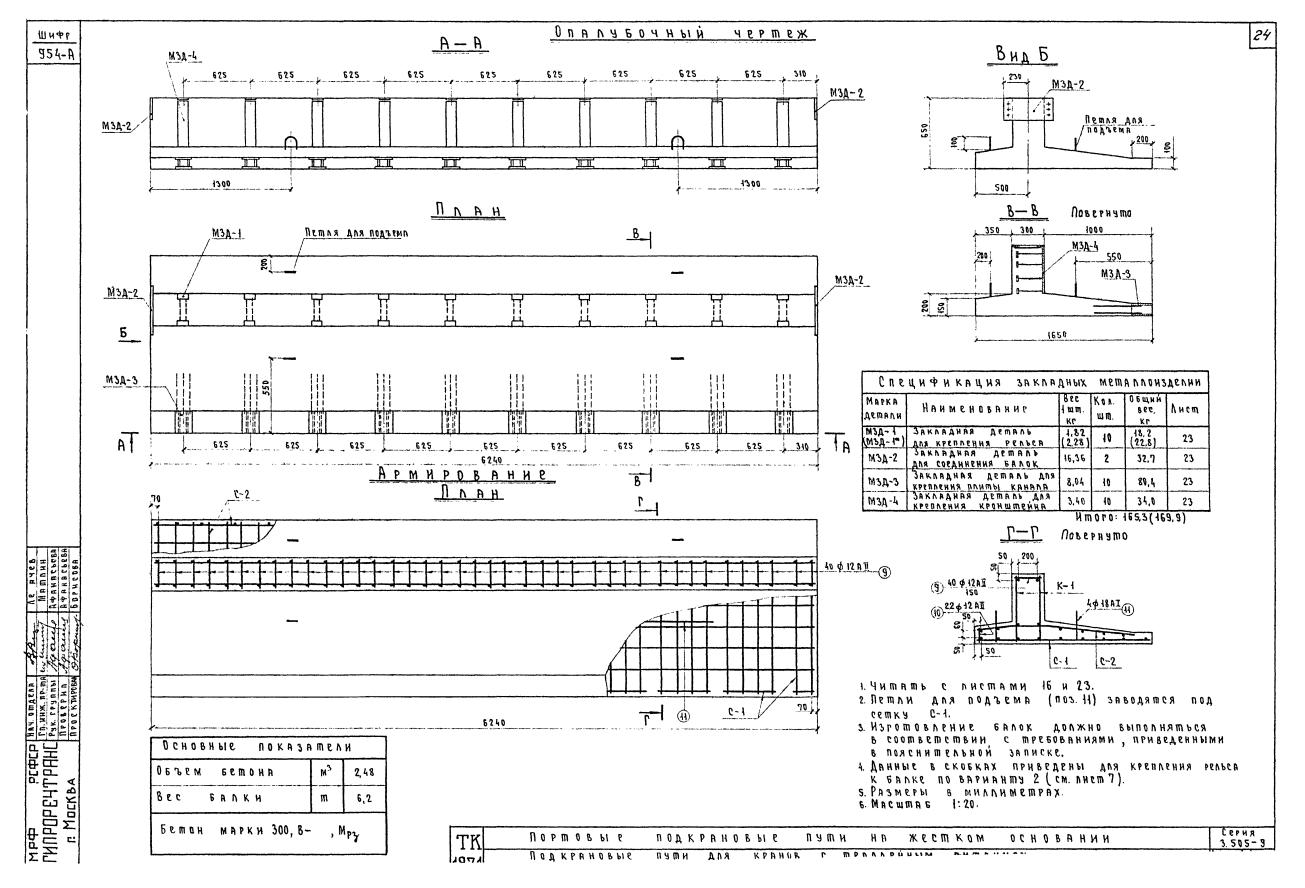
тĸ	Портовые	подкрановые	ншки	на жестком	основании	teрия 3.505-9
1071	DOTKBUHOBPIE	пупи для кранс	B C KABI	EVPHPIM H WEOVICH	манпашии мин	IANKOM I NUCE I


ШифР
954-A

Выборка арматуры								
K n a c r a p m a m a m n	ч РНОЙ	Диа- метр мм	Bec Inor.m Kr	КL В 6 С О Е Щ Н Н				
Cm. 5	n. 5 12 0,888 148, G							
POCT 5781-61 A-II		22	2,98	111,2				
			6,31	18.2				
6 m.3 -1872 T201	61,A -I	16	1.58	9,2				
Bcero	A-I	338,0						
5666	A-I	9,2						
Pacxon Halm ³	A-I	224						
4 H O M S	A-1		6,1					

- 4. АРМАМУРА БАЛКИ СОБИРАЕМСЯ В ПРО-СМРАНСМВЕННЫЙ КАРКАС И СВАРИВАЕМСЯ 80 ВСЕХ ПЕРЕСЕЧЕНИЯХ.
- 2. АРМАМЧРНЫЕ СЕМКИ ВЫПОПНЯЮМСЯ В соомветствии с ГОСТ 10922-64.

TK	9 14 в о т ч в ы е	подкрановые	ишки	на ж	KECWKOM	иинавоно	2 505 -9
1.2	NORKPAHOBЫE	UAUN NUN KAPHU	R P VAE		m n n n n n n n n n n n n n n n		Iha, masa I ha, a ma I


	Шиф	
	954	-
-		
-		
-		
-		
-		
-		
-		

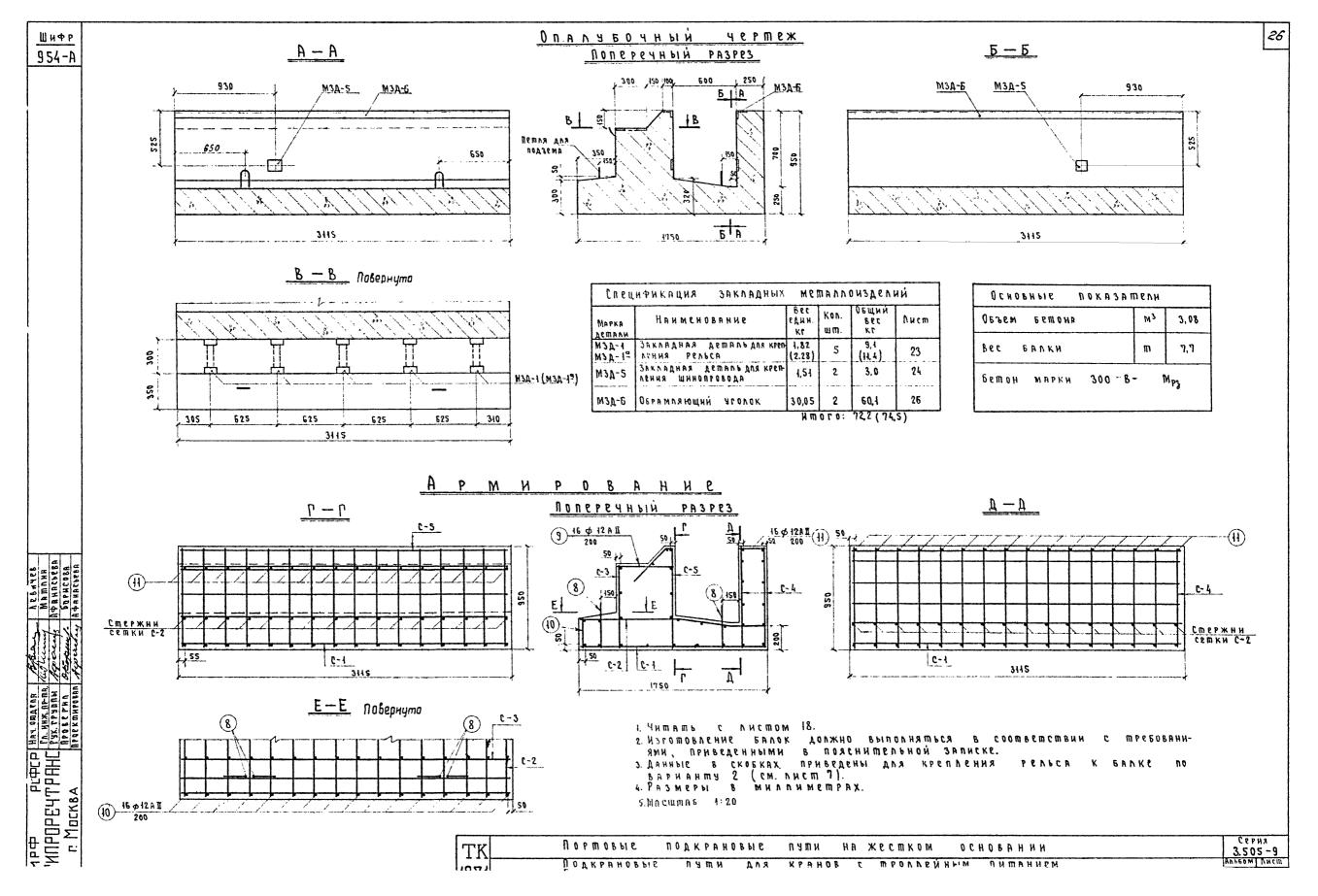
	H 88	2 2
	H C B	-
	APRH APRH	9
	17 76	3
7	213 3	
,	the state of	ţ
	P. MA	\$
-	E XX	4
	H S P	2
	ост В В В В В В В В В В В В В В В В В В В	
	品品	
	끕	
	可	2
	느	

Nº T	Спецификация	A P		1 4 P bl	Kan.	Kon	0	Orw 5 a	10000
PMA- PHOPO AT-A	Эскиз		PTSMAHA RHXFSTD MM		CTEPX- HEN B OAHOM INEMENTE	APMAM.	ОБЩЕЕ КОЛ. СТЕРЖНЕЙ	ка ∭30 АнилД М	Bec Kr
	(2350 g (3) (2) (3)	1	22AI	12470	8		8	99,8	297,4
	7.8.5	2	22AI	500	19	1	19	9,5	28,6
C-1		3	22AII	250	2		2	0,5	1.8
- 1	2200x5	4	22A II	1630	80		80	130,4	388,6
	┤┼┼┼┼╟╏╵╏╟ ┾╺ ╏╏╏╏								
	60 150 175 150×3 (175+150·3) 18 475 150 60								
+	123,50	5	12AII	12470	6		6	74,8	56,4
		6	12AII	1430	80	4	80	114,4	101,6
2-2	\$\infty\$ \frac{150}{2} 1	11							
	= 12350	5	12AI	12470	ł		2	24,9	22, 1
4-1	\$	7	32AI	12470	1	2	2	24,9	157,1
	40 150175 150+3 (175+150-3) 18 175 15 80	8	IEAI	630	80		160	100,8	159,2
+		+	T	<u> </u>	l				T
Отдельные стержин	270	9	12A II	270			80	21, 6	19,2
5	130 (9) ~	10	12AII				42	5,5	4,9
HBIE		11	25AI	1920	-	l .	4	7,7	29,6

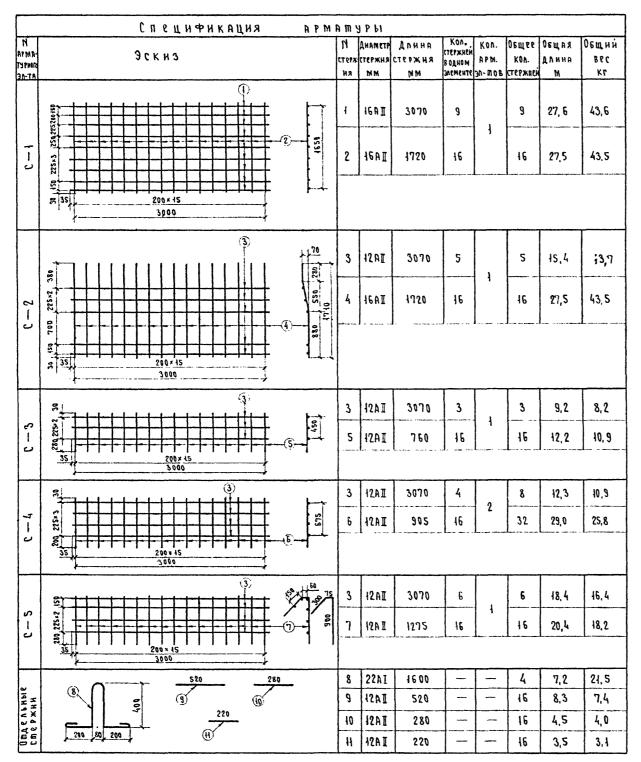
Выборка арматуры							
K n n c n n n n n c m n n	HOHE	Д и п. ч п э м м м	Bec Inor.m Kr	КС В Б С В Е Щ Н Н			
C m. 5		12	888,0	244,0			
רכ דס סק	84-61	16	1,58	159,2			
A-II		22.	2,98	716, 4			
		32	6.31	157,1			
0 m.3 -1873 T201	61. A-I	25	3,85	89,6			
8 5 6 5 0	BCPPO A-I		1246,7				
	A-I		29, 6				
PACKOA HA 1 M ³	A-I	252,0					
ено тэ	A-I		6,0				

- -очи в которанно импад вчетвича. Но на котора и съмовичано и съмови и котора и кото
- 2. Арматурные сетки выполняются в соответствии с ГОСТ 10922-64.

,			
TK	Портовые подкрановые	кинавоноо мохтояж ан нтер	3.505-9
10574	Подкенновые пути для	кранов с проллейным пипанием	AUPERW VHCM


	Agyues	Мвшлин	A PARACLEBA	APRHACERBA	50Pucosa
1	Drapto HAY OMACOR 1 252	TO IT FO. MAX. NP. MA 6/ Kiny	JHHL Pyk. ppynnbi Hoacety	REDERENA Species	RPOPK MUPOBAN CALORUM
	N P C			X	r. FIDEKBA

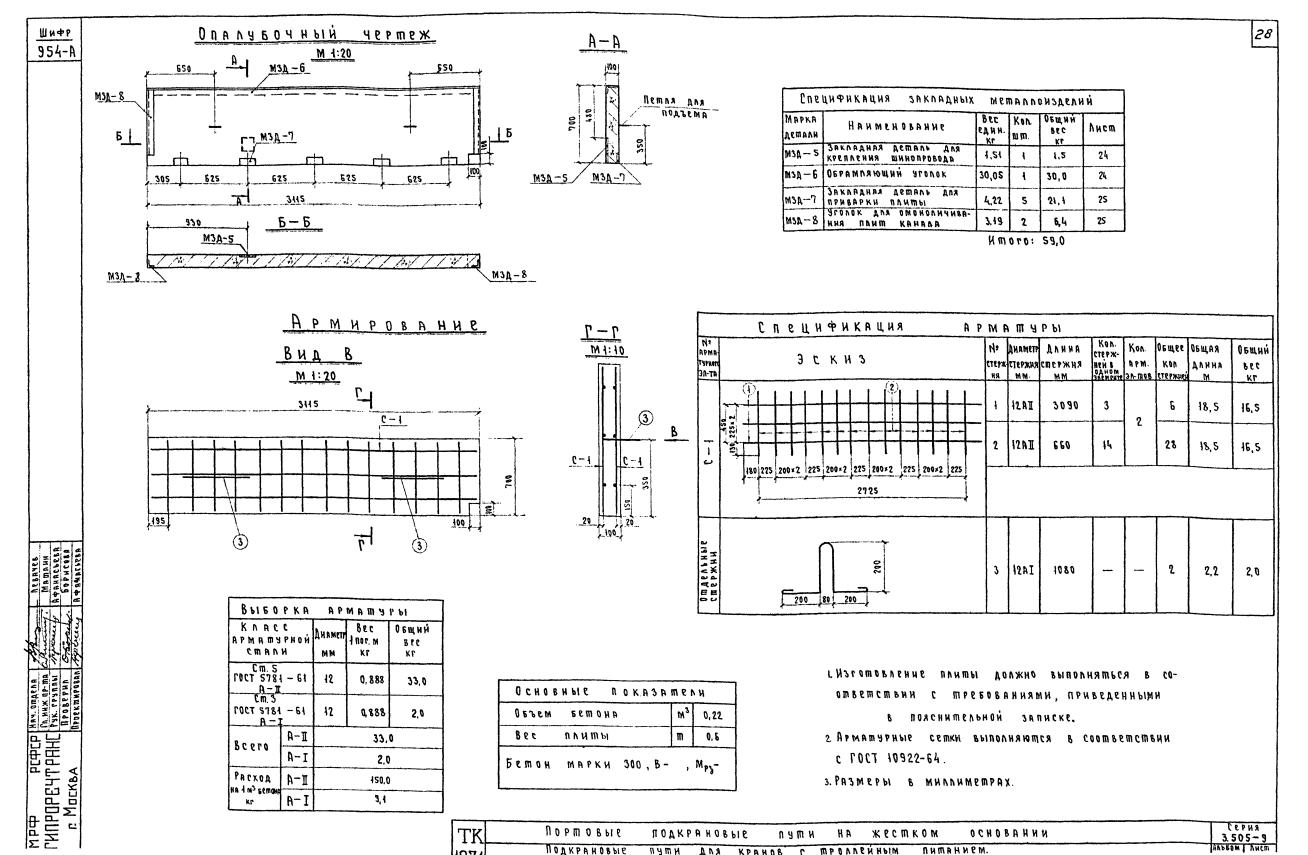
<u>Шифр</u> 954-А


abhold bwb- No	Эскиз	CTEPX	СТЕРЖНЯ	Анни стержня	LUBRUM	APM AM.		кашаО анилд	86C 0 Em H I
A.M.A	\$\\ \bar{3}\\ \times \bar{2}\\ \bar{3}\\ \times \bar{2}\\ \tag{3}\\ \tag{3}\\ \tag{3}\\ \tag{4}\\ \tag{4}\\ \tag{4}\\ \tag{4}\\ \tag{5}\\ \tag{6}\\ \tag{6}\	1	22AI	6220	этнямяле.	3N- M O B	стержней 8	M 49,8	148,4
		3	22AI 22AI	250	9	1	2	4, S 0, S	13,7
2-4	S 60 J50 175 450×3 (175 + 150 - 3) & 175 450 60	4	22PI	1630	40		40	65,2	194.3
	E 100	5	12AI	6220	6	4	6	37,3	33,1
C-2	SE 50 120 122 120-3 (172-120-3) 8 175 120 50 100	6	42A [[1430	40		40	57,2	\$0,8
	\$ (\$ (7)	5	[2AI	6220	1		2	12,4	11,0
4	3	7	32AI	6220	1	2	2	12,4	78,2
	40 150 175 150 5 (175 150 -3) 8 175 150 80	8	16A II	630	40		80	50, 4	79,6
жжж	270	9	12AI	270			40	10,8	9,6
спержии	130 9 82	10	1201	130			22	2.9	2,6
Ощдельные	300 100 300	#	IASI	1420			4	s,7	11,4

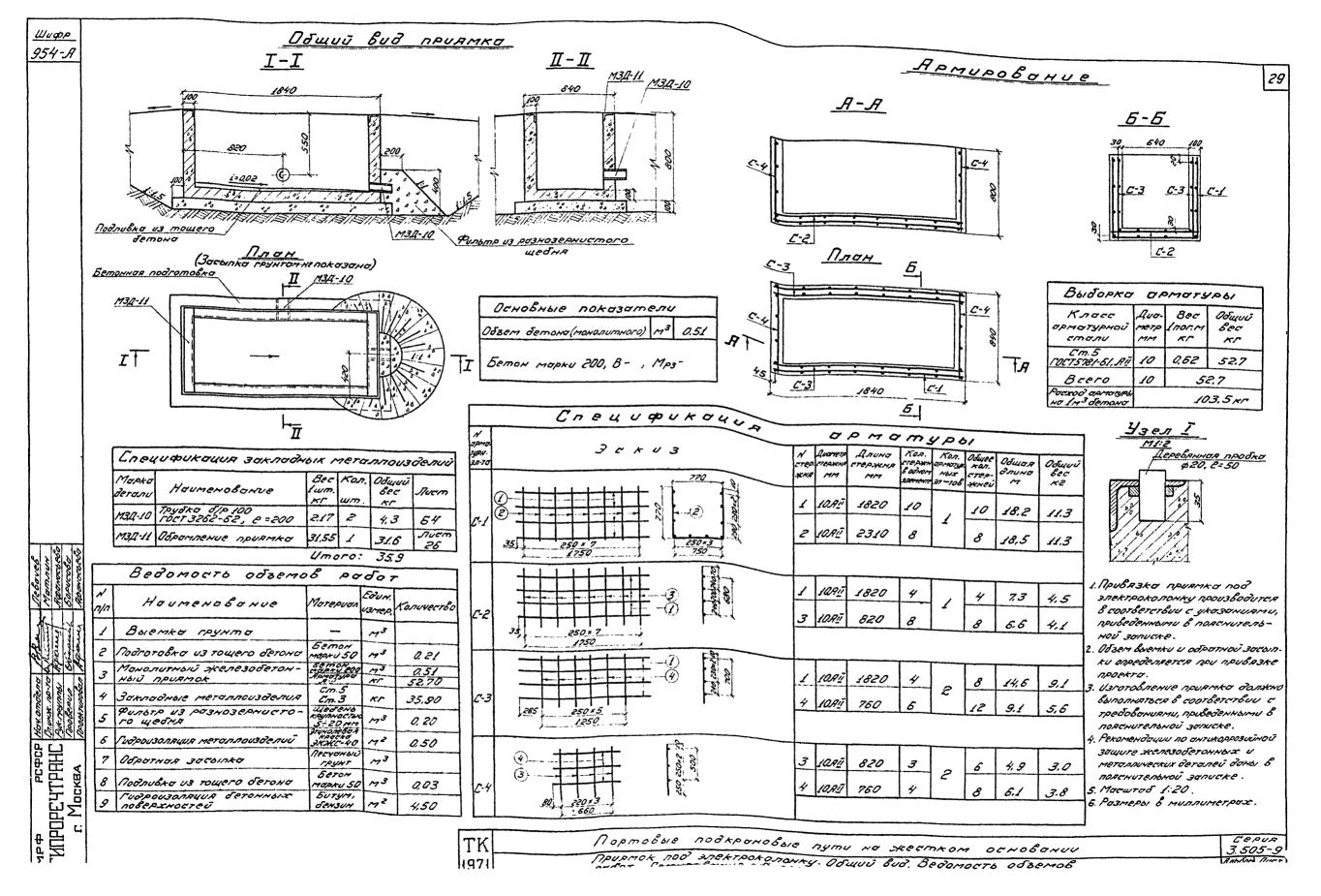
Выборка арматчры						
KARC	.,	_ A и Д ЧТЭМ	Bec inor.m	0 в Щ н й 3 я в		
namo	ч	MM	Κr	Kr		
Cm. S		12	888,0	1,001		
roct 57	81-61	16	1,58	79,6		
II-A		22	2,98	358,2		
		32	6,34	78,2		
C m.3 -1872 T301	61, A-I	18	2,00	11,4		
Beero	II—A	623,1				
J C 31 9	H-I	11,4				
PACXOA HA 1 m3	A-II	252,0				
анолза	A-I		4,6			

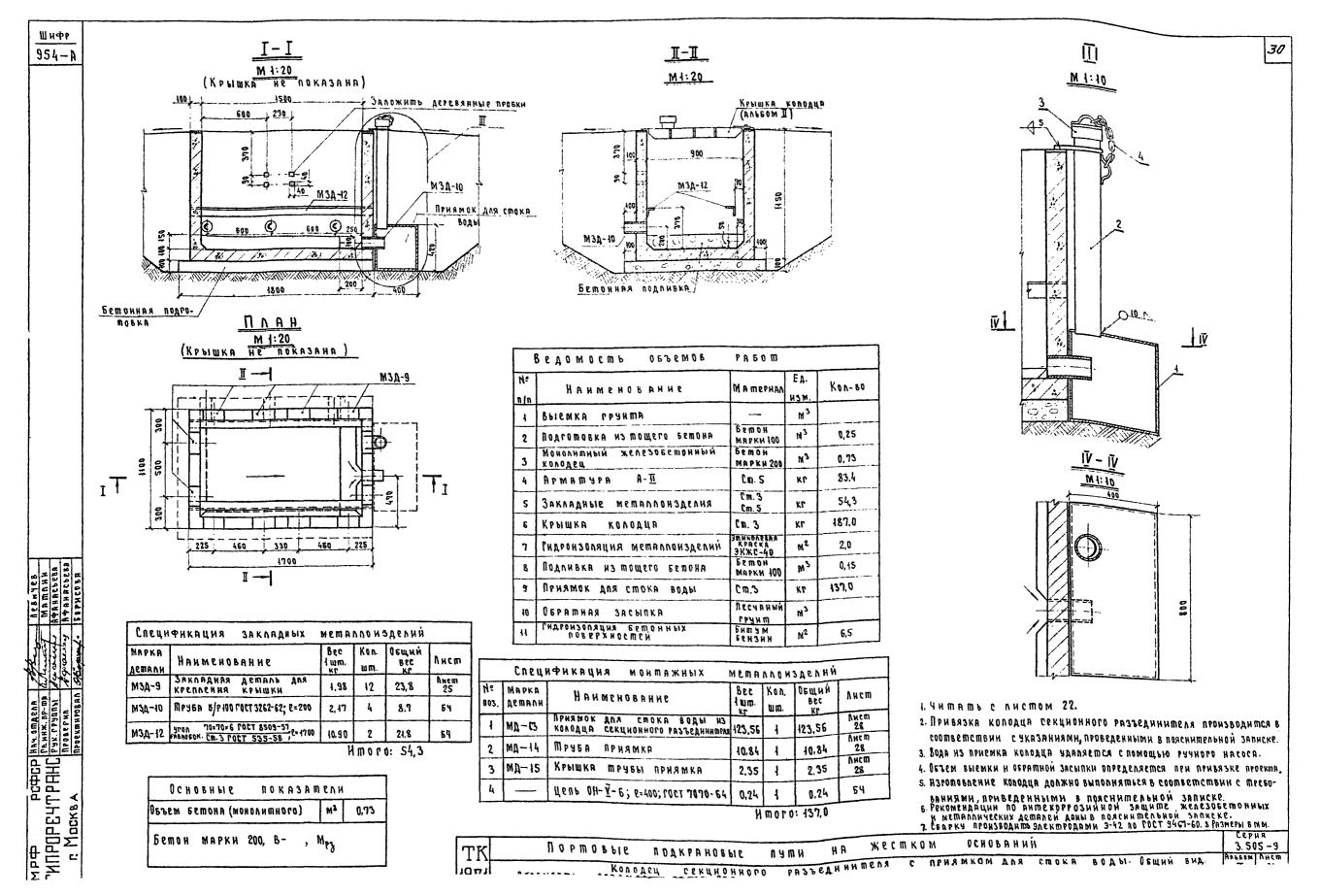
- 4. Арматура балки собирается в пространственный каркас и сваривается во всех пересечениях.
- 2. Арматурные сетки выполняются в соответствии с ГОСТ 109224-64.

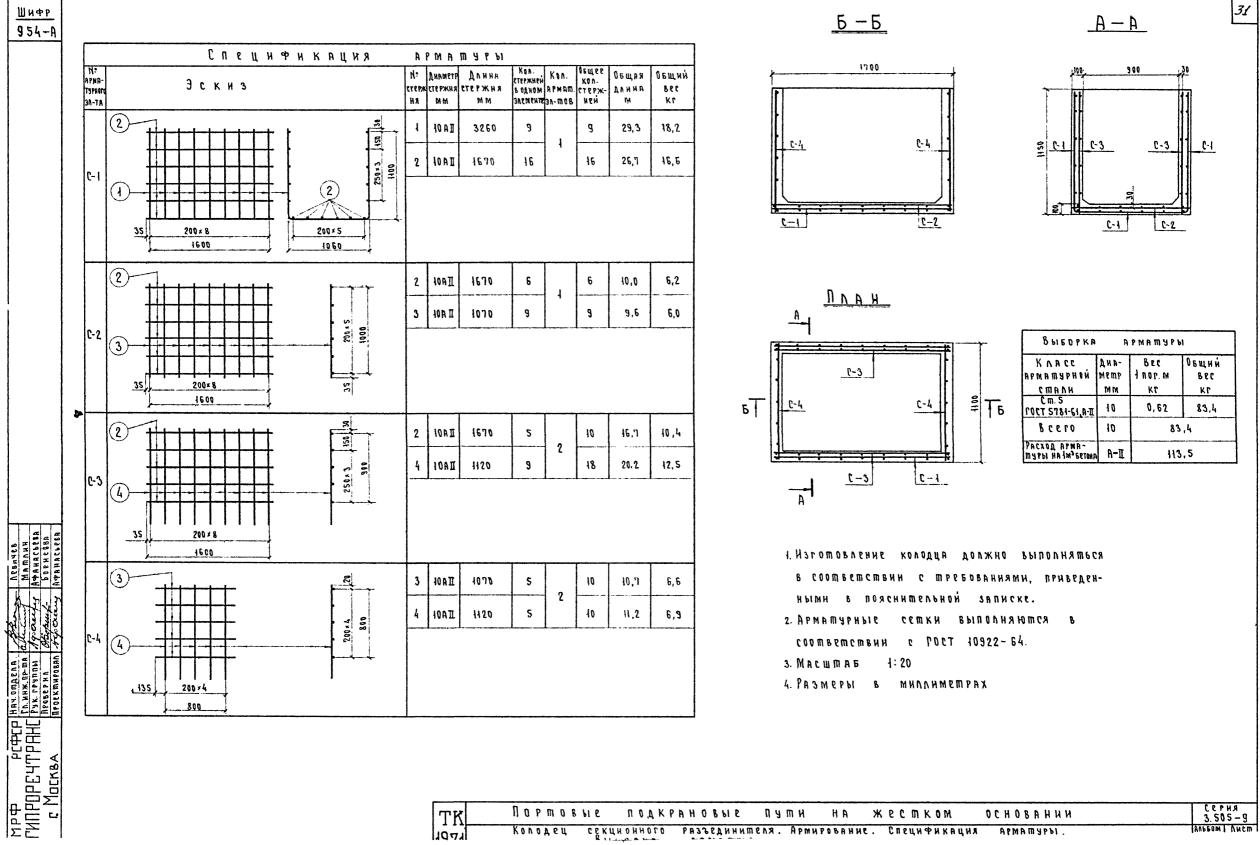
Ш	И	ቀ	P
9	5	4-	- A



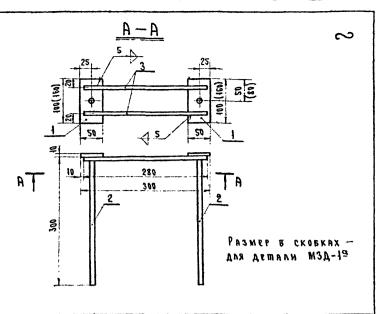
Выворка Армашяры						
Knacc		AHA-	Bec	решни		
APMAMYR	NOH	метр	4 nor. m	298		
илато		MM	Κt	Kr		
Cm. 5			1,58	130,6		
A-I		12	888,0	118.6		
Cm. 3 0007 5781-1	ы A−I	22	2,98	21,5		
Bcero:	H-I					
	A-I					
расход ан	A-I	80, 9				
К <i>L</i> 1м ₃ ебшони	I-A		7,0			

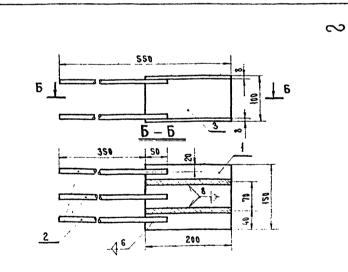

- з. Арматурные сетки выполняются в соответствии с ГОСТ 10922-64.
- 2. Арматура балки собирается в пространственный каркас и сваривается во всех пересечениях.


RH999 U 0 b w 0 8 P1 6 TK подкрановые NMER A H **MON MON** и к н авоноо 3.505-9 DOTKEUHOPPIE HIGHNS FORM D пяти RAA KPAHOB MONHAMNI 14001

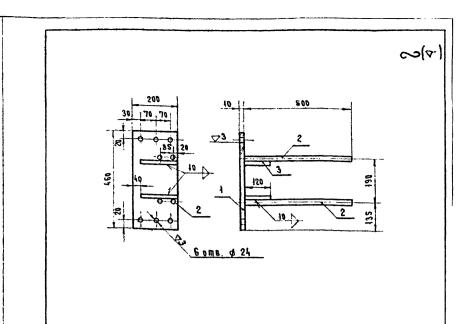

MPP PLACE HAN OMARAN PROPERTY IN THE PERMITTER AND THE PROPERTY IN THE PERMITTER AND THE PERMITTER AND

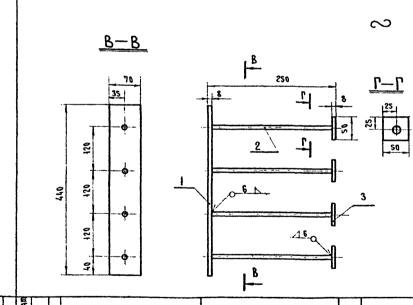
Портовые ПОДКРАНОВЫЕ * GC W KO W OCHOBAHNN пути 3.505-9 AADEOM | AUCTI нийнужительнов с шьоученым 1271

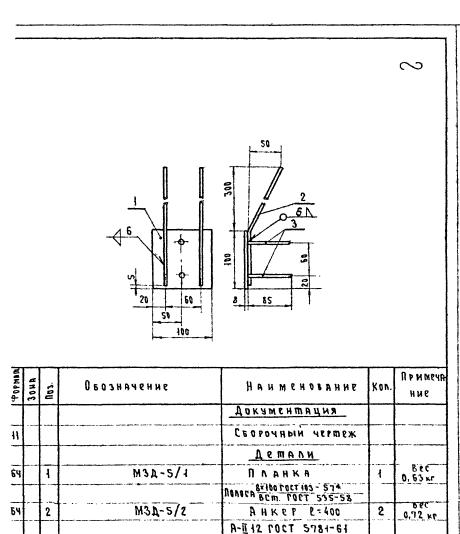




1071


ANDEOM | NUCM


A B B B	>	103	DEDZHAYEH	не		Нанменовани	S	Kon.	арэм н ч П з и н
T						Токлыбншыйн	9	Ü	
11			The second secon			Сворочный черт	£Ж.		
1	1	-1				клатэд	7		
4	1	1	M3A-1/1 (M	7°1-4°	1)	ПЛАНКА		2	87,0 - 1-46M
1						NONUCA BCM 3 POCT 53	7* 5-58		M3A-1-124m
4	1	2	M3A-1/2 (M	3A-1°	(2)	A H K E P 6=30		2	8 8 5
T	1		-			A-11 12 FOCT 5781	18		0.54 KT
9		3	M3A-1/3 (M3	A-1º/3		Соединительный	CITIE PXK EIR	2	Bec
						A-I 12 POCT 5781-1	54		0,50 KP
7		F			итеп	CHOBBHNA I HU ЖЕСШКОМ OBPIE UDĞK BUHOBPIE		. 50	кя 5-9
1		工				на канда	Num.		ea Macumas
ASP	A B	. A9	PAHACHERA AGENIE	ммад.	••	KPENNEH RH PENSER 1-1	и	1,8	
YK.	7 P.		PAHACLEBAHADANG				Nucm	M	Nemor
N HH	IX.	PM	PRAYER ASY				runf	10PE	CYTPAHC
		i		Knnu	PORDI	· 910	Papa	M A N	13


-														
TOP MAIN	3048	A 03.	0 E O 3 H	AYI	иня	e	HAUME	НОВАНИ	٩			Kon.	ΠP	ниеча- Ние
_	_						AOKYM	шатнэ	RK					
11	L	<u> </u>					СБОРОЧН	ый чері	n e	*				
		L					Aem	NAA						
7		4		M	34-	3/1	Плв	HKA				2		Bec
_							NOVOCH BCW	PAPT INT	-5	7*			3	,76 Kr
۲i		2		M	3A-3	5/2	AHK		.w			Б	-	Bet
							A-II 12 100	T 5784- 6	1					2, 16 Kr
4		3		M	3,4-3	5/3	Пла	HKA				2	l	Bec
لـ		L					DOVOCH BCM	TOCT 103	-S	1* 58			1	2,12 kr
_	<u> </u>	_		_			ДОЛ ЗІВВ МЭЗЖ АН ИИНВВОН	KPAHOBЫ			,	50:		
_								MANA	M	(M		MAC	R3	MACWINAS
A.	SPA	6.	Меннесьси да Меннесьси да	pug	Дата	H RAA	RNH D R H H A A		И			8,6)4	1:5
31	۲. ۲	P.	Афанасьева Ад	Ouy			M3A-3		Λи	cn	L	10	m 2 N	0B
			MAMOUH WALL	2	-				r	ΗI	P			CPAHC
_					K	0 T H P O	inn: que	7		φı	P	MAIT	11	

-														
н дата		Формяя	36HB	103	0 5 0	3 4 A 4	2 H H	e	Наименова	ние		Kon.	n	РИМЕЧА- НИЕ
PACE									Докимента	ция				
Взамен инв. Н. Н. А. Д. В. В. ПОДПИСЬ		14				-			Сворочный ч	e Pmes	K			
35.									Депали	_				
N. A.		4		1			ДЕМ	-2/1	Фланец			4		Bee 1,22 kr
7 H B						-			101 C.m.28 A2040 II	103-8 T 535-	7 × 58			
2	П	64		2	-		МЗД	-2/2	AHKEP			4	4	866 92 KP
=									A-II 20 COCT 578	31-61				
34.0		64	L	3			МЗД	-2/3	Планка		_	2	4	800 ,22 kr
A A M A A									NOADER 14×120 POET					
a								nopmo				CEP	ия	
=		-		I					на жеспком	1	3	. 50	5 -	g
				1				0 0 1	NNHRBO	į	•	. • •	•	`
Подпись				1				3AKNA.	дияя деталь	NH	m.	Mac	CA	Масшпав
15		MSN	VAC	m 1	№ ДОКЧМ.	Подпись	Aama		RHHJHHA90		Т			
Ē		PAS	PBB	.	ЧЯНАСЬЕВА	Mam		,	••	u	1	16.3	36	1:10
		NP	1867		ни птем	Enhing		-	1 0 K	- 11				
DOAN.		79 K	. 17.	P	PAHACLEBA	Harry		M3	A- 2	AH	m	N.	ı cm	0B
1.		PA W	HX	ne	Маплин	intimen								
HRB. Nº			om,		Nebayeb	134				lr.	IUL	Ubt	ישי	PAHC
=	L			\perp						_ ' '	11 11	טו ר	3 1 1	
						Kn	AUDA	D AAA		\$		n 11		

					- 		_j		IJ	- h							
H AAMA		Формал	3048	No3.	0 8 0	3 H A 4 E	HH	t		Наименоя	8 R H H	٤		Kon		ние	AP
S X									Ao	KAMEHWAI	ция						
HHBHHHB. Nº ASEN MOANHES		11							Ceo	РОЧНЫЙ Ч	epm	ж					
148										Aeman	И						
A .H		БЧ		4		Ŋ	3A-	4/1		NAHK	A			1	4	800 .94 k	,
HB.									Novoc	A 8×70, POCT	103-1 CT 53	57 * 5-5	8				
E E		64		2		M	3Д-	4/2		AHKEP				4		Bec ,82 xe	
=								***	A-I	12 POCT	5784	- 64					
SAM		РЗ		3		M	1-AE	·/3		DNAHK	A			4	0	Bec ,64 kt	,
Aama Bsamen	Н									07 8.m38 A	CI 53	<u>ՏԴ ՝</u> Տ- Տ	٥				
=				\ddagger					H A	ТОНКРАНОТ МОЖПЭЭЖ ИИНА	PPIG			C e p			
HE				Ţ		h		3 RKNAA	RAH	ACMANA		UM	m.	MAC	CA.	Масш	MAE
л. Подпись	Ш	PAS	PR 6.	1	ABSEJARA	Agreed	AMA	KPOHU	me			и		3,4	0	1:5	5
텰		Pyk.	CP.	A	PAHACBEBA	Agreen		M.	5 A-1	•		VHC			cme		\exists
HKB. Nº NOAM.			D.WH		1 A M N H H 2 B A Y 2 B	a linning						ГИ	ΠP	OPE	41	PHH.	
불	Ш			Ϊ		1 d	n u pe	BAN. 9u			POPM	0.17	1.1			\dashv	32

M3A-5/3

БЧ

Нэм Лист № Докум. Подпись Дата

PRIPADOT ATAHACHERA Freque

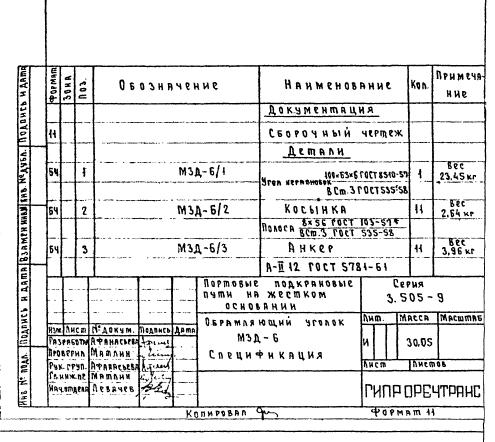
Pak. PPUD. ATAHACHERA Jane

начопд. Левнчев

AHKEP 8= 85

A-11 12 POCT 5781-61

жесшком основании вые илми на подкрано-


Закладная деталь

шинопровода МЗД-5

* Рязмеры для справск

для крепления

KONHPOBAN TO

Портовые подкрановые

ПУПИ НА ЖЕСПКОМ НИНЯВОНОО

йк ш он к л м я ч д О

4 r o r o k

0-45 M

KONHPOBAN 94

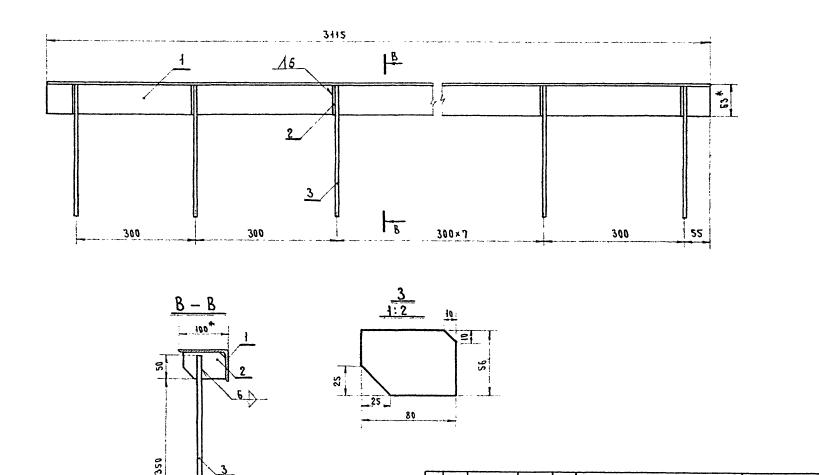
Ham Nucm No Aokam . Roannes Anma

PROFESOR APARCEER AT AM PROFESOR AT AM PARCEER AT AM PARCEER AT AM PARCEER AT AM APARCEER AT AM AT AMARIAN AT A MATOMARA AT A BAYER AT A MATOMARAN AT A BAYER A BAYER

Серия

3.505-9 ЛИП. МАССА МАСШПАБ

30,05


Nucm

POPMAM 12

Пнетов

СИЦЬ ОЪЕЛЬЬНО

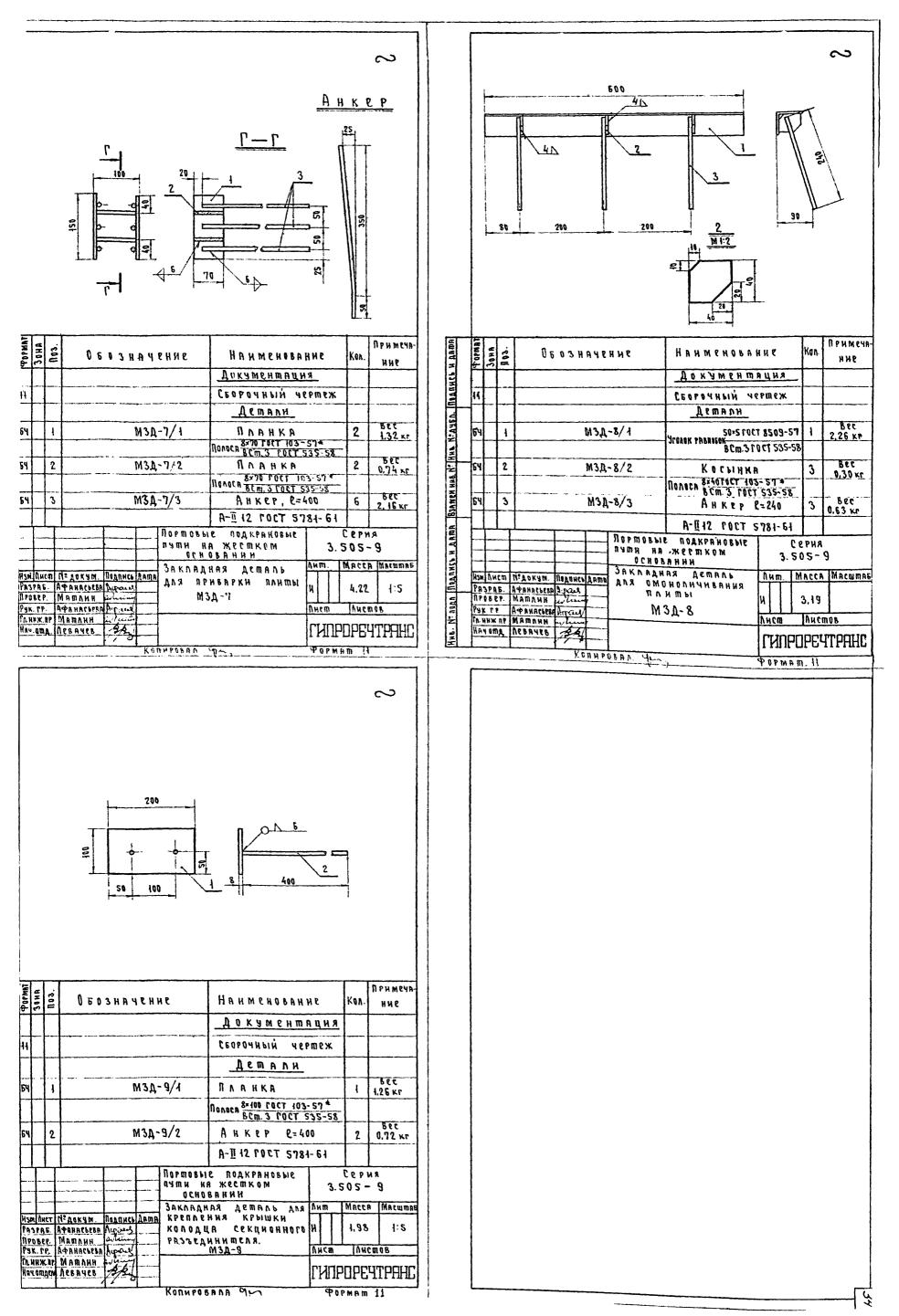
4:5

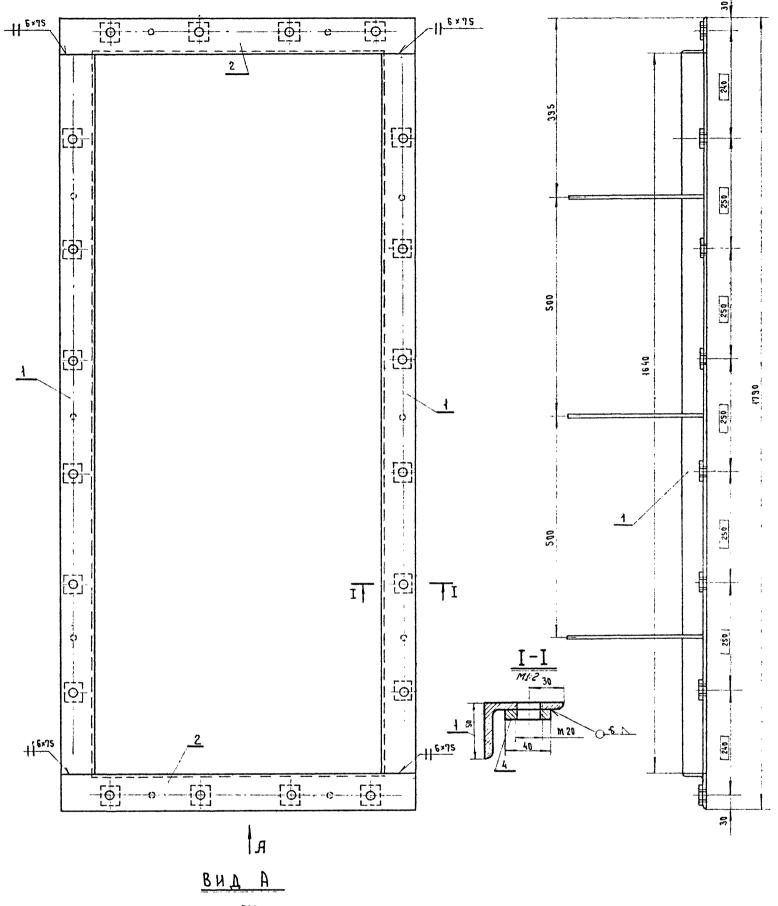
Bec

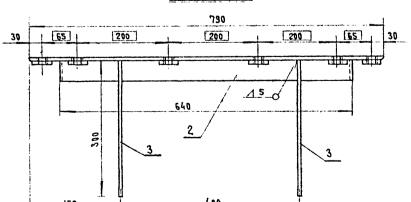
016 KF

1:2

3.505-9

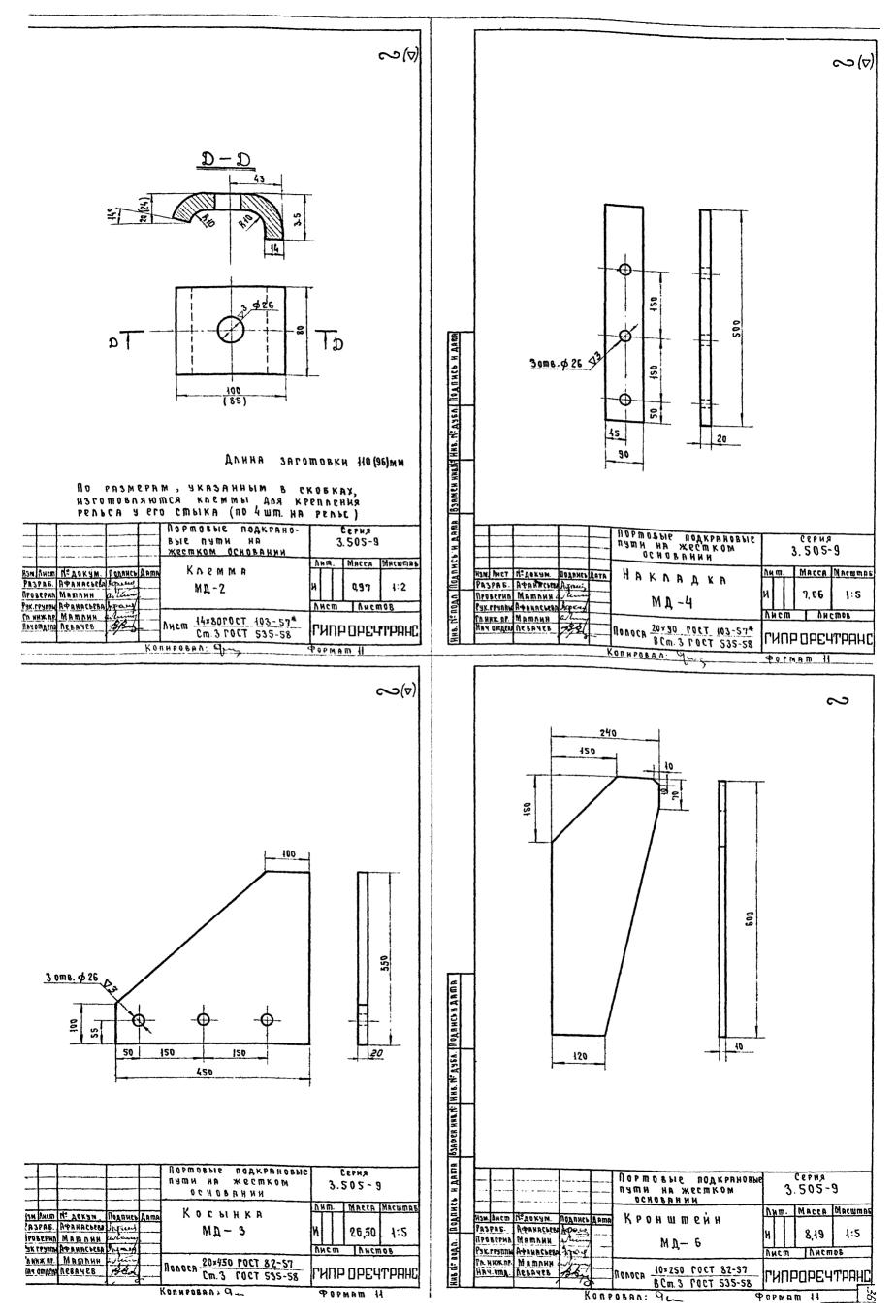

Лит. Мясся Масштаб

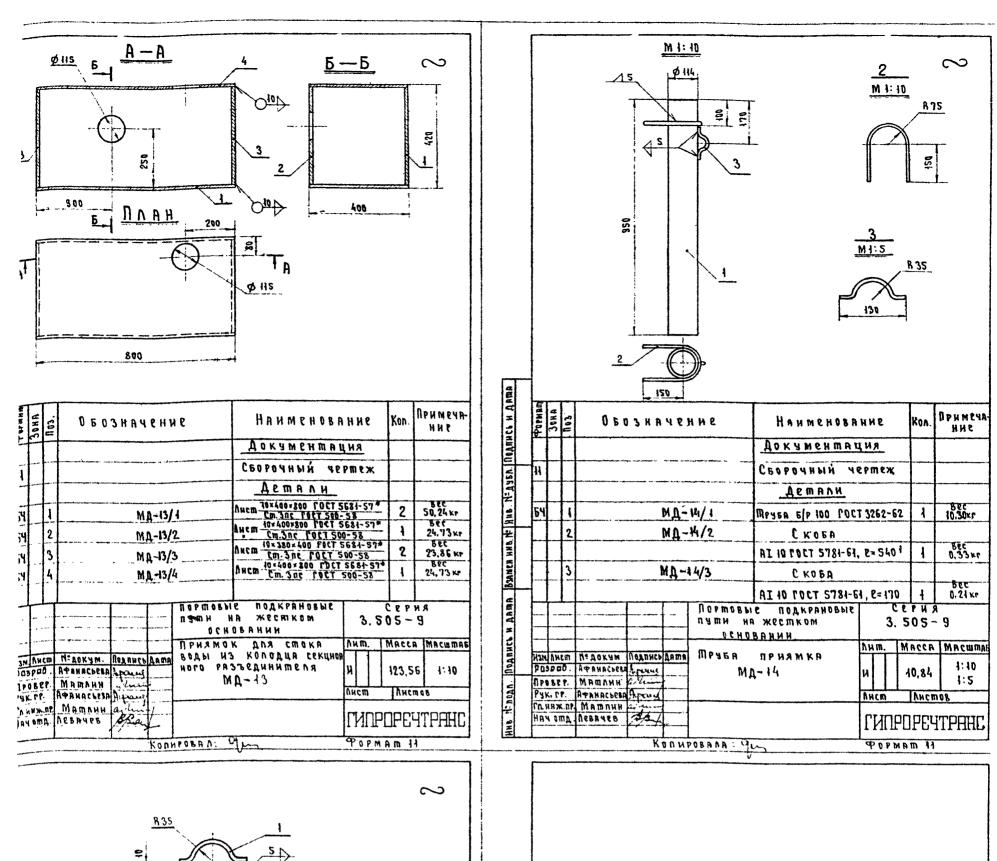

1,51

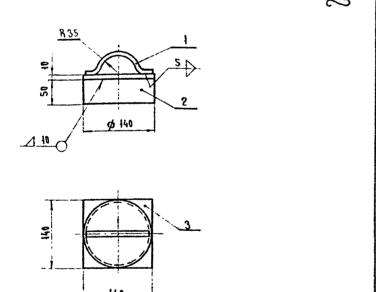

Уисшоя

LNU6 ObEALbahC

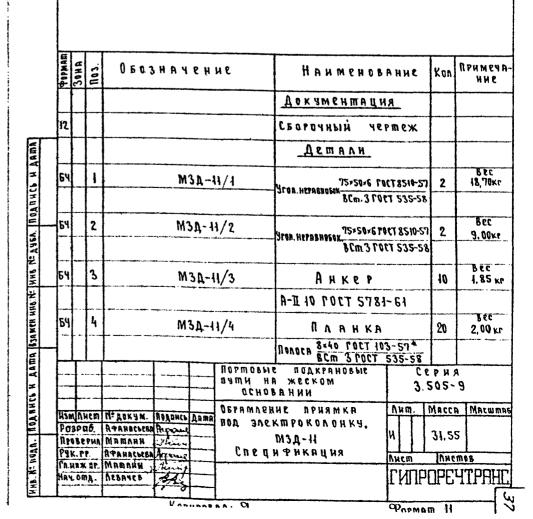
POPMAM 11


Смещение осей отверстий от номинального расположения не более 0,5 мм.


Перед установкой на место отверствя: Заделать деревянными пробками (см. узел I,, лист 20).


					Партовые подкрановые путу на жестком пунинаюною			Cerua 3.505	
					ОБРАМЛЕНИЕ ПРИ-	AH	m.	MACCA	МАСШПАБ
Hanit	HCRT	H: AOKYM.	REARMEN	Anna	OPEN WHENE HEN-		П		
PASP	A 6.	А83€ЭЯНЯФЯ	fireme		ямка под электро-	N		34,55	1:5
BPCSE	PHA	MARRHH .	g				Ш	1,,,,	
Pak P	MEDE	Афанасьева	RECEASE		колонки МЗД-11	٨	HCI	n AHCI	nos 1
		Маплин		1		T			
HAY.0	GA!AA	VERHASP	of Su			1	AΠ	b ObEr	LDHÄÖ

KONHPOBAN . 91-


Фанта 22

									-	140				
30HA	R03.	0	Б	0 3	ьн	A '	4 8	H	ие		навоняткан	1 11 6	Kon.	П РА МЕЧА Я И К
\prod											Докчменты	ция		
			٠	-		-	**				Сворочный че	Pm ex		inn ar-ngheider fölkningsame opn i omen ga
	۱	}		•••				• •		material contraction of the second	NARMSA	man Suprimprop of the sales		e agranda san san san esta esta esta esta esta esta esta esta
	1					ħ	Д	-15	5/1		CKOBA	un un tide uit arreite alles ades ades ades and	1	Bec 0,2kr
								-			A-I 10 POCT 5784-	61,	-	
	2					M	٧-	15	/2	4	MP46A 6/P 125 POC	T 3262-62	1	Bec 0.70 kg
	3					M	A -	15	/3		Планка		1	88 C 1,44 kr
							-				Nucm 10×140 FOCT 5681-	57. 8=140		
1	-			-			-		D & D	о с н о И н И ф b	В В Н И И В В В В И И В В В В В В В В В В В В	C	505	
seal	5 P	Mam Mam Mam	REBI	84 .	الم	کمه دم	Ant	AU		а ж ш к к и ч і і М		и	2, 35	
Инж	ne	Mam	VAI	1 /2	4								OPE	TPHHC
								1	VOUN	POBAL	ا: ١٠٠٩	DADNE	m 1.	1

Mopka			Bec	Ha 100 1	יוצר אי המדע	ONR K	00006				psnoboi	_
geranu	Houmen	obonue.	Lum.	C KAD	ENBNOIM	C TROM	ne û Hbim	NOIS	7476	100	mb	1
			K	Колич.	Oduvi Bec.	Kanuy.	Obuqui bec.	KONVY.	Oburui Sec	Konuy	- OSunii Bre	Suc.
M3A-1	Закладная дегал	b dan krennerun penbeu	1.82	320	582.4 (729.6)	320	582,4	wm	N.C	wm.	KT	<u> </u>
M3A-2		для соединения болок	16,36	32	5235	32 64	(729.6) <u>523.5</u>					23
МЗД-З	HUR PAUTOI K		8.04	_		160	1286.4					23
M3A-4	HUA KPOHWTEU		3,40			160	544.0	~··· •		ļ		23
МЗД-5	SOKNOCHOR DE	rans dan kpenne- da	1.51			32	48.3			 -		23
МЗД-6	Обратляющий	yronok	30.05			32	951.6					24
M3A-7	Закладная дегал	ob dan apubapku anurbi	4,22		_	160	675.2					24
мзД-8	SOKNODHOR DET	- עתסאסאס פתה מתה	3.19			64	2042					25
M34-9	3aknadnan dera KANUKU KONODYA CEK	NG GIR KPENIENUR YUONNOTO POBBEÕUNUTENR	1.98									25
M3.A-10	Try 80 % 100, C=2	00, 10073262-62	2.17		_							25
M3.4-11	OSparinenue npuni	eka nod snekrpakononky	31,55									54
M34-12	Угал равнобок.	7016	10.90									26
	Beero:	פחה העדפני עש למחסת		i 12,49m	1105.9		4825,6					64
	<i></i>	dna nyreŭ us đanok	BAUNOU	6,244			(4972.B) 5349.1 (5495.3)					

WUGOP 954-9

KINPOPEYTPAHC

	Выборко	метолло	7 40 03	rorobne	HUE 30	KNOBHOL	c dem	7.781	
NN			1	100 norm			Общий	800	
	Наименование	Gevenue	PUTONU	CM	מת משום	~~~	HO POUROPOO	Ha Torno-	G0~
n/n			U3 50110K	U3 50,00K E=5,24M	U3 GONOK 8=12,49m	U3 0000x C=6.24M	HOID NYTS	BOU NYTE	rocz
		8×40			19.20	19.20			
		8×50			102.40	102.40			
		8×56			84.48	84.48			
l	Crans npokarnan	8×70			640.00	640.00			
1		8 × 100			20.16	20.16			103-57*
1	nonocaban	8×200			940,80	940.80			100 37
		10×50	249.6[396.8]	249.6(396.8)	249,6(3968)	249.6/395.8)			
İ		10×200	231.04	462.08	231.04	452.08			
		14×120	135,04	270.08	135,04	270.08			
	Crass apmaryp-	\$10							
ح	HOR KADCCO	ø12	332.80	332.80	1350,32	1350,32			5781-61
	A-Ī	ø 20	157.44	314.88	157.44	314.88			
جي ا	Crant APOKATHOR	50 × 50 × 5			144.64	144.64			
3	Pabhotokas	70×70×6							8509-57
,	Crass APOKATHAR	75×50×6							
4	HERUBHOGOKUA	100×63×6			750,40	750,40			8510-57
5	MPYSKO 5/P	Ø100							2262 ==
	8	cero:	(1253, 1)	1629.4	4825,6	5349.1			3262-62

<u> </u>		W 50	PKO	0	PMC	MY	061		
9	Bec			Kon	UYEC	mb			
0		NO 100	nor.r nyi	U ONA K	PUNOS		KOPOON.	Ha rois	0600
Диаметр	Inor.M	C Kade	DOHONY WEN	C TPONS	REŬNON VEM	אסוני איני בתל	-	nyn Lr=	06
A	Kr	ANUHO M	Bec Kr	Длина		Длина	Bec	Anuna	Bec
		m. 3		7 57	81 - 5	<u> </u>	T	~	K/
12	0,89			71.9	64,0 64,0				
20	<u>247</u> 158	<u>112,1</u> 185,3	276.8 294.4						
25	<u>3.85</u> 2.00	_	-	123,0 164,5	475.2 329,6				
	C.	m. 5	100	7570	81-6	1 4	-11		
10	0,62								
12	0,89	53843	4792.0	5802,2	5164.0				
	0,09	5342,9	4755,2	5783.4	5147.2				
16	1.58			<u>402.5</u> 402,5	<u> 1273,6</u> 1273,6				
22	2.98	1196.8	3566,4	25216	7514,4				
	2,30		3558,4						
32	6,31	<u>398,4</u> 396,6	2513,6 2502,4	<u>398,4</u> 396,6	25136 25024				
Beer	A- <u>T</u>		276,8 294,4		439,2 3936				
	A- <u>I</u> I		<u>10872,0</u> 10815,0		<u>16465,6</u> 16433,6				

- 1. Данные в числителе относятся к путят из балок длиной 12.49 мі в знаменателе-к путям из балок длиной 6.24м.
- 2. Landie & chodkax neubedenti dar kpennenur pented k Janke no bapuanny 2 (cm. nucm 7).
- 3. В объемы на 100 пог. м пути не включены веса металло. UBBENUU U OPMOMYPEI PPUAMKOB NOO BREKMPOKONOHKY и колодцев секционных развединителей, которые CREDYEM YYUMBIBOMB NOU NOUBRIKE NOOCKMO.

Портовые подкрановые пути на жестком основании

Cepua 3.505-9

1971 Rodkpanosbie nymu dna kparos a kadenohom u mponneuhom numanuem. Cneuugoukauun

Щифр 954-A

HIPOPEYTPHHC R. Mockba

lauriero. Canve	Марка	Наименование	8ec	C KOO	Ongra ny		RPOHOB ANDEUHUM	MOIL	nymb		binoboi mb	
13.00	demanu		Lum Kr	Kon.	Oduvu Bee	Kon.	Douvi Bec	Kon.	Odujui Ber		- Odujui Bec	Auem
e V	MA-1	Nodknadka 14×80 FOCT 103-57*; P=2	80 246	320	787.2	WM.	707.3	wm.	NA.	wm.	NP.	_
ž ž	MA-2	Knemma	0.9.7	 		320	787,2		ļ			BY
4 6		Bonm M24×60 FOCT 7798-70	0.32		620,8	640	620.8		 	<u> </u>		Rucm
700		Wausa пружинная 26 ГОСТ 7529-68			204,8	640	2048		ļ	ļ		64
8 8		Pouko M24 POCT 5915-70	0.11	640	70,4	640	70.4		ļ	ļ		54
8 0	7473-7020	Подкладка K5-50; 12×140; E=370	0.11	640	70,4	640	70.4					54
9 6	0470-001-	_	6.45	320	2054,0	320	2064,0		ļ			0 2 2
31 0	-0382	BOAM KARMMHOLÜ M22×75	0.26	640	168,4	640	166.4					18 % 1
\$ 3	N342/417-62		0.59	640	377.6	640	377.6					Sago onex (1) M
Box	ПШ-2:25-6		0.09	640	57.6	640	57.6					15 8 2
	ļ	TOURO MEE FOCT 11532-65	0,15	640	96,0	540	95.0					1370 10 v
Coedune nue sanok		BOAM M25 * 60 FOCT 7798-70	0.32		30.7 61.4	96 192	30.7 61.4					<u> </u>
ovo ovo		Шайба пружинная 26 ГОСТ 7529-6	8 011	384	<u>21.1</u> 42.2	192 384	21.1					54
0 x 20		Touka M24 FOCT 5915-70	0.11	96 192	10.6	98	10.6		l			54
80 .		Haknadka P-50 FOCT 4133-54	18,77		600.6	32	600.6		 		 	54
70000 10000 0000		BOAM M24 150 FOCT 11530-65	059		56.6	96	56.6	ļ	 			54
TOO'S SOUND		Шайба пружинная 26 ГОСТ 7529-6	8 0.11	95	10,5			 -		 		54
કું ફ દ દ		Pauka M24 POCT 11532-65	0.15	96	15.4	96	10.6	 	ļ	ļ		54
	MA-3	KOCHINKO	26,50		13,7	198	15,4		 	ļ		54
	MA-4	Haksadka			 	 	 		 			Juen
ò	MA-5	10x300 COCT 103-52+	7.06	ļ	 			ļ	ļ			27
0	1.73		+									64
20		BOAM M24 × 150 FOCT 11530-65	0,59	 	 							54
•		Wavda ARYKUNNAR 26 FOCT 7529-6			 							54
	 	Pouka M24 POCT 11532-65	0.16	┼──	 		<u> </u>					54
δ.	MA-8	KPONWINEUN	8,19			160	1310,4					Jucm 27
00	MA-7	Угал меровновак 100 63 × 10 гос 18510 - 57 , е. 3 Полос с 10° 200 гос 1 135 - 58 , е. 3 Полос с 10° 200 гос 1 135 - 58 , е. 3 Угал равновак 50° 50° 5 гос 1850 - 57 , е. 3 Угал равновак 50° 50° 5 гос 1850 - 58° , е. 3	15 37.78	-		32	1209,0					54
x0,000	МД-8	100000 BCm3 1001535-58,831	45 48,90	1		32	1564.8					54
* 6	M4-9	9ran. Pathodok 50-50-3100 6363 37 P=	0.26			32	8.3					54
you,	MA-10	Yran pabnosan 50.50.5 1001 8509-57 6-6	80 1.05			32	33.9					
Nov.	MA-11	1700000 8Cm3 1007 535-58, 8-6	00 1.70	-		32	54.4		l			54
K 3	MA-12	\$\fon.po\$no\$an\$\fon\$\fon\$\fon\$\fon\$\fon\$\fon\$\fon\$\fo	50 0.24	_		320	76.8					54
` b .	MA-13	иа секционного развединителя	123,50	;			70.0				ļ	54
070 000 000	MA-14	Mpyda npuamka	10.84									Sucm
	MA-15	KPBWKA MPYSU NPURMKA Uenb OH-V-6; 8=400 FOCT 7070-64	2.35		ļ							28
	L	dan nymeu us	0,24	Ь	2499.2		67550					54
		Beero: Sanok Snunoù 124	900		(3507,2)	1	67568 (7764.8)	l	1	l		

- 1. В объеты на 100 пол т. пути не включены веса тетапло- изделий упоров и приятков для стока воды из калодиев секцион- ных разъединителей, которые следует учитывать при привяз- ке проскта.
- 2. Данные в числителе относятся к путят из болок длиной 1249 т; в знатенотеле-к путят из болок длиной 6,24 т.
- 3. Данные в скобках приведены вля крепления рельса к балке по варианту 2(ст. лист 7)
- 4. Β επεμυφυκαμόνο με βκπονεμό, κρωμκύ καμάπα μυποπροβοδά υ κοποδύα εεκυνομότο ρασδεδύμυ. πεπя (Απόδοπ []).

TK Nopmobble nodkpanobble nymu на жестком основании

GEPUR 3.505-9