МИНИСТЕРСТВО ТРАНСПОРТНОГО СТРОИТЕЛЬСТВА С С С Р

ГОСУДАРСТВЕННЫЙ ВСЕСОЮЗНЫЙ ДОРОЖНЫЙ НАУЧНО - ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ (СОЮЗДОРНИИ)

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ

ПО ТЕХНОЛОГИИ СООРУЖЕНИЯ ЗЕМЛЯНОГО ПОЛОТНА АВТОМОБИЛЬНЫХ ДОРОГ ИЗ ПЕРЕУВЛАЖНЕННЫХ ГРУНТОВ В ЗОНЕ ВЕЧНОЙ МЕРЗЛОТЫ

Министерство транспортного строительства СССР

ГОСУДАРСТВЕННЫЙ ВСЕСОЮЗНЫЙ ДОРОЖНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ (СОЮЗДОРНИИ)

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ

ПО ТЕХНОЛОГИИ СООРУЖЕНИЯ ЗЕМЛЯНОГО ПОЛОТНА АВТОМОБИЛЬНЫХ ДОРОГ ИЗ ПЕРЕУВЛАЖНЕННЫХ ГРУНТОВ В ЗОНЕ ВЕЧНОЙ МЕРЗЛОТЫ

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ТЕХНОЛОГИИ СООРУЖЕНИЯ ЗЕМЛЯНОГО ПОЛОТНА АВТОМОБИЛЬНЫХ ДОРОГ ИЗ ПЕРЕУВЛАЖНЕННЫХ ГРУНТОВ В ЗОНЕ ВЕЧНОЙ МЕРЗЛОТЫ. Союздорнии, М., 1971.

Рекомендованы мероприятия по радиационному (естественному) осущению переувлажненных глинистых грунтов в целях использования их при сооружении земляно –
го полотна автомобильных дорог в зоне вечной мерэло –
ты. Даны основные требования к грунтам для возведе –
ния земляного полотна и допустимые влажности при уп –
лотнении. Указаны границы районов эффективного радиационного осущения переувлажненных грунтов. Изложены
рациональные методы и схемы сооружения земляного полотна с технико-экономическим обоснованием.

Табл.-7, рис.-12.

Предисловие

"Метолические рекомендации по технологии сооружения земляного полотна автомобильных дорог из переув – лажненных грунтов в зоне вечной мерэлоты" составлены на основе научно-исследовательских и опытно-экспериментальных работ, проведенных в 1964—1970гг. Омс – ким филиалом Союздорнии, а также обобщения опыта возведения земляного полотна из переувлажненных грун – тов Бурятским и Якутским управлениями строительства и ремонта автомобильных дорог и Управлением строи – тельства № 19 Главдорстроя СССР.

При составлении рекомендаций использованы материалы исследований Ленинградского филиала Союздорнии, Союздорнии, Иркутского филиала Гипродорнии,СибЦНИИСа, Красноярского Промстройниипроекта, МАДИ и других организаций.

Настоящие "Методические рекомендации" составлены в дополнение и развитие ВСН 166-70 в части техноло - гии сооружения земляного полотна в зоне вечной мерз - лоты из местных глинистых переувлажненных грунтов с применением способа предварительного радиационного их осущения.

В "Методических рекомендациях" дана оценка рассматриваемой территории по условиям применения в дорожном строительстве местных глинистых переувлажненных грунтов, рекомендованы различные мероприятия по осушению грунтов; определены границы районов эффективного радиационного осушения переувлажненных грунтов. "Методические рекомендации" могут быть использованы при проектировании и строительстве автомобильных дорог в центральных и южных районах зоны вечной мерэлоты.

"Методические рекомендации" составили канд.техн.наук А.А.Малышев, инженеры А.С.Плоцкий, Н.А.Голен..о при участии канд.техн.наук Г.Г.Тришина.

Замечания и пожелания по данной работе просьба направлять по адресу: Московская обл., Балашиха -6, Союздорнии или Омск-80, проспект Мира, 3, филиал Союздорнии.

ЗАМ.ДИРЕКТОРА СОЮЗДОРНИИ кандидат технических наук Ю.Л.Мотылев

УСЛОВИЯ ПРИМЕНЕНИЯ ГЛИНИСТЫХ ПЕРЕУВЛАЖНЕННЫХ ГРУНТОВ ПРИ ДОРОЖНОМ СТРОИТЕЛЬСТВЕ В ЗОНЕ ВЕЧНОЙ МЕРЗЛОТЫ

- 1. Технологию и организацию работ по сооружению земляного полотна автомобильных дорог в зоне вечной мерэлоты назначают с учетом вида грунта сезоннооттайвающего слоя и его влажности, интенсивности увлажнения грунтов атмосферными осадками и их просыхания, принятой конструкции земляного полотна, обеспеченности ресурсами и календарных сроков производства работ.
- 2. На территории зоны вечной мерэлоты преимущественно распространены переувлажненные глинистые грунты, естественная влажность которых W_{ℓ} превышает допустимую W_{gon} из условия их уплотнения. Влажность оценивается величиной W_{orh} , представляющей отношение естественной влажности W_{ℓ} к оптимальной пристандартном уплотнении W_{out} .
- 3. Местные глинистые грунты рекомендуется применять на участках 1-го и 2-го типов местности (табл.1).

 Таблина 1

Тип мест- ности	Условия увлажнения	Характерные признаки
1-й - сухие мес- та	ного увлажне-	Каменистые возвышенности, крутые склоны сопок, песчаные и гравийно-галечниковые косы с мощностью сезоннооттаивающего слоя более 2,5 м. Грунты гравийно-галечнико-вые, песчаные а также супесчачые и глинистые непросадочные с ; лажностью W_{OTH} менее 1,4
	Избыточное увлажнение в отдельные периоды го-да.Поверх - ностный сток не обеспечен	Плоские водоразделы, пологие склоны гор и их шлейфы с мощностью сезоннооттаивающего слоя от 1 до 2.5 м. Грунты глинистые и песча ные просадочные с влажностью W_{orm} от 1,4 до 1,8

Требования к грунтам и допустимые нормы влажности

- 4. Для сооружения земляного полотна в зоне вечной мерэлоты допускается применять следующие разновидности глинистых грунтов:
- непылеватые супеси, суглинки, глины (к ром е жирных);
- суглинки легкие пылеватые и супеси пылеватые, если суммарное содержание в них пылеватых и
 глинистых частиц не превышает 50%; при содержании пылеватых и глинистых частиц в количестве 50-60% такие
 грунты могут быть использованы только в:3-м и 4-м дорожно-климатических районах на дорогах с усовершенство ванными облегченными типами покрытий и во всех районах зоны вечной мерэлоты на дорогах с переходны ми покрытиями; при большем содержании пылеватых и
 глинистых частиц из этих грунтов допускается отсыпать
 лишь нижнюю часть насыпи, а верхняя на толщину не
 менее 1м (считая от поверхности покрытия) должна
 быть отсыпана из непылеватых грунтов;
- суглинки тяжелые пылеватые при суммарном содержании в них пылеватых и глинистых частиц не более 60%; при содержании пылеватых и глинистых частиц в количестве 60-70% на дорогах с усовершенст вованными облегченными и переходными типами покрытий.
- 5. Не допускаются для сооружения земляного полотна глинистые грунты с содержанием пылеватых и гли нистых частиц более 70%, а также илы, жирные глины и т.п. (§ 37, BCH 97-63).

6 При возведении земляного полотна используют грунты с влажностью, наиболее оптимальной для уплотне - ния их до заданной плотности.

Наименьший коэффициент уплотнения грунта (отноше-

ние наименьшего требуемого объемного веса скелета грунта к максимальному при стандартном уплотнении) следует назначать в зависимости от дорожно-климати - ческого района, расположения слоя грунта в насыпи по высоте и типа покрытия, согласно табл.4 проекта ВСН (взамен ВСН 84-62).

7. Допустимую влажность (табл.2) определяют в зависимости от вида грунта и требуемой плотности (коэффициента уплотнения).

Таблица 2

Грунт	Допустимая относительная влажность W_{gon} (в долях от оптимальной) при коэф – фициенте уплотнения		
	1-0,98	0,95	0,90
Супесь легкая	1,25	1,35	1,40
Суглинок легкий пылева- тый и супесь пылеватая	1,15	1,30	1,35
Глина, суглинок тяжелый и суглинок тяжелый пы- леватый	1,10	1,20	1,30

- 8. Значения оптимальной влажности для характерных грунтов зоны вечной мерзлоты (табл.3) можно определить через влажность предела гекучести по следую шим зависимостям:
 - супесь легкая W_{ont} =0,70 W_{TeK} ;
 - суглинок легкий пылеватый $W_{\sigma n \tau} = 0.60 W_{\tau e \kappa}$;
 - суглинок тяжелый, глина пылеватая W_{onr} =0,55

Грунт	Опти- маль- ная влаж- ность, %	Максимальный объемный вес ске- лета грунта при стандартном уплот- нении, г/см ³
Супесь легкая	15	1,85
Супесь пылеватая, сугли - нок легкий пылеватый	16	1,75
Суглинок тяжелый пыле-ватый	2 0	1,70
Суглинок тяжелый,глина	24	1,60

РАДИАЦИОННОЕ ОСУШЕНИЕ ПЕРЕУВЛАЖНЕННЫХ ГРУНТОВ И ПРОГНОЗ ВЕЛИЧИНЫ ИХ ПРОСЫХАНИЯ

Мероприятия по радиационному осущению переувлажненных грунтов

- 9. Грунты, имеющие в естественном залегании влажность более допустимой (см.табл.2) должны быть про сушены до начала работ и в процессе возведения земляного полотна. Наименее трудоемок и экономически целесообразен способ рационального (естественного)осущения грунтов.
- 10. Для ускорения процесса радиационного осущения грунтов рекомендуется:
- заблаговременно (не менее чем за год до начала основных земляных работ) удалять лес и мохорастительный покров с полосы резервов, устраивать осуши тельные канавы и обеспечивать водоотвод устройством канав с нагорной и с низовой стороны резервов;

- послойно разрабатывать грунт в резервах мере его просыхания с поверхности;
 - рыхлить грунт перед разработкой.
- 11. Рациональность проведения мероприятий по радиационному осушению переувлажненных грунтов устанавливается исходя из величины ρ , равной разности меж ду годовыми осадками и испарением. По величине этой разности на территории зоны вечной мерэлоты выделе ны три района (рис.1):

Первый район — неэффективного применения радиационного осушения грунта ($\rho > 100$). Вследствие преобла дания осадков над испарением более чем на 100 мм в год осушение грунтов в этом районе до допустимой влажности возможно только искусственным путем.

Второй район — эффективного радиационного осущения переувлажненного грунта с проведением комплекса под-готовительных мероприятий ($\theta < \rho < 100$). Осадки преобладают над испарением менее чем на 100 мм. В пределах района на участках 1-го и 2-го типов местности грунт может быть осущен путем проведения всех мероприятий, перечисленных в $\pi.10$.

Третий район — эффективного радиационного осущения грунта без проведения всего комплекса мероприя — тий (ρ <0). На участках 1-го типа местности возможно использование глинистых грунтов без предваритель — ного осущения. На участках 2-го типа местности грунты можно осущить в процессе возведения земляного полотна.

12. Величину снижения влажности грунтов, после заблаговременного проведения специальных мероприя - тий, следует определять с учетом местных природно - климатических условий для конкретных объектов строи-тельства.

Ориентировочную влажность грунтов в резервах $W_{\sigma T H}$ через год после их расчистки при обеспеченном водоотводе можно определить для любого месяца безморозного периода по следующим зависимостям:

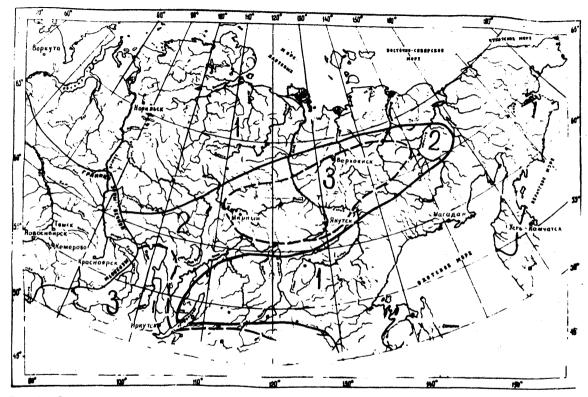


Рис.1. Схематическая карта районов по эффективности радиационного осущения пере-

1-неэффективное применение радиационного осущения грунта (P>100); 2-эффективное радиационное осущение переувлажненного грунта с проведением комплекса мероприятий (0 < P < 100); 3-эффективное радиационное осущение грунта без проведен и и комплекса мероприятий (P<0)

- для суглинков легких

$$W_{q\tau\mu} = 1,52-0,0013 \ t^2 -0,019 \ t$$
; (1)

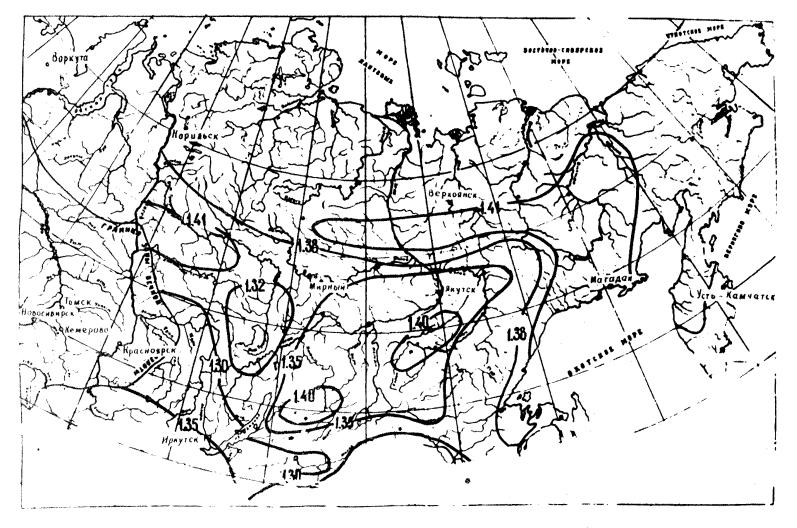
- для суглинков тяжелых

$$W_{ort} = 1,413-0,0014 \ t^2 - 0,0042 \ t$$
; (2)

для глин

$$W_{ary} = 1,48-0,0027 \quad t^2 + 0,0165 \quad t$$
 (3)

где $W_{g_{TH}}$ - средняя по метровому слою относительна я влажность грунта в долях от оптимальной;


t - средняя месячная температура воздуха, ос (определяется по данным метеостанций).

Влажность тяжелых суглинков, рассчитанная по за-висимости (2), представлена на рис. 2.

- 13. Влажность легкого суглинка к началу земляных работ во 2-м и 3-м районах зоны вечной мерэлоты (см. рис.1) незначительно превышает допустимую (на Q_{ont}). Необходимое подсушивание грунта может быть обеспе чено при его послойной разработке в процессе возведения земляного полотна.
- 14. Влажность тяжелого суглинка и глины к началу работ (см.рис.2) во 2-м и 3-м районах зоны вечной мерзлоты превышает допустимые значения на (0,20 -0,30) W_{апт}. Для дополнительного снижения влажности грунта в этих районах необходимо в процессе возведе ния земляного полотна проводить комплекс мероприятий, указанных в п.10.

Влияние атмосферных осадков на влажность грунта в резервах

15. При ведении земляных работ в летний период необходимо учитывать влияние атмосферных осадков на

 \dot{P} ис.2. Схематическая карта средней относительной влажности W_{om} тяжелого суглинка в резервах (в метровом слое) к началу производства земляных работ (май) при заблаговременном (за гсд) снятии мохорастительного покрова

изменение влажности грунта резервов в верхнем (техно - логическом) слое толщиной 0,2м (от влажности в этом слое зависит проходимость механизмов, их производи — тельность, а также возможность уплотнения грунта в насыпи до требуемой плотности).

- 16. С этой целью следует определять два основных показателя увлажнения и просыхания грунта:
- количество атмосферных осадков, увлажняющи х грунт в слое 0,2м до влажности, превышающей допус тимую;
- время, необходимое для просушивания грунта в технологическом слое после дождя.
- 17. Количество атмосферных осадков, увлажняющих грунт выше допустимой влажности, следует принимать: для супесей и суглинков легких не менее 5мм/сутки, а для суглинков тяжелых и глин не менее 8мм/сутки.

Методика расчета календарной продолжительно с т и летнего строительного сезона приведена в приложении.

18. Для ориентировочных подсчетов скорости и вре - мени просыхания слоя грунта (0,2 м) в резервах летом можно пользоваться данными табл.4.

Таблипа 4

Грунт	Влажность грун- та до осушения в долях от оп- тимальной	Средняя ве- личина про- сыхания за сутки, в до - лях от опти- мальной влажности	обходимое на просу — шивание до
Суглинок лег-	1,3-1,5	0,10	1
	1,5-2,0	0,12	2–6
Суглинок тяжелый, глина	1,4 -1 ,8 1,8 - 2,0	0,03 0,09	7-9 9-10

При производстве земляных работ в летний период необходимо обеспечивать своевременную послойную раз-

работку грунта в резервах сразу после его просыхания до допустимой влажности. Своевременное удаление подсохшего слоя способствует быстрому просыханию ниже лежащего грунта.

19. Для ускорения процесса просыхания грунта рекомендуется его послойное рыхление за 1-2 дня до разработки. Этим может быть достигнуто дополнительное осущение грунта на 0,15-0,20 от оптимальной влажности.

Рыхление грунта рекомендуется в районах с вероят - ностью расчетных осадков в безморозный период (п.17) не более 25%. Во избежание переувлажнения грунтов дождями длину сменной захватки на участке рыхления назначают с расчетом, чтобы объем разрыхленного грунта не превышал сменной производительности ведущих землеройно-транспортных машин.

КОНСТРУКЦИИ ЗЕМЛЯНОГО ПОЛОТНА ИЗ ГЛИНИСТЫХ ПЕРЕУВЛАЖНЕННЫХ ГРУНТОВ

- 20. На участках 1-го типа местности при легкоосу шаемых грунтах земляное полотно сооружают на зара нее расчищенной от мохорастительного покрова и осу шенной дорожной полосе (рис.3).
- 21. На участках 2-го типа местности земляное полотно сооружают с сохранением мохорастительного покрова в основании насыпи (рис.4).
- 22. Откосы насыпей устраивают уположенными, с заложением откосов 1:4-1:3 (при высоте насыпей до 2м). Поперечный водоотвод обеспечивают путем устройства канав на расстоянии не менее 5м от внешней бровки резерва, а продольный - планировкой его поверхности.
- 23. Выемки в переувлажненных грунтах устраивают с уположенными (1:4-1:3) откосами с выполнением мероприятий по их осущению (при легкоосущаемых грун тах) или с заменой переувлажненного грунта несцемен-тированным обломочным (рис.5).

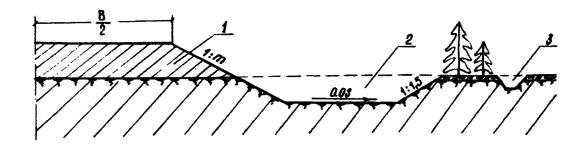


Рис.3. Поперечный профиль насыпи с расчисткой всей дорожной полосы от мохорастительного покрова:

1-местный глинистый грунт; 2-резерв; 3-водоотводная кана - ва, устраиваемая при наличие поперечного уклона местности

Tun-I

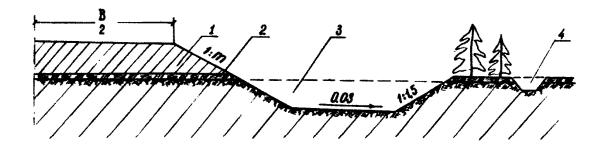


Рис.4. Поперечный профиль насыпи с сохранением мохорастительного покрова в основании:

1-местный глинистый грунт; 2-мохорастительный покров; 3-резерв; 4-водоотводная канава, устраиваемая при наличии поперечного уклона местности

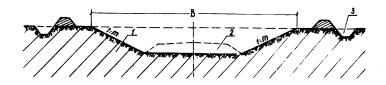


Рис.5. Поперечный профиль выемки в переувлажиенных грунтах:

1-глинистый переувлажненный грунт; 2-насыль из качественного пренирующего материала; 3-водоотводная канава

ОРГАНИЗАЦИЯ И ТЕХНОЛОГИЯ РАБОТ ПО СООРУЖЕНИЮ ЗЕМЛЯНОГО ПОЛОТНА С ЕСТЕСТВЕННЫМ ОСУШЕНИЕМ ПЕРЕУВЛАЖНЕННЫХ ГРУНТОВ

24. При сооружении земляного полотна на участках переувлажненных глинистых грунтов следует исходить из учета климатических грунтово-гидрогеологическ и х условий района строительства и возможности естественного осущения грунта.

С пелью максимально использовать благоприятный для осущения грунтов весенне-летний период необходи - мо:

- комплексно механизировать все работы по сооружению земляного полотна;
 - земляные работы вести в 2-3 смены;
- капитальный и средний ремонт дорожных машин производить в зимний период;
 - работы, на проведение которых не оказыва ют

существенного влияния отрицательные температуры воздуха, выполнять зимой.

- 25. Земляное полотно из местных глинистых переув лажненных грунтов возводят поточным методом. При этом выделяют два специализированных потока:
 - подготовительные работы;
 - основные линейные земляные работы.

Для каждого специализированного потока комплекту — ют отдельный дорожно-строительный отряд, кото рый должен обеспечить выполнение работ в заданные сроки.

- 26. Подготовительные работы должны выполняться за год до начала основных линейных земляных работ с таким расчетом, чтобы иметь время для просушивания грунта в резервах.
- 27. Календарную продолжительность работ по соору жению земляного полотна из переувлажненных грунтов определяют с учетом длительности безморозного перио да, времени оттаивания грунта на 15-20 см, количества дней с атмосферными осадками более 5 и 8 мм/сутки и потребного времени на просушивание грунта после дож дя (см.приложение).

Подготовительные работы

- 28. Подготовительные работы при возведении земляного полотна с проведением радиационного осущения переувлажненных грунтов включают: валку и трелев ку леса, удаление кустарника, устройство осущительных и водоотводных канав, удаление мохорастительного покрова и снега на дорожной полосе и в карьерах.
- 29. Сроки выполнения подготовительных работ назначают в зависимости от влажности грунта сезоннооттаивающего слоя. На сухих участках (1-й тип местности) при влажности грунтов менее 1,4 $W_{\it ONT}$ подготовительные работы могут выполняться в год производства основ ных работ.

17

На сырых участках (2-й тип местности) при влаж - ности грунта (1,4-1,8) W_{ont} подготовительные работы выполняют за год до начала основных работ.

- 30. При возведении насыпей без сохранения мохорастительного покрова в основании (см.рис.3) расчистку дорожной полосы выполняют на всю ширину. Валку леса, трелевку и удаление порубочных остатков ведут круглосодично. Мохорастительный покров удаляют со всей дорожной полосы весной, по мере его оттаивания.
- 31. Валы перемещенного за пределы резервов мохо растительного покрова необходимо разравнивать одновременно с планировкой резервов.

Снежные отложения с дорожной полосы на участках сооружения земляного полотна из переувлажненных глинистых грунтов необходимо удалять до начала их таяния.

- 32. При возведении насыпей из местных грунтов с сохранением мохорастительного покрова в основании (см. рис.4) валку леса, трелевку, а также расчистку просе ки от порубочных остатков выполняют в зимний период. Просеку устраивают на ширину всей дорожной полосы. Мохорастительный покров удаляют только с полосы резервов; разработку его ведут весной, по мере оттаивания.
- 33. Разработку и перемещение мохорастительного покрова из резервов шириной до 20м рекомендуется выполнять бульдозерами продольно-поперечными ходами. Если используются бульдозеры с неповоротным отвалом, то удаление мохорастительного покрова ведут по схеме рис.6, а. Для сохранения мохорастительного покрова в основании насыпи первые проходы бульдозера выполняют вдоль нижней бровки откоса с созданием промежуточных валиков. В дальнейшем мохорастительный покров срезают полосами при движении бульдозера под углом к оси дороги (без заезда на основание насыпи) и перемещают за пределы резервов.
 - 34. При применении универсального бульдозера рабо-

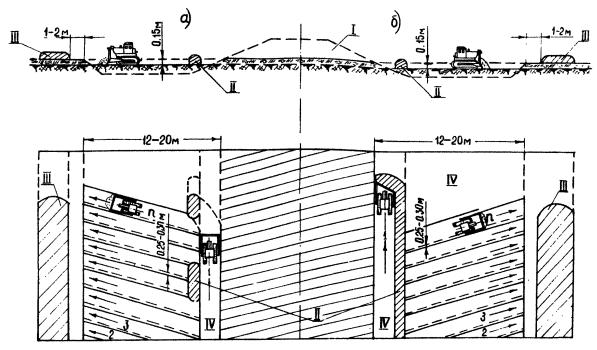


Рис. в. Схема удаления мохорастительного покрова с поверхности резервов при сохранении насыпи:

а- с укладкой промежуточных валиков бульдозером с неповоротным отвалом; б-с устройством сплошного промежуточного вала универсальным бульдозером; 1- насыпь ; II-промежуточные валы мохорастительного покрова после продольного прохода бульдозера; III-мохорастительный покров, уложенный в валы по обе стороны резервов ; 1У-грунт резервов 1- // -последовательность работы бульдозеров ту рекомендуется выполнять по схеме рис.8,6; первый продольный проход производится у кромки основания насыпи универсальным бульдозером с отвалом, установленным под углом к оси дороги. Мохорастительный покров срезают по всей длине захватки, в результате чего образуется сплошной промежуточный валик. На остальной части резерва расчистку ведут поперечными проходами бульдозера.

При устройстве выемок в переувлажненных грунтах все подготовительные работы рекомендуется выполнять заблаговременно, согласно требованиям пп.29,30.

- 35. Нагорные и водоотводные канавы устраивают в весенний период, по мере оттаивания грунта, одновре менно с расчисткой резервов или зимой взрывным спо собом (до расчистки резервов). Возможно устройст в о канав осенью после промерзания грунта на глубину 13-15 см, допускающую проход тягачей с канавокопателем. В этом случае канавы устраивают до расчистки просе-ки, т.е. за 1,5 года до начала основных земляных работ, а после расчистки резервов канавы обязательно восстанавливают.
- 36. Перед началом основных земляных работ необходимо обследовать район проложения трассы для выяв ления дополнительных карьеров грунтов, а также уточ нения условий и технологических особенностей произ водства работ. При обследовании должны быть выполнены следующие работы:
- определены места укладки снега, убираемого с полосы резервов и карьеров;
 - выявлено состояние водоотводных канав;
 - определена влажность грунтов в резервах.
- 37. По материалам обследования уточняют проект производства работ, в котором корректируются:
 - сроки очистки резервов от снега;
- объемы работ по восстановлению водоотводных канав;

- способы и сроки разработки резервов на различных участках, устанавливаемые в зависимости от влажности грунтов;
 - сроки доставки машин к месту работ.

Основные работы по сооружению земляного полотна

38. При сооружении земляного полотна из местных глинистых грунтов расстановку дорожных машин по фронту работ, а также назначение способов и сроков разра - ботки грунтов осуществляют с учетом природно-клима - тических условий района строительства, влажности грунтов и наличного парка машин.

Переувлажненные грунты в резервах рекомендуется разрабатывать бульдозером после оттаивания слоя на глубину 15-20 см; машины должны иметь хорошую проходимость, обеспечивающую послойную разработку грунта. В процессе работ необходимо проводить контрольные измерения влажности грунта в резервах перед его разработкой, а затем в насыпи после разравнивания. Влажность и плотность грунта определяют в соответствии с требованиями ВСН 55-69.

- 39. При влажности грунтов в резервах в пределах (1,15-1,20) $W_{\it ONT}$ допускают глубокое оттаивание грунта. Разработку его ведут слоями 15-20 см (по мере просы-хания с поверхности) поперечными проходами бульдозера. Устройство глубоких траншей не допускается.
- 40. Порядок укладки грунта в насыпь устанавлива ют в зависимости от дальности его перемещения и поперечного уклона местности.

При дальности перемещения грунта до 20м и отсут - ствии мохорастительного покрова в основании применя - ют схему укладки грунта слоями на всю ширину насыпи из каждого резерва.

При дальности перемещения более 20м рекомендуется использовать схему укладки грунта от оси дороги к бровке.

На косогорных участках (не круче 1:10) рекомендуется применять схему комбинированной укладки грунта в насыпь (рис.7).

41. При влажности грунта в пределах от 1,2 W_{ont} до W_{gon} ведется послойная разработка по мере оттаивания на 15-20 см. Разработку резервов выполняют по схеме рис.8. Для сохранения мохорастительного покрова в основании насыпи первый слой отсыпают от бровки к оси с передвижением бульдозера только по ранее отсыпан - ному грунту.

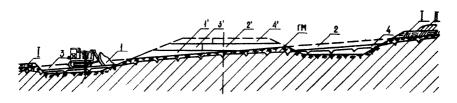


Рис.7. Схема возведения земляного полотна бульдозером на косогорных участках с разработкой грунта по мере просы - хания:

1-можорастительный покров за полосой резервов; II-можорастительный покров, уложенный в валы; 1,2,3,4-последовательность разработки грунта в резерве; 1,2,3,4,-последова - тельность укладки грунта в насыпь; ГМ-горизонт мерэлоты

42. Длину фронта работ бульдозера при двусторонних резервах определяют по формуле

$$\mathcal{Z} = \frac{7}{2 \beta_{p} h_{z}} \left(\frac{h_{z}}{V_{z}} + 1 \right) , \qquad (4)$$

где \mathcal{Z} - длина фронта работ бульдозера, м; Π - производительность бульдозера, м³/сутки (по

 $\mathcal{B}_{\mathcal{D}}$ - ширина резерва, м;

- $h_{\it c}$ толщина слоя талого грунта,м (для бульдозера $h_{\it p}$ =0,15÷0,20);
- У скорость оттаивания грунта в резерве в слое 15-20 см, м/сутки (устанавливают по дан ным непосредственных полевых наблюдений или принимают ориентировочно по табл.5).

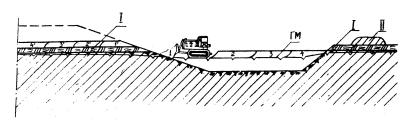


Рис. 8. Схема возведения земляного полотна с послойной разработкой грунта по мере оттаивания:

1-мохорастительный покров в основании насыпи и за полосой резервов; II-мохорастительный покров, уложенный в валы; 1,2,3,4-последовательность разработки грунта в резерве; 1', 2', 3', 4' последовательность укладки грунта в насыпь

- 43. При возведении насыпи из переувлажненного грунта необходимо соблюдать следующие требования:
- начинать разработку резервов с низовой стороны для обеспечения стока дождевых вод:
- разравнивать грунт ежедневно после перемещения его в насыпь с приданием грунтовой поверхности уклона 3-5% от оси к бровкам;
- планировать дно и откосы резервов, а также разравнивать валы можорастительного покрова сразу же после окончания земляных работ.
- 44. Выемки в переувлажненных грунтах рекомендуется разрабатывать после проведения комплекса мероприятий по осущению грунтов согласно п.10.

Разработку выемок бульдозерами осуществляют послойно по мере оттаивания слоя на глубину 15-20 см с

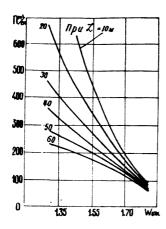


Рис.9. Произволительность бульдозеров типа Д-494, П-271 при разработке грунтов III группы различной влажности. Цифры на кри вых — дельность пере мещения грунта , км

перемещением грунта в ка - вальеры или для погрузки в транспортные средства. По-требное количество бульдозеров для послойной разработки грунта N определяют исходя из производительности мания N, скорости оттаква ния грунта N и площади выемки N по формуле

$$\mathcal{N} = \frac{\sqrt{S'V_2}}{N} \quad . \tag{5}$$

Выемки рекомендует с я разрабатывать с низовой стороны для обеспечения стока дождевых и талых вод.

С целью ускорить оттаи - вание грунта слои в выемк е следует снимать с уклоном преимущественно на южную экспозицию.

45. При глубине выемок до 2 м разработку их бульдозерами рекомендуется вести по поперечной схеме.

При глубине выемок более 2м рекомендуется применять продольно-участковую схему послойной разработки грунта (рис.10). Целесообразно применять комбинированную разработку выемок с использованием обеих схем. На глубину до 2м разрабатывать выемку по поперечной схеме, а на большую глубину — по схеме рис.10.

46. При глубоких выемках и дальности перемещения грунта до 60 м разработку его и перемещение в кавальер рекомендуется выполнять одним звеном бульдозеров;

при дальности перемещения грунта более 60м разработку и транспортирование осуществляют двумя звеньями . При этом первое звено разрабатывает грунт в выемке в промежуточный валик, а второе — перемещает грунт в кавальер по сжеме рис.10.

- 47. В процессе возведения земляного полотна грунт рекомендуется уплотнять катками на пневматических шинах. Перед уплотнением грунт должен быть распределен слоем равномерной толщины. При уплотнении необходи мо применять два типа катков:
 - легкие (до 10т) для подкатки;
- тяжелые (25-50т) для окончательного уплот нения.

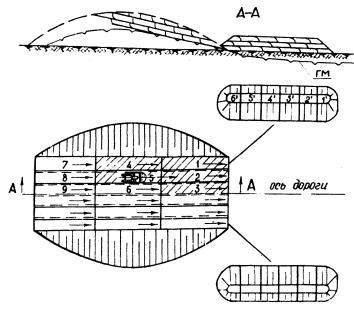


Рис.10. Схема послойной продольной разработки выемки при глубине более 2м и дальности перемещения до 60 м: 1-9- последовательность разработки грунта; 1'-6'- последовательность укладки грунта в кавальер

Количество проходов для уплотнения грунта зависит от влажности грунта и определяется пробным уплотнением.

Таблица 5

Район 1 до- рожно-кли-	Грунт	Скорость оттаивания, см/сутки		
матической зоны		май	июнь	
2	Супесь	4,0-5,0 3,0-4,0 2,5-3,5	7,0-8,0 8,0-6,0 4,0-5,0	
3, 4	Супесь	4,5-5,5 3,5-4,5 3,0-4,0	8,0-9,0 5,5-7,0 5,0-6,0	

- 48. Уплотнение откосов насыпей с крутизной 1:4 и положе рекомендуется выполнять легкими катками (весом до 10т) с перемещением их по круговой схеме перпендикулярно оси насыпи. Откосы с крутизной 1:4-1:3 уплотняют бульдозерами в процессе возведения насыпей.
- 49. При уплотнении грунта в насыпи с сохранением в основании мохорастительного покрова толщину перво го слоя необходимо назначать с учетом мощности и несущей способности талой прослойки в основании (рис.11).

Прочность грунта основания определяют штамповыми испытаниями. Ориентировочные значения модуля дефор - мации грунта основания (естественной плотности) в зависимости от его влажности можно принимать по табл.6.

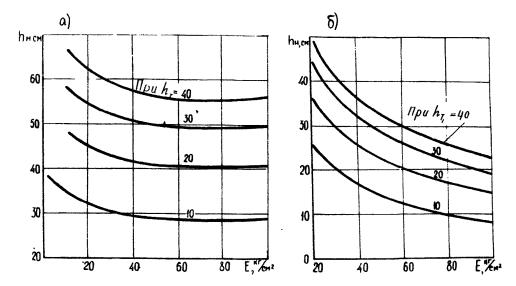


Рис.11. Определение толщины первого слоя насыпи в зависи — мости от прочности основания и мощности талой прослойки: а— при уплотнении катком Π -283 (25т); б— при уплотнении катком Π -219 (10т)

Таблица 6

Грунт	Модули деформации грунта,кГ/см2, при его относительной влажности				
	1	1,1	1,2	1,3	1,4
Супесь легкая Песок пылеватый,	120	100	75	70	60
супесь тяжелая,су- глинок легкий	100	80	60	50	40
Тяжелый суглинок, глина	90	70	50	40	30

Приложение

МЕТОДИКА ОПРЕДЕЛЕНИЯ КАЛЕНДАРНОЙ ПРОДОЛЖИТЕЛЬНОСТИ СЕЗОНА ВОЗВЕДЕНИЯ ЗЕМЛЯНОГО ПОЛОТНА ИЗ ПЕРЕ УВЛАЖНЕННЫХ ГРУНТОВ В ЗОНЕ ВЕЧНОЙ МЕРЗЛОТЫ

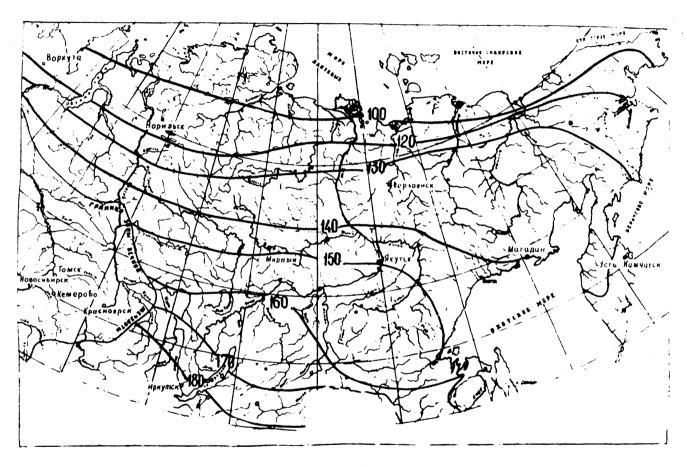
Календарную продолжительность сезона возведения земляного полотна из переувлажненных грунтов определяют с учетом длительности безморозного периода, скорости оттаивания грунта, времени его просыхания и количества дождливых дней за безморозный период.

Расчет выполняют по формуле:

$$T_{\rho} = \left[T_{\delta} - \left(T_{z\rho} + T_{n}\right) - T_{\delta} \cdot \mathcal{A}\left(1 + T_{n\rho}\right)\right] \mathcal{K}_{c} ,$$

где $T_{
ho}$ - расчетное количество рабочих смен в летнем строительном сезоне;

 T_{δ} - длительность безморозного периода, сутки (определяют по карте приложения);


7— время, необходимое для оттаивания грунта на 15-20 см, определяемое по табл.5 п.43 настоящих "Методических рекомендаций";

 T_n - количество праздничных и выходных дней за безморозный период;

 вероятность осадков, определяемая по таблице приложения;

Т_{пр} - количество времени, необходимого для про - сушивания грунти после дождя, определя ют по табл.4 п.18 настоящих "Методическ и х рекомендаций";

 $\mathcal{K}_{\mathcal{C}}$ - коэффициент сменности работы дорожных машин.

Схематическая карта длительности безморозного периода, сутки

Пример определения календарной продолжительности сезона по возведению земляного полотна из переув - лажненных грунтов.

Исходные данные:

Район строительства (дорога) - Романевка - Бог - дарин ;

Грунт для земляного полотна - суглинок легкий Коэффициент сменности работы машин $\mathcal{H}_{C}=2$

- 1. По карте приложения устанавливаем 7 (170 суток).
- 2. По табл,5 настоящих "Методических рекомендаций" для третьего района, в котором находится объект строительства, определяем скорость оттаивания суглинка легкого (4 см/сутки), а затем время оттаивания грунта на глубину 20 см:

$$T_{ep} = \frac{20}{4.0} = 5 \text{ cytok}.$$

- 4. По табл.4 настоящих "Методических рекомендаций" устанавливаем количество дней, необходимых для про-сушивания грунта после одного дождя более $5\,\mathrm{mm/cytku}$ при влажности, равной $1.5\,\mathrm{W}_{ORT}$ (T_{np} =2 суток).
- 5. Определяем количество выходных и празднич н ы х дней за безморозный период (май-сентябрь): $T_n = 25$ дней.
- 6. По формуле приложения определяем календарную продолжительность сезона:

$$T_{\rho} = \left[170 - (5+25) - 170 \cdot 0, 12(1+2)\right] \cdot 2 = 160$$
 смен.

Вероятность атмосферных осадков α' за безморозный периол

Метеорологические станции	Вероятность осадков, мм лях длителы розного пері	/сутки, в до- ности безмо-
	5	8
Якутск	0,08	0,021
Вилюйск	0,064	0,023
Алдан	0,16	0,078
Чурапча	0,067	0,023
Ленск	0,086	0,03
Витим	0,10	0,041
Иркутск	0,12	0,06
Братск	0,096	0,038
Киренск	0,10	0,036
Слюдянка	0,16	0,078
Богдарин	0,12	0,06
Романовка	0,11	0,055
Улан-Удэ	0,08	0,04
Мухор-Шибирь	0,10	0,052
Кяжта	0,06	0,03
Букукун	0,137	0,08
Красный Чикой	0,11	0,056
Чита	0,127	0,082
Сретенск	0,11	0,065
Игарка	0,10	0,037
Северо-Енисейск	0,14	0,05
Богучаны	0,10	0,038
Кызыл	0,07	0,023
Ачинское	0,12	0,05

Содержание

	Стр.
Предисловие	3
Условия применения глинистых переувлажнен- ных грунтов при дорожном строительстве в зоне вечной мерзлоты	5
Радиационное осушение переувлажненных грунтов и прогноз величины их просыхания	8
Конструкции земляного полотна из глинистых переувлажненных грунтов	14
Организация и технология работ по сооруже - нию земляного полотна с естественным осушением переувлажненных грунтов	16
Приложение. Методика определения календарной продолжительности сезона возведения земляного полотна из переувлажненных грунтов в зоне вечной мерзлоты	28

Редактор О.А.Ильина Корректор Р.М.Шпигель Технический редактор Л.А.Буланова

Подписано к печат	и 30.1X-71г.	Формат 60х84/16
Л 117591		Заказ 110
		Объем 1,82 л.
Цена 15	коп.	Тираж 600