ТИПОВОЙ ПРОЕКТ 903-2-23.85

Установка мазутоснабжения Q = 16/80 м3/ч с резервуарами 2x5000 м3

AJIBEOM O

пояснительная записка

TMIOBOM HPOEKT 903-2-23.85

Установка мазутоснающения Q = 16/80 м3/ч с резервуарами 2x5000 м3

альбом о

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Разработан
проектным институтом
"Латгипропром"

Утвержден и введен в действии институтом "Латипропром" Приказ N 155 от 14 июня 1985 г.

ЦЕНТРАЛЬНЫЙ ИНСТИТУТ ТИПОВОГО ПРОЕКТИРОВАНИЯ ТОССТРОЯ СССР

Sakas 15 31/2 Tepax 5 DO aks. Heha 1-03 line 15 303-2-23 Chaho b negets 11/20 362

903-2-23.85 Ал. О И

		·MI:	

Раздел, подраз- дел	Фамилия, книциали	Должность	Подпись
	Попов П.Я.	Начальник отдела	Touch
	Дрейя И.А.	Главный теплотехник ТМ отдела	Touch Dry
	Казакова Н.Г.	Руководитель группы ТМ отдела	,
	Суховнин С.А.	Начальник отдела перспективного планирования	Cysobus
	Гуляева Э.Г.	Главный специалист отделя перспективно го проектирования	- Flytcher,
	Солоджин С.П.	Главный специалист отдела перспективно го проектирования	- caloury
	Сиркис Т.М.	Руководитель группы отдела перспективно го проектирования	
	Новожилова Т.Д.	Начальник строители ного отдела Ж I	- T. Holomf
	Гейер Э.А.	Главный архитектор строительного отдел ж I	na Temp
	Андриевская Т.И.	Главный конструктор строительного отдел ж I	
	Шульгина М.М.	Руководитель группі строительного отде: В І	ia Mylbury
	Терехов Н.С.	Начальник электрото нического отдела	ex- muyuy
	Викманис Я.Я.	Главный электрик электротехнического отдела	Meyeny Fleetening

Раздел, подраз- дел	Фамилия , ини	шкалы	Должность	Подпись
	Кириллова	н.н.	Руководитель группы электротехнического отдела	Kup
	Мейман	э.Е.	Начальник отдела КИП и А	Menny
	Пантелеева	A.B.	Главный специалист отдела КИП и А	Hantry
	Дружинина	B.r.	Руководитель группы отдела КИП и А	Hankung.
	Поливанов	C.M.	Начальник отдела отопления и вентиля им	
	Mexcapr	3.K.	Главный специалист отдела отопления и вентиляции	Lleijaj
	Kpeepc	г.в.	Руководитель группы отдела отопления и вентиляции	Grecy
	Ганьге	л.к.	Начольник отдела водоснабжения и канализации	LJayya
	Моргуль	л.г.	Руководитель группы отдела отопления и вентилиции	Mopeny
	Уличев	E.H.	Начальник отдела тепловых сетей	Lewy
	Ширако	3.3.	Главный специалист отдела тепловых сетей	Snay
	Полякова	B.B.	Руководитель группы отдела теплових сетей	Stay Browny
	Шапиро	ы.Б.	Главный сметчик отдела	fis

СОЛЕРЖАНИЕ АЛЬБОМА

Лист		Наименование	Примечание
	ı.	Общие сведения	6
	I.I.	Исходные данные для проекти- рования	б
	I.2.	Область применения	Б
	I.3. o	Краткая жарактеристика бъекта	6
	I.4.	Проектная мощность	7
	I.5.	Состав основных сооружений комплекса	7
	I.6.	Соблюдение действующих норм	8
	I.7.	Прогрессивность и экономич- ность основных проектных решений	8
	I.8.	Срок действия	8
	2.	Основные технико-экономиче-	8
	3.	Технические решения	13
	3.I.	Технологический процесс	<i>1</i> 3
	3.2.	Инженерное обеспечение	18
	3.2.I.	Теплоснаожение	18
	3.2.2.	Элект росна бжение	18
	3.2.3.	Водоснаожение	20
	3.2.4.	Канализация	20
	3.2.5.	Пожа ротушение	21
	3.2.6.	Отопление и вентиляция	26
	3.2.7.	Автоматизация	27
	3.3.	Указания по привязке техноло-	32

Лист		Наименование	Примечание
	4.	Архитекту рно-строительные решения	33
	4.I.	Условия строительства	<i>3</i> 3
4.2.		Мазутонасосная	<i>3</i> 3
4.3.		Сооружения слива и приема мазута и жилких присадок	35
4.4.		Камеры управления для же- лезобетонных резервуаров	36
4.5.		Камери управления для ме- таллических резервуаров	36
4.6.		Антикоррозионная защита	36
	4.7.	Перечень ответственных кон- струкций и работ, подлежа- щих промежуточной приемке в процессе строительства	37
	5.	Генеральный план	37
	6.	Мероприятия по охране окру- жающей природной среды	41
	7.	Мероприятия по экономии ресурсов	41
	8.	Охрана труда и техника бэ- зопасности	42
	9.	Показатели изменения смет- ной стоимости строительно- монтажных работ, затрат труда и расхода основных строительных материалов	42

903-2-23.85 Ал. О

I. OBUME CREMEHIMA

І.І. Исходные данные для проектирования

Типовой проект "Установка мазутоснабжения Q =16/80 м3/ч с резервуарами 2x5000 м3" разработан согласно плану типового проектирования Госстроя СССР на 1985 год (пункт 8.3.2.1), на основании
письма-поручения Главстройпроекта (б.Главпромстройпроекта) Госстроя СССР от 27.08.81 % 19/5-3048, в соответствии с протоколом
% 26 совещания в Главстройпроекте Госстроя СССР от 17.06.80 по
рассмотрению технического проекта "Серии типовых проектов установок мазутоснабжения с подземными железобетонными резервуарами".

І.2. Область применения

Типовой проект "Установка мазутоснабжения" предназначен для обеспечения мазутом топочным марки 100 по ГОСТ 10585-75 ко-тельных с паровыми и водогрейными котлами.

І.З. Краткая характеристика объекта

Комплекс сооружений установки мазутоснабжения обеспечивает прием, слив и кранение мазута и жидкой присадки, обработку мазута жидкой присадкой ВНИИНП-IO6, подготовку к скиганию и подачу в котельную к паровни и водогрейным котлам.

Предусмотрени варианти строительства здания мазутонасосной (кирпичное или каркасно-панельное) и резервуаров для хранения иззута (сборние железобетонние или стальние). Вибор соответствующего варианта определяется условиями привязки типового проекта.

20950-01

903-2-23.85 Ал. О

І.4. Проектная мощность

Емкость хранения мазута 2х5000 м3.

Емкость хранения присадки 3х25 м3.

Производительность мазутонасосной, давление и температура мазута, подаваемого в котельную, составляют соответственно:

- для паровых котлов I6 м3/ч; 2,45 МПа (25 кгс/см2); I20°C;
- для водогрейных котлов 80 м3/ч; 0,98 MIa (IO кгс/см2); 90°С.

І.5. Состав основных сооружений комплекса

- I.5.I. Железнодорожная эстакада для одновременного приема и слива двенадцати 50+ 60-тонных вагонов-цистерн с мазутом.
 - 1.5.2. Приемная емкость объемом 750м3.
- I.5.3. Три подземных металлических резервуара для хранения жидких присадок емкостью по 25 м3.
- I.5.4. Здание мазутонасосной с размерами в плане 36хI8 м и высотой до затяжки балок 4.2 м.
- І.5.5. Два резервуара для хранения мазута емкостью по 5000 м3, с камерами управления задвижками.
- 1.5.6. Два резервуара воды емкостью по 500 м3 для нужд по каротушения в случае применения стальных резервуаров для хранения мазута, емкостью по 150 м3-в случае применения железобетонных резервуаров для хранения мазута.
- I.5.7. Очистные сооружения для очистки замазученных сточных вод.

903-2-23.85 Ал. О

I.6. Соблюдение действующих норм

Проект разработан в соответствии с действующими нормами и правилами, инструкциями и ГОСТами, в том числе нормами по взрывной и взрывопожарной безопасности. О также пожорной безопасности.

1.7. Прогрессивность и экономичность основных проектных решений

Рациональные объемно-планировочные решения обеспечили уменьшение физических объемов работ и экономию материалов (см.п.9):

- применение здания мазутонасосной павильонного типа для размещения основного технологического оборудования позволило со-кратить номенклатуру сборных железобетонных элементов каркаса;
- установка вспомогательного оборудования в укрупненном блочном исполнении обеспечивает применение прогрессивных индустрияльных методов производства строительно-монтажных работ, сокращение продолжительности строительства и экономию полезной плошали.

І.8. Срок дейстрия

Срок-действия типового проекта установлен до 1990 г.

г. ОСНОВНЫЕ ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ КОМПЛЕКСА

Основние показатели рассчитани для условий расчетной температури наружного воздуха -30°С для вариантов с металлическими и железобетонными резервуарами мазута, здание мазутонасосной - каркасно-панельное. В качестве проекта-аналога принят действующий типовой проект 903-2-16 с резервуарами мазута 2х5000 м3, приведенный к сопоставимости.

Утвержденные в техническом проекте показатели приведены к сопоставимости с учетом новых цен, введенных в действие с OI.OI.84 г.

Результаты сопоставления основных показателей с показателями проекта-аналога и утвержденными в техническом проекте сведени в таблицу.

ТАБЛИЦА ОСНОВНЫХ ТЕМНИКО-ЭКОНОМИЧЕСКИХ ПОКАЗАТЕЛЕЙ

Поз.	Наименование	Едини- ца из- мере- ния	Разработан- ний ТП 903- -2-23.85) (вариант с металличе- скими ре- зервуарами)	Проект-ана- лот ТП 903- -2-16,приве- денний к со- постанимости (вариант с металлически- ми резервуара- ми)		Проект-ана- лог ТП 903- -2-16, приве- денный к со- поставимости (вариант с железобетон- ным резер- нуарами)	Утверж- денные показа- тели, приве- денные к сопо- ставимо- сти
I	Вместимость	T	10000	10000	10000	10000	10000
2	Численность ра- ботающих (все рабочие)		9	9	9	9	9
3	Строительний объем	мЗ	17316,50	17964,3	21227,90	22347,7	22947
4	Сметная стои- мость общая	тнс.руб.	807,47	809,17	1027,69	1034,60	1228,4
4.I	Строительно-мон- тажных работ	³³	723,90	725,12	944 , 5I	950,80	II67 , 7
4.2	Сметная стоимость общая на расчет- ную единицу	pyd.	2-49	2-50	3-17	3–19	3–79

Продолжение таблицы

IIos.	Наименование	Едини- ца из- мере- ния	Разработан- ний ТП 903- -2-23.85) (варйант с металличе- скими ре- зервуарами)	Проект-ана- лог ТП 903- -2-16, при- веденный к сопостави- мости (ва- риант с ме- талически- ми резерву- арами)	Разработан- ный ТП 903- -2-23.65) (вариант с железобетон- ными резер- вуарами)	Проект-ана- лог ТП 903- -2-16, при- веденный к сопостави- мости (ва- риант с же- лезобетон- ными резер- вуарами)	Утверж- денные показа- тели, приве- денные к сопо- ставимо- сти
5	Себестоимость расчетной едини-		T. 0T	T. 07	7.00		
	ін продукции	pyo.	I-2I	I-SI	I-23	I-23	I-27
6	Производитель- ность труда	т/чел.	35,99	35,99	35,99	35,99	35,99
7	Расход основных энергоресурсов из гасчетную единицу:						
7.I	Тепла	Гкал/т	0,08	0,08	0,08	0,08	0,08
7.2	Электроэнергии	кВт-ч	I -3 0	I - 30	I - 30	I-30	1-30
8	Расход воды	<u>м3</u> сутки	I,6	1,6	I,6	I,6	I , 6

-11

Продолжение таблицы

								33
nos.	Наименование	Едини- ца из- мере- ния	Разработан- ный ТП 903- -2-23.85) (вариант с металличе- скими ре- зервуа гами)	Проект-ана- лог ТП 903- -2-16, при- веденный к сопостави- мости (ва- риант с ме- таллически- ми резерву- арами)	Разработан- ний ТП 903- -2- 23.85) свермант с железобетон- ными резер- вуарами)	Проект-ана- лог ТП 903- -2-16, при- веденный к сопостави- мости (ва- риант с же- лезобетон- ными резер- вуарами)	Утверж- денные показа- тели, приведен- ные к со- постави- мости	01
9	Трудозатрать построечные:							
9.1	На расчетную единиц у	T T	0,045	0,015	0,055	0,055	-	-76
9.2	на I млн. руб- лей строитель- но-монтажных работ	чел/дн. млн.руб.	^{2L} 6	20362,2	18906,I	19029,0	-	

20950-01 903-2 **23.85** Ал. 0

3. TEXHITECKUE PEWEHUR

- 3.1. Технологический процесс
- 3.І.І. Прием и слив мазута

Вагони-цистерны с прибывшим мазутом устанавливаются на железнодорожную эстакаду. Перед сливом мазут разогревается открытым способом насыщенным паром с давлением I,37 МПа (I4 кгс/см2) при помощи специальных перфорированных разогревательных устройств, опускаемых в цистерны. Из железнодорожных цистерн разогретий мазут сливается в межрельсовий лоток (уклон i = 0.015) и далее самотеком поступает по каналу через гидрозатвор в приемную емкость и при температуре $\sim 50^{\circ}$ С перекачивается в резервуары хранения. Для этого сливной лоток и приемная емкость оборудовани парсвой подогревательной трубной системой, обеспечивающей поддержание необходимой температуры мазута.

Расчетное время слива мазута, составляющее 8 часов в холодное время года с 15 октября пс 15 апреля к 2 часа в остальное время года, определено согласно "Правилам перевозки грузов" (Москва, 1975г.), изданным в соответствии с Уставом железных дорог СССР.

3.1.2. Заполнение резервуаров хранения мазута

Из приемной емкости мазут перекачивается в резервуары хранения двумя насосами типа ICHI—6xI. Карактеристика насосов: производительность 90 л/с (324 м3/ч), напор 0,33 kПа (3,4 кгс/см2). В зависимости от вязкости мазута в работу могут сыть вилючены оден или оба насоса. 20950-01 903-2-23.85 Ал. 0

3.1.3. Введение в мазут жидкой присадки

Мазут, перекачиваемый из приемной емкости в резервуары хранения, одновременно обрабатывается жидкой присадкой марки ВНИИНП-IO6, подаваемой на всас перекачивающих насосов насосамидозаторами типа НД2,5-IOOO/IOД-I4A, электрически с ними сблокированными.

Дозировка составляет 2 кг присадки на тонну перекачиваемого мазута.

3.1.4. Слив и хранение жидкой присадки

Жидкие присадки прибивают в железнодорожных цистернах и сливаются самотеком через сливное устройство цистерны и сетчатий фильтр в подземные резервуары хранения. Для слива присадок в холодное время года, а также для поддержания температуры присадок в резервуарах хранения в пределах 20+ 50°С предусмотрен их рециркуляционный разогрев по контуру: железнодорожная цистерна— подогреватель — железнодорожная цистерна или резервуары хранения — подогреватель — резервуары хранения. Блок разогревательного устройства состоит из пароводяного теплообменника типа ПП2-6-2-П и насоса типа Ш40-8-18/4-2, установленных в мазутонасосной. Теплоноситель — насыщенный пар.

Предусмотрена сигнализация о повышении температуры присадки в резервуарах кранения выше 50°С.

3.1.5. Хранение мазута и подача его в котельную

Мазут, обработанный присадкой, хранится в двух резервуарах емкостью по 5000 м3. 20950-0/ 903-2-23.85 Ал.0

Средняя температура хранения мазута в резервуарах принята равной 75°C. Для разогрева и перемешивания мазута в резервуарах предусмотрен контур рециркуляции, состоящий из кольцевого трубопровода рециркуляции с насадками, расположенного в резервуарах, двух рециркуляционных насосов типа 5НКЭ-9хІ производительностью 21,7 л/с (78 м3/ч), расположенных в мазутонасосной, и двух подогревателей типа ПМР-I3-60, установленных на открытой площадке.

Насадки на кольцевом трубопроводе, расположенные в резервуарах, позволяют интенсифицировать процесс перемешивания мазута. Схемой предусмотрена возможность "холодной" рециркуляции мазута и перемешивания его без подогрева.

Подача мазута в котельную осуществляется:

- к паровым котлам двумя насосами типа 3BI6/25-25Б производительностью 2,2 л/с (8 м3/ч);
- к водогрейным котлам двумя насосами типа 4H5x2 производительностью II,I л/с (40 м3/ч).

Насосы расположены в мазутонасосной.

Требуемое давление нагнетания (см.п.І.4) поддерживается регуляторами, установленными на мазутопроводах к паровым и водогрейным котлам.

Подогрев мазута до требуемой температуры (см.п.І.4) осущевляется в подогревателях типа ПМР-64-I5 для паровых котлов и типа ПМР-I3-60-для водогрейных котлов.

На каждой напорной линии к паровым и к водогрейным котлам установлени по два подогревателя, в том числе по одному резервному. Подогреватели установлени на открытой площадке.

2095 o -01 903-2-23.85 Ал. О

Часть нагретого мазута, подаваемого в котельную, по обратной линии возвращается в резервуари хранения мазута. Предусмотрен перепуск части мазута с нагнетательной линии (после насосов подачи) во всасывающую линию в режиме малых нагрузок котельной в целях предотвращения перегрева мазута в резервуарах хранения (от большого возврата нагретого мазута до 90°C, или 120°C по обратной линии).

3.1.6. Расход пара на технологические нужды

К резервуарам 5000 м3 и подогревателю жидких присадск поступает пар давлением 0,69 МПа (7 кгс/см2), к остальным потребителям давлением I.37 МПа (I4 кгс/см2).

ТАБЛИЦА РАСХОДОВ ПАРА

Haymonanana maakawa	Единица	Расход пај	pe.	Возврат конденсата	
Наименование расхода	измере- ния	максималь- ний	оредний	максималь— ный	средний
азогрев мазута в железнодорож- ых цистернах при сливе	KT/C (T/Y)	6,0 (21,6)	_	0	•
асход пара на обогрев лотков приемной емкости	n	1,1 (3,8)	0,53 (1,9)	1,1 (3,8)	0,53 (1,9)
асход пара на подогрев мазута : котлам:					
- паровим	n	0,22 (0,8)	0,11 (0,4)	0,22 (0,8)	0,II (0,4)
- водогрейным	Ħ	0,33 (1,2)	0,17 (0,6)	0,33 (1,2)	0,17 (0,6)
асход парс на подогрев мазута ля внутренней рециркульцыи	m	I,28 (4,6)	-	1,28 (4,6)	-
всход пара на местный подогрев резервуарах хранилища	n	0,28 (1,0)	0,14 (0,5)	0,28 (1,0)	0,14 (0,5)
асход пара на спутники	Ħ	0,28 (1,0)	0,28 (1,0)	0,28 (1,0)	0,28 (I,0)
cero	#	9,49 (34,0)	1,23 (4,4)	3,49 (12,4)	1,23 (4,4)

703-2-23.85 An.O

20950-01 903-2-23.85 Ал.О

3.1.7. Управление и организация производства

Установка мазутоснаожения и котельная являются составной частью ещиного комплекса.

Обслуживание всех производственных процессов осуществляется дежурным персоналом установки мазутоснабжения. Для этого предусмотрено пять дежурных (по одному человеку в каждой смене) и четыре сливщика мазута.

3.2. Инженерное обеспечение

3.2.1. Теплоснафжение

Теплоснабжение осуществляется от котельной, в состав комплекса которой входит установка мазутоснабжения.

Параметры теплоносителей:

- насыщенный пар давлением I.37 MTa (I4 кго/см2);
 - перегретая вода с температурой I50/70°C.

Прокладка трубопроводов пара и горячей воды осуществлена совмещенной с мазутопроводами на одной эстакаде.

3.2.2. Электроснабжение

В электротехнической части проекта разработано электроснабжение, силовое и осветительное электрооборудование, молниезащита и заземление. связь и сигнализация мазутного хозяйства.

По степени надежности и бесперебойности электроснабжения потребители мазутонасосной относятся ко II категории, а насоси помаротушения — к I категории.

По условиям среди помещения мазутонасосной относятся к пожароопасным зонам класса П-I, площадка теплообменников, резервуарний парк и очистние сооружения — П-Ш.

903-2-23.85 Ал. 0

Для питания нагрузок мазутного хозяйства в мазутонасосной устанавливается силовой щит (Ш), который запитывается двумя кабельными линиями от разных секций низковольтного щита котельной на напряжении 0.4/0.23 кВ.

По своей производительности мазутонасосная предназначена для котельных, имеющих потребители, относящиеся по степени надежности и бесперебойности электроснабжения к I и II категории и оборудовани устройством ABP на щите 0,4 кВ, поэтому дополнительное устройство ABP на щите мазутонасосной не предусматривается. Мазутонасосная с обслуживающим персоналом.

В соответствии с СН-305-77 сооружения мазутного хозяйства по устройству молниезащити относятся к Ш категории и защищаются от прямых ударов молнии и от заноса высоких потенциалов.

Молниезащита мазутонасосной осуществляется металлической сет кой, предусмотренной в строительной части проекта.

В качестве заземлителей используются:

- а) для варианта мазутонасосной с кирпичными стенами верти кальные стержни из круглой стали;
- б) для каркасного варианта мазутонасосной железобетонные колонны и фундаменты, создающих непрерывную электрическую цень парматуре в соответствии с п.1.4 ГОСТ 12.1.030—81 и при соблюден условий, указанных в техническом циркуляре Главэлектромонтажа монтажепецетроя СССР от 29.12.78 г. № 9-16-186/78.

Выбор освещенности произведен в соответствии с главой СНиП П-4-79 (таблица 2, приложение 3).

В качестве источников света применени лампы накаливания и ломинесцентние.

20950-01 903-2-23.85 .Ал. 0

Проектом предусматривается установка одного телефонного аппарата, подключаемого к АТС города (объекта). Для пожарной сигнализации прокладывается кабель связи от котельной до мазутонасосной.

3.2.3. Вопоснабжение

Источником водоснабжения принят внеплощадочний хозяйственношитьевой водопровод.

На сплощадке запроектирован объединенний хозяйственно-питьевойпроизводственно-противопожирный водопровод.

3.2.4. Канализация

На площадке установки мазутоснабжения запроектировани сети канализации:

- производственно-битовой:
- замазученных стоков;
- дождевой канализации.

В производственно-битовую канализацию поступают стоки от мазутонасосной.

В дожденую канализацию поступают дождение стоки и очищенные замазучению стоки после очистних сооружений.

В очистние сооружения (ТП 902-2-339 разработан институтом "МосводоканалНИйпроект") поступают дождевие воды с площадки теплообменников, с обвалованной территории резервуарного парка и асфальтированных дорог.

Расчетный расход замазученных дожденых вод составляет 10 л/с (для условий г. Москви).

Состав хозяйственно-битових сточных вод:

- по вовешенным веществам 433 мг/л;

- no ык₂₀ 500 мг/л.

- 21 -

Состав замазученных дождевых сточных вод до очистки:

- по взвешенным веществам I80 мг/л;

- no masyty IOO mr/1.

Состав замазученных дождевых сточных вод после очистки на очистных сооружениях определен типовым проектом 903-2-339 и составляет:

- по взвещенным веществам не более 10 мг/л:

- no masyry 2 + 5 Mr/m.

Таблица основных показателей по чертежам водопровода и канализации

Наименование	Horped-	Pac	чётный ра	сход	Приме-
системы	ный на- пор на вводе	м3/сут.	иЗ/час	л/с	арние
Козяйственно- питьевой-противо- пожерный водопро- вод	16,0	I,6	0,5I	0,8	
Битовая канали- зация		1,6	0,51	2,38	
Дождевая кана- лизация				20,0	

3.2.5. Пожаротушение

Установка похаротушения разработана для варианта с металлическими резервуарами - автоматическая, для варианта с железобетонными резервуарами - стационарная неавтоматическая.

3.2.5. І. Установка автоматического пожаротушения

Установка автоматического пожаротушения разработана на основании СНиП П-106-79 и в соответствии с "Временными рекомен-MANUAMIN NO HOOCKTEDOBAHUD CTAUKOHADHHX CHCTCM ABTOMATNYCKONO тушения пожаров нефти и нефтепродуктов в резервуарных парках и насосных станциях. разработанных ВНИИПО МВД СССР и утвержденных Миннефтепромом 29.01.73 г. и ГУПО МВД СССР 14.08.74 г., а также "Инструкциями по проектированию установок автомытического пожаротушения" СН-75-76.

В качестве основного средства тушения пожара принята воздушнотехническая пена.

Время тушения и интенсивность подачи воды и пенн приняты согласно CHMI II-I06-79 M COCTABLEDT:

- время тушения 3 х IO мин.:
- интенсивность подачи раствора пенообразователя 0.05 л/сек. B8 M2:
- интенсивность орошения горямего резервуара водой 0.5 д/с на метр длины окружности резервуара:
- интенсивность орошения соседнего резервуара водой 0.2 л/с на метр длины окружности резервуара;
 - время охлижиения 3 часа.
- В проекте фактическая интенсивность орошения всех резервуаров принята равной 0.5 л/сек. на метр длини окружности резервуаров, так как горящим может оказаться любой из охлаждаемых резервуаров.

TII 903-2-23.85 .Aл.0 - 23 -

Установка автоматического пожаротушения защидает наземные метадлические резервуали и мазутонасоснур.:

Тушение астакары мазутослива, приёмной ёмкости мазута и резервуаров жидких присадок осуществляется ручники пеногенераторами, подключенными к непорным магистралим через гидранты.

На магистральных кольцевых сетях растворопровода и противопожарного водопровода установлены колодцы с гидрантами для тупены мазутного хозяйства ручными пеногенераторами и стволами.

3.2.5.2. Устройство стационарной установки автоматического похаротушения

CUCTEMA COCTOUT M3:

- автоматической насосной станших пожвотушения:
- резервуаров води У= 2x500 м3 для оклаждения резервуаров мазута;
- магистральных кольцевых напорных трубопроводов сетей растворопровода ф 200 и охландающей воды ф 150;
- узлов управления, размещенних в колодиах размером 2,5 х 2,0 м по периметру обвалования резервуаров с наружной стороны, а также в мазутонасосной:
 - полуколец для охлаждения стенок резервуаров;
- стационарных пеногенераторов типа IME-2000, устанавляваемых на резервуарах, согласно типовому проекту 402-II-39/74, альбом I;

MI 903-2-23.85 Aл.0 - 24 -

- пневматической побудительной сети б I5 мм и головок СВ-І2, устанавливаемых под кришей мазутних резервуаров на расстоянии не далее 2 м от стенск и не далее 25 м друг от друга:
- побудительной сети Ø 15 мм и головок CB-I2, устанавливаемых под перекрытием мазутонасосной на расстоянии не ближе 80 мм и не далее 400 мм от перекрытия.

3.2.5.3. Установка стационарного неавтоматического пожаротушения

Установка неавтоматического подаротушения разработана на основании СНиП П-106-79 и в соответствии с "Временными рекомендациями по проектированию стационарних систем автоматического тушения пожаров нефти и нефтепродуктов в резервуарных парках и насосных станциях", разработанных ЕНИИПО МВД СССР и утвержденных Иминефтепромом 29.01.73 г. и ГУПО MBN СССР 14.08.74 г., а танже "Инструкцией по проектированию установок автоматического пожаротушения" СН-75-76.

Время тушения и интенсивность подачи воды и пени причиты согласно СНиП П-106-79 и составляют:

- время тушения 3 x 10 мин.;
- интенсивность подачи раствора пенообразователя 0,05 л/с на м2:
- расход воды на орошение горящего и соседнего резервуаров 20 л/сек:
 - время охлаждения 3 часа.

Стационарная установка неавтоматического пожаротушения защищает подземние железобетонние резервуари У=5000 мЗ, мавутонасосную, резервуари жилких присадок, приёмную ёмкость, железнодорожную зотакаду мазутосджва.

Тушение эстанадн мазутослива, подземних резервуаров мазута, приёмной ёмкости и резервуаров жидких присадок осуществляется ручными пеногенераторами, подключаемыми к напорному растворопроводу через гидранти.

Тушение мазутонасосной осуществляется автоматически посредством станконарно установленных пеногенераторов.

На магистральных кольцевых сетях растворопровода и противопожарного водопровода установлень колодии с гидрантами для тушения мазутного хозяйства ручными пеногенераторами и стволами.

3.2.5.4. Устройство стационарной установки неавтоматического пожаротушения

CECTEMA COCTORT MS:

- автоматической насосной станции поваротушения;
- резервуаров воды У = 2xI50 м3 для охлаждения резервуаров мазута:
- магмотральных комьцевых наподных трубопроводов сетей растворопровода в 200 и охлаждающей воды в 150;
 - узлов управления, размещенных в насосной пожаротушения;
- побудательной сетя 6 15 мм и головок СВ-I2, устанавливаемых под перекрытием мазутонасосной на расстоянии не блике 80 мм и не палее 400 мм от перекрытия.

тт 903-2-23.85 .Ал.0 - 26 -

3.2.6. Отопление и вентилниия

3.2.6.І. Мазутонасосная

В помещениях мазутонасосной и фильтров имеются тепловиделения от технологического оборудования, которые превышают теплопотери.

В связи с этим отопление в этих помещениях не препусмотрено.

В остальных помещениях отопление принято центральное конвекторами "Комфорт-20".

Вентилиции помещений мазутонасосной и фильтров принята приточно-витяжная с механическим побуждением.

Упаление возпуха предусматривается в размере 2/3 из нижней и 1/3 - из ветхней зон.

Приточний воздух поцестся в верхнюю зону помещений.

Использование тепловых вторичных энергетических ресурсов (ВЭР) от вентилиционных выбросов нецелесообразно, так как удаднемый воздух имеет температуру не выше IOOC.

3.2.6.2. Камеры управления резервуарами

В камерах управления отопление не требуется.

Вентиляция камен управления вытяжная с механическим побуждением и естественная.

Количество вентилимонного воздуха определено из расчёта 10-кратного воздухообмена.

HPHTOR - COTTOTECHING.

TII 903-2-23.85 .Ал.0 - 27 -

3.2.7. Автоматизация

3.2.7.I. Тепловой контроль и автоматическое регулирование

Проектом предусмотрены:

- контроль температуры и давления мазута и пара, температуры воздуха и теплоносителя приточной системи П-I местими приборами;
- дистанционный контроль: температуры и уровня мазута в резервуарах, температуры жидкой присадки в резервуарах хранения, уровня мазута в приёмной ёмкости-предусмотрен вторичным при-борами, размещенными на щите КИП;
- регулирование температури мазута, подаваемого в котельную и на рециркуляцию - регуляторами системи АКЭСР с электрическими исполнительными механизмами типа МЭО;
- регулирование температуры приточного воздуха при помоди регулятора типа ТЭЗПЗ.

3.2.7.2. Управление.

Проектом предусмотрены:

- дистанционное управление со щита КИП насосами подняци мазута в котельную и вентилятором приточной системи ПА;
- автоматическое управление дренахиим наобсом Вы зависимостр от уровня дренака в приниме:
- автоматическое отключение жизээээ жээээээ дог драшышении дардения за ними:

TII 908-2-23.85 .Az.0 - 28 -

- автоматическое отключение переначивающих насосов при минимальном уровне мазуте в приёмной ёмкости или останове насосов-дозаторов;
- солокированное управление клапаном наружного воздуга и вентилем на обратном теплоносителе с электроднигателем вентилитора дли защити калорифера приточной системи ПІ от замораживании в нерабочем режиме.

3.2.7.3. Питание и сигнализация

Запитка щата КИП напряжением ~ 220В осуществляется двумя незанисимим вводами, запроектированными в здектротехнической части проекта.

Проектом предусмотрена схема сигнализации при отклонении основних технологических параметров от норми с использованием указательных реле. Общий сигнал о неисправности в мазутонасосной, а также выключатель аварийного останова подачи мазута вынесени на имт кип котельной.

3.2.7.4. Автоматическое пожаротушение и пожарная сигнализация

Проект предусматривает:

- светоявуювую сигнализацию о возникновении пожара в следующих помещених:
 - а) мавутоннососной;
 - б) помещении КИП и электроцитовой;
- в) киндовой уборочного инвентаря и комнати отдыха с установкой для оботрева;

- г) камере управления резервуара # I:
- п) камере управления резервуара # 2:
- автоматическое пожаротушение металлических резервуаров и мазутонасосной. (Тушение железобетонных резервуаров — неавтоматическое):
- формирование командного импульса на отключение систем вентиляции при возникновении пожара.

В качестве датчиков ножарной сигнализации используются тепдовне изведатели типа ИП-IO5-2I и ручные - типа ПКЕ.

Дучи пожарной сигнализации и пожаротушения подключаются к конентратору "Tonas".

В соответствии с требованиями "Инструкции по проектированию установок автоматического пожаротушения СН-75-76" проектом обеспечиваются:

- автоматический пуск рабочего насоса пенообразователя;
- автоматический пуск резервного насоса пенообразователя в случае отказа пуска или невыхода на режим рабочего насоса в течение установленного времени;
- автоматическое переключение цепей питания с рэбочего на резервный источник питания электрической энергчи (при исчезновеими напражения на рабочем вероде).

В помещении насосной станции похаротушения предусмотрена световая сигнализация:

 о наличии напряжения на рабочем и резервном вводах влектроснабжения (по вызову);

TH 903-2-23.85 .Am.0 - 30 -

- об отключении автоматического пуска насосов пенообразователя;
- о неисправности электрических цепей приборов, регистрирующих срабатывание узлов управления и выдающих командный импульс на включение установки;
- об аварийном уровне в резервуарах воды и пенообразователя.

В помещении КИП мазутонасосном устанавливается концентратор "Топаз", на котором предусмотряны:

- а) световая и звуковая сигнализация:
- о возникновения пожара (с расшифровкой по направлениям):
 - о пуске насосов:
 - о начале работы установки с указанием направления;
 - об отключении автоматического пуска насосов:
- о неисправности установки, исчезновании напряжения на вводах электроснабжения, о падении давления в гидропневмобаке (общий сигная);
 - об аварийном уровне води, раствора пенообразователя.
 - б) световая сигнализация:
- о наличии напряжения на вводах электроснабления, подведенных к установке "Топаз";
 - об отключении звуковой сигнализации о пожаре:
 - об отключении звуковой сигнализации о повреждении.

Световал сигнализация о пожаре дублируется звуковым сигналом с помощью ревуна, установленного на территории мазутного хозяйства.

Питание силовой части насосов, питание прибора "Топаз" напряжением ~ 24B и щита напряжением ~ 220B по I категории от двух независимых источников предусматривается в электротехнической части проекта.

В качестве щита принят малогабаритный щит по ОСТ 36.13-76.

3.3. Указания по привязке технологической части проекта

Величину железнодорожного маршрута (количество и размер ставок) и другие требования необходимо согласовать с органами МПС.

Генеральний план, план и профиль сетей показани условно и подлежат уточнению при привязке проекта к конкретным условиям. При этом уклон паромазутопроводов рекомендуется осуществить в сторону мазутонасосной.

В проекте предусмотрени к наружной прокладке труби из материала, соответствующего для района строительства с расчётной температурой -30°C. При расчётной температуре ниже -30°C требуется замена марки стали труб с Вст3пс5 на сталь марки 20 ГССТ 1050-74.

В случае, если обводнение сливаемого мазута атмосферными осадками презншает 10%, над сливной эстакадой необходимо установить навес, конструкция которого разработана в альбоме 2.1.

В случаях расположения установки мазутоснасмения согласно п.3 и 7 приложения I СН 507-78 должен быть осуществлены мероприятия по световой маскировке в соответствии с СН 507-78.

ТП 903-2-23.85 Ал. О

4. АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЕ РЕШЕНИЯ

4.І. Условия строительства

Проектом предусматривается строительство зданий и сооружений в районах со следующими природными условиями:

- 4.І.І. Расчетная зимняя температура наружного воздуха (средняя наиболее колодной пятидневки) -20°С, -30°С, -40°С.
- 4.I.2. Скоростной напор ветра для I, II, II, IV районов по СНиII II-6-74.
- 4.I.3. Вес снегового покрова для I,П,Ш и IV районов по СНиП П-6-74.
- 4.Г.4. Рельеф площадки спокойный, грунты непучинистие, непросадочные, нескальные, без подработки горными выработками.
- 4.1.5. Сейсмичность района-не более 6 баллов.

При расчете конструкций в качестве основания приняти условно грунти со следующими нормативными карактеристиками:

$$C''=$$
 I,96 kHa (0,02 kr/cm2), E= I4,7 Mia (I50 kr/cm2), $f'=$ I,8 r/m3, $f''=$ 0,49 $f''=$ (28°), $K_{\rm p}=$ I.

- 4.1.6. Грунтовие води отсутствуют.
- 4.І.7. Разработан вариант, когда грунтовие води находятся на глубине І,5 м от планировочной отметки земли, води не агрессивни по отношению к бетону нормальной плотности.

4.2. Мазутонасосная

4.2.I. Здание мазутонасосной разработано в двух вариантах: с кирпичными несущими стенами со соорным железобетонным 903-2-23.85 Ал. 0

покрытием и каркасное с навесными панельными стенами. Продольная и поперечная жесткость каркасного здания обеспечивается жесткой заделкой колонн в стаканы фундаментов и диском покрытия.

I вармант - адание с кирпичными несущими стенами.

Фундаменты отолочатые из сборных бетонных блоков по ГССТ I3579-78.

Стени - из керамического рядового кирпича КРІОО/1650/15/ ГОСТ 530-80 на цементном растворе M25 под расшивку швов с наружной стороны.

Перегородки - кирпичные.

П вариант - каркасное здание.

Фундаменти под колонни - монолитние, железобетоние столсчатие в инвентарной опалубке по серии I.4I2-I/77 в.I,2 и из сборных блоков.

Колонны каркаса — сборные железобетонные по серми I.423—3 н.I.

Стени — из навеоных керамзитобетонных панелей с объемным весом $f^{\nu}=1000$ кг/м3 по серпи 1.030.I-I, вып.I-I, 2-I.

Перегородки -- сборние железобетонные по серии I.431-20, в.О.І и кирпичние.

Для обоих вариантов:

балки покрытия — сосрные железобетонные по серии I.462.I—-3/80, вып.I.

Плити покрытия — сборные железобетонные по ГОСТ 2270I, 0--77+ ГОСТ 2270I.5-77, комплексные по серии I.465.I-I0/82, вып.I.

Утеплитель — яченотий бетон r = 400 kg/m3.

Кровля рулонная с наружным водостоком.

Каналы, приямки, фундаменты под оборудование - бетонные железобетонные монолитные.

Вокруг здания устраивается асфольтовая отмостка по щебеночному основанию шириной 750 мм.

4.2.2. Указания по применению проекта

При привязке проекта на заглавних листах и листах монтажны: схем выбираются соответствующие применнемому варианту и конкретным климатическим условиям таблицы и переменние данные, а остальные вичеркиваются.

Неиспользованные листы аннулируются.

Фундаменти разработани для расчетной зимней температури на ружного воздуха — 30°С, скоростного напора ветра для II географи— ческого района, веса снегового покрова — для II района по СниП II—I5—'/4 и дорабатываются при привязке с учетом реальных условий.

Проект разработан для летних условий производства работ.

Конкретние указания по ведению работ в зимних условиях ра рабативаются в проекте организации работ.

4.3. Сооружения слива и приема мазута и жидких присадск

Эстакада мазутослива запроектирована с применением сборктиелезобетонных колони серии I.423-3, монолитных фундаментов, раз работанных с использованием серии I.412-I/77.

Каналы мазутослива — из монолитного бетона с металлическия покрытием и из сборных железобетонных лотков по серии 3.006.I—

903-2-23.65 Ал. 0

-2/82 с покрытием из соорных железобетонных плит по той же серии.

Монтаж соорных элементов каналов производить в соответствии с указаниями пояснительной записки серми 3.0006.I-2/82.

Каналы, соединяющие приемную емкость с мазутонасосной - из монолитного железобетома.

Для варианта с високим уровнем грунтових вод разработани детали примыкания каналов, изоляция канала мазутослива.

В случае агрессивных вод мероприятия по защите конструкций разрабатываются при привязке проекта в соответствии с указаниями $\text{СНиП II}-28-73^{\frac{18}{3}}$.

4.4. Камеры управления для железобетонных резервуаров

Плита дница, стеновие блоки и плити покрытия камер управления - сборние железобетонные по серии 3.006-3, в.П-I.

Конструкция входа в камеру - из монолитного железобетона.

 Камера управления или металлических резервуаров

фундаменты камер управления - из соорных оетонных олоков по ГОСТ 13579-78.

Прогони покрытия — металлические, стены — кирпичние, кровляиз асбестоцементных листов.

4.6. Антикоррозионная защита

Боковые поверхности каналов и приятков, соприкасающиеся с грунтом, покрываются битумной мастикой за два раза по колодной битумной огрунтовке.

Закладные детали и соединительные элементы для крепления стеновых панелей цинковым покрытием согласно СНиП п-28-73^X.

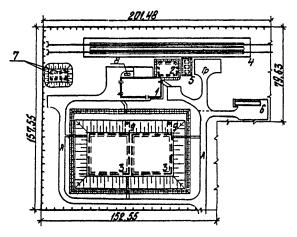
Остальные закладные детали и металлоконструкции, а также металлическая площадка эстакады покрываются двумя слоями эмали ПФ-II5 по грунтовке IФ-O2O общей толимной 55 мкм.

Закладные детали и остальные элементы канала мазутослива покрываются пятью слоями эмали XC3-759 (TV6-IO-III5-7I) общей толщиной I30 мкм по грунтовке XC-659.

- Перечень ответственных конструкций и работ, подлежащих промежуточной приемке в процессе строительства
- 4.7.І. Исполнительная геодевическая схема и состояние дна котлована зданий и сооружений и соответствие грунтових условий проектным.
- 4.7.2. Исполнительная схема фундаментов здания и основних фундаментов под оборудование, днище и стакан для заделии стенових панелей резервуаров, приемной емиссти.
- 4.7.3. Приварка балок и плит покрытия мазутонасосной и резервуаров, сварные шви соединения панелей покрытия и стеновых панелей резервуара.
- 4.7.4. Подготовка поверхностей под антикоррозийную защиту.

5. ТЕНЕРАЛЬНЫЙ ПЛАН

Размещение установки мазутоснабжения предусмотрено на территории промышленных предприятий или котельных.

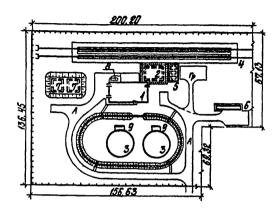

В типовом проекте разработаны генпланы для металлических и железобетонных резервуаров мазута.

Основные решения по горизонтальной планировке обусловлени технологической взаимосвязью между проектируемыми зданиями и сооружениями. При компонсвке генеральных планов учитывалась возможность рационального использования территории с соблюдением требований СНиП П-89-80 и СниП-106-79. Предусмотрена возможность расширения резервуарного парка.

Территория проектируемых площадок принята условно ровная. Водоотвод поверхностных вод предусмотрен через условно показанные дождеприемники в ливневую канализацию.

CXEMA TEHILIAHA

(вариант с железобетонными резервуарами)



ЭКСПЛИКАЦИЯ ЗДАНИЙ И СООРУЖЕНИЙ

MA HO I'II	Навменование	Примечание
I	Мазутовасоеная	7MIL INDOERT 903-2-23.85
2	Приёмная ёмкость V = 750 м3	Тип.проект 903-2-23.85
3	Резервуар подземный железобетонный для мазута V = 5000 м3 — 2 шт.	Тип. проект 903-2-25.85
4	Железнодорожная эстакада мазутослива на 2 x 12 вагон-ди ст ерн	Tmm.npoerr 903-2-23.85
5	Резервуар подземний для жидких присалок V = 25 м3 - 3 шт.	Тип. проект 704-1-161
6	Оччстные сооружения замазученных дождевых сточных вод Ç = 10 д/с	Тип.проект 902-2-339
7	Резервуар воды для нужд пожаротушения V = 150 м3 — 2 шт.	Тип.проект 901—4—58.83
8	Площадка для градирен ГПВ-20	Тип.проект 903-2-23.85
9	Камера управления - 2 шт.	Тип. проект 903-2-23.85

CXEMA TEHILIAHA

(вариант с металлическими резервуарами)

эксиликация зданий и сооружений

IIO I'II	Наименование	Примечание
I	Мазутонасосная	TMIL IIDOERT 903-2-23.55
2	Приёмная ёмкость ∨= 750 м3	Тип. проект 903-2-23.85
3	Резервуар наземный металлический для мазута V = 5000 м3 — 2 шт.	Tmm. npoert 704-1-169. .84
4	Железнодорожная эстакада мазутослива на 2 x I2 вагон-пистерн	Тип. проект 903-2-23.85
5	Резервуар подземный ждя жидких приседок V = 25 м3 — 3 шт.	Тип.проект 704—1—161
6	Очистные сооружения замазученных дождевых сточных вод 0 = 10 л/с	Тип.проект 902-2-339
7	Резервуар воды для нужд пожаротушения V = 500 м3 — 2 шт.	Тип.проект 901-4-59.83
8	Площадка для градирен ГПВ-20	Тип.проект 903-2-23.85
9	Камера управления — 2 шт.	Тип.проект 903-2-23.85

6. МЕРОПРИЯТИЯ ПО ОХРАНЕ ОКРУЖАЮЩЕЙ ПРИРОДНОЙ СРЕДЫ

Единственним источником загрязнения от установки мазутоснасмения являются замазученные сточные воды.

Мероприятия по очистке загрязненных стоков указани в п.3.2.4.

7. МЕРОПРИЯТИЯ ПО ЭКОНОМИИ ТОПЛИВНО-ЭНЕРГЕТИЧЕСКИХ РЕСУРСОВ

Проектом предусмотрено использование конденсата греющего пара. Конденсат по общему трубопроводу под собственным давлением подается в котельную.

В котельной должны быть предусмотрены охлаждение конденсата и его отстой в баках-отстойниках, обеспечивающих отстой конденсата не менее 3 часов.

Конструкция баков должна обеспечить ведение визуального контроля за качеством конденсата и сбросом образующейся эмульсии мазута в промежуточный бак, откуда производится откачка этой эмульсии в приемную емкость установки мазутоснабжения.

8. OXPAHA TRYJIA U TEXHUKA EESOIIACHOCTU

Настоящий проект разработан с учетом обеспечения обслуживающего персонала установки мазутоснабжения нормативными условиями по охране труда и технике безопасности.

Для этой цели все помещения обеспечени соответствующей системой отопления, вентиляции и освещения, а служебно-битовые помещения ограждени от шума действующего оборудования глухими стенами.

Для механизации грузоподъемных и транспортных работ над оборудованием мазугонасосной предусмотрен кран подвесной ручной однобалочный, облегчающий труд ремонтного персонала.

> 9. ПОКАЗАТЕЛИ ИЗМЕНЕНИЯ СМЕТНОЙ СТОИЛОСТИ СТРОИТЕЛЬНО-МОНТАЖНЫХ РАБОТ, ЗАТРАТ ТРУДА И РАСХОЛА ОСНОВНЫХ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ

Для определения показателей снижения сметной стоимости строительства, экономии основных материалов в качестве базисного проекта принят ранее разработанный типовой проект 903-2-16 установки мазутоснабжения, приведенный к сопоставимости.

Экономия объема здания мазутонасосной обусловлена блокировкой помещений разних технологических назначений и уменьшением площади рабочего зала насосной за счет блочной установки оборудования.

Применение в проекте эффективных соорных железобетонных ксиструкций каркаса мазутонасосной (балок, плит покрытия колонн), плит покрытия резервуаров и приемной емкости дало экономию осног ных строительных материалов и энергоресурсов.

Объем экономии дан в прилагаемой таблице.

Относительные показатели изменения сметной стоимости. %: по объекту

$$\theta_{\rm C} = \frac{\text{En Ccm} \cdot \text{IOO}}{\text{Co} + \text{En Ccm}} = \frac{30.4 \cdot \text{IOO}}{198,9+30,4} =$$
= 13,3%.

по строительно-монтажным работам

Эсм =
$$\frac{\text{Ед } \text{ Ссм} \cdot \text{IOO}}{\text{Ссм} + \text{ Ед } \text{ Ссм}} = \frac{30.4 \cdot \text{IOO}}{128,6+30,4}$$

- IS.I%

Члавный инженер проекта Составил рук.группы Проверил гл. сметчик

Удельные капиложения по объекту, руб. на единицу мощности: пои базисном техническом уровне Со + Ед Ссм = 52,0 pyo/m3

при новом техническом уровне

$$y_{R_2} = \frac{Co}{\Pi_2} = \frac{198900}{4409} = 45,11 \text{ pyo/m3}$$

А. Думан Л.Казак

M.llamapo

n	c	В	•	я	Ŧ	d	х.	r	п	75	•
_				_						_	•

Проектный выститут "ЛАТГИПРОПРОМ Hposar, apz. Ne.

СРАВНИТЕЛЬНАЯ ВЕДОМОСТЬ

показателей изменения расхода основных строительных материалов до пррехтируемому объекту $U=16/80~\mathrm{M}/\mathrm{Y}$

Панмодование конструктивных элементов по базченому (БТУ) и новому (НТУ) тохинческому уровню	_	Расчет-	TDYE) BCE	сталь (кроме труб) всего, т		дэме	лесома- теряалы,	
	Ед.	попиа приме- обрам выд	в нату- ральном	жату- саясле- в пряве- в саясле-		в псту- ральном всчесле-	SCAECUS- MAR E	
Еезисный технический уровень	ЕМ	5082	40,38	50,6	-	130,22	130,22	13,91
Новий технический уровень	Ем	4409	33,68	43,9	~	112,92	112,92	13,91
Мтого (снижение "+", увеличение "-")			₊₆ ,7	+6,7	-	+17,3	+ 17, 3	~
Главний инженер проекта Составил рук.группи Проверил гл.конструктор	Milyo	tie)	м.Шульг	іна				
	Базченому (БТУ) и новому (НТУ) Тохническому уровно Базисний технический уровень Итого (снижение "+", увеличение "-") Главний инженер проекта	Базченому (БТУ) и новому (НТУ) тохническому уровень Новый технический уровень Мтого (сныжение "+", увеличение "-") Главний инженер проекта	Базасному (БТУ) в вовому (НТУ) тохническому уровно Базисний технический уровень МЗ 5082 Мовий технический уровень МТОГО (снижение "+", увеличение "-") Главний шиженер проекта Составил рук. группи	Базченому (БТУ) в вовому (НТУ) тохничаескому уровно Базисний технический уровень Марий Технический Индивира	Базисной (БТУ) и вовону (НТУ) тохначаскому уровер Базисний технический уровень Новий технический уровень МЗ 5082 40,38 50,6 Новий технический уровень МЗ 4409 33,68 43,9 Итого (сныжение "+", увеличение "-") Главний инженер проекта	Базченому (БТУ) в вовому (НТУ) тохническому уроверо Базисний технический уровень Новий технический уровень МЗ 5082 40,38 50,6 — Итого (снижение "+", увеличение "-") Главний шженер проекта Составил рук. группи Поредки да ком объем первые проекта Марка баз объем первые п	Базченому (БТУ) в вовому (НТУ) тохничаескому уровно Базисний технический уровень МЗ 5082 40,38 50,6 - 130,22 Новий технический уровень МЗ 5082 40,38 50,6 - 130,22 Итого (снижение "+", увеличение "-") Главний шженер проекта Составил рук. группи Псоворил пл. конструктор	Базисний технический уровень МЗ 5082 40,38 50,6 — I30,22 I30,22 Итого (снижение "+", увеличение "-") Главний инженер проекта Составил рук. группи Составил рук. группи Полеоти применення применення применення применення полеоти полео

HMII-2.

70,

Проектица институт "ЛАТГИПРОПРОМ"

Thours, eps. Ne

ОТНОСИТЕЛЬНЫЕ ПОКАЗАТЕЛИ изменения расхода основных строительных материалов по проектируемому объекту (стройке, очереди строительства) быскт (стройка, очередь строительства) МЭЗУГОНОСОСНЫЯ О =16/80 МЭ/Ч

Объект (стройка, очерель строительства)_ 4409 Производственная мощность, общая площаль, выхость и пр. П. Сметная стоямость строятольно - монтежных работ С см. тыс. руб. 128,6

Расход материалов по объекту (стройка осереди строительства) M_0 : пенента II2,92

станя (кроме труб) всего 33,68 т то ме, приведенной 43,9... т помента приведенного Т12,927 стальных труб..... т лесоматерналов, приведенных х круглому лесу . 13,91 . . . м з

				owl nowl sadika s			
		Привазатель раско- да материалов:	Показатели удельн риалов, т. м. 3, на общей площади, ем	Показетели расход на 1мли.руб.сметн стронтельно - мож	а матерналов, т,м ³ , ой стоимости тажных работ		
₹ 100	Наименополия материалоо в потуральном и приведел	увеличение "-", %	при базасном тех- инческом уровиз (БТУ)	пря новом техне- ческом уровне (НТУ)	пря базвеном тех- вическом уровие (БТУ)	гри новом техни - ческом уровне (НТУ)	
	пом ясчислевиях	$\left(\frac{\partial_{M}}{\partial \Delta} = \frac{\Sigma \Delta M \cdot 100}{M_{0} \pm \Sigma \Delta M}\right)$	$\left(y_{M_4} = \frac{M_0 \pm \Sigma \Delta M}{\Pi_2}\right)$	$\left(y_{M_{2}} = \frac{M_{0}}{\Pi_{2}}\right)$	$\left(P_{M_1} = \frac{M_0 \pm \Sigma \Delta M}{C_{CM} \pm \Sigma \Delta C_{CM}}\right)$	(PM, Mo	
Ι	Сталь: в натуральном ночислении,	6,7.100 33,68+6,7 = +16,59%	$33.68+6.7$ $y_{M_{\rm I}} = 4409$ $= 0.009 \text{ T}$	33,68 4409 = 0,008 T	$_{\text{PM}_{\text{I}}=0\text{I}286+0030}^{33,68+6,7}$ = 254 T	PM ₂ = 33,68 0,1286 = 261,9 T	
	в приведенном исчислении	Эм $= \frac{6,7,100}{43,9+6,7}$	ум _I =43,9+6,7 44С9	$y_{M_2} = \frac{43.9}{4409}$	PMI=q1286+00304	0,1200	
		= I3,24%	=0,0II T	= 0,01 T	=318,24 T	= 341,37 т	
į							

-		Показатель расхо- да материалов:	Показателя упелья рвалов,т,м ³ , на ем общей площали, выхо	HELLY MODEROCTE.	,	родолжение формы 7 в метериалов, т,м ³ , пой стоимости виных работ	
λ <u>ŧ</u> ¤/¤	Навменование метервалов в натуральном в приведен- пом исчислениях	CHRECKS $\frac{1}{3}$ $\frac{\Sigma_{\Delta}M \cdot 100}{M_{O} + \Sigma_{\Delta}M}$	THE GASECHOM TEX- EMTECKOM YPOBHE (ETY) $y_{M_1} = \frac{M_0 \pm \Sigma \Delta M}{\Pi_2}$	при мовом техня- ческом уровие (H Т У) $\left(y_{M_2} = \frac{M_o}{\Pi_2} \right)^0$	$\begin{array}{c} \text{при базасном тех-}\\ \text{инческом уловие}\\ \left(\sum_{M_0} \frac{M_0 \pm \sum \Delta M}{C_{CM} \pm \sum \Delta C_{CM}} \right) \end{array}$	при мовом текко – тескон трокве Мо Мо Мо Мо Мо Мо Мо Мо	20950-01
2	Цемент		у м _I = <u>112.92+173</u> 4409 = + 0,03 т	y _{M2} = <u>II2,92</u> 4409 = 0,026 τ	PMI 112,92+17,5 QL286+0030 = 818,99 T	PM2= 112,98 0,1286 =878,07 T	
	Т лавний инже Сост ави л <u>р</u> ук Проверки гл.	вер проекта — группы с сметчик «	Kazur	А.Думан Л.Казак М.Шапиро			
							48

Относительные показатели изменения сметной стоимости, %: по стройке

$$3c = \frac{\text{En Ccm. IOO}}{\text{Co} \pm \text{En Ccm}} = \frac{30.4}{\text{IO27,69+30,4}}$$

по строительно-монтажным работам

= 3,12%

Главный инженер проекта Составил рук.группы Проверил гл. сметчик

Удельные капаложения по стройке, руб., на единицу мошности: при базисном техническом уровне

$$y_{K_{1}} = \frac{\text{Co} \pm \text{Em Ccm}}{\Pi_{2}} = \frac{1027690+30400}{21227,9}$$

$$= 49.8 \text{ pyo/m3.}$$

при новом техническом уровне

M.lllamupo

A. IIyman

ИМП-2.62

Проектный выститут "ЛАТГИПРОПРОМ"
Проект, арх. 16______

Новая техника

ОБЪЕКТНАЯ ВЕДОМОСТЬ

показателей изменения сметной стсимости строительно—монтажных работ и затрат труда объект Мазутонасосная (вариэнт о панельными стенами) $0 \approx 16/80$ мЗ/ч

Производственная мощность, общая площадь, в мкость и т. д. П₂
Общая сметная стоимость С о, тыс. руб. 198,9

В том числа строительно - монтажемих работ С см. тыс. руб. 128,63 Составлена в ценах 1884. Территориальный район 3,2

	Наименование		Расчетный		На единицу изморения сметная затраты			На расчетный объем применения сметная затраты				объем п вка по	- OHABQ	евнерипен сплавлоо оп		
gowocie.	сравниваемых основных конструктивных влементов и видов работ по базисному (БТУ) и новому (НТУ) техняческому	Ед. #3M	062	BM	4	OCTS,		уда,		ЮCTЬ,	TPI	да,	Abosasi	+) yse-	сЭ) СЭ)	мячес— ixtopam iф)
Локальная ве Ж (л. в.			БТУ	нгу	БТУ	нту	БТУ	нту	BTY (rpaφa 4x rpaφy 6)	11TY (грефа 5 x графу7)	BTV (rpaha 4 x rpahy 8)	HTУ (rpaφa S x rpaφyθ)	сметной стон- мости (графа10 кинус графа11)	затрат труда (графа В минус графа В), чэл/дн.	сметной стои- мости, руб	затрат труда, чеп /дн.
Ι	Сопращение кубатуры эдания за счет блокировки и уплотнения технологической схеми		5082	4409	33,62	29,17	0,69	0,69	229300	198900	3430	3024	+30400	+406		
			<u> </u>					L	<u> </u>			<u> </u>	<u></u>			

Hosas Texesxa

Гоноральный проектировших Проектный виститут "ЛАТГИПРОПРОМ"

POORT, ADZ. 16 СВОДНАЯ ВЕДОМОСТЬ

показателей изменения сметной стоимости строительно-монтажных работ,

затрат труда и расхода основных строительных материалов по стройке (очереди строительства) Стройка (очередь строительства) установка мазутоснаожения у = 16/80 мучас

Производственная вощность (общая площаль, емкость и т.п.) П. 1027.69 Общая смятная стоямость стройки (очереди) С, тыс. руб. 944.51 В том числе строительно-монтактых работ С см этыс, руб. _ 1984г. Территориальный район Составлена в пенах

Сняжение + ... **УВЕЛИЧЕНИЕ** Навменование проект-CTAME (EDOLE TOYS). вих справизация -CMBTROS лесома-NOMERTA. 36 CTONLOC-Навы свование 3 arpar разработчиков и кж торчалов. TH CTDOXn/n OUTETOR в нату-ральном B DDIRG-- ROI RABHBETTMOISS труда, CTATE -B Hary --иеденип -енип TORLUO вых труб ральном **МОНИЗ** MERROM MORTAX -SLX pafor TLC. pyu. HMX X ren/ner **THERESORT** всчисла-ECTECHO-ECTECIO-KCARCU6~ круглому лесу, м Ŧ HHB BBR RME HKW Институт Установка мазуто-"Латгипоппом" снабжения Госстроя ЛССР Мазутонасосная +30.4 +406 +6.7 +6.7 17,3 17.3 Резервуар для +2,02 +2.02 мазута Итого +30,4 +406 8.72 +8,72 17.3 17.3

20950-01

							bon lipt i		25.0	J Ans		Форма в		
	Новая техника Проектим институт "ЛАТГИПРОПРОМ" Проект, арх. №													
	ОБЪЕКТНЫЙ ИНФОРМАЦИОННЫЙ СВОРНИК № I год 85 показателей сметной стоимости строительно—монтажных работ, затрат труда и расхода основных строительных материалов Стройка (очередь строительства) Установка мазутоснабжения 0 = 16/80 м3/ч Объект Мазутонасосная (вариант с панельными стенами) Производственная мошность (общая плодядь, емкость и др.) Составлена в денах 18 84г. Территориальный район 3,2 Не еденицу измерения конструктивного элементальная работ													
	Y E		Ī	1	Не едан	RUV KOME	рения ко	HCTDVKT	EBROTO S	ATHEMAR	AG AGRA.	бот		
} □/□	He Te ypobi	Навменование конструктивных элементов адания(сооружения)	Ед. Вэм.	CTON- RMME		сталь(з труб).	роме	Tpy-	пемент	, τ	N K	условия строн-		
	Обозначение тех- инческого уровия БТУ,НТУ	и вилов работ		CMETHAR CTOK- MOCTE (NDRW WE 38TPATH), py6.	затраты тру- па, чеп./пн.	B Harypa- Menom RC- NCREBNE	в приве- денном ис- числения	стальные т бы, т	в натура- льном ис- числения	в приве- дениом ис-	лесоматериа приведеним круглому ле	рактеристики конструкций, примечания		
I	EIY	Блокировка здания и уплот- нение технологической схемы	мЗ	33,62	0,69	0,0079	0,01	-	0,0256					
	ИТУ		мЗ	29,17	0,69	0,0079	0,01	-	0, 0256	0,025	5			
		Составил рук.группы Проверил гл.сметчик		stazi juwan	્રે પૂર્વી	A.Kes M.War								

HMII-2.74*