ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСТ Р ИСО/ТС 10303-1345— 2014

Системы автоматизации производства и их интеграция

ПРЕДСТАВЛЕНИЕ ДАННЫХ ОБ ИЗДЕЛИИ И ОБМЕН ЭТИМИ ДАННЫМИ

Часть 1345 Прикладной модуль Структура определения элемента

ISO/TS 10303-1345:2010-07
Industrial automation systems and integration – Product data representation and exchange – Part 1345: Application module: Item definition structure (IDT)

Издание официальное

Предисловие

- 1 ПОДГОТОВЛЕН Федеральным государственным автономным научным учреждением «Центральный научно-исследовательский и опытно-конструкторский институт робототехники и технической кибернетики» (ЦНИИ РТК) на основе собственного аутентичного перевода на русский язык международного документа, указанного в пункте 4
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 459 «Информационная поддержка жизненного цикла изделий»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 5 сентября 2014 г. № 1002-ст
- 4 Настоящий стандарт идентичен международному документу ИСО/ТС 10303-1345:2010-07 «Системы автоматизации производства и их интеграция. Представление данных об изделии и обмен этими данными. Часть 1345. Прикладной модуль. Структура определения элемента» (ISO/TS 10303-1345:2010-07 «Industrial automation systems and integration Product data representation and exchange Part 1345: Application module: Item definition structure»).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов и документов соответствующие им национальные стандарты Российской Федерации, сведения о которых приведены в дополнительном приложении ДА

5 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в ГОСТ Р 1.0—2012 (раздел 8). Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (gost.ru)

© Стандартинформ, 2015

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1 Область применения	1
2 Нормативные ссылки	1
3 Термины и сокращения	2
4 Информационные требования	2
5 Интерпретированная модель модуля	ε
Приложение А (обязательное)	
Сокращенные наименования объектов ИММ	15
Приложение В (обязательное)	
Регистрация информационных объектов	16
Приложение C (справочное) EXPRESS-G диаграммы ПЭМ	17
Приложение D (справочное) EXPRESS-G диаграммы ИММ	19
Приложение Е (справочное) Машинно-интерпретируемые листинги	20
Приложение F (справочное)	
Руководство по реализации и использованию прикладного модуля	21
Приложение G (справочное) История изменений	25
Приложение ДА (справочное)	
Сведения о соответствии ссылочных международных стандартов	
и документов национальным стандартам Российской Федерации	26
Библиография	27

Введение

Стандарты комплекса ИСО 10303 распространяются на компьютерное представление информации об изделиях и обмен данными об изделиях. Их целью является обеспечение нейтрального механизма, способного описывать изделия на всем протяжении их жизненного цикла. Этот механизм применим не только для обмена файлами в нейтральном формате, но является также основой для реализации и совместного доступа к базам данных об изделиях и организации архивирования.

Стандарты комплекса ИСО 10303 представляют собой набор отдельно издаваемых стандартов (частей). Стандарты данного комплекса относятся к одной из следующих тематических групп: «Методы описания», «Методы реализации», «Методология и основы аттестационного тестирования», «Интегрированные обобщенные ресурсы», «Интегрированные прикладные ресурсы», «Прикладные протоколы», «Комплекты абстрактных тестов», «Прикладные интерпретированные конструкции» и «Прикладные модули». Полный перечень стандартов комплекса ИСО 10303 представлен на сайте http://www.tc184-sc4.org/titles/STEP_Titles.htm. Настоящий стандарт входит в тематическую группу «Прикладные модули». Он подготовлен подкомитетом SC4 «Производственные данные» Технического комитета 184 ИСО «Системы автоматизации производства и их интеграция».

Настоящий стандарт определяет прикладной модуль для представления взаимосвязей между деталями, которые позволяют описать разнообразные структуры. Взаимосвязи могут существовать между определениями деталей, между наличием деталей в составе изделия или между определениями и наличием деталей.

Среди описываемых взаимосвязями структур выделяют иерархические сборочные структуры, представляющие взаимосвязи между сборочной единицей и ее компонентами.

П р и м е ч а н и е - Настоящий стандарт определяет единицу функциональности UOF S3 из ИСО 10303-214.

Пятое издание ИСО/ТС 10303-1345, соответствующее настоящему стандарту, по сравнению с четвертым изданием включает изменения, приведенные в приложении G.

В разделе 1 определены область применения прикладного модуля, его функциональность и относящиеся к нему данные.

В разделе 3 приведены термины, определенные в других стандартах комплекса ИСО 10303 и примененные в настоящем стандарте.

В разделе 4 установлены информационные требования к прикладной предметной области с использованием принятой в ней терминологии.

Графическое представление информационных требований, называемых прикладной эталонной моделью (ПЭМ), приведено в приложении С. Структуры ресурсов интерпретированы, чтобы соответствовать информационным требованиям. Результатом данной интерпретации является интерпретированная модель модуля (ИММ). Данная интерпретация, представленная в 5.1, устанавливает соответствие между информационными требованиями и ИММ. Сокращенный листинг ИММ, представленный в 5.2, определяет интерфейс к ресурсам. Графическое представление сокращенного листинга ИММ приведено в приложении D.

Имя типа данных в языке EXPRESS может использоваться для ссылки на сам тип данных либо на экземпляр данных этого типа. Различие в использовании обычно понятно из контекста. Если существует вероятность неоднозначного толкования, то в текст включают фразу «объектный тип данных» либо «экземпляр(ы) объектного типа данных».

Двойные кавычки ("...") обозначают цитируемый текст, одинарные кавычки ('...') – значения конкретных текстовых строк.

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Системы автоматизации производства и их интеграция ПРЕДСТАВЛЕНИЕ ДАННЫХ ОБ ИЗДЕЛИИ И ОБМЕН ЭТИМИ ДАННЫМИ Часть 1345

Прикладной модуль. Структура определения элемента

Industrial automation systems and integration. Product data representation and exchange.

Part 1345. Application module. Item definition structure

Дата введения — 2015—08—01

1 Область применения

Настоящий стандарт определяет прикладной модуль «Структура определения элемента». Требования настоящего стандарта распространяются на:

- определение структур, описываемых взаимосвязями между определениями деталей, наличием деталей и между определениями и наличием деталей;
 - взаимосвязи между сборочной единицей и ее компонентами;
- положения, относящиеся к области применения прикладного модуля «Задание применяемости», определенного в ИСО/ТС 10303-1059;
- положения, относящиеся к области применения прикладного модуля «Наличие детали», определенного в ИСО/ТС 10303-1715;
- положения, относящиеся к области применения прикладного модуля «Структура изделия», определенного в ИСО/ТС 10303-1134.

Требования настоящего стандарта не распространяются на:

- комплекты деталей;
- описание вариантов конфигурации собранных изделий.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие международные стандарты и документы (для датированных ссылок следует использовать только указанное издание, для недатированных ссылок – последнее издание указанного документа, включая все поправки к нему):

ИСО 10303-1 Системы автоматизации производства и их интеграция. Представление данных об изделии и обмен этими данными. Часть 1. Общие представления и основополагающие принципы (ISO 10303-1, Industrial automation systems and integration – Product data representation and exchange – Part 1: Overview and fundamental principles)

ИСО 10303-11 Системы автоматизации производства и их интеграция. Представление данных об изделии и обмен этими данными. Часть 11. Методы описания. Справочное руководство по языку EXPRESS (ISO 10303-11, Industrial automation systems and integration – Product data representation and exchange – Part 11: Description methods: The EXPRESS language reference manual)

ИСО 10303-41 Системы автоматизации производства и их интеграция. Представление данных об изделии и обмен этими данными. Часть 41. Интегрированные обобщенные ресурсы. Основы описания и поддержки изделий (ISO 10303-41, Industrial automation systems and integration – Product data representation and exchange – Part 41: Integrated generic resource: Fundamentals of product description and support)

ИСО/ТС 10303-1059 Системы автоматизации производства и их интеграция. Представление данных об изделии и обмен этими данными. Часть 1059. Прикладной модуль. Задание применяемости (ISO/TS 10303-1059, Industrial automation systems and integration – Product data representation and exchange – Part 1059: Application module: Effectivity application)

ИСО/ТС 10303-1134 Системы автоматизации производства и их интеграция. Представление данных об изделии и обмен этими данными. Часть 1134. Прикладной модуль. Структура изделия (ISO/TS 10303-1134, Industrial automation systems and integration – Product data representation and exchange – Part 1134: Application module: Product structure)

ИСО/ТС 10303-1715 Системы автоматизации производства и их интеграция. Представление данных об изделии и обмен этими данными. Часть 1715. Прикладной модуль. Наличие детали

(ISO/TS 10303-1715, Industrial automation systems and integration – Product data representation and exchange – Part 1715: Application module: Part occurrence)

3 Термины и сокращения

3.1 Термины, определенные в ИСО 10303-1

В настоящем стандарте применены следующие термины:

- приложение (application);
- прикладная интерпретированная конструкция (application interpreted construct):
- прикладной модуль (application module):
- прикладной объект (application object);
- прикладной протокол (application protocol);
- прикладная эталонная модель (application reference model);
- общие ресурсы (common resources);
- данные (data);
- информация (information);
- интегрированный ресурс (integrated resource);
- изделие (product):
- данные об изделии (product data):
- интерпретированная модель модуля (module interpreted model).

3.2 Сокращения

В настоящем стандарте применены следующие сокращения:

ПМ - прикладной модуль (application module; AM);

ПЭМ – прикладная эталонная модель (application reference model; ARM);

ИММ – интерпретированная модель модуля (module interpreted model; MIM);

URL – унифицированный указатель ресурса (uniform resource locator).

4 Информационные требования

В данном разделе определены информационные требования к прикладному модулю «Структура определения элемента», представленные в форме ПЭМ.

Примечания

- 1 Графическое представление информационных требований приведено в приложении С.
- 2 Спецификация отображения определена в 5.1. Она устанавливает, как удовлетворяются информационные требования при использовании общих ресурсов и конструкций, определенных в схеме ИММ или импортированных в схему ИММ данного прикладного модуля.

В данном разделе определены информационные требования, которым должны соответствовать реализации, использующие язык EXPRESS, определенный в ИСО 10303-11. Ниже представлен фрагмент EXPRESS-спецификации, с которого начинается описание схемы Item_definition_structure_arm.

EXPRESS-спецификация:

```
*)
SCHEMA Item_definition_structure_arm;
(*
```

4.1 Необходимые ПЭМ прикладных модулей

Приведенные ниже операторы языка EXPRESS определяют элементы, импортированные из ПЭМ других прикладных модулей.

```
*)
USE FROM Effectivity_application_arm; -- ISO/TS 10303-1059
USE FROM Part_occurrence_arm; -- ISO/TS 10303-1715
USE FROM Product_structure_arm; -- ISO/TS 10303-1134
(*
2
```

Примечания

1 Схемы, ссылки на которые приведены выше, определены в следующих документах комплекса ИСО 10303:

Effectivity_application_arm - MCO/TC 10303-1059; Part_occurrence_arm - MCO/TC 10303-1715; Product structure arm - MCO/TC 10303-1134.

2 Графическое представление схемы Item definition structure arm приведено в приложении С, рисунки С.1 и С.2.

4.2 Определение типа данных ПЭМ

В данном подразделе определен тип данных ПЭМ прикладного модуля «Структура определения элемента».

4.2.1 Тип данных effectivity_item_for_replacement

Тип данных effectivity_item_for_replacement является расширением типа данных effectivity_item. В его список альтернативных типов данных добавлен тип данных Part definition relationship.

EXPRESS-спецификация:

4.3 Определение объектов ПЭМ

В данном подразделе определены объекты ПЭМ прикладного модуля «Структура определения элемента». Объект ПЭМ является простейшим неделимым элементом с характеризующими его атрибутами и представляет собой уникальное понятие прикладной области.

4.3.1 Объект Assembled_part_association

Объект Assembled_part_association является подтипом объектов Assembly_ component_relationship и Part_occurrence_definition_relationship, который связывает объект Assembly_definition с наличием одного из его компонентов.

Примечание – Компонент также может быть сборочной единицей.

EXPRESS-спецификация:

```
*)
ENTITY Assembled_part_association
   SUBTYPE OF (Assembly_component_relationship,
   Part_occurrence_definition_relationship);
   SELF\Product_occurrence_definition_relationship.relating_view :
   Assembly_definition;
END_ENTITY;
(*
```

Определение атрибута

relating_view – объект Assembly_definition, который может иметь подчиненные компоненты. 4.3.2 Объект Assembly_definition

Объект Assembly_definition является подтипом объекта Part_view_definition, характеризующим версию детали, которая может содержать несколько компонентов.

```
*)
ENTITY Assembly_definition
   SUBTYPE OF (Part_view_definition);
END_ENTITY;
(*
```

4.3.3 Объект Effectivity controlled assembly definition

Объект Effectivity_controlled_assembly_definition является подтипом объекта Assembly_definition, в котором все объекты Part_occurrence, связанные с ним с помощью объекта View_definition_usage (либо с помощью подтипа данного объекта), должны иметь соответствующий объект Manufacturing_configuration для того, чтобы быть допустимыми для данной сборочной единицы.

EXPRESS-спецификация:

```
*)
ENTITY Effectivity_controlled_assembly_definition
   SUBTYPE OF (Assembly_definition);
END_ENTITY;
(*
```

4.3.4 Объект Geometrical_relationship

Объект Geometrical_relationship является подтипом объекта Part_definition_ relationship, который определяет отношение между двумя деталями. При этом форма и расположение первой детали являются производными от формы и расположения второй детали. Оба экземпляра объекта Part_view_definition, связанные с помощью данного отношения, должны быть определениями разных деталей. Другие характеристики, кроме формы, не затрагиваются данным отношением и поэтому не передаются от второго объекта Part_view_definition к первому объекту Part_view_definition.

Пример – На рисунке 1 показан пример геометрического отношения, определяемого объектом Geometrical_relationship: левое крыло автомобиля симметрично правому крылу. Данное плоское зеркальное преобразование определяет расположение левого крыла относительно расположения правого крыла.

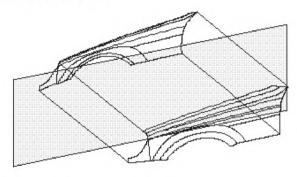


Рисунок 1 - Симметричные детали

```
*)
ENTITY Geometrical_relationship
  SUBTYPE OF (Part_definition_relationship);
  definition_placement :
   Geometric_model_relationship_with_transformation;
DERIVE
   SELF\View_definition_relationship.relation_type : STRING :=
   'geometrical relationship';
END_ENTITY;
(*
```

Определения атрибутов

definition_placement — экземпляр объекта Geometric_model_relationship_with_ transformation, определяющий как представление формы первого объекта Part_view_ definition получается из представления формы второго объекта Part_view_definition. «Экземпляр шаблона» определяет преобразование, применяемое к геометрической модели, представляющей форму второго объекта Part_view_definition, для того, чтобы получить форму и расположение первого объекта Part_view_definition. Допустимыми преобразованиями являются перемещение, вращение и зеркальное отображение, а недопустимым преобразованием — масштабирование;

relation_type – значением производного атрибута relation_type является 'geometrical relationship (геометрическое отношение)'.

4.3.5 Объект Part definition relationship

Объект Part_definition_relationship является подтипом объекта View_definition_ relationship, который связывает два экземпляра объекта Part_view_definition. Смысл данного отношения определяет унаследованный атрибут relation_type. В соответствующих случаях должны использоваться следующие значения атрибута relation_type:

'tool part relationship (взаимосвязь между деталью и инструментом)': первый объект **Part_view_definition** определяет инструмент, используемый для изготовления детали, заданной вторым объектом **Part_view_definition**;

'definition_replacement (замена определения)': первый объект **Part_view_ definition** заменяется вторым объектом **Part_view_definition**. В данном случае объект **Part_definition_relationship** определяет условия применимости данной замены.

EXPRESS-спецификация:

```
*)
ENTITY Part_definition_relationship
  SUBTYPE OF (View_definition_relationship);
  SELF\View_definition_relationship.relating_view :
Part_view_definition;
  SELF\View_definition_relationship.related_view
: Part_view_definition;
END_ENTITY;
(*
```

Определения атрибутов

relating_view – атрибут relating_view должен быть представлен объектом Part_view_definition; related_view – атрибут related_view должен быть представлен объектом Part_view_definition.

4.4 Определение правил ПЭМ

В данном подразделе определены правила ПЭМ прикладного модуля «Структура определения элемента».

4.4.1 Правило definition replacement requires effectivity assignment

Правило definition_replacement_requires_effectivity_assignment ограничивает любой экземпляр объекта Part_definition_relationship, атрибут relation_type которого имеет значение 'definition replacement', в том, что на него должен ссылаться через свой атрибут items по крайней мере один экземпляр объекта Effectivity_assignment, задающий условия применимости данной замены.

```
*)
RULE definition_replacement_requires_effectivity_assignment FOR
(Part_definition_relationship);
WHERE
   WR1: SIZEOF( QUERY( pdr <* Part_definition_relationship |
    (pdr\View_definition_relationship.relation_type = 'definition
   replacement') AND (SIZEOF(
   USEDIN(pdr,'ITEM_DEFINITION_STRUCTURE_ARM.EFFECTIVITY_ASSIGNMENT.
ITEMS')</pre>
```

```
) = 0) )) = 0;
END_RULE;
(*
```

Определение аргумента

Part_definition_relationship – множество всех экземпляров объекта Part_ definition_relationship.

Формальное утверждение

WR1 – не должно существовать ни одного экземпляра объекта Part_definition_ relationship, атрибут relation_type которого имеет значение 'definition replacement', на который бы не ссылался через свой атрибут items по крайней мере один экземпляр объекта Effectivity_assignment.

4.4.2 Правило mandatory_part_occurrence_definition_relationship

Правило mandatory_part_occurrence_definition_relationship определяет, что при описании сборочных взаимосвязей между деталями должен быть создан экземпляр объекта Assembled_part_association, являющегося подтипом объекта Assembly_____ component_relationship.

EXPRESS-спецификация:

Определение аргумента

Assembly_component_relationship – множество всех экземпляров объекта Assembly_component_relationship.

Формальное утверждение

WR1 – не должно существовать ни одного экземпляра объекта Assembly_ component_relationship, унаследованный атрибут relating_view которого представлен объектом Part_view_definition, который бы не являлся также подтипом объекта Assembled_part_association.

```
*)
END_SCHEMA; -- Item_definition_structure_arm
(*
```

5 Интерпретированная модель модуля

5.1 Спецификация отображения

В настоящем стандарте термин «прикладной элемент» обозначает любой объектный тип данных, определенный в разделе 4, любой из его явных атрибутов и любое ограничение на подтипы. Термин «элемент ИММ» обозначает любой объектный тип данных, определенный в 5.2 или импортированный с помощью оператора USE FROM из другой EXPRESS-схемы, любой из его атрибутов и

любое ограничение на подтипы, определенное в 5.2 или импортированное с помощью оператора USE FROM.

В данном подразделе представлена спецификация отображения, определяющая, как каждый прикладной элемент, описанный в разделе 4 настоящего стандарта, отображается на один или несколько элементов ИММ (см. 5.2).

Спецификация отображения для каждого прикладного элемента определена ниже в отдельном пункте. Спецификации отображения атрибутов объекта ПЭМ определены в подпунктах пункта, содержащего спецификацию отображения данного объекта. Каждая спецификация отображения содержит до пяти секций.

Секция «Заголовок» содержит:

- наименование рассматриваемого объекта ПЭМ или ограничение на подтипы либо
- наименование атрибута рассматриваемого объекта ПЭМ, если данный атрибут ссылается на тип, не являющийся объектным типом данных или типом SELECT, который содержит или может со-держать объектные типы данных, либо
- составное выражение вида «связь объекта <наименование объекта ПЭМ> с объектом <тип данных, на который дана ссылка>, представляющим атрибут <наименование атрибута>», если данный атрибут ссылается на тип данных, являющийся объектным типом данных или типом SELECT, который содержит или может содержать объектные типы данных.

Секция «Элемент ИММ» в зависимости от рассматриваемого прикладного элемента содержит:

- наименование одного или более объектных типов данных ИММ:
- наименование атрибута объекта ИММ, представленное в виде синтаксической конструкции <-наименование объекта>.<наименование атрибута>, если рассматриваемый атрибут ссылается на тип, не являющийся объектным типом данных или типом SELECT, который содержит или может содержать объектные типы данных:
- ключевое слово РАТН, если рассматриваемый атрибут объекта ПЭМ ссылается на объектный тип данных или на тип SELECT, который содержит или может содержать объектные типы данных;
- ключевое слово IDENTICAL MAPPING, если оба прикладных объекта, присутствующие в прикладном утверждении, отображаются на тот же самый экземпляр объектного типа данных ИММ;
- синтаксическую конструкцию /SUPERTYPE(<наименование супертипа>)/, если рассматриваемый объект ПЭМ отображается как его супертип;
- одну или более конструкций /SUBTYPE(<наименование подтипа>)/, если отображение рассматриваемого объекта ПЭМ является объединением отображений его подтипов.

Если отображение прикладного элемента содержит более одного элемента ИММ, то каждый из этих элементов ИММ представлен в отдельной строке спецификации отображения, заключенной в круглые или квадратные скобки.

Секция «Источник» содержит:

- обозначение стандарта ИСО, в котором определен данный элемент ИММ, для тех элементов ИММ, которые определены в общих ресурсах;
- обозначение настоящего стандарта для тех элементов ИММ, которые определены в схеме ИММ настоящего стандарта.

Если в секции «Элемент ИММ» содержатся ключевые слова PATH или IDENTICAL MAPPING, то данную секцию опускают.

Секция «Правила» содержит наименование одного или более глобальных правил, которые применяются к совокупности объектных типов данных ИММ, перечисленных в секции «Элемент ИММ» или «Ссылочный путь». Если никакие правила не применяются, то данную секцию опускают.

За ссылкой на глобальное правило может следовать ссылка на подпункт, в котором определено данное правило.

Секция «Ограничение» содержит наименование одного или более ограничений на подтипы, которые применяются к совокупности объектных типов данных ИММ, перечисленных в секции «Элемент ИММ» или «Ссылочный путь». Если ограничения на подтипы отсутствуют, то данную секцию опускают.

За ссылкой на ограничение подтипа может следовать ссылка на подпункт, в котором определено данное ограничение.

Секция «Ссылочный путь» содержит:

- ссылочный путь к супертипам в общих ресурсах для каждого элемента ИММ, определенного в настоящем стандарте;
- спецификацию взаимосвязей между элементами ИММ, если отображение прикладного элемента требует связать экземпляры нескольких объектных типов данных ИММ. В этом случае в каждой строке ссылочного пути указывают роль элемента ИММ по отношению к ссылающемуся на него элементу ИММ или к следующему по ссылочному пути элементу ИММ.

В выражениях, определяющих ссылочные пути и ограничения между элементами ИММ, применяют следующие условные обозначения:

- [] в квадратные скобки заключают несколько элементов ИММ или частей ссылочного пути, которые требуются для обеспечения соответствия информационному требованию;
- () в круглые скобки заключают несколько элементов ИММ или частей ссылочного пути, которые являются альтернативными в рамках отображения для обеспечения соответствия информационному требованию;
- { } в фигурные скобки заключают фрагмент, ограничивающий ссылочный путь для обеспечения соответствия информационному требованию;
 - <> в угловые скобки заключают один или более необходимых ссылочных путей;
 - между вертикальными линиями помещают объект супертипа;
- -> атрибут, наименование которого предшествует символу ->, ссылается на объектный или выбираемый тип данных, наименование которого следует после этого символа;
- атрибут объекта, наименование которого следует после символа <-, ссылается на объектный или выбираемый тип данных, наименование которого предшествует этому символу;
- [i] атрибут, наименование которого предшествует символу [i], является агрегированной структурой; ссылка указывает на любой элемент данной структуры;
- [n] атрибут, наименование которого предшествует символу [n], является упорядоченной агрегированной структурой; ссылка указывает на *n*-й элемент данной структуры;
- => объект, наименование которого предшествует символу =>, является супертипом объекта, наименование которого следует после этого символа;
- объект, наименование которого предшествует символу <-, является подтипом объекта, наименование которого следует после этого символа;</p>
- = строковый (STRING), выбираемый (SELECT) или перечисляемый (ENUMERATION) тип данных ограничен выбором или значением;
 - выражение для ссылочного пути продолжается на следующей строке;
- * один или более экземпляров взаимосвязанных типов данных могут быть объединены в древовидную структуру. Путь между объектом взаимосвязи и связанными с ним объектами заключают в фигурные скобки;
 - -- последующий текст является комментарием или ссылкой на раздел;
- *> выбираемый или перечисляемый тип данных, наименование которого предшествует символу *>, расширяется до выбираемого или перечисляемого типа данных, наименование которого следует за этим символом;
- выбираемый или перечисляемый тип данных, наименование которого предшествует символу <*, является расширением выбираемого или перечисляемого типа данных, наименование которого следует за этим символом:</p>
- !{ } заключенный в фигурные скобки фрагмент обозначает отрицательное ограничение на отображение.

Определение и использование шаблонов отображения не поддерживаются в настоящей версии прикладных модулей, однако поддерживается использование предопределенных шаблонов /SUBTYPE/ и /SUPERTYPE/.

5.1.1 Объект Assembly_definition

Элемент ИММ: product_definition

Источник: ИСО 10303-41

Правила: restrict assembly category

Ссылочный путь: product_definition <- product_definition_context_association.definition

product_definition_context_association

{product_definition_context_association.role -> prod-

uct_definition_context_role

product definition context role.name = 'part definition type'}

product_definition_context_association.frame_of_reference -> prod-

uct definition context

product definition context <= application context element

application context element.name = 'assembly definition'

5.1.2 Объект Assembled_part_association

Элемент ИММ: assembly component usage

Источник: ИСО 10303-44

5.1.2.1 Связь объекта Assembled_part_association с объектом Assembly definition, представляющим атрибут SELF\Product occurrence definition relationship.relating view

Элемент ИММ: РАТН

Ссылочный путь: assembly component usage <= product definition usage <= prod-

uct definition relationship

product definition relationship.relating product definition -> prod-

uct_definition

product_definition <- product_definition_context_association.definition</pre>

product_definition_context_association

{product_definition_context_association.frame_of_reference -> prod-

uct_definition_context <= application_context_element
application_context_element.name = 'assembly definition'}</pre>

{product_definition_context_association.role -> prod-

uct_definition_context_role

product_definition_context_role.name = 'part definition type'}

5.1.3 Объект Effectivity_assignment

Объект Effectivity_assignment определен в прикладном модуле «Задание применяемости». Данная спецификация отображения расширяет отображение объекта Effectivity_assignment за счет включения утверждений, определенных в прикладном модуле «Структура определения элемента».

5.1.3.1 Связь объекта Effectivity_assignment с объектом Part_definition_ relationship, представляющим атрибут items

Элемент ИММ: РАТН

Ссылочный путь: applied_effectivity_assignment.items[i] -> effectivity_item

effectivity item *> effectivity item for replacement

effectivity_item_for_replacement = product_definition_relationship

5.1.4 Объект Effectivity controlled assembly definition

Элемент ИММ:product_definitionИсточник:ИСО 10303-41

Правила: restrict_assembly_category

Ссылочный путь: {product definition <-

product definition context association.definition

product_definition_context_association

{product_definition_context_association.role ->

product definition context role

product_definition_context_role.name = 'part definition type'}
product_definition_context_association.frame_of_reference ->

product_definition_context

product_definition_context <=
application_context_element
application_context_element.name = 'effectivity controlled assembly
definition'}</pre>

5.1.5 Объект Geometrical relationship

Элемент ИММ: product_definition_relationship

Источник: ИСО 10303-41

Ссылочный путь: {product definition relationship.name = 'geometrical relationship'}

5.1.5.1 Связь объекта Geometrical_relationship с объектом Geometric_model_ relationship_with_transformation, представляющим атрибут definition_placement

Ссылочный путь: product definition relationship

{product_definition_relationship.name = 'geometrical relationship' }
[product_definition_relationship.relating_product_definition -> product_definition

characterized_product_definition = product_definition characterized_definition = characterized_product_definition characterized_definition <- property_definition.definition property_definition

{property_definition => product_definition_shape}

represented_definition = property_definition

 $represented_definition <- property_definition_representation.definition$

property_definition_representation

 $\{property_definition_representation => shape_definition_representation\}$

property_definition_representation.used_representation -> representa-

tion <- {representation => shape_representation}

representation relationship.rep 2]

[product_definition_relationship.related_product_definition -> prod-

uct_definition

characterized product definition = product definition

characterized definition = characterized product definition

characterized_definition <- property_definition.definition

property_definition

{property_definition => product_definition_shape}

represented_definition = property_definition

represented_definition <- property_definition_representation.definition

property_definition_representation

{property_definition_representation => shape_definition_representation}

property_definition_representation.used_representation -> representa-

tion <- {representation => shape_representation}

representation_relationship.rep_1]

[characterized_product_definition = product_definition_relationship

characterized definition = characterized product definition

characterized definition <- property definition.definition

property definition => product definition shape <- con-

text dependent shape representation.represented product relation

context_dependent_shape_representation

context dependent shape representation.representation relation ->

shape_representation_relationship <=]

representation_relationship => representation relationship with transformation

5.1.6 Объект Part_definition_relationship

Элемент ИММ: product_definition_relationship

Источник: ИСО 10303-41

Правила: restrict_product_definitions_for_part_definition_relationship prod-

uct_definition_replacement_requires_effectivity_assignment

5.1.6.1 Связь объекта **Part_definition_relationship** с объектом **Part_view_definition**, представляющим атрибут **SELF\View_definition_relationship.relating_view**

Элемент ИММ: РАТН

Ссылочный путь: product_definition_relationship.relating_product_definition -> prod-

uct definition

{product_definition.frame_of_reference -> product_definition_context

product definition context <= application context element

application context element.name = 'part definition'}

5.1.6.2 Связь объекта Part_definition_relationship с объектом Part_view_definition, представляющим атрибут SELF\View_definition_relationship.related_view

Элемент ИММ: РАТН

Ссылочный путь: product_definition_relationship.related_product_definition -> prod-

uct definition

{product_definition.frame_of_reference -> product_definition_context

product definition context <= application context element

application context element.name = 'part definition'}

5.2 Сокращенный листинг ИММ на языке EXPRESS

В данном подразделе определена EXPRESS-схема, полученная из таблицы отображений. В данной схеме использованы элементы общих ресурсов или других прикладных модулей и определены конструкции на языке EXPRESS, относящиеся к области применения настоящего стандарта.

Также в данном подразделе определены ИММ для прикладного модуля «Структура определения элемента» и модификации, которым подвергаются конструкции, импортированные из общих ресурсов.

При использовании в данной схеме конструкций, определенных в общих ресурсах или в прикладных модулях, должны быть учтены следующие ограничения:

- использование объекта, являющегося супертипом, не означает применения любой из его конкретизаций, если только данная конкретизация также не импортирована в схему ИММ;
- использование типа SELECT не означает применения любого из указанных в нем типов данных, если только данный тип также не импортирован в схему ИММ.

EXPRESS-спецификация:

```
*)
SCHEMA Item definition structure mim;
USE FROM Effectivity application mim; -- ISO/TS 10303-1059
USE FROM Part occurrence mim; -- ISO/TS 10303-1715
USE FROM Product structure mim; -- ISO/TS 10303-1134
REFERENCE FROM product definition schema -- ISO 10303-41
  (categories of product);
    Примечния
    1 Схемы, ссылки на которые приведены выше, определены в следующих стандартах и документах ком-
плекса ИСО 10303:
     Effectivity_application_mim
                             - ИСО/ТС 10303-1059;
     Part_occurrence_mim
                             - ИСО/ТС 10303-1715;
     Product_structure_mim
                             - ИСО/ТС 10303-1134:
     product definition schema
                             – ИСО 10303-41.
    2 Графическое представление схемы Item_definition_structure_mim приведено в приложении D, рисунки
D.1 и D.2.
```

5.2.1 Определение типа данных ИММ

В данном пункте определен тип данных **ИММ** прикладного модуля «Структура определения элемента».

5.2.1.1 Тип данных effectivity item_for_replacement

Тип данных effectivity_item_for_replacement является расширением типа данных effectivity_item. В его список альтернативных типов данных добавлен тип данных product_definition_relationship.

EXPRESS-спецификация:

```
*)
TYPE effectivity_item_for_replacement = SELECT BASED_ON
effectivity_item WITH
     (product_definition_relationship);
END_TYPE;
(*
```

5.2.2 Определение правил ИММ

В данном пункте определены правила ИММ для прикладного модуля «Структура определения элемента».

5.2.2.1 Правило product_definition_replacement_requires_effectivity_assignment

Правило product_definition_replacement_requires_effectivity_assignment ограничивает любой экземпляр объекта product_definition_relationship, атрибут name которого имеет значение 'definition replacement (замена определения)', в том, что на него должен ссылаться через свой атрибут items по крайней мере один экземпляр объекта applied_effectivity_ assignment, задающего условия применимости данной замены.

```
*)
RULE product_definition_replacement_requires_effectivity_assignment
FOR
(product_definition_relationship);
```

```
WHERE
   WR1: SIZEOF( QUERY( pdr <* product_definition_relationship |
    (pdr.name = 'definition replacement') AND (SIZEOF( USEDIN(pdr,

'ITEM_DEFINITION_STRUCTURE_MIM.APPLIED_EFFECTIVITY_ASSIGNMENT.ITEMS'))
   = 0) )) = 0;
END_RULE;
(*</pre>
```

Определение аргумента

product_definition_relationship — множество всех экземпляров объекта product_ definition_relationship.

Формальное утверждение

WR1 – не должно существовать ни одного экземпляра объекта product_definition_ relationship, атрибут name которого имеет значение 'definition replacement', на который бы не ссылался через свой атрибут items по крайней мере один экземпляр объекта applied_effectivity_assignment.

5.2.2.2 Правило restrict_assembly_category

Правило restrict_assembly_category ограничивает любой экземпляр объекта product_ definition, наименованием атрибута frame_of_reference которого является 'assembly definition (определение сборочной единицы)', в том, что он должен быть определением изделия (объекта product), относящегося к категории 'assembly (сборочная единица)'.

EXPRESS-спецификация:

```
*)
RULE restrict assembly category FOR
(product definition);
LOCAL
      assembly definitions: SET OF product definition := [];
    END LOCAL:
      assembly definitions := QUERY( pd <* product definition |
        SIZEOF ( QUERY ( pdca <* USEDIN ( pd,
        'ITEM DEFINITION STRUCTURE MIM.PRODUCT DEFINITION CONTEXT
        ASSOCIATION.DEFINITION')
        pdca.frame of reference.name= 'assembly definition')) > 0
);
WHERE
  WR1: SIZEOF( QUERY( pd <* assembly definitions | NOT ('assembly'
  categories of product(pd.formation.of product)) )) = 0;
END RULE;
(*
```

Определение аргумента

product_definition - множество всех экземпляров объекта product_definition.

Формальное утверждение

WR1 — не должно существовать ни одного экземпляра объекта product_definition, наименованием атрибута frame_of_reference которого является 'assembly definition', который бы не являлся определением изделия (объекта product), относящегося к категории 'assembly'.

5.2.2.3 Правило restrict product definitions for part definition relationship

Правило restrict_product_definitions_for_part_definition_relationship ограничивает любой экземпляр объекта product_definition_relationship, атрибут name которого имеет значение 'geometrical relationship (геометрическое отношение)' или 'definition replacement (замена определения)', в том, что он должен устанавливать отношение между двумя экземплярами объекта product_definition, наименова-

нием атрибута **frame_of_reference** которого является 'part definition (определение детали)'. EXPRESS-спецификация:

Определение аргумента

product_definition_relationship — множество всех экземпляров объекта product_ definition_relationship.

Формальное утверждение

WR1 – не должно существовать ни одного экземпляра объекта product_definition_ relationship, атрибут name которого имеет значение 'geometrical relationship' или 'definition replacement', который бы не устанавливал отношение между двумя экземплярами объекта product_definition, наименованием атрибута frame_of_reference которого является 'part definition'.

```
*)
END_SCHEMA; -- Item_definition_structure_mim
(*
```

Приложение А (обязательное)

Сокращенные наименования объектов ИММ

Наименования объектов, использованных в настоящем стандарте, определены в других стандартах и документах комплекса ИСО 10303, указанных в разделе 2.

Требования к использованию сокращенных наименований установлены в стандартах тематической группы «Методы реализации» комплекса ИСО 10303.

Приложение В (обязательное)

Регистрация информационных объектов

В.1 Обозначение документа

Для однозначного обозначения информационного объекта в открытой системе настоящему стандарту присвоен следующий идентификатор объекта:

{ iso standard 10303 part(1345) version(5) }

Смысл данного обозначения установлен в ИСО/МЭК 8824-1 и описан в ИСО 10303-1.

В.2 Обозначение схем

В.2.1 Обозначение схемы Item definition structure arm

Для однозначного обозначения в открытой информационной системе схеме **Item_definition_structure_arm**, установленной в настоящем стандарте, присвоен следующий идентификатор объекта:

{ iso standard 10303 part(1345) version(5) schema(1) item-definition-structure-arm(1) }

Смысл данного обозначения установлен в ИСО/МЭК 8824-1 и описан в ИСО 10303-1. **B.2.2 Обозначение схемы Item_definition_structure_mim**

Для однозначного обозначения в открытой информационной системе схеме **Item_definition_structure_mim**, установленной в настоящем стандарте, присвоен следующий идентификатор объекта:

{ iso standard 10303 part(1345) version(5) schema(1) item-definition-structure-mim(2) }

Смысл данного обозначения установлен в ИСО/МЭК 8824-1 и описан в ИСО 10303-1.

Приложение С (справочное)

EXPRESS-G диаграммы ПЭМ

Диаграммы на рисунках С.1 и С.2 представляют в графической форме сокращенный листинг ПЭМ на языке EXPRESS, определенный в разделе 4. В диаграммах использована графическая нотация EXPRESS-G языка EXPRESS.

- В данном приложении приведены два разных представления ПЭМ прикладного модуля «Структура определения элемента»:
- представление на уровне схем отображает импорт конструкций, определенных в схемах ПЭМ других прикладных модулей, в схему ПЭМ данного прикладного модуля с помощью операторов USE FROM:
- представление на уровне объектов отображает конструкции на языке EXPRESS, определенные в схеме ПЭМ данного прикладного модуля, и ссылки на импортированные конструкции, которые конкретизированы или на которые имеются ссылки в конструкциях схемы ПЭМ рассматриваемого прикладного модуля.

Примечание— Оба представления являются неполными. Представление на уровне схем не отображает схем ПЭМ модулей, которые импортированы косвенным образом. Представление на уровне объектов не отображает импортированных конструкций, которые не конкретизированы или на которые отсутствуют ссылки в конструкциях схемы ПЭМ рассматриваемого прикладного модуля.

Графическая нотация EXPRESS-G определена в ИСО 10303-11, приложение D.

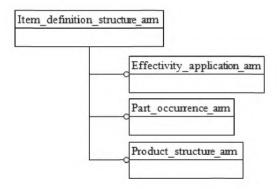


Рисунок С.1 – Представление ПЭМ на уровне схем в формате EXPRESS-G (диаграмма 1 из 1)

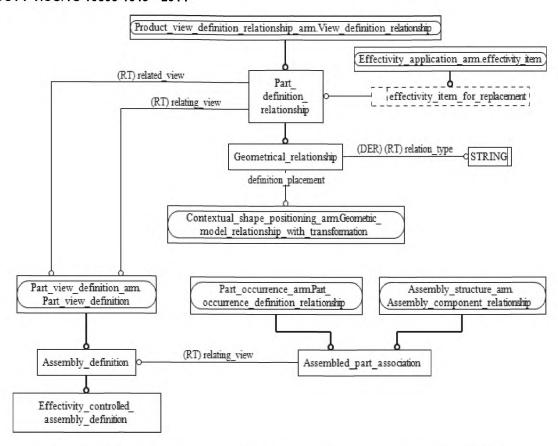


Рисунок С.2 – Представление ПЭМ на уровне объектов в формате EXPRESS-G (диаграмма 1 из 1)

Приложение D (справочное)

EXPRESS-G диаграммы ИММ

Диаграммы на рисунках D.1 и D.2 представляют в графической форме сокращенный листинг ИММ на языке EXPRESS, определенный в 5.2. В диаграммах использована графическая нотация EXPRESS-G языка EXPRESS.

- В данном приложении приведены два разных представления ИММ прикладного модуля «Структура определения элемента»:
- представление на уровне схем отображает импорт конструкций, определенных в схемах ИММ других прикладных модулей или в схемах общих ресурсов, в схему ИММ данного прикладного модуля с помощью операторов USE FROM;
- представление на уровне объектов отображает конструкции на языке EXPRESS, определенные в схеме ИММ данного прикладного модуля, и ссылки на импортированные конструкции, которые конкретизированы или на которые имеются ссылки в конструкциях схемы ИММ рассматриваемого прикладного модуля.

Примечание — Оба представления являются неполными. Представление на уровне схем не отображает схем ИММ модулей, которые импортированы косвенным образом. Представление на уровне объектов не отображает импортированных конструкций, которые не конкретизированы или на которые отсутствуют ссылки в конструкциях схемы ИММ рассматриваемого прикладного модуля.

Графическая нотация EXPRESS-G определена в ИСО 10303-11, приложение D.

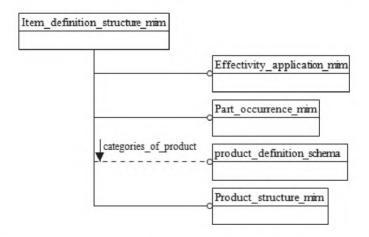


Рисунок D.1 – Представление ИММ на уровне схем в формате EXPRESS-G (диаграмма 1 из 1)

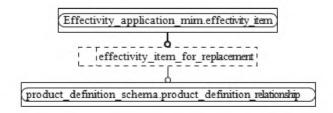


Рисунок D.2 – Представление ИММ на уровне объектов в формате EXPRESS-G (диаграмма 1 из 1)

Приложение E (справочное)

Машинно-интерпретируемые листинги

В данном приложении приведены ссылки на сайты, на которых представлены листинги наименований объектов на языке EXPRESS и соответствующих сокращенных наименований, установленных или на которые приведены ссылки в настоящем стандарте. На данных сайтах также представлены листинги всех EXPRESS-схем, определенных в настоящем стандарте, без комментариев и другого поясняющего текста. Эти листинги приведены в машинно-интерпретируемой форме и могут быть получены по следующим адресам URL:

сокращенные наименования: http://www.tc184-sc4.org/Short_Names/;

EXPRESS: http://www.tc184-sc4.org/EXPRESS/ .

Если доступ к этим сайтам невозможен, следует обратиться в центральный секретариат ИСО или непосредственно в секретариат ИСО ТК 184/ПК 4 по адресу электронной почты: sc4sec@tc184-sc4.org.

Примечание — Информация, представленная в машинно-интерпретированном виде по указанным выше адресам URL, является справочной. Обязательным является текст настоящего стандарта.

Приложение F (справочное)

Руководство по реализации и использованию прикладного модуля

F.1 Структура изделия

Объект product_definition, атрибут frame_of_reference которого имеет наименование 'part definition (определение детали)', является дефинициональным представлением детали, накапливая у себя данные о детали, относящиеся к конкретной прикладной области или стадии жизненного цикла независимо от ее использования, как о компоненте некоторой другой детали. Отношения между объектами product_definition, наименованием атрибута frame_of_reference которых является 'part definition', представляют собой основные элементы, используемые для определения подробных иерархических структур изделий.

Отношение, заданное объектом assembly_component_usage, представляет собой общее сборочное отношение между двумя деталями, с которыми связаны два объекта product_definition. Объект related_product_definition определяет компонент, а объект relating_product_definition — сборочную единицу. Оба объекта product_ definition являются дефинициональными представлениями. С ними связаны объекты product_definition_ context, представляющие атрибут frame_of_reference, имеющий наименование 'part definition'. Для того чтобы определять разные типы сборочных отношений, объект assembly_component_usage имеет разные подтипы, представленные следующими объектами:

объект next_assembly_usage_occurrence представляет конкретное использование компонента, то есть присутствие определения компонента на следующем более высоком родительском уровне в структуре сборочной единицы. Если объект next_assembly_ usage_occurrence реализован не в комбинации с объектом quantified_assembly_ component_usage, то он используется для представления единственного присутствия компонента в контексте следующего более высокого уровня в структуре сборочной единицы;

объект promissory_usage_occurrence представляет использование компонента на более высоком уровне в структуре сборочной единицы (который может и не быть непосредственным родительским уровнем) в том случае, когда подробная сборочная структура, расположенная между данным компонентом и данным уровнем в структуре сборочной единицы, не определена. Объект promissory_usage_occurrence определяет намерение использовать данный компонент в сборочной единице. Данный объект может быть реализован в комбинации с объектом quantified_assembly_component_usage;

объект quantified_assembly_component_usage является подтипом объекта assembly_component_usage, который связывает количественный показатель с использованием данного компонента. Данный объект может служить для описания того, что данный компонент используется в сборочной единице несколько раз.

Пример — В контексте сборочной единицы количественный показатель может быть задан как '5 each (5 раз каждый)' для пяти болтов, фиксирующих автомобильное колесо, но при этом не обеспечивается независимая идентификация присутствия каждого болта в сборочной единице.

Количественный показатель может также использоваться для описания компонентов типа материала.

Пример -'0,5 т!' масла.

Если количественный показатель, с которым компонент используется в сборочной единице, не может быть выражен конкретным значением, а зависит от некоторых ограничений, то вместо объекта quantified_assembly_component_usage должен использоваться объект assembly_component_usage должен использоваться объект assembly_component_usage с атрибутом name, имеющим значение 'selected instance usage (использование выбранного экземпляра)', и связанные с ним объекты property_definition и representation с атрибутом name, имеющим значение 'selection criteria (критерии выбора)'. Объект representation определяет количественный показатель с помощью объекта representation_item с атрибутом name, имеющим значение 'selection quantity (выбор количественного показателя)', который является подтипом объекта measure representation item или value range:

объект specified_higher_usage_occurrence используется для того, чтобы идентифицировать конкретное присутствие компонента в сборочной структуре, которая не является его непосредственной родительской сборочной структурой, так как путь от родительской сборочной структуры более высокого уровня к компоненту более низкого уровня может быть неоднозначным. Объект specified_higher_usage_occurrence представляет индивидуальное присутствие компонента в роди-

тельской сборочной структуре более высокого уровня. Данный объект не должен реализовываться в комбинации с объектом next_ assembly_usage_occurrence или promissory_usage_occurrence. specified_higher_ usage_occurrence С помощью унаследованного related_product_definition идентифицирует компонент в сборочной структуре, с помощью унаследованного атрибута relating_product_definition - родительскую сборочную структуру более высокого уровня, с помощью атрибута next_usage - использование компонента в непосредственной родительской сборочной структуре, а с помощью атрибута upper usage – использование данного компонента в составе сборочной структуры на уровне, расположенном между родительской сборочной структурой более высокого уровня и непосредственной родительской сборочной структурой, идентифицированной атрибутом next_usage. В случае, когда между родительской сборочной структурой более высокого уровня и данным компонентом имеется несколько промежуточных уровней сборочной структуры, атрибут upper_usage ссылается на другой объект specified higher usage occurrence, то есть имеет место рекурсивная процедура. Пример реализации объекта specified higher usage occurrence показан на рисунке F.1.

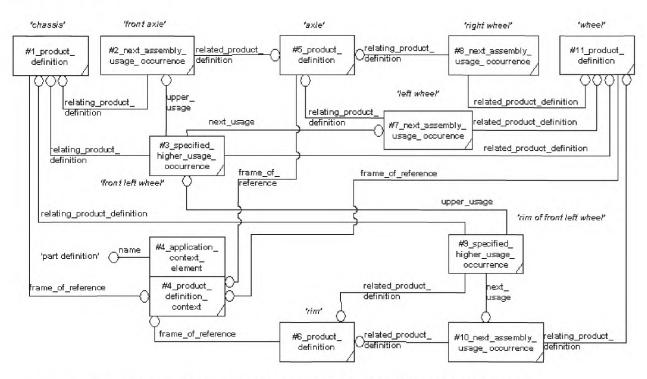


Рисунок F.1 – Пример реализации объекта specified_higher_usage_occurrence

Пример реализации объекта product_definition_occurrence_relationship показан на рисунке F.2.

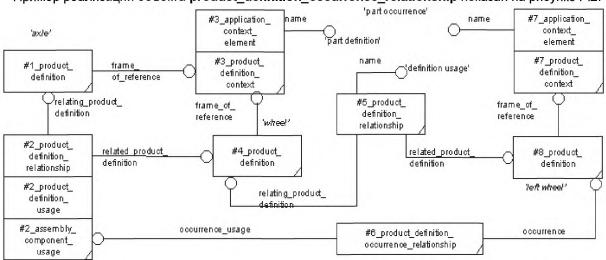


Рисунок F.2 – Пример реализации объекта product_definition_occurrence_relationship

Более подробные сведения об использовании объектов **product_definition** для управления спецификациями приведены в описании прикладного модуля «Управление спецификациями».

F.2 Форма сборочной единицы

F.2.1 Связь формы компонента с формой сборочной единицы

Для построения сборочных структур необходимо определить взаимосвязи между сборочной единицей и ее компонентами. Два альтернативных подхода рекомендуются для реализации представлений структуры сборочной единицы:

- описание сборочной единицы с помощью форм составляющих ее компонентов. В данном подходе форма компонента отображается на форму сборочной единицы через объект **mapped_item**;
- описание компонентов и сборочной единицы с помощью информации об их формах, а также информации о преобразовании между сборочной единицей и каждым компонентом. В данном подходе используется объект representation_relationship_with_transformation.

Оба подхода могут использоваться и в смешанных комбинациях. Взаимосвязи в структуре изделия, например определяемые с помощью объекта **next_assembly_usage_ occurrence**, необходимы для обоих подходов и являются одинаковыми.

F.2.2 Подход с использованием объекта mapped item

Данный подход полностью представляет модель сборочной единицы. Он подходит для представления сборочных единиц в явном виде. В данном подходе используется объект mapped_item в комбинации с объектом representation_map, который преобразует представление формы компонента в элемент, входящий в представление формы сборочной единицы. Представления форм компонента и сборочной единицы описываются экземплярами объекта shape_representation. Применяемое преобразование определяется исходным и целевым объектами отображения, которые являются элементами двух экземпляров объекта representation и поэтому существуют в двух контекстах.

Используемый объект mapped_item ограничен следующим образом:

- объект **mapped_item** не должен зависеть от самого себя при определении представления, подлежащего отображению (ацикличность);
- объект mapping_origin должен существовать в контексте представления, определяемого по ссылке с помощью конструкции mapped_item.mapping_ source.mapped_representation;
- объект mapping_target должен существовать в контексте представления, включающего объект mapped item.

Не существует ограничения для предотвращения случая, когда оба экземпляра объекта representation имеют одинаковый контекст – новый элемент перемещается в позицию, но при этом он не может изменить координатное пространство. Это позволяет использовать объект mapped_item для позиционирования частей модели в едином координатном пространстве.

Кроме того, можно определить преобразование с единичной матрицей, ссылаясь на один и тот же экземпляр объекта как на mapping_origin и mapping_target. Это соответствует случаю, когда компонент определен на своей окончательной позиции (или одной из них). Пока компонент не отображен на второе представление, он не включается в данное представление, даже если он определен в том же координатном пространстве.

Отображение объекта Assembly_component_relationship подразумевает, что взаимосвязи между сборочной единицей, компонентом на уровне определения изделия (объекта product_definition) и отображенным элементом (объектом mapped_item) на уровне представления формы (объекта shape_representation) должны быть определены через дополнительный отдельный объект shape_representation, содержащий только объекты mapped_item, shape_definition_representation и product_definition_shape. Это необходимо для обеспечения различия между несколькими присутствиями одного и того же компонента в сборочной единице.

F.2.3 Подход с использованием объекта representation_relationship_with_ transformation

Данный подход представляет компоненты и набор инструкций для построения сборочной единицы. Он соответствует представлению сборочных единиц в неявном виде. Объект representation_relationship_with_transformation используется для определения относительных позиций в сборочной единице. Данный подход не обеспечивает:

- включения в состав решение о создании представления, которое объединяет все компоненты вместе, остается за принимающей системой;
- возможности определения компонента в одной позиции, а затем дублирования его в том же самом координатном пространстве.

Объект shape_representation может быть определен полностью и в явном виде для сборочной единицы, а объект representation_relationship_with_transformation дает только дополнительную информацию о том, как экземпляр объекта shape_representation для компонента геометрически связан с формой сборочной единицы. Правило coordinated_assembly_and_shape подразумевает, что взаимосвязи между сборочной единицей и компонентом на уровнях определения изделия

(объекта product_definition) и представления формы (объекта shape_representation) должны быть определены с помощью объекта context_dependent_shape_representation. Это необходимо для обеспечения различия между несколькими присутствиями одного и того же компонента в сборочной единице.

В соответствии с ИСО 10303-43 атрибуты rep_1 и rep_2 объекта representation_ relationship with transformation определены следующим образом:

- rep 1 определен как представление с контекстом, к которому применяется данное преобразование;
- **rep_2** определен как представление с контекстом, которое является результатом данного преобразования.

Основываясь на этих определениях, атрибуты объекта representation_ relationship with transformation должны реализовываться следующим образом:

- rep_1 ссылается на объект shape_representation для объекта product_definition, который представляет атрибут related_product_definition (идентифицирующий компонент) объекта assembly component usage;
- rep_2 ссылается на объект shape_representation для объекта product_definition, который представляет атрибут relating_product_definition (идентифицирующий сборочную единицу) объекта assembly_component_usage.

Дополнительные ограничения накладываются на объект representation relationship with transformation неформальным утверждением, определенным в ИСО 10303-43; если преобразование является преобразованием. определяемым элементом (объектом item defined transformation), то упорядочение экземпляров представления, заданных для унаследованных атрибутов объекта representation_relationship, должно быть согласовано с упорядочением объекта representation item, атрибуты экземпляров заданных как item defined transformation. Поэтому унаследованные атрибуты transform item 1 transform item 2 объекта item defined transformation должны использоваться следующим образом:

- атрибут transform_item_1 ссылается на объект representation_item, такой как axis2_placement_3d, в представлении для объекта product_definition, являющегося атрибутом related_product_definition объекта assembly_component_usage, который идентифицирует компонент;
- атрибут transform_item_2 ссылается на объект representation_item, такой как axis2_placement_3d, в представлении для объекта product_definition, являющегося атрибутом relating_product_definition объекта assembly_component_usage, который идентифицирует сборочную единицу.

F.2.4 Представление преобразований

Информация о преобразовании представлена для объекта item_defined_ transformation с использованием унаследованных атрибутов transform_item_2 и transform_item_1 и для объекта mapped_item с использованием атрибута mapping_ target объекта mapped_item и атрибута mapping_origin ссылочного объекта representation_map как комбинации двух экземпляров объекта representation_item.

Допустимыми комбинациями для указанных двух экземпляров объекта representation item являются:

- экземпляр объекта axis2_placement_3d для атрибута transform_item_1 или mapping_origin и другой экземпляр объекта axis2_placement_3d для атрибута transform_item_2 или mapping_target;
- экземпляр объекта axis2_placement_3d для атрибута transform_item_1 или mapping_origin и экземпляр объекта cartesian_transformation_operator_3d для атрибута transform_item_2 или mapping target;
- экземпляр объекта axis2_placement_2d для атрибута transform_item_1 или mapping_origin и другой экземпляр объекта axis2_placement_2d для атрибута transform_item_2 или mapping target;
- экземпляр объекта axis2_placement_2d для атрибута transform_item_1 или mapping_origin и экземпляр объекта cartesian_transformation_operator_2d для атрибута transform_item_2 или mapping_target.

Для объекта representation_relationship_with_transformation может также использоваться экземпляр объекта functionally_defined_transformation, который является объектом cartesian_transformation_operator. При любом использовании экземпляра объекта cartesian_transformation_operator для определения информации о преобразовании экземпляра объекта assembly_component_usage производный атрибут scl должен иметь значение 1,0, так как для компонентов сборочной единицы масштабирование не допускается.

Приложение G (справочное)

История изменений

G.1 Общие положения

Данное приложение содержит историю изменений, внесенных в ИСО/ТС 10303-1345.

G.2 Изменения, внесенные в издание 2

G.2.1 Резюме внесенных изменений

Второе издание ИСО/ТС 10303-1345 по сравнению с первым изданием включает приведенные ниже изменения.

G.2.2 Изменения, внесенные в ПЭМ

Была добавлена следующая спецификация интерфейса на языке EXPRESS:

USE FROM Part occurrence arm.

Было изменено следующее объявление на языке EXPRESS:

ENTITY Geometrical_relationship.

Была удалена следующая спецификация интерфейса на языке EXPRESS:

USE FROM Product occurrence arm.

Кроме того, были внесены изменения в спецификацию отображения, схему ИММ и диаграммы в формате EXPRESS-G для обеспечения соответствия изменениям, внесенным в ПЭМ.

G.2.3 Изменения, внесенные в отображение

Были внесены следующие изменения в отображение ПЭМ на ИММ:

- Effectivity assignment;
- Geometrical relationship.definition placement

G.2.4 Изменения, внесенные в ИММ

Была добавлена следующая спецификация интерфейса на языке EXPRESS:

USE FROM Part_occurrence_mim.

Была удалена следующая спецификация интерфейса на языке EXPRESS:

USE_FROM Product_occurrence_mim.

G.3 Изменения, внесенные в издание 3

G.3.1 Резюме внесенных изменений

Третье издание ИСО/ТС 10303-1345 по сравнению со вторым изданием включает приведенные ниже изменения.

G.3.2 Изменения, внесенные в ПЭМ

Было добавлено следующее объявление на языке EXPRESS:

ENTITY Effectivity controlled assembly definition.

Было изменено следующее объявление на языке EXPRESS:

ENTITY Assembled_part_association.

Кроме того, были внесены изменения в спецификацию отображения, схему ИММ и диаграммы в формате EXPRESS-G для обеспечения соответствия изменениям, внесенным в ПЭМ.

G.4 Изменения, внесенные в издание 4

G.4.1 Резюме внесенных изменений

Четвертое издание ИСО/ТС 10303-1345 по сравнению с третьим изданием включает приведенные ниже изменения.

G.4.2 Изменения, внесенные в ПЭМ

Было изменено следующее объявление на языке EXPRESS:

ENTITY Assembly_definition.

Была удалена следующая спецификация интерфейса на языке EXPRESS:

REFERENCE_FROM Product_identification_arm(types_of_product).

Кроме того, были внесены изменения в спецификацию отображения, схему ИММ и диаграммы в формате EXPRESS-G для обеспечения соответствия изменениям, внесенным в ПЭМ.

G.5 Изменения, внесенные в издание 5

G.5.1 Резюме внесенных изменений

Пятое издание ИСО/ТС 10303-1345, соответствующее настоящему стандарту, по сравнению с четвертым изданием включает приведенные ниже изменения.

G.5.2 Изменения, внесенные в ИММ

Была добавлена следующая спецификация интерфейса на языке EXPRESS:

REFERENCE FROM Product definition schema.

Была удалена следующая спецификация интерфейса на языке EXPRESS:

REFERENCE FROM Product categorization mim.

Приложение ДА (справочное)

Сведения о соответствии ссылочных международных стандартов и документов национальным стандартам Российской Федерации

Таблица ДА.1

гаолица дал		
Степень	Обозначение и наименование соответствующего	
соответствия	национального стандарта	
IDT	ГОСТ Р ИСО 10303-1-99 «Системы автоматиза-	
	ции производства и их интеграция. Представле-	
	ние данных об изделии и обмен этими данными.	
	Часть 1. Общие представления и основопола-	
	гающие принципы»	
IDT	ГОСТ Р ИСО 10303-11-2009 «Системы автома-	
	тизации производства и их интеграция. Пред-	
	ставление данных об изделии и обмен этими	
	данными. Часть 11. Методы описания. Справоч-	
	ное руководство по языку EXPRESS»	
IDT	ГОСТ Р ИСО 10303-41-99 «Системы автомати-	
	зации производства и их интеграция. Представ-	
	ление данных об изделии и обмен этими дан-	
	ными. Часть 41. Интегрированные обобщенные	
	ресурсы. Основы описания и поддержки изде-	
	ий»	
IDT	ГОСТ Р ИСО/ТС 10303-1059-2012 «Системы	
	автоматизации производства и их интеграция.	
	Представление данных об изделии и обмен	
	этими данными. Часть 1059. Прикладной мо-	
	дуль. Задание применяемости»	
_	*	
_	*	
	соответствия	

^{*} Соответствующий национальный стандарт отсутствует. До его утверждения рекомендуется использовать перевод на русский язык данного международного стандарта (документа). Перевод данного международного стандарта (документа) находится в Федеральном информационном фонде технических регламентов и стандартов.

П р и м е ч а н и е - В настоящей таблице использовано следующее условное обозначение степени соответствия стандартов:

IDT – идентичные стандарты.

Библиография

- [1] ISO 10303-43 Industrial automation systems and integration Product data representation and exchange Part 43: Integrated generic resource: Representation structures.
- [2] ISO 10303-214 Industrial automation systems and integration Product data representation and exchange Part 214: Application protocol: Core data for automotive mechanical design processes.
- [3] ISO/IEC 8824-1 Information technology Abstract Syntax Notation One (ASN.1) Part 1: Specification of basic notation..
- [4] Guidelines for the content of application modules, ISO TC184/SC4/N1685, 2004-02-27

УДК 656.072:681.3:006.354

OKC 25.040.40

Ключевые слова: автоматизация производства, средства автоматизации, интеграция систем автоматизации, промышленные изделия, данные об изделиях, представление данных, обмен данными, прикладные модули, структура определения элемента

Подписано в печать 02.02.2015. Формат $60x84^{1}/_{8}$

Усл. печ. л. 3,72. Тираж 31 экз. Зак. 448.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

ФГУП «СТАНДАРТИНФОРМ»

123995 Москва, Гранатный пер., 4.

www.gostinfo.ru

info@gostinfo.ru