типовой проєкт 902-2-337

Усреднитель концентрации сточных вод объемом секции 5000 куб.м.

Альбом II

16710-02 LEHA 3-42 центральныя институт типового проектирования

FOCCTPON CCCP

Москва, А-445, Смольная ул., 22 Сдано в печать XI 1980т. Заказ № 15273 Тыраж 300 жз.

типовой проект 992-2-337

ЧСРЕДНИТЕЛЬ КОНЦЕНТРАЦИИ СТОЧНЫХ ВОД ОБЪЕМОМ СЕКЦИИ 5000 кня м

альвом II Состав проекта

Альбой I Технологическая часть. Заказные спецификации,

Альвом Ⅱ Конструкции железобетонные

Альбом Ш Изделия

Альвом 🏻 Сметы

PASPAGOTAH

инститетом Союзводоканалпроект

Главный инженер института и листи Самохин Главный инженер проекта тист Мирпнуи

	Прибязан	
		1 1
UNIT NE		

Утвержден

ПРОТОКОЛОМ ТЕХНИЧЕСКОГО СОВЕТА ИНСТИТУТА СОЮЗВОДОКАНАЛОРОСКТ ОТ 15 ФЕВРАПА 1980 г.

Введен в действие В/о Союзводоканалняипроект с 13 мая 1980. Приказ № 126 от 13 мая 1980.

Juem i e	Наименование	Примечиние	55				
3	Общие данные (начало)			Секции 🖟 ^{д, б, в} : Монтажный чертеж стен	Обазначение	Наитенование	Принечан
3			23	Секция 🗓 Мантажный чертеж стен.	TN 902-2- 337 - HK	Технологическая часть	
	Общие данные (продолжение)		24	Секции І; ії ; ії а, в, в; <u>іў</u> Монтажный чертеж стэн. Узлы, детали.	TN 902- 2- 337 - кж TN 902-2 - 337-кжи	Конструкции железобетонные Изделия	
, ,	Общие данные (продолжение)		25	Монолитные участки Ун-1,3,5,9. Опалубочный чертеж.			
4	Общие данные (прадолженче)		26	Моно титные участки Ум-2,4,6,7. Опалубочный чертеж.			
5	Общие данные (продолжение)		27	Монолитный участок Ун-8. Опалубочный чертеж.Спецификация эленентов.	Ведомость с	сылочных докупентов	
6	Общие данные (продолжения)		28	Монолитные участки Ум-1,3 5,9	Обозначение	Наименование	10
7	Общие данные (окончание)		28	Арматурный чертеж. Монолитные участки Ум-2,4,6,7	Cepus 3. 900-3		Принвчани
8	Компоновочные планы на 8,3,4 секции.		29	Попалотные зчастки зм-2,4,6,1 Арматурный чертеж.	выпуск 3 часть 1, 2	Сбарные железабетонные конструкции епкостных сооружен	
g	Котпоновочные планы на 5,6 секций.		30	Монолитный участок Ун-8. Арматурный чертеж. Узлы, детали	Серия 3.900-3 . Выпуск в часты, г	для водоснаржения п канализаци	u.
10	План, разрези.		31	Монолитные Участки. Спецификация Одиночных стержней. Выборка арнатуры.			
11	Секция V. Днище. Опалубочный чертеж.		32	Монолитные участки Ум-10,11. Арматурно-опалубочный чертеж.			
12	Секции II, lī a, б, в. Днище. Опалубочный чертеж.		33	Секция I. Монтажный план логков, балок, колонн.		ί <i>ι</i> της λκαγαμης	
13	Секцир Ü. Анище. Опалубочный чертеж.		34	Свкупп I, II. Монтажный план Лотков, балок, колонн.		отметка 0.000 ааатветствувт	» αδεο <i>πι</i> οτ-
14	Свиции I, II, III а, б. в. II. Днище. Опалубочный чартеж. Сечения.		35	Секции 🏻 ч.б.б. Монтожный план лотков, балок, колонн.	ная отывшка	ры и обозначения в скобі	
15	Секция I. Днище. Арматурный чертеж.		36	43.04 1÷6,14		ко к варианту распреде	
	CBKYUU Ü, JII Q. G. B. AHUUYE.	1	37	¥37W 7÷10			
16	Армотурный чертеж.		38	4316 11÷13 Ceryuu I, Ū.			
17	Свкция Ū. Днище. Армотурный чертеж.		39	Монтажный план переходных мостиков.			
18	Секции І, ї, її ^{д, б, в} , її. Днище. Ярматурный чертеж. Сечения Узлы 1,2.		40	Свкцич I, II а.б.в. Монтажный план пережодных мостиков.	_		
19	Секции І, ІІ, ІІ Ф. С.Р., ІЎ. Днище. В едомости стержней		41	Секции I,II, II. Монтажный план опар под барботеры.			
20	Секция I. Мантажный чертеж стен.		42	Секции 🗍 ^{а, б, в.} Монтажный план опор под барботеры, Узлы _, сечения.		Привязан	
21	Секция II. Монтажный чертеж стен.				Инв. N2		
						TN 902-2-337-KK	,
	Мипавой проект разравотан в соответствии с действующини нарнал и правилами.	ıu			Pospos Usernoso Benef		Auem Auemes
1	Главный инженер провита (fun/ 4up	K08/			Paspa & Ubernoba Blumb Plober Tapbys In Pyker Tapbys In M. Manney Yupkob Hay.ord Andpuanab WM	1400 5000 ky 5 m. , ,	ООКАНАООРОСИ

	роднах сивппфпкап		,										•		•		luu					
Massa	Обозначение	Наименование	- -	TUN	C E	кциú			Массо	Примеч. Вля сеч.	1		2	3	4	5	5	7	8	9	10	
Марка	GUUSHUYEHUE	nouneroughue	K-80	<u>н</u> к-во		K-00	<u>ііі</u> в к-бо) /V	1 / 111 m	somka Bxh	JIT 9		KKU - 1.T9-C5	Nomok NT2-181	1	1	1	1	1	-	3.50	+-
1	2	3	4	5	6	7	8	9	10	11	JT10		KMU-1110-05	AT2-18M	3	3	3	3	3	3	2.83	
псі	NMU - NCI - C6	Панель стеновая по і	δ	2	7	7	7	2	5.38		JT II		KMU - NT11,29-C5	1T2-18H	1		1			-	1.75	
NCIA	KKU - NCIA -CE		5	2	6	6	δ	2	6 33		NT12		ХЖИ - ЛТ12,30÷СБ	1 AT2-i8"	1					_	1.53	
пс г	KMU - NC2 - C5	nc 2	3	1	2	2	2	1	6.38		NT13	"	KMU-AT13-C5		3		3		3	-	3.48	- Ļ.
псга	KKU-NC2A -C5	nc2A	3	1	2	2	2	1	6.33		ЛТ14	1	KWH- ЛТ 14-CB	- 1 - ATI-9-65	ō	6	6	5	5	5		-
пез	KKU-nc3-C5	— 1 € 2-54-K 2°	11	4	4	4	4	12	8.83		NT15	<i>u</i> 3	KMU - 1115-05	- 1- AT1-9-68	3		3		3	-	3.48	
ne 4	K K H - NC 4 - C 5		5	2	2	2	2	4	8.80		AT 15	1900	КЖИ -ЛТ16-СБ	II AT1-5-4.5°	3		3		3	-	3.03	
nc5	€ K*H-ne 5,6 - c6		1					1	8.80	500 × 900	AT17	ď	KMU -AT 17-C6	NT1-5-4.5 ⁵	6	5	5	5	5	:6	1.83	
nc 6	D	NC2-54-K12 6	1					1	8.80	600 × 900	ЛТІВ	"	KMU - 1118-C5	NT1-6-45	3	 	3		3	-	1.83	
nc 7	XXV - NC7 - C5	υ ΠC 2-54 - K 2 δ	1					1	8.80	500×900	1119	-	K#W AT19-C5	— п — ЛТ2-18°	1	†	1	1	1		1.60	+
nc s	", кжи - nc 8,9 - c6	nNC2-54-K12 ^r	1					i	8.80	450×800	NT 20	4	KMU -1T20-C5		1	 	1	1	1	_	3.50	-+
nc 9	10 -1	NC2-54-K12 ð	1					1	8.80	450×800	1121	80	КЖИ - ЛТ21 - C5	- "- JT2-18 [†]	 , -	 	7	1	-	-	3.50	-1-
ncio	E KAN -UCIO - CO		1					1	8.80	450×600	AT 22	yck	КЖИ -ЛТ 22-C6	—"— ЛТ2-18 ^Ф	1	 	 				3.50	-
псн	KMU - NO 11,12 - Cō	NC2-54-K12*		1			Ī		8.80	500×900	AT 23	000	K#U-1123-CB	-1- NTI-9-5	ļ	3	<u> </u>	3	-'-		3.50	
TOIR	1 - 4	nc2-54-K12 M		1					8.80	600 × 900	1124		K#U-AT 24-C5	ATI-9-6 d	 -	 -	l	3		3	2.98	
nc13	8 KMU - NC13 - C5	ПС2-54-К2 д		1	†			 	8.80	600 × 900	NT25	£-	KXX 4-AT 25-C6		 	3	l	3				4-
ne /4	Ф XЖИ-П014, 15 - C6		†	1					8.80	450×500	AT26	900	K/KU-AT26-C5		 	1		3		3	1.58	4
11015	-n y	NC2-54-K12 ^M	+	1	T				8.80	450×600	AT27	w)	K#4-AT 27-C6			3		-			1.65	4
NC 16	S KXH -110-16 -C5	NC2-54-K2 ^e		1				İ	8.80	450×500	ST28	Q.	K # W - AT 28 - C5		 	3	l			3	348	50
пет	K*4 - NC17 - CO		17	†	1	1	1		7.50		1729	epu	KMU 11, 29 - C5				ļ			3	1.83	4
neis	Серия 3.900-3 был. 34.1		1	2	1	1	1		8.80		AT 30	O	KMU -1712,30-C5				ļ			1	1.75	
nci9	1	,NC2-54-K2		8					8.80		71	I	xжи − П1 - СБ	Nouma Ni	-					1	1.75	
ΛI	кжи - к 1 - Сб	Колонна кі	g	9	9	9	9	9	1.04	500×900	112		рия 3.900-3 вып.в ч.1	-#-#- NT15 -6	49		48	2	2		0.63	
12	K# 4 - K2 - C6	K2	9	9	9	9	9	9	1.08	450×600	n2ª		жи -п 2° - с5	- "-"- NTI5-6"	5		8	48 5	48	48	0.21	L.
91	кжи-Ф1-05	Фундамент под колонну ф!	9	9	9	9	9	9	2.05					, IIIIS-0					6	8	0.21	L
51	KMU-61-C6	δα ηκυ 5/	H	5	Н	11	Н	4	0.53		<u> </u>						L					L
501	K#H-501-C5	501	109	89	100	111	100	84	0.025													
וזת	KMU-JT1-05	Латок ЛТ2-18°	9	4	9	10	10	3	3.50					Совместно с	данн	io/M	CM	1. <i>1</i> 1	. /ĭ/n	- /.		
JT2	K#H-112-C6	NT2-18 ⁶	1		1	1	7			600 × 900												
AT3	€ KXH-173 -C5		2		2	2	2			600×900												
ATL	K#4-114-05		1		1	1	7		 	600 × 9 00												
ЛТ 5	LE KKU-115-C5		1		1	,				450×600					<u></u>	TN	902	-2-3	37-1	Ж		
ЛТБ	KMU-1T5-C5		2		2	2	2			450×500		Co.	W. C									
NT7	K # W - AT 7 - C6	_1 _ 172-18 H	1		1	1	,			450×600		lipi	обязан	Разраб. Цветкова Фубеция,	yepe.	дните. чных кции	AD KOH	иценти Върмы	POLITICA	rodus	<i>Nucm</i>	Λυ
IT8	£ K*4 -118-C5	//T2-18 K	1		1				3.50	, 50,000		E		Разраб. Цветкова завищь - Проберия Гарбуз бай Рук. ер. Гарбуз бай По имя пр. Чирков оббас Нач. этв. Ямериа мов.	Ce	<u>κυύ</u> υ ων ε	5000	KUĐ. M	-			
لـــــــ									13.00			_	.√2	ГЛ ИНЖ ПР. ЧИРКОВ сти		щее прада.			<u> </u>	FOCE	MPOÙ C NOKAHA MOCAS	200

						โมก		นุบซ์			MUCCURI	
	Марка	Обозначение	Наименовани	е	<u>T</u> K-80	11 K-30	110	<u>III 6</u>	1110	<u>IV</u>	овъеми	Примеч.
	 -	2	3		!1	5	K-00	7	K-80	K-80	!шт. 10	-/1
		М оноли		поннь		KOHER		<u> </u>	T	L	1,0	-''
		KK -11;12;13	Днище						256 M 3	242 M ³		
	Ym-1	Kж - 25		¥M-1	1			 -			4.23m	
17:	4M -2.	K# -26		YM-2	1				<u> </u>		3.49m³	
	YM-3	八米 - 25		УМ-3	1		- 	1	1		7.45 M	
AALÕOK	¥M-4	Kж- 26	Монолитные	Ym-4	1	1	1	,	1		5.90m	
æ	ÿm. 5	KX-25	участки	YM-5		1	1	1	1	1	2.50M	
Α.	YM-6	KW-26	СШЕН	411-6		1	1	1	1	1	1.84 m ⁹	
3	YM-7	KM - 28		YM-7						1	349m	
<i>(</i> ,i	YM-8	K#- 27		¥M-8		1				·	8.54M	
7.Dc	4m.g	Kж 25		YM-9						1	4.23m	
6	ÿ⊪-10	K/K - 32	м онолит ные	YM-10	П.М. 63-0	П.м. 24.0	D.M. 80.0	N.M. 50-0	R.M.	П.М.	10.M.	
Tunobod marker see-2-337	<i>9m-</i> 11	KX-32	участки лотгов	YM-11	2		1	1	60.0	21.0	0.12m ³	
l'chi)									-		U.41 In	
Ċ			Стальные из	дели	ÿ						LI	
50	зди і	кжи-здиі	Днуще.	здиі	42	38	42	42	42	36	1.9KF	
ת חו	3AU2	кжи-здиг	ี บิงชื่อกับห รอหกอฮิหมอ	3 Д И2	1	1	-	,	1		61.2KF	
۴-	CI	KWH-CI		CI	37	18	18	18	18		190.6 Kr.	
	C2	КЖИ-С2		C2	15	15	15	15	15			
	03	кжи-сз		СЗ	120			-			15.5.0kg 77.4kg	
4	C4	кжи-е 4	Днище.	C4	9	9	9	9	g		41.5Kr.	
	C5	K*H-C5		C5	33	16	16	16	ib		235.8kg	
	C6	KWH-CÔ	Cemku	Cô	15	15	15	15	15		154.0kt	
	C7	KWH-C7	арматурные	C7	7	8	8	8	8		21.5 KG	
	C8	KЖИ-С8		C8	8	7	7	7	7		29.4KE	
<u>_</u>	C9	КЖИ-С9		09		74	74	74	74		95.4Kr	
040.1	610	K#H-C10		C10		16	15	15	18		35.4KF	
30M.	CH	K#H-011		CII								
Mi Nº noda (Ajudine: bu dano BasmunGN-	CIS	KWH CI2		CI2							91.2Kr	
200	KUI	KMU-KNI,2	Днище	KNI	80	52	52	52	-		83.4Kr	
19:31	403	- 1 - 11 -	Каркасы плоския	KUS	12	8	8	8	52 8		85.0 Kr	
9	KPI	KKH -KPI	и пространственные	KPI	196	182	182	182			71.0 KT	
100.1.	C4	K X W - 41111 - G1	MOHOVILLENHOR	CI.	2	102	102		182		1.4 Kr	
4	 		уча стки лопков. Сетки арматирные					_'_		1	6.2K	- 1

	2	_	3		1 /	T E	-	-				
3 <u>0</u> U3	Кжи-3 <u>Д</u> из	Mari	олитные участки	2 /1/12	1 4	5	<u> </u>	4	8	9	10	"
		1	стен".	ļ	8	0	4	4	4	б	1.fkr	
зДи4	Кжи - 3ДИ4	U30	елия закладные	3444	1	<u> </u>				1	1.1KT	Ann normad 8×17
БМІ	KMU-5M1; 2		<i>5 α η κ</i> σ	ĒM-I	24	24	24	24	24	24	11.0×r	600×900
5M2	K		δαλκα	5M 2	24	24	24	24	24	24	9.6KF	450×800
001	KWH -001		<u> Опорный столик</u>	acı	6	6	б	δ	6	6	4.8KF	
MCI	KMU -MCI		Изделие соединительное	MCI	35	35	38	36	35	36	0.6 KT.	
щпі	кжи – щлі, щль			щпі	3		3	3	3			
TTUS	кжи - ЩП2			щпг	1		1	1	1		41.2Kr	
ЩЛЗ	кжи - ЩПЭ,4,5	1	щиты	ЩПЗ	21	2!	21	21	21	21	29.5KS	
шл4		١.		щп4	3	3	3		3	3	19.7KF	
щпь	— n — n —	мостоко		Щ.Л.5				3			127KF	
щпв	кжи-щпі,щп6	כשו]	щпв	2		2	2	2			
	KK - 39	30		E30	47.5 Kr		57.0KF	57.0KF	51.0 Kr			
		1	Отдельные	[8	100 4 OK	100 4.0Kr	1004.0KF	1004.OKF	10040 K	100 4.0kr		
		46/6	ЭЛ РМЕНПЫ						7.2KI			
		COD		150×5		É.ÕKT	 -			6.6KF		
		ерехадные		25×3	2550kr	181.0 KF	255.0xr	255.0kr	255.0xr	161.0 KT		
		2		-8=10	18.8KF	14.1 KF	18.8×r	18.8KF	18.8Kr	14.1KF		
		1			430KF		 		43.0KF			
		1		L50x40	1195.0×	7/3.0Kr	IDY8.DKT	1048.DKF	104 8.0KF	829 OK		
				100-100					894.0KF		<u> </u>	
		İ							63.0KF			
Na3.,1"	K# - 20, 21, 22	COEO	инутельные эл-ты нобых понелей	IOA İİİ	304	212	164	154	164	212	0.3KI	
N03.1"	K# - 33,34,35	COEC	TILLIAM BALLIA DAR	IDAĪĪ	38	12	32	32	32	12	O.IKI.	
	K# -19		Диище. Ожни одиночны	 p	5.85 T		5.45t		545T			
	K# - 31	Моно	литные участки ржни одиночны	стен.	2.31	1.97	1.97	1.97	1.97	1.21	 	
	Km - 32	Моно	ипшные пласшки у	mkab	0.87	0.27	0.5T	0.57	0.51	0.27		
		Cine	ржни одиночные								 	

Приблаан

Разраб. Шветкова жизака

ТП 902-2-337-КЖ

Приблаан

Разраб. Шветкова жизака

Сточных вод доветом р з

Пробери Гарбиз до секции 5000 куб. м. р з

Грук ер. Гарбиз до доветом р з

Плина пр Чирков уб... Общие данные

Плина пр Чирков уб... (окончание)

Общие данные

Общие данные

Общие данные

Общие данные

Общие данные

Общие данные

Kanupaban Suf 16710-02 5

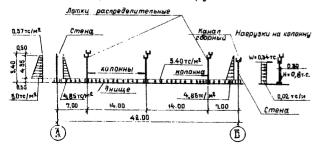
Формат 22r

т Общие сведения

Рабочие чертежи типового проекта "Усреднитель концентрации сточных бод" разработаны в соответствии с инстрикцией по типовоми проектированию вля промышленного строительства СН 227-70 и серией 3.900-3 для рацонов со спедующими условиями строительства:

Сейсмичность одиона не выше в баллов: расчетная эимняя температира воздика-20°C-30°C:40°C. территория дез подработки гарными дыработками, рельеф территории спокойный, грунтовые воды отсутствиют, врунты в основании непучинистые, непросавочные неагрессивные к бетони и имеют спедиющие норматидные характеристики:

Увал внутреннего трения - 9 " = 23° Мавуль деформации - E=150 кгс/см² ปีกิจอพทยน์ Bec - X= 1.8 TC/M3 Удельное сцепление аринта - СН = 0.00


В проекте разработан усреднитель с числом секций от 2^x до 6^y (5 компоновак). Жаждая компоновка исреднителя набирается из отдельных разработанных секций.

Т.Основные расчетные положения.

Канструкции усреднителя канцентрации сточных вад рассчитаны на прочность и на трещинастайкасть совласно требованиям главы СНиПІІ-21-15. "Бетонные и железобетонные канструкции."

Конструкции исреднителя отнесены к 3 ей категории по трешиностой кости.

Схема расчетных нагрузок

Нармативная нагризка на поверхности гоинта поинята 10 тем2

Ветровая нагрузка поинята по ІІ ветровоми райони ссср (CH 4 N II - 6 - 74)

Днише рассчитано как плита на ипригом основании с учетом вертикальных сил и изгибающих моментов от стеновых панелей и калонн.

Стены рассчитаны нан консоли на 2-х сторонныю нагрузку при спедующих условиях загружения:

- 1. Стена воспринимает бавление от грунта при отсутствии нагризки с другай стараны.
- 2. Стена воспринимае давление от воды пои отситствии нагризки с другой стороны.

Колонны рассчитаны как внешентренно сжатые элементы на вертикальные нагрузки от потков распределительных с водой, ходовых площадок и горизонтальнию нагризки am hempa.

Патки распределительные в продольным направлении рассчитаны как балки на двух опорах на нагрузку эт воды. заполняющей поток, переходных мастиков и временной нагрузки. Стены поткой в поперечном направлении рассчитаны на давление жидкости с внутренней стороны по консольной схеме.

Каналы входные и сборные состоящие каждый из ввих _L"образных эпементов, соединенных на монтаже между собой и опорной ствной монолитным железобетонным ичастком. рассчитаны на два случая:

- 1 Монтажный только в провольном направлении как балки на двух опорах на монтажные нагрузки.
- 2. Эксплуатационный талька в поперечном направлении стены и днище каналов по консольной схеме на нагрузки от перекрытия, временной нагрузки и воды, заполняющей канал или грунта с наружной стороны.

Площадки рассчитаны на временную нагрузку 200 кгс/м⁸ с казффициентом пергарузки К:14, перила-на ную сосредоточенную нагрузку 30 кгс с коэфо лерегрузки К=1.2.

т. Хонстриктивные решения

Лнише исреднителя запроектировано из маналитнага железобетана.

Стены- из оборных железобетскных панелей консольного типа по серии 3,900-3 выписк 3 "Сборные железобетонные конструкции емкостных сооружений для водоснобжения и канализации."

Угловые учистки стен по 1,5 м в каждую сторону от угла запроектированы из маналитного железобетона, вилее истанавливаются по две стеновые панели, имеющие исиленное едризонтальнае армирование.

Потки распределительные каналы вхадные и сборные . плиты перекрытий запраектированы по серии 3,900-3. выписк в. Колонны с фундаментами и балки опорные запроектироданы в сортдетствии с серией 3.900-3.

Латки привариваются к закладным деталям балок и колонн. балки устанавливаются на стеновые панели, расклиниваются и замоноличиваются бетоном М-300

Устройство деформационных швов стен и дниша осиществляется с применением резиновой трехкилачковой шлонки.

Металлические ограждения запроектированы в соответствиц с серией 1.459-2 выпуск 2. "Стальные лестницы, переховные площавки и огражвения."

Днище и маналитные участки стен с вкутренней стороны торкретировать цементно-песчаным раствором состава 1:2 в 2 споя общей толщиной 25 мм.

а горизонталь-				TN902-2-337	-K	K	
идаган							
uox san	Разработ	Петроп овловах в	X	 Усреднитель концентрации сточных вод объетом	Cmadus	Aucm	Nuemo8
	Проверил	Гарбуз	Lan	 секции 5000 куб.м.	P	4	
	Рук. гр. Гл.инж.пр	4upx 08	Thun	Общие данные		MKAH	<i>ceep</i> Inpoekt
IÐ. NB	Hay am 8.	<i>Анврианов</i>	shure	(правалжение)		. MOCK	
			V 0	16710-02 6			

Kanupollan

Фармат 22г

<u>IV</u> Материалы конструкций

Для сборных и монолитных железодетонных конструкций марку бетона по прочности на сжатие, по морозостойкости и водонепро ницаемости принимать по таблице ні в зависимости от расчетной срейней температуры наиболее холодной пятидневки в районе строительства

ΤαδλυμαΝΙ

8 - 6 - FG	Напшеновани в	Проектная	марка бел	מאסר
райшра - вимеш расчешна	конструкций	ПО ПРОЧНОСТИ На Сжатие Не менее	по морозо— стойкости	по водоне- проницаемес-
-20°C	δαλκυ, Πλυπω, λοτικυ, κακαλω	200	Mps 50 Mps 100 Mps 150	88
-30°C	Днище, фундаменты Стены, колонны Балки, плиты, лотки, канжы	200	Mp3 75 Mp3150 Mp3 200	86
-40°C	Днище, фундаменты Стены, колонны Балки, плиты, потки, канапы	200	Mp3 100 iMp3 200 Mp3 300	<i>86</i>

Арматура для железоветанных конотрукций принята:

а) рабочая— сталь горячекатаная периодического профиля

класса А<u>П</u>Ф6—8 мм ГОСТ 5781-75, Ф10—40 мм ГОСТ 5:459-12.

б) распределительная и монтажная— сталь горяче—

катоная круглая, гладкая класса АГГОСТ 5781-75.

Конструкции металлических ограждений приняты из стали марки в Стэког по ГОСТ 380-74.

вяжущие, инертные материалы и арматура, и дущие на изготовление бетонных и железобетонных конструкций, должны отвечать требованиям СНи Π Π -15-76 и действиющих гостов.

<u> </u> ▼ Мероприятия по защите от коррозии.

1. Все стальные закладные и накладные јетали далжны быть защищены от каррозии слоем алю-миния толщиной 200 мкм, наносимого мета Эм метализации в гоответствии с требованием. ЭниП [[--28-7.3]]

- 2. Металлизация зокладных и накладных деталей выполняется в зоводских условиях на стационарных установках. Анкерные стержни закладных деталей могут иметь альтиниевое покрытие на длинг до 40-50 мм от тыльной плоскости пластинки.
- 3. При выполнении сварочных работ на стройплощайке, монтажные сварные швы не поэже
 чем через 3 дня после их выполнения должны
 выть эащищены слоем алюминия толщиной 200мкм.
 с помощью передвижной металлизационной установки. После этого лицевые поверхности закладных деталей и монтажные сварные швы покрыть
 тремя слоями ЭП-00-10.

4. Конструкции металлических сграждений охрасить эталью ПФ-И5 за Эраза по одному слою грунтов-ки ГФ-020.

- 1. На основании данных инженерно— геологических изысканий и клитатических условий места строительства устанавливается возможность возведения усреднителя по данному типовому проектки.
- 2.8 соответствии с технологическим заданием принимается одна из компоновок(2,3,4,5 или в секции). При привязке проекта:
 - a) составляется перечень листов проекта в) устанавливается абсолютная отметка верха дни-
 - в) принимается тип распределительного лотка 450x60 $q(t_0)$ или $600 \times 900(h)$
 - г) проставляются цифровые аси принятой компоновки по листам КЖ-8.9.

- 3. Назначается морка бетона по морозастой кости в зависимости от расчетной температуры наружного воздуха согласно таблице N1, приведенной на данном листе.
- 4. В содержании эльбома, листах общих данных, тоблицах и спецификациях эачерхиваются данные, не относящиеся к заданным усповиям.
- 5.При необходимости применения типового проекта на площадке с грунтовыми водами, привязка его может быть осуществлена при условии, что расчетный уровень грунтовых вод не превышает отметки 0.500 (за условную отметку 0.000 принят верх железоветонного днища).

в этом случае при привя эке проекта следует предусмотреть по бетонной подготовке цементную атяжку из цементного раствора талщиной 20мм. состава 1:2.

- 6. При привлеке проекта необходимо предусмотрето мероприятия по контролю за движением уровня грунтовых вод. Для этого следует заложить рядом с усреднителем в уровне днища металлические вертикопоные трубы с 50 мм с фильтрами в основании в количестве от двух до четырех в зависимости от грунтовых условий. При уровне воды в контрольных трубах выше о.5 м над верхом днища, выполненного по проекту, опорожнение усреднителя не допускать ниже уровня воды в трубах до принятия мер, обеспечивающих проектное положение уровня грунтовых вод.
- 7. С учетом всех изменений и уточнений при привлзке корректируются объемы работ и смета, котория пересчитывается на ЕРЕР, утвержденные для площадки строчительства

			TN902-2-337	-KX	(
Привлзан	Разрад. Петропови		Усреднитель канцентрации сточных бод. Объемом	Стадия	<i>Auem</i>	Aucmo l
	Pospou Fapous		 CEKUU 5000 KYO. M.	ρ	5	
JH8.№2	Рук.ер. Гарбуз Гл.инж пр Чиркой Нач.ото Андриа	ta.	Общие данные (продолжение)	601038	OAN KODO S MOCK	ATOPOEK T

KILUDOB. And 16710-02 7

Popmam 22r

×

VII Основные положения по производстви работ.

в основных положениях приведены рекомендации по производству строительно-монтажных работ принципиального характера, на основании которых осуществляется разработка в дальнейшем строительной организацией проекта производства работ (ППР), в зависимости от конкретных исловий осиществления данного строительства и оснащенности строительной организации материально-техническими ресурсами. Возведение усреднителей рекомендуется производить в следуюшей последовательности:

- подготовительные работы
- земляные работы
- бетонные и железобетонные работы
- монтаж сборных железобетонных элементов
- торкветные работы
- испытание усреднителей
- обратная засыпка котпована.

Общая продолжительность строительства и затраты трида на их быполнение приводятся в нижеследиющей таблице:

	E∂.	KONUY	ecmão	CE	KUUU	
Наименование		2	3	4	5	δ
Продолжительность строительства	me c	2.0	2,5	3,0	3,5	4,0
Трудоемкость	чеп. дн.	2648,17	4001.64	4966,69	6322,16	7287,2

Все работы должны выполняться в строгом соответствий с требобаниями техники безопасности, предисмотренными в СНиП ПР4-19. Строительство в зимнее время не рекомендуется, т.к экономически не выгодно, а технически не целесообразно. При необходимости такого спіроительства следует обеспечить защиту грунтового основания (пучинистого) от промерзания. Набор прочности бетонных и ж.б. конструкции в зимний период рекомендиется производить способами искусственного прогрева (пар, воздух и другие). К моменти замораживания ж.б. конструкции должны набрать 100% прочности.

VIII Подгатовительные работы

До начала строительно-тонтажных работ должны быть Выполнены:

- подготовка территории
- временные дороги
- площадки для складировония материалов

- временные здания
- временное электросновжение
- временное ограждение территории площадки

їх Земляные работы.

- 1. Бульдозером типа Д-271А снимается растительный грунт, грузится на автотранепорт и отвозится в отвал.
- 2. Разработка минерального гринта в котловане производител экскаватором-дроглайн типа Э-652 с ковшом 0.8м³ на проектную елубину с оставлением недобора-20см. Грунт грузится на автосамосвалы и отвозится на расстояние до 1км. Целесообразна гринт в объеме, потребном для обратной засыпки, складировать непосредственно и котлобана.
- 3. Недобор гринта 20см. разрабатывается вначале бульдозером тила Д-271А, а затем зачищается до проектных отметок тепже бульдозером, переоборудобанным на обратный отбал.
- 4. Межди цифровыми осями исреднителя темже эксковатором-дроглийном доработываются съезды в котлован и устраиваются прогэды с дорожной одеждой.
- 5. 8 обратную засыпку грунт подается бульдозером типа Д-2МА. послойно разравнивается и уплатняется. При устройстве обсыпки гринт для нее подоется экскаватором-ерейфером и послойно разравнивается с иппотнением. Обратная эдоыпка (или обсыпка) должна поризводиться только посте проведения гидравлического испытания усреднителя.
- Х Бетонные и железобетонные работы.
- 1. Рекомендиется укладку бетонной смеси в бетонную подготовку производить при помощи автомобильного крана типа "К-18! "гіп 16т и опрокидных бадей ёмк О.4м, заеружаемых бетонной смесью непосредственно из автосамосвалов. Перемещение крана и подача автоса мосванов под его крюк осиществляется по временным автодорожным проездам.
- 2. Бетонная смесь укладывается в бетонную подготовку полосами параллельно цифровым осям шириной до 3м в зависимости от интенсивности её подачи к мести укладки. Полосы, отделенные друг от друга маячными дасками, рекомендуется Бетонировать через одну. Уппотнение бетонной смеси производится электровиброрейками И-52. передвигаемыми по маячным доскам.
- 3. После набора прочности бетонной подготовки не менее 15кгс/см² производится установка арматуры и опалубки днища усреднителя. Весь комплекс работ по установке арматурных конструкций.

эсклодных частей и опалидки производится автомобильным краном muna K-ibi ein 16T.

4. Подача бетонной смеси в днище исреднителя производится спосовами описанными выше для Бетонной подготовки.

Укладка бетонной смеси в днище рекомендиется асуществлять в каждой секции на двих участках/расположенных ло обе стороны от автодорожного подъездај.

Каждый участок рекомендуется бетонировать непрерывно (без рабочих швов) полосами параллельными цифровым осям исреднителя.

Уплотнение бетонной смеси произбодится поверхностными и внутренними электровибраторами типов С-413 и И -!16 А.

XI Монтож сборных железобетонных элементов. 1. Монтаж сборных железобетонных элементов усреднителя(стеновые панели, колонны, элементы лотков и пр.) рекомендуется производить с колес при помощи монтажного крана типа ЭСКГ-25, после того, как бетом днищо наберет прочность не менее 70% от проектной. Далге на учостках временных праездов выполняется бетонная подеотовка, устанавливается арматира и икладывается бетонная смесь. Эти работы рекомендуется быполнять отстиная двимя или тремя захватками.

2. Наружные стеновые панели по контуру усреднителя рекомендиется монтировать от свредины к иглам. При этом монтажный кран типа ЭДТ-25 и абтогранспортные средства перемещаются по бровке котпована и подъезднай дороге к исреднителю.

После монтажа стеновых панелей устанавливается арматура, опалувка и производитея укладка бетонной смеси вугловые участки стен. 3. Сборные стеновые панели истанавливаются в паз дниша закретляются в проектном положении деревянными клиньями (твердых пород) И Соединяется, между собой арматирными накладками. Замоналичивание паза выполнять бетоном марки 300 на мелком заполнителе.

						Привя	ан			
							Ţ			
						UHB · N			1	_
					TN 5	102-2	1-332	7-KX	,	
Иннен	Барадина	5001		Усреднитель	KOHUSHI	рации	CTOBUR	Aucin	Auch	100
Р <u>ун, бр</u> Разраб	<i>Багадина</i> З алециа Смирново	Cuil-		Усреднитель сточных в секции 5	000 0058 000 KYO	MOM . M.	ρ	8	L_	
пробер.	Полянская Тагер Лашев	May	/	(йьодочу Одтав	данные			AUKAHA E. NOCK	nnpo	EKT
		v	KON	AOUEHKO.	1671	0-02	8 9	Popmai	m 221	7

вертикальные стыки между стеновыми панелями (шпаночного типа) замоноличиваются цементно-песчаным раствором механизированным способом. Раствор под давлением подается снизу в соответствии с... Рекомендациями по замоноличиванию стыков шпоночного типа в сборных железоветонных водосодержащих ёмкостях." (ЦПИИ Промзданий, 1967 г.)

🞹 Торкретные работы.

- 1. Бетонные поверхности, подлежащие торкретированию (монолитные участки стен и днища) предварительно очищаются от мусара, грязи и пр.
- 2. Вертикольные бетонные поверхности затем обробатываются пескоструйным аппаратом для снятия цементной пленки. Снятие цементной пленки с горизонтальных бетонных поберхностей (днища) рекомендуется производить в рачнем возрасте бетона струей воды из брансвойта или металлическими щетками.
- 3. Таркретирование бетонных поверхностей цементно-песчаным раствором(состава 1:2) производится при помощи цемент-пушки типа С-320 в два слоя с общей толщиной 25мм.

XIII Гидравлическое испытание.

Гидрайлическое испытание рекамендуется производить по мере завершения строительных работ в кождой секции (или очередной), в соответствии с методикой изложенной для емкоотных сооружений водоснавжения и канализации в СНи \mathbb{H} -30-74 раздел в "Испытание сооружений п.8.47".

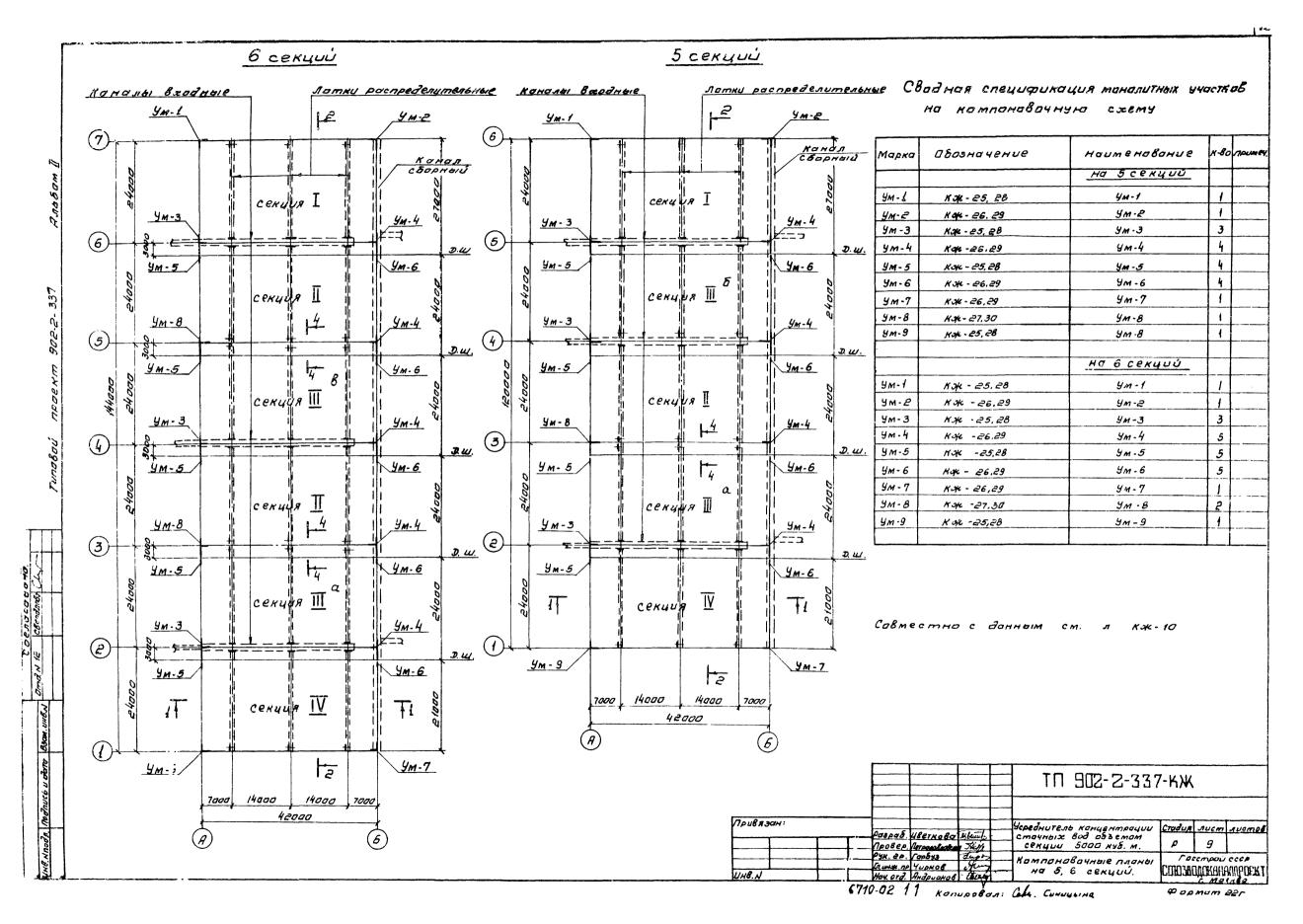
Выбор способов и приемов при производстве эемляных, бетонных, монтажных и других видов работ в эммих условиях производится при привязке настоящего типового проекта (для районов страны, где эимний период весь ма эначителен) с учетом местных условий и воз можностей конкретной строительной организации.

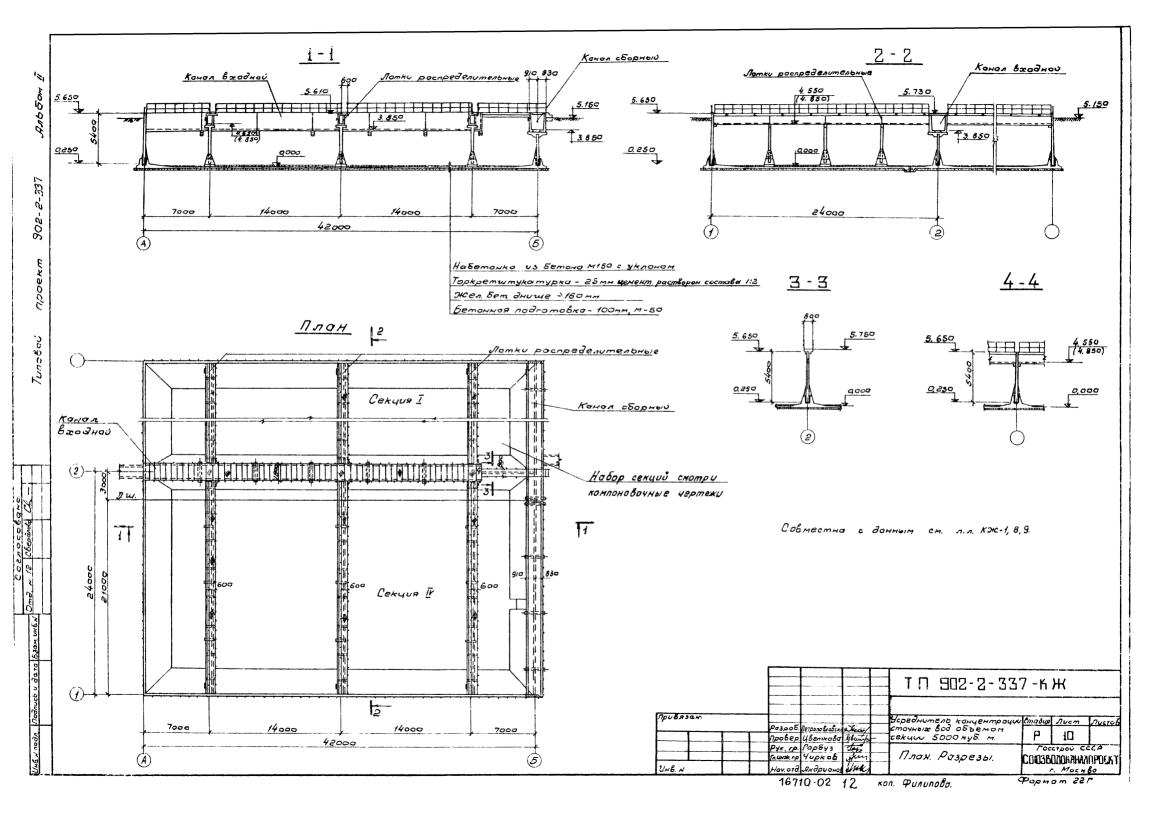
Сводная ведомость объемов работ.

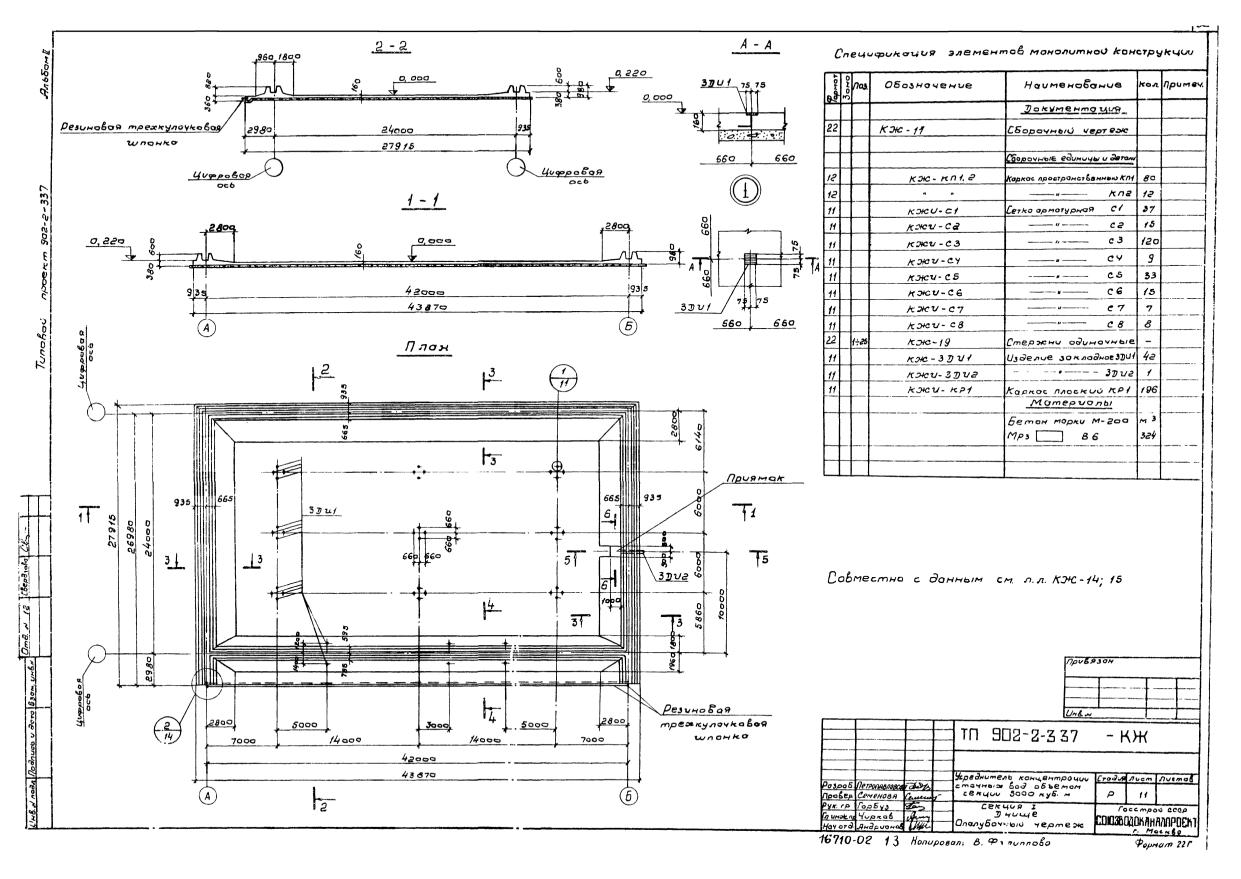
~ ∩/n	Наименование забот	Ед. ИЗМ.	K C 24 CEK- 4UOH - HOVE	AUUH Ger- Guon- Hoie	C m B	D 50 ce K- 400M- Mole	BU CER- LUOH- HOLE
	2	3	4	5	θ	7	8
1	Земляные рабіны:						
	d) выемка еру÷та,	мз	4590	6600	8510	10420	12330
	вт.ч. растите, и эго грунта	"	1150	1650	2150	2650	3/50

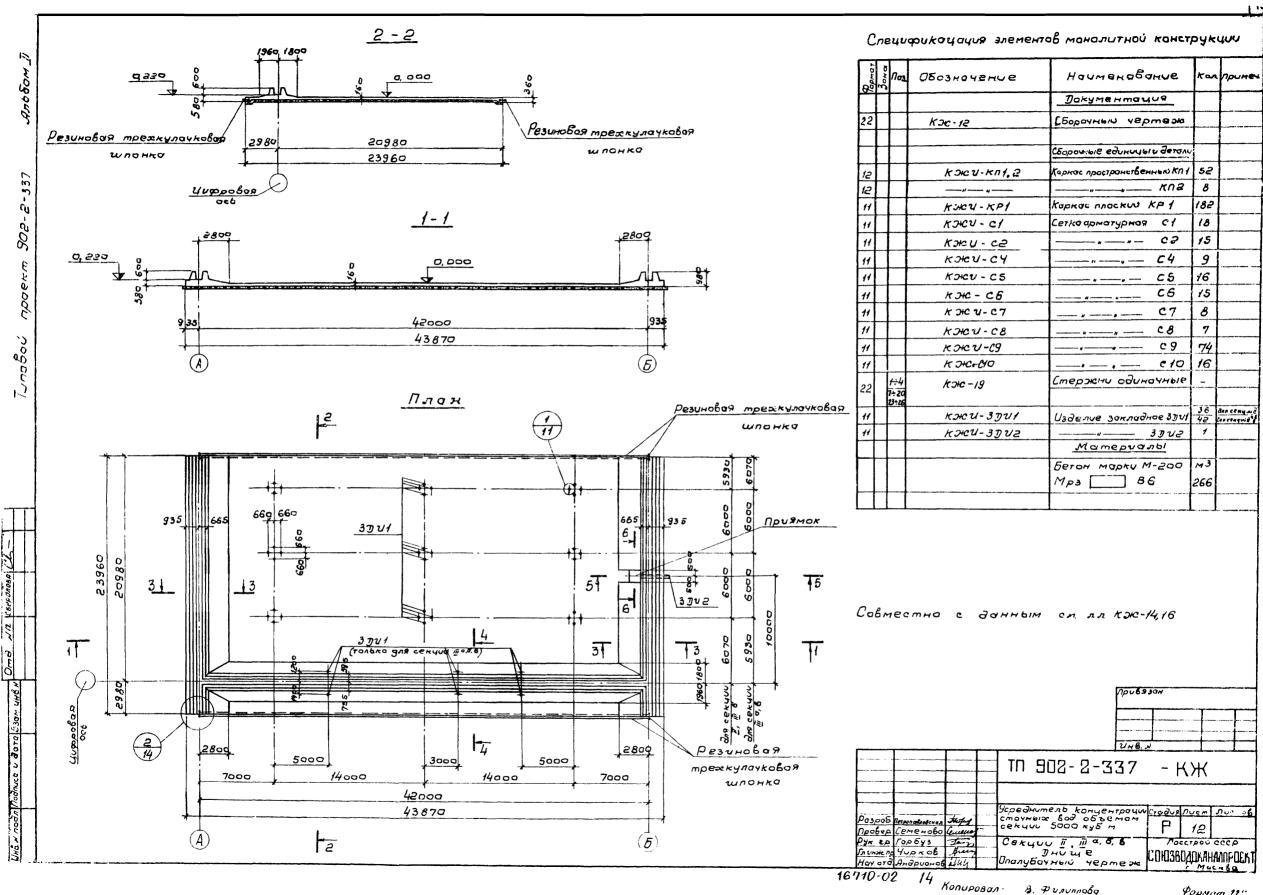
	2	3	4	5		7	8
2	б) насыпь и обратная засыпка Устройство моналитных	/4 ⁵	3050	428G	5510	6740	1970
	конструкций:						
	d) железобетонных	#	612	904	1201	1494	1791
	б) бетонных	"	296	437	519	721	862
3	Монтаж сборных конетрукций:				Ì		
	а) железобетонных	"	317	456	571	7/2	821
	Б) стальных	T	18	25	34	42	49
	б)деревянных	м³	0.7	1.0	1.5	1.8	2.0
4	Отделочные работы:						
	ајокраска стальных конструкций			ĺ			
	эмаль <i>ю</i>	Wŝ	246	375	482	811	7/8
5	Uзоляционные работы:						
	а) торкретирование	"	2042	3109	4182	5243	6322
	б) обмазка битумом	"	1078	1356	1634	1912	2190

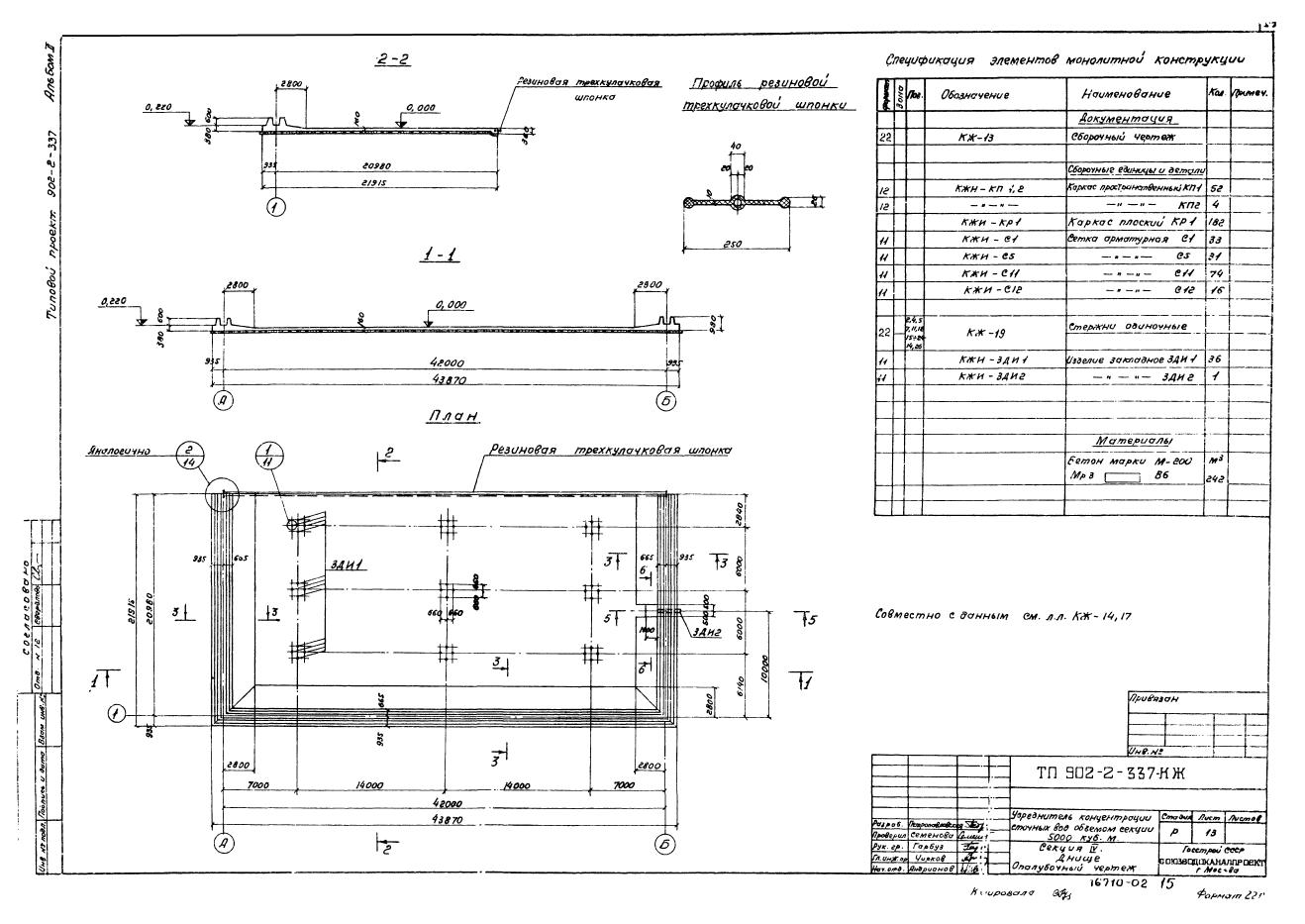
ведомость потребности в строительных конструкциях изделиях и полуфабрикатах.

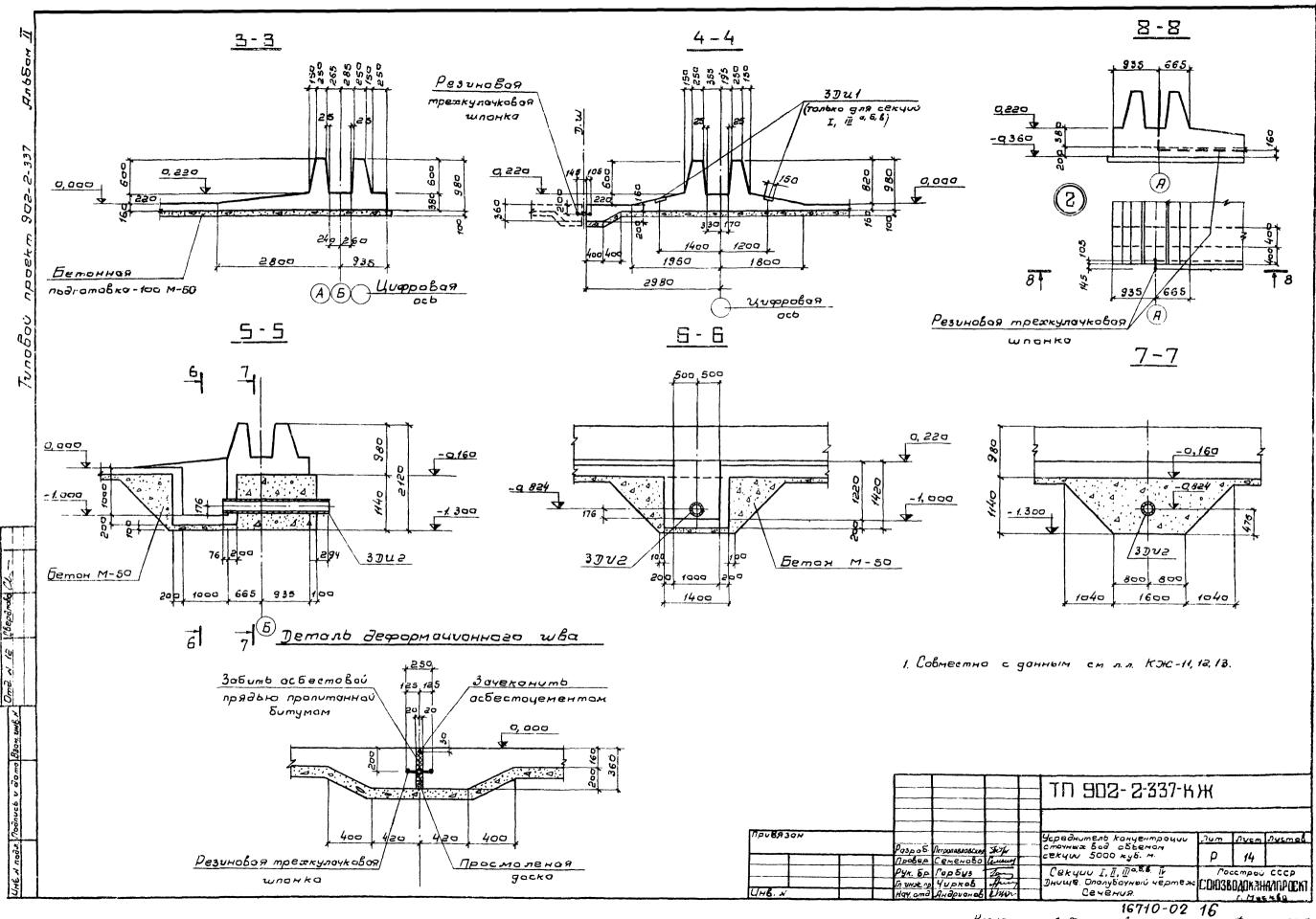

ППО ПОВТЕНОВНОЕ РОВОТТ 1 БЕТОН ТОВОРНОЕ РОВОТТ 1 БЕТОН ТОВОРНОЕ В 1900 ТОВОТТ 1 ТОВОТЕ В 1900 ТОВОТ 1 ТОВОТЕ В 1900 ТОВОТ 1 ТОВОТЕ В 1900 ТОВОТТ 1 ТОВОТЕ В 1900 ТОВОТ		M	Harris In Paris In Control	E₫.	K	114	ecm	00:	
2 Бетон товарный, всего м³ 922 1366 1811 2253 269 вт.ч а)на бетонные конотрукции и 301 486 590 735 879 б) на железоветонные конструкции и 821 920 1221 1518 182 260 готоные железоветонные конструкции, в т.ч. стеновые панели, колонны, лотки и прочие и 317 456 570 711 821 3 Стапьные конструкции т 18 26 34 42 49 4 Раствор м³ 9 13 17 21 24 4 Раствор м³ 9 13 17 21 24 5 6 6 7 8 9 100 6 Битумная мастика т 5 6 7 8 9 100 6 6 Битумная мастика т 5 6 7 8 9			Наименование работ		HOVE	UUOH-	LUON-	TOOK-	HUUN- HUUN- HUUN-
Вт.ч. а) на бетонные конструкции и зои 486 590 735 879 б) на железобетонные конструкции и 821 920 1221 1518 182 2 Сборные железобетонные конструкции, б т.ч. стеновые панели, колонны, лотки и прочие и 317 456 570 711 821 3 Стапьные конструкции т 18 26 34 42 49 4 Раствор м³ 9 13 17 21 24 4 Раствор м³ 9 13 17 21 24 5 6 7 8 9 100 6 Битумная мастика т 5 6 7 8 9		\square	e e	69	4	5	6	7	
б) на железоветонные конструкции 2 Сборные мелезоветонные конструкции, в т.ч. стеновые панели, колонны, лотки и прочие 3 Стальные конструкции т 18 26 34 42 49 4 Раствор м³ 9 13 17 21 24 5 Армоконструкции: а) для монолитного железоветона б) для сборного железоветона 6 Битумная мастика 7 5 6 7 8 9		1	Бетон товарный, всего	M ³	922	1358	1811	2253	2699
конструкции			вт.ч. а)на Бетонные конструкции	"	301	485	590	735	879
2 Сборные железобетонные конструкции, в т.ч. Стеновые панели, колонны, лотки и прочие " 317 456 570 711 821 32 Стальные конструкции Т 18 26 34 42 49 49 4 Раствор м³ 9 13 17 21 24 5 Армокинструкции: а) для манолитного железобетона Т 78 114 147 182 215 6 Битумная мастика Т 5 6 7 8 9			б) на железоветонные		İ				
конструкции , в т.ч. стеновые панели, колонны, лотки и прочие , 317 456 570 711 826 3 Стальные конструкции т 18 26 34 42 49 4 Раствор м³ 9 13 17 21 24 5 Армоконструкции: а) для монолитного железоветона т 78 114 147 182 215 6 Битумная мастика т 5 6 7 8 9			конструкции	"	821	920	1221	1518	1820
Стеновые панели, колонны, лотки и прочие 317 456 570 711 821 32 Стапьные конструкции Т 18 26 34 42 49 49 49 49 49 49 49 49 49 49 49 49 49		2	Сборные железобетонные						
Лотки и прочие . 317 456 570 711 821 3 Стальные конструкции Т 18 26 34 42 49 49 49 5 Армаканструкции: ајдля манолитного железабетона Т 78 114 147 182 215 6 Битумная мастика Т 5 6 7 8 9			конструкции , в т.ч.	l					
3 Стапьные конструкции Т 18 26 34 42 49 49 49 49 49 49 49 49 49 49 49 49 49			стеновые панели, колонны,						
4 Раствор м³ 9 13 17 21 24 5 Армоконструкции: а) для манолитного железобетона б) для сборного железобетона 6 Битумная мастика 7 5 6 7 8 9			лотки и прочие	•	317	458	570	711	820
5 Армокинструкции: а) для монолитного железабетона Т 78 114 147 182 215 б) для сборного железобетона 41 59 75 92 100 6 Битумная мастика Т 5 6 7 8 9		3	Стальные конструкции	1	18	26	34	42	49
а) для монопитного железобетона Т 78 III4 I47 182 215 б) для сборного железобетона 41 59 75 92 100 6 Битумная мастика Т 5 6 7 8 9		4	Раствор	M3	9	13	17	21	24
железабетона Т 78 III4 I47 I82 215 Б)для оборного железабетона 4 41 59 75 92 100 6 Битумная мастика Т 5 6 7 8 9	1	5	Армоконструкции:						
Б) для сборного железоБетона 41 59 75 92 1006 6 Битумная мастика 7 5 6 7 8 9	1		а) для монопитного		l				
6 Битумная мастика T 5 6 7 8 9	1		железабетона	7	78	114	147	182	2/5
1 Comenting			б) для сборного железобетона	,	41	59	75	92	108
7 Onanyōka M² H10 1729 2296 2855 342		6	Битумная мастика		5	6	7	8	9
		7	Οπαλγδκα	M²	1170	1729	2296	2855	3422

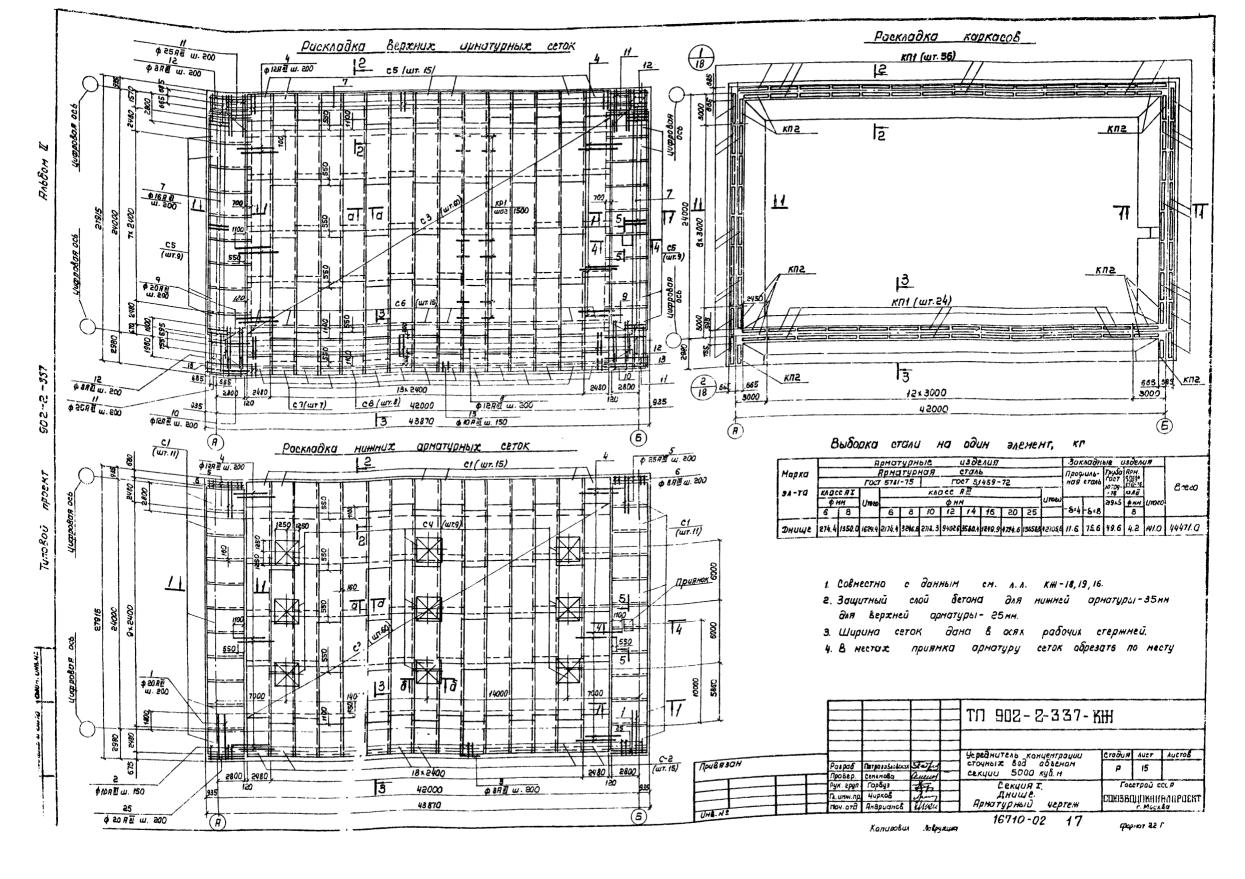

В	едомость потребности	B	mam	ериа.	ησχ		
M	Наименование работ	₽ð.		O N U	ve cr	n 00	
n/n	паименование равым	U3M.	ZX CEK- LUON-	HOIE	4× ce x- 4UOH- Hole	50 Cex- 400H- Hole	HUOH-
1	2	.3	4	5	8	7	8
1	Щебень для бетона и железобетона		Ì				
İ	a) wo ko vn w ko so	Μ³	774	1144	1519	1889	2283
	б) сборного		261	374	468	584	673
2	Necok:						
	а) для монолитного ветона	"	480	711	943	H73	1406
	б) для сборного бетона	v	140	201	251	313	351
	в) для раствора	b	78	119	150	200	241
3	Цемент:						
	а) для монопитных						
	конструкций и						
	раствора	7	309	458	509	759	910
	б) для сборных						
	конструк ци й	,	106	152	190	237	273
4	Лес:						
	а) пиленый	M³	140	207	275	342	410
	б) круглый	"	12	17	23	29	34
5	Металл:						
	а) арматура	τ	123	176	225	279	329
	<i>б) металлоконструкции</i>		20	27	35	44	52
6	Битум	,	6	7	9	10	12
7	Λσκ	Kľ	99	150	/93	245	287

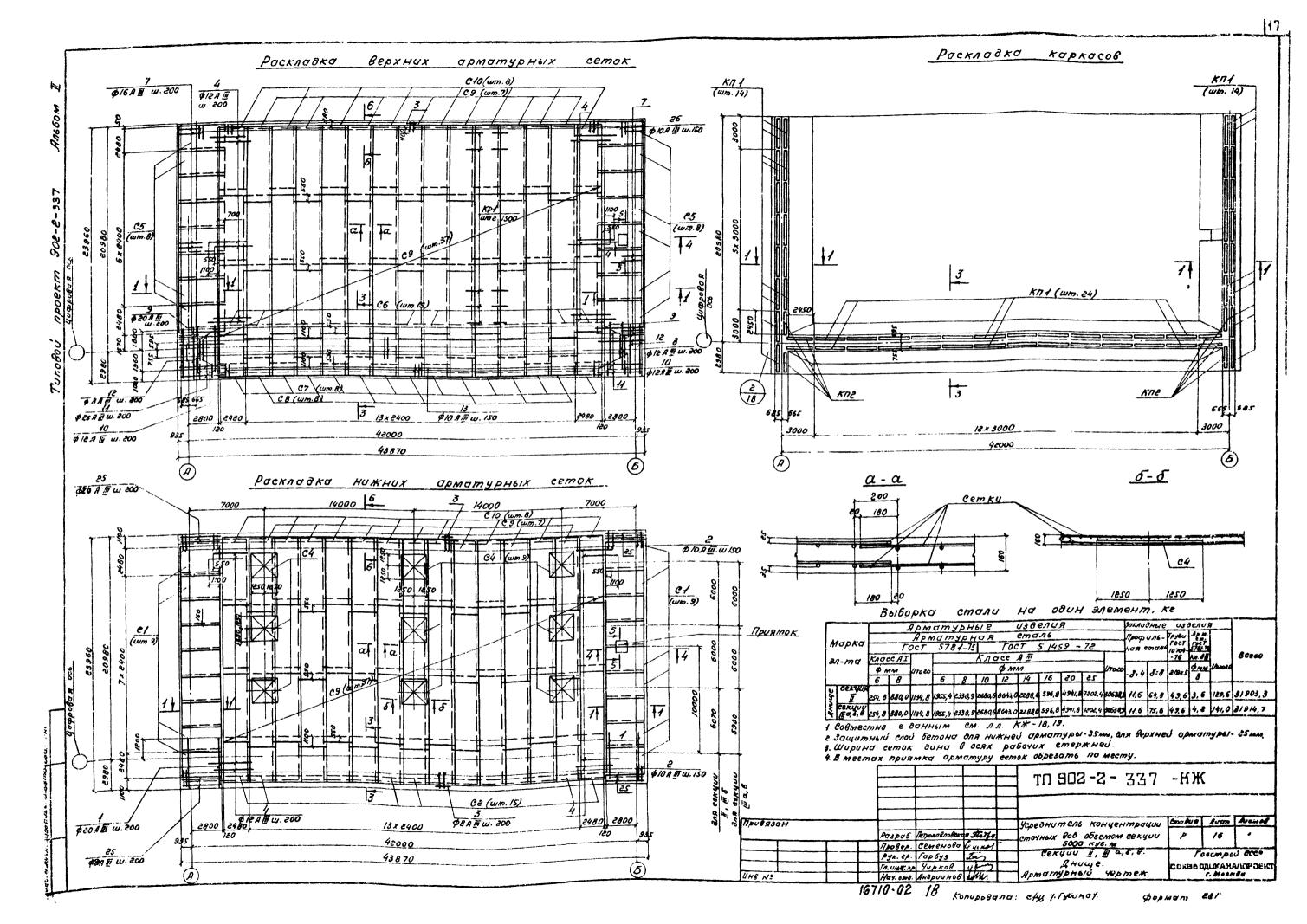

				Привя	90h		
				UнВ∙ <i>М</i>			
				TN 902-2 - 33	7 KX	<u>K</u>	
	500-2	Terr					
рук.ер.	<u>Бародина</u> Залецкая Полянская	Net !		оточных вод объемом		nuç:n	AUCM 05
	: голи некай Смирнова		-	Секции 5000 куб м.	P	DECMPO	CCCP
TUN HOY. OM.	Тагер Лашев	2.4		Общие данные	союзв		AA NPOEKT Su

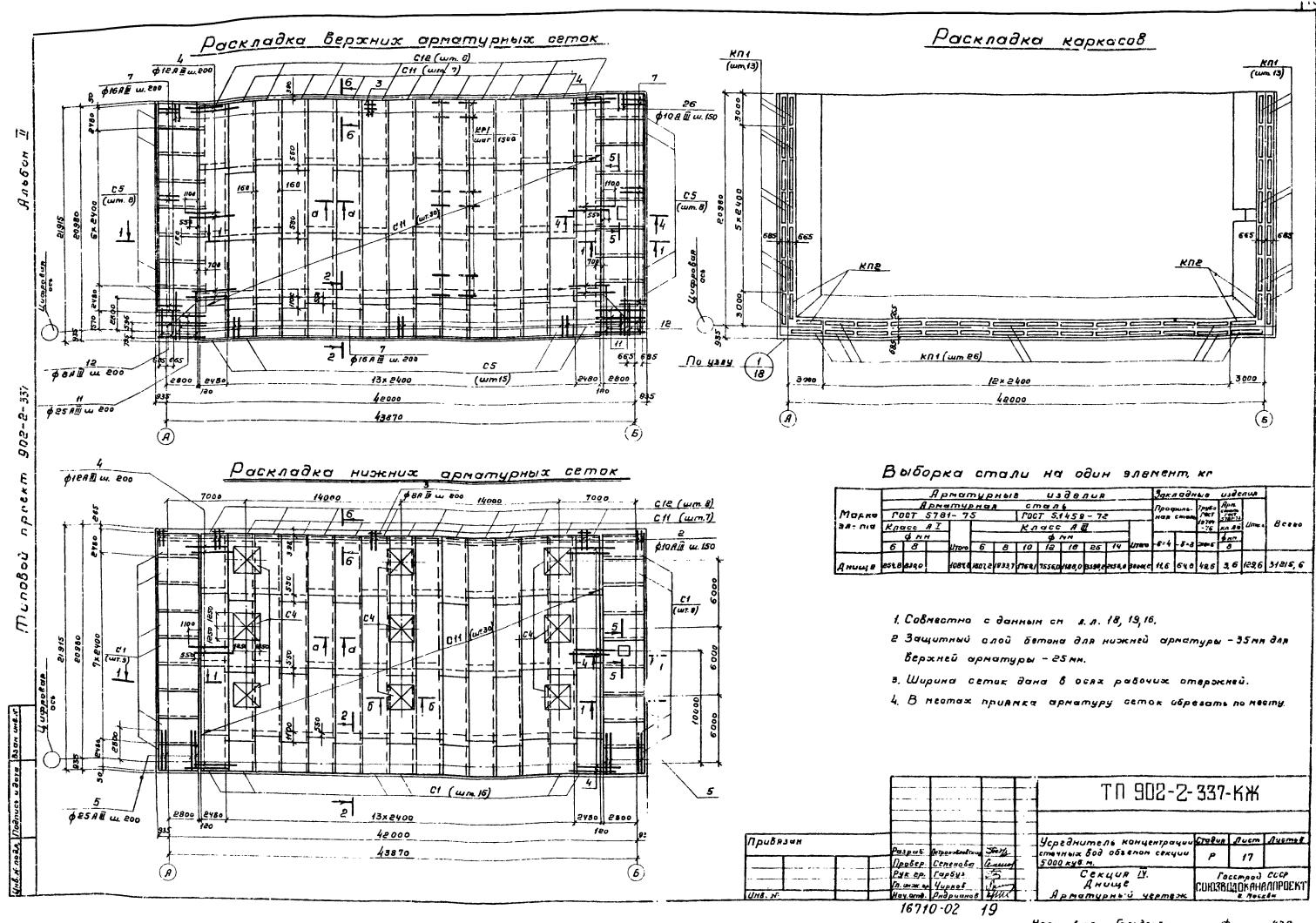

KON ADUENKO 16710-02 0

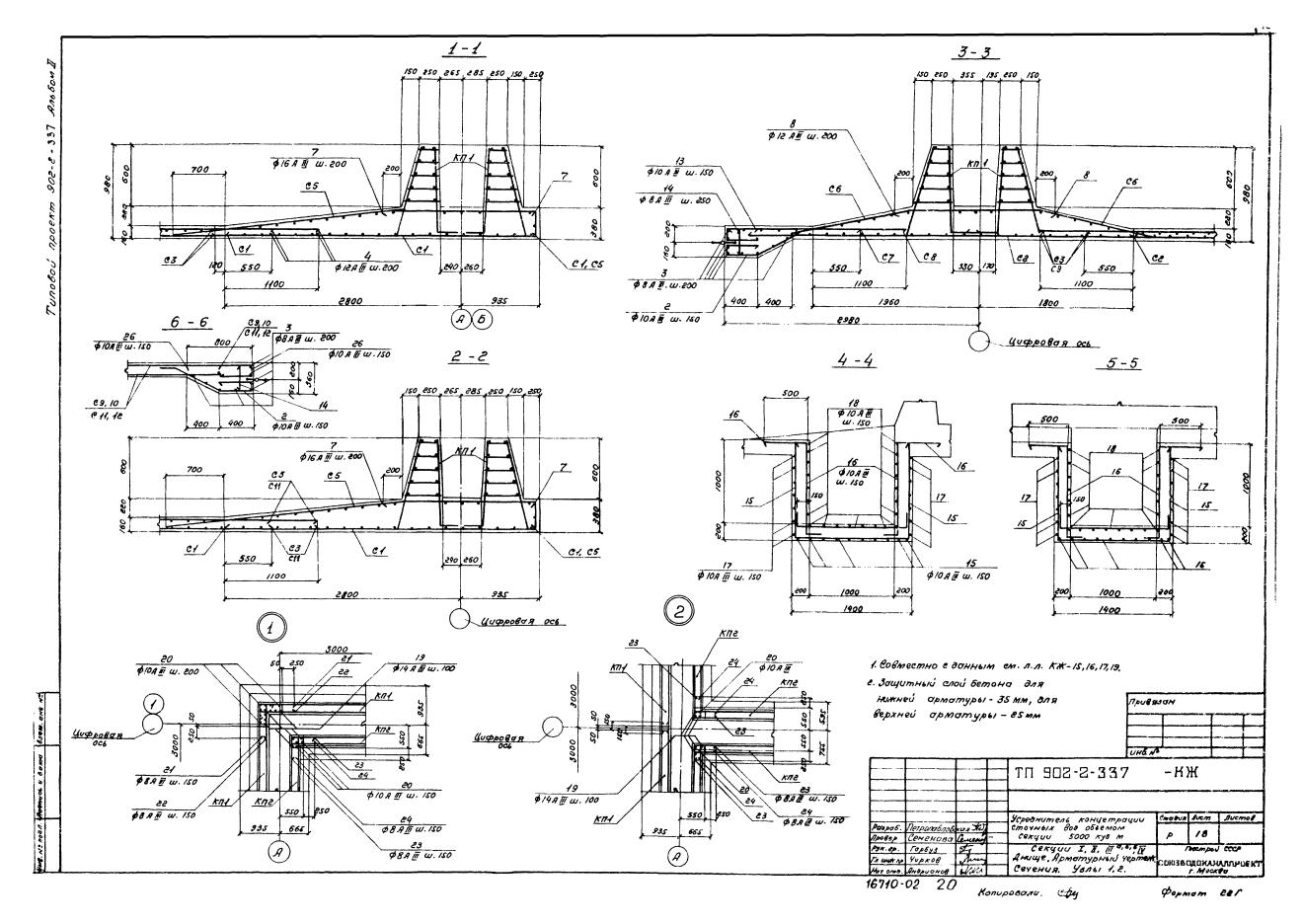

Формат 22.





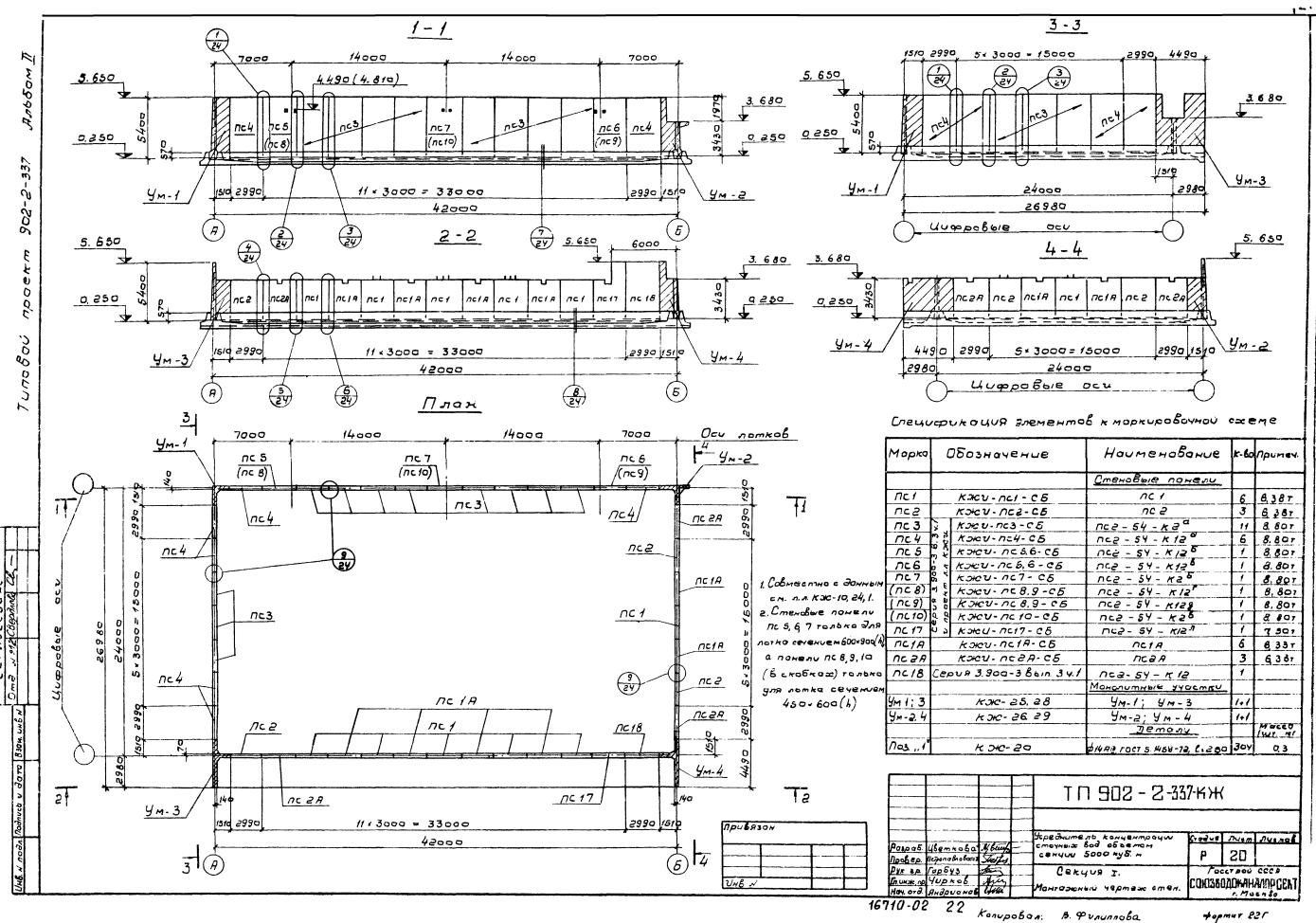




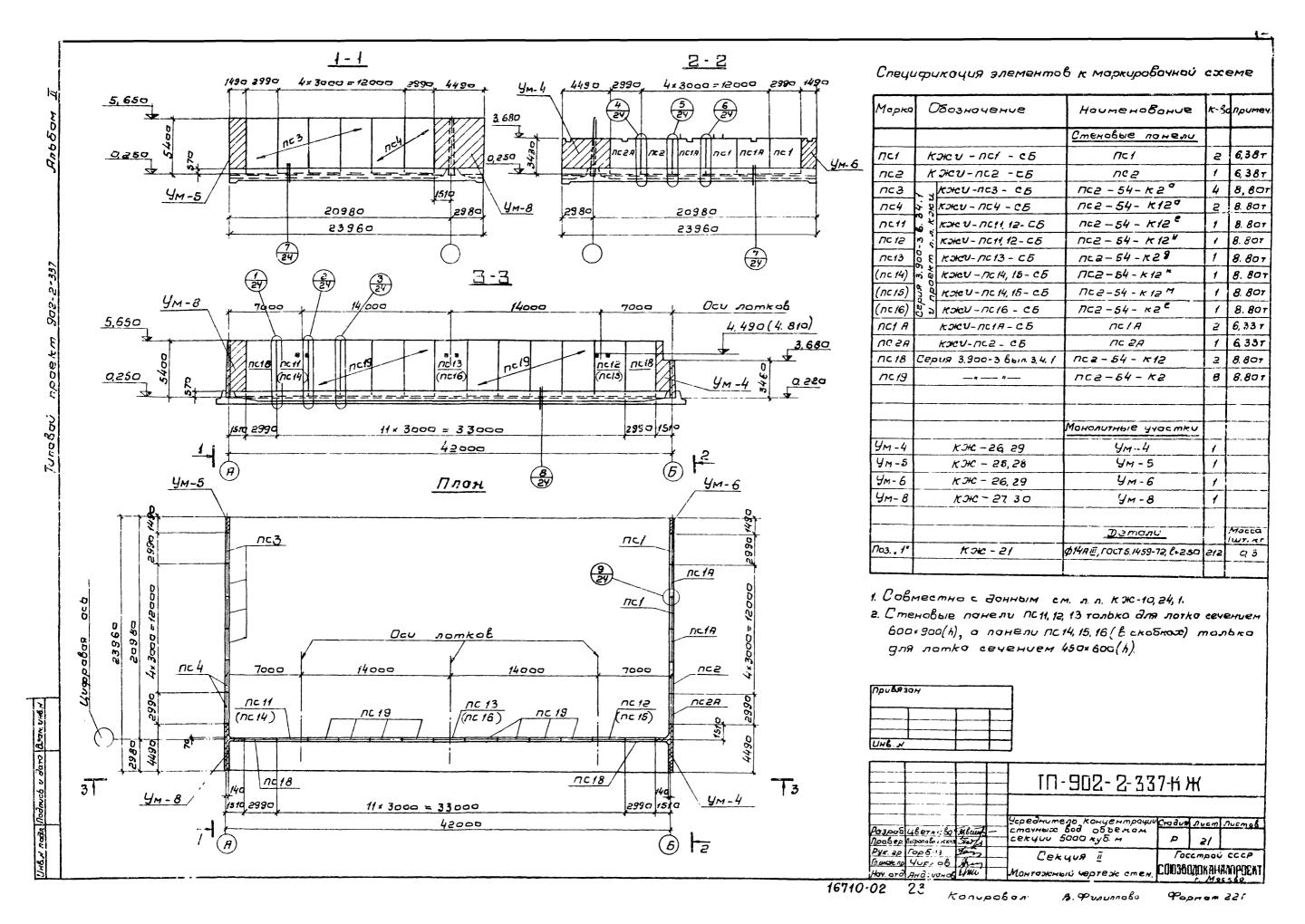


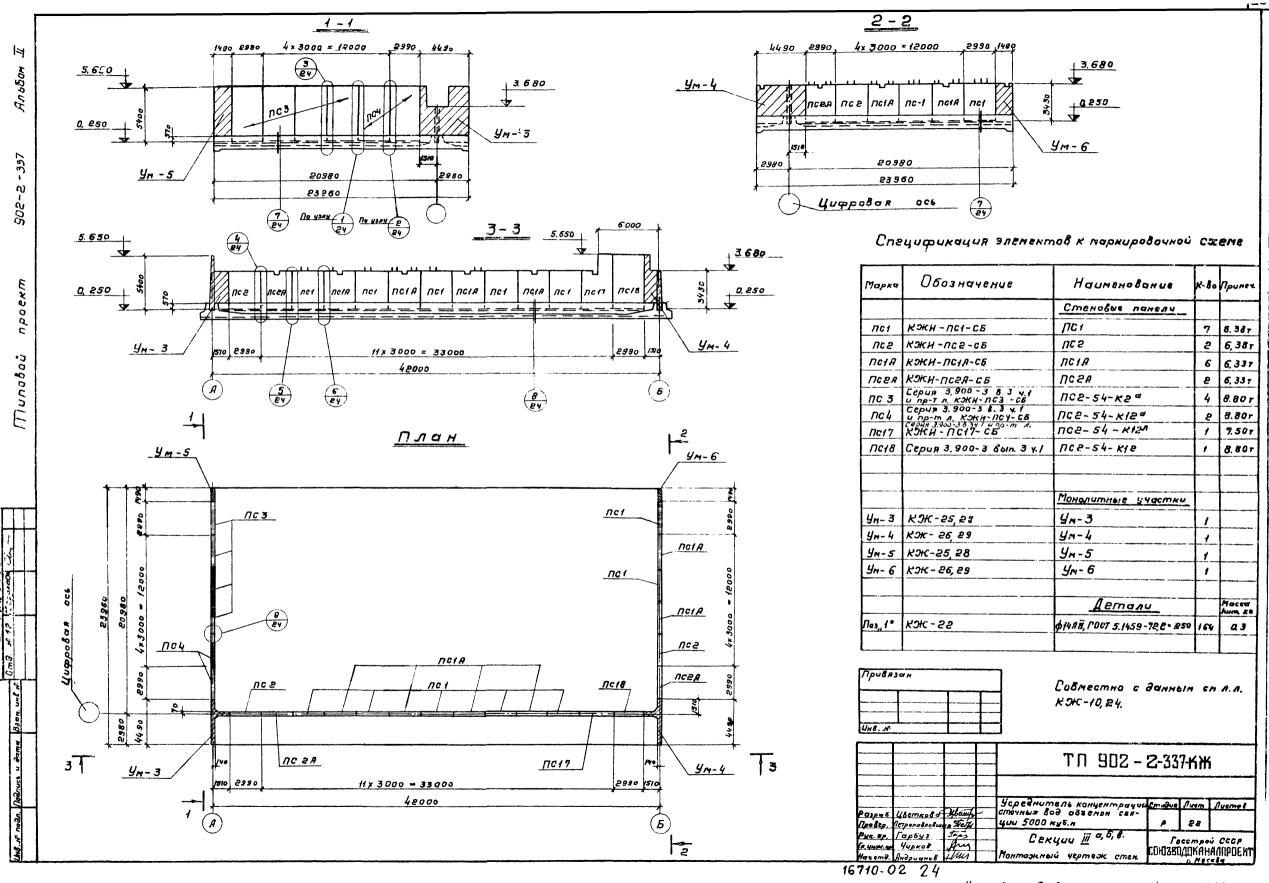
			<i>-</i>				
OL O	nos.	JCKU3 UNU CEYBHUE	ø	A JUNQ	x-Bo	8e	Kr
SARMONTO			MM	мм		lwr.	BCEX
7	1	4480	20 A jij	4480	38	11.0	418.0
	2	380 620	!0## <u>#</u>	1710	<i>2</i> 93	1,1	322.3
	3	Общая длина	8711	77.M. 350	_	-	138.3
	4	<u> 3.550</u>	12PM	3550	480	3,2	1536.0
	5	3720	25 A Ā	37 <i>2</i> C	46	14,3	657,8
	6	1000	8 A 1 <u>1</u> 1	1000	38	0.4	15,2
	7	21 200 1600	16 A IŬ	1800	431	2,9	1249.9
Ę	8	\$ 1350 \$10 200	12AII	1750	203	1.6	324.8
`	9	9 1350	20AM	4670	22	11.5	253,0
E	10	2100	RAM	2100	22	1.9	41.8
	11	St 2865 1575 1 3	25 A I I	4780	74	18.4	1265, 4
9	12	4080	89111	4000	36	1.6	57.6
7	13	§ <u>380</u> § <u>380</u>	IO A III	310	293	0,6	175.8
	14	330	8A Ú	330	175	0.1	17.5
A	15	1330	IORNI	3630	40	2,2	88.0
	16	500 g	10A (<u>i</u>)	1850	3₽	1.1	35,2
	17	g 1350 g	IOAN	2350	28	1,5	42.0
	18	\$ 1300 B	IDRAI	1700	42	1.1	46.2
	19	188	141711	1080	36	1.4	50,4
		10 170			-		
	ao	970	ORI	970	24	0.6	14.4
	21	8 K 970 + 770	8คญั	ecp.: 1740	10	0.7	7.0
	22	8 800	8 AII	900	20	0.3	6.0
	23	8 600	8 <i>A III</i>	1200	10	0.5	5.0
	24	\$ 500	800	600	60	0,2	12.0
	25	3720	20 A IŲ	3720	8	9,2	73.6

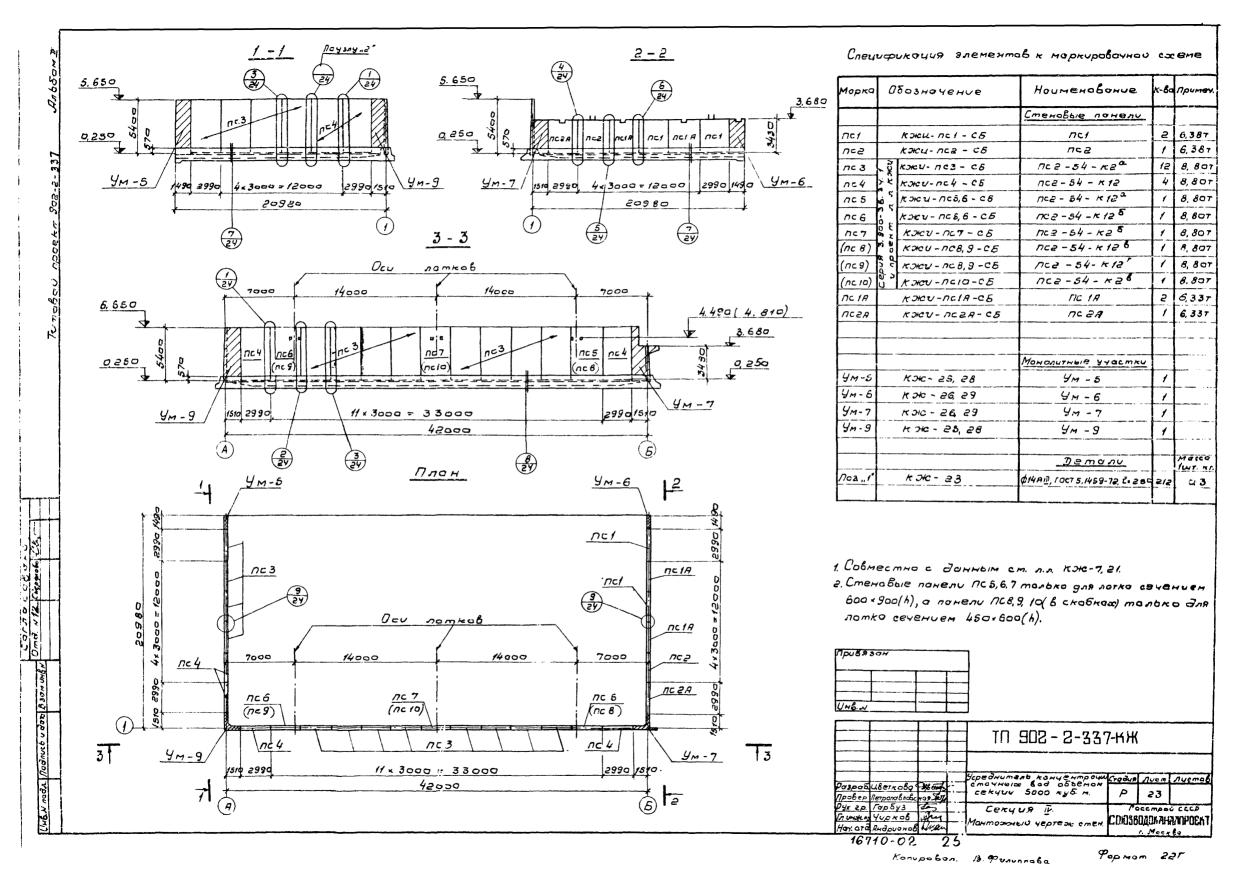
Ведотость стержней на 1 элемент (CEKYUU II, III a. 5.8)

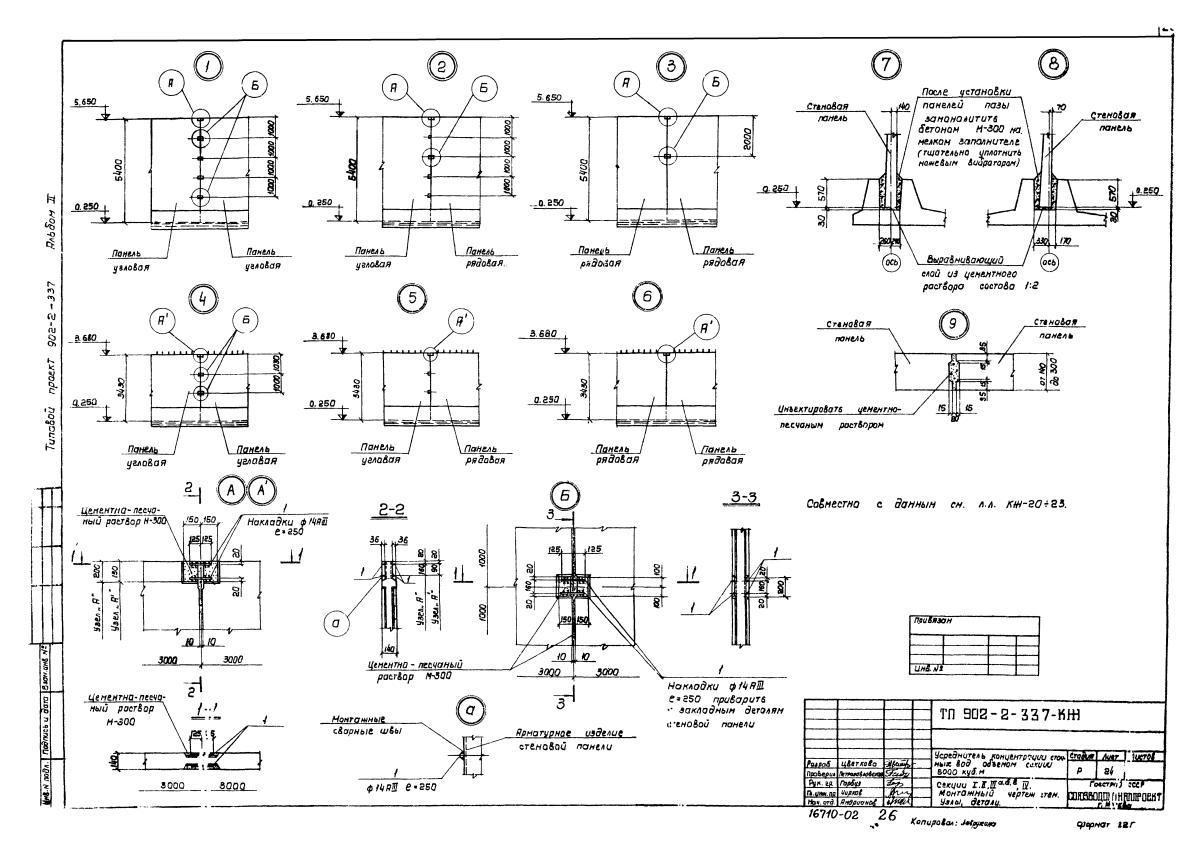

N'A	/103	Эскиз или сечение	ø	Длина	A-80	Bec	KF
MOPKA		00,00 00,00	MM	mm		lut	Bcex
	1	4480	20 A Ñ J	4480	38	11.0	418.0
	2	380 6 ⁹⁰ 150	IOAQ	1710	586	1.1	644.6
		380 620					-
	3	οδιμα η δηνκα	ea nji	7. M 700	_	ı	276,5
	4	3550	RAİİ	3550	432	3,2	1382,4
	7	200	16 A M	1800	200	و,چ	580.0
	θ	at 200 200	RAIĮ	1750	203	1.6	324.8
	9	/350 1585 1735	20 A T	4670	22	11.5	253 0
e)	10	2100	ien ilj	2100	22	1.9	41.8
U	11	2865	25คตุ้	4780	34	18.4	581.4
	Æ	<u>4000</u>	BA Ū	4000	34	1.6	54.4
2	13	§ <u>380</u>	10.9111	910	293	0.6	175.8
	14	330	8A IŸ	330	350	0,1	35,0
¥	15	\$ 1330 B	10 A iy	3630	40	2.2	88.0
A	16	500	!OA Ñ	1850	32	1.1	35,2
		<i>§ ≥00</i>					
	17	00 1350 00 N	IOAII	2350	28	1.5	42.0
	18	1300	10AM	1700	42	1.1	46.2
	19	F	16คญี	1080	12	1,4	16,8
		49 170					
	20	970	เอลตั	970	4	0,6	2,4
	ટર	600	BAÑ	1200	20	0,5	10.0
	24	500	BAÑ	600	40	0,2	8.0
	25	37 <i>eo</i>	<i>€0A™</i>	3720	24	9.2	220,8
	26	380 %	IDRIŪ	1330	210	0.8	216.0

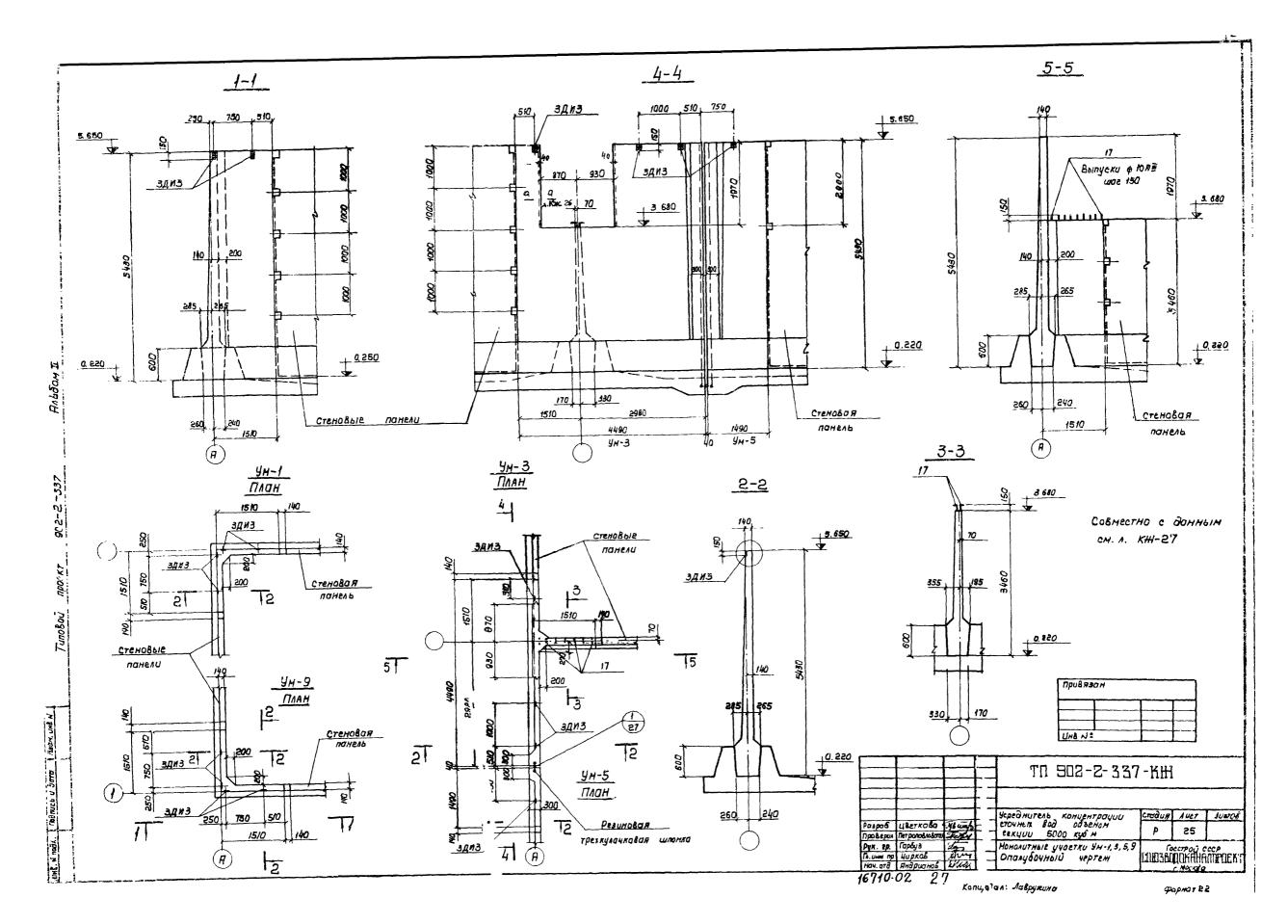
Ведотость стержней на 1 элетент (CEKYUR (V)

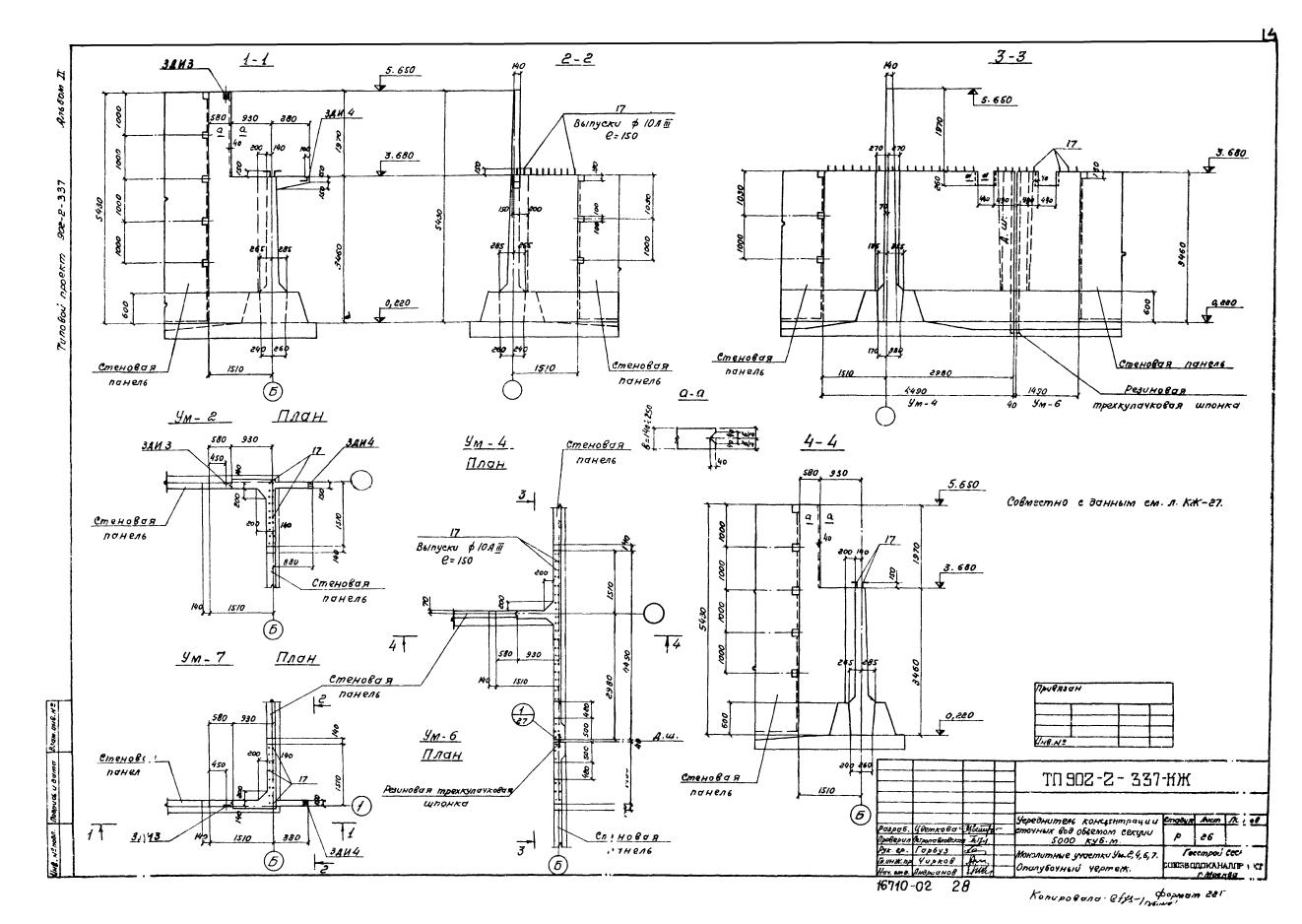

4 3550 ENI 3550 400 3.2 1.1 2 1500 ENI 3550 400 3.2 1.1 2 16 16 16 16 16 16 16 16 16 16 16 16 16	8cex 880.0 543.4 1160.0 1160.0 1160.0
4 3550 28 3550 400 3,2 1 5 200 150 1000 1000 1000 2,9 1 1 1 1 1 1 1 1 1	1880.0 543.4 1160.0 547.2 51.2 182.3
1 2 1575 25 100 400 2.9 1 200 150 1000 1000 400 2.9 1 1000	543.4 1160.0 541.2 51.2 182.3
7 \$\frac{1600}{200}\$ \$\frac{1600}{1600}\$ \$\frac{1600}{400}\$ \$\frac{2.9}{400}\$ \$\frac{1}{2}\$ \$\frac{1600}{400}\$ \$\frac{2.9}{400}\$ \$\frac{1}{2}\$ \$\frac{1600}{4000}\$ \$\frac{1600}{800}\$ \$\frac{150}{1000}\$ \$\frac{1000}{1000}\$ \$\frac{110}{200}\$ \$\frac{200}{1000}\$ \$\frac{1000}{1000}\$ \$1	160.0 547.2 51.2 1823
7	547,2 51.2 182.3
11 \$\frac{965}{4000}\$ \$\frac{32}{84\tilde{13}}\$ \$\frac{4580}{4000}\$ \$\frac{32}{84\tilde{13}}\$ \$\frac{16}{4000}\$ \$\frac{32}{84\tilde{13}}\$ \$\frac{150}{10A\tilde{13}}\$ \$\frac{1710}{293}\$ \$\frac{1.1}{1.1}\$ \$\frac{90}{380}\$ \$\frac{9}{8}\$ \$\frac{10A\tilde{13}}{10A\tilde{13}}\$ \$\frac{130}{10A\tilde{13}}\$ \$\frac{1300}{8}\$ \$\frac{8}{10A\tilde{13}}\$ \$\frac{10A\tilde{13}}{10A\tilde{13}}\$ \$\frac{1300}{10A\tilde{13}}\$ \$\frac{10A\tilde{13}}{10A\tilde{13}}\$ \$\frac{1300}{10A\tilde{13}}\$ \$\frac{10A\tilde{13}}{10A\tilde{13}}\$ \$\frac{1300}{10A\tilde{13}}\$ \$\frac{10A\tilde{13}}{10A\tilde{13}}\$ \$\frac{1700}{10A\tilde{13}}\$ \$\frac{120}{10A\tilde{13}}\$ \$	51.2 322.3
12 4000 8AII 4000 32 1.6 380 620 10AII 1710 293 1.1 3 380 8 10AII 1330 270 0.8 2 380 8 10AII 3630 40 2.2 2 3 3 3 3 3 3 3 3	26.0
2 380 690 10AN 1710 293 1.1 3 380 620 10AN 1710 293 1.1 3 380 8 10AN 1330 270 0.8 2 3 15 500 8 10AN 1650 32 1.1 3 177 8 1350 8 10AN 2350 28 1.5 1 18 18 1300 8 10AN 1700 42 1.1	216.0
380 620 0.8 20 0.8 2 380 8 10A 1 1330 270 0.8 2 380 8 10A 1 1330 270 0.8 2 15 9 1330 9 10A 1 3630 40 2.2 2 16 500 9 10A 1 1850 32 1.1 200 10A 1 1850 28 1.5 1 18 8 1350 8 10A 1 1700 42 1.1	
26 380 8 10A 1 1330 270 0.8 2 3 15 2 1330 2 10A 1 3630 40 2.2 2 16 500 8 10A 1 1050 32 1.1 2 17 8 1350 8 10A 1 2350 28 1.5 1 18 8 1300 8 10A 1 1700 42 1.1	
16 500 B 10A W 1050 32 1.1 2 17 B 1350 B 10A W 2350 28 1.5 1 18 \$ 1300 B 10A W 1700 42 1.1	-
1 17 & 1350 & 10AN 1700 42 1.1	99,0
1 17 \$\frac{1350}{1500}\$\frac{1}{15}\$ 10N\tilde{10}\$ 2350 28 1.5 1	35,2
4 16 \$ 1300 \$ 10MJ 1700 42 1.1	
	12.0
16 Aig 1080 20 1.4 2	16.2
	28.0
40 170	
	4.4
5 4	7.0
LE 300 LO 3,0	5.0
	5,0
24 8 8A.Ū 600 20 0.2 1	4.0
	7.5
3 <u>Общая длина</u> ВАЩ 350 — — В	
	8.3

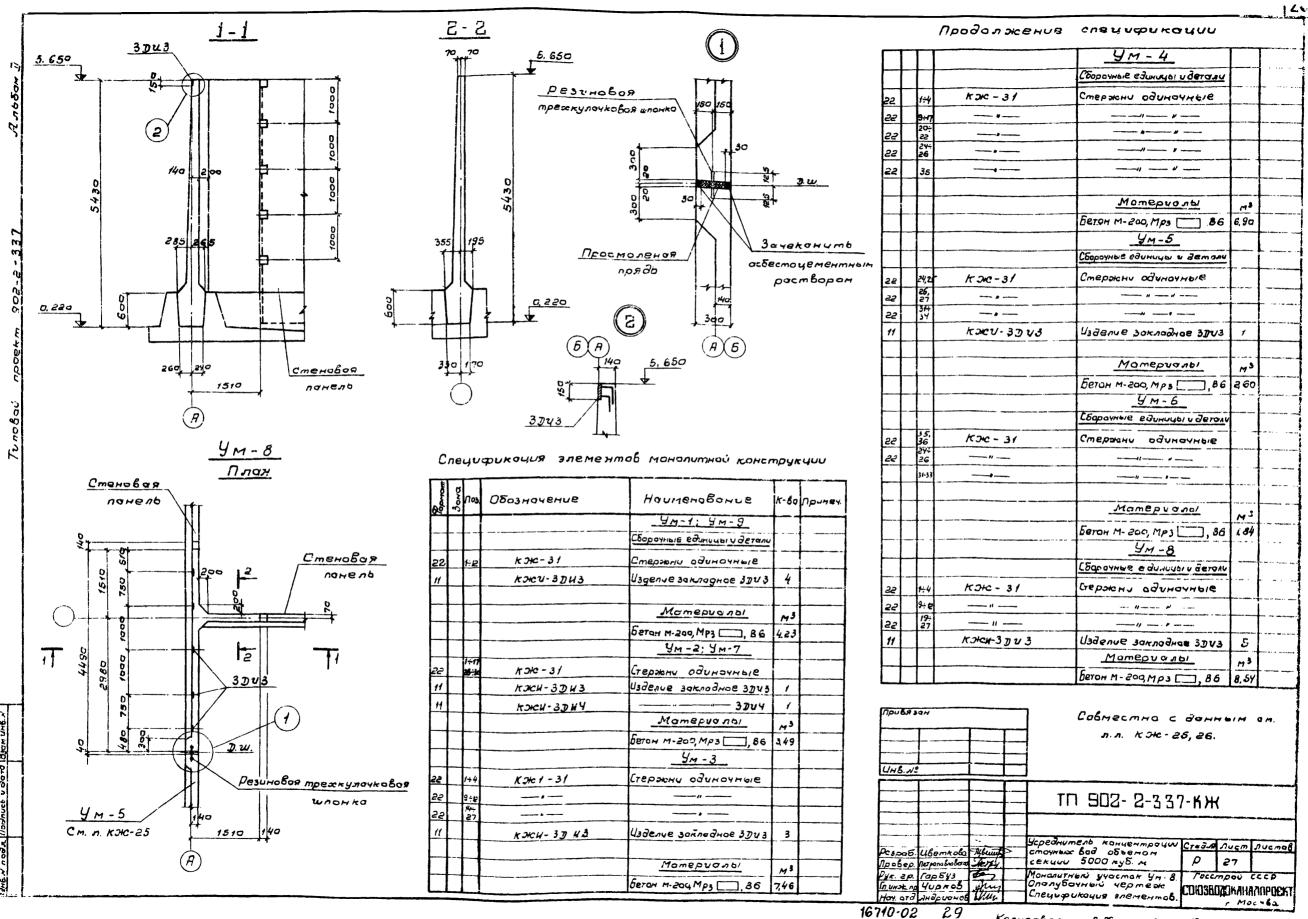

Cobmecmno C dannom CM. A. A. Kak - 19 + 18

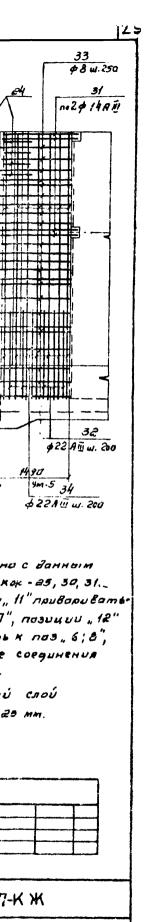

					 TN 902- 2-33'	7 -	ЖЖ	
Привязан				SATUL.	 Усреднитель концентроци. Сточных вод	Crodup	Aust	Auero
		MADBER	Петропавлова Семенова		OBSEMON CENUU 5000 KIG.M	م	19	
I	-	PYK SP.	Fapbus Yupkob	Jun	 Cenyou I, B, M a, 8.8, 19 Annue		есе <i>тро</i> Од ОК АН	
UHB Nº		PS, 0-04/P.	1071100		Ведомости стержней			

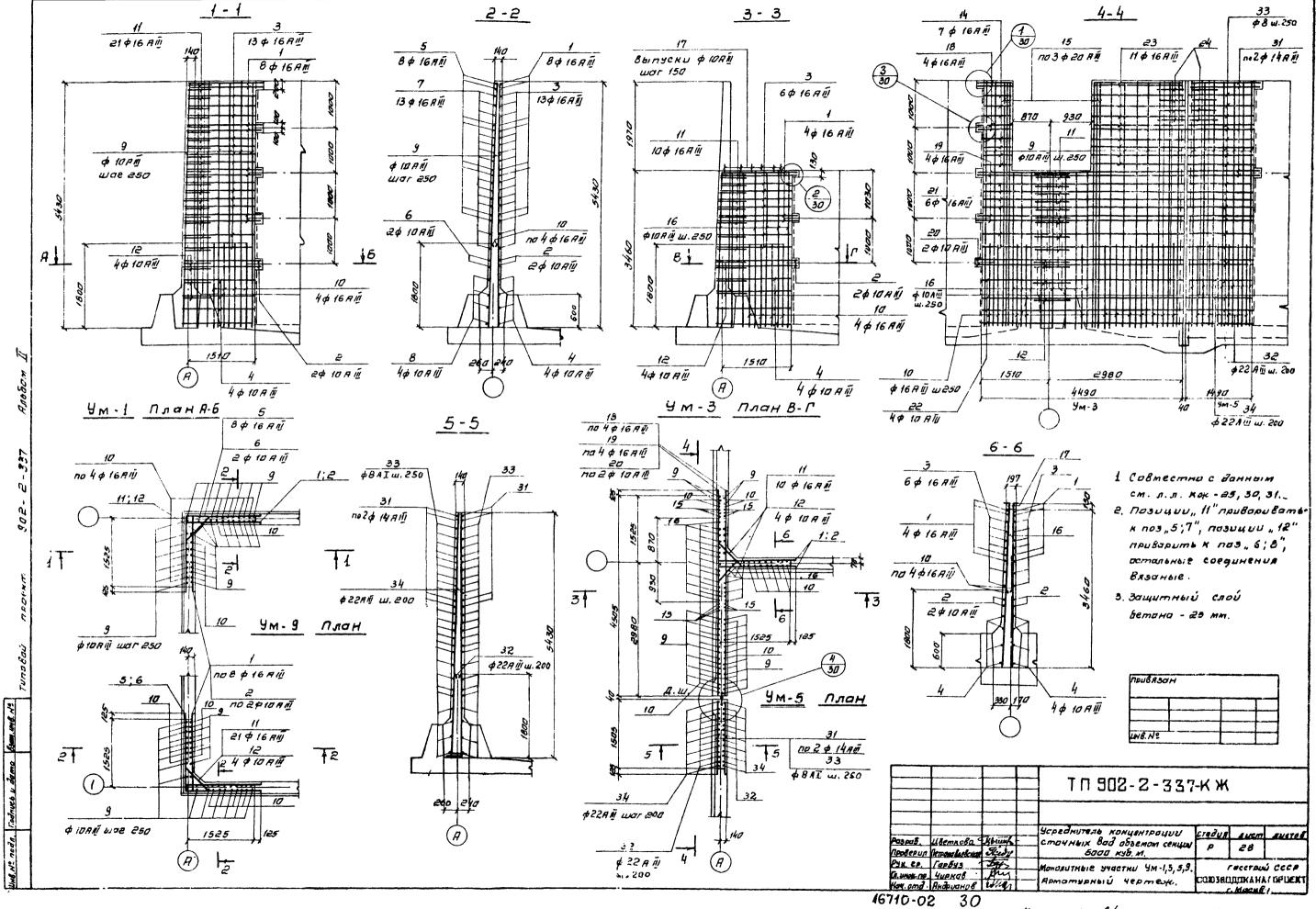


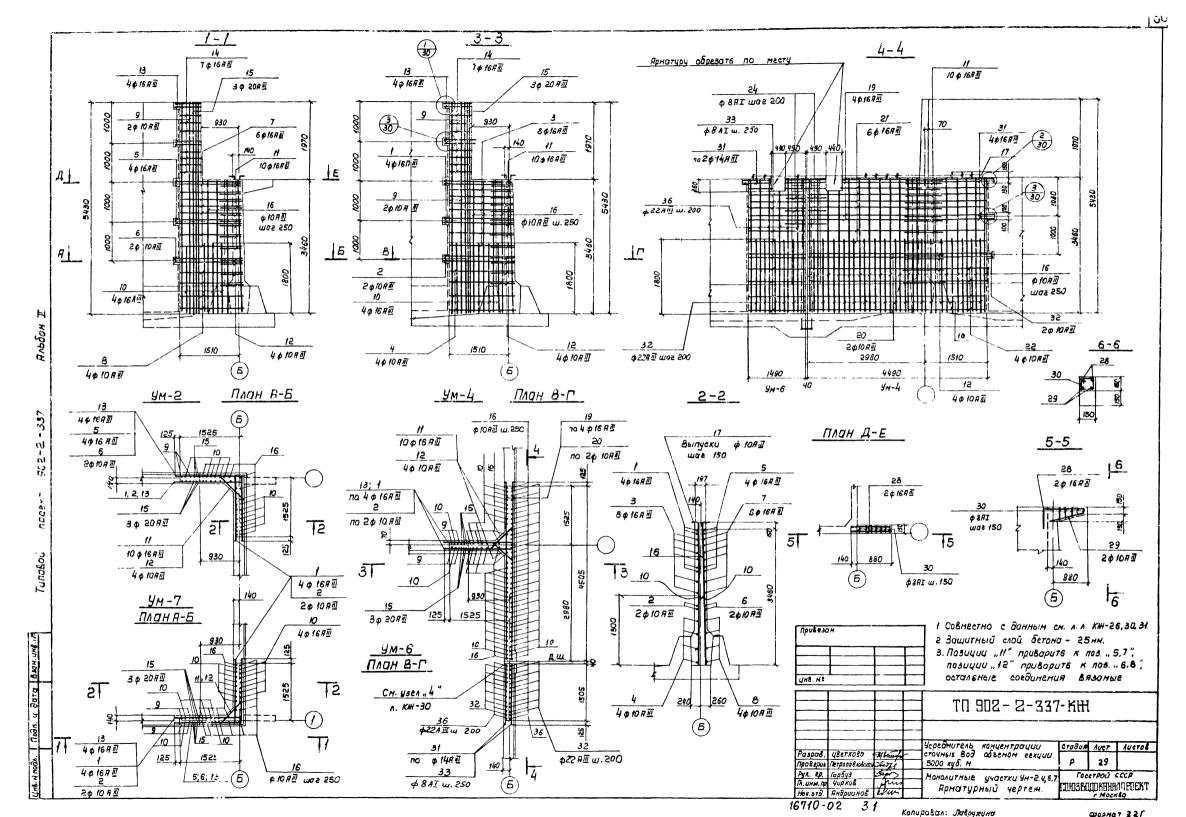

+opmur 221

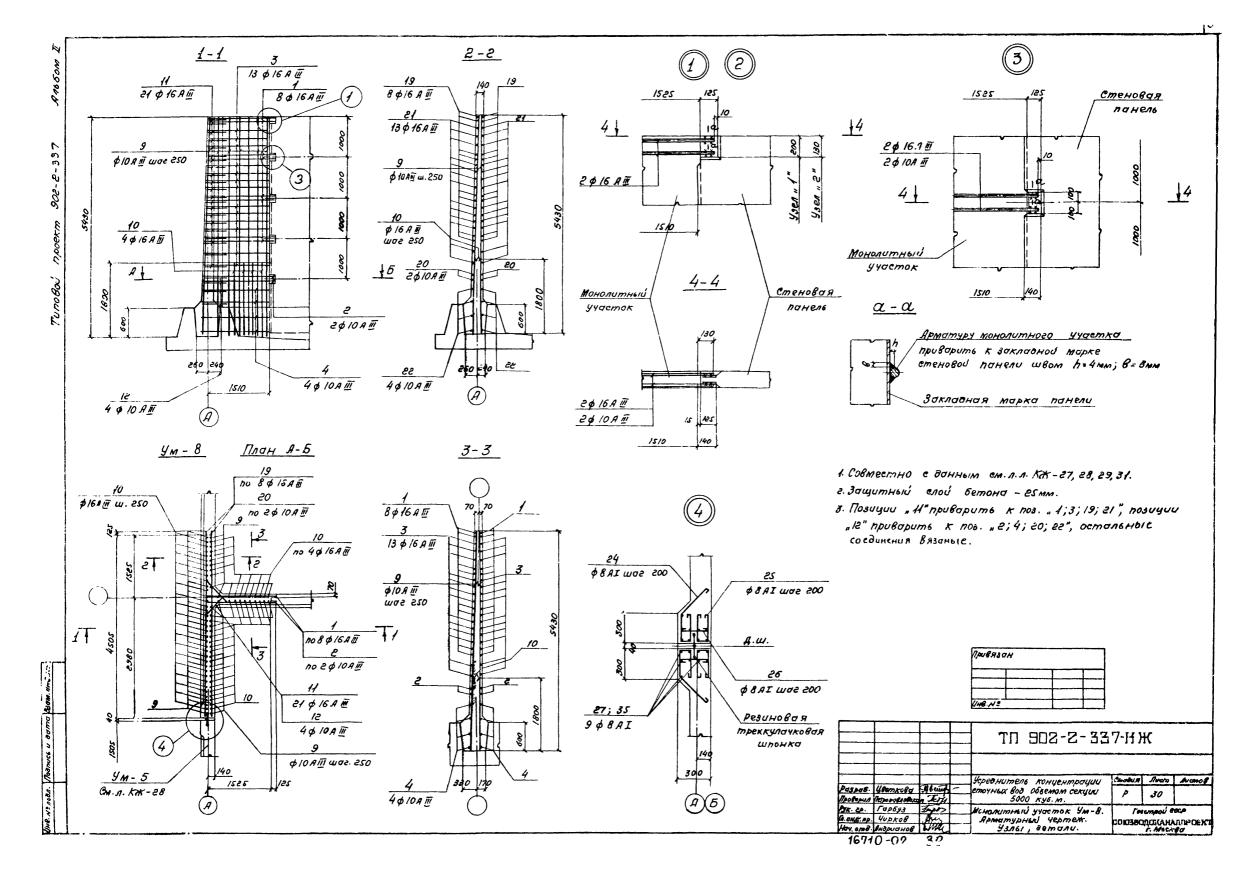


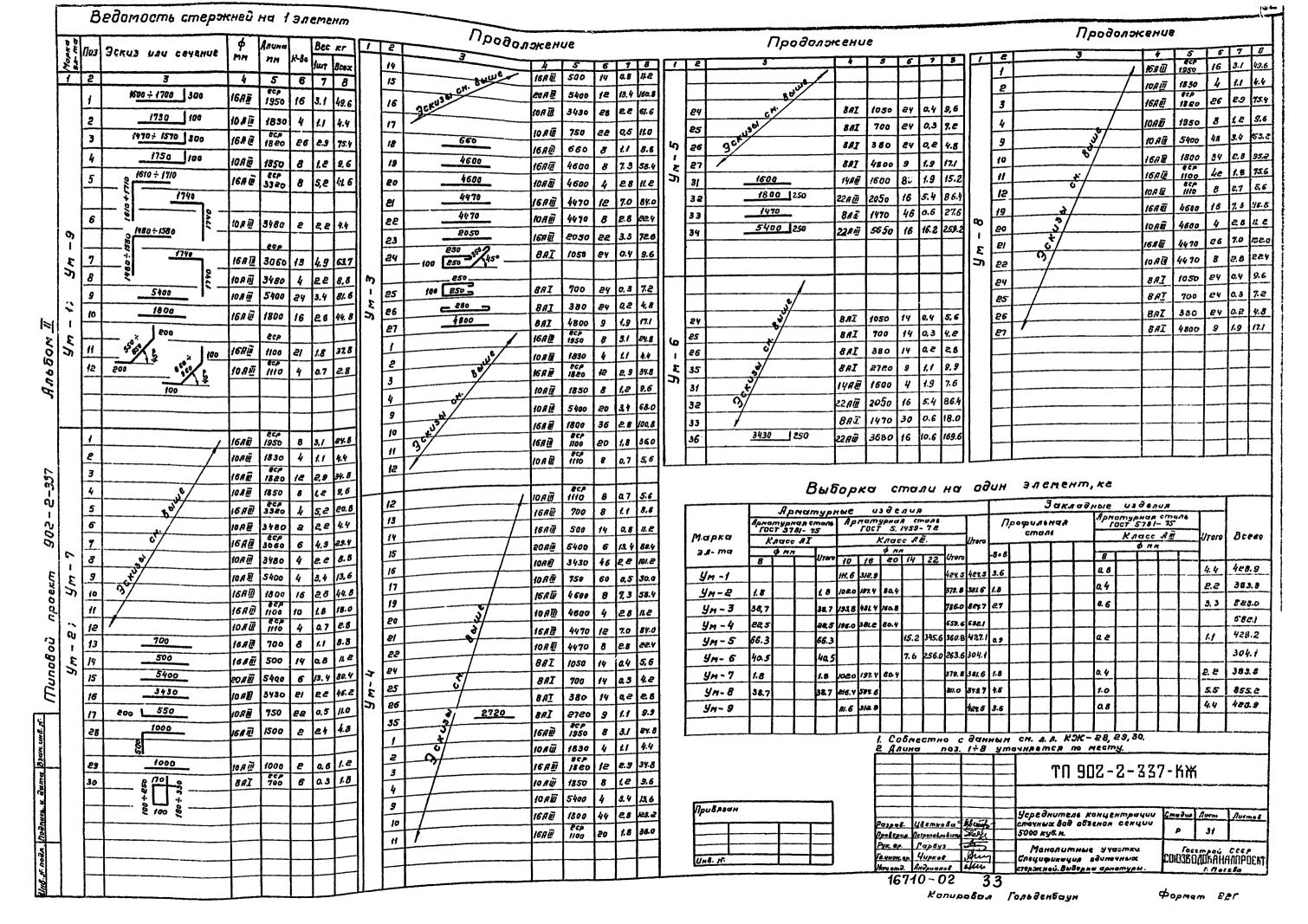









Копировал: В. Филиппово


Papmem zer

