МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ **ΓΟCT** 32580—2013

ПАРА-КРЕЗОЛ

Определение содержания в водной среде

Издание официальное

Москва Стандартинформ 2014

Предисловие

Цели, основные принципы и порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2-2009 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены»

Сведения о стандарте

- 1 PA3PAБОТАН Федеральным бюджетным учреждением здравоохранения «Российский регистр потенциально опасных химических и биологических веществ» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (ФБУЗ «Российский регистр потенциально опасных химических и биологических веществ» Роспотребнадзора)
 - 2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 14 ноября 2013 г. № 44-2013)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004–97	Код страны по МК (ИСО 3166) 004–97	Сокращенное наименование национального органа по стандартизации	
Армения	AM	Минэкономики Республики Армения	
Беларусь	BY	Госстандарт Республики Беларусь	
Россия	RU	Росстандарт	

4 Приказом Федерального агентства по техническому регулированию и метрологии от 22 ноября 2013 г. № 1922-ст межгосударственный стандарт ГОСТ 32580—2013 введен в действие в качестве национального стандарта Российской Федерации с 1 июля 2014 г.

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок – в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования – на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2014

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

ПАРА-КРЕЗОЛ

Определение содержания в водной среде

p-Cresol. Determination in water

Дата введения — 2014—07—01

1 Область применения

Настоящий стандарт устанавливает метод определения содержания пара-крезола в водной среде в диапазоне от 0,001 мг/л до 10,0 мг/л методом газовой хроматографии – масс-спектрометрии (ГХ-МС). При массовой концентрации пара-крезола свыше 0,1 мг/л пробы предварительно разбавляют дистиллированной водой.

Объем отбираемой пробы должен составлять не менее 1 л, необходимо не менее двух идентичных проб. Пробы отбирают в чистые склянки из темного стекла. Склянки с пробами воды снабжают этикетками, на которых указывают номер и вид пробы, дату и место отбора. Пробы направляют в лабораторию с сопроводительным документом.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 12.1.005–88 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 12.1.007–76 Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности

ГОСТ 12.1.019–2009 Система стандартов безопасности труда. Электробезопасность. Общие требования и номенклатура видов защиты

ГОСТ 1770–74 (ИСО 1042–83, ИСО 4788–80) Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия

ГОСТ 4166-76 Реактивы. Натрий сернокислый. Технические условия

ГОСТ 4204-77 Реактивы. Кислота серная. Технические условия

ГОСТ 6709-72 Вода дистиллированная. Технические условия

ГОСТ 24104-2001 Весы лабораторные. Общие технические требования

ГОСТ 25336-82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 29169-91 (ИСО 648-77) Посуда лабораторная стеклянная. Пипетки с одной отметкой

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Характеристики погрешности измерений

Относительная расширенная неопределенность измерений, $U_{\text{отн}}$ = 15%, при коэффициенте охвата k=2 .

П р и м е ч а н и е — Указанная неопределенность соответствует границам относительной суммарной погрешности $\pm 15\%$ при доверительной вероятности P=0.95.

4 Описание метода

Измерение массовой концентрации пара-крезола проводят методом газовой хроматографии – масс-спектрометрии с использованием метода внутреннего стандарта.

Анализируемую пробу воды подкисляют, добавляют рассчитанное количество внутреннего стандарта – пердейтеронафталина (дейтеронафталина-d₈) и экстрагируют дихлорметаном. Экстракты высушивают, концентрируют и вводят в хроматограф, снабженный капиллярной колонкой. Индивидуальные соединения, разделенные на хроматографической колонке в режиме программирования температуры, детектируют масс-спектрометром, соединенным с хроматографом.

Идентификацию пара-крезола осуществляют по времени удерживания и масс-спектрам электронной ионизации.

Измерение массовой концентрации пара-крезола проводят методом внутреннего стандарта: определяют площади пиков пара-крезола и внутреннего стандарта на масс-хроматограммах, зарегистрированных для характеристических ионов этих соединений. Расчет количества пара-крезола составляют, исходя из площадей этих пиков, массы внутреннего стандарта и факторов отклика паракрезола по отношению к внутреннему стандарту.

Для градуировки прибора и расчета факторов отклика готовят серию градуировочных растворов пара-крезола в дистиллированной воде, соответствующих указанному диапазону концентраций и содержащих известное количество внутреннего стандарта. Вычисляют факторы отклика, исходя из количеств пара-крезола и внутреннего стандарта в растворах и площадей соответствующих хроматографических пиков.

5 Средства измерений, реактивы и материалы

5.1 Средства измерений

- 5.1.1 Хроматомасс-спектрометр, состоит из:
- газового хроматографа;
- масс-спектрометра;
- колонки хроматографической силиконовой капиллярной (длина 30 м, внутренний диаметр 0,25 мм, неподвижная жидкая фаза SPB-5 толщиной 0,25 мкм);
 - системы обработки данных со справочной библиотекой масс-спектров.

Рабочие параметры хроматомасс-спектрометра (хроматографа с масс-селективным детектором) должны удовлетворять следующим требованиям:

- проведение измерений в диапазоне масс от 30 до 300 а.е.м. (Да) в режиме электронной ионизации при энергии электронов 70 эВ:
- масс-спектральное разрешение не ниже 0,5 а.е.м. (Да) по всей шкале масс и паспортной чувствительности прибора не ниже 10 пг (по октафторнафталину, электронная ионизация).

Допускается также применение других хроматографических колонок, позволяющих провести отделение определяемых соединений от других компонентов пробы, и аналогичных систем обработки данных.

- 5.1.2. Весы лабораторные электронные не ниже 2-го класса точности по ГОСТ 24104*
- 5.1.3. Шприцы аналитические вместимостью 1, 10 и 100 мкл.
- 5.1.4. Пипетки с одной отметкой (Мора) 2-1-1 по ГОСТ 29169 с погрешностью \pm 0,015 мл.
- 5.1.5. Цилиндры мерные 2-50 и 2-1000 по ГОСТ 1770 с погрешностью \pm 0,5, \pm 10,0 мл соответственно.
- 5.1.6. Колбы мерные: 2-25-2, 2-50-2, 2-1000-2 по ГОСТ 1770 с погрешностью \pm 0,05, \pm 0,08 и \pm 0,5 мл соответственно.
 - 5.1.7. Универсальная индикаторная бумага рН 0-12.

Примечание — Допускается применение других типов средств измерений по 5.1.2 – 5.1.7 с метрологическими и техническими характеристиками не ниже указанных.

5.2 Реактивы и материалы

- 5.2.1. Пара-крезол, чистотой не менее 99%.
- 5.2.2. Пердейтеронафталин (дейтеронафталин-d₈), чистотой не менее 99%.
- 5.2.3. Вода дистиллированная по ГОСТ 6709.

^{*} На территории Российской Федерации действует ГОСТ Р 53228-2008 «Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания»

- 5.2.4. Дихлорметан (метилен хлористый), чистотой не менее 99 %, например х.ч. для хроматографии.
 - 5.2.5. Кислота серная, х.ч., по ГОСТ 4204.
 - 5.2.6. Сульфат натрия безводный квалификации, ч.д.а. по ГОСТ 4166.

Помимо пердейтеронафталина в качестве внутреннего стандарта можно использовать другие соединения, заведомо отсутствующие в анализируемых пробах. При этом рассчитанные по ним относительные факторы отклика должны находиться в диапазоне от 0,1 до 10.

Примечание — Допускается применение реактивов, изготовленных по другой технической документации, с квалификацией чистоты не ниже указанной.

5.3 Вспомогательные устройства

- 5.3.1. Воронки делительные вместимостью 1000 мл по ГОСТ 25336.
- 5.3.2. Шкаф сушильный с терморегулятором типа СНОЛ.
- 5.3.3. Склянки из темного стекла вместимостью до 1 л для отбора проб воды.
- 5.3.4. Испаритель ротационный.
- 5.3.5. Фильтры бумажные обеззоленные «синяя лента».
- 5.3.6. Бытовой холодильник, обеспечивающий поддержание температуры в холодильной камере в диапазоне от 0 до +5 °C, в морозильной камере от -10 °C до -18 °C;
 - 5.3.7. Бумага индикаторная универсальная;
 - 5.3.8. Воронка делительная ВД-2-250 XC по ГОСТ 25336.

П р и м е ч а н и е — Допускается применение аналогичного вспомогательного оборудования с техническими характеристиками не ниже указанных.

6 Требования безопасности

6.1 Применяемые в работе реактивы относятся к веществам 1-го и 2-го классов опасности. При работе с ними необходимо соблюдать требования безопасности, установленные для работ с токсичными, едкими и легковоспламеняющимися веществами по ГОСТ 12.1.005.

Работа с дихлорметаном, который относится к 4-му классу опасности, проводят по ГОСТ 12.1.007.

6.2 При эксплуатации хроматомасс-спектрометра и проведении соответствующих измерений следует соблюдать правила электробезопасности в соответствии с ГОСТ 12.1.019* и инструкцией по эксплуатации прибора.

7 Требования к квалификации персонала

- 7.1 К процедуре приготовления градуировочных растворов допускаются лица, имеющие квалификацию инженера-химика или техника-химика и опыт работы в химической лаборатории.
- 7.2 К выполнению измерений допускают лиц, имеющих квалификацию не ниже инженерахимика или химика, прошедших соответствующий курс обучения и имеющих опыт работы в лабораториях, аккредитованных на выполнение анализов с применением настоящей методики.
- 7.3 Весь персонал должен пройти проверку знаний по технике безопасности, в том числе при работе в химической лаборатории, включая общие правила работы с едкими и токсичными веществами, правила пожарной безопасности и промышленной санитарии.

8 Условия выполнения измерений

При приготовлении растворов, подготовке проб и выполнении измерений необходимо соблюдать следующие условия: температура окружающего воздуха (20 ± 5) °C; атмосферное давление 84,0–106,7 кПа (630–800 мм рт.ст.); относительная влажность воздуха ниже 85 % при 25 °C; напряжение в сети питания переменного тока (220 \pm 22) В; концентрации мешающих определению и агрессивных компонентов в воздухе не должны превышать ПДК для воздуха рабочей зоны.

Другие условия измерений должны соответствовать инструкции по эксплуатации прибора.

^{*} На территории РФ действует ГОСТ Р 12.1.019—2009 «Система стандартов безопасности труда. Электробезопасность. Общие требования и номенклатура видов защиты»

9 Подготовка к выполнению измерений

9.1 Подготовка посуды

Использованную стеклянную посуду перед дальнейшим употреблением ополаскивают применявшимся растворителем и тщательно моют горячей водой с содой, ополаскивают водопроводной, а затем дистиллированной водой.

9.2 Приготовление растворов

Приготовление растворов проводят в вытяжном шкафу при температуре окружающего воздуxa (20 ± 5) °C.

9.2.1 Исходный раствор пара-крезола

Навеску пара-крезола (50 ± 1) мг помещают в мерную колбу вместимостью 50 мл. растворяют в 10 – 20 мл дихлорметана, доводят до метки этим же растворителем. Массовая концентрация паракрезола в полученном растворе 1,00 мг/мл. Хранят в защищенном от света месте при температуре от -10 °C до -18 °C не более 30 дней.

9.2.2 Раствор внутреннего стандарта пердейтеронафталина

В мерную колбу вместимостью 25 мл помещают (25 ± 1) мг пердейтеронафталина, растворяют его в 10-15 мл дихлорметана и доводят до метки этим же растворителем. Массовая концентрация пердейтеронафталина в полученном растворе 1,00 мг/мл. Хранят в защищенном от света месте при температуре от -10° С до -18° С не более 90 дней.

9.2.3 Градуировочные растворы пара-крезола

Градуировочные растворы готовят в мерных колбах вместимостью 1 л (см. 5.1.6). К 1 л дистиллированной воды добавляют рассчитанное количество раствора пара-крезола и 10 мкл (0.01 мл) раствора внутреннего стандарта. В таблице 1 приведены данные, необходимые для приготовления градуировочных растворов с заданным значением массовой концентрации определяемого вещества. Указанные аликвоты отбирают соответствующими микрошприцами по 5.1.

T - 6	4 V
гаолица	1 – Характеристики градуировочных растворов пара-крезола

№ раствора	Объем исходного раствора пара- крезола, мкл	Объем воды, мл	Концентрации пара-крезола, мкг/л
1	1,00	1000	1,00
2	2,00	1000	2,00
3	5,00	1000	5,00
4	20,00	1000	20,00
5	100,00	1000	100,00

Приготовленные градуировочные растворы пара-крезола подкисляют серной кислотой до рН 2 и трижды экстрагируют (встряхивают в течение 20 мин) дихлорметаном (тремя порциями по 30 мл). Экстракт объединяют, сушат над безводным сульфатом натрия и концентрируют, используя ротационный испаритель, до объема 1-3 мл.

9.3 Подготовка прибора к выполнению измерений

Хроматограф - масс-спектрометр включают и настраивают в соответствии с инструкцией по эксплуатации и описанием, прилагаемым к прибору. Устанавливают рабочие параметры, необходимые для проведения измерений. Рабочие параметры приборов должны быть постоянными при измерении во всем диапазоне концентраций.

Основные характеристики:

- 1) Хроматограф:
- температура испарителя: 270 °C;
- тип инжектора: без разделения потока;
- объем вводимого раствора (экстракта): 0,1-1 мкл;
- режим программирования температуры колонки:
- начальная температура 50 $^{\circ}$ C (2 мин); скорость нагрева 20 $^{\circ}$ C в мин;
- конечная температура 200 °C (1 мин).
- 2) Масс-спектрометр:
- температура источника ионов: 230 °C;
- диапазон сканируемых масс: 29-250;

- скорость сбора данных: 10 спектров в секунду по всему диапазону масс.

9.4 Градуировка

Градуировку прибора осуществляют непосредственно перед измерениями по 11. Проводят двукратные измерения каждого из 5 градуировочных растворов.

9.4.1 Определяют площади пиков на масс-хроматограммах, построенных для пара-крезола по сумме токов характеристических ионов с m/z 107 и 188, для внутреннего стандарта (пердейтеронафталина) по характеристическому иону с m/z 136.

Для каждого измерения рассчитывают фактор отклика, RF_i , по формуле:

$$RF_i = S_M M_{is} / S_{is} M_M, \qquad (1)$$

где S_{M} – площадь пика пара-крезола, построенного по сумме токов характеристических ионов с m/z 107 и 108;

М_{is} – масса добавленного внутреннего стандарта в мкг;

 S_{is} – площадь пика внутреннего стандарта, построенная по характеристическому иону с m/z 136;

М_м – масса пара-крезола в 1 мл градуировочного раствора в мкг.

В дальнейших расчетах используют среднеарифметическое значение RF_{cp} , относящееся к полному диапазону измеряемых концентраций:

$$RF_{\rm cp} = \frac{\sum_{i=1}^{n} RF_i}{n},\tag{2}$$

где n – общее число измерений (10) – двукратные измерения каждого из пяти градуировочных растворов)

По формулам (3) и (4) рассчитывают среднеквадратическое (стандартное) отклонение, СКО, и соответствующее относительное среднеквадратичное отклонение, относительное СКО:

CKO =
$$\sqrt{\frac{\sum_{i=1}^{n} (RF_i - RF_{cp})^2}{n-1}}$$
, (3)

Относительное
$$CKO = \frac{CKO}{RF_{cp}} 100 \%$$
. (4)

Значения относительного СКО не должны превышать 10 %.

9.4.2. Фиксируют времена удерживания пиков пара-крезола для всех хроматограмм. Выбирают среднее значение времени удерживания, т.е. значение, наиболее близкое к середине зафиксированного интервала изменения этой величины. Типичные значения времен удерживания в использованных хроматографических условиях для пара-крезола (473 ± 3) с.

Зарегистрированные полные масс-спектры пара-крезола (2–3 спектра) вводят в справочную библиотеку масс-спектров.

10 Подготовка образцов для измерений

10.1 Отобранные пробы хранят в защищенном от света месте до 14 суток при температуре от 0 до 5 °C. Подготовку образцов проводят в вытяжном шкафу при температуре окружающего воздуха (20 ± 5) °C. Перед обработкой по 10.2 пробы выдерживают при этой температуре не менее 1 ч.

10.2 Аликвоту одной из проб воды объемом 0,5 л фильтруют, подкисляют серной кислотой до pH 2 по универсальной индикаторной бумаге, добавляют раствор внутреннего стандарта (пердейтеронафталина) по 9.2.2 и трижды экстрагируют (встряхивают в течение 20 мин) дихлорметаном (тремя

порциями по 30 мл). Объем раствора внутреннего стандарта подбирают таким образом, чтобы площадь хроматографического пика внутреннего стандарта составляла 20–500 % от площади пика паракрезола. Для этого проводят предварительные измерения в соответствии с 11.

Органическую фазу отделяют, фильтруют с помощью делительной воронки; экстракты объединяют и сушат над безводным сульфатом натрия 5–10 г. Затем объединенный экстракт фильтруют и концентрируют на ротационном испарителе до объема 1–5 мл.

Предварительные измерения по 11.2. проводят также для того, чтобы установить необходимость разбавления проб дистиллированной водой. Если предварительный результат измерения концентрации пара-крезола не приводит к этому выводу, то обрабатывают еще одну аликвоту данной пробы анализируемой воды. При необходимости разбавления проб, этой процедуре и последующей обработке по 10.2 подвергают две аликвоты второй пробы воды.

11 Выполнение измерений

Измерения следует проводить в тех же условиях, в которых проведена градуировка прибора (см. 9.4). Для подготовленных образцов проводят измерения величин, подтверждающих идентичность пара-крезола (см. 11.1) и 2–3 параллельных измерения массовой концентрации пара-крезола (см. 11.2). Необходимость разбавления проб (см. 11.2) выявляют, предварительно измеряя концентрацию веществ в аликвоте одной из проб. В зависимости от полученного результата следующие измерения проводят еще с одной аликвотой неразбавленной пробы или с двумя аликвотами второй пробы после ее разбавления.

- 11.1 Определяют времена удерживания, отвечающие пикам на хроматограммах вблизи среднего значения времени удерживания пика пара-крезола. Полные масс-спектры сравнивают со спектрами пара-крезола в справочной библиотеке. Определяемое соединение считают идентифицированным как пара-крезол при условиях если:
- время удерживания рассматриваемого соединения отличается от среднего значения этой величины по 9.4.2. не более чем на 3 с:
- показатель сходства экспериментальных спектров со справочными спектрами пара-крезола не ниже 93 %.
- 11.2. Определяют площади пиков на масс-хроматограммах, зарегистрированных по 9.4.1. Массовую концентрацию пара-крезола, $C_{M,i}$ в одной из аликвот (*i*-я аликвота, *i*-й образец) при *j*-м измерении, мг/л. рассчитывают по формуле:

$$C_{M,ij} = S_{M,ij} \cdot M_{is} / S_{is,ij} \cdot RF_{cp} V, \tag{5}$$

где $M_{is,i}$ – масса внутреннего стандарта, мг;

$$M_{is} = V_{is} : C_{is}, \tag{5a}$$

 $V_{is,i}$ – объем раствора внутреннего стандарта, мл, добавленного к аликвоте образца (см. 9); C_{isr} – массовая концентрация раствора внутреннего стандарта, мг/мл, приготовленного по 9.2.2:

 $S_{\text{м.}ij}$ – площадь пика пара-крезола, усл. ед., на *j*-й масс-хроматограмме, построенной по суммарному току ионов с m/z 107 и 108 (для пара-крезола), *i*-го образца;

 $S_{is,ij}$ – площадь пика внутреннего стандарта, усл. ед., на j-й масс-хроматограмме, построенной по току ионов с m/z 136, i-го образца;

*RF*_{ср} – усредненный фактор отклика (формула 2);

V – объем аликвоты, л (V = 0,5 л).

В случае, если значение $C_{\text{м.ij.}}$ полученное по формуле 5, не превышает 0,10 мг/л, для измерений выбирают вторую аликвоту исходной пробы воды. Если указанное значение превышено, то измерения проводят с двумя аликвотами второй пробы воды, предварительно разбавляя пробу дистиллированной водой. Объем последней выбирают таким, чтобы указанные значения концентрации, вычисленные по формуле 5, находились в диапазоне от 0,001 до 0,10 мг/л. Массовую концентрацию пара-крезола C_{ij} в i-й пробе воды при j-ом измерении, мг/л, до разбавления рассчитывают по видоизмененной формуле:

$$C_{ij} = K \cdot S_{M,ij} \cdot M_{is,i} / S_{is,ij} \cdot RF_{co} V$$
 (56)

где К – коэффициент разбавления (разведения);

$$K = (V + V_0)/V, \tag{58}$$

 V_p – объем добавленной дистиллированной воды, л.

Вычисляют среднее значение массовой концентрации пара-крезола для каждого образца (аликвоты), мг/л:

$$C_{i} = \frac{\sum_{j=1}^{n} C_{ij}}{n} , {(6)}$$

где i - 1 и 2,

n – количество параллельных измерений (2 или 3).

Относительное расхождение d_i , %, результатов для этих образцов:

$$d_i = \frac{C_{i,max} - C_{i,min}}{C} \cdot 100 , \qquad (7)$$

где $C_{i,max}$ и $C_{i,min}$ — соответственно наибольшее и наименьшее значение массовой концентрации при параллельных измерениях для каждого образца.

Результаты параллельных измерений признают приемлемыми, если d_i не превышает 10 % (n = 2) или 12 % (n = 3) при вероятности P = 0.95.

Вычисляют средние значения массовой концентрации пара-крезола по обеим аликвотам анализируемой пробы:

$$C = \frac{C_1 + C_2}{2},$$
 (8)

и относительное расхождение D. %, результатов для двух аликвот:

$$D = \frac{|C_1 - C_2|}{C} \cdot 100. {9}$$

Результаты признают приемлемыми, если *D* не превышает 20 % (при вероятности P = 0,95). При выполнении этого условия среднее значение концентраций *C* принимают в качестве результата измерений.

12 Оформление результатов измерений

Результат измерения массовой концентрации пара-крезола представляют в следующей форме:

$$(C_{\rm cp} \pm 0.15 \cdot C_{\rm cp})$$
 мг/л (10)

Примеры записи: < 0.001 мг/л, (0.0101 ± 0.0015) мг/л, (0.24 ± 0.04) мг/л, (0.72 ± 0.11) мг/л.

13 Контроль погрешности

13.1 Проверка чувствительности хроматомасс-спектрометра

При подозрительных результатах измерений или резком уменьшении регистрируемых сигналов проверяют чувствительность прибора по градуировочному раствору с наименьшими массовыми концентрациями пара-крезола (таблица 1) в условиях измерений, указанных в 9.4. Отношение сигнал:шум для определяемых соединений должно быть не менее 10:1. Чувствительность прибора восстанавливают в соответствии с рекомендациями, изложенными в руководстве по его эксплуатации.

13.2 Контроль помех по результатам холостого опыта

Холостой опыт проводят с дистиллированной водой через каждые 20 – 30 проб, чтобы убедиться в отсутствии загрязнений и помех, источниками которых могут быть измерительная система, реактивы и материалы. В случае обнаружения загрязнений, проявляющихся в появлении сигнала при заданных значениях масс ионов и времени удерживания с отношением сигнал:шум, превышающим

FOCT 32580-2013

3:1, определяют источник помех, контролируя используемые реактивы и проверяя условия подготовки проб и проведения измерений.

13.3 Контроль правильности методом добавок

Контроль правильности проводят в целях оценки возможности применения настоящей методики выполнения измерений (МВИ) для вод, ранее не подвергавшихся анализу, а также при сомнении в результатах измерений.

Для контроля отбирают три пробы по 1 л, причем одна из проб служит для предварительных измерений, (см. 11.2). Измеряют массовую концентрацию в двух аликвотах второй из проб и получают результат измерений C. В третью пробу вносят добавку исходного раствора пара-крезола, причем массовая концентрация добавки $\mathcal L$ должна быть в интервале (0,8–1,2) C, мг/л. Проводят измерения для двух образцов (аликвот) с добавкой и получают результат измерений $C_{\mathcal L}$.

Результат контроля считают удовлетворительным для Р = 0,90 при выполнении условия:

$$100 \left| C_{\mathcal{A}} - C - \mathcal{A} \right| / \mathcal{A} \le n_{\mathcal{A}} \tag{11}$$

где *н* _Д = 15%

УДК 661.7:006.86:547.626

MKC 13.040

Ключевые слова: пара-крезол, водная среда, газовая хроматография – масс-спектрометрия

Подписано в печать 01.04.2014. Формат $60x84^{1}/_{8}$. Усл. печ. л. 1,40. Тираж 31 экз. Зак. 1085.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

ФГУП «СТАНДАРТИНФОРМ» 123995 Москва, Гранатный пер., 4. www.gostinfo.ru info@gostinfo.ru

32580-20