типовые конструкции и детали зданий и сооружений

СЕРИЯ 3. 503 -30

железобетонные свайные опоры автодорожных мостов с пролетами до 21 м.

Выпуск 1 материалы для проектирования типовые констракции и детали зданий и соорижении

СЕРИЯ 3. 503-30

железобетонные свайные опоры автодорожных мостов с пролётами до 21 м.

Выпуск 1

Материалы для проектирования

PASPABOTANSI

Вороженским филиалом Гипродорини Минавтолора РСФСР с 1 кюля 19%г.

протокол № 3 от 21 февраля 1974 г.

אנימים עאיאפיאף שיחופים אין אנימיאא מחופים אין אנימיאא מחוקפים הני

Гу, ТРИДОРІЙК Зонгэлский филим з Васинеж

отпечатано в Новосибирском филиале Ц И Т П 630064, г.Новосионрек, гр.Карла Наркса, I

Ридено в печеть: "24" <u>ИЮНЯ</u> 1975г. Заказ <u>1074</u> Тирах <u>700</u>

Содержание

Наименование листов	NN AUCTOB	NN CMPO- HU4
Пояснительная записка	2-4	3-5
Методика и погядак гасчета свайных олог	5-11	6-12
Данные для гасчета устоев под ревгистые пролетные строения вдоль моста	12-13	13-14
Данные для гасчета устоев под плитные пролетные строения вдоль моста	14-15	15-16
Панные для расчета устаев полегек моста	16	17
Данные для гасчета промежуточных апор под ревристые пролетные строения вдоль маста	17	18
Денные для расчета променуточных опор под ребристые пролетные строения поперек моста	18	19
Данные для гасчета пгоменуточных опор под плитные пголетные стгоения	19	20
Графики пегемещений вегка опог ān·С ат действия единичной гогизонтальной силы H·Im	20	21
ГРОФИКИ перемещени й верха опор ^Тм с от действия единичного момента м = 1 тм	21	22
Графики пегемещений вегха опор त्व от действия распределенной треугольной нагрузки с дтах 1 1 / м²	22	23
Геафики перемещений верха опор Фд от действих гавномерно распределенной нагрузки д.151/м2	23	24
Графики перемещений верха опор Фа от загру- нения распределенной нагрузкой д 1 т/мг части исты	24	25
Графики изгивающих моментов Т-С и Т в сваях однорядных опор	25	26

ГИПРОДОРНИИ Вогонежский фили**сл** г. Вогонем

Наименование листов	NN AUCTOB	NN CMPO- HULL
Графики изгивающих моментов M·C и M в свае и 1 двухрядных опор	26	27
ГРОФИКИ ИЗГИБОЮЩИХ МОМЕНТОВ ТОС И ТО В СВОЕ N2 двухрядных опор	27	28
Геафики Му в сваях двухеядных опое от загечжения распределенной нагрузкой д · 1 m/m² части высоты	28	29
Линии Влияния Ми В сваях променуточных опор типов 1 и 2 от горизонтальной силы H=1 m	29	30
Геафики для подбога агмигования свай	30-31	31-32
Схемы мостов со свайными опороми. Тавлицы нагрузок и их сочетаний.	32	33
Мавлицы допускаемых высот подходных насы- пей и свайных опог мостов	33-34	34-35
Мавлицы расчетных усилий в свалх олог типов 1 и 2	35-36	36-37
Мавлицы расчетных усилий в сваях опор типов 203	37	38
Солгяжение моста с насылью	38	39
Схемы соорушения опор	39	40

TK	Нелезоветонные свайные опогы автодогонных мостов с пролетоми до 21 м.	Cert 3.503	
1973	Содегнание	BUILYCK	Aucm 1

Рабочие чертени калезоветанных свайных отор автодорожных мостав с пролетами до 21 м выполнены NO SACHU MUNOSOFO MPSEKMUPOBOHUR 1973 F. NO OCHOBOHUU технического проекта утвержаенного Минавтовором РСФСР 5/II-735 (ПРОТОКОЛ Nº8).

2. COCMCB PROEKING

Миловой проект свайных олог состоит из 3-х выпускав. Выпуск 1 - Матегиалы для проектирования - содержит овщую пояснительную записку, методику и погядак гасчета свайных опор, вспомогательные материалы (таълицы, глафики и честени) для проектирования, типовые схемы мастов со свайными апарами, схемы COOPYHEHUR ONOP.

Выпуск 2 - Конструкции свайных опор - соденнит общие виды опог, тавлицы мантанных элементов и гисхода матегиалов, чегтежи компоновки и соптяжений элементов.

BUNYER 3 - BAOKU SOBOOCKOTO USTOMOBNEHUA - COGEPHUM чертени сворных элементов свайных олор и их технические показатели.

3. Область применения проекта

Конструкции железоветонных свайных опор предназначены для применения вавтодогойных мостах с гев-PUSTIBIMU PORETHBINU CTPOCHURMU QAUHOÙ 12:21 M CCPUU 3.503-14 U 21 M CCPUU 3.503-12 U MAUMHINIU NPONEMHIIMU CMPOEниями длиной 6÷16м серии 3.503-12, на реках с ледоходом при толщине льда до 0.3 м в гайонах СССР с гасчетной температурой воздуха не ниже -40°C и сейсмичностью до 6 валлов при высоте подходных насыпей дв бм и променуточных апор ao 10 м. При отсутствии вечной мерзлаты и выполнении трево-Воний ЗСН 155-69 Минтрансстроя СССР к материалам и THOUSBOACEMBY POSOM MUTOBILE MENESOSEMONHILE CRACINILE ORDEN

4. Ochobhbie nonomenuh npoekmupobahuh Пец разработке рабочих чертежей использованы следующие ногмативные и гуководящие документы:

могут применяться в районах со средней расчетной тем-

пературой воздуха миже -40°С.

CHUN T-D 5-72 " SEMOMOBUNGHUE QUPORU. HOPMEN 11-0EK-MUroBanua." Mexhuvackue yasobux negermui olahux mesesnogopom.-HUX, OBMODOPOMHUX U TOPOGERUX MOCMOB U MPYB

CHUIL T-D 7-62*, MOCMET U MPYEEL. HOPMET MPOCKMUPOBOHUR

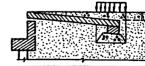
(CH 200 - 82). Указания по проектированию челезабетонных и

ветонных конструкций железнодоройных, овтодорошных U TOPOGCKUX MOCMOB U MPYS (C.M. 365 - 67).

Указания по проектировинию и строительстви железо-Бетонных и бетонных конструкций овтодорожных и гогодских MOCMOS U MPYS (COSEPHOE UCHOAHEHUE) (BCH 155-69).

Указания по оптеделению ледовых нагрузок на теч-HAVE COOPYHLIUN (CH 76-66).

Руководство по просктированию свайных фундаменmob, Cmeoŭusgam, M, 1971 r. Рекомендации по гасчети фундаментов глувакаго


заложения опор мостов, изд. ЦНИНС, м , 1970 г. Опоры рассчитаны на габариты мостов Г-7+2×10 (15). F-8+2 x 1.0 (1.5); F-10+2 x 1.0 (1.5) U F-11.5+2 x 1.5.

Bremenican Bermukombhan Harpyska H-30 unu HK-80. MORRO NO MPOMYOPOX 400 KI/M2 8 COVEMANUU C NOIPYS-KOŬ H-30.

Пеи госчете устоев учтено активное давление грунта со стогоны пролета, в связи с чем необходима обеспечивать защиту конусов ст размыва.

Пеи оптеделении горизонтального дабления грунта на сваи устоев от веса переходных плит, находящейся нод ними конструкции проезней части и втеменной HOTPY3KU APUHRMa:

Nerexoghan nauma neegemalanem cosou оонопролетнию Балку, опичающуюся на межень и шкафную спенку: опогное давление на лежень гаспределено гавномегно до денованию щевеночной подушки и условна вынесена на поверхность насыпи (рис. 1)

PUC.1

Нелезоветанные свайные опоры автодогомных Cerus 3.503-30 мостов с пролетами до 21м SUNYCK AUCM Пояснительная записка

гипрадагнии вогонемский

Воронемский филиол Руководитель гечты Провегил Составил

гипродорни

Гогизонтальные, моментные и темпегатурные воздей ствия распределены между опогами: с учетам их совместной габоты в составе соогужения, фактических условий опирания и солгяжения пголетных строений, а так же условий взаимодействия свай с грунтовой средой. Последнее определяется по методу коэффициента жесткости, нагастающему с глубиной по линей-ному закону.

Вегтикальные нагрузки определены для кандой опоры в отдельности как реакции опор разрезных пролетных строений.

расчета и на его основе составлена программа расчета на ЭЦВМ "Наири-2."
В выпуске 1 (м.м. 32-34) помещены типовые схемы мостов со свайными опорами с числам пролетов от одного до плти и таблицы допустимых значений высот насыпей и опор, при

Эля расчета свайных опор разработан алгоритм

которых эти схемы могут выть применены. При расчете типовых схем приняты следующие предпосылки: а) разрезные пролетные строения опираются на однотипные слоистые резиновые опорные части (выл.2

л. 24-26,40); Б) в состав моста входят только опоры с призмати-

ческими сваями сечением 35×35 см; в) высоты подходных насыпей разнятся не более чем

г) хагактегистика грунта основания - коэффициент пропогциональности т, назначаемый по табл 26 ."Руководства по проектированию свайных фундаментов" находится в пределах 300 ÷ 700 т/м 4

q) температурный перепад 40°C.

бсли условия строительства отличаются от принятых, при расчете типовых схем следует производить индивидуальный статический расчет свайных опор

5. Конструкции свайных опар

Устои и променуточные опогы запроектированы 3-х типов:

тип 1 — однагядные опоры из призматических свай сечением 35×35 см. с шагом 1.5 и 2.0 м.

тип 2 -) вухрядные опогы из призматических свай сечением 35 × 35 см. с шагом 1.5 и 2.0.

тип 3 - однорядные опоры из полых кнуглых свай d = 60 cm с шагам 2.0 и 2.2 м.

Применение опог типа 3 ограничивается условиями, при которых в зимнее время сохраняется постоянный горизонт воды. При этих же условиях допускается в опорах типа 1 и 2 заменять призматические сваи сечением 35×35 см на полые круглые сваи с = 40 см. в остальных случаях применение в опорах полых круглых свай с = 40 см и с = 60 см допускается только в опытном порядке.

нение в опорах полых круглых свай а чисм и а свай а свай

Стыхование блоков насадок олог из объединенных секций осуществляется омоноличиванием бетоном М-300 свагных арматугных выпусков.

Заделка свай в насадках производится, как правило, омоноличиванием в пирамидальных отверстиях блоков орматурных выпусков свай ветоном м 300 (вып.2 м. 19) вроме того в проект включены два других варианта конструкции сопряжения свай с насадкой (вып.2 м. 20):

а) предложенный ЦНИИСОМ сворной стык, допускающий монтож болок пролетного строения при наборе прочности бетоном омоноличивания 20% от проектной;

6) разработанный в типовом проекте опор инв. н.º 486 (Союздорпроект, 1966-1967 г.г.) стык, позволлющий производить монтаж насадок без поддерживающих обществ, но требующий повышенной точности по-гружения свай в плане (± 2 см).

TK	Нелезобетонные свайные опогы автадарожных мостов с лголетами до 21 м	3.503	-3p
1973	Пояснительная записка	BUNYCK	Auch 3

Сворные шкафные стенки устоев запраектированы в 2-х вариактах. На четоях из раздельных секций под ревристые пролетные строения и всех устоях под плитные, прелетные строения длиной 12,15 и 18 м. влоки шкафных стенок объединяются омонеличиванием армотурных выпусков ветоком м-200. На устоях из объединенных секций под ревристые пролетные строения клоки шкафных стенок съведичянотся шпоночными стыхами. На устоях под плитные пролетные строения длиной 6 и 9 м шкафные стенки устраиваются монолитными

Своеные шкафные стенки сопеятаются с насадками опог сваекой агматурных выпускав и закладных деталей с омоноличиванием стыков по всей длине ветанам м-зоо.

B onorax muh $\mathcal I$ i u
eq v consistion contract in the vсечением 35 х 35 см с обычным армированием 10 настояще-MY NPOCKMY UNU CEPUU 501-150 U CBQU NPEQBQPUMENIчо капряніенные серии 3.501-41. Цз свай з обычным армированием рекомендуется преимущественно при -CBOU CEPUU 501-150 KOK BOASE BKOHOMU4менять ные по расходу агматуры. Вместо призматических свай могут быть применены полые круглые сваи ф:40см CEPUU 3.501-58. B ORDERX MURCU, 3 RPUMEHAHAMOR ROJUE KPYIлые сваи а-60 см этой не серии. Длина и армирование свай назначаются в соответствии с инженегно-геологическими условиями строительства и действующими чсилиями в сваях. При неабходимости гаращивания свай их стыки рекомендуется осуществлять свирными или фланце-Выми на высакапрочных болтах (выл. 2 л. 21). Понструкции уставь увязаны с нормалями сопряжений мос-MOB C HOCHINAMU CEPUU 3.503-16.

6. Материалы

Я. В ОБЫЧНЫХ КЛИМОМИЧЕСКИХ УСЛОВИЯХ.

Бетан сворных элементав алар и узлав аманаличивания - гидротехнический по ГОСТ 4795-68 с Mrs 200 при среднемесячной температуре воздуха наиболее холадного месяца - 15°С и выше и Mrs 300 при температуре ниже - 15°С.

Armamyra Bremehmol onor no FOCT 5784 - 61:

KRACCA A-I-US CMARU MARKU & CM3 CA2, O ARU GUAMEMPE HE

BOREE 10 MM KROME MOTO 8 CM 3 AC2, 8 CM3 KA2, CM3 CA3, CM3 AC3

u Ст. 3 кт 3 по гост 380-71; класса $A - \bar{\mu}$ - u3 стали марки B Ст. 5 ст2, а при диаметре не билее 20 мм и расчетной температуре не ниже -30°С краме того B Ст 5 лс 2 по гост 380-71.

Допускается замена продольной рабочей арматуры класса. А- $\overline{\mu}$ арматурной класса А- $\overline{\mu}$ марки 25/20 по гост 5058-65* без изменгния размещения арматурных стержней с уменьшением суммарной площади их полеречных сечений на 20%. При расчетной температуре не ниже -30°C допускается использование арматуры класса А- $\overline{\mu}$ из стали марки 35/0 по гост 5058-65.† Для закладных детолей используется углеродистая горячекатанная стем дря фашиностроения марки міє с по гост 6713-53 или марки в стз сп 5 по гост 380-71.

Б. В РОЙОНОХ СЕВЕРКОЙ СТРОИТЕЛЬНО - КЛИМОТИЧЕСКОЙ ЗОНЫ. МИРКО ВЕТОНО ПРИНИМОЕТСЯ ПО ПРОЧНОСТИ КОК ДЛЯ РОЙОНОВ С ОБЫЧНЫМИ КЛИМОТИЧЕСКИМИ УСЛОВИЯМИ, О ПО МОРОЗО-СТОЙКОСТИ НЕ МЕНЕЕ МРЗ 300.

Закладные детали выполняются из низколегированных конструкционных термически улучшенных смалей по ГОСТ 5958-65% с ударной влакостью не менее 3.0 кг-м/см² при температуре +20% с u-70% с марск 15 ХСНД (при температуре не ниже -50%С), 10 ХСНД (при температуре ниже -50%С) и 10 Г2С1Д.

7. Указания по производству работ

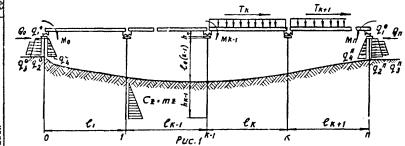
Мочность погружения свой должна овеспечиваться пространственными направляющими каркасами. Силовое выправление положения свай запрещается. Проектное положение сворных элементов опор рекомендуется пьеспечивать с помощью инвентарных кондукторов, закрепляемых на сваях и насадках. Монтаж пролетных строений допускается при достижении ветанам омоноличивания 50% проектной прочности.

TK	Железоветанные свайные опогы автодорожных мастов с пголетами до 21 м	Серия 3,503-30
1973	Пояснительная записка	BURYCK AUCM

ГИПРОДОРНИИ

Boponei. Cruù

Методика и порядок расчета свайных опар


1. Расчетная схема моста со свайными опогами (рис.1) представляет собой гаму с газдельными или шарпирно сопрягающимися ригелями (пролетными строениями), соединенными с упруго заделанными в грунте стойками (сваями) податливыми в горизонтальнам направлении связями (опорными частями).

Взаимодействие свай с грунтам основания определя-

ется Величиной коэффициента месткости С т. т., карастающим пропорционально глубине заломения свай 2 и выражающем отношение взаимного давления 6 г и совместного перемещения У г в точке контакта сваи с грунтовой средой С г. у г. у пругая податливость связей между ригелями и стой-ками (опорных частей) характеризуется перемещением вких верхних плоскостей относительно опорных площадок от

ных частей бк.•0. Шарнирная связь менду ригелями соответствует непрерывной проезжей части моста.

единичной горизонтальной силы. Для неподвижных опор-

На ruc.1 и дальше принята следующая система обозначений:

ho-высота насадки (м)

li - onuna i - moro пролета (м);

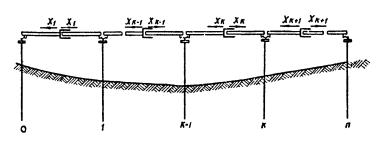
вок-высота к-той опоры от низа насадки до рас-

четной поверхности грунта, с учетом местного размыва, срезки или наличия славого слоя основания (м);

нк-длина упругой заделки (погружения) свай в грунте (м); Ті- горі онтальная продольная тормозная сила в

i-том пролете (т); M^--изгибающий момент в уровне миза насадки к-той опоры от давления грунта на шкафную стенку (для вереговых опор) и внецентренного приложения вертикальной магрузки (тм);

 Q_{0} (п) - равнодействующая горизонтального давления грунта на шкафную стенку олоры о (п), перенесенная в уровень низа насадки (пі);


 $q_3 \circ (n)$ - огдината эпюлы горизонтального давлений грунта на сваи опоры о (n) от веса переходной плиты и находящейся на ней нагрузки (7/n.m)

 $Z_{1}^{(n)}$, $Z_{2}^{(n)}$, $Z_{3}^{(n)}$, $Z_{4}^{(n)}$ - расстояния от низа насадки до точек с. ординатами $q_{1}^{(n)}$, $q_{2}^{(n)}$, $q_{3}^{(n)}$ (м).

2. Основная система метода сил (рис. 2) образована путем удаления в серединах пролётав горизонтальных продольных связей и замены их неизвестными усилиями х;, определяемыми из системы канонических уравнений:

 $\delta_{II} \times_{I} + \delta_{I2} \times_{2} + \Delta_{IP} \cdot 0$ $\delta_{K} (x-i) \times_{K-1} + \delta_{KK} \times_{K} + \delta_{K} (x-i) \times_{K+1} + \Delta_{KP} \cdot 0 \quad (1)$

δπ (n-1) Xn-1 + 6nn Xn + 1 np = 0

Puc. 2

Железоветанные свайные апары автодарожных з.503-20
3 Методика и парядок расчета свайных апар выпуск лист

Konnouvuermo (on) u couondable anenti (on) spub. мений (1) выражають взаитное горизантальное перете-MCHUE ториов усковно разрезанных прилетных строе-HUJ. XOMADOR CHUMARTOR DON JKUMENBHIM JOU порцов и отрицательным при их сближении

бкі - перемешенце в пролёте и от действия силья

А кр. перетещение в прамете к от действия внеш-HEU HOLDISKU (M.)

Казффициенты бы апредсляются по формичем теб. лицыя в зависимисти от величин **LODASOH WAY PHOLG** δερχα οπορ οπ единичныя TOPUSON MONDHOIS nadam n u bocmu и горизсытальной б прометах бу. частей

Προ συστρικ δεσηγοβρίκ στοδικ Αποδικά Αποσιοία Α

$$\delta_{R} = \frac{1 \cdot h\rho}{4 F_{cm}} \quad (z), \quad rde$$

hp - суттарная толщина резины в апорной части (m); " - modinh cdbura pesunhi / [m²];

ть - каличества аперных частей под адним пралетного страения (шт)

́члены системы уравнений (1) Свабадиые

$$\Delta_{IP} = \Delta_{IQ} + \Delta_{IQ_0} + \Delta_{IM} + \Delta_{IT} + \Delta_{IT}$$

$$\Delta_{KP} = \Delta_{KM} + \Delta_{KT} + \Delta_{KE}$$

$$\Delta_{IP} = \Delta_{IQ} + \Delta_{IQ_0} + \Delta_{IM} + \Delta_{IT} + \Delta_{IE}$$
(3)

представляют сабай сутту гаризантальных перетещений: $\Delta_1(n)$ д - от гаривонтального давления грунта на сваи scmaeh:

 $\Delta_{I}(n)$ а - от горизонтального давления гручта на шкофные стенки эстаев;

Акт· ат изгибающих татентоб на апорах по канцат к- того пролета Мки Мк-1 от дабления грунто на шкафично стенку (для береговых пролётов) и внецентренного приложения бертикальных нагрузок;

Дит - ат действия прадальных тартовных илл в nporemax (K1); KU(K+1);

нагребакия **Дке - от рабнотерного** или ахлаждения пролетных строении;

Перетещения $\Delta_{i}(n)q$, $\Delta_{i}(n)q$ и Δ_{km} определяются расче-

3 начения KUJETUJUSHMOB BKL U CBOGOGIDIX YKEHOB AKP

Сапряжение прагетных строений	Раздельное	таћипънпе п Баедечрное	Шарнирное		
Вид гаризантальнай гбязи тежду ипорами и прочетными строениями	Упругапа: сатъивая	Неподбиж ная	<i>Чпр гголодаты</i> йа я		
δει	∂ _{K-1} + ∂ _K * Z ∂ _K	50 . 50	64 + 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
бн (к-1)	- 8	5° K-1	$-i\tilde{J}_{R-j}^{0} = \frac{\bar{D}_{R}}{\bar{D}_{R}}\frac{\bar{D}_{R-j}}{\bar{D}_{R}}$		
δк(к↔;	- (5 ° K	-50 - <u>δα δκοί</u> -5π - <u>δα δκοί</u>		
	: 1/2 [-TH-1 8	12-1 +	$\stackrel{*}{=} \frac{1}{4} \left[\left(T_{K'} T_{K+1} \right) \left(\overrightarrow{O}_{R}^{\bullet} \cdot \frac{\overrightarrow{O}_{K} \cdot \overrightarrow{O}_{H+1}}{\overleftarrow{O}_{R} \cdot \overleftarrow{O}_{K+1}} \right) \right]$		
∆ xr-	$\bullet T_K [\delta_R^0 - \delta_{K-1}^0]$	·Ta·1 04]	$- \left\{ T_{H} * T_{H-1} \right\} \left(\delta_{Hj}^{0} * \frac{\delta_{H-1} \cdot \delta_{H}}{\delta_{H} * \delta_{H-1}} \right) \right]$		
Δĸt		<u>.</u> 4d	tlu		

Примечания:

- 1. При шарнирнам свпряжении прометных страений и эпрэгоподатлибых связях в быражениях для в и вт соответственно затенлется он би-и на б, и би бини на бп.
- 2.d = 0 и поот к а эффициент линейного температурнога росширения бетона; t - беличина расчетного перепада температуры от тетператоры затынания

 I_{AB} annederence σ_{x}^{o} a $\Delta \kappa \rho$ in an about a packet and anop в соответствии с "Рекотендацияти по расчёту фундатентов глубокого запожения апар тостав " [YHUUC 1970r]

3. Статический расчёт каждай апары, итеющий целью апределение перетещений верха апоры а и

TK	Желегобетонные мостов	сбайные с пралег	апоры тоти до	alimadap Zim	южных	Сер 3. 50	ия 3-30
1873	Метадина и					Вытск 1	Avem 6

і атдела ИС инысынга проекта пел'я группи ראחיים מחידאאא

расчетных усилии в сваях, производится после нахожедения неизвестных усилий Xi, учиты ваемых как даполнительных внешнях нагрузка.

4. Расчетные проверки опор включают в себя:

а. сравнения гризонтального перенещения верха опоры от нормативных нагрузок с предельно допустичым (25 см) по п 55 СН 200-62.

То по стеровог, δ , подбор армирования свай, соответствующего условиям их прочности и трещиностой кости (по графикан $M_1^2 = \int (N)$). Свободную длину сваи рекомендуется принимать как для стержня, жестко зеделанного на расстов-

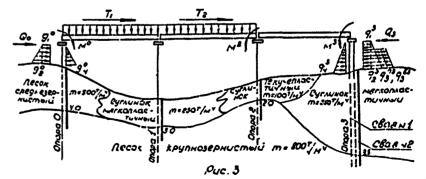
нии длины изгибох гін от низи насадки и олираю.
Для облегчения расчета опор в выпуске I помещении длины изгибох гін от низи насадки и олираю.

лолный расчет опор по цэложенной нетодике. 5. Последовательность расчето свайных опор

Ταδπυμα 2.

N2N2	3manu pacyémoi	Содержание расчёта Пояснения
1	2	3
,	Рурнирование рас- четной схамы.	Назначение типов устоев и промежуточных опор в зависитос-ти от высот насыпей и опор (лл 34-33) габарить и типов пролетых строений (вып.г.л.г); определение длины погружение свай на кажерей опоре в зависитости от инженерно-то-геологических условии (пр гі сч 200-62) и расчётных усилий в сваех (лл 36-33)
R.	Сбор нагрузок	Определение внешних нагрузок N (AA. 18+19), 9°(n) (AA. 16, 17), Qo(n) (AA.18, 14) Т (AA. 17, 19), М (AA. 18 + 19) и фирмирование их сочетании.
3	Образование основног системы метода сил мы уравнений	Определение бк (л.го) и бк (л.в) бкі (л.в.) и Дкр (л.з.), Составле- ние системы уравнений (л.в.)
٧.	horquennn homenns srawawer	O.zpegenenue neuzäecmmbix you- nuù Xi

Ι μητισημησημικό Ασυκεκοσό όνα ο Α


1	2	3	8
5	Статический расчет свайных олор,	Определение горизантальных пе ремещений верха опор С (лл 20:- и изгибающих моментов Мтаж (лл 25:-28) в сваех	
6	Расчетные проберк 1 опор	Проверка условия $C \leq 2.5 cm$. Подбор армирования свай пО графикам $M \cdot 7 = f(N)$ (л.л.31-30).	

ROUMEYAKUA:

- 1. Для свай промежуточных опор величины Мтох находятся сравнением максимсльных изгибающих моментов, полученны. по расчету опор вдоль моста, с Ммох в сваях от действия ледовой могрузки Рл (л.18) и поперечных ударов Рт (лл. 18-19), определен мых по линиям влияния (л. 29)
- 2 В связи с тем, что уровень действия максимальных изгибающих монентов в сваях ниже расчетной поверхности грунта колеблется незначительно (в пределах 1-15м) взависимости от вида магрузки и грунтовых условий, можно принять его во всех случаях одинаковым

4. RPUMER POCYEMOL

Uсходные данные: запроектировать свайные опоры трех-пролетного места с пролетными строемиями длиной 15м и габаритом Γ -10+2×/5 по тип. проекту инв. N 7/0/4, высоты насыпей сответственно равны 3м. и 5м. Перепад температуры t=-40 $^{\circ}$ С

_		<i>>uc. 3</i>	
	TK	Железобетонные свайные опоры автоуорожныя мостов с пролетани до 214.	<i>Серин</i> 3.503-3
	1975	Методика и передок растета свайных опор.	BNAYCE 14

Ha ochobanuu mashuvneix ganheix o noumenume:mu onop ($6 \sin 1 \cos 3,3\% \sin 2 \cos 3$) bestipaen munei yemoeb ii noomexeymovheix onop: yemoü O ($1 \cos 3 \cos 3$) - muna 1-3; noomexeymovneix oilopei 1,8muna 1-3, yemoü 3 ($1 \cos 3 \cos 3$) - muna 2-3.

 A_{NUNY} свой принимаем в зависимовни от зействующих продольных вил N тах $(\Lambda.37)$ и невущей впособновти по грунту Ро (прил. 21 СН 200-62).

Приведенное значение коэффициента пропоручанальности грунта т поив. определяем для кажарой опоры в пределаж верхней толщи основания в негента сечения сваи (прил. 7. Руководетва по пргектированию свайных финдангнтов.")

2. COOR HOSPYSOK

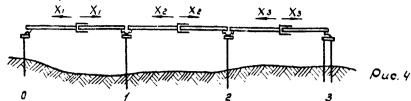
Схена загружения моста и сочетания нагрузок приняты в соответствии с данными ногл. 32. Цифровые индексы в таблицах нагрузок и сочетаний соответствуют номеран опор

				To	zδλu	40	на	epy;	OK										
		R	cms	AHH	p(f,	HOZ	053V	u				B	~@~	HHP	LE /	4020	YSRU	۷.	
.,	000- enui		PHUE.	chieu.	ae.		Дs	BARA A.	12.	epy H	ma	. ,		, me	.; ;	• *			
NENP COVEMBRUE	סטסט מ אפיא איפיע איי/غ		CRODNOE GUBARHUE. RESENDANCE DALMOR HA WKAGHUP CONEM KY 1.13 Laborence RoyFMA HA WKAGHUP CMSHKY.1.18		CO SMOROMEL	[§ 3		00		1,49 H 6 00 0,68 x 1,46 1,46		Harpyska H-30 Monna na gbyx	nponemar n.n. n. 16	Hazoyzka H-30 Movna na nepe Xognoù mume A.12					
<	∧' €	M	A' m	M	Q m	M	95 m/r.*	g, m/m²	م مهرس	93(1) m/~3	05(v) 15(v)	<i>ک</i> او	M	~ ~	M	3 &	M	∧' m	M MM.
30	127.8	9.8	32.0	- 8.3 - 10.6	¥.6	0.0	-0.66 -0.95		2.16		0.00			80.0	8.0	1	1	1	1
32	193.5	0.0	-	-	-	-	-	1	-		-	89.6 80.1	· 18.v		1	-	_	-	1
γ,	193.5	0,0	-	~	-	_	-	-	_	-	-	_	_	_	-	<u>67.1</u> 81.7	ao	_	_
63	//8.5 /35.4	19.6 23.0	25.1 32.0	15.8	- y, y - y, 6	0.0	1.38 2.00	-0.73 -0.72	-1.85	·0.39	·0.83 ·0.52	_	_				_	18.0 16.7	7.3

ΓΗΠΡΟΠΕΡΗΝΗ Ισρυκ επιταυνί Φυνυαν ε.Βορακεικ

	/	19-40atis	חף : שמח	crem.ioù	exem	61,	
s/2 Onop	Tune: Onor Bein 2, 12.	eboú	Cboboguan gnuna clav lo,m	Sagenku	Po, m	Nmax, m	M nové
0	1-3'	8	1.84	v. 0	57.C	58.0	800
1	1-3	8	5.00	7.0	66.3	66.8	45 0
R	1-3	3	Y. 00	2.0	62.0	66.5	8/8
3	2-,01	16	3.84	10.0	\$7.6	29.0	260

Габлица сочетаний нагрузок.										
	NONE		Вкешние нагрузки							
NENE	covema	~	M	Q	9,	92	93"	98	94	
anop	HUÜ	m	тм	m	m/m²	m /H2	m/m2	m/m²	m/m²	
o	30	<u>195.0</u> 239.8	8.7 Y.Y	<u>7.7</u> 7.6	2.67	1.Y7 2.16	0.00	0.00	- <u>2.66</u> -0.95	
1	ν,	260.6 3/1, Y	0.0			_		_		
2	32	253.1	-19.Y -25.9		_	_	_		_	
3	63	<u> 152.6</u> 184.1	\$2.3	-Y. 6	-0.73 -0.72	-1.88	-0.19 -0.68	-a 33 -a 53	7.00	


Тэрмозная нагрузка, действующая в пролетах t и R (T_t и T_t , см. рис. 3), в каждом пролете равна: норма тивная - 9.0т, ресчетная - 10.08 т.

в таблицах в числителе даны нормативные, з в знаненителе - расчетные нагрузки.

TK	Железобетонные свайные опоры автадаражных мостов с пролётани до им.	Cepua 3.503-30
1973	Методика и поредок расчета свайных опор.	BAINYER AUCH

3 Образование основной системы л спода сил и составление системы уравнений

Основная система метода сил, образованная по методике расчета (лл.5+7), представлена на рис. 4

Система каненических уравнений инеет вид:

$$\delta_{ii} X_i + \delta_{ie} X_2 + \Delta_{ip} = 0$$

$$\delta_{2i} X_i + \delta_{2e} X_2 + \delta_{2s} X_3 + \Delta_{2p} = 0$$

$$\delta_{32} X_2 + \delta_{33} X_3 + \Delta_{3p} = 0$$
(1)

3начения коэффициентов δ кі и свободных членов Δ ко опреселяем δ следующем порядке:

а) Используя графики на $\Lambda\Lambda$ 20 +24, составляен табличу воризонтальных перемещений верха опор $\bar{\alpha} \cdot c$ от единичных горизонтальных сил (H=1m), изгибающих моментов (M=1mm), действующих в этом же уровне, и $\bar{\alpha}$ от горизонтальных распределенных нагрузок ($9=1^m/m^2$)

०६०३-	зонтальные перемец	T	λιορα		
HOYE-	Вид нагрузки	0	1	2	9
ā,Kc	H=1m, A.A.20	1.20	7.30	4,00	0,75
άм. c	M=1mm. A,2/	0.35	1.13	0,70	0.10
	треугольная, л гг	0.50	_	_	0.60
āģ	распрефеленнае по высоте опоры, 123	1.0		_	1.30
•	распределеннае на части бысоты, л. 24	0,0	_		0.68

 δ). Определяем величину горизонтальной податливости резиновых опорных частей $\delta \kappa$ под одним концом пролетного строения, состоящего из 7 балок. Так как во всех пролетах установлены одинаковые опорные эсти типа рачел $20\times30\times33$ по одной под кажедой $62\pi\kappa\alpha\dot{\alpha}$, то $6\cdot10^{2}$ см $6\cdot10^{2}$ см $6\cdot10^{2}$ см

ГИПРОДОРНИИ Воронежский фили в) Определяем коэффициенты бкі

Ταδλυμα κ	03 CD CD	uyue	чтов	SKI ((CM)	
Обозначение и	SK = QH GNA ONOP 26K			26x	βελυγυ-	
формула подсчета	0	1	2	3		
$\delta_{i\epsilon}(\delta_{\epsilon i}) = -\delta_i^{\delta}$		29/	_	-		- 09/
δes (6se) = -6°	-	-	0.50	_		-0.50
δ11 = 8° + 28κ + 5°	0,15	0.91	-	_	0.12	1.18
δε2 = δ,° + 26κ + δ,°	T-	0.91	0.50	_	0.18	/,53
$\delta_{33} = \delta_{s}^{2} + 2\delta_{K} + \delta_{3}^{2}$	-	_	0.50	0.09	0,12	0.7/

г) Определяем свободные члены уравнений Δ кр. Предварительно находит варизонтальные перемещения верха опор $\Omega_{\rm p}^{\rm op}$ в основной системе

Перемещения верха опоры з от нормативных

нагрузок равны:

om useubawweec Mamenma
$$Q_{M}^{13} = M^{3} \cdot \tilde{Q}_{M}^{13} = 42.8 \cdot \frac{0.10}{8} = 0.5/cM$$
om zopuzonmananeoe gabrenua zpynma (puc.3)
$$Q_{3}^{13} = \tilde{Q}_{3}^{13} \cdot Q_{3}^{12} = 7.3 \cdot (-0.43) = -0.56cM$$

$$Q_{3}^{13} = \tilde{Q}_{3}^{13} \cdot (Q_{3}^{13} - Q_{3}^{13}) = 0.60 \cdot (-1.85 + 0.43) = -0.45cM$$

$$Q_{3}^{03} = \tilde{Q}_{3}^{13} \cdot (Q_{3}^{13} + Q_{3}^{13}) = 0.68 \cdot (-0.39 - 0.33) = -0.49cM$$

$$Q_{3}^{03} = \tilde{Q}_{3}^{13} \cdot (Q_{3}^{13} + Q_{3}^{13}) = 0.68 \cdot (-0.39 - 0.33) = -0.49cM$$

Величины перенещений верха опоры 3 при загружении расчетными нагрузками и опор 0,1,2 при тех же за-гружениях впределяем аналогично и приводим в таблице Δ кр, где в числителе — перемещения от корнативных, а в знаменателе - от расчетных нагрузок.

and = Q3 · 63 = -4, 4 · 0,09 = - 0, 400m.

TK	железоветонные свайные опоры автодорожных мостов с пролетани до гім.	Cepua 3.503-30
1973	Методика и порядок расчёта свайных опор	ENINYCK ALEM

4. Pewenue	cuci	nemui .	уравнен	ع:
Б результо				

уравнений получаем следующие значения Х:: т нармативных нагрузож X, =-1.4m Xe = 5.5m

 $X_4 = 5/m$ от расчетных нагрузох X, = - 0.12 m

X2= 8.3 m

X = 8.1 m

5. Статический ραсчет свайных οπυρ

Статический расчет свайных опор производиж в следующеж пооязке:

а) отределяет перемещения верха опер от действия нармативных негрузак с учетом найдгиных эначений $oldsymbol{x}_i$

Таблица перемещений (см)							
<i>Пбозначения</i>	Величины Ор для апор						
и формулы	0	1	2	3			
Ф (см. табл. Д кр)	2.19	8. 2C	0.55	-0.96			
$\alpha_{X}^{K} = (\chi_{K} - \chi_{KH}) \bar{\alpha}_{H}^{K}$	0.21	-6.25	0.17	0.48			
$\alpha_p^{\kappa} = \alpha_p^{o\kappa} - \alpha_{\kappa}^{\kappa}$	2.40	1.95	0.72	-448			

б) апределяем максимальные изгибающие моменты в своях от действия расчетных нагрузах в знаибалее невыгодных сочетаниях.

предварительно составляем таблицу максимальных изгибающих моментов м с в сваях ат действия сосредоточенной силы H=1m, изсибающего томенто M=1mm в уровне верха апоры и м ат распределенных наерузок "Q=1 m/м". Значения М«.c и Мк принимаем по ерофикаж ¥a 1.1. 25÷28.

TK	железобетонные свайные опоры автодороженых мостов с пралетами до 21 м	3.503	ия 3 - 3 0
1973	Метадика и парядак расчета свайных апар	Выпуск 1	Лис. 10

Таблица Ls кр (cm)								
	Обозкαгекия и формулы	Величины ар Уля опор				C 60δος κώε «πεκό Δκρ = -Cρ ^(κ-1) + αρ γροδπεκιώ		
٥	для пределения	0	1	2	3	1	2	3
	αρ u Δ kt	aροο	Ø.p	ap	aps	$\Delta \rho$	Δέρ	Δ_{ip}
a,	$\alpha_{M}^{K} = M^{K} \cdot \tilde{\alpha}_{M}^{K}$	0.15 0.19	C.00	-1.70 -£.27	0.51	-0.16 -0.19	- 1.70 - 227	2.21
ø,	$I_{T}^{OK} = \frac{1}{E} \delta_{K}^{O} \cdot (T_{K} + T_{K+1})$	0.83	8.20 9.86	2.25	0.00	7.52 9.03	- 5.05 - 7.16	- <u>8,25</u> -27C
α	ck = Qk. δ κ	0.66	_	_	-0.40 -0.41	-0.66 -0.69	0.00	-0.40
	$a_{g,}^{oh} = \bar{a}_{g}^{h} \cdot q_{.}^{h}$	0.84		_	-C.56 -0.94	-0.57 -0.84	0.00	· <u>0.56</u> - 0.94
	$a(q_2-q_1) = \tilde{a}_q^{M} \cdot (q_2-q_1)$	0.4.5	-	_	-0.85 -1.44	- <u>0.45</u> - 0.66	0.00	- <u>085</u> -1.44
ag.		0.00	_	-	-2.49 -0.81	0.00	0.00	- <u>0.49</u> -0.8/
	294 = ag.94	- <u>0.33</u> -0.48	_	-	0.A3 1.20	0 83 0.48	0.00	0 93
Δĸ	t = d.t.lx=1.10540.1500	_	_		_	0.60	2,60	0.60
	Umoro:	2.19 2.73	8.20 2.86	<u>0.55</u>	-0.36	7.72	-7.05 -8.80	-0.91 -1.59

Зжачения бы и Дкр подставляем в уравжения (1). Для загружения нормативными нагрузками уравнения при-Mym Bug:

1.18 X, - 0.91 X2 = -6.61 -0.91 X, + 1.53 X2 - 0.50 X3 = 7.05

 $-0.50 X_2 + 0.71 X_3 = 0.91$

Системы уравнений для загружения расчетными наерузками приводим в тоблице, где в числителе - свободные члены ат нармативных, а в знаменателе от расчетных

нагрузок

гыпрадарыни

Системы уравнений Жоэффициенты при Свободные Nº Nº **Ч**лены ypo8 Xз Χą -Δ *κ*ρ нении -6.61____ -0.91 0.00 1.18 -7.72 7.05 1.53 0.50 0.91 8.80 0.71 0.00 1.59 0.50

	<i>Μαδ</i> λυμα					
0δο3-	849	Величи	ны М С	UM 8	сваях	8 ypobne
40 YE-	наерузки	2	пасчетн па для			20108A
HUS		0	1	г	3	3
Mª.c	M=1mm, A.A.25+27	1.00	1.00	1.00	0.14	0.14
M.K.C	H=1m, 12.25+27	2.75	7.1	5.1	1.21	-1.20
	треугольной, лл. 25-127	g.7 5	_	_	1.06	-1.40
Nig	распределенная по Высоте опоры, лл. 25+27	2.00		_	2.46	-2.00
	распределенная на уисти высоты, л 28	_	_	_	1.24	-1.70

Useubaroщие моменты в сваях опор 0,1,2 и свае 2 опоры 3 определяем ниже повержности грунто, а в овае голорыз в уровне головы. Изгибающие моменты в сваяж опоры з равны: a) o ronobe chau 1.

от изгибоющего мамента. $M_{m}^{3} = M^{3} \tilde{M}_{m}^{63} = 53.3 \cdot \frac{0.14}{B} = 0.93 \, mm$

эт єоризонтильной силы $N_{H}^{3} = (Q_3 + X_3) \tilde{M}_{H}^{63} = (-4.6 \cdot 8.19) \cdot (-\frac{1.2}{8}) = -0.54 \, \text{mm}$

ет воризентельного завления грунта на сваи

Mg, Mg 63 Q3 = (-200) (0.72) = 2.16 mm M'(2-9) = Mg 1 (3 + 9 3) = (-1.40) · (-3. 2+0.72) = 336 mm.
Mg = Mg 1 (3 + 9 3) = (-1.40, (-0.68-2.57) = 2.04 mm

M = N M + 10 H + M 9, + 181 (52.9)+ 7/3 = 0.83 - 0.54 + 2.16 + 3.35 + 2.04 + 7.96 1911 קם בא מעיים אם בפנים וואסקרים כו במינים אם שייינים אם במינים במינים במינים במינים וואסקרים במינים במ פאן, חשא אחזי אור אובאחי סחי אפני ל בפאספר בלשטו בפסלאטהפוופאס איםון; б) ниже расчетной повержности грунта в сваз г on useuSmougeen momenma

Mm = M + Mm = 51.5 - 24 = 0.93 mm.

"" = (21+ K3) M4" = (-46+319) = 151 mm

Ni (92. 91) = 72 1 (73-71) = 106. (-3.12 +0.72) = . 234 mm M 71 = 177 73 (75 27 36 = 124 (-0.50-0.52) =-149 mm $M_{q_u}^3 = M_q^{N3}$. $g_u^3 = 0.98 \times 2.0 \times 1.96 \text{ mm.}$

от суммарного воздействия всег нагругом Mp=Mm+M+M9,+M9,-9, +M9,+M9,=0.93+0.54-1.77-254-1.49+1.96 =-2.37mm

Изгибающие моменты в сваях при других сочетониях пагрузок определяем аналогично, результаты сводим в тоблицу

<i>Μοδλυμε υσευδαιοщих моментов М' (пім)</i>								
Обозначения величины моментов М в сваях в уровне								
U 9	РОРМУЯЫ Мр ^K	Ηυ-κε ραενειπιού ποβερα- εονοδ πος 10 εενρ απομού ορος 10 ορος ορος ορος						
		0	1	ې	3	3		
	MM = MMM	0.54	0.00	- 3.24	0.93	0.93		
MH -	(Qx + TK+TK+1 + Xx - Xx+1) MM	3.36	1.48	3.34	0.54	- 0.53		
	$M_{q_i}^{\kappa} = \bar{M}_{q_i}^{\kappa} \cdot q_i^{\kappa}$	1.68			-1.77	2.16		
Ma	$m(g_2-g_1) = \overline{m}_g^{\kappa} \cdot (g_2^{\kappa} - g_1^{\kappa})$	0.99	-	_	- 2.54	36		
	Mg3 = Nig (93 + 93 Ex)	0.00			-1.49	2.04		
	$m_{q_{\perp}}^{\kappa} = \bar{M}_{q_{\parallel}}^{\kappa} \cdot \bar{q}_{\downarrow}^{\kappa}$	-0.7/	_	_	1.96	_		
,	l'moto:	5.86	1.48	0.10	-2.37	736		

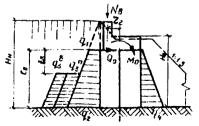
6. Ρυς νεπικώε προβερκυ οινορ

Onsper Apadepaem no gryn ycachuam:

1. перямещение вержа спор от нирмаливные нагругом не 731 MPO PRESEIVAME PRESEIS 4000 (0) +2.5 cm 70 11,35 CH-200+62. 2 KONC TRYKLIUM CBOW DROP GON HHO DRELINE HUTH LECYLLY TO SHO

- משו משול בשל בה שונים בהשומות בה של של ביינרי אשא BOSELLEE TOPUSONT THENCE REDSINGLATUR CHIAX IMEEN SPAX CHOOSE OF THE TO = 25 cm

אסאבעיתיים אוני בינים בינים בינים בינים בינים בינים בינים בינים אונים בינים אם א או משאימטפטאים או א מ בי קיים


TK	אפחפים בארים ב	89,009 5531-32
373	אפרוסטער ב וועשאקסא בדוצב או בעלישוב שוובף.	Burys 11020.

	<u> </u>			1	מייים	υδοπ	Вени	080	деса	грц+	ıma		xoq-	ică ni	aeo qu	на	ABHE	ень
		Длина	Z ₃	co	cm0	роні	ы н	зсып	U		торо			uasb uec m			деруз Струз	KU
H _H	Ho M	проле- тов.	-3 м		q_{t}			92			94			9,7	' 		9,0	
141		M		ψ:30°	ψ. 3 5 °	4=40°	\$ =30°	φ=35°	%40°	4:30	φ=35°	φ-40°	φ×30°	φ.35°	<i>9</i> ≈ 40°	γ=30°	φ- 35	Y= +0
	1.24	12÷15		U.84	0.57	0.41	1.44	J.98	0.78	0.44	0.30	0.22			<u> </u>		ļ	<u> </u>
2	1.04	18		0.18	0.67	0.48	1.45	0.98	0.70	0.33	0.23	0.17					<u> </u>	i - t
2	0.94	21	_	1.05	0.72	C.51	1.44	G. 98	0.70	0.28	0.19	0.14						_
	2.24	12-15		0.84	0.57	0.41	2.16	147	1.08	9.95	0.56	0.49						_
3	2.04	18		0.98	0.87	O.48	2.16	1.47	1.06	0.85	0.59	0.43						
3	1.94	21		1.05	0.72	0.51	2 18	1.47	1.06	0.80	0.55	0.41						
	3.24	12-15	0.93	0.57	0.57	0.41	2 04	1.9.5	1.40	1.48	1.02	0.75	0.55			0.54		
4	3.04	18	C.58	0.69	0.57	0.48	2.04	1.95	1.40	1.37	D 95	J.70	17. 55			C.54		_
7	294	21	063	0.75	0.71	0.51	2.04	1.95	1.40	1.31	0.91	0.07	0.55			0.54		
	4.24	12-15	1.46	9.72	0.43	0.42	3.12	1.85	1.78	2.00	138	1.02	0.68	0.39		0.6 <i>i</i>	0.33	
5	4.174	18	1.26	0.85	0.50	.1.49	3.12	1.85	1.78	1.89	1.31	0.97	0.08	0.39		0.65	0.33	
_	3.94	21	1.16	0.91	0.54	0.53	3.12	1.85	1.78	1.83	1.27	0.94	0 58	0.39		J.65	0.55	
	5.24	12-15	1.98	ე. 8 <i>1</i>	0.52	0.34	4.18	2.58	1.72	2.50	1.75	1.29	0.75	0.46	0.30	J.70	0.39	6.36
6	3.84	18	1.77	0.95	0.61	0.39	4.19	2.68	1.72	2.41	1.67	1.23	0.75	0.46	0.30	0.70	0.29	0.38
J	4.94	21	1.68	1.02	0.65	0.42	4.19	2.08	1.72	234	1.02	1.21	0.75	0.46	0.40	0.70	0.39	0.88

Ипорные рвакции NB(m) и изгибающие моменты мв(mм) на устай от нормативной временной плите

In Book mu		H-3	0ma	x		H-3	10 m (n		TOAL	·a	
Габарины	No	Mo,	MB ₂	Mos	NΒ	Mβ _I	MB2	MBs	VB	Mið	MBZ	MES
F-7+ 2×1.0(1.5)	17.2	- 6.0		-11.5	4.8	-1.7	-22	-2.9	1.5 /24	-0.5	-07/11	10/15
T.8+2x10(1.5)	38.4	11.9	-17.7	-23.0	9.6	-5.0	-4.4	-5.8	1.6	-0.5	0.7/11	-10
['-lu+2×10/1.5)	38.4	-11.9	-17.7	- 73.0	9.6	-3.0	- 4.4	- 5.8	1.6	7.5	27/11	10/
T-115+ 2 x 1.5	38.4		-17.7	- 23.0	9.6	- 3.0	-44	- 5.8	1.6	05/0.7	-07/11	10/5

Схема приложения нагоцаки

Длина	. 5	4	:30°	φ:	. 3.5°	φ	= 40 °
пролет <u>.</u> м	<i>Габариты</i>	G,	Мо	$q_{\mathfrak{o}}$	Mo	Qø	Мσ
	F7+2×1.0(1.5)	3.22 3.36	1.26	3.10	121	2.29	0.08 /
12,15	18+2×1.0(1.5)	3.56	1.52	343/	1.57	2.47	1.08
12,13	F10+2×10(1.5)	425 460	1.66	442	1.74	295	1.15/
	F11.512×1.5	5.10	1.99	4.91	1.91	3.50	1.29
	F7+2×10(1.5)	490	200	188	191/	3.40	138
	[8+2×1.0(1.5)	4.90 558	2.20	450 5.15	216	3.40	1.53
18	[10+2×10/15)	545	2.95	5.6n	2.52	4.05	197
	T11,5+2 x 1.5	7.0%	3,17	6.74	40.6	4.85	2.18
	F7+2×1.0(1.5)	511/	2.50	5.43	2.00	3.50	172/
21	T8+2+1.0(1.5)	5.63	3.04	5.63	2.92	387	1.40 /
۲۱	F10+2×10(1.5)		3.39	548	3.16	4 51 / 500	226
	[11.5+2×1.5	8.12	3.98	7.80	5.82	5.15	2.52

Примечания

1. Значения усилий Q₀, M₀, N₈ и M₈ даны в числителе при тратуарах шириной 10м, в внаменателе - 1.5м.

2 При определении горизантального давлания грунта приняты когффициенты перегрузки: 449 веса грунта п.1.2 при f=30°

n=10 npu f=35° n=09 npu φ=40°

для временной нагрузки n=1.4 при f=30° u 46° n=1.0 при y=35°

о. Моменты Мв, 6, 6, = Ng % соответствуют ширине насачки 10ом, 120см и 150см.

4. Значения 7₂ см л. 15

•	7. OHEGENCY 12 CM X. 10		
TK	Железобетинные свайные опары автодорожных мостов с пролетами до 21м	3,503	
1973	Ланные для расчёта четогв под ребристые пролетные страения вдоль моста	Выпуск 1	Aucm 12

_	Опарныя	реакции	N_{B} .	_
ат нортативной	пастаянной	нагрузки	HØ	rcmaú (m)

а											ſ a ā a	pum	ы								
Длина апираю-			r	7+2 = 1.0	(1.5)			r 8	+ 2 = 1.0	(15)			r I	0+2=1.0	(1.5)			r	11.5 + 2 =	1.5	
щегося п прометно- го строе б ния, т	Типовой проект пи выптскт икв N°2	праез жей части ка прамет нам страе ний	тоб пра летного строения	СШЕНКО	ישוי ססד	вес проев эксей части на переход най пли- те		тоб пра- метного строения		Вес саор ных злетен тов пе- реходны плиты	nepexad	Вес проев- жей части на пролет- чом страе нии	таб про- летнога строения	1	mob ne-	персхой	Вес праез- чости на пролет- ном стри ниц	Bec COOP HOIX JAEMEN MOB NOO	вес шкаф- ной стенки	Вес сбор ных элементов	Вес проез жей частим перехс чой пл те
12	710/1 710/2	12.3	39.0	6.7	10.5	7. 0	14	45.7	7.1	11.7	8.9 8.3	17.3		8.0	14.2 14.2	10.9	20.4 26.4	60. U	9. O	16.1	12.4
15	710/1	15.3	78.8 58.6	8.7 7.1	10.5	7.8	17.8	36.7 588	7.5	11.7	8.9	17.3 21.5	56.0 54.5 60.3	8.4	14 2	10.9	25.6	74.9	9. 0	16.1	12.4
	7/0/2	15.3	57.2		10.5	7.8	17.8	54.0	7.5	11.7	8.9	21.5	61.6	8.4	14.2	10.9	25.6	76.7	9.0	16.1	12.4
	710/1	18.4	61. 2 73 9	8.0	10.5	7.8	20.9	14.1	90	11.7	8.9	25.7	86.0	10.2	14.2	10.9	30.6	948	ıa. 9	16 1	12.4
18	7/0/2	/9.4	72.2	86	10.5	7. 8	20.9	72.3	3.0	11.7	8.9	25.7	77.8	0.2	14.2	10.9	30.6	9 7. Z	10.9	16.1	12.4
	7/0/3-1	18. 4	71.8	8.6	10.5	7. 8	20.9	86.8		11.7	8.9	25.7	99.3		14.2	10.9	3 0.6	109.9	10.9	16.1	12.4
·	7/0/3 2	,,	70.6 83.6		IQ. 5	7. 8		80.7	9.0	11.7	8.9	25.7	103 8	10.2	14.2	10.9	30.6	113.5	10.9	16.1	12.4
64	710/3-1	21, 9	100.8	L	10.5	7.8	24.8	94.5	9.3	11.7	8.9	31.0	115 7	4.1	14.2	10.9	85.8	127.6	12.0	16.1	12.4
21	7/0/3-2	2). 9	95.4	9.4	10.5	7.8	24.8	92.3	9.9	11.7	8.9	\$1.0	103.7		14.2	10.9	35.8	129.2	12.0	16.1	12.4
	884/32	21.9	86 4 50.0	8.7	10.5	7. 8	24.8	99.7 102 0	9.3	//.7	8.9	31.0	120.2	10.5	14.2	10.9	35.0	127. 5	12.0	16.1	12 4

Опорные реакции NB(m) и изгибающие тотенты MB(тт) от нортативной вретенной нагрузки на устои

Длино				Harps	3KO	6	прол	ете				
апирающе- гася пра- летнога		нк-	80		то	олонно н ОП ротус	0 2ª	0+	mo		ы н-з на 2 ^ў араз	<i>a•</i>
страения т	N B	mδ,	M €2	m63	NB	m5,	M62	M6₃	NB	m6,	M62	m63
12	67.4	9.4	-0.7	-10.8	24,3	a. 4	- a.z	- 3.9	48.6	6.8	- 0.4	- 7.8
12	<u> </u>	-/-		7-	4.6	0.5	0.05	-01/11	4.6	05/0	-0.05	0.1
/5	70.0	9.0	-0.1	-11.2	25.5	3,6	-0.3	-4.1	51.0	7.2	- 0.6	- € .2
-	<u> </u>	<i>7-</i>	<u></u>	<i></i> _	5.0	0.8	0.06	09/4	5.0	0.8	0.09	-09/1.4
18	7/	10.0	- 0. 7	-11.4	25.7		- 0.3	- 4.1	51.4	1	-06	-8.2
	<u> </u>	<u>-/-</u>		<i>]</i> -	6.8	_	-0.07	-1.1	5.8		-0.07	-1.1
21	73.0	_	_ 0.7	- 11.7	Z# 6	_	- 0.3	- 4.6	57.2	-	0.6	-9.2
	<i></i>	-	<u> </u>	<i>7.</i>	8.2/12.4	-	-0.00	1.3	8.2	-	0.08	-1.3

: кский филиал Варонеж

Вороне

гипродориии

Стета приложения нагрузак

NB +Nn

3 Haye.

r'

90

- 14

31

120

46

150

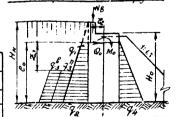
16

61

Примечания:

- 1. Величины эсилий NB и ПВ при каждом значении длин пролетов даны в бержней строке таблицы - от нагрэзки н - за без учета толпы и динатического козффици ента, в нижней строке только ат толпы. 2. Значения, динатического козффициен та ст. л 16.
- з В одозначенки бытка инб. н 110/з индекс! указывает на пралетные страения дея диафрагт, индекс? — с диа фрагтати
- 4. Матенты M_{δ_1} , δ_2 , δ_3 : N δ 2, Саответствиог опорат с шириной насодки δ : 90ст. 120ст. 150ст.
- 5. В таблицах в числителе даны усилия при траттарах шириной 1.0 м, в знатенателе 1.5 т.

	TK	Железаāетанные сваиные апары абтодорожных тостов с пролетати да 21 м	Еер 3.503 -	- 30
0	1973	Данные для расчета четоев под ребристые пролетные строения Баоль моста	Bbirisca 1	Aucm 13


Горизонтальное давление эрунпа на сваю в т/мг

[,		יס	n co	ốcm b	енно) <i>२</i> ०	веса	c e	оунт	29	HOU	מאטפחי וניתח	noi go	влани Уз Ле	P nep	exog∙ ö
H _H	Ho	Длича после	ı	a	o cm	אפקט	Ы н	IU CL!T	14		mupo porrei			ээтоя агруз		om B	геме! 12рузі	HHOÙ K U
	1	11.08			91			92			74			93			93	
M	M	М		4200	φ:35°	φ.40°	φ,30°	4=25°	19.40°	ψ=30°	φ=35°	φ=40°	P-20°	φ=3s ¹	9.40°	q=30°	4°=35°	4=40°
	1.91	6	-	0.35	0.24	0.17	1.44	0.98	9.70	0.18	0.54	0.40		_				
_	1.76	9	_	0.46	0.31	0.22	1.44	0.98	0.10	0.10	0.48	0.36				_		
2	1.61	12-15		0.51	0.39	0.29	1.44	0.48	0.70	Q. G3	0.43	0.32					·-	
	1.46	18		0.63	0.46	0.33	1.44	0.98	0.70	0.55	2.33	0.28						
	2.91	6		0.35	0.24	0.17	2.16	1.47	1.06	1.30	0.90	0.66						
	2.76	9		0.46	0.31	0.23	2.16	1.47	1.06	1.23	0.85	G.52						
3	2.61	12-15		0.57	0.39	0.28	2.16	1.47	1.06	1.15	0.80	0.58						
[246	18	_	U.58	0.46	0.33	2.16	1.47	1.05	1.07	0.74	0.54		_				
—	3.91	6	1.60	0.25	0.24	0.17	2.04	1.95	1.43	1.82	1.27	0.93	0.55	_		0.54		
١,	3,76	9	1.45	Q.33	0 31	a.22	2.04	1.95	1.43	1.75	1.2/	0.89	0.55			0.54		
4	3.61	12-15	1.30	0.40	0.39	0.28	2.04	1.95	1.43	1.67	1.15	0.85	0.55			0.54		
l	3.46	18	1.15	0.48	0.46	0.33	2.04	1.95	1.43	1.59	1.13	0.81	0.55			0.54	_	
	4.91	6	2.13	0.31	0.18	0.19	3.12	1.85	1.78	2.35	1.63	1.19	0.68	0.39	1	0.65	<i>c.3</i> 3	\vdash
l _	4.76	9	1.98	0.40	024	0.23	3.12	1.85	1.7€	2.26	1.57	1.15	0.68	0.39		0.65	0.33	
5	4 6/	12-15	1.83	0.49	0.29	0.28	3.12	1.85	1.78	2.20	1.50	1.11	0.68	2.39		0.65		
ļ	4.46	18	1.68	0.59	0.35	0.74	3.12	1.85	1.78	2.10	1.46	1.07	0.58	0.39		U.65	Q33	
	5.91	6	2.65	0.34	0.22	0.14	4.18	2.38	1.72	2.87	1.99	1.45	0.75	0.46	J.30	0.70	0.39	0.38
	5.76	g	2.50	0.44	0.29	0.19	4.18	2.68	1.72	2.80	1.93	1.42	0.75	0.46	0.30	0.70	0.39	0.38
6	5.61	12-15	2.35	0.54	0.35	0.23	4.18	2.68	1.72	₽.71	1.87	1.38	0.75	0.46	0.30	0.70	0.39	0.38
L	5.46	18	2.20	0.65	0.42	C.27	4.18	2.38	1.72	2.63	1.82	1.34	G.75	0.1.6	0.30	0.70	0.33	ú 3ú

Опорные реажили NB (m) и изгибающие моменты Мв (тн) на устой от пормотивной временной наерузки на переходной плите

0.0	Н	-30	max	۱ ،	H	-30	mii	7		Тол.	πα	
$\partial a \delta a \rho u m$.18	MBI	ME2	M 83	N8	MBI	M 82	M 83	NB	M 81	MBE	M83
F7+2x1.0(15)	19.2	-6.0	-8.8	-11.5	4.8	-1.5	-2.2	-23	15 24	-05/0;	0.7/1.1	1.0/
18+2×1.0(1.5)						-3.0	-4.4	- <u>58</u>	1.6	-05/07	-07/11	-10/1.5
F10+2×1.0(1.5)	38,4	-11.9	-17.7	-23.0	9.6	-3.0	-4.4		1.6 2.4	0.5	-0.7/1.1	-10/
11.5+2×1.5			-17.7	-230	9.6	-3.0	-44	-5.8	1.6 2.4	25/27	0.7/11	-10/1

Схема приложения нагрузку

Нагрузки на устий О. (т) и Мь (тм) ст осбления грунта на шкарную стенки

Длина прапе-	<i>ξαδαρυπ</i> οι		<i>30</i> °	4	⁾ =35°	,	0=40°
ma. M		Q _o	Mo	C.	Nie	Q _o	110
	17+2×1.0(15)		U.1/C.1	0506	0.101	0401	0101
6	18 +2× 10(15)	C607	0.1	0.6	101/	104/	0.1 0.1
	F10+2+1.0(1.5)	08/08	0.1	0.7.0	0.1	0,50.5	0.1
<u> </u>	r 11.5+2×1.5	0.9	2.1	0.9	C. 1	0.6	0.1
	17+2×1.0(15)	7.1	30/20	1.0/10	0.2	0.7	0.0
9	18-2×1.0(15)			10/11	02 02	7.76.8	08/2
! _	110+2×1.0(1.5)	1.14	03/03	1.2/1.3	03/03	910	0.E
	[11.5 + 8 × 1.5	1.5	0.3	1.5	0.3	1.1	0.2
	r7+2×10/1.5		0.4	J 1.5	0.4	11/12	0.3
12-15	[8+2×10(15)	17/18	0.4	1.6/1.8	04 05	1.0 13	0.3 /23
1 /2 /3	1'10+2×1.0(1.5)	2.0	0.5	1.9 2.1	0.5	1415	0.4
	[11.5+2×1.5	2.4	0.6	2.3	0.6	1.7	0.4
	17+2×10(1.5)	21/24	0.7	20/23	0.6	1.5	0.5 0.5
ا م	[8+2×1.0(1.5)	246	07 58	وكور	0.7 6.8	1.6/1.8	0.5
18	10+2×1.0(15)	3.0	0.9 1.0	27 29	00/09	19/1	0.5 6.7
L	T11.5+2x1.5	3.4	1.0	3.2	1.0	2.30	0.7

Mountezastus

1. 3κανεκυς υςυπυῦ Qo, Mo, Nb υ Mb Β чυς τυπεπε πρυ προπιγαρας ωυρυκοῦ Β 3κα жекателе - 1.5м.

 При определении гаризант эльного давления грунта приняты коэффициенты перегрузки: аля веса грухта

n=1.e npu n=1.0 npu

n=09 npu 4=400

CEPUR

для временной нагрузки п = 1.4 при ф=30° и 40°

R= 1.0 npu 4=35° 3. Maneumos Mei,62,63=N622 coambemombyion wuриже насадки 90 см, 120 см и 150 см.

4 3HAYERUA Z2 CM 1.15

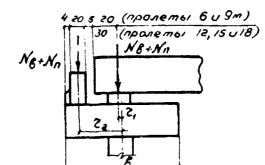
Железабетожные свайные опоры автадарожных мастов с пролетами до 21 лс.

3,503-30 Выпуск Лист Данные для расчета устоев под плитные пропетные строения вдоль жоста

Варажезкаский филиал ингодолия.

<u>Οπορης ε ρεακции Νη</u> οπ нормативной постоянной нагрузки на устой (т).

	T								ć	0000	יטקו	m 61								
		/	-7+2x	10(15)			1-6	9 + 2x1.	0 (1.5)			<i>[</i> -	10 + 2x	10 (1.5)			<i>[-11.</i>	5 + 2 x /.	5	
1	жей	элемен гов пра- летного	NO Ú CTIENKU	Bec coopnex snemon robnepe- xognoù nnume	жей уости ма пере-	жей части ма пролетн	с	ной ст е нки	ных эле- менгов пе реходной	Вес провз- жей части на пере- ходной плите	жей үссти мо промегн	сбор- ных эле ментов пр оле тн	HOŪ CM EHK U	ных эле- тенгов пе рехидной	xev yoch	жей части на пролетн.	сбор- ных эле , 1ентов пралетн	HOÚ CMEH- KU	ньос зле- ментв пе реходной	Вес проез- жей части на пере- жиднай плите
6		20. 6 20. 6	1.1	10.5	7.8	7.0	22.0/	1.2	11.7	8.9	8.8	25.5/ /27.7	1.3	14. 2	10.9	10.2	28.8	/· Y	16.1	124
9	9.3	340	1.91	10.5	7.8	10.6		20/	11.7	8.9	13.2	43.7/	23/	14. 2	10.9	15.0	50.4	2.7	16.1	12.4
12	12.3		3.1	10.5	7.8	/y. O	56.9 63.6	3.3	11.7	8.9	17:3	66.9/ 73.7	3.7 /3. Y	14.2	10.9	20.4	77.7	4.3	16.1	12.4
15	15.3	,	3.1	10.5	7.8	17. 8	71.3	3.3	11.7	8.9	21.5	839 926	3.7 3. y	14.2	10.9	25.6	98.0	4.3	16.1	12.4
18	18. Y	87.9 99. Y	4.0	10.5	7.8	20.9	96.6	43/46	11.7	8.9	<i>25.</i> 7	114.1 /	4.9	14.2	10.9	30.7	133. Y	5.6	16.1	12.4


Опорные реакции Nb (т) и изгибающие тотенты Мb (тт.) от нормативной временной нагрузки по устой

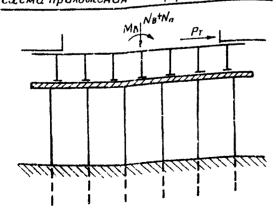
Длина опирающе			Hae	рузк	06	npo	nem	e				
toca npo- nemhoto cmpoehua		HK-	80		mos	no Ho	H-30 0 2 ×	7 +	mos	nonno no r	w H-30	* *
M	NB	M8,	MBZ	MB3	NB	MB,	MBZ	N183	NE	MB,	MBZ	MB
6	54.4	2.2	-5.0	-14.1	20.6	0.0	-2.3	- 5.4	41.2	1.7	-4.6	-10.7
	1	_	_		2.2Y	0.09	-0.2	-06	251	0.09	-0.Y	-06
9	63. y	ج ج	7.0	16.5	22.5	0.9	-2.5	-5.9	3.36	1.8	-5.0	-11. 8
· · · · · · · · · · · · · · · · · · ·		_	_		344/	0.1	04/	-0.9	45.0 3 YY	01/	-04	0.9
12	67.4	g. y	-0.7	-10 8	24.3	3.4	-0.2	-1.3 -3.9	5.16		-0.6 -0.4	-7.8
			_		4.6	0.6	005	07	48.6	0.6	-0.05	-0.7
15	70.0	9:8	-0.7	-11.2		3.6	-0.3	-4.1	6.8	1.0	-0.01	- 8
			_		58	0.8	0.06	-0.9	51.0 5.8	0.8	-0.6	0.9
18	71.3	_	-0.7	-11.4	25.7		-03	-4.1	8.6	1.0		- 8.
		_	T-		6 8	_	007	-1.1	6.8		-0.6	-1.1

ГИПРОДОРНИИ

Воронеясский

<u>Сжема</u> приложения нагрузак

3HOYE- HUR		Ĝ	
3	90	/20	150
5,	-4/-14	"/	26 /16
٢,	31	46	61


Примечания:

- 1. Βεπυνυμοι γευπού Νου Μο προ καλεσακη 3 κανεμου φπομ προπεποθ σαμω ο βερχεκεύ επροκε ποδπουμω οπ ματρυσκο Η-30 δες γεπα ποππω ο συμαπονες κοτο κοτο κοτο φυμικημα ο βιωκικού επροκε-τολοκο οτ τοληω
- г. Значения динамического коэффициенто ст. л. /6.
- 3. Моменты Мв, в2, в3 = NB Z, соответствуют опором с шириной насодки в=90cm, 120cm, 150cm.
- 4. В таблицах в числителе даны усилия при тратуарах шириной $1.0 \, \text{m}$, $6 \cdot 3$ номенателе $1.5 \, \text{m}$.
- 5. Значения Z, в числителе даны для пролетов би 9м, в гнатенателе - 12,15 и 18м.

TK	Железобетанные свойные опоры ивтодорожных тостов с пролетоми до 21м	Серия 3.503-30
/973	Данные для расчето устаев под плитные пролетные строения вдаль мости	BUNYCK SIUCM 1 15

3appy=sech offine 1,30	١.						Jaen	JUHECH	vai	111	אטקח	čm									Jue	руже	er u	дин	πρυν	ет	u n	ерез	сочн	ые	nau.	ты		~		_
ΔΑΜΗΩ																																				_
συμραιουμε σος προ συμραιουμε σος προ συμραιουμε συμρα προπιημμέ συμρα προπιημές συμρα πρ															11 V - 1	na																	PUHU	перех КСАО	OD HO	_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		опирающе-	одно	1 KU/	M M	1 + 1110 20171U	"/"	/										ugn	aogu	0H.40 0 11	r ma	nna Jupe						UG HC	1 KONO	0M 17	יוניסיאני	i pe	H	1 00 H	UM M	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			7.0	r-						A)	IA IM				M	8, TM		.,.	; 	٨	:B, rm				N.	18, m	и			N).	B, TAI		X8 7		<i>^\\ L</i>	5, •
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			NB,1					•			<u> </u>		Nu, s	:	1-8	r-10	T-11 5	1 '	177	1-8	1-10	r.:15		4	Γ-δ	<i>[-10</i>	r·11.5		<i>[</i> -7	<i>[-8</i>	1.10	r-11 5		<i>F</i> -7	r-8	ŀ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		м		<i>T-1</i>	1-8	1.10	7113							<u> </u>		412.0	430.5	,,,	15 #	24.2	301	33.0	23.6	_	13.0	24.3	307	8.4	10.9	17.2	21.4	23.6	168	-	9.2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			21,4	27.9	44.0	54.8	50.1	41.2				.53.5	544	49.b	70.0	7/7.0	130.3	L.	1	ı	1		77	1	5.1	5,2			' '	. /		`				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		6	··-/	/	/	1 / 1	11.0	12./				11.0		_			_	1 /				10.7	117	ł	-						-	┼		r		۴
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			/	 -	 	57.4	63.0	450	_	24.7	47.3	58.5	634	57.0	104.5	136.3	152.0					•	:	í		L	!!			I		1,8,9		: 1		Į
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		9	1.7/	6.8	7.7	93	169	13/	68	7.7/	93/	16.9	_	_		-	-	/2.6	114	127	/15.4	17.4	26	111.	/12.7	15.4	17.4	/12		5.7	5.9	7.8	/12	5.1	5.7	Ł
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			/2.6	111				<u></u>						50.6	111.1	1450	102,0	17.8	23.13	36.5	45.4	49.8	35.6	1			1		3.1	12.7	15.8	17.4	12.5	_	6.9	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		12			1			2.3/					-				<u> </u>			10.3	12.5	22.3	2.3	9.1	103	12.5	22.5	2.8				78	0.8/	5.2 5.1	3.6 / 5.7	ľ
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$, -	2.3	92/	16.1		221	/3.4	/145	/16.1	19.6				_		_		714.0	V	/	55.2	394	_					7.0	1		15.1	10.9		5.0	,
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			25.5	35.2	52.4	65.1	71.4	i '				66.3	10.0	65.0	115.5	150.5	/68.C	29/	11.5/	T 12 0 /	115.9	•	129.	111.57	13.0	15.9		0.8				170	28/	32	3.6	1,
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		15					27.9	2.9/	11.6	13.1	:5.0) 247	27.9			_		_	4.8	18.9	/20	24.3	i		7						{		 	0.7	/3/	_	_
52 / 221 / 247 / 277							72.0	k	_	_			7/.3	64.2	17.5	153.2	171.0	21.1	27.4	+5.2	53.8	39.1	42.2	1797	23.2 15.7	19.2		DR			1-4	 -	28	3.2		1
		18		,	i	18.7	338	34/	/8.1,	15.4	Ĩ8.R	33.8		_	-	T -	-	3.5	15.9/	15.7/	30.0	34.0	/52	122	24.8	50.0	340	/12			6.9	7.8	1.2	51		٦
						299		/ 3.		311	500	7,00	72.0	657	120 3	157.0	175 2	23.4	30.4	48.0	59.6	65.5	46.7	-	25.7	49.1	60.7	4.6	6.0	9.4	11.7	12.9	9.2	-	9.1	

Схема приложения нагрузки на опору

ворснежский филиал

е. Вороне-ж

CHOISO LIDEN WH

Значения динамического коэффициента 1+M

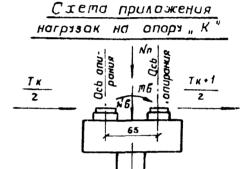
	ים ייים	толис	узки.	npainy	-
	Длин пролёп м	на 1 про- лете и переход- ной плите	на одном пролёте	на. двуж пролетал	на преж преметал
1	6	1.253	1.293	1.248	1.203
	9	1.240	1.270	1.203	1. 185
	12	1.218	1.248	1.158	1.063
	15	1.195	1.225	1.113	1.000
	18	1.173	1.203	1.068	1.000
	21	1150	1180	1.023	1000

Примечания:

- Работать совместно с л. 18.
- г. Величины усилий ж и МВ при кажедом значении длин пролетов даны в верхней строке таблицы -от нагрувки Н-30 без учёта толпы и динамического кограрициента В нижней строке - только от толпы (В числителе при ширине тротуаров 1.0, в знаменателе - 1.5м)
- з Усилия от постоянной нагрузки Ип и поперечных ударов PT CM. A.A. 13, 15, 18, 19

TK	Железоветонные свайные опоры автодорожных мостов с пролётами до 21м	Sep 3.503	
1973	Данные для расчета устрев поперек моста	Выпуск І	Auerr 15

Опарные реакции ат нартативной постаянной нагрязки на опаря Nn (m)*


Длины	Τυποδού				Габар	บศาษา			
сопрягаю-	проект		*1 0(1.5)	1-8+	2 = 1.0 (1.5)	r-10)	2 = 1.0 (1.5)	r - 11.5	+ 2 = 1.5
щихся про-	no	Вес	Bec	Вес	Вес	Bec	8ec	Вес	8ec
летныз	бытыскы	проезжей	сборных	праезжей	соорных	проезжей	сборных	กคองหลับ	сборных
строений; т	บห อ ิง•	части	элементоб	части	зле <i>т</i> ентоб	части	застентов	части	элетентоб
12+12	710/1	24.5	17.9	27.9	90.4	34.5	1029	40.8	120.0
	1/0/2	24.5	77 9 91.1	27.9	91.1	34.5	97.9	40.8	122.1
	7/0/1	30.6	97.7	35.6	113.3	43.0	129.0	51.2	149.8
/5 + /5	7/0/2	30.6	96.0	35.6	108.0	43.0	123.2	51.2	153,3
	7/0/1	36.8	122.4	41.8	142.4	51.3	134.3	61.3	189.5
40.48	7/0/2	36.0	121 8 144.5	41.8	188.7	5/.3	155.6	61.3	19 1.4
10 + 18	7/0/8-1	36.8	143.6	41.8	161.2	51.3	192.2	61.3	215.8
	710/3-2	36.8	141.2	41.8	161.4	51.3	101.6	61.3	227.0
	710/3-1	48.7	166.8	49.7	1942	62.0	223.0	71.5	255.2
21+21	710/3-2	43.7	161.8	49.7	1846	62.0	201.4	71.5	258.4
	384/32	43.7	112.7	49.7	199.3	62.0	240.2	71. 5	254.9

Опарные реакции N6 (m) и изгибающие тотенты мв (тт) от нортативной вретенной нагрузки на апору.

Длины		На	адна	אטקח די	eme		Ha d	วัดอบ.ช	пролеп	nax
√вщнріх тпхсы шьо- сошьысаю-		πονησί τηρο	Дбе ка н-30 толпа н трат	U	Коле нагръзк	э нк- 8 0	тьои Н-30 М-30	U		0 u
т строений,	N5	MБ	N5	mв	NΒ	m6	NE	m6	N6	m6
	24.3	7.5	48 6	15 8	67.5	21.5	25,4		50.7	
12 • 12	4.6 6.8	1.5 2.2	4.5	1.5 2.2			9.4	_	9.4	-
	25.5	8.3	51.0	16.6	70.0	22.8	27.4	_	49.5	
15 + 15	5.8	1.9	5.8	1.87			17.6	_	17.6	
(0	25.6	8.3	51.2	16.6	7/.3	Z3. Z	\$0.8		55.6	
18 + 1 8	7.0	2.3 3.4	1.0	2.3	_	_	14.2	_	14.2	
	28.6	9.3	57. Z	18.6	7≇.0	23, 8	37.1	-	66	_
21 + 21	8.2	2.7 4.0	82 123	2.7 4.0			16.6		16.6	

Нарта тибная нагрузка от тортожения Тк (т) на пролет

DAUND	Kan-E	ga sarp	эк е нны	ж про	εποδ
пролетоб, т	1	2	.3	4	5
12	9. a	4.5	6.0	4, 50	s. 4
/5	9.0	9.0	6.0	6. 75	5.4
(8	9. a	9.0	9.0	6.75	5.4
2.1	9. Q	9.0	9.0	6.75	5.4

Притечания:

- В абозначении бытуска инб. и тю (з индекс / указывает на пролетные строения без диафрагт, индекс 2 - с диафрагтати
- 2. Величины чсилий NB и MB при каждот значении длин пралетов даны в вержней строке таблицыот нагрузки н-30 вез учета толпы и динатическага казффициента, в нижней строке талька
 ат тольы
- з. В таблицах в числителе даны усилия при тротуарах шириной 1.0 т. знатенателе - 1.5 т.
- 4. Значения динатического козффиционта ст.л. 16.

TK	Железадетонные свайные апоры автодорожных тостов с пролетати да 21 m	Серия 3.503-3,0
1973	Данные для расч. та пратежиточных спар под ребристые пролетные страения бдаль таста	Вритск Лист 1 17

ИН Главиви отдела UC с'явъзд ИН Главиви инженер проекта ИГ имол Рэководитель грэппы Ска

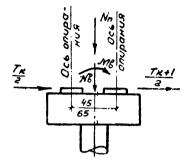
ИПРОДОРНИИ ронежский филиол г. Заронеж

	Опорна		PP	7 : ()		NE	(m)	,, ,,	2211	5 a 20	2//2/	·		PH	2011	e (mm)	- Ye	танов	ка вр	еме	หหอนั	нагру	зки для	пред	телен	ия Мв	19
	01:009.0		EUPN													· (******)		одча ка	трату		а на		две кол		н толг протупр		L
				.Ha.	a50	ousc	npo	v.em	ax			ħ	la og	HGM 7	зроле.	me			- S.		HK-80	N mount	,	2390	N		l morintir
	Длинь! сапрягающихся		а коло па на							H-30 mpan				tan i		*8KO	177	Danner (7777.78	MA-30	N H-30	6 to 20	mann)	1-8 		mil	7
	прслвтных строений	Ne		ME			NB		<u> </u>	18		No	ļ	<i>\(\)</i>	18	i l			70	e n-30	mannhi	_		ď		<i>толпы</i>	∤
	М	25.4	T-7 33.0		F-10 64.7	T-11.5 71.0	50.7	<i>[-7</i>	<i>[-8</i>	F-10 53,3	F-11.5	67.5	5-7 80.6	Γ-8 111.1	F-10 145.0	F 11.5		до бориты	C HM-80	€ H-30	в таккы		гаБориты;	PAK-00	C H-80	Emanies	
	12+12	4.7 7.0	18.7			45.7	47 7.0	=	211		45.7	-	-	717.7	143.0 —	162.0		[-7+2×10	0.90	130	40		F-7 + 2×10	-	_		
рунка 626 626 060	15+15	27.4	23.6		70.0 324 50.6	76.8 57.3	19.5		27.2	52.0 82.4 50.6	644 57.3	70.J	63.0	115.5	150.5	168.0		F8+2×10	1.65	2.G5	45		F-8+2×1.0		7.35	4.50	
DUNG POLINO POLINO POLINO	18+18	308	20.1	63.3	78.7	85.4	55.€		30.6	58.5	72.3	71.3	64.2	117.5	153.2	171.0		5-10+2×10	2.15	255	5.5		T-10 : 2×1.0		1.05	5.50	
3 0 0 0		7.1 10.6 57.1	28.3 45.1	503 76.0		69.0	10.5	_	36.7	35 0 61.0	69.0	73.0	65.R	120.3		175.2		r-7+2×15	J.90	1.30	4.25		Γ-7 · 2×1.5	_		4.25	
36211	21+21		33.1	17.3 58.9	45.5/		0.3			45.5	80.5	=	=	-	-			1-8+2×15	1.65	2.05	4.75		Γ-8+€×1.5		0.55	4.75	
A Property	Hopm	10MU		лео Р _л (<i>'</i> 9				•								[-10+2×1.5	2.15 2.40	2.55 2.80	5.75 6.50		[-10+ 2×1.5 [-11.5+2×1.5		1.05 1.30	6.75 6.50	
ктк	Cn	падия	, <u>P</u>	=m A.						Cae M Ha e p																	
NC NO OCE		oxog	a B=	0.35	d: 06m							NE	8 + Nn								IIp.	บพยอ	απυя:				
енер груп	nog	вая вижк Е.	9	9	12.2				,		M	8		ρ_r			₹.						מטא שקת				
u HOHO	40	высші 1288нь	4	47	7.3			08	<u> </u>	Т		†	7		7								cheŭ cmp a monno				
iari ogun goun Eun	7 /		<i>P</i>	loma	n E a a		ρ	/ IZZ	tun	dada	200	ma	de	da.	de la composição de la	23		eo kosp	, Фицив	ארואבי.	· 6 HZ	ижней	empoxe -	חסתנ	ka an	mour-	
Rava Pyrob Npobe	жирі нагр	узка	Вная Рв(1)	u nonef	DEYHUE													пы (б ч. менате				иринв	mpamyap	96 I.G	W, 6	зна	
3			гры Р		опереч-	i	-	PA	-								2. 8.	3xavex Jerobas	นя บุน	HOMU	48CK0	eo XO9G Poezeno	pouyuen o b coombo	ma (ememb	em. A. S	'6. CH 76-6	16
иии филис	canp	(лины ягаюц ралет	цих-Ва	A HO! H	ые уда оы		5	1111	die		1	****	<u></u>	1.			0,	КЛ	Manu	14 8 0K	VÝ KO	эффиц	uesem np	บหตุฑา	A=1,	тол -	,
		M ? + 12		Pe	'P _τ 4.8				1	1	1	1111	1111	1	1113	///	4.		חס את חס			46 นี #	авьляки	Nn c	w. n. 17		
ГВП РЦДПОНИЙ Ворине экстий фил г. Воронеж	 	5+ 15 3+ 18			6.0 7.2											TI	1 3	Келезобе					ы автод до 21 м	раж	ныж	00pu) 3.503 -	•
soë.	2:	1+21	عِ [2.6	8.4											1973	1	Данные ў ребристь					лочныж С я пслврек	Mac Mac	nog må	выпуск 1	

Опарные реакции от нармативной постояни \dot{u} нагрузки на опору N_{n} (m)

					3			
Длины				දියර්	pumbi			
COUNTERCOMORE	1-7+	2×10(15)	1-8+2	10 (1.5)	T-10+2	21.0(1.5)	F-11.5+	2 ×1.5
пролетных стровний, м	1 '	Bec cδoρμως ₃Λεμεντοί	, ·	вес сборных заементов	4 '	Вес сборных элементов		Вес сборных з леме нть
6+6	12.0	41.2	14.1	44.0	17.6	50.9	20.4	57.6
9+9	18.6	681	21.2	74.5	28. Y	87.3	30.1	100.8
12+12	24.5	103.9	27.9	113.7	34.5	133 8 147. V	40.8	155.3
15+15	30.6	129.9	35.6	142 5	/	167.7	51.2	195.9
18+18	36.8	175.7	41.8	193 2	5/3	251.3	61.3	266.8

Опорные реакции ЛЕ(т) и изгибающие мименты МЕ (тм)

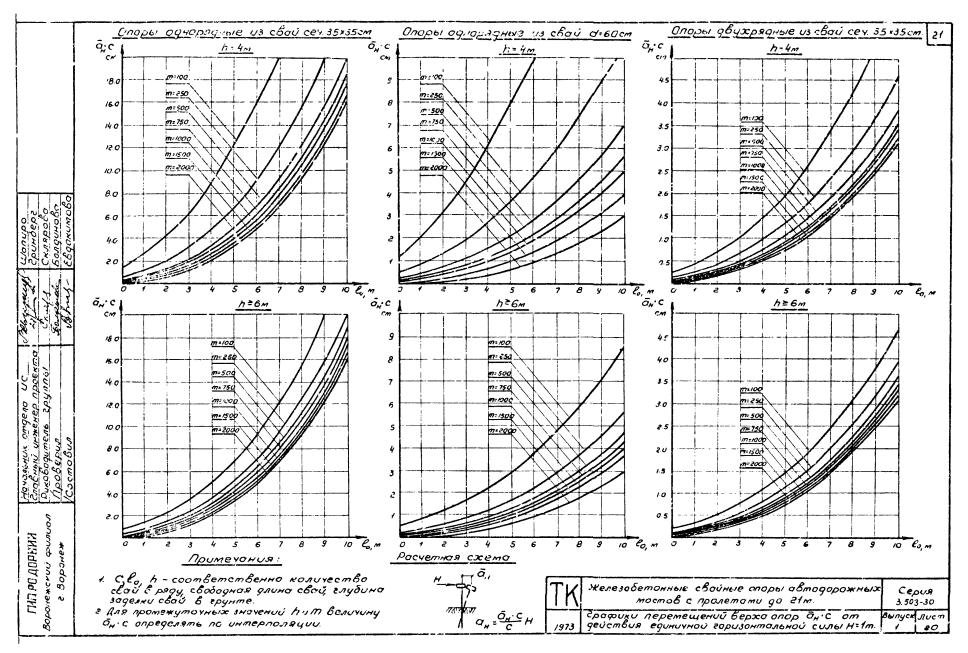

Дас ны сопрягою					ME						
MUDECA NOOMENNEN		ναεργεκυ	NB	89016	Поперек моста						
CZPOBNUŰ,				тоста	J-7+2×10(15)	V-8+2×10(15)	(-10+2×1-0(1.5)	141.5+2×1.5			
M	HK-80		54.3	12.2	49.0	89.6	117.0	130.0			
	OGHO KONO BOGHOM NA	NHO H-30	20.6	4.1		_					
	ABE KODONH	PONEME	41.3	93							
	MOANO NO	Barpymen Imp	11/12	02 04	_	_					
6	пролете	301pymemu27p	22	05 08							
	Ogna KONO	HAG H-30	3.7 20.7		26.9	41.5	52.8	58.0			
	ABE KOJON	ING! H-30 NO	41.5			22.4	43.5	54.0			
	TOARO	Загружен Ітр	23	_	9.2 14.9	10.4	12.7	22.8			
		Загружен 21 р									
	HK-80	1 / /	63.4	/3.5	57.0	105.0	136.5	1520			
	DONG KONON	MO H-30 MO	25.6	5.1		_					
	DEE KONON	одном пролете Две колонны Н-30 но одном пролете		10.1							
	TOANG HO	Barpywen trp	1.7	0.4							
9	однем	Balpymen cop	3.7	0.8							
,	DONO KONONI	YO H-30 NO	<u> 23</u> 8	1.5	31.0	47.5	60.5	66.6			
Į.	ABE KONON	ONEMUX NO HOOM	47.6			26.₹	60.0	62.0			
	1770 'A HO	To a Ha			140 22.5	15.8	19.3 30.4	34.4			
	904X	Загружен 17р Загружены стр	20								
	II DUKETION		-10.Y								

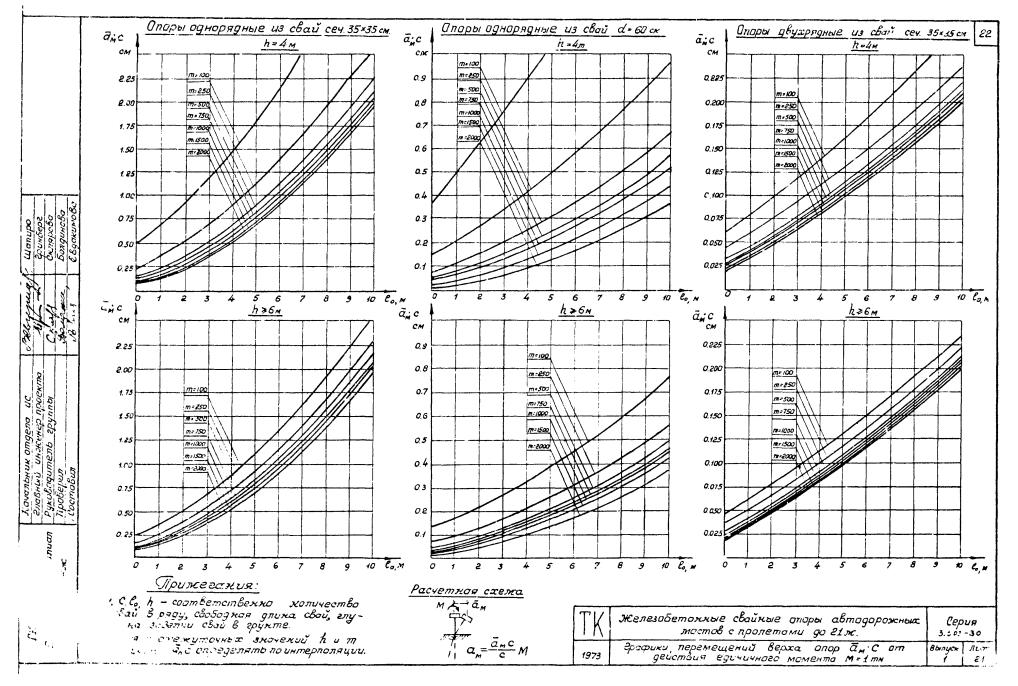
гипродорнии

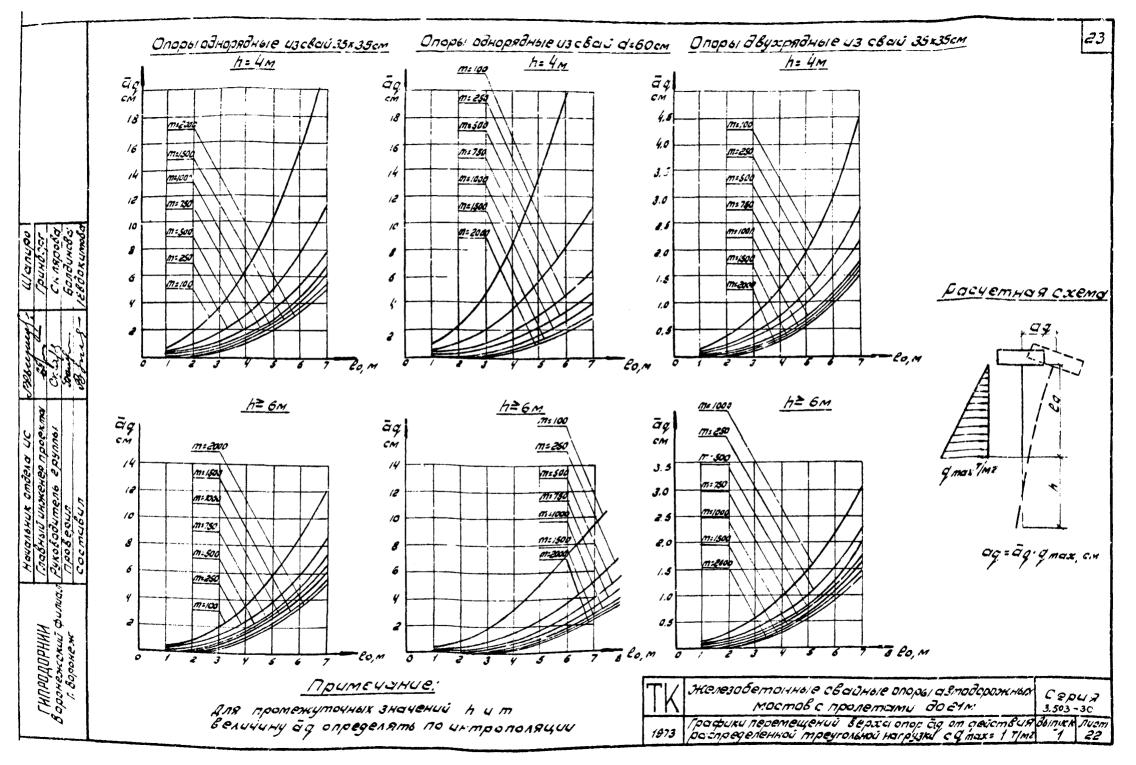
Нармативная ветровая нагрузка Р_К(т) и поперечные удары Рт(т)

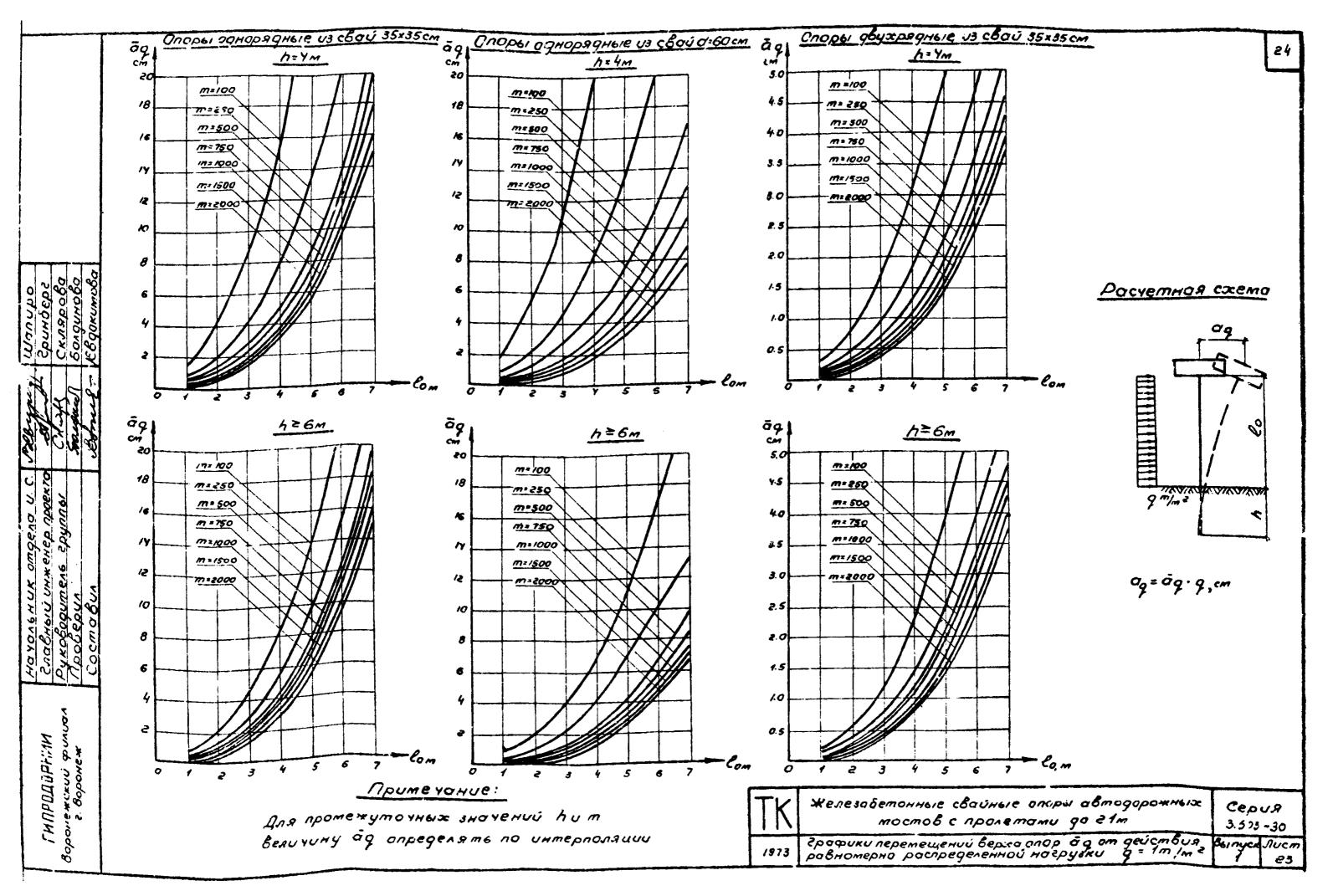
Длины сопрягающих- ся пролетов, м	Вегровая нагрузка	nene nene Noneper-
6+6	0.6	2.4
9+9	0.8	3.6
12+12	1.1	4.8
15+15	1.4	6.0
18+18	1.8	7. 2

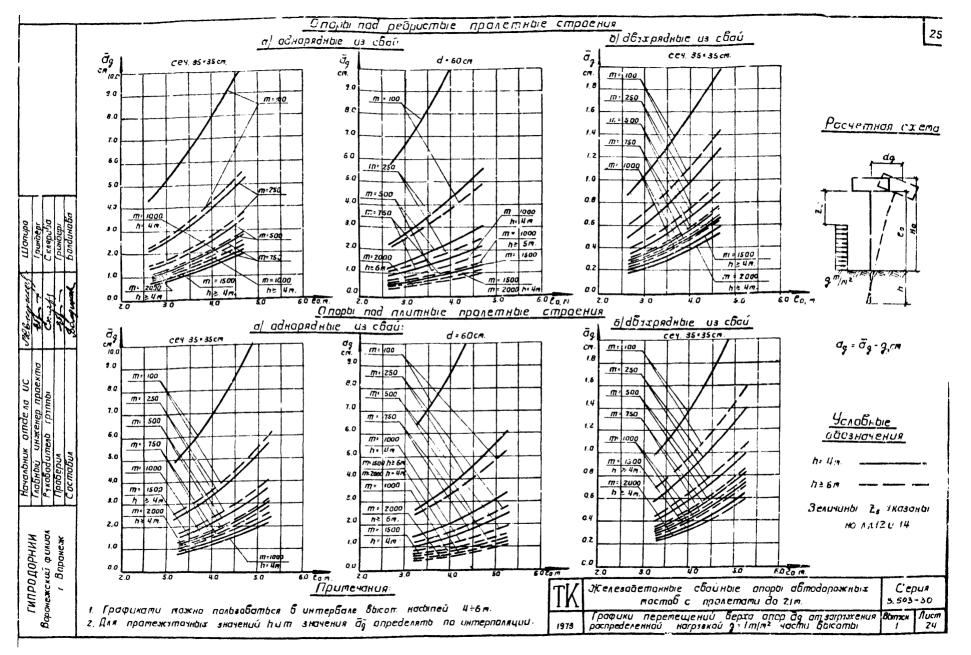
Сжета приложения нагрузок на опару

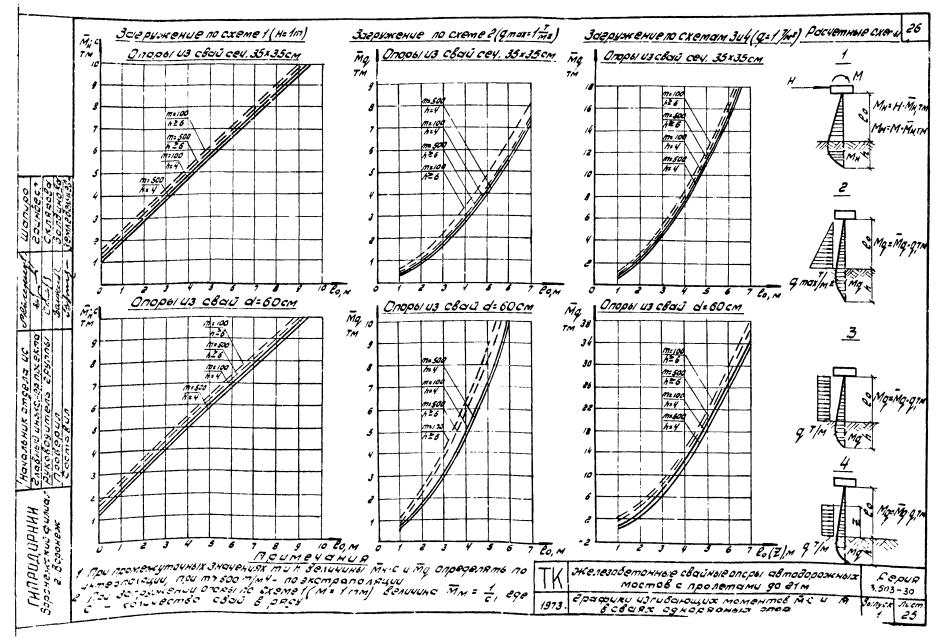

Нармативная нагрузка от тортожения Тж (т) на пролет

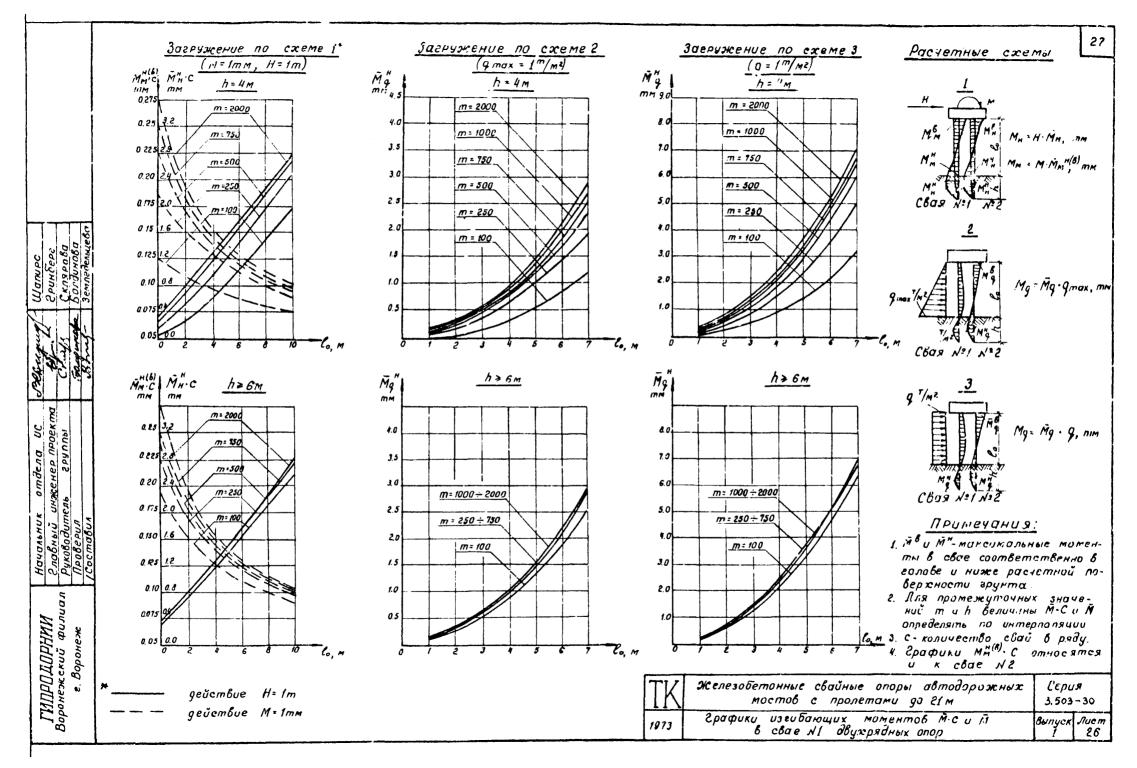

				<u> </u>					
Длины	Количество загруженных пролетов								
пролетов, м	1	2	3	4	5				
6	9.0	4.5	3.0	2.2	3.6				
9	9.0	4.5	60	4.5	3.6				
12	9.0	4.5	6.0	4.5	5.4				
15	9.0	9.0	6.0	6.7	5.4				
18	9.0	9.0	9.0	6.7	5.4				

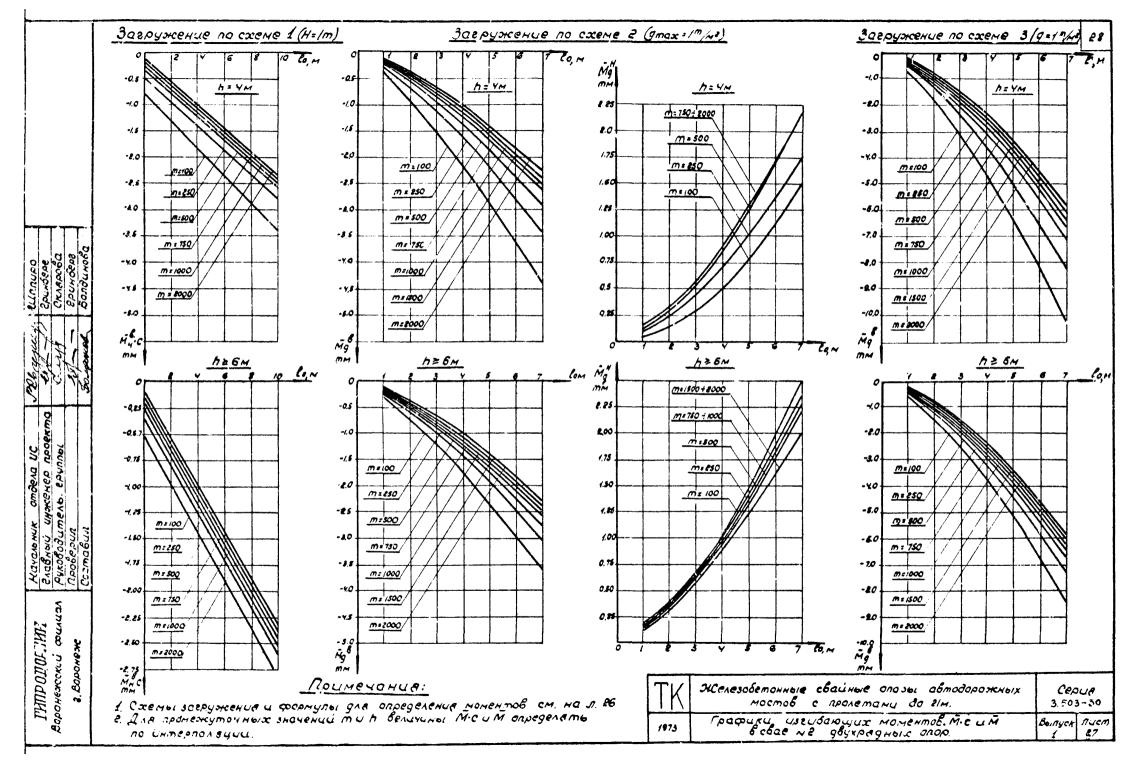

Примечания:

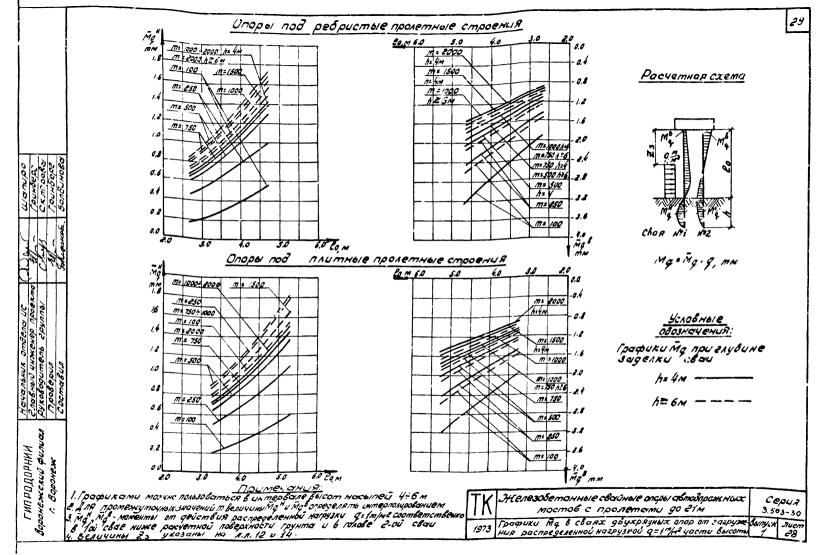

- 1. В тоблице для N_B и M_B даны значения усилий без учета динатического коэффициента (1+M).
- 2. Расстояние между осяти опирания, данное на сжеме в числителе, опносится к пролетат 6 и 9 м, в знаменателе-к пролетат 12,15 и 18 м
- 3. На листе в числителе даны усилия при тротуараж шириной Юм, в знаменателе -15 м.
- 4. Значения динамического каэффициента см. л. 16.
- 5 Усилия Ng и MB для пролетов 12,15 и 18 м. см. л.л. 17.18

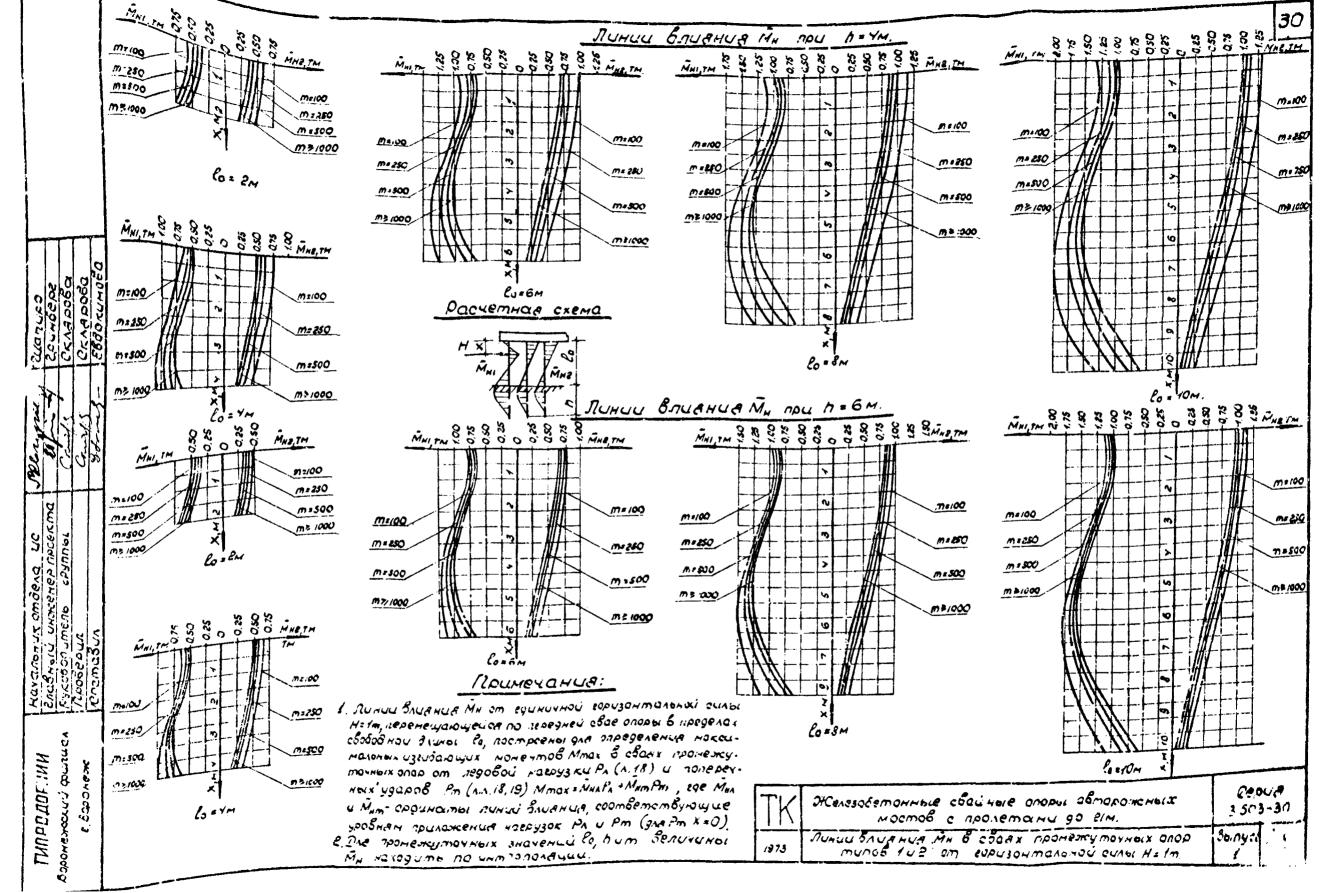

TK	железобетонные свайные опоры автодорожных мостов с пролетами до 21 m	Cepus 3.503-30
1973	Данные для расчета проможуточных опор под плитные пролетные строения	Bunyex Sucm

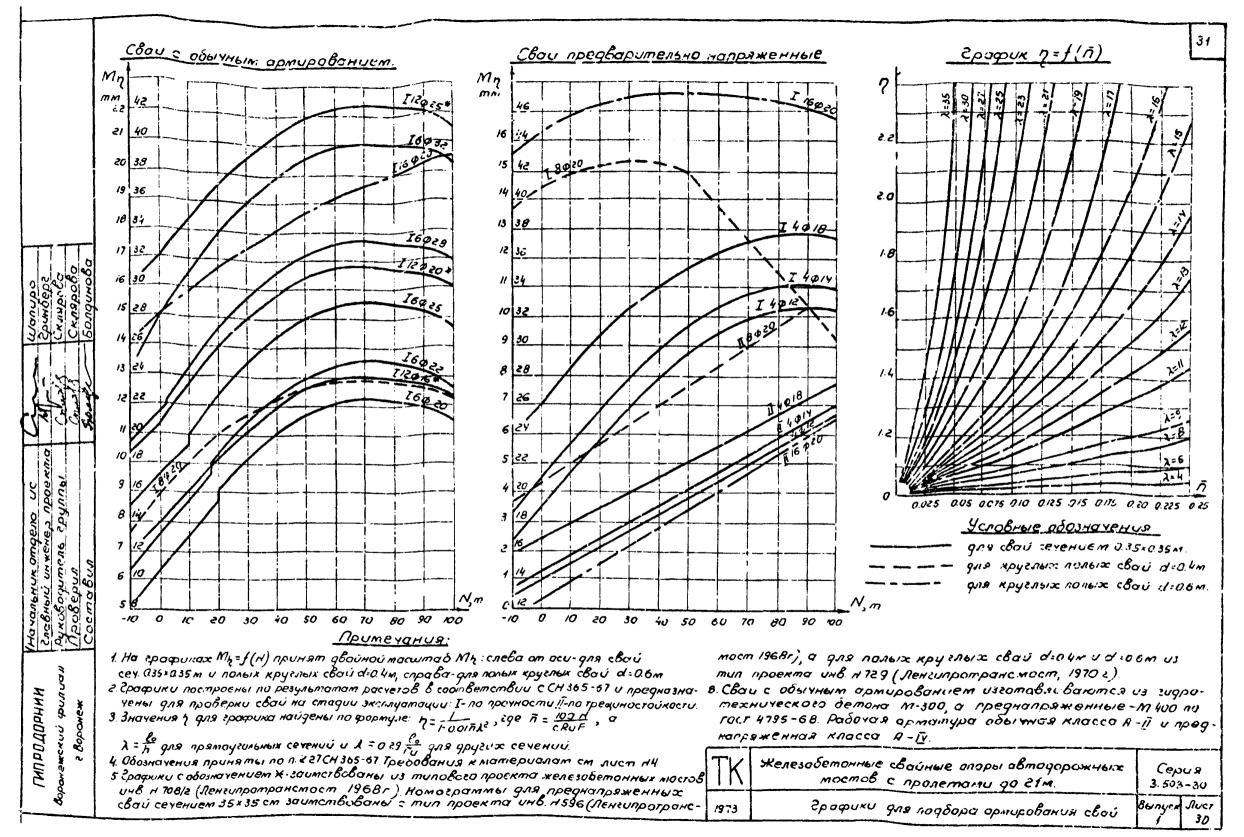


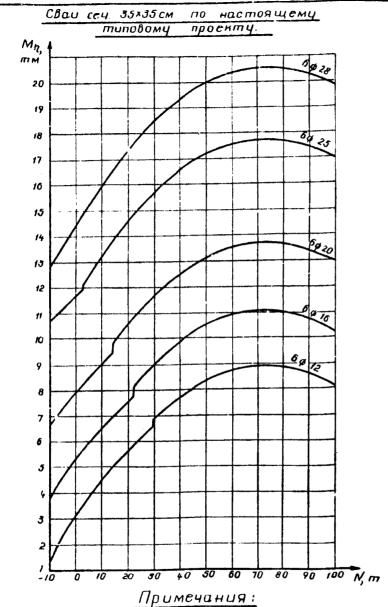


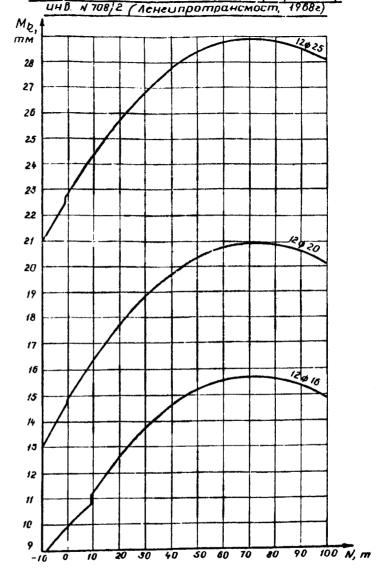








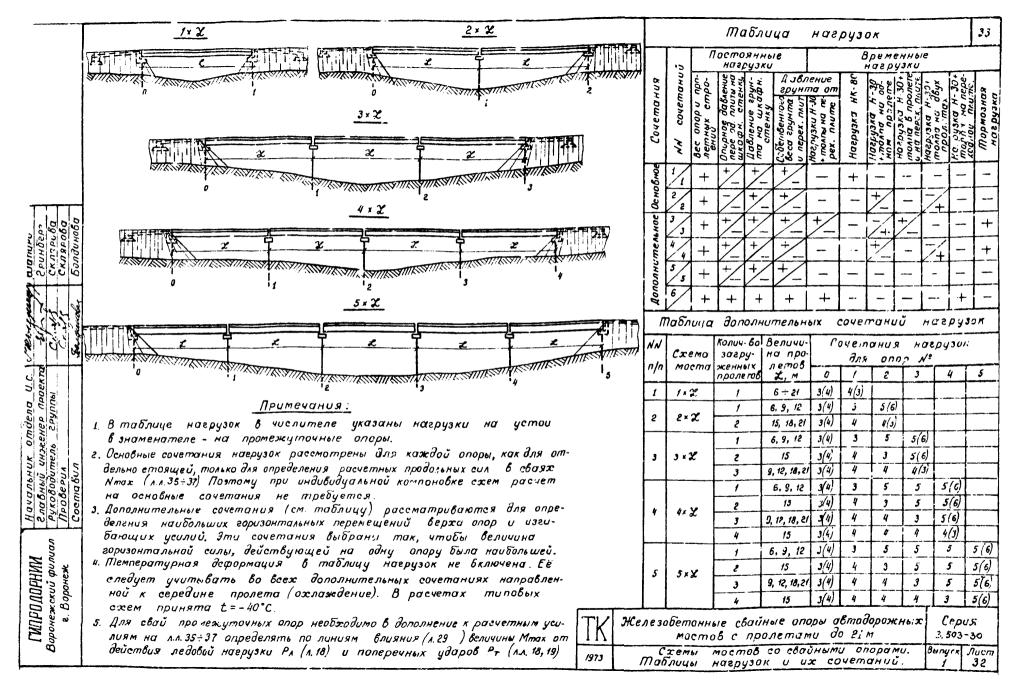




1 Грифики постреены в слитветствии с СН 365-67 по регультатам расчетов по прочности свый сечением 35×35 см из гидротехнического ветони м-300 с обычным армированием стержнями класса А-Ш.

Воронеэкский филиал г Воронеж

гипрадар.::ии


в. Конструкции свай с арматурой класса А-П даны: с изестью рабочими стержнями в вып3 на лл. 35,36, а с двенадца тью рабочими стержнями аналогичны конструкциям свай по типовому проскту инв. и 108/1 (Лен-

Сваи сец 35 х35см по типовому проскту

гипротрансмост) с арматурой класса A-II того эсе диаметров 3. Работать совместно с л. 30

TK	Железобетонные свайные опоры автодорожных мостов с прилетами до 21м	Crp	- 8
1975	Графики для подбора армирования свай	1, 1,1,10	

	8E/	1	Ü	30	q
	AU UC	инженую проекта	2Pynnei		
-	k omdena			,	
	KJAGAGHUK	2106HBIU	PykoBodumeno	Nockepun	9
			6		

FIXTPOACUPARM

		7,000,000									
.,,	Высота	2 4 L.,						···			
NN cocem	насыли		Onopa N								
	HH, M	Ho, M	0	1	2	3	4	5			
	2		1	1		_	_	_			
1×6 1×3	3	-	1	1	_	_					
7.9	4		1	1		_		_			
A . C	2	2 - € 6	1	1	1			_			
2×6	3	3 ÷ 7	1	1	1	-	_				
2 * 9	4	4 ÷ 8	1	1	1			_			
	2	2 + 6	1	1	1	1		_			
3×6	3	3 ÷ 7	1	1		_ /		_			
J- J	4	4 ÷ 8	1	1	1	1		-			
	2	2 ÷ 6	1	1	1	1	1	-			
4×6	3	3÷ 7	1	1	1	1	1	-			
4+9	4	4 ÷ 8	1/2	1	1	1	1/2	_			
c. a	2	2 ÷ 6	1	1	1	1	1	1			
5×6	3	3 ÷ 7	1	1	1	1	1	1			
	4	4+8	1/2	1	1	1	1	1/2			

Порядок привязки типовых свайных опор

- 1. Определение по таблицам на л.л. 33 и 34 типов свайных опор.
- 2. Определение по таблицам на л.л. 35 ÷ 37 расчетных усилий в сваях; продольных сил Nmax и Nmin

изгибающих моментов Мтах, действующих в плоскости вдоль моста

Определение по линиям влияния на л. 29 расчетных изгибающих моментов в сваях, действующих в плоскости поперек моста!

- з. Подбор армирования свай по графикам Мр = f(N) на л.п. 30 и э
- 4. Назначение конструкции опер по табличным данным на л. 2 вы пуска 2 в соответствии с габаритом и типом пролетных строений.
- 5. Определение длины свай в зависимости от инженерно- веоливических условий строительства и действующих продольных
 усилий N_{max} согласно приложению 21 СН 200-62 или п.-5. 3
 СН и Π $\bar{4}$ 5 . 5-67*.

	Bucoma			Мип	cbair	INX O	πορ			
NN Cæbm	1	промежуточ	Onopa N							
CACOM	HOICHINU HH, M	ных опор Но, м	0	1			4	5		
	2	770, 74		1	 	Вайных опор Опора N 2 3 4 5				
	3		1	 	 	 	-	_		
1= 12	4		1	1	 	 		_		
, , , ,	5		2	2	 	 	-	_		
	6		2	2	 					
	2 2+6 1 1 1 1 3 3÷7 1 1 1	,	-		-					
			1	,	 	-		=		
2 × 12					 	_		_		
	5	5 ÷ 9	2	2	 	-	_	_		
	6	6 ÷ 10	2	2		=	-	-		
	2	2 ÷ 6	1	1		1		-		
	3	3 ÷ 7	1	,	1	1	-	-		
3 × 12	4	4 ÷ 8	1	1	1	1				
	5	5+9	2	2	2	2		_		
	6	6 ÷ 10	2	2	2	2	-	_		
	2	2 ÷ 6	1	1	1	1	1	-		
	3	3 ÷ ?	1	1	1	1	1			
4× 12	4	4 ÷ 8	2	1	1	1	2	-		
ļ	5	5 ÷ 9	2	2	2	2	2			
	6	6 ÷ 10	2	2	2	2	و	_		
	2	2 ÷ 6	1	1	1	1	1	1		
	3	3÷ 7	1	1	1	1	1	1		
5 × 12	4	4÷8	2	1	1	1	1	2		
	5	5÷9	2	2	2	e	2	2		
	6	6 ÷ 10	2 IME40	2	2	2	2	2		

1. Работать совместно с л. 34.

2. В числителе типы опор для скем с пролетами 6м, 6 знаменателе – 9м.

з. Допускается разница высат подходных насыпей в ;м.

Железобетонные свойные опоры автодорожных мостов с пролетами до 21м

таблицы допускиемых высот подходных

Серия 3.503-30

ицы допузкаемых высот подходных насыпей и свайных опор мостов Burner Sucr 1 33

Прслеты Злиний 15м.

	Bucama	Bercama		Tun	-60':Hb	a one	K.	
NN	nc Frognoù Haceinu	יניאנים אוספר						
Cucchi	HH, M.	70440U СЛО- РЫ НЭ, М.	0	i	£	3	4	5
	2		1	1	_			
	3		1	1	_			
2 3 3 4×15 4 5 6 6 2 3 3 2×15 4 5 6 6 2 3 3 4×15 4 5 5	Y		2	2				
	5		2	2	_			
	6	-	2	1				
	ę	2+6	1	1	1			
	3	3÷7	1	1	1			
2 × 15	4	4 + 8	5	1/2	و			
	5	5 ÷ 9	2	2	ي	_		
	6	6÷10	2	2	2		_	
	2	2 + 8	1	1	1	1		
	3	9 ÷ 7	1	1	1	1		
\$ = 15	Y	<i>4÷8</i>	2	1/2	1/2	R		
	5	5÷9	2	2	2	5		
	6	6 + 10	2	2	. Y	2	y 5	
	2	2 - 6	1	1	1	1	1	
	3	3 ÷ 7	1	1	1		1	_
4815	У	4÷8	ટ	1/2	1/2		2	
	5	<i>5</i> ÷9	2	2	2	2	2	
	6	6÷10	2	2	г	2	2	
	2	₹ €	1	1	,	1		1
	3	3 ÷ 7	1					
5 × /5	Y	Y ÷ 8	2	1/2	1/2			2
	3	5÷9	2	2	2	2	2	2
	6	6 - 10	2	2	2	2	2	2

MPHENEMENTAL

1. Радотать совнестно с л.33. 2. Гопускается разница высот подходных насыпей в 1м 3. В числителе ухазан тип свайных опор для ребристых, в знаменателе - для плитных пролетных строений.

ГИПРОДОРНИИ Воронежский филиол г. Всронеж

		Bercoma		~~	c62	U461X	0500	
NN CXEM.		лронежуточ ной опоры			On	opa v	·	
C	HH, M.	Ho, M	2	1	2	3	,	5
	ē		_	_			_	_
1 x 18	3		2	2			_	_
1 x 21	¥		2	2			_	-
•	5		e	2				_
	б		٤	2				
	2			-				
2 × /8	3	3+7	2	2	e	_	_	_
2 × 2/	٧	4+3	2	e	٤		-	-
	5	5 ÷ 9	2	2	2	-	_	-
	€	6 † 10	2	2	2			
	2		-			-		
	3	3÷7	2	2	2	٤	_	_
3 × /8 3 × 8/	Y	Y ÷ 8	e	€	٤	2	_	
U ~ 67	5	5÷9	2	2	2	e		-
	6	6 ÷ 10	2	2	و	ę	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	_
	ę	_			<u> </u>		_	_
	3	3+7	e	2	2	2	2	
4 × /8 4 × 2/	Y	y + 8	2	2	2	é	8	
,	5	5÷9	2	2	2	2	2	
	6	6+10	2	2	2	2	5	_
	2							
5×/8 5×2/	3	8:7	£ _	2	٤	\$	2	3
	У	4 ÷ 8	2	2	2	2	2	2
	5	6 بع	2	2	2	.	2	2
	6	6 ÷ 10	2	ş	2	2	2	г.

TK	Железоветонные свайчые апары автодорожных мостов с пропетани 90 г/м.	3, 303 30
1973	Таблицы допускаемых бысот подходных насыпей и свайных опор ногтов.	Boing on Nuam 1 34

	į.									
		NN	Высо та годходной	Высота промежут.	y	cmou		Пром	ежеуто опоры	Y HBIE
		СЖЕМ	насыпи Нн м	anap Ho, m	N max	N min T	M max	N max T	Nmin. ▼	M max. TM
			2	2 ÷ 6			5.0 5.3			
		1×6	3	3 ÷ 7	28 35	7.5	6.6		_	
0	הנסט		4	4 ÷ 8			8.1	-		_
2 ринберг Склярова Помазкова	roanegary ac	, <u>, , , , , , , , , , , , , , , , , , </u>	2	2 ÷ 6			5.0			2.61
300	J-6 M	2×6 2×9	3	3÷ 7	25	7.5	6.6	34.3 45.0	9.1/14.2	3 29
1/2/2		2 * 9	4	4 ÷ 8		,	8.1			3.78
			2	2 ÷ 6			4.9 5.6			2.91
ğ	1	3 = 9	3	3 ÷ 7	28/35	7.5 10.4	6.2/7.1	34.3/ 45.0	9.1	3.32
ep na·mà		J - J	4	4 ÷ 8	·		7.8			3.66
ं व			2	2 ÷ 6	28/	7.5/	4.6		9.1/	2.85
SI. I.SI ~!		4 = 6	3	3 ÷ 7	35	10.4	6.9	34.3	/14.2	3, 37
Pykobodu Pykobodu Proberun	Vooruses	•	4	4 ÷ 8	28	7.5	7.5		9.1	3.68
200	Š		2	2 ÷ 6	28/	7.5	4.5 5.4		9.1/	2 96
W N		5×6 5×9	3	3 ÷ ?	35	710.4	6.0	34.3 45.0	14.2	3 40
«ИЛИН-ПИМ жский Филиал Воронеж		<i></i>	4	4 ÷ 8	28	7.5	6.9		9.1/4.6	3.72
Bop KC	1		L		DOUME	иания				· · · · · ·

			_			
ſ	Работать	совместно с	c	An	33, 34	
-	A . C	J			,	

^{2.} В таблице для пролетов 12м в чэслителе — усилия в сваях опор под ребристые, а в знаменателе под плитные пролетные строения

NN	Выгота поджоднай	Высота промежут.	4	стси		Проме	экуто опары	44616
хем	н асы пи Нн, м	onop Ho, m	N max T	Nmin T	N max TM	N max	N min T	M max TM
	ے	2 ÷ 6	52.5 42.5	10	6.3 6.0	-		-
	3	3 ÷ 7		14.2	8.6 7.5	_	-	_
× 12	4	4 ÷ 8			9.9 8.4		_	
	5	5 ÷ 9	26.3	5 7.1	6.8		_	-
	6	6 ÷ 10	21.3		9.7	_		-
	2	2 ÷ 6		10	6.3			2.64
	3	3 ÷ 7	525 425	14.2	8.6 7.5	58.050.0 29.0	6.1	3.07
2 × 12	4	4 ÷ 8			9.9			3.79 3.53
	5	5 ÷ 9	26.2		6.8			1.3
	6	6 ÷ 10	~ 21.3		9.7	25.0	13.5	1.42
	2	2 ÷ 6		10	5.8			4. 32
	3	3 ÷ 7	52.5	25/142	7.4	58.0 50.0	12.2	5.63
× 12	4	4 ÷ 8			10.7			5.84
	5	5 ÷ 9	26.2/ 21.3	5/21	7.3	580	6.1	2.28
	6	6 ÷ 10			10.5	25.0	13.5	2.58
	2	2 ÷ 6	52.5	10/	6.8 6.3			5.03
	3	3 ÷ 7	42.5	14.2	8.9	58.0	12.2	5.74
12 12	4	4 ÷ 8			9.5			6. 39 5. 78
	5	5÷ 9	26 2/3	5 21	8.2 8.2	29.0	6.1	2.31
	6	6÷ 10			11.9	25.0	13.5	5 63
	2	5 ÷ 6	52.5	10	69			5.05
5 × 12	3	3÷ 7	42.3	14.2	- 0 U	50.0	12.2	
9 ^ IC	4	9÷8 5÷9			11.8 5.0			643 5.82 2.32
	5	5 ÷ 10	26.221.3	5 7.1	12.0	29.0	6.1	/ 1 11
	6	6 - 10			12.0	25.0	13.5	2.65

1973 Паблицы расчетных усилий в свая: опор типа 1 и 2

Beinger Augm

NN	Высота подходной	Высота промежутся		Yemeu	,	MCOME	encymo On opbi	
СХВМ	Hachinu	איסע בחסףטו	Nmax	Nain	Mmax	Nmax	Mmin	Maga
	HN, M	Ho, M	7	7	TA;	7	7	74
	2	2+6	58.0/	11.2	9.791	_	-	
	3	3÷.7	45.4	15.6	123/11.4	_	-	_
1×15	4	4÷8			2069	-	_	_
	5	5÷9	290/	5.6/28	P7 8.1	_	1	-
	6	6 ÷ 10			12.107		_	-
	2	2:-6	58C/	11.2	31	668	13.7	6.14
	3	3÷6	45,4	15.6		57.9	26.2	6.64
2×15	4	4÷8			706.9	20.9		3.48
	5	5÷9	290	5.6	87	33.4	6.9/13.1	2.77
	6	6 ÷ 10			12.1	20.9		3.09
	2	2+6	58.0	H.e -	10.7	66.8	13.7	6.3/5.7
	3	3 ÷ 6	45.4	15.6	18.3	57.9	26.2	6.91
3×15	4	4 ÷ 8			6.9	28.9		4.39
	5	5 ÷ 9	29.0	5.6/8	9.4 8.8	33.4	69/131	294
	6	G ÷ 10	l		13.1	28.9	,.,	3.23
	2	2 ÷ 6	56.0	112_	10.0	66.8	137	3.45 3.88
	3	3 ÷ 5	45.4	15.6	12.11.3	579	26.2	7.07
4 x 15	4	4 ÷ 8			6.8	66.8		4.65
	5	5÷9	290	56 78	92 8.6	33.4	6.9	2.99
	6	6 ÷ 10			13.5	28.9		3.30
	2	2÷6	58.0	11.2	10.0 9.7	66.8	13.7	6.48 5.9
	3	3÷5	45.4	15.6	11.1	57.9	26.2	-
5×15	4	4÷8			6.0	66.8		4.74 2.22 3.00
	5	5÷9	29.0 22.7	5.6 7.8	9.0 8.3	334	6.9	
	6	6 ÷ 10			130	~ 28.S		3.32 3.72

1. Работать собместно с лл 33+35.
2. В числителе даны усилия в сваях опор гид ребристые, а в знаменателе под плитные пролетные строения.

ГИПРЦЦПАНИИ Вфонежский филиал г. Варснеж

~~~~·	Bbicamo	высота промежутом	1	Yemos			onophi	YHDIE
CXEM	Hastinu Ha, M	ной апоры Но, м		Naia T	M max TM	N Max T	1 min	M Max
	2		_	-	_	-	-	_
	3	3 ÷ フ						_
1 × 18	4	4÷8	36.0	60 20				_
	5	5+9	/317			-		_
	6	6 ÷ 10						_
	2	_	_		_	-		
	3	3 + 7			4.6 4.1			2.05
2×18	4	4 ÷ 8	36.0 31.7	60/9.0	6755	42.0	10.4	230
	5	5 ÷ 9			93 86	34.6	7127	2.52
	6	6 ÷ 10			13.1			2.74
	2	_	_		_			_
	3	3 ÷ 7			5.5			2.33
3 × 18	4	4 ÷ 8	360 31.7	31.7 6.0	796.3	43.0	104	23
	5	5 ÷ 9			10.5	81:6	17.7	3.09 2.7
	6	6 ÷ 10			16.0 14.3		<u> </u>	3.44
	2	_		_	-			_
	3	3 ÷ 7			4.9			2 35
4×18	4	4 ÷ 8	36.0	6.0	71/70	43.0	10.4	2.76
	5	5 ÷ 9	31.7	90		346	-17.7	315/
	6	6 ÷ !0			15.0 14.2			3.51
	2	÷	_		-			_
	3	3÷7			45/41			2.00
5×18	4	4÷8	36.0	6.0	68/23	436	16.4	2.77
	5	5 ÷ 9	31.7	90	99/93	34.6	17.7	3.17
	6	6 ÷ 10			140	i		3.54

ТК железобетокные свайные апары овтадорожных мастов с пранетами до 21 м

1973 Маблицы расчетных усилий в сваях опар типа 1и2

muna 1u2 Boing x Nucm

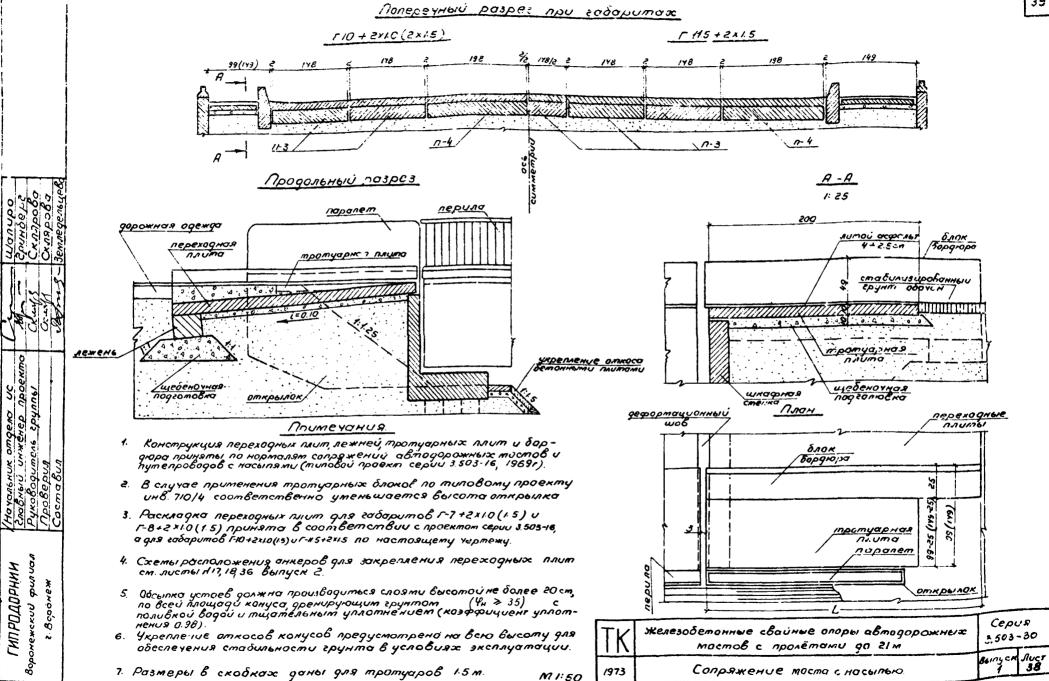
Cepua

3 503 -30

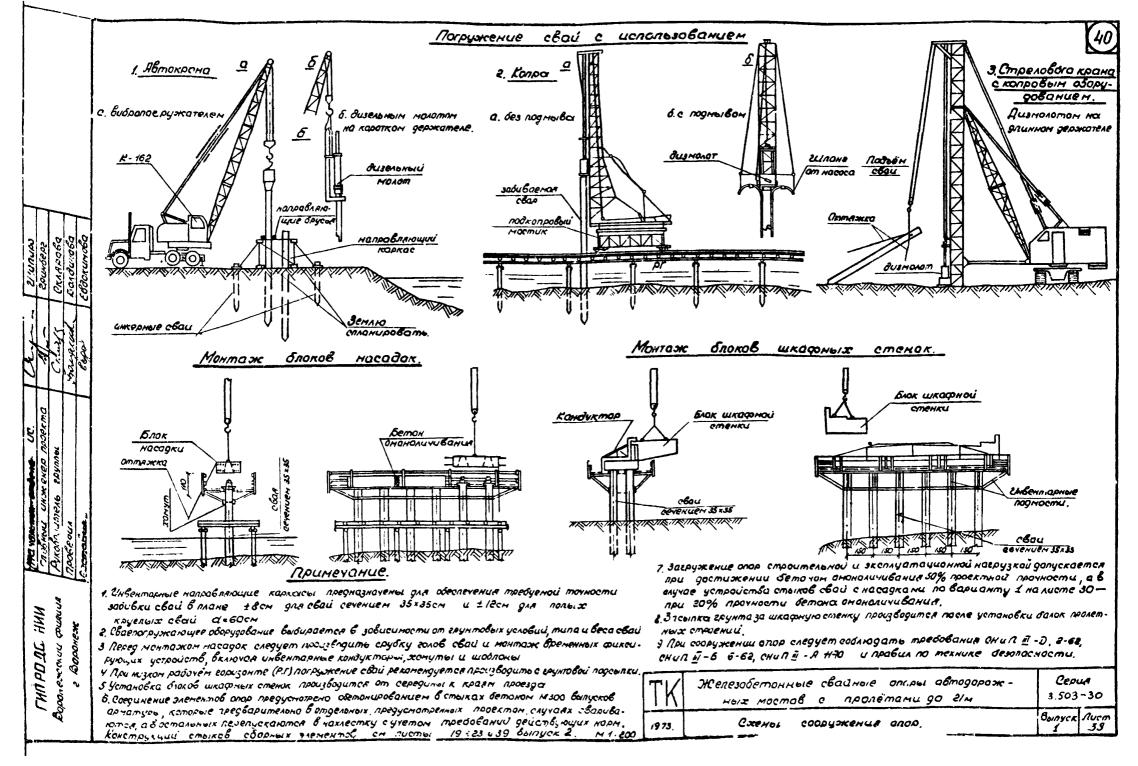
אין בעומחטף	Гринбера	CHARDORI	Помазкова	estruct - Bennegeraueda
Beance	インフル	Crusts	Jain	- June -
Начильник отдела ИС	Гливный инженер проскти	Pykuðagumenb apynnar	//podepun	Составил
Carange Co. 11414	מוניהחללת המעם	persence un gundan	e BUDOHEM	

~~	มื <i>ысот</i> а กอ <b>วะ</b> อาหอบ	Высота промежц		Ycm o c	,	Про	межцп с опиј	704- 76)	
GEEM	насыпи Нн, м	точных опор Но, м	√max T	Vmin T	Mmax TM	N/max T	Vmin T	M max T M	
	2		1						
	3	ქ÷7		8.0	4.2	-			
1x 21	4	4÷8	39.0		6.0		-		
]	5	549			9.5		_		
	0	8:40			13.7	_		-	
	2			_	-				
	3	<b>3</b> +7	<b>39</b> 0		4.2	51.0	12.5	2.05	
2×21	4	4÷8		8.0	6.0	51.0	12.5	2,30	
1	5	5;÷9		8.0	9.5	510	12.5	2.52	
	5	0÷10			/5./	51.D	12.5	2.74	
	2	2÷6	-	_	-	1			
•	3	<b>5</b> +7	39.0		4.6	51.0	12.5	2,32	
3×21	4	4+8		39/) 0.0	8.0	0.6	510	12.5	2.73
1	5	5÷9			10.8	51.0	12.5	3.09	
	6	6 ÷10			15.6	51.0	12.5	3.44	
	2		-		-	-		-	
}	3	3÷7			4.4	51.0	12.5	2 35	
4×21	+	4÷8	39.O		6.4	51.0	12.5	2.77	
	5	5÷9	3,0	8.0	10.1	51.0	12.5	3.17	
	δ	8÷10			/4.5	51.0	12.5	3.53	
	2	_		_	-	_	_		
	3	3+7			4.4	31.0	12.5	2.35	
5×21	4	4÷8	<b>3</b> 0 €		6.4	51.0	12.5	2.78	
	5	5÷9	39.0	8.0	10.1	<b>5</b> 1. 0	12.5	3./8	
	δ	6:10			14.6	51.U	12.5	3.56	

Примечиния
1. Работать совместно с лл. 35+35
2 В числителе цины усилия в сваях опор под ребристые, а в знименителе при плитные преденивые


Длина	Уст	eu	Пром <b>с</b> ж оп	утсчны <b>с</b> оры
пролёта. М	A max	N min	N max	Nmin
6	- 35.4	- 10,0	40.8	- 6.0
9	41.5	13.9	53.6	10.0
15	506 48 6	10	58.3 59.3	8.0
15	55.5 53.9	12.3	67.0 <b>6</b> 9.0	100
18	69.0	14.4 28.6	82.5	18.5
21	79.0	18.2	95.8	15.0

ЭКслезобетонные свайные опоры автодороженых мостов с пролетами до 21м


Серия 3.573-30

1973 Таблицы рисчетных усилий в сваях опор типив 203

Выпуск Ацет 1 __37



ГИПРОДОРНИИ

