Министерство здравоохранения СССР

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по измерению концентраций вредных веществ в воздухе рабочей зоны

(переработанные и дополненные технические условия, ВЫПУСКИ № 6-7)

Москва, 1982 г.

Сборник методических указаний составлен на основе ранее опубликованных выпусков технических условий № 6-7. Включеннче в сборник методики переработаны в соответствии с требованиями ГОСТ" а 12.1.005-76. Некоторые устаревшие методики ваменены ковыми.

Настоящие Методические указания распространяются на опрэделение содержания вредных веществ в воздухе промышленных помещений при санитарном контроле и имеют ту же примическую силу, что и Технические условия.

Методические указания подготовлени сотрудниками даборатории санитарно-химических методов исследования Института гигиени труда и профессиональных заболеваний АМН СССР.

Редакционная коллетия: М.Д.Бабина, С.И.Муравьева, Т.В.Соловьева, В.Г.Овечкия

VTHEFALLAD

METOJIA IBCKAE YKABAHAH HO NEMEPEHAD KOHLEHTPAULA XIOPHOA PTYTN /CYJFTY/ B BOBJIYXE PAEOJEN BOHLEHTOJIOM ATOMIO-AECOPEUNOHHOTO CHEKTPAJIDHOTO AHAJINBA

HeCI2

M=271,52

І. Характористики метода

Определение основано на погложении монохроматического излучения парами ртуги при длине волим 254,2 нм.

Отбор проб проводится с концентрированием в раств р перман-, мата жалии в серной кислоте.

Предел измерения в внализируемом объеме проби — 0,005 мкг. Предел измерения в воздухе — 0,003 мг/м³ /при отборе 3 л/. Диапизон измеренемих концентриций сулемы в воздухе — 0,003

Определению мачает ртуть.

Граница сум-чрной погрешности измерения не превышает $\pm 25\%$. Предельно-цопустимая концентрация судемы в воздухе — 0, INT/ M^8 .

Реактивы и растворы

Ртуть двухклористан, ГССТ 4519-48, ч.л.а. Стандартный растыр суломы № 1 с содегжанием суломы 100 мкг/ма Готевят путем растворения 0,01 г сулемы в азотной кнолоте 1:4 в верной колбе еммостью 100 мл. Раствор устойчив в течение 5 месяцев.

Стандартный раствор % 2, с содержанием сулеми 0, юкг/мл. Готовят соответствующих разведением раствора ж I азотной кислотой (I:4).

Кислота авотная, ГОСТ 4461-67, х.ч., разбавленная I:4. Олово двуххлористое, ГОСТ 36-68, ч.д.а., 10% раст эр. Калий марганцевокислый, ГОСТ 20490-75, ч.д.а., 0, I И. раствор.

Кислота серная, ГОСТ 4204-66, 2 м раствор.

Поглотительный раствор: сменивают 50 мл раствора марганцевокислого каляя и 50 мл сервой кислоти.

3. Приборы и посуда.

Аспирационное устройсты.

Спентрофотоветр двой марки с приставкой, состоящей из источных изтанки предъ-33, головку плакт и ламии ВСБ-2 на ртуть.

Колон мерные, ГОСТ 1770-74, емкостыю IOО мл. Пипетки, ГОСТ 20292-74, емкостыю I,2,5, IO мл. Поглотител не сосуды с пористой пластынкой.

4. Проведение изысрения.

Условия стбора проб воздуха.

довдух аспяреруют со скоростью Іх/мян через два последовательно соединенных поглотительных сосуда с пористой пластинкой, заполненных Юмя поглотительного раствора. Для определения I/2 ПДК сулемы достаточно отобрать 3 к послука в течение 3 минут.

Условы анализа

5 ма просы из каждого поглотителя отдельно переносится в атомизатор, туда же приливают I мл 10% двуххлористого олона (для восстановления ртути). Через атомизатор прокачивается воздух со скоростью I л/м, который захвативает пари ртути.
При попадании паров рт. и в кварцевую кювету, находящуюся на
оптической оси спектрофотометра, происходит атомное поглощение монохроматического света при дляне волны 2011, 2 нм.

Содержание ртути в анализируеном объеке определяют по преднарительно построенному градуировочному градику. Для востроения градика готовят вкалу стандартов, сорласно табише 29.

Таблица 29

Номер	Стандартный	Поглотительный	
отандарта.	pacthop, comep- xame 0, 1 kg/ma,	раствор, мл	сулемы мкг.
I	0	5	0
2	0,05	4,95	0,005
3	1,0	4.9	10,0
4	0,3	4,7	0,03
5	0,5	4,5	0,05
6	0.7	4,3	0.07
7	1.0	4,0	1,0
8	1,2	3,8	0,12
9	I,4	3,6	0,14
10	I,6	3,4	0,16

Просирия вкалы осрабативают чвалогачно просым.

Концентрацию сумемы в мг/м 8 всэдуха (X) вычисляют по формуме:

У - колячес зо сумемы, нейденное в анализициемой пробе мкг;

 \mathcal{V}_i - общий объем раствора пробы, ил;

V - объем пробы, взятый для анализа, мл;

 \mathcal{V}_{2O}^{-} объем воздуха в л. отобранный для аналеза и приведенный к ставлартным условиям (см. приложение I).

Приложение Т.

Формула приводении объема воздуха к стандартным условиям

Согласно требованиям ГОСТ[®]а 12.1.005-76 объем отобранного воздуха приводят и стандартным условиям — температуре 20⁰С и барометрическому давлению IOI,33 кПа /760 мм рт.ст./ по формула:

$$V_{20} = \frac{V_{\pm} \cdot /273 + 20/ \cdot P}{/273 + t / \cdot 101.33}$$
, rxe

Ve - объям воздуха, отобран... В для внадаза, да

Р - барометрическое давление, жіа:

t - температура в. жука в месте отбора пробы. °C.

Для упроценяя расчетов пользуются коэффиционтами К /приложеило 2/, вичноленными для температур в пределях от минуе 30 до плюс 30°C и давлений от 97,33 до 101,86 мПа /730-764 мм рт.от./.

Придоление 2 Козфічщенты К для пункедения объема воздука к стандартным условиям.

45	/armenue P. mla/ma.or.cr.								.		
	97,33/730	97,86/734	98,4/738	98,93/742	99,46/746	100/750	100,52,754	101,06/758	101,73/760	ICI,86/76	<u>:4</u> _
-30	1.1582	1.1646	1,1709	1,1772	1,1836	1,1899	1,1963	1,2026	1,2058	1,2122	
-26	1,1393	I.I456	1,1519	1.1581	1,1644	1,1705	1,1768	i.iæi	1,1862	1,1925	
-22	1.1212	1,1274	1,1336	I.1396	I.1458	1,1519	1,1581	1,1643	1,1673	I,1735	
-18	1.1036	I.1097	1.1158	1.1218	1,1278	1,1338	I,I399	1,1400	I,I490	1,1551	
-14	I.0866	1,0926	1.0986	1,1045	1,1105	I,II64	I,1224	I,I284	1,1313	I [373	
~IO	1070.1	I,0760	1.0819	1.0877	1,0936	1,0994	I,IG53	1,1112	1,1141	1,1200	
-6	I,0540	I ,0599	I.0657	1,0714	1.0772	1,0829	1,0837	I,0 94 5	I,0974	1,1032	
-2	1,0385	I .0442	I 0499	1,0556	1,0613	1,0669	I,0725	I,0784	1,0812	I,0869	
0	I,0309	I,0366	I.0423	I,0477	1.0535	1,0591	1,0648	1,0705	I,0733	1,0789	
+2	I 0234	1,0291	I .0347	I .0402	I.0459	1,0514	I,057I	1,0627	I,0655	1,0712	
+6	1.0087	1,0143	I,0198	I.0253	1,0309	1.0363	1,0419	I,0475	1,0502	I,0557	
+IO	0.9944	0,9999	I,0054	I OIOB	1.01/2	1.0216	1,0272	1,0326	I,0353	I,0407	
+14	0.9806	0,9860	0.9914	0.9967	1,0027	I.0074	1,0128	1,0183	I,0209	1,0263	
+18	0,9671	0,9725	0,9778	0.9870	0.9834	0,9936	0,9989	I,0043	I,0069	1,0122	
+20	0.9605	0.9658	0.9711	0.9763	0.9816	0,9868	0, 99 2I	0,9974	1,0000	1,0053	
+22	0,9539	0,9592	0,9645	0.9596	0,9749	0,9800	C.9853	ତ୍,୍ରୀତ	0 ,9 932	0,9985	
+24		0,9527	0.9579	0.9631	0.9683	0,9735	0,9787	0,9839	0, 9 865	0,9917	
+26	0,9412	0.9464	0.9516	0,9566	0.9618	0,9669	0,9721	0,9773	C ,9 799	0,9851	
+28	0.9349	0.940I	0.9453	0.9503	0.3555	0.9505	0,9057	0,9708	0,9734	0,9785	
+30	0,9283	0.939	0.9391	0.9140	0.9732	0,9542	0,9591	0,9515	0,9670	0,973	
+34	0.9167	0.9218	0.9268	0.9318	0.9368	0,9418	0.9468	0,9519	0,9544	0,9595	10
+38	0,9049	0,9099	0,9149	0,9198	0,9248	0.9297	C 9347	0,9337	0, 9 42I	0,9471	U

C sersaored

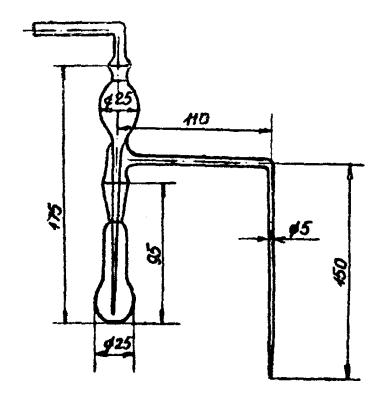


Рис. I Прибор для созмения клорорганических ядохимикатов

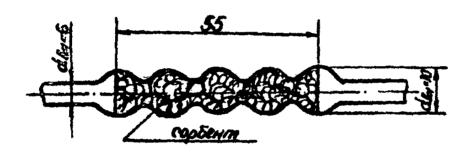


Рис. 2 Гофрировенная стеханися трубка

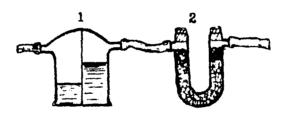


Рис. 3 Очистительная система. '-склянка Тищенко, 2- поглотитель с натронной известью.

Приложение 4.

Список институтов, редставивших новые методики в данный сборник

Наименование методики	! Наяменование института		
I	2		
Фотометряческое определение акралонят— якм≰	Горьковский институт ги- гиены труда и профзаболе- ваний		
Газохроматографическое определение акряловой и метакраловой кислот	n _ n		
Фотометрическое определение вллалового втемпра	₩· <u></u> 17		
Фотометрическое определение хлориотого метила и хлористого этила	n _ n		
Фотометрическое определение 3,4-дихлор- пропиона жляда	н _ н		
Фотометрическое определеняе толуилен- диамина	и _ и		
Спектрофотометрическое определение карбазола	Свердловский институт ги- гиены труда и профзаболе- ваний		
Фотометрическое определение кротоно- вого альдегада	Штаб военизированных гор- носпасательных частей Урала /г. Свердловск/		
Фотометрическое спределение I- и 2- метилнафтальнов	Донецкий институт гигиены труда и профзаболеваний		
Фотометрическое определение аценаф- тена	и _ н		
фотометрическое определение коллидина	n _ N		
Газохроматографическое определение метилнафталина и нафталина	Ангарский институт гигиены труда и профзаболеваний		
Фотометрическое определение хлорной ртути/сэлемы/	н _ н		

2 ١. Определение хлорной ртута метоном Ангарскей институт гигионы атомно-абсорбционного аналаза труда и профзаболеваней Газохроматографическое определение Вакорусскай санатарно-гагаеанижатфви приножей внотетут Определение ртутьорганических яво-Киевский вистетут гегеены MAKETOB труда в профессолования t: __ C -фире ваноходоцио воловичествите STRECCULAYO DHUMTHHTOKC Уроматографическое определение **ЭТЕЛИОРКУ DXЛОРИВ** Фотометрическое определение этик-MOREHTDARCKEE ENCIETYT PETES-Medkantara ни труда и профисосеваний Фотомотраческое определения им-Новосебирокий саметариый AHATEGOAX EHOTETT волометрическое определение окнов MARTERA .