МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС) INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT 31114.1— 2002 (ΜЭΚ 61331-1:1994)

СРЕДСТВА ЗАЩИТЫ ОТ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ В МЕДИЦИНСКОЙ ДИАГНОСТИКЕ

Часть 1

Определение ослабляющих свойств материалов

(IEC 61331-1:1994, MOD)

Издание официальное

Предисловие

Цели, основные принципы и порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0—92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2—2009 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт стандартизации и сертификации в машиностроении» (ВНИИНМАШ)
- 2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии (Росстандарт)
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 6 ноября 2002 г. № 22)

За принятие стандарта проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004—97	Код страны по МК (ИСО 3166) 004—97	Сокращенное наименование национального органа по стандартизации
Армения	AM	Армгосстандарт
Беларусь	BY	Госстандарт Республики Беларусь
Казахстан	KZ	Госстандарт Республики Казахстан
Кыргызстан	KG	Кыргызстандарт
Российская Федерация	RU	Госстандарт России
Украина	UA	Госстандарт Украины

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 29 ноября 2012 г. № 1326-ст межгосударственный стандарт ГОСТ 31114.1—2002 (МЭК 61331-1:1994) введен в действие в качестве национального стандарта Российской Федерации с 1 января 2015 г.
- 5 Настоящий стандарт модифицирован по отношению к международному стандарту IEC 61331-1:1994 Protective devices against diagnostic medical X-radiation Part 1: Determination of attenuation properties of materials (Средства защиты от рентгеновского излучения в медицинской диагностике. Часть 1. Определение ослабляющих свойств материалов) путем внесения дополнительных положений в 1.1, 6.1, 6.2.

Перевод с английского языка (en).

Степень соответствия — модифицированная (МОD).

Стандарт подготовлен на основе применения ГОСТ Р 51532—99 (МЭК 61331-1—94).

6 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемом информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2013

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1	Область применения и назначение	. 1
	1.1 Область применения	. 1
	1.2 Назначение	. 1
2	Нормативные ссылки	. 1
3	Определения	. 1
	3.1 Терминология для определения степени требований	. 1
	3.2 Используемые термины	. 2
4	Испытания	. 2
5	Проведение измерений	. 2
	5.1 РАДИАЦИОННЫЕ ВЕЛИЧИНЫ	. 2
	5.2 Геометрические параметры	. 3
	5.3 Проведение измерений в ШИРОКОМ ПУЧКЕ	. 4
	5.4 Проведение измерений в УЗКОМ ПУЧКЕ	. 4
	5.5 Положение ДЕТЕКТОРА ИЗЛУЧЕНИЯ	. 4
	5.6 Испытательное оборудование	. 5
	5.7 Испытываемый объект	. 5
	5.8 КАЧЕСТВО ИЗЛУЧЕНИЯ	. 5
6	Определение ОСЛАБЛЯЮЩИХ СВОЙСТВ	. 5
	6.1 СТЕПЕНЬ ОСЛАБЛЕНИЯ	. 6
	6.2 КОЭФФИЦИЕНТ НАКОПЛЕНИЯ	. 6
	6.3 ЭКВИВАЛЕНТ ПО ОСЛАБЛЕНИЮ	. 6
	6.4 СВИНЦОВЫЙ ЭКВИВАЛЕНТ	. 6
	6.5 Однородность	. 6
7	Определение соответствия	. 6
П	риложение А (обязательное) Указатель терминов	. 7
Бі	л дифастория	. 8

Введение

Настоящий стандарт является прямым применением международного стандарта IEC 61331-1:1994 «Средства защиты от рентгеновского излучения в медицинской диагностике. Часть 1. Определение ослабляющих свойств материалов», подготовленного Подкомитетом 62В «Аппараты для лучевой диагностики» Технического комитета МЭК 62 «Изделия медицинские электрические».

Для терминов, используемых в настоящем стандарте, применяют прописной шрифт.

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

СРЕДСТВА ЗАЩИТЫ ОТ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ В МЕДИЦИНСКОЙ ДИАГНОСТИКЕ Часть 1

Определение ослабляющих свойств материалов

Protective devices against diagnostic medical X-radiation. Part 1. Determination of attenuation properties of materials

Дата введения — 2015—01—01

1 Область применения и назначение

1.1 Область применения

Настоящий стандарт распространяется на листовые материалы, используемые для изготовления ЗАЩИТНЫХ ПРИСПОСОБЛЕНИЙ от РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ, КАЧЕСТВО ИЗЛУЧЕНИЯ которого определяется АНОДНЫМ НАПРЯЖЕНИЕМ до 400 кВ и ПОЛНОЙ ФИЛЬТРАЦИЕЙ до 3,5 мм Си*.

Требования настоящего стандарта являются обязательными.

Настоящий стандарт не распространяется на защитные приспособления, проверяемые на наличие поглощающих свойств до и после эксплуатации.

1.2 Назначение

Настоящий стандарт устанавливает методы определения ОСЛАБЛЯЮЩИХ СВОЙСТВ материалов. ОСЛАБЛЯЮЩИЕ СВОЙСТВА характеризуются следующими показателями: СТЕПЕНЬ ОСЛАБЛЕНИЯ, КОЭФФИЦИЕНТ НАКОПЛЕНИЯ и ЭКВИВАЛЕНТ ПО ОСЛАБЛЕНИЮ или СВИНЦОВЫЙ ЭКВИВАЛЕНТ с указанием, в случае необходимости, неоднородности.

В раздел 7 включена формулировка соответствия значений ОСЛАБЛЯЮЩИХ СВОЙСТВ требованиям настоящего стандарта.

Стандарт не распространяется на методы периодической проверки ЗАЩИТНЫХ ПРИСПОСОБЛЕНИЙ, в частности ЗАЩИТНОЙ ОДЕЖДЫ, методы определения ОСЛАБЛЕНИЯ за счет слоев в ПУЧКЕ ИЗЛУЧЕНИЯ и методы определения ОСЛАБЛЕНИЯ с целью защиты от ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ, распространяемого от стен и частей установки.

2 Нормативные ссылки

В настоящем стандарте ссылка на международный стандарт МЭК приведена в библиографии.

3 Определения

3.1 Терминология для определения степени требований

В настоящем стандарте использована следующая терминология:

«должен» — соответствие требованиям стандарта обязательно;

«рекомендуется» — соответствие требованиям стандарта рекомендовано, но необязательно;

«может» — используют для описания допустимых путей достижения соответствия требованиям стандарта;

^{*} Стандарт не распространяется на защитные материалы, не содержащие свинец, используемые для изготовления защитной одежды.

ГОСТ 31114.1-2002

«нормируемый» — используют для обозначения конкретной информации, содержащейся в СОПРОВОДИТЕЛЬНЫХ (далее — ЭКСПЛУАТАЦИОННЫХ) ДОКУМЕНТАХ, представленных ИЗГОТОВИТЕЛЕМ, или других документах, поставляемых с аппаратом и в основном касающихся его назначения, характеристик, условий эксплуатации и испытаний на соответствие.

3.2 Используемые термины

В настоящем стандарте применяют термины с соответствующими определениями по IEC 60788 [1], которые выделены прописным шрифтом (приложение A).

4 Испытания

- 4.1 ОСЛАБЛЯЮЩИЕ СВОЙСТВА листовых материалов определяют в соответствии с требованиями разделов 5 и 6.
- 4.2 СВИНЦОВЫЙ ЭКВИВАЛЕНТ определяют только для материалов, содержащих значительное количество свинца, в соответствии с требованиями 6.4.
- 4.3 Неоднородность листовых материалов, не обеспечивающих равномерного ОСЛАБЛЕНИЯ, определяют по 6.5.

5 Проведение измерений

5.1 РАДИАЦИОННЫЕ ВЕЛИЧИНЫ

Для определения ОСЛАБЛЯЮЩИХ СВОЙСТВ материалов измеряют МОЩНОСТЬ ВОЗДУШНОЙ КЕРМЫ в соответствии с таблицей 1.

		мощность воздушной кермы					
ОСЛАБЛЯЮЩЕЕ СВОЙСТВО	Буквенное обозначение	K ₁	K _o	K _e	Κ̈ _c	K _s	Пункт настоящего
					<i>K</i> ₀c	$\dot{K}_{\rm ls}$	- стандарта
СТЕПЕНЬ ОСЛАБЛЕНИЯ	F	×	×		×	×	6.1
КОЭФФИЦИЕНТ НАКОПЛЕНИЯ	В	×		×	×	×	6.2
ЭКВИВАЛЕНТ ПО ОСЛАБЛЕНИЮ	δ			×			6.3
СВИНЦОВЫЙ ЭКВИВАЛЕНТ	δ_{Pb}			×			6.4
Однородность	v			×			6.5
См. пункт		5.3.3		5.5.2	5.3.2	5.3.3	

Таблица 1 — Измерение МОЩНОСТИ ВОЗДУШНОЙ КЕРМЫ

- 5.1.1 \dot{K}_1 МОЩНОСТЬ ВОЗДУШНОЙ КЕРМЫ в ослабленном ШИРОКОМ ПУЧКЕ в соответствии с 5.3.
- $5.1.2~\dot{K}_{\rm o}$ МОЩНОСТЬ ВОЗДУШНОЙ КЕРМЫ в неослабленном ШИРОКОМ ПУЧКЕ в соответствии с 5.3 (см. 5.5.1).
- 5.1.3 $\dot{K}_{\rm e}$ МОЩНОСТЬ ВОЗДУШНОЙ КЕРМЫ В ОСЛАБЛЕННОМ УЗКОМ ПУЧКЕ в соответствии с 5.4.
- $5.1.4~\dot{K}_{\rm C}$ МОЩНОСТЬ ВОЗДУШНОЙ КЕРМЫ в центре ШИРОКОГО ПУЧКА (рисунок 1), измеренная между ИСТОЧНИКОМ ИЗЛУЧЕНИЯ и испытываемым предметом или на том же расстоянии от ИСТОЧНИКА ИЗЛУЧЕНИЯ, что и $\dot{K}_{\rm oc}$.
- $5.1.5~\dot{K}_{
 m oc}$ МОЩНОСТЬ ВОЗДУШНОЙ КЕРМЫ вне ШИРОКОГО ПУЧКА (рисунок 1), выходящая за пределы СИСТЕМЫ ФОРМИРОВАНИЯ ПУЧКА ИСТОЧНИКА ИЗЛУЧЕНИЯ и измеренная на том же расстоянии от ИСТОЧНИКА ИЗЛУЧЕНИЯ, что и $\dot{K}_{
 m c}$.

 $5.1.6~\dot{K}_{\rm S}$ — МОЩНОСТЬ ВОЗДУШНОЙ КЕРМЫ внутри проекции начального ШИРОКОГО ПУЧКА, но вне ПУЧКА ИЗЛУЧЕНИЯ, ограниченного ДИАФРАГМОЙ (рисунок 1).

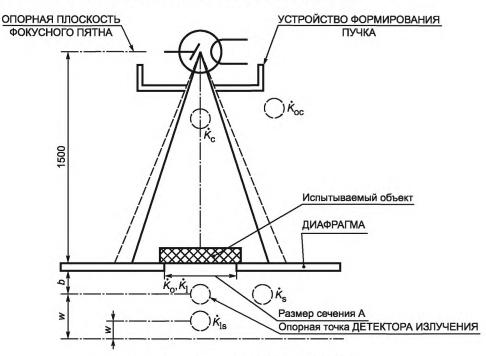


Рисунок 1 — Геометрия ШИРОКОГО ПУЧКА

5.1.7 $\dot{K}_{\rm ls}$ — МОЩНОСТЬ ВОЗДУШНОЙ КЕРМЫ $\dot{K}_{\rm l}$, в ослабленном ШИРОКОМ ПУЧКЕ, измеренная на том же расстоянии от ИСТОЧНИКА ИЗЛУЧЕНИЯ, что и $\dot{K}_{\rm s}$.

5.2 Геометрические параметры

Должны быть определены следующие геометрические параметры, указанные в таблице 2.

Таблица 2 — Определение геометрических параметров

ОСЛАБЛЯЮЩЕЕ СВОЙСТВО	Буквенное обозначе- ние	С	а	ь	Α	w	Пункт настоящего стандарта
СТЕПЕНЬ ОСЛАБЛЕНИЯ	F			×		×	6.1
КОЭФФИЦИЕНТ НАКОПЛЕНИЯ	В	×	×		×	×	6.2
ЭКВИВАЛЕНТ ПО ОСЛАБЛЕНИЮ	δ					×	6.3
СВИНЦОВЫЙ ЭКВИВАЛЕНТ	δ_{Pb}					×	6.4
Однородность	V						6.5
См. пункт		5.2.1	5.2.2	5.2.3	5.2.4	5.2.5	5.4.3

5.2.1 c — коэффициент коррекции, относящийся к расстояниям от точек измерения до ИСТОЧНИКА ИЗЛУЧЕНИЯ (рисунок 2), определяют по формуле

$$c = \left(\frac{1500 + a}{1550}\right)^2.$$

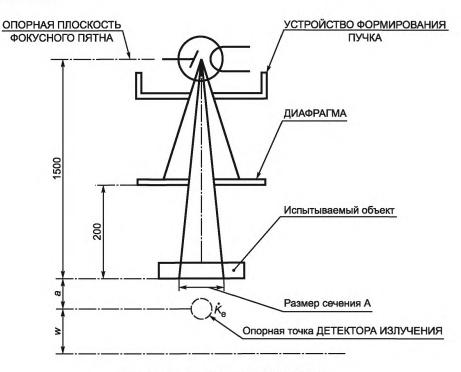


Рисунок 2 — Геометрия УЗКОГО ПУЧКА

5.2.2 *а* — расстояние от наиболее удаленной поверхности испытываемого предмета до опорной точки ДЕТЕКТОРА ИЗЛУЧЕНИЯ, размещенного в центре УЗКОГО ПУЧКА (рисунок 2).

Расстояние должно быть не менее 10-кратного значения квадратного корня сечения А.

- 5.2.3 *b* расстояние от наиболее удаленной поверхности испытываемого объекта до опорной точки ДЕТЕКТОРА ИЗЛУЧЕНИЯ, размещенного в центре ШИРОКОГО ПУЧКА (рисунок 1).
- 5.2.4 *А* поперечное сечение УЗКОГО ПУЧКА на наиболее удаленной поверхности испытываемого объекта (рисунок 2).
- 5.2.5 w = paccтояние от опорной точки ДЕТЕКТОРА ИЗЛУЧЕНИЯ до соседнего объекта или стены, находящейся со стороны, наиболее удаленной от ИСТОЧНИКА ИЗЛУЧЕНИЯ (рисунки 1 и 2).

5.3 Проведение измерений в ШИРОКОМ ПУЧКЕ

- 5.3.1 Измерения в ШИРОКОМ ПУЧКЕ проводят по схеме, изображенной на рисунке 1.
- 5.3.2 В процессе измерений МОЩНОСТЬ ВОЗДУШНОЙ КЕРМЫ $\dot{K}_{\rm C}$ не должна превышать 5 % МОЩНОСТИ ВОЗДУШНОЙ КЕРМЫ $\dot{K}_{\rm OC}$

$$\dot{K}_{\rm oc} \leq 0.05 \cdot \dot{K}_{\rm c}$$
.

5.3.3 В процессе измерений МОЩНОСТЬ ВОЗДУШНОЙ КЕРМЫ $\dot{K}_{\rm S}$ не должна превышать 1 % МОЩНОСТИ ВОЗДУШНОЙ КЕРМЫ $\dot{K}_{\rm IS}$

$$\dot{K}_{s} \leq 0.01 \cdot \dot{K}_{ls}$$
.

5.4 Проведение измерений в УЗКОМ ПУЧКЕ

- 5.4.1 Измерения в УЗКОМ ПУЧКЕ проводят по схеме, изображенной на рисунке 2.
- 5.4.2~ ПУЧОК ИЗЛУЧЕНИЯ должен иметь диаметр (20 ± 1) мм на удаленной поверхности испытываемого объекта.
- 5.4.3 Для измерений, проводимых при определении однородности по 6.5.1, диаметр УЗКОГО ПУЧКА должен быть не более 10 мм на удаленной поверхности испытываемого объекта.

5.5 Положение ДЕТЕКТОРА ИЗЛУЧЕНИЯ

Расстояние w (рисунки 1 и 2) должно быть не менее 700 мм.

- 5.5.1 При измерениях МОЩНОСТЕЙ ВОЗДУШНОЙ КЕРМЫ $\dot{K}_{\rm I}$, и $\dot{K}_{\rm O}$ с испытываемым объектом или без него для определения СТЕПЕНИ ОСЛАБЛЕНИЯ опорная точка ДЕТЕКТОРА ИЗЛУЧЕНИЯ должна быть на расстоянии b, равном (50 \pm 1) мм от плоскости наиболее удаленной поверхности испытуемого объекта (рисунок 1).
- $5.5.2\,$ При измерениях МОЩНОСТИ ВОЗДУШНОЙ КЕРМЫ $\dot{K}_{\rm e}$, проводимых для определения КОЭФФИЦИЕНТА НАКОПЛЕНИЯ, расстояние a от наиболее удаленной поверхности испытываемого объекта до опорной точки ДЕТЕКТОРА ИЗЛУЧЕНИЯ должно быть не менее 10-кратного значения квадратного корня сечения A.

5.6 Испытательное оборудование

- 5.6.1 Зависимость чувствительности ДЕТЕКТОРА ИЗЛУЧЕНИЯ от направления падения ИЗЛУЧЕНИЯ по полусфере должна быть незначительной.
- $5.6.2\,$ Пределы допускаемой относительной погрешности измерений ЭНЕРГИИ ИЗЛУЧЕНИЯ в пределах от ЭНЕРГИИ ИЗЛУЧЕНИЯ при 40 кВ до максимальной измеряемой ЭНЕРГИИ ИЗЛУЧЕНИЯ $\pm\,20\,$ %.
- 5.6.3 Максимальные размеры поперечного и продольного сечений ЧУВСТВИТЕЛЬНОГО ОБЪЕМА ДЕТЕКТОРА ИЗЛУЧЕНИЯ должны быть не более 50 мм. ЧУВСТВИТЕЛЬНЫЙ ОБЪЕМ ДЕТЕКТОРА ИЗЛУЧЕНИЯ, используемого для измерений с целью определения однородности по 6.5.1, должен полностью перекрываться ПУЧКОМ ИЗЛУЧЕНИЯ, ограниченным в соответствии с требованиями 4.3.

5.7 Испытываемый объект

- 5.7.1 Для измерений в ШИРОКОМ ПУЧКЕ испытываемый объект должен представлять собой лист материала размером не менее 500×500 мм.
- $5.7.2\,$ Для измерений в УЗКОМ ПУЧКЕ испытываемый объект должен представлять собой лист материала размером не менее $100 \times 100\,$ мм.
- 5.7.3 Для определения СТЕПЕНИ ОСЛАБЛЕНИЯ по 6.1 можно брать испытываемые объекты различной толщины, накладывая друг на друга несколько слоев материала одинаковой или разной толщины.

5.8 КАЧЕСТВО ИЗЛУЧЕНИЯ

ОСЛАБЛЯЮЩИЕ СВОЙСТВА определяют для одного **или более КАЧЕСТВА ИЗЛУЧЕНИЯ**, указанного в таблице 3.

Таблица	3 — Стандартизованное	КАЧЕСТВО	излучения
---------	-----------------------	----------	-----------

АНОДНОЕ НАПРЯЖЕНИЕ, кВ*	ПОЛНАЯ ФИЛЬТРАЦИЯ, мм Cu	АНОДНОЕ НАПРЯЖЕНИЕ, кВ*	ПОЛНАЯ ФИЛЬТРАЦИЯ, мм Cu
30	0,05	200	1,2
50	0,05	250	1,8
80	0,15	300	2,5
100	0,25	400	3,5
150	0,7		

6 Определение ОСЛАБЛЯЮЩИХ СВОЙСТВ

При проведении всех измерений должно соблюдаться постоянство МОЩНОСТИ ВОЗДУШНОЙ КЕРМЫ в ПУЧКЕ ИЗЛУЧЕНИЯ.

Если отклонение МОЩНОСТИ ВОЗДУШНОЙ КЕРМЫ от среднего значения превышает 5 %, следует соответственно скорректировать результаты измерения.

6.1 СТЕПЕНЬ ОСЛАБЛЕНИЯ*

6.1.1 СТЕПЕНЬ ОСЛАБЛЕНИЯ F определяют по формуле

$$F = \dot{K}_0 : \dot{K}_1$$

6.1.2 СТЕПЕНЬ ОСЛАБЛЕНИЯ указывают числовым значением вместе с КАЧЕСТВОМ ИЗЛУЧЕНИЯ, выраженным АНОДНЫМ НАПРЯЖЕНИЕМ и ОБЩЕЙ ФИЛЬТРАЦИЕЙ (раздел 7).

6.2 КОЭФФИЦИЕНТ НАКОПЛЕНИЯ**

6.2.1 КОЭФФИЦИЕНТ НАКОПЛЕНИЯ В определяют по формуле

$$B = \dot{K}_1 : c \dot{K}_c$$

6.2.2 КОЭФФИЦИЕНТ НАКОПЛЕНИЯ указывают числовым значением вместе с КАЧЕСТВОМ ИЗЛУЧЕНИЯ, выраженным АНОДНЫМ НАПРЯЖЕНИЕМ и ПОЛНОЙ ФИЛЬТРАЦИЕЙ (раздел 7).

6.3 ЭКВИВАЛЕНТ ПО ОСЛАБЛЕНИЮ

- 6.3.1 ЭКВИВАЛЕНТ ПО ОСЛАБЛЕНИЮ определяют измерением $\dot{K}_{\rm e}$ испытываемого материала и сравнением его с толщиной слоя соответствующего эталонного материала при том же значении $\dot{K}_{\rm e}$.
- 6.3.2 ЭКВИВАЛЕНТ ПО ОСЛАБЛЕНИЮ указывают толщиной эталонного материала в миллиметрах вместе с химическим символом или другим обозначением эталонного материала и КАЧЕСТВОМ ИЗЛУЧЕНИЯ, выраженным АНОДНЫМ НАПРЯЖЕНИЕМ и ПОЛНОЙ ФИЛЬТРАЦИЕЙ (раздел 7).

6.4 СВИНЦОВЫЙ ЭКВИВАЛЕНТ

- 6.4.1 СВИНЦОВЫЙ ЭКВИВАЛЕНТ определяют так же, как ЭКВИВАЛЕНТ ПО ОСЛАБЛЕНИЮ, но с использованием слоев свинца в качестве эталонного материала.
- 6.4.2 СВИНЦОВЫЙ ЭКВИВАЛЕНТ указывают толщиной свинца в миллиметрах вместе с химическим символом свинца (раздел 7).

6.5 Однородность

- 6.5.1 Однородность защитного материала определяют по измеренным значениям $\dot{K}_{\rm e}$, полученным по всей площади испытываемого объекта в условиях по 5.4.3 и 5.6.3, и соответствующим значениям ЭКВИВАЛЕНТА ПО ОСЛАБЛЕНИЮ δ_i
- 6.5.2 Эти значения δ_{i} должны быть определены для 5—10 характерных мест или непрерывно по характерным направлениям площади испытываемого объекта.
- 6.5.3 Неоднородность V защитного материала следует определять как наибольшее отклонение единичного значения ЭКВИВАЛЕНТА ПО ОСЛАБЛЕНИЮ δ_i ; от среднего значения ЭКВИВАЛЕНТА ПО ОСЛАБЛЕНИЮ $\overline{\delta}$

$$\overline{\delta} = 1/n \sum_{i=1}^{n} \delta_{i}$$
.

6.5.4 Неоднородность указывают в тех же единицах как допуск вместе с ЭКВИВАЛЕНТОМ ПО ОСЛАБЛЕНИЮ

3 мм \pm 0,2 мм Pb 100 кВ 0,25 Cu (раздел 7).

7 Определение соответствия

Соответствие нормированных ОСЛАБЛЯЮЩИХ СВОЙСТВ требованиям настоящего стандарта формулируют следующим образом:

СТЕПЕНЬ ОСЛАБЛЕНИЯ* — 2 · 10:200 кВ 1,2 мм Си ГОСТ 31114.1—2002.

КОЭФФИЦИЕНТ НАКОПЛЕНИЯ — 1,4:150 кВ 0,7 мм Cu ГОСТ 31114.1—2002.

ЭКВИВАЛЕНТ ПО ОСЛАБЛЕНИЮ — 2 мм Fe: 100 кВ 0,25 мм Cu ГОСТ 31114.1—2002.

ЭКВИВАЛЕНТ ПО ОСЛАБЛЕНИЮ — 31114.1—2002.

 $2 \text{ MM} \pm 0.1 \text{ MM}$ Fe : 100 kB 0.25 MM Cu FOCT 31114.1—2002.

СВИНЦОВЫЙ ЭКВИВАЛЕНТ — 1 мм Рb : ГОСТ 31114.1—2002.

^{*} В Российской Федерации применяют аналогичный термин ФАКТОР НАКОПЛЕНИЯ.

^{**} В Российской Федерации применяют аналогичный термин КРАТНОСТЬ ОСЛАБЛЕНИЯ.

Приложение A (обязательное)

Указатель терминов

В настоящем указателе для каждого термина указано обозначение термина по IEC 60788 (MP-...)[1]. Знаками «+» и «-» отмечены производный термин без определения и термин без определения соответственно.

АНОДНОЕ НАПРЯЖЕНИЕ	MP-36-02
ВХОДНАЯ ПОВЕРХНОСТЬ	MP-37-17
ДЕТЕКТОР ИЗЛУЧЕНИЯ	MP-51-01
ДИАФРАГМА	MP-37-29
ЗАЩИТНАЯ ОДЕЖДА	MP-64 05+
ЗАЩИТНОЕ ПРИСПОСОБЛЕНИЕ	MP-64-05
изготовитель	MP-85-03-
ИОНИЗИРУЮЩЕЕ ИЗЛУЧЕНИЕ	MP-11-02
источник излучения	MP-20-01
КАЧЕСТВО ИЗЛУЧЕНИЯ	MP-13-28
КОЭФФИЦИЕНТ НАКОПЛЕНИЯ	MP-13-49
МОЩНОСТЬ ВОЗДУШНОЙ КЕРМЫ	MP-13-11 И MP-13-13
НОРМИРУЕМЫЙ	MP-74-02
ПОЛНАЯ (ОБЩАЯ) ФИЛЬТРАЦИЯ	MP-13-48
ОСЛАБЛЕНИЕ (ОСЛАБЛЯЮЩИЕ СВОЙСТВА)	MP-12-08
ПРОЦЕНТНАЯ ПУЛЬСАЦИЯ	MP-36-17
ПУЧОК ИЗЛУЧЕНИЯ	MP-37-05
РАДИАЦИОННАЯ ВЕЛИЧИНА	MP-13-01-
РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ	MP-11-1-
СВИНЦОВЫЙ ЭКВИВАЛЕНТ	MP-13-38
СИСТЕМА ФОРМИРОВАНИЯ ПУЧКА	MP-37-27
СОПРОВОДИТЕЛЬНЫЕ (ЭКСПЛУАТАЦИОННЫЕ) ДОКУМЕНТЫ	MP-82-01
СТЕПЕНЬ ОСЛАБЛЕНИЯ	MP-13-40
УЗКИЙ ПУЧОК	MP-37-22
ЧУВСТВИТЕЛЬНЫЙ ОБЪЕМ	MP-51-07
ШИРОКИЙ ПУЧОК	MP-37-24
ЭКВИВАЛЕНТ ПО ОСЛАБЛЕНИЮ	MP-13-37
ЭНЕРГИЯ ИЗЛУЧЕНИЯ	MP-13-29

Библиография

[1] IEC 60788:1984 Medical radiology — Terminology (Медицинская радиационная техника. Термины и определения)

УДК 62-784.7:006.354 MKC 11.040.50 MOD

Ключевые слова: рентгеновское излучение, медицинская диагностика, ослабляющие свойства, средства защиты

Редактор *Д.М. Кульчицкий* Технический редактор *В.Н. Прусакова* Корректор *В.И. Варенцова* Компьютерная верстка *П.А. Круговой*

Сдано в набор 28.08.2013. Подписано в печать 09.09.2013. Формат $60\times84\frac{1}{8}$. Гарнитура Ариал. Усл. печ. л. 1,40. Уч.-изд. л. 1,00. Тираж 60 экз. Зак. 989.

ФГУП «СТАНДАРТИНФОРМ», 123995 Москва, Гранатный пер., 4.
www.gostinfo.ru info@gostinfo.ru

Набрано во ФГУП «СТАНДАРТИНФОРМ» на ПЭВМ.
Отпечатано в филиале ФГУП «СТАНДАРТИНФОРМ» — тип. «Московский печатник», 105062 Москва, Лялин пер., 6.