Некоммерческое Партнерство «Инновации в электроэнергетике»

СТАНДАРТ ОРГАНИЗАЦИИ

CTO 70238424.17.220.20.008-2011

СИСТЕМЫ И УСТРОЙСТВА ДИАГНОСТИКИ СОСТОЯНИЯ ОБОРУДОВАНИЯ ПОДСТАНЦИЙ И ЛЭП ОРГАНИЗАЦИИ ЭКСПЛУАТАЦИИ И ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ НОРМЫ И ТРЕБОВАНИЯ

Дата введения - 2011-12-01

Издание официальное

Москва 2011

ПРЕДИСЛОВИЕ

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», объекты стандартизации и общие положения при разработке и применении стандартов организаций Российской Федерации — ГОСТ Р 1.4-2004, общие требования к построению, изложению, оформлению, содержанию и обозначению межгосударственных стандартов, правил и рекомендаций по межгосударственной стандартизации и изменений к ним — ГОСТ 1.5-2001, правила построения, изложения, оформления и обозначения национальных стандартов Российской Федерации, общие требования к их содержанию, а также правила оформления и изложения изменений к национальным стандартам Российской Федерации — ГОСТ Р 1.5-2004.

СВЕДЕНИЯ О СТАНДАРТЕ

1 РАЗРАБОТАН

Открытым акционерным обществом «Научно-технический центр электроэнергетики» (ОАО «НТЦ электроэнергетики»)

- 2 ВНЕСЕН Комиссией по техническому регулированию НП «ИНВЭЛ»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом НП «ИНВЭЛ» от 01.11.2011 № 109/4
 - 4 ВВЕДЕН ВПЕРВЫЕ

© НП «ИНВЭЛ», 2011

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения НП «ИНВЭЛ»

СОДЕРЖАНИЕ

1	Область применения					
2	Нормативные ссылки					
3	Термины, определения, обозначения и сокращения					
	3.1 Термины и определения					
	3.2 Обозначения и сокращения					
4	Общие требования к устройствам диагностики					
	4.1 Перечень обязательных для контроля устройствами диагностики					
пар	раметров трансформаторного оборудования					
roi	4.2 Перечень параметров коммутационного оборудования, которые должны тролироваться устройствами диагностики					
KOI	4.3 Перечень параметров элементов воздушных линий электропередачи,					
кот	горые должны контролироваться устройствами					
диа	агностики					
5	Организация эксплуатации					
	5.1 Требования к организации эксплуатации					
	5.2 Требования к обслуживающему персоналу					
_	5.3 Контроль организации эксплуатации устройств диагностики					
6	Организация технического обслуживания					
	6.1 Организация технического обслуживания					
	6.2 Контроль технического состояния и ремонт					
250	6.3 Требования к ведению документации по техническому служиванию					
000	6.4 Требования к персоналу, проводящему техническое обслуживание 17					
	6.5 Контроль организации технического обслуживания					
7	Требования безопасности при эксплуатации и техническом обслуживании. 17					
Пр	иложение А (рекомендуемое) Определение влагосодержания твердой изоляции					
	моток силовых трансформаторов (шунтирующих реакторов) по результатам					
	мерения диэлектрических характеристик					
Пр	иложение Б (рекомендуемое) Методы измерения диэлектрических					
пар	раметров изоляции					
Пр	иложение В (рекомендуемое) Методы электромагнитных испытаний26					
	иложение Г (рекомендуемое) Методика хроматографического анализа					
газ	ов, растворенных в масле силовых трансформаторов					
	иложение Д (рекомендуемое) Методы определения параметров					
тра	ансформаторного масла					
Пр	иложение Е (рекомендуемое) Определение степени полимеризации					
буи	мажной изоляции силовых трансформаторов					
Пр	иложение Ж (рекомендуемое) Измерения параметров вводов					

Приложение И (рекомендуемое) Методика измерения оптической мутности трансформаторного масла герметичных высоковольтных вводов трансформат классов напряжения 110 кВ и выше	
Приложение К (рекомендуемое) Контроль изоляции под рабочим напряжением	138
Приложение Л (рекомендуемое) Измерение сопротивления изоляции измерительных трансформаторов	139
Приложение М (обязательное) Методика измерения сопротивления обмоток постоянному току для измерительных трансформаторов	142
Приложение Н (рекомендуемое) Методика измерения тангенса угла диэлектрических потерь и емкости трансформаторов тока	143
Приложение П (рекомендуемое) Методика снятия характеристик намагничива трансформаторов тока	
Приложение P (рекомендуемое) Методика измерения тока холостого хода трансформаторов напряжения	151
Приложение С (рекомендуемое) Тепловизионный контроль электрооборудова и воздушных линий электропередачи	
Приложение T (рекомендуемое) Методы оценки технического состояния высоковольтных выключателей	160
Приложение У (рекомендуемое) Методы оценки технического состояния высоковольтных разъединителей	165
Приложение Ф (рекомендуемое) Методы оценки технического состояния опо фундаментов	
Приложение X (рекомендуемое) Методы оценки технического состояния проводов, грозозащитных тросов, их соединений и тросовых оттяжек	169
Приложение Ц (рекомендуемое) Методы оценки технического состояния подвесных гирлянд изоляторов и линейной арматуры	173
Приложение Ч	175
Приложение III (рекомендуемое) Оценка технического состояния линий электропередачи	176
РИФАРТОИПЛАНА	177

ВВЕДЕНИЕ

За последние годы в России и за рубежом отмечается тенденция на развитие устройств диагностики состояния трансформаторного, коммутационного оборудования и элементов ЛЭП, которые направлены на повышение эксплуатационной надежности оборудования, безопасности и бесперебойности функционирования оборудования за счет снижения повреждаемости.

Устройства диагностики состояния трансформаторного, коммутационного оборудования и элементов ВЛ предназначены для получения информации о техническом состоянии оборудования.

С учетом анализа существующих нормативно-технических документов в электроэнергетике разработан стандарт организации в области определения обоснованных норм и требований к организации эксплуатации и технического обслуживания устройств диагностики состояния оборудования подстанций и элементов ВЛ, который будет способствовать обеспечению безопасности и работоспособности электрических сетей.

Целями настоящего стандарта являются:

- повышение эффективности функционирования устройств диагностики;
- установление современных норм и требований к организации эксплуатации и технического обслуживания устройств диагностики состояния элементов ЛЭП:
- снижение эксплуатационных издержек и сокращение объемов ремонтного обслуживания устройств диагностики.

Объектами регулирования разрабатываемого стандарта являются:

- устройства диагностики состояния силовых трансформаторов, автотрансформаторов и реакторов;
- устройства диагностики состояния коммутационного оборудования подстанций:
 - устройства диагностики состояния элементов ВЛ.

СТАНДАРТ ОРГАНИЗАЦИИ

Системы и устройства диагностики состояния оборудования подстанций и ЛЭП

Организации эксплуатации и технического обслуживания Нормы и требования

Лата ввеления – 2011-12-01

1 Область применения

1.1 Настоящий стандарт:

- распространяется на устройства диагностики состояния силовых трансформаторов, автотрансформаторов и реакторов (далее для краткости трансформаторное оборудование) и коммутационного оборудования подстанций и элементов воздушных линий электропередачи;
- определяет единые нормы организации эксплуатации и технического обслуживания устройств диагностики на всех стадиях жизненного цикла;
- предназначен для применения наладочными, эксплуатационными и ремонтными организациями;
 - 1.2 Субъектами применения настоящего стандарта являются:
 - сетевые компании:
 - генерирующие компании;
 - научно-исследовательские.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие нормативные документы и стандарты:

Трудовой кодекс Российской Федерации от 30.12.2001 № 197-ФЗ

Федеральный закон от 21.12.1994 № 69-ФЗ «О пожарной безопасности»

Федеральный закон от 22.07.2008 № 123-ФЗ «Технический регламент о требованиях пожарной безопасности»

Постановление Правительства Российской Федерации от 25 апреля 2012 г. № 390 «Об утверждении Правил противопожарного режима в Российской Федерации».

ГОСТ 10652-73 Реактивы. Соль динатриевая этилендиамин-N, N, N', N'-тетрауксусной кислоты 2-водная (трилон Б). Технические условия

ГОСТ 10693-81 Вводы конденсаторные герметичные на номинальные напряжения 110 кВ и выше. Общие технические условия

ГОСТ 11120-75 Реактивы. Кадмия оксид. Технические условия

ГОСТ 12.0.004-90 Система стандартов безопасности труда. Организация обучения безопасности труда. Общие положения

ГОСТ 12.1.004-91 Система стандартов безопасности труда. Пожарная безопасность. Общие требования

ГОСТ 12.1.007-76 Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности

ГОСТ 12.1.010-76 Система стандартов безопасности труда. Взрывобезопасность. Общие требования

ГОСТ 12.4.011-89 Система стандартов безопасности труда. Средства защиты работающих. Общие требования и классификация

ГОСТ 12.1.038-82 Система стандартов безопасности труда. Электробезопасность. Предельно допустимые уровни напряжений прикосновений и токов

ГОСТ 12.1.051-90 Система стандартов безопасности труда. Электробезопасность. Расстояния безопасности в охранной зоне линий электропередачи напряжением свыше 1000 В

ГОСТ 12.2.007.0-75 Система стандартов безопасности труда. Изделия электротехнические. Общие требования безопасности.

ГОСТ 12026-76 Бумага фильтровальная лабораторная. Технические условия

ГОСТ 1277-75 Реактивы. Серебро азотнокислое. Технические условия

ГОСТ 14710-78 Толуол нефтяной. Технические условия

ГОСТ 16932-93 Целлюлоза. Определение содержания сухого вещества

ГОСТ 17512-82 Электрооборудование и электроустановки на напряжение 3 кВ и выше. Методы измерения при испытаниях высоким напряжением

ГОСТ 1770-74 Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия

ГОСТ 18300-87 Спирт этиловый ректификованный технический. Технические условия

ГОСТ 19908-90 Тигли, чаши, стаканы, колбы, воронки, пробирки и наконечники из прозрачного кварцевого стекла. Общие технические условия

ГОСТ 23216-78 Изделия электротехнические. Хранение, транспортирование, временная противокоррозионная защита, упаковка. Общие требования и методы испытаний

ГОСТ 2517-85 Нефть и нефтепродукты. Методы отбора проб

ГОСТ 25336-82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 25438-82 Целлюлоза для химической переработки. Методы определения характеристической вязкости

ГОСТ 2603-79 Реактивы. Ацетон. Технические условия

ГОСТ 2789-73 Шероховатость поверхности. Параметры и характеристики

ГОСТ 29228-91 Посуда лабораторная стеклянная. Пипетки градуированные. Часть 2. Пипетки градуированные без установленного времени ожидания

ГОСТ 3484.3-88 Трансформаторы силовые. Методы измерений диэлектрических параметров изоляции

ГОСТ 3760-79 Реактивы. Аммиак водный. Технические условия

ГОСТ 3773-72 Реактивы. Аммоний хлористый. Технические условия

ГОСТ 400-80 Термометры стеклянные для испытаний нефтепродуктов. Технические условия

ГОСТ 4166-76 Реактивы. Натрий сернокислый. Технические условия

ГОСТ 4204-77 Реактивы. Кислота серная. Технические условия

ГОСТ 4233-77 Реактивы. Натрий хлористый. Технические условия

ГОСТ 450-77 Кальций хлористый технический. Технические условия

ГОСТ 4919.1-77 Реактивы и особо чистые вещества. Методы приготовления растворов индикаторов

ГОСТ 5789-78 Реактивы. Толуол. Технические условия

ГОСТ 5955-75 Реактивы. Бензол. Технические условия

ГОСТ 6341-75 Реактивы. Кислота янтарная. Технические условия

ГОСТ 6433.5-84 Диэлектрики жидкие. Отбор проб

ГОСТ 6581-75 Материалы электроизоляционные жидкие. Методы электрических испытаний

ГОСТ 6709-72 Вода дистиллированная. Технические условия

ГОСТ 7822-75 Масла нефтяные. Метод определения растворенной воды

ГОСТ 8.207-76 Государственная система обеспечения единства измерений. Прямые измерения с многократными наблюдениями. Методы обработки результатов наблюдений. Основные положения

ГОСТ 8505-80 Нефрас-С 50/170. Технические условия

ГОСТ 8865-93 Системы электрической изоляции. Оценка нагревостойкости и классификация

ГОСТ 9147-80 Посуда и оборудование лабораторные фарфоровые. Технические условия

ГОСТ 9410-78 Ксилол нефтяной. Технические условия

ГОСТ 9572-93 Бензол нефтяной. Технические условия

ГОСТ 9880-76 Толуол каменноугольный и сланцевый. Технические условия

ГОСТ 9949-76 Ксилол каменноугольный. Технические условия

ГОСТ Р 12.1.019-2009 Система стандартов безопасности труда. Электробезопасность. Общие требования и номенклатура видов защиты

СТО 70238424.27.010.001-2008 Электроэнергетика. Термины и определения СТО 70238424.27.010.012-2009 Электроустановки электрических станций и

сетей. Охрана труда (правила безопасности) при эксплуатации и техническом обслуживании электротехнического оборудования. Нормы и требования

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов и классификаторов в информационной системе общего пользования — на официальном сайте национального органа Российской Федерации по стандартизации в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный документ заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться замененным (измененным) документом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины, определения, обозначения и сокращения

3.1 Термины и определения

В настоящем стандарте применены термины и определения в соответствии

CTO 70238424 27 010 001-2008

3.2 Обозначения и сокращения

НТД – нормативно-технический документ;

ТБ – техника безопасности;

ВЛ – воздушная линия электропередачи;

ПИН - приспособление для измерения напряжения;

ПО – предела обнаружения;

РУ – распределительное устройство;

КЗ – короткое замыкание;

ВЛ – воздушная линия электропередачи;

ИК – инфракрасный (контроль);

ГСО – государственный стандартный образец;

ТУ – технические условия.

4 Общие требования к устройствам диагностики

4.1 Перечень обязательных для контроля устройствами диагностики параметров трансформаторного оборудования

- 4.1.1 Устройства диагностики трансформаторов должны обеспечить контроль следующих параметров:
- степень полимеризации витковой изоляции верхних (наиболее нагретых) частей обмоток трансформатора;
- концентрации газов, растворенных в масле трансформаторов: водород, метан, ацетилен, этилен, этан, оксид углерода, диоксид углерода;
 - сопротивление короткого замыкания трансформатора;
 - сопротивление обмоток постоянному току;
 - сопротивление изоляции обмоток;
 - тангенс угла диэлектрических потерь изоляции обмоток;
 - влагосодержание твердой изоляции;
- коэффициент трансформации при всех положениях переключателей ответвлений;
 - потери холостого хода при малом напряжении;
- сопротивление изоляции доступных стяжных шпилек, бандажей, полубандажей, ярем и прессующих колец относительно активной стали и ярмовых балок, а также ярмовых балок относительно активной стали и электростатических экранов относительно обмоток и магнитопровода;
 - пробивное напряжение масла;
 - температура вспышки в закрытом тигле;
 - кислотное число масла;
 - тангенс угла диэлектрических потерь масла;
 - влагосодержание масла;
 - содержание механических примесей в масле;
 - содержание антиокислительной присадки в масле;
 - общее газосодержание масла;

- содержание растворимого шлама;
- содержание фурановых соединений в масле.
- 4.1.2 Устройства диагностики силовых трансформаторов должны позволять контролировать параметры по методикам, приведенным в Приложениях A, Б, B, Γ , Д, E.
- 4.1.3 Устройства диагностики трансформаторных вводов должны обеспечить контроль следующих параметров:
 - сопротивление изоляции:
 - а) измерительного конденсатора ПИН;
 - б) последних слоев изоляции высоковольтного ввода;
 - в) тангенсы угла диэлектрических потерь:
 - г) основной изоляции;
 - д) изоляции измерительного конденсатора ПИН;
 - е) последних слоев изоляции высоковольтного ввода;
 - емкость:
 - а) основной изоляции;
 - б) изоляции измерительного конденсатора ПИН;
 - в) последних слоев изоляции высоковольтного ввода;
- тангенс угла потерь и полной проводимости основной изоляции высоковольтных вводов классов напряжений от 110 до 750 кВ измеренный под рабочим напряжением;
- концентрации газов, растворенных в масле высоковольтных маслонаполненных вводов:
 - а) ацетилена;
- б) сумма концентраций углеводородных газов (метан, этилен, этан, ацетилен);
 - в) оптическая мутность масла;
 - г) температура высоковольтного ввода.
- 4.1.4 Устройства диагностики трансформаторных вводов должны позволять контролировать параметры по методикам, приведенным в Приложениях Γ , Д, Ж, И. К.
- 4.1.5 Устройства диагностики измерительных трансформаторов должны обеспечить контроль следующих параметров:
- сопротивления изоляции обмоток: первичной; вторичных при отсоединенных вторичных цепях; промежуточных;
 - сопротивление обмоток постоянному току;
 - пробивное напряжение масла;
 - кислотное число масла;
 - температура вспышки в закрытом тигле;
 - влагосодержание масла;
 - содержание механических примесей в масле;
 - тангенс угла диэлектрических потерь масла.

Кроме того, для трансформаторов тока:

- тангенс угла диэлектрических потерь изоляции первичной обмотки;
- характеристика намагничивания вторичных обмоток;

для трансформаторов напряжения:

- ток и потери холостого хода при номинальном напряжении;

 Π р и м е ч а н и е — Для емкостного трансформатора напряжения сопротивление и тангенс угла диэлектрических потерь изоляции контролируется у каждого отдельного конденсатора в составе делителя.

4.1.6 Устройства диагностики измерительных трансформаторов должны позволять контролировать параметры по методикам, приведенным в Приложениях Д, Л, М, H, П, Р, С.

4.2 Перечень параметров коммутационного оборудования, которые должны контролироваться устройствами диагностики

- 4.2.1 Устройства диагностики высоковольтных выключателей должны обеспечить контроль следующих количественных и качественных показателей:
 - время отключения собственное/полное;
 - время включения;
 - скорость включения/отключения;
 - ход при включении/отключении;
 - демпфирование в процессе включения и (или) отключения;
 - ток катушки включения/отключения;
 - состояние и ток цепей обогрева полюсов выключателя и привода;
 - наработка механического ресурса;
 - наработка коммутационного ресурса;
 - ток и напряжение электродвигателя привода;
 - время завода пружин пружинного привода;
 - давление жидкости в гидравлическом приводе;
 - давление воздуха в пневмоприводах;
 - температура контактной системы токоведущих контуров фаз выключателя;
 - сопротивление замкнутых контактов (при снятии напряжения).

Для масляных выключателей:

- уровень масла;
- состояние изоляционной среды;
- состояние изоляции вводов (при снятии напряжения).

Для воздушных выключателей:

- давление воздуха;
- влагосодержание воздуха;
- расход воздуха на вентиляцию каждого полюса;
- расход воздуха на утечки для каждого полюса;
- время восстановления давления после операции отключения;
- сброс давления при отключении полюсов выключателя;
- время восстановления давления после операции отключения;
- состояние и кинематика цепей включения/отключения предвключаемых резисторов.

Для элегазовых выключателей:

- давление элегаза;
- влагосодержание элегаза;

- состав элегаза;
- герметичность выключателя/полюсов.
- 4.2.2 Устройства диагностики высоковольтных выключателей должны позволять контролировать параметры по методикам, приведенным в Приложении Т
- 4.2.3 Устройства диагностики разъединителей должны обеспечить контроль следующих количественных и качественных показателей:
 - температура главной электрической цепи;
 - ход контактов;
 - фиксация полного включенного положения;
 - ток электромагнитов управления;
 - давление воздуха в резервуаре пневматического привода;
 - ток и напряжение электродвигателя привода;
 - механическая прочность опорных изоляторов разъединителей.
- 4.2.4 Устройства диагностики разъединителей должны позволять контролировать параметры по методикам, приведенным в Приложении У.
- 4.3 Перечень параметров элементов воздушных линий электропередачи, которые должны контролироваться устройствами лиагностики
- 4.3.1 Устройства диагностики фундаментов металлических и железобетонных опор должны обеспечить контроль следующих количественных и качественных показателей:
 - деформация конструкции;
 - наличие и размеры:
 - а) наружных трещин;
 - б) внутренних трещин;
 - в) поверхностного разрушения;
 - коррозионный износ металлических элементов фундамента.
- 4.3.2 Устройства диагностики опор должны обеспечить контроль следующих количественных и качественных показателей:
 - деревянные:
 - а) загнивание деталей опор;
 - б) коррозионный износ металлических частей;
 - в) отклонение конструкций от проектных решений;
 - железобетонные:
 - а) деформации конструктивных элементов;
- б) наличие и размеры: наружных трещин; внутренних трещин; поверхностного разрушения;
 - в) координаты арматурных стержней;
 - г) коррозионный износ арматурных стержней;
 - металлические:
 - а) деформации конструктивных элементов;
 - б) коррозионный износ опор;

- в) коррозия в тросовых оттяжках: износ *U*-образных болтов закладных железобетонных плит и тросовых оттяжек; износ тросовых оттяжек;
 - г) тяжение в оттяжках.
- 4.3.3 Устройства диагностики опор и фундаментов должны позволять контролировать параметры по методикам, приведенным в Приложении Ф.
- 4.3.4 Устройства диагностики проводов и грозозащитных тросов должны обеспечить контроль следующих количественных и качественных показателей:
 - коррозионный износ;
 - переходное сопротивление болтовых контактных соединений проводов;
- смещение стальной гильзы соединителя по отношению к месту соединения проводов при опрессовании;
 - дефекты сварных соединений проводов;
 - температура контактных соединений;
 - разряд в воздухе, разряд в зазоре.
- 4.3.5 Устройства диагностики проводов и грозозащитных тросов должны позволять контролировать определять параметры по методикам, приведенным в Приложении X.
- 4.3.6 Устройства диагностики гирлянд изоляторов и линейной арматуры должны обеспечить контроль следующих количественных и качественных показателей:
 - механическая прочность изоляторов;
 - наличие разрушения стекла;
 - повреждение фарфора;
 - распределение напряжения по изоляторам;
 - трещины в арматуре:
 - коррозия шапок изоляторов и арматуры гирлянд;
 - повреждение защитной арматуры гирлянды;
 - загрязнение изоляторов;
 - коррозионный износ линейной арматуры.
- 4.3.7 Устройства диагностики гирлянд изоляторов и линейной арматуры должны позволять контролировать параметры по методикам, приведенным в Приложении Ц.
- 4.3.8 Устройства диагностики воздушной линии электропередачи должны обеспечить контроль следующих количественных и качественных показателей:
- расстояние от проводов (тросов) до поверхности земли и различных объектов;
 - разряд в воздухе, разряд в зазоре;
 - коррозионный износ заземляющего устройства и спусков;
 - сопротивление заземляющих устройств.
- 4.3.9 Устройства диагностики воздушной линии электропередачи должны позволять контролировать параметры по методикам, приведенным в Приложении Ш.

5 Организация эксплуатации

5.1 Требования к организации эксплуатации

5.1.1 Общие положения

Организация эксплуатации устройств технической диагностики должна включать:

- ведение технической документации:
- планирование сроков и объемов работ;
- распределение обязанностей персонала при эксплуатации систем и устройств диагностики;
 - обеспечение безопасной эксплуатации систем и устройств диагностики;
- разработку должностных инструкций персонала, в том числе проводящего техническое обслуживание и ремонт:
- организацию и проведение расследований нарушений в эксплуатации систем и устройств диагностики;
- ведение учета технологических нарушений в работе систем и устройств диагностики:
- ведение учета выполнения профилактических противоаварийных и противопожарных мероприятий;
 - организацию работы с персоналом.
 - 5.1.2 Эксплуатация
- 5.1.2.1 К данной стадии жизненного цикла устройств технической диагностики, как правило, относят:
 - эксплуатацию;
 - ремонты;
 - хранение оборудования;
 - вывод из эксплуатации;
 - утилизацию.
 - 5.1.2.2 В процессе эксплуатации должно быть обеспечено:
 - надежное функционирование устройства;
 - поиск и локализация неисправностей до уровня блоков устройств;
 - ведение учета технологических нарушений в работе оборудования;
- поиск возможности замены или исключения неисправного устройства или блока для восстановления работоспособности системы:
 - сопровождение пакета прикладных программ (экспертной системы);
 - организация работы с персоналом;
 - ведение технической документации;
- вызов специалиста по ремонту и техобслуживанию или передача неисправного устройства в группу централизованного обслуживания.
- 5.1.2.3 Эксплуатацию устройств диагностики осуществляет назначенным руководством объекта электроэнергетики квалифицированный обслуживающий персонал, путем:
 - периодического контроля состояния устройств диагностики оборудования;
 - периодических технических освидетельствований;

- контроля выполнения мероприятий и положений нормативных, технических и распорядительных документов;
- 5.1.2.4 Периодический контроль должен обеспечить сбор сведений, необходимых для проведения анализа технического состояния устройств диагностики для определения возможности и целесообразности их дальнейшей эксплуатации.

Исходя из того, что при вводе в эксплуатацию устройства диагностики подвергают межведомственным (приемочным) испытаниям и метрологической аттестации, то при периодическом контроле проверяют:

- наличие нормативных документов, регламентирующих методы эксплуатации, технического обслуживания и метрологических поверок устройств;
- техническое состояние устройств и возможности проведения их испытаний и/или контроля;
 - устройства, не обеспеченные поверкой, калибровкой, ремонтом;
- наличие и соблюдение графиков контроля, поверки и калибровки устройств;
 - степень обеспеченности подразделений необходимыми устройствами;
- осуществление метрологического надзора за техническим и программным обеспечением устройств.
- 5.1.2.5 Перечень работ проводимых в процессе эксплуатации зависит от конкретного вида устройств и устанавливается в соответствии с нормативными документами на устройства исходя из местных условий эксплуатации.
 - 5.1.2.6 По результатам обследования составляют акт, содержащий:
- информацию об устройствах, в том числе тип, основные технические и метрологические характеристики, дата ввода в эксплуатацию;
 - основные результаты обследования;
- результаты оценки соответствия технического состояния устройств техническим требованиям;
- обобщенные выводы о техническом состоянии устройств с указанием недостатков и несоответствий:
- предложения по устранению недостатков и совершенствованию эксплуатации и технического обслуживания устройств.
- 5.1.2.7 По результатам обследования определяют мероприятия по техническому обслуживанию (ремонту) устройств диагностики.
 - 5.1.3 Транспортирование и хранение
- 5.1.3.1 Транспортирование элементов устройств диагностики осуществляют транспортными средствами, обеспечивающими их сохранность. При необходимости применяют транспортную упаковку (тару).
- 5.1.3.2 Хранение устройств и запасных частей организуют, как правило, в закрытых помещениях, с учетом возможности обеспечения поддержания всех технических и эксплуатационных характеристик в пределах норм, соответствующих ГОСТ 23216 и соответствующих технических условий для данного вида устройств.

При хранения устройств должны быть обеспечены следующие условия:

- постоянная положительная температура воздуха, близкая к 0°C;

- относительная влажность воздуха в пределах от 10 до 30 %;
- отсутствие в воздухе вредных примесей, пыли и песка;
- неподвижность воздуха;
- низкая интенсивность света и отсутствие прямых солнечных лучей;
- отсутствие электромагнитного и радиационного воздействий;
- отсутствие насекомых и грызунов.

При хранении должна быть обеспечена противокоррозионная защиты металлических поверхностей устройств. Средства временной защиты, средства подготовки поверхности, упаковочные средства должны соответствовать технической документации устройств.

В технической документации устройств должны быть указаны дата консервации, условия хранения и периодичность переконсервации.

Сроки хранения определяют исходя из требований нормативных и технических документов на конкретные изделия.

При хранении аппаратуры осуществляют:

- контроль условий хранения;
- замену влагопоглотителей;
- контроль состояния аппаратуры;

Примечание — Контроль состояния аппаратуры при хранении включает внешний осмотр и измерительный контроль. Как правило, внешний осмотр дает возможность выявить наличие механических повреждений, коррозии, нарушение защитных покрытий и т.д., и проводят его чаще, чем измерительный контроль. Допускается проведение выборочного контроля состояния аппаратуры при хранении. Интервалы между проверками при складском хранении в два-три раза больше, чем при консервации;

- профилактические мероприятия, направленные на предупреждение отказов аппаратуры в процессе хранения;
 - ремонтные мероприятия.

На каждом предприятии должен храниться «неснижаемый» запас важнейших запасных частей и элементов устройств диагностики, находящихся в специально выделенных местах хранения и распределяемый для оперативного проведения ремонтных работ по устранению и ликвидации аварийных повреждений. Восстановление количества резервных элементов после ликвидации аварийных повреждений должно быть произведено в кратчайшие сроки.

5.1.4 Требования к ведению эксплуатационных документов

К документам, регламентирующим эксплуатацию устройств диагностики, относят:

- национальные стандарты и стандарты организации определяющие:
 - а) правила и методики метрологического обеспечения устройств;
 - б) методики поверки и калибровки;
- перечень устройств с их основными характеристиками и назначением;
- акты поверок, проверок и сдачи устройств в эксплуатацию;
- паспорта и технические описания устройств;
- руководства (инструкции) по эксплуатации устройств;
- руководства (инструкции) по монтажу и пуску устройств;
- ведомости запасных частей, вспомогательного инструмента и принадлежностей;

- список утвержденных инструкций по методике использования и эксплуатации устройств по назначению;
- инструкции по методике использования и эксплуатации конкретных устройств по назначению;
 - графики использования устройств;
 - графики осмотров;
 - листки осмотров;
- годовые и месячные планы-отчеты работы систем и устройств диагностики:
 - журналы и/или ведомости неисправностей, подлежащих устранению.

Все изменения в системе (и/или устройствах) диагностики должны быть отражены в паспорте системы (и/или устройства) диагностики и заверены (подтверждены) подписью уполномоченного лица, с указанием его должности и даты внесения изменений.

Местные производственные инструкции проверяют на соответствие фактическим условиям эксплуатации не реже одного раза в три года с отметкой об их проверке.

Все рабочие места используемые персоналом при выполнении работ в электроустановке (эксплуатации) должны быть обеспечены необходимым и достаточным комплектом нормативных и эксплуатационных документов, включая местные производственные инструкции.

Места ведения и хранения эксплуатационных документов устанавливает технический руководитель сетевой организации (объекта электроэнергетики).

5.1.5 Вывод из эксплуатации

Решение о выводе устройств из эксплуатации принимает технический руководитель сетевой организации (объекта электроэнергетики). Если по результатам технического освидетельствования в заключении (выводах) экспертной комиссии определено, что физический pecypc израсходован полностью, либо аппаратура морально устарела, либо аппаратура повреждена при технологических нарушениях и ее восстановление путем ремонта нецелесообразно, то экономически технический руководитель организации (объекта электроэнергетики) вправе принять решение о выводе устройств из эксплуатации.

5.1.6 Утилизация

Утилизация выведенных из эксплуатации устройств диагностики оборудования должна производиться в установленном порядке в соответствии с инструкциями предприятия-изготовителя.

5.2 Требования к обслуживающему персоналу

- 5.2.1 К функциям электротехнического персонала (административнотехнического, оперативного, оперативно-ремонтного, ремонтного персонал, осуществляющего наладку, техническое обслуживание, ремонт, управление) обслуживающего и эксплуатирующего устройства диагностики относят:
- контроль технического состояния (визуальное обследование (контроль), осмотр, включая проверку состояния и работоспособности оборудования, чистку,

промывку, продувку, выявление дефектов эксплуатации и нарушений правил безопасности, уточнение состава и объема работ, подлежащих выполнению при очередном текущем или капитальном);

- управление (включение/отключение) режимом работы электроустановок;
- проведение необходимых измерений;
- использование по прямому назначению;
- оформление результатов измерений в виде протоколов или в случае работы с устройством непрерывного действия в виде занесения данных в специальный журнал;
- выполнение регламентированного перечня работ по техническому обслуживанию;
 - ведение технической документации;
 - ведение учета технологических нарушений в работе устройств;
- организацию расследований нарушений в эксплуатации диагностического оборудования;
 - устранение простых неисправностей в устройстве.

При монтаже устройств непрерывного действия на оборудовании подстанций и на элементах линий электропередачи находящихся под напряжением, в состав группы обслуживания должен быть включен специалист службы эксплуатации подстанций и линий электропередачи, имеющий соответствующую квалификацию.

- 5.2.2 К работе с устройствами диагностики допускают лиц, не имеющих противопоказаний медицинского характера и имеющих соответствующую квалификацию и профессиональную подготовку.
- 5.2.3 Профессиональную подготовку персонала, повышение его квалификации, проверку знаний и инструктажи проводят в соответствии с требованиями межотраслевых правил охраны труда (правил безопасности) [1], правил работы с персоналом [2] и СТО 70238424.27.010.012-2009.
- 5.2.4 Лица, не имеющие соответствующего профессионального образования, должны пройти обучение по действующей в сетевой организации форме обучения.
- 5.2.5 Эксплуатационный персонал до допуска к самостоятельной работе должен быть обучен приемам освобождения пострадавшего от действия электрического тока, оказания первой помощи при несчастных случаях.
- 5.2.6 Эксплуатационный персонал, должен пройти проверку знаний межотраслевых правил охраны труда (правил безопасности) [1], правил работы с персоналом [2] и СТО 70238424.27.010.012-2009 и нормативных и технических документов касающихся правил и инструкций по технической эксплуатации, пожарной безопасности, пользованию защитными средствами, устройства электроустановок, в пределах требований, предъявляемых к соответствующей должности или профессии, и иметь соответствующую группу по электробезопасности.
- 5.2.7 Персонал обязан соблюдать межотраслевые правила охраны труда (правила безопасности) [1] и СТО 70238424.27.010.012-2009, указания, полученные при инструктаже.

- 5.2.8 Работнику, прошедшему проверку знаний по охране труда при эксплуатации электроустановок, выдают удостоверение установленной формы (приложения 2 и 3 Межотраслевых правил [1]), в которое вносят результаты проверки знаний.
- 5.2.9 За работу с персоналом отвечает руководитель сетевой организации или назначенное должностное лицо из числа руководящих работников сетевой организации.
- 5.2.10 Лица, производящие осмотры устройств, обязаны принять на месте все возможные меры для устранения обнаруженных неисправностей и доложить руководству или дежурному диспетчеру.
- 5.2.11 Результаты осмотров лица, производящие осмотры устройств вносят в листок осмотра, который передают руководителю структурного подразделения.
- 5.2.12 Неисправности устройств и систем диагностики, выявленные при осмотрах, должны быть внесены в эксплуатационную документацию и устранены в кратчайший срок при проведении технического обслуживания (ремонта).

5.3 Контроль организации эксплуатации устройств диагностики

- 5.3.1 В сетевых организациях должен быть организован и осуществляться систематический контроль (надзор):
- выполнения мероприятий и положений нормативных распорядительных документов;
- достаточности применяемых предупредительных и профилактических мер по вопросам безопасности;
- разработки и проведения мероприятий по предупреждению аварий и пожаров, за обеспечением готовности к их ликвидации;
- выполнения предписаний специально уполномоченных органов федеральной исполнительной власти;
- передачи информации о технологических нарушениях и инцидентах в специально уполномоченные органы федеральной исполнительной власти;
 - своевременности проведения технических освидетельствований;
- своевременности проведения и правильности оформления результатов расследований технологических нарушений;
- готовности к выполнению работ по техническому обслуживанию и ремонту.
 - 5.3.2 Основными задачами контроля (надзора) должны быть:
- контроль соблюдением установленных требований по техническому обслуживанию и ремонту устройств диагностики;
- контроль выполнения правил и инструкций по безопасному и экономичному ведению режимов;
- организация и проведение оперативного анализа результатов расследования причин технологических нарушений и пожаров;
- обобщение практики применения мер, направленных на безопасное ведение работ и надежную эксплуатацию устройств диагностики, и организация разработки предложений по их совершенствованию;

- выводы по результатам анализа наличия, качества, полноты отработки технических, нормативных и эксплуатационных документов по устройствам диагностики.

6 Организация технического обслуживания

6.1 Организация технического обслуживания

- 6.1.1 Организация технического обслуживания включает в себя:
- ведение документации по техническому обслуживанию;
- выполнение измерений и ремонтов;
- планирование работ по техническому обслуживанию;
- составление планов работ, направленных на предотвращение преждевременного износа устройств;
 - определение морально и/или физически устаревшего оборудования;
- определение необходимости замены устройств диагностики или восстановление их работоспособности.
- 6.1.2 Структурные подразделения и участки сетевой организации, осуществляющие техническое обслуживание устройств, должны быть обеспечены:
- необходимой технической документацией и производственными инструкциями;
- планами (планами-графиками) работ по техническому обслуживанию и ремонту устройств;
- техническими средствами для выполнения проверок, измерений и ремонтов;
- приборами, инструментами, средствами связи, электрозащитными средствами, средствами оказания первой помощи в соответствии с действующими нормативами.
- 6.1.3 Для обеспечения планирования работ должны составляться многолетние, годовые и месячные планы и графики технического обслуживания и ремонта.
- 6.1.4 Объемы работ по техническому обслуживанию и ремонту определяются на основании результатов измерений, проверок и осмотров.
- 6.1.5 Устройства диагностики должны постоянно содержаться в исправном состоянии, своевременно испытываться и ремонтироваться.
- 6.1.6 Ответственность за техническое состояние устройств диагностики и их своевременный ремонт, поверку и испытания возлагается на соответствующее структурное подразделение сетевой организации.
- 6.1.7 Все изменения в действующих устройствах диагностики, выполненные при техническом обслуживании или ремонте, подлежат немедленному занесению в техническую документацию.

6.2 Контроль технического состояния и ремонт

6.2.1 К моменту ввода в эксплуатацию электротехнического устройства, оснащенного устройством диагностики, должно быть обеспечено их исправное

состояние

- 6.2.2 Контроль состояния оборудования может проводиться различными методами: внешний контроль, осмотр (оборудования), измерительный контроль выходных параметров с помощью приборов, измерительного инструмента или специальных устройств.
- 6.2.3 При внешнем осмотре определяют комплектность электротехнического устройства и неисправности с внешним проявлением (наличие признаков коррозии на внешних поверхностях, механических дефектов и изменений цвета окраски).
- 6.2.4 Функциональный контроль работоспособности устройств производят при включенной аппаратуре путем проверки ее работы и визуального наблюдения за экранами приборов и индикаторов.
- 6.2.5 Измерительный контроль характеризуется определением выходных параметров оборудования, устройств или отдельных блоков с помощью специальной контрольно-измерительной аппаратуры и/или приборов.
 - 6.2.6 Ремонт может включать следующие виды работ:
 - замену неисправных типовых элементов и блоков;
- ремонт типовых элементов, блоков, систем электропитания, жгутов и кабелей, органов индикации и коммутации;
 - настройку и регулировку отдельных блоков и устройств.
- 6.2.7 После проведения ремонтных работ блок должен быть подвергнут проверке, регулировке и испытанию.
- 6.2.8 Полученную в процессе эксплуатации и технического обслуживания информацию необходимо вносить в базу данных технического состояния устройств.

Целями и задачами системы сбора и обработки такой информации являются:

- усовершенствование конструкции устройств;
- разработка и проведение мероприятий, направленные на повышение эффективности и качества работ по подготовке к эксплуатации, обслуживанию в процессе эксплуатации и снижению затрат на их проведение;
- доработка (переработка или разработка новых) нормативных, технических, эксплуатационных и/или ремонтных документов;
- выявление конструктивных и технологических недостатков, влияющих на надежность устройств;
- совершенствование системы технического обслуживания и ремонта устройств;
- определение номенклатуры составных частей и комплектующих элементов, снижающих надежность устройств;
- определение законов распределения случайных величин, характеризующих надежность устройств;
- оценка качества технического обслуживания путем анализа значений показателей позволяющих судить о техническом состоянии объектов.

6.3 Требования к ведению документации по техническому обслуживанию

Учет технического обслуживания осуществляют в журналах технического обслуживания конкретных устройств, где в хронологическом порядке фиксируют:

- дату проведения контрольных мероприятий;
- дату обнаружения неисправности;
- режим работы устройства;
- метод обнаружения;
- причину(ы) и внешние проявления неисправности;
- метод(ы) устранения неисправности(ей);
- шифр и заводской номер устройства;
- тип отказавшего элемента;
- характер отказа.

6.4 Требования к персоналу, проводящему техническое обслуживание

Персонал, осуществляющий техническое обслуживание, должен:

- знать принципы действий и технические характеристики обслуживаемых устройств, входящих в границы (зону, сферу) его ответственности;
- уметь выполнять контроль технического состояния и техническое обслуживание устройств и систем согласно инструкциям по эксплуатации и местным производственным инструкциям;
- уметь проводить (в пределах компетенции) ремонтные работы согласно утвержденному перечню.

6.5 Контроль организации технического обслуживания

В сетевых организациях должен осуществляться систематический контроль технического обслуживания устройств диагностики, в том числе:

- выполнения планов и планов-графиков работ по техническому обслуживанию и ремонту;
- полноты и своевременности ведения технических и эксплуатационных документов;
 - выполнением стандартов и технических условий проведения работ;
- достаточностью применяемых в сетевой организации предупредительных и профилактических мер по вопросам безопасности;
 - готовности к выполнению работ структурными подразделениями;
- своевременности выполнения предписаний специально уполномоченных органов федеральной исполнительной власти.

7 Требования безопасности при эксплуатации и техническом обслуживании

7.1 При эксплуатации и техническом обслуживании устройств диагностики обслуживающий персонал должен соблюдать Трудовой кодекс Российской Федерации, Федеральные законы от 21.12.1994 № 69-ФЗ «О пожарной безопасности» и от 22.07.2008 № 123-ФЗ «Технический регламент о требованиях

пожарной безопасности» Постановление Правительства Российской Федерации от 25 апреля 2012 г. № 390 «Об утверждении Правил противопожарного режима в Российской Федерации», а также ГОСТ 12.1.004, ГОСТ 12.1.010, ГОСТ 12.1.038 и ГОСТ 12.2.007.0, ГОСТ Р 12.1.019, ГОСТ 12.1.051, СТО 70238424.27.010.012-2009 и Межотраслевые правила по охране труда [1].

К эксплуатации и техническому обслуживанию устройств диагностики допускают лиц, прошедших инструктаж по технике безопасности и имеющих квалификационную группу по электробезопасности, соответствующую их функциональным обязанностям.

- 7.2 Квалификационные группы персонала, осуществляющего эксплуатацию и техническое обслуживание устройств диагностики, устанавливают распорядительным документом технического руководителя (главного инженера) электросетевой организации.
- 7.3 Работы по эксплуатации и техническому обслуживанию устройств диагностики с точки зрения безопасности персонала, проводящего монтаж, измерения, текущую эксплуатацию и техническое обслуживание устройств делятся на следующие виды:
 - без снятия напряжения на токоведущих частях;
- без снятия напряжения на нетоковедущих частях в зоне влияния электромагнитных полей;
- по техническому обслуживанию устройств диагностики в лабораторных условиях.

Все виды работ должны выполняться с соблюдением СТО 70238424.27.010.012-2009 и местных производственных инструкций.

- 7.4 Безопасность работ в электроустановках обеспечивают следующие организационные мероприятия:
- оформление работ нарядом, распоряжением или перечнем работ, выполняемых в порядке текущей эксплуатации;
 - допуск к работе;
 - надзор во время работы;
- оформление перерыва в работе, перевода на другое место, окончания работы.
 - 7.5 Ответственными за безопасное ведение работ являются:
- выдающий наряд, отдающий распоряжение, утверждающий перечень работ, выполняемых в порядке текущей эксплуатации;
 - ответственный руководитель работ;
 - допускающий;
 - производитель работ;
 - наблюдающий;
 - члены бригады.
 - 7.6 Все работы в действующих электроустановках проводиться:

- по наряду-допуску;
- по распоряжению;
- по перечню работ, выполняемых в порядке текущей эксплуатации.

7.7 Запрещается:

- самовольное проведение работ;
- расширение рабочих мест и объема задания, определенных нарядом или распоряжением или утвержденным перечнем работ, выполняемых в порядке текущей эксплуатации.
- 7.8 Выполнение работ в зоне действия другого наряда должно согласовываться с работником, выдавшим первый наряд-допуск.
 - 7.9 Любые работы, как правило, должны выполняться:
 - по технологическим картам;
- плану производства работ, утвержденным техническим руководителем организации.

Приложение А

(рекомендуемое)

Определение влагосодержания твердой изоляции обмоток силовых трансформаторов (шунтирующих реакторов) по результатам измерения диэлектрических характеристик

- А.1 Исходные данные для определения влагосодержания твердой изоляции:
- емкость (C) и тангенс угла диэлектрических потерь $(tg\delta)$ межобмоточной изоляции (см. ГОСТ 3484.3), измеренные штатным термоконтролем трансформатора на отключенном от сети и отсоединенном от шин трансформаторе, через 2 и более часа после отключения, при температуре верхнего нагретого слоя масла не менее 60° С;
- температура верхнего слоя масла в трансформаторе во время измерения тангенса угла потерь и емкости междуобмоточной изоляции, измеренная по штатному термоконтролю трансформатора;
- тангенс угла потерь масла ($tg\delta_{M}$) трансформатора (ГОСТ 6581), измеренный при той же температуре;
- схема расположения обмоток (ближайшая к стержню, баку, промежуточные);
- заводской чертеж «установка обмоток» для трансформаторов данного типа.
- А.2 Определение влагосодержания изоляции по тангенсу угла диэлектрических потерь
- А.2.1 Для двухобмоточного трансформатора определяют емкость (C) и тангенс угла диэлектрических потерь ($tg\delta$) межобмоточной изоляции по нормальной схеме, когда электродами являются обмотка высшего напряжения B, к которой присоединяют высоковольтный вывод трансформатора, и обмотка низшего напряжения H, к которой присоединяют вывод C_x моста переменного тока, а экран B моста и второй вывод испытательного трансформатора заземляют.
- А.2.2 Для автотрансформаторов используется та же схема, где электродом В служат электрически соединенные последовательная и общая обмотки.
- А.2.3 Для трехобмоточных трансформаторов выбираются три пары обмоток: высшего-среднего ВС, среднего-низшего СН и высшего-низшего ВН напряжений, причем третью обмотку (низшего- Н, высшего- В и среднего- С напряжения) заземляют, а измерение производят соответственно для каждой пары прилежащих обмоток, всего два раза.
- А.2.4 Для трехобмоточного трансформатора с расщепленными обмотками, (например низшего напряжения), выбирают пару обмоток, а две другие обмотки заземляют, и измерение выполняют для каждой выбранной пары прилежащих обмоток, всего три раза.
- А.2.5 Для двухобмоточных трансформаторов, с расшепленной обмоткой низшего напряжения, выбирают каждую пару обмоток высшего напряжения и

одну расщепленную ветвь низшего напряжения, заземляя вторую расщепленную ветвь. После чего выполняются измерения как для двухобмоточного трансформатора. Затем аналогично выполняют измерения при заземленной первой расщепленной ветви.

А.2.6 По измеренному тангенсу угла диэлектрических потерь междуобмоточной изоляции $(tg\delta)$ и тангенсу угла диэлектрических потерь масла $(tg\delta_M)$, измеренному при той же температуре, при которой измерен $(tg\delta)$, определяется тангенс угла диэлектрических потерь $(tg\delta_T)$ твердой изоляции:

$$tg\delta = K_T tg\delta_T + K_M tg\delta_M \tag{A.1}$$

где K_T , K_M - коэффициенты влияния на $tg\delta_{BH}$ тангенсов угла потерь $tg\delta_{T,M}$ твердой изоляции и масла:

$$K_T = \frac{V_T * (\Theta_T + \alpha \Theta_M)^2 + V_M \Theta_T}{(\Theta_{T} + \alpha \Theta_M) * (V_M + \Theta_T V_T + \alpha \Theta_M V_T)}$$
(A.2)

$$K_{M} = \frac{\alpha V_{M} \Theta_{T}}{(\Theta_{T} + \alpha \Theta_{M}) * (V_{M} + \Theta_{T} V_{T} + \alpha \Theta_{M} V_{T})}$$
(A.3)

где V_T , V_M - коэффициенты заполнения промежутка между обмотками низшего и высшего напряжений, твердой изоляции и маслом по окружности обмоток;

 Θ_{T} , Θ_{M} - коэффициенты заполнения промежутка между обмотками низшего и высшего напряжений, твердой изоляции и маслом по радиусу;

 α - отношение диэлектрических проницаемостей пропитанной маслом твердой изоляции и масла, приближенно равна 2.

$$V_{T} + V_{M} = 1,$$

$$\Theta_{\Gamma} + \Theta_{M} = 1,$$

$$K_{T} + K_{M} = 1.$$

$$V_{T} = \frac{S_{T}}{S_{T} + S_{M}};$$
(A.4)

$$V_M = \frac{S_M^{-r}}{S_T + S_M},\tag{A.5}$$

где $S_{\rm T}$ - суммарная ширина реек по средней длине окружностей обмоток;

 $S_{\rm M}$ - суммарное расстояние между рейками по средней длине окружностей обмоток.

$$\Theta_T = \frac{l_T}{l_T + l_M};\tag{A.6}$$

$$\Theta_M = \frac{l_M}{l_T + l_M},\tag{A.7}$$

где l_T - суммарная ширина барьеров между обмотками по радиусу;

 $l_{
m M}$ - суммарная толщина масляных барьеров между обмотками по радиусу.

Если данные о конструктивных размерах изоляции отсутствуют, то целесообразно принять $K_T \approx 0.6$, а $K_M \approx 0.4$. Из формулы А.1 получаем:

$$tg\delta_T = \frac{tg\delta - K_M \cdot tg\delta_M}{K_T} \tag{A.8}$$

А.2.7 Среднее влагосодержание твердой изоляции (W) в зависимости от тангенса угла диэлектрических потерь твердой изоляции ($tg\delta_T$) и температуры верхнего слоя масла (T° C) определяют по графику рисунка А.1.

Примечание – При наличии сильного загрязнения масла продуктами старения данная методика определения влажности твердой изоляции не действует. В данном случае формула

(A.8) может дать отрицательное значение $tg\delta_T$, что является признаком сильного загрязнения масла.

A.2.8 Осуществление контроля в изоляции зон между обмотками трансформатора вполне достаточно. Целосообразно контролировать изоляцию трансформатора также в зонах между сердечником и внутренней обмоткой и между наружной обмоткой и баком. В этом случае используется перевернутая схема измерения, которая дает завышение емкости и занижение тангенса угла диэлектрических потерь примерно на $10\,\%$ за счет влияния емкости вводов. В этом случае высоковольтный вывод трансформатора и не подлежащую испытанию обмотку присоединяют к экрану моста, а к испытуемой обмотке присоединяют вывод C_x .

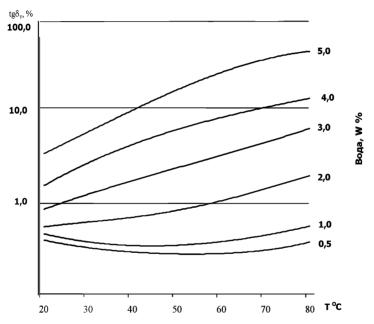


Рисунок A.1 – Зависимость тангенса угла потерь твердой изоляции обмоток трансформатора от температуры и влажности.

Приложение Б

(рекомендуемое)

Методы измерения диэлектрических параметров изоляции

- Б.1 Измерение сопротивления изоляции обмоток и определение коэффициента абсорбции.
- Б.1.1 Измерение сопротивления изоляции обмоток проводят в соответствии с таблицей Б.1. Последовательность измерений не нормируют. Выводы обмотки, на которой проводят измерения, следует соединить между собой

Таблица Б.1 – Измерение сопротивления изоляции, емкости и тангенса угла

диэлектрических потерь изоляции обмоток трансформатора

1 1 1	моточные эматоры и	Трехобмоточные трансформаторы		Трансформаторы с расщепленной обмоткой НН	
трехобм	иоточные			(HH ₁ и HH ₂)	
автотранс	форматоры				
Обмотка, па	Заземляемые	Обмотка, на	Заземляемые	Обмотка, на	Заземляемые
которой	части	которой	части	которой	части
проводят	трансформатора	проводят	трансформатора	проводят	трансформатора
измерения		измерения		измерения	
HH	ВН, бак**	HH	СН, ВН, бак**	HH_1	HH ₂ , бак**,ВН
BH	НН, бак**	CH	ВН, НН, бак**	HH_2	HH₁ бак**, ВН
(BH+ HH)*	Бак**	BH	НН, СН, бак**	$(BH + HH_{1(2)})^*$	НН ₁ , НН ₂ , бак**
		(BH+CH)*	НН, бак**	$(BH + HH_{1(2)})^*$	HH ₂₍₁₎ ;
		(BH+CH+	Бак**	$(BH+HH_1++H$	бак** Бак**
		+HH)*		H ₂)*	

Примечания:

Принятые сокращения: ВН – обмотка высшего напряжения; СН – обмотка среднего напряжения; НН – обмотка низшего напряжения; НН₁, НН₂ – части расщепленной обмотки НН. Допускается в автотрансформаторах вывод одной из обмоток с автотрансформаторной связью не присоединять к схеме измерений.

В двухобмоточных автотрансформаторах напряжение подводят к выводам обмоток высшего и низшего напряжений, соединенных между собой, а бак заземляют.

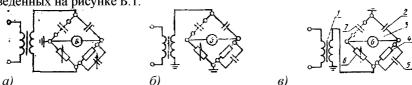
Перед началом каждого измерения испытуемую обмотку следует заземлить не менее чем на 120 с. Допускается не заземлять испытуемую обмотку перед началом измерения, если эту обмотку ранее не подключали к источнику напряжения.

Б.1.2 Рекомендуется при необходимости (например для определения участка изоляции, отрицательно влияющего на результаты измерений по п. Б1.1) измерять сопротивление изоляции между отдельными обмотками. В этом случае обмотку, которую необходимо исключить из процесса измерений, соединяют с зажимом для токов утечки мегомметра.

Измерения проводят в соответствии с таблицей Б2.

^{*} Измерения проводят в случае несоответствия результатов остальных измерений установленным требованиям.

^{**} Для сухих трансформаторов – защитный кожух или остов.


Таблица Б.2 – Измерение сопротивления изоляции между двумя обмотками

и между обмоткой и баком трансформатора

Трансформаторы и	Участок	Обязательное соединение с зажимом				
автотрансформатор	изоляции	Потенциал	Заземление	Экран для тока		
ы		напряжения		утечки		
Двухобмоточные	BH-HH	BH	HH	Бак		
	ВН–бак	BH	Бак	HH		
	НН–бак	HH	Бак	BH		
Трехобмоточные	BH-CH	BH	СН	НН, бак		
	BH-HH	BH	HH	СН, бак		
	СН–НН	СН	HH	ВН, бак		
	ВН–бак	BH	Бак	CH, HH		
	НН–бак	HH	Бак	ВН, СН		
С расщепленной	$BH-HH_1$	BH	HH,	НН2, бак		
обмоткой НН	BH-HH ₂	BH	HH2	HH ₁ , бак		
	$HH_{1(2)} - HH2_{(1)}$	$HH_{1(2)}$	HH ₂₍₁₎	ВН, бак		
	ВН–бак	BH	Бак	HH_1, HH_2		
	HH₁–бак	HH_1	Бак	BH, HH ₂		
	HH₂–бак	HH_2	Бак	BH, HH ₁		

Примечание – Принятые сокращения: ВН – обмотка высшего напряжения; СН – обмотка среднего напряжения; НН – обмотка низшего напряжения; НН₁, НН₂ – части расщепленной обмотки НН. Допускается в автотрансформаторах вывод одной из обмоток с автотрансформаторной связью не присоединять к схеме измерений.

- Б.1.3 При измерении сопротивления изоляции обмоток отсчет проводят дважды: через 15 и 60 с после появления на трансформаторе напряжения, при котором проводят измерение. Действительным сопротивлением изоляции является сопротивление, измеренное через 60 с после появления на трансформаторе напряжения, при котором проводили измерение. При приемосдаточных испытаниях трансформаторов мощностью до 1 МВ-А включительно измерение сопротивления изоляции допускается проводить только через 15 с после появления на трансформаторе напряжения, при котором проводят измерение. Измеренное значение является действительным сопротивлением изоляции.
 - Б.2 Измерение тангенса угла диэлектрических потерь и емкости обмоток.
- 6.2.1 Тангенс угла диэлектрических потерь и емкость обмоток измеряют в соответствии с таблицей 6.1 по приемлемой для измерений схеме из числа приведенных на рисунке 6.1.

1 – трансформатор питания; 2 – образцовый конденсатор; 3 – гальванометр;

4 – резистор; 5 – регулируемый конденсатор; 6 – регулируемый резистор; 7 – испытуемый объект.

Рисунок Б.1 – Схемы измерений

Последовательность измерений не нормируют.

По схеме в) рисунка Б.1 измерения проводят дважды: при подключенном объекте измерения к схеме моста и при отключенном объекте измерения от схемы моста. Емкость обмоток (C) и тангенс угла диэлектрических потерь ($tg\delta$) в этом случае рассчитывают с учетом поправок по формулам (Б.1) и (Б.2) соответственно.

Б.2.2 Измерение тангенса угла диэлектрических потерь и емкости обмоток рекомендуется проводить при напряжении от 25 до испытательного напряжения частоты (50±2,5) Гц, если не используются приборы с измерением на двух частотах. Если выводы обмотки имеют разные испытательные напряжения, то при измерении следует применять меньшее испытательное напряжение.

Допускается измерение тангенса угла диэлектрических потерь и емкости обмоток с испытательным напряжением 20 кВ и более проводить при напряжении 10 кВ.

- Б.2.3 Обработка результатов измерений.
- Б.2.3.1 При измерении по схеме θ) рисунка Б.1 емкость обмоток (C) и тангенс угла диэлектрических потерь $(tg\delta)$ с учетом поправок рассчитывают по формулам:

$$C = C' - C_{om} \tag{6.1}$$

$$tg\delta = \frac{C}{C}tg\delta' - \frac{C_{om}}{C}tg\delta_{om}$$
 (B.1)

где C' – емкость, измеренная при подключенном объекте измерения к схеме моста:

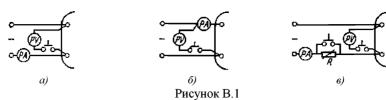
 C_{om} – емкость, измеренная при отключенном объекте измерения от схемы моста:

 $tg\delta'$ – тангенс угла диэлектрических потерь, измеренный при подключенном объекте измерения к схеме моста;

 $tg\delta_{om}$ – тангенс угла диэлектрических потерь, измеренный при отключенном объекте измерения от схемы моста.

Б.2.3.2 Числовые значения диэлектрических параметров необходимо указывать в нормализованном виде с точностью до второго знака (например: $R = 3.01 \cdot 10^6$ Ом или 3.01 МОм, $C = 4.12 \cdot 10^3$ пФ или 4.12 нФ. $tg\delta = 2.34 \cdot 10^3$ или $tg\delta = 0.23$ %.)

Приложение В


(рекомендуемое)

Методы электромагнитных испытаний

- В.1 Измерение сопротивления обмоток постоянному току.
- В.1.1 Общие требования
- В.1.1.1 Сопротивление обмоток постоянному току измеряют способом падения напряжения (допустимо сравнением с падением напряжения на резисторе, сопротивление которого известно) или при помощи моста. Значение постоянного тока при измерениях, как правило, не должно превышать 0,2 номинального тока нагрузки.

Измерения длительностью до 60 с допускается проводить при значениях тока от 0,2 до 0,5 номинального тока нагрузки. При измерении сопротивления одной обмотки другие обмотки должны быть разомкнуты.

- В.1.1.2 Сопротивление следует измерять на всех ответвлениях обмоток (при всех положениях устройства переключения ответвлений). Если это устройство имеет предызбиратель, предназначенный для реверсирования регулировочной части обмотки или переключения грубых ступеней регулирования, то измерения проводят при одном положении предызбирателя ответвлений. Дополнительно проводят по одному измерению сопротивлений на каждом из других положений предызбирателя ответвлений.
- В.1.1.3 При измерении линейных сопротивлений и при наличии зажимов нейтрали измеряют также одно из фазных сопротивлений (между зажимом нейтрали и одним из линейных зажимов). В такой схеме допускается измерять только фазные сопротивления, но при условии, что сопротивление отвода нейтрали не превышает 2 % фазного сопротивления обмотки.
- $B.1.1.4\,\mathrm{Установившимся}$ показанием прибора следует считать показание, которое изменяется не более чем на 1 % отсчитанного значения в течение не менее 30 с.
- В.1.1.5 В качестве источника питания в опыте используют аккумуляторные батареи, емкость которых должна быть достаточной для стабильного поддержания напряжения и тока в процессе измерений. Допускается применять в качестве источника питания выпрямительные устройства с пульсацией напряжения на выходе не более 1 %.
- В.1.1.6 Сопротивления обмоток постоянному току следует измерять при помощи приборов классов точности не ниже 0,5.
 - В.1.2 Измерения способом падения напряжения
- В.1.2.1 При измерениях способом падения напряжения в зависимости от измеряемого сопротивления выбирают одну из схем измерения в соответствии с рисунком В.1.

 $B.1.2.2\,\Pi$ ри измерениях сопротивлений (менее 10 Ом) провода цепи вольтметра присоединяют к зажимам трансформатора непосредственно в соответствии с рисунке B1a. Если при этом расчетное значение измеряемого сопротивления составляет 0,5 % и более сопротивления вольтметра, то значение определяемого сопротивления (r) в омах рассчитывают по формуле:

$$r = r' \cdot \frac{1}{1 - \frac{r'}{n_t}},\tag{B.1}$$

где r' - сопротивление, вычисляемое по измеренным значениям тока и напряжения, Ом;

 r_V - сопротивление вольтметра, Ом.

Примечание. Сопротивление проводов в цепи вольтметра должно быть не более 0.5~% $r_{\rm V}$.

- В.1.2.3 Сопротивление более 10 Ом измеряют по схеме, указанной на рисунке В.1б. Если сопротивление амперметра и подводящих проводов, соединяющих зажимы амперметра и трансформатора, составляет более 0,5 % значения измеряемого сопротивления, то после расчета общего сопротивления цепи из него вычитают сопротивление амперметра и подводящих проводов.
- В.1.2.4 С целью предохранения вольтметра в переходных процессах от повреждения его включают кнопкой при установившемся значении тока, а отключают до отключения тока. Измерения проводят при установившихся показаниях приборов.
- В.1.2.5 Для сокращения времени установления тока применяют схему, приведенную на рисунке В.1 в). Время установления тока в измерительной цепи сокращают путем кратковременного форсирования тока замыканием резистора R. Сопротивление резистора берут от пяти до 10 раз больше измеряемого сопротивления обмотки. Резистор вводят в цепь при отключенном вольтметре.
- С целью сокращения времени установления тока при измерении сопротивления рекомендуется применять (когда это допускается конструкцией трансформатора) схемы соединения обмоток, при которых не создаются потоки, замыкающиеся по магнитной системе трансформатора.
- В.1.2.6 При измерениях сопротивлений обмоток способом падения напряжения для каждого первого образца трансформатора оценивают доверительную границу неисключенных погрешностей средств измерений.

В.1.3 Измерения при помощи моста

Измерения при помощи моста выполняют в соответствии с инструкцией на используемый измерительный мост постоянного тока. Измерение сопротивлений

менее 0,0001 Ом следует выполнять при помощи двойного измерительного моста или другого метода, равноценного по точности.

- В.1.4 Определение температуры обмотки
- В.1.4.1 При измерении сопротивления обмотки отмечают ее температуру.
- В.1.4.2 Температуру обмоток масляных трансформаторов принимают равной, температуре верхних слоев масла, если заполненный маслом, трансформатор находится в нерабочем состоянии не менее 20 ч, и температуре средних слоев масла, если трансформатор находится в нерабочем состоянии не менее 3 ч. Температуру средних слоев масла определяют как полусумму температур верхних и нижних слоев.
- В.1.4.3 Температуру обмотки трансформатора определяют также по результатам измерения сопротивления обмотки в данном нагретом состоянии трансформатора, если в другом его состоянии известны сопротивления обмотки и ее температура.

Для пересчетов температур и сопротивлений обмотки следует пользоваться отношением

$$\frac{r_{\Theta_2}}{r_{\Theta_1}} = \frac{T + \Theta_2}{T + \Theta_1}, \tag{B.2}$$

где Θ_1 и Θ_2 - температуры обмотки, при которых измерялось ее сопротивление, °C:

 r_{Θ_1} и r_{Θ_2} - измеренные сопротивления обмотки при температурах Θ_1 и Θ_2 , соответственно, Ом;

- Т температура, равная 235°С для обмоток из меди и 225°С − из алюминия.
- В.1.4.4 Для масляных трансформаторов мощностью до 1 МВ·А, не включавшихся и не подвергавшихся нагреву, за температуру обмотки принимают температуру верхних слоев масла, при условии, что измерения проводят не ранее чем через 30 мин после заливки. Для трансформаторов с герметичным баком допускается за температуру верхних слоев масла принимать температуру масла, измеренную в емкости, из которой проводят заливку, с учетом поправки на остывание масла.
- В.1.4.5 Для сухих трансформаторов и активных частей трансформаторов, не подвергавшихся нагреву и находящихся не менее 20 ч в помещении с неизменной температурой воздуха (с предельный отклонением 3°С), за температуру обмотки принимают температуру окружающего воздуха, измеренную термометром на высоте 1,5 м от пола, на котором установлен трансформатор, и не более чем в 5 м от него. Термометр должен быть погружен в сосуд с одинарными стенками, заполненный трансформаторным маслом. Объем сосуда 0,001 м³.

Когда условие стабильности температуры окружающего воздуха не выполняется, за температуру обмотки трансформатора принимают среднее арифметическое показаний трех термометров, установленных на поверхности одной из наружных обмоток (для трехфазных трансформаторов фазы В) с трех сторон примерно на середине высоты. При приемо-сдаточных испытаниях допускается применять один из указанных термометров.

Примечание — Для трансформаторов мощностью до 6,3 $\rm MB\cdot A$ класса напряжения до 35 кВ включительно, заливаемых одновременно маслом одной температуры, допускается за температуру обмоток принимать температуру верхних слоев масла одного из трансформаторов, измеренную не ранее чем через 10 ч после заливки.

В.2 Коэффициент трансформации

- В.2.1 Общие требования
- В.2.1.1 Коэффициент трансформации определяют на всех ответвлениях обмоток для всех фаз, причем на ответвлениях обмоток, недоступных для переключения на собранном трансформаторе, его определяют до полной сборки трансформатора.

При испытании трехобмоточных трансформаторов и трансформаторов с расшепленными обмотками коэффициент трансформации достаточно проверить для двух пар обмоток, причем измерения на всех ответвлениях каждой из обмоток достаточно провести один раз.

- В.2.1.2 Если устройство переключения ответвлений обмоток имеет предызбиратель ответвлений, которым проводят реверсирование регулировочной части обмотки или переключение грубых ступеней регулирования, то измерения допускается проводить при одном положении предызбирателя ответвлений, соответствующем меньшему из значений напряжений на регулируемой обмотке. При этом дополнительно проводят по одному измерению на всех других положениях предызбирателя ответвлений.
- В.2.1.3 При испытании трехфазных трансформаторов при трехфазном возбуждении измеряют линейные напряжения, соответствующие одноименным линейным зажимам проверяемых обмоток. При возможности измерения фазных напряжений допускается определять коэффициент трансформации по фазным напряжениям соответствующих фаз. Коэффициент трансформации по фазным напряжениям проверяют при однофазном или трехфазном возбуждении трансформатора.

При испытании трехфазных трансформаторов с обмотками, соединенными по схемам «звезда-треугольник» и «треугольник-звезда», коэффициент трансформации по фазным напряжениям определяют при поочередном коротком замыкании фаз. При этом одну из соединенных в «треугольник» фаз (например фазу А) замыкают, затем при однофазном возбуждении линейных концов определяют коэффициент трансформации оставшейся свободной пары фаз, который при данном методе должен быть равным 2 K_{ϕ} (если обмотка ВН соединена в «звезду») и 0,5 K_{ϕ} (если обмотка НН соединена в «звезду»), где фазный коэффициент трансформации определяют по формуле:

$$K_{\Phi} = \frac{\bar{U}_{\rm BH_{\Phi}}}{\bar{U}_{\rm HH_{\Phi}}} \ -. \tag{B.3}$$

Аналогично проводят измерения при коротком замыкании фаз В и С.

При испытании трансформаторов с теми же схемами соединения обмоток допускается проводить измерения при трехфазном возбуждении, если установлено, что отличие наибольшего и наименьшего линейных напряжений не превышает 2 %.

- В.2.2 Выполнение измерений
- В.2.2.1 Коэффициент трансформации определяют при помощи специального моста или при помощи двух вольтметров. Измерение коэффициента трансформации при помощи моста предпочтительно.
- В.2.2.2 При измерениях специальным трехфазным или однофазным мостом (или компенсационной установкой) обеспечивают отсчет коэффициента трансформации с точностью не менее четырех значащих цифр, а при непосредственном измерении погрешности коэффициента трансформации с точностью не менее двух значащих цифр.
- В.2.2.3 При помощи двух вольтметров измерения проводят следующим образом. К одной из обмоток трансформатора подводят напряжение и измеряют его одним из вольтметров. Одновременно другим вольтметром измеряют напряжение на другой обмотке трансформатора. Измерения следует проводить вольтметрами класса не ниже 0,2.

Допускается применять измерительные трансформаторы напряжения, а также внешние добавочные резисторы к вольтметрам. Класс точности трансформаторов напряжения и добавочных резисторов - не ниже 0,2. Подводимое напряжение не должно превышать номинальное напряжение трансформатора, но не должно быть менее 1 % номинального. Подводить напряжение менее 1 % номинального допускается в случае, если при подведении напряжения свыше 1 % номинального требуется применять трансформатор напряжения. Вольтметр на стороне подводимого напряжения допускается присоединять к питающим проводам, если это практически не отразится на При измерении коэффициента трансформации измерений. сопротивление проводов измерительной цепи должно составлять не более 0,001 внутреннего сопротивления вольтметра.

Доверительную границу неисключенных погрешностей средств измерения β_{κ} в процентах при определении коэффициента трансформации при помощи двух вольтметров, согласно ГОСТ 8.207, рассчитывают по формуле:

$$\beta_{\kappa} = 1.1 \cdot \sqrt{\beta_{V1}^2 + \beta_{V2}^2 + \beta_{TV}^2}$$
, (B.4)

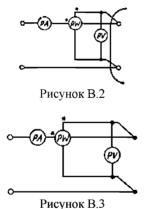
 $\Gamma_{\text{Де}} = \beta_{\text{V1}} = A_{\text{V1}} \cdot \frac{\alpha_{\text{шкV1}}}{\alpha_{\text{V1}}}$ - относительная граничная погрешность вольтметра PV1, %;

 $eta_{
m V2} = A_{
m V2} \cdot \frac{lpha_{
m mrkV2}}{lpha_{
m V2}}$ - относительная граничная погрешность вольтметра PV2. %:

 eta_{TV} = A_{TV} - относительная граничная погрешность трансформатора напряжения TV, %;

 A_{V1} , A_{V2} , A_{TV} - классы точности PV1, PV2, TV;

 $lpha_{ exttt{min} extstyle V1}$, $lpha_{ exttt{min} extstyle V2}$ - полное число делений шкал PV1 и PV2;


 $\alpha_{V1},\ \alpha_{V2}$ - показания вольтметров в делениях в опытах.

Если рассчитанное значение β_{κ} превышает 0,5 % для основных ответвлений и 0,75 % для неосновных, то точность измерений следует повысить применением вольтметров с погрешностями одного знака или внесением поправок на каждое показание вольтметра (поправки берут со своими знаками из протоколов аттестации вольтметров).

При обеспечении электрически синхронизированного отсчета показаний вольтметров допускается применять электронные измерительные устройства класса точности не ниже 0.5.

В.3 Определение потерь холостого хода при малом напряжении

В.3.1 Опыт холостого хода для однофазных трансформаторов выполняют при подведенном со стороны НН напряжении 380 (220) В или менее при частоте 50 Гц в соответствии с рисунками В.2 и В.3. Подведенное напряжение не должно превышать номинальное.

Измеряют подведенное напряжение, ток и мощность P, потребляемую испытуемым трансформатором и измерительными приборами в соответствии с рисунке В.2. Затем измеряют мощность, потребляемую измерительными приборами $\sum P_{\text{изм.пр}}$, в соответствии с рисунком В.3.

Потери в трансформаторе (R_0) рассчитывают по формуле:

$$P_0 = P - \sum P_{\text{BSM.mp}} . \tag{B.5}$$

Примечание — В схемах рисунки В.2 и В.3 допускается применять измерительные трансформаторы тока.

В.3.2 Опыт холостого хода трехфазного трансформатора при малом напряжении проводят в виде трех следующих однофазных опытов, выполняемых в соответствии с В.3.1.

Первый опыт - выполняют короткое замыкание обмотки фазы A, возбуждают фазы B и C трансформатора и измеряют потери.

Второй опыт - выполняют короткое замыкание обмотки фазы B, возбуждают фазы A и C трансформатора и измеряют потери.

Третий опыт – выполняют короткое замыкание обмотки фазы C, возбуждают фазы A и B трансформатора и измеряют потери.

Короткое замыкание обмотки любой фазы проводят, на соответствующих зажимах любой из обмоток трансформатора (высшего среднего или низшего напряжений).

- В.3.3 Магнитная система трансформатора может быть намагничена (в результате пропускания по обмоткам постоянного тока или внезапного сброса питающего напряжения), тогда опыт холостого хода при малом напряжении следует выполнять после снятия этого остаточного намагничивания (например плавным снятием напряжения от номинального до минимального). Опыт холостого хода при малом напряжении следует выполнять после опыта холостого хода при номинальном напряжении. Тогда специально снимать остаточное намагничивание не требуется.
- В.3.4 Остаточное намагничивание допускается снимать рядом последовательных пропусканий по обмоткам трансформатора постоянного тока противоположных полярностей. Постоянный ток, с которого начинается процесс размагничивания, должен быть не менее удвоенного тока холостого хода трансформатора. При этом каждое последующее значение постоянного тока должно быть от 30 до 40 % меньше предыдущего. Ток, при котором заканчивается процесс размагничивания, не должен быть больше действующего значения тока, ожидаемого в опыте холостого хода при малом напряжении.

Размагничивание проводят пропусканием тока по одной из обмоток каждого из стержней магнитной системы.

- В.3.5 Потери и ток холостого хода при малом напряжении измеряют с целью сравнения их с результатами аналогичных измерений в эксплуатации; к номинальному напряжению эти данные не пересчитываются.
- В.4 Определение сопротивления короткого замыкания обмоток трансформаторов

Полное сопротивление короткого замыкания (Z_T) трансформаторов и автотрансформаторов класса напряжения 110 кВ и выше определяется с целью выявления возможных деформаций с повреждением изоляции обмоток, вызванных сквозными короткими замыканиями. Для этого производится сопоставление измеренного значения Z_T с исходным — базовым значением этого параметра, определенным на исправном трансформаторе.

В документации, поставляемой заводом-изготовителем трансформаторов, в качестве базовых для трехфазного трансформатора приводятся среднеарифметические значения Z_T всех трех фаз, однако использование их в качестве базовых не рекомендуется, так как при наличии деформации в какойлибо обмотке одной из фаз трансформатора она может оказаться не выявленной, ибо фазное значения Z_T этой обмотки может «затеряться» при исчислении среднеарифметического значения Z_T .

Рекомендуется сопоставлять фазные значения Z_T трансформатора. При этом в качестве базовых должны использоваться значения параметра, измеренные при пусконаладочных испытаниях вновь вводимого трансформатора.

При контроле состояния однофазных трансформаторов могут использоваться в качестве базовых заводские данные.

Фазное значение Z_T трансформатора (Ом) определяется из выражения

где $U_{\kappa.us.}$ – измеренное значение напряжения короткого замыкания фазы, В;

 I_{κ,u_3} – измеренное значение тока короткого замыкания фазы, А.

Напряжение и ток короткого замыкания определяются из опыта короткого замыкания, который проводится на низком напряжении (380, 220 В).

При проведении опыта короткого замыкания в процессе эксплуатации трансформатор возбуждается со стороны обмотки более высокого напряжения (ВН, СН). При испытании трехфазных трансформаторов на обмотку подается трехфазное напряжение, а измерения тока и напряжения короткого замыкания производятся последовательно на каждой фазе.

Одновременно со снятием показаний вольтметра и амперметра снимается показание частотомера. Схемы измерений в опытах короткого замыкания трехфазных и однофазных трансформаторов и автотрансформаторов с использованием амперметра и вольтметра приведены на рисунках В.4-В.10. Присоединение частотомера на указанных схемах показано условно. Контроль частоты напряжения может осуществляться в любой удобной для снятия показаний точке сети объекта (распределительного устройства). Измеренное значение сопротивления короткого замыкания (Ом) следует привести к частоте 50 Гц по формуле:

$$Z_{T(50)} = \frac{50}{f} Z_{T.H3.} \tag{B.7}$$

Отклонение измеренного фазного значения сопротивления короткого замыкания от базового значения (в процентах) определяют из выражения:

$$\Delta Z_T = \frac{Z_{T(50)} - Z_{T.B}}{Z_{T.B}} 100$$
 (B.8)

Оценку состояния обмоток испытуемого трансформатора производят сравнением полученного значения $\varDelta Z_T$ с предельно допустимым отклонением этого параметра от базового значения, устанавливаемого отраслевыми нормативными документами.

Максимальная чувствительность при измерениях напряжения и тока короткого замыкания достигается выбором пар обмоток, расположенных рядом на стержне магнитопровода.

У трансформаторов и автотрансформаторов, оснащенных переключающими устройствами РПН, контроль состояния всех обмоток достигается измерением тока и напряжения короткого замыкания на номинальной ступени переключающего устройства и на двух крайних ступенях.

При испытании на максимальной ступени испытывается также регулировочная обмотка.

При испытании на минимальной ступени исключается регулировочная обмотка, что позволяет выявить дефектную обмотку, если при испытании на максимальной ступени обнаруживается отклонение ΔZ_T от допустимого значения.

При испытаниях целесообразно придерживаться такой последовательности работ, чтобы избежать частых пересоединений закороток. Например, при испытании трехобмоточных трансформаторов рекомендуется произвести измерения в следующей последовательности: ВН-НН, СН-НН, ВН-СН.

Класс точности измерительных приборов должен быть не ниже 0,5. Рекомендуется применение электродинамических приборов, например, вольтметров Д5081 (Д5015/1), Д5082 (Д5015/2), амперметра Д5090 (Д5017, Д553). Рекомендуется также применение комплекта приборов К505 (К50, К540), позволяющего производить измерения в четырехпроводных сетях как в однофазном, так и трехфазном режиме.

В качестве частотомера могут быть рекомендованы переносные приборы типов Φ 205, Φ 246.

Опыт короткого замыкания может проводиться при любом значении тока короткого замыкания, однако выбранное значение тока должно быть удобным для снятия показаний амперметра и вольтметра, имея в виду, что отсчет показании указанных приборов для достижения достаточной точности измерений должен производиться на второй половине шкалы.

Выбор значений тока и напряжения короткого замыкания можно производить следующим образом. Определяется ожидаемое номинальное значение сопротивления короткого замыкания (Ом) из выражения:

$$Z_T = \frac{U_{\text{\tiny HOM}} \cdot U_{\text{\tiny K}}}{\sqrt{3} \cdot 100I_{\text{\tiny HOM}}}$$
 (B.9)

где U_{non} — линейное номинальное напряжение обмотки (ВН, СН) трансформатора, кВ;

 \bar{U}_{κ} – напряжение короткого замыкания трансформатора, %;

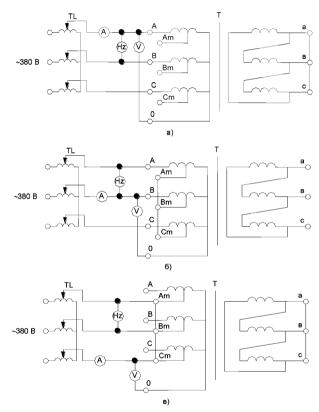
*I*_{ном} – номинальный ток обмотки (ВН, СН) трансформатора, А;

 $U_{\text{ном}}, U_{\kappa}$ — паспортные данные трансформатора.

Номинальный ток трансформатора (А) определяют из выражения:

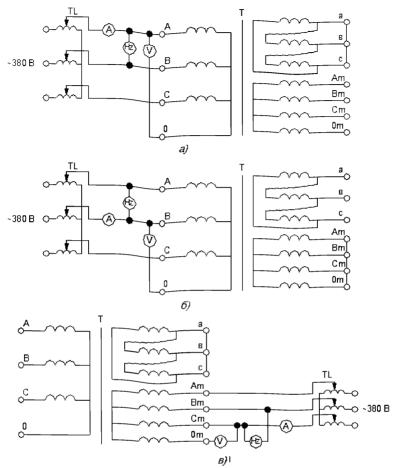
$$I_{\text{\tiny HOM}} = \frac{S_{\text{\tiny HOM}}}{\sqrt{3}U_{\text{\tiny HOM}}} \tag{B.10}$$

где S_{nom} — номинальная мощность трансформатора, кВ-А.


Подставляя в выражение (3) удобное для отсчета по шкале амперметра значения тока короткого замыкания I_{κ,u_3} определяются ожидаемые значения напряжения короткого замыкания U_{κ,u_3} , которые также должны быть удобны для отсчета по шкале вольтметра.

Для закорачивания выводов обмоток трансформаторов применяются гибкие медные или алюминиевые провода. Сечение медной перемычки должно составлять не менее 30 % сечения провода обмотки трансформатора. Примерное

сечение провода обмотки трансформатора определяют по значению номинального тока обмотки при средней плотности тока в обмотке около 3 A/мм².


Сечение алюминиевой перемычки должно быть в одну целую три десятых раза больше сечения медной перемычки.

Присоединение перемычек к выводам обмоток трансформаторов должно осуществляться болтовым соединением. Места присоединения перемычек должны быть зачищены до металлического блеска.

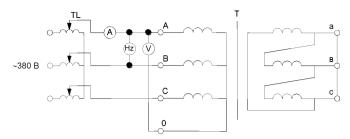

a) — обмотки ВН-НН (измерения на фазе A); b0 — обмотки ВН-СН (измерения на фазе B); b0 — обмотки СН-НН (измерения на фазе C).

Рисунок В.4 – Схемы измерений напряжения и тока короткого замыкания для определения Z_T автотрансформатора (схема и группа соединения Y_H авто/Д-0-11)

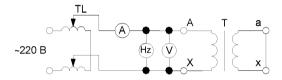

a) — обмотки ВН-НН (измерения на фазе A); b0 — обмотки ВН-СН (измерения на фазе B); b3 — обмотки СН-НН (измерения на фазе C).

Рисунок В.5 — Схемы измерений напряжения и тока короткого замыкания для определения Z_T трехфазного трехобмоточного трансформатора (схема и группа соединения Ун/Ун/Д-0-11)

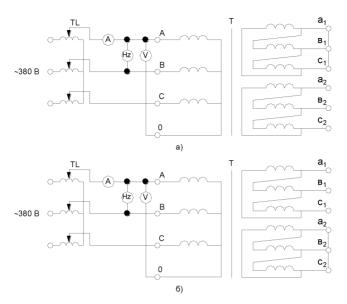
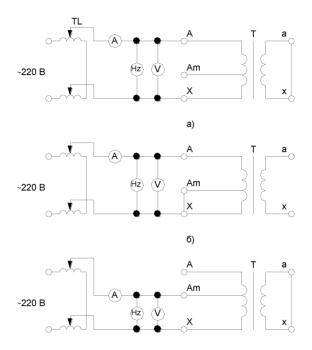
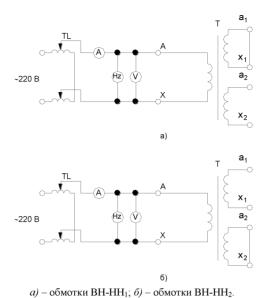

Обмотки ВН-НН (измерения на фазе А)

Рисунок В.6 — Схема измерений напряжения и тока короткого замыкания для определения Z_T трехфазного двухобмоточного трансформатора (схема и группа соединения Ун/Д-11).



Обмотки ВН-НН

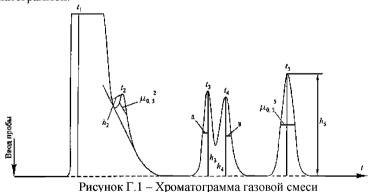

Рисунок В.7 — Схема измерений напряжения и тока короткого замыкания для определения Z_T однофазного двухобмоточного трансформатора (схема и группа соединения 1/1-0)

a) — обмотки ВН-НН $_1$ (измерения на фазе A); δ) — обмотки ВН-НН $_2$ (измерения на фазе A). Рисунок В.8 — Схемы измерений напряжения и тока короткого замыкания для определения Z_T трехфазного трансформатора с расщепленной обмоткой НН (схема и группа соединения Ун/Д-Д-11-11):

a) — обмотки ВН-НН; δ) — обмотки ВН-СН; ϵ) — обмотки СН-НН. Рисунок В.9 — Схемы измерений напряжения и тока короткого замыкания для определения Z_T однофазного трехобмоточного автотрансформатора (схема и группа соединения 1авто(1-0-0):

ay – оомогки вн-гин₁, ay – оомогки вн-гин₂. Рисунок В.10 – Схемы измерений напряжения и тока короткого замыкания для определения Z_T однофазного трансформатора с расшепленной обмоткой НН (схема и группа соединения 1/1-1-0-0):

Приложение Г


(рекомендуемое)

Методика хроматографического анализа газов, растворенных в масле силовых трансформаторов

Г.1 Обшие положения

- Г.1.1 Метод основан на газоадсорбционном хроматографическом разделении смеси газов, выделенных из трансформаторного масла, с определением разделенных на хроматографической колонке компонентов с помощью различных комбинаций ДИП, ДТП и ДТХ.
- Γ .1.2 Анализируемую газовую смесь перемещают по колонке с помощью газа-носителя (подвижная фаза). В качестве газа-носителя используется гелий или аргон.

Разделение компонентов смеси происходит за счет их различной адсорбции на поверхности адсорбента, заполняющего хроматографическую колонку (неподвижная фаза). В результате этого из колонки компоненты выходят индивидуально разделенными один за другим в потоке газа-носителя, попадают в детектор и регистрируются каким-либо прибором, которым может быть либо электронный самописец, либо интегратор, либо ПЭВМ, имеющая устройство сопряжения с хроматографом. Каждый проходящий через детектор компонент фиксируется регистратором в виде кривой (рисунок Г.1), называемой хроматограммой.

Г.2 Аппаратура для проведения анализа

Г.2.1 Специализированная хроматографическая аппаратура

Рекомендуемой аппаратурой для проведения анализа газов, растворенных в трансформаторном масле, применением метода ΑРП c являются «Хроматографический комплекс для анализа газов, растворенных трансформаторном масле» или хроматограф «Цвет 500-ТМ», позволяющие проводить анализ с использованием для анализа одного газа-носителя.

Г.2.2 Неспециализированная хроматографическая аппаратура

Применяется при самостоятельном изготовлении комплексов для анализа газов, растворенных в трансформаторном масле, с использованием метода АРП или методики ВТИ для извлечения газов.

В качестве такой аппаратуры рекомендуется использовать хроматографы модель 3700, Цвет 500 и другие, удовлетворяющие по своим характеристикам необходимым условиям.

Г.2.3 Аппаратура для обработки результатов анализа

Для обработки результатов анализа рекомендуется использовать, например, системы «Диахром» или «Мультихром», позволяющие через устройства сопряжения вести с помощью ПЭВМ обработку поступающей хроматографической информации одновременно не менее чем по четырем каналам.

При отсутствии указанных средств автоматической обработки результатов хроматографического анализа допускается применение электронных интеграторов, а также таких средств измерения, как металлическая измерительная линейка и измерительная лупа с делениями.

Г.3 Применяемые колонки и сорбенты

 Γ .3.1 В качестве сорбентов для разделения CH_4 , C_2H_2 , C_2H_4 , C_2H_6 , а также CO и CO_2 с применением и без применения метанации можно применять, например, Π AУ-1 и Порапак N.

В качестве сорбентов для разделения H_2 и CO можно применять, например, цеолиты CaA, NaX и ПАУ-1.

 Γ .3.2 Для заполнения колонок размер частиц сорбента выбирают таким образом, что $d_{\text{хол}}/d_{\text{хол}}$ составляет в среднем величину от 8 до 10.

Для приготовления колонок берут либо готовые сорбенты с необходимым размером частиц, либо размельченные и рассеянные на ситах для получения нужных фракций (от 0,10 до 0,25 мм для колонок с внутренним диаметром 2,00 мм и от 0,25 до 0,50 мм для колонок с внутренним диаметром 3 мм).

Г.4 Заполнение хроматографических колонок

Г.4.1 Перед заполнением колонок следует снять заусенцы и острые кромки на их краях, а также очистить от пыли, окалины, машинного масла и т.п. Для этого необходимо последовательно промыть колонку водой, этиловым спиртом, гексаном (гептаном, бензином Б-70 и т.п.). После этого колонка помещается в сушильный шкаф или термостат колонок хроматографа, где сушится при температуре в пределах от 70 до 80°С в течение от 2 до 3 ч. Сушку колонок в термостате колонок хроматографа рекомендуется проводить в токе газа-носителя.

Заполнение колонок может производиться тремя способами: под вакуумом, без перепада давлений и под давлением.

Г.4.2 Промышленно выпускаемые хроматографические колонки обычно свернуты в спираль. При заполнении колонки под вакуумом (колонка остается спиральной) один конец промытой и высушенной колонки закрывают стекловатой (стеклотканью) и подсоединяют его к вакуумному насосу.

Подключение к вакуумному насосу осуществляют так, чтобы сорбент не попал в насос.

Колонку закрепляют в штативе и на ее свободный конец надевают воронку для насыпания сорбента.

Создав разрежение в вакуумном насосе, в воронку маленькими порциями (примерно 1 мл) всыпают сорбент. Для равномерного заполнения колонки сорбентом по ней постукивают деревянной палочкой или используют электромеханический вибратор с частотой колебаний 20 Гц.

В колонку должен войти объем сорбента не менее чем определено по формуле:

$$V_{cop6.} = \frac{\pi d_{\text{KOR}}^2 l_{\text{KOR}}}{4} \tag{\Gamma.1}$$

После заполнения колонки ее свободный конец заполняют стекловатой (стеклотканью) и подключают его к испарителю хроматографа.

- Г.4.3 При заполнении колонки без перепада давления в отличие от Г.4.1 колонку предварительно распрямляют и не подключают к вакуумному насосу. Заполнение колонки сорбентом ведут сверху вниз, постукивая по ней деревянной палочкой. После заполнения колонку сворачивают в спираль. Конец колонки, через который шло ее заполнение, заполняют стекловатой (стеклотканью) и подключают к испарителю хроматографа.
- Г.4.4 При заполнении колонки под давлением (колонка может остаться спиральной) один ее конец закрывают стекловатой (стеклотканью), а другой соединяют резиновой трубкой с колбой, имеющей два штуцера и заполненной необходимым количеством сорбента. Свободный штуцер колбы через редуктор соединяют с газовым баллоном. Подавая избыточное давление и постукивая по колонке деревянной палочкой, добиваются равномерного заполнения колонки сорбентом. После заполнения колонки конец, через который шло ее заполнение, закрывают стекловатой (стеклотканью) и подключают к испарителю хроматографа.
- $\Gamma.5$ Термообработка (кондиционирование) заполненных сорбентом колонок
- Г.5.1 Для удаления веществ, сорбированных в заполненной колонке, и стабилизации ее хроматографических характеристик колонку подвергают термообработке в токе газа-носителя, которая проводится нижеследующим образом.
- Г.5.2 Заполненную сорбентом колонку помещают в термостат хроматографа и концом, через который засыпался сорбент, подключают к испарителю. Другой конец колонки, который должен подключаться к детектору, остается свободным.
- Γ .5.3 Через колонку устанавливается расход газа-носителя (гелия или аргона) примерно 20-30 мл/мин.

Запрещается использовать водород в качестве газа-носителя!

 Γ .5.4 Проводят нагрев колонки от 50°C до оптимальной температуры кондиционирования сорбента в токе газа-носителя в режиме программирования температуры со скоростью от 1 до 2°C/мин или в другом режиме, рекомендованном для данного сорбента.

Так, например, для ПАУ-1 рекомендуется ступенчатый подъем температуры с дискретным ее изменением на 50°C через каждые 30 мин.

Такой же режим может быть рекомендован для хроматографов, в которых отсутствует блок программирования температуры.

Оптимальной температурой кондиционирования, для рекомендованных в настоящим приложением сорбентов, является для:

Порапака N
 ПАУ-1
 NаХ и СаА
 160°C
 320°C
 330°C

- $\Gamma.5.5$ Для всех рекомендованных сорбентов продолжительность кондиционирования составляет от 6 до 8 часов, включая время подъема температуры.
 - Г.6 Оценка хроматографических характеристик колонок
- Г.6.1 Оценка работоспособности колонки производится по ее способности разделять анализируемые компоненты.
- Г.6.2 По окончании процесса кондиционирования свободный конец колонки подключают к детектору и проводят проверку ее разделяющей способности по тестовым газовым смесям.

В качестве таких смесей можно использовать газовые смеси, применяемые для градуировки хроматографических комплексов.

- Г.6.3 В случае полного разделения компонентов тестовой смеси при рабочих температурах и расходах газа-носителя и вспомогательных газов колонка может считаться работоспособной.
- Г.6.4 После длительной работы работоспособность колонки может ухудшиться. Это выражается в изменении времен удерживания и формы пиков компонентов тестовой смеси при неизменных температуре колонки и расходе газа-носителя.
- Г.6.5 При сильном изменении времен удерживания необходимо провести кондиционирование колонки в соответствии с Г.5. Если кондиционирование не дало результатов, необходимо либо изменить режимные параметры (температура термостата колонок и расход газа-носителя) так, чтобы получить удовлетворительное разделение тестовой смеси, либо заменить ее на новую.

При изменении режимных параметров необходимо учитывать, что увеличение расхода газа-носителя и/или температуры термостата колонок приводит к уменьшению времен удерживания анализируемых компонентов, а их уменьшение - к увеличению времен удерживания.

Г.6.6 Одним из критериев необходимости замены колонки на новую является изменение относительного времени удерживания хотя бы одного из компонентов тестовой смеси более чем на 30 %.

Относительное время удерживания определяется по формуле:

$$t_{omn.} = \frac{t_x}{t_{cm.}} \tag{\Gamma.2}$$

В качестве стандартного газа выбирается один из газов тестовой смеси и относительно его времени удерживания считаются времена удерживания всех компонентов тестовой смеси на хроматограмме.

- Г.7 Количественная обработка хроматограмм
- Г.7.1 Основным способом обработки хроматограмм является автоматическая обработка с помощью аппаратуры для обработки результатов анализа, сопряженной с хроматографическими комплексами. Этот способ дает минимальную погрешность при проведении измерений.
- Г.7.2 Другим способом обработки хроматограмм является ручная обработка с помощью металлической измерительной линейки (расстояния более 10 мм) и специальной лупы с делениями (расстояния до 10 мм).
- Г.7.3 Высота или площадь пика на хроматограмме пропорциональны количеству анализируемого вещества.

Хроматограмма представляет собой набор пиков по форме, как правило, близких к треугольнику (рисунок Γ .1).

 Γ .7.3.1 В случае полного разделения пиков на хроматограмме (рисунок Γ .1, пик 5) одним из способов обработки хроматограмм вручную является расчет площадей пиков по методу треугольника

$$S_5 = h_5 \mu_{0.5}^2 \tag{\Gamma.3}$$

 Γ .7.3.2 Если пики на хроматограмме разделяются неполностью, то при выходе пика на дрейфе нулевой линии или на хвосте большого пика (рисунок Γ .1, пик 2) расчет его площади ведется по формуле:

$$S_2 = h_2 \mu_{0.5}^2 \tag{\Gamma.4}$$

При неполном разделении достаточно симметричных пиков (рисунок $\Gamma.1$, пики 3 и 4) расчет их площадей ведется по формулам

$$S_3 = 2h_3a$$
 и $S_4 = 2h_4b$ (Г.5)

- Г.7.4 При проведении анализов на рекомендованных в Г.1.1 хроматографических установках с применением сорбентов, рекомендованных в Г.2.2, возможна обработка хроматограмм по высотам пиков. Во всех других случаях обработка хроматограмм должна проводиться только по площадям пиков.
- Г.8 Градуировка хроматографического комплекса и оперативный контроль точности выполняемых измерений
- Г.8.1 Градуировка хроматографического комплекса проводится при вводе его в эксплуатацию или при непопадании результатов оперативного контроля точности выполняемых измерений (ВИ) в доверительный интервал градуировочной характеристики.

Градуировка комплекса заключается в установлении градуировочных характеристик (зависимостей между площадями или высотами пиков на

хроматограммах градуировочных смесей и концентрациями газов в этих смесях) с определением их метрологических параметров.

Оперативный контроль точности ВИ осуществляется каждый раз перед началом рабочих измерений. Для проведения оперативного контроля применяются две градуировочные смеси из разных диапазонов измеряемых концентраций.

Градуировка хроматографического комплекса проводится в области концентраций от 0.5 до $10\,A_{\rm rzp}^{\rm M}$, не менее чем в шести точках диапазона при пяти параллельных измерениях в каждой точке.

Градуировка комплекса и оперативный контроль точности ВИ осуществляются либо с применением газовых смесей всех анализируемых газов, приготовленных в газе-носителе, либо с применением растворов газов в масле. Погрешность приготовления смесей и растворов не должна превышать 10 %.

Г.8.2 Градуировка комплекса с применением газовых смесей всех анализируемых газов, приготовленных в газе-носителе

Такая градуировка осуществляется либо с применением аттестованных газовых смесей в баллонах, либо с применением газовых смесей, приготовленных из чистых газов в специальном устройстве.

Г.8.2.1 Градуировка комплекса с применением баллонов с аттестованной газовой смесью

В качестве смесей можно использовать аттестованные газовые смеси. Для градуировки используют баллоны с градуировочными газовыми смесями, имеющими два уровня концентраций. Рекомендуемые уровни концентраций приведены в таблице $\Gamma.1$.

Таблипа Г.1

Уровень	Газ и его концентрация в смеси, % об.						
концентраций	H ₂	СО	CO_2	CH ₄	C ₂ H ₂	C ₂ H ₄	C ₂ H ₆
1	0,010	0,020	0,050	0,005	0,002	0,005	0,005
2	0,100	0,100	1,000	0,100	0,100	0,100	0,100

Уровни концентраций соответствующих компонентов смесей 1 и 2 должны отличаться друг от друга не менее чем в пять раз. При этом концентрации могут отличаться от приведенных в таблице $\Gamma.1$ от одной целой двух десятых до полутора раз.

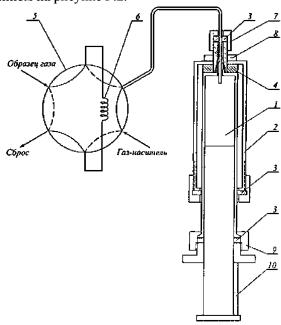
Градуировку проводят с применением рекомендуемых газовых смесей и набора градуированных весовым методом дозирующих петель объемом от 0,1 до 2,0 мл. Относительная погрешность градуировки петель не должна превышать 3 %.

Концентрацию газа в точке на градуировочной характеристике рассчитывают по формуле:

$$A_i^2 = \frac{(V_{ni} + V_{\partial os})P293, 2A_{i(1,2)}^2}{(V_{np} + V_{\partial os})760(273, 2+T)}$$
 (\Gamma.6)

Результатом градуировки являются полученные в диапазоне измеряемых концентраций величины коэффициентов a_i и b_i зависимостей вида:

$$S_i^2 = a_i^{s(e)} + b_i^{s(e)} A_i^2$$
 (\Gamma.7)


или

$$h_i^2 = a_i^{h(2)} + b_i^{h(2)} A_i^2$$
 (\Gamma.8)

и величины доверительных интервалов этих коэффициентов для каждого газа в диапазоне измеряемых концентраций.

Г.8.2.2 Градуировка комплекса с применением газовых смесей, приготовленных из чистых газов в специальном устройстве

Приготовление газовых смесей в газе-носителе (гелии или аргоне) проводят в устройстве, приведенном на рисунке Γ .2.

I - шприц; 2 - рубашка шприца, 3 - резиновые уплотнения; 4 - эпоксидная смола; 5 - шестиходовый кран; 6 - дозирующая петля; 7, 9 - узлы герметизации; 8 - гайка; 10 - шаблон

Рисунок Г.2 – Специальное градуировочное устройство для приготовления газовых смесей и растворов газов в масле

Приготовление газовой смеси в таком устройстве осуществляется следующим образом.

Специальное градуировочное устройство (рисунок Γ .2) через шестиходовой кран (5) несколько раз продувают соответствующим газом-носителем (аргоном или гелием) в котором будет проходить приготовление газовой смеси. Шприц проверяют на чистоту хроматографом. Образец газа подают в дозирующую петлю (6) шестиходового крана (5) и через соответствующий штуцер (5) вводят поток газа-носителя из резиновой камеры, при атмосферном давлении с одновременным перемещением поршня вниз. Объем газа-носителя, которым выдувают пробу газа, должен составлять не менее 10 объемов дозирующей петли (6). Объем петли (6) составляет от 0,25 до 0,50 мл. Процедуру ввода образца газа повторяют для всех газов. При вводе последнего образца газа, шприц (1) заполняют газом-носителем

до фиксированного (например – c помощью шаблона (10)) объема и герметизируют.

Перед приготовлением газовой смеси шприц и дозирующие петли, градуируют весовым методом.

Концентрацию газа в газовой смеси рассчитывают по формуле:

$$A_i^e = \frac{V_i^e P 293, 2A_e^i}{V_m \cdot 760(273, 2+T)} \tag{\Gamma.9}$$

После анализа исходной градуировочной газовой смеси оставляют по шаблону примерно $^2/_5$ объема и разбавляют эту дозу газом-носителем из резиновой камеры до объема V_{uv} . Разбавление с помощью градуированных шаблонов проводят несколько раз, получая тем самым градуировочные газовые смеси для всего рекомендуемого диапазона концентраций. Расчет концентраций в разбавленных газовых смесях проводят по уравнению (Γ .9) без учета поправки на температуру и давление.

Вместо приготовления исходной градуированной концентрации по вышеописанной процедуре можно использовать аттестованную газовую смесь (таблице Γ .1) и проводить процедуру разбавления с помощью градуированных шаблонов.

В зависимости от определяемого компонента для градуировки хроматографического комплекса готовят газовые смеси с концентрациями от 0,001 до 1,0% об. Причем в каждом диапазоне концентраций (от 0,001 до 0,010; от 0,010 до 0,100; от 0,100 до 1,000% по объему) готовят не менее двух смесей с различными концентрациями газов, которые вводят в комплекс газовым краном-дозатором с той же дозирующей петлей, с которой будет проводиться анализ.

Результатом градуировки являются коэффициенты a_i и b_i уравнений (Γ .7) и (Γ .8).

Расчет параметров градуировочной характеристики проводят так же, как в $\Gamma.8.2.1.$

- Г.8.3 Градуировка комплекса с применением растворов всех анализируемых газов в масле
- Г.8.3.1 Такая градуировка осуществляется с применением растворов газов в масле, приготовленных либо методом равновесного распределения газов между газовой фазой и маслом в герметичном сосуде, либо методом насыщения масла чистым газом.
- Г.8.3.2 Градуировка комплекса с применением растворов газов в масле, приготовленных методом равновесного распределения газов между газовой фазой и маслом

Приготовление растворов газов в масле осуществляется в устройстве, приведенном на рисунке Γ .2, так же, как и выделение газов из масла. Отличие заключается в том, что в шприце находится известный объем масла (V_M) , содержание газов в котором не влияет на результаты градуировки в выбранном диапазоне концентраций, а проба газовой смеси, приготовленная в аналогичном устройстве или из баллона с градуировочной смесью подается в шприц до определенного объема V_o либо напрямую, либо через петлю крана-дозатора с

последующим заполнением шприца газом-носителем до объема V_0 После этого шприц помещается в устройство ускорения достижения равновесия. Время достижения равновесия при растворении газов в масле рекомендуется устанавливать втрое больше времени извлечения газов из масла или устанавливается экспериментально по специальной процедуре.

После достижения равновесия газовая фаза из шприца удаляется.

Концентрации газов, растворенных в масле, рассчитывают по формуле:

$$A_{i(ppad)}^{M} = \frac{A_{i}^{2}V_{\delta}^{2}B_{i}}{V_{M}(B_{i} + V_{a}/V_{M})} \tag{\Gamma.10}$$

Содержание газов в масле, приготовленном для градуировки комплекса, контролируют с применением градуировочных газовых смесей.

Значения коэффициентов растворимости Оствальда некоторых газов в трансформаторном масле при температуре 20°C и давлении 760 мм рт.ст. приведены в таблице $\Gamma.2$.

Таблица Г2

Газ	Коэффициент растворимости B _i
Водород (Н2)	0,05
Кислород (О2)	0,17
Азот (N2)	0,09
Оксид углерода (СО)	0,12
Диоксид углерода (CO ₂)	1,08
Метан (СН4)	0,43
Ацетилен (C_2H_2)	1,20
Этилен (C ₂ H ₄)	1,70
Этан (С ₂ Н ₆)	2,40

Изменение температуры в интервале от 18 до 25°C приводит к изменению коэффициентов растворимости до 5 % отн.

Приготовленные растворы газов в масле хранятся в герметично закрытых шприцах при комнатной температуре в темном месте и могут быть использованы для градуировки комплекса в течение 5 дней.

Приготовленными растворами газов в масле можно проводить градуировку комплексов, применяющих как методику ВТИ, так и метод АРП.

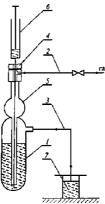
В случае градуировки комплекса по методу ВТИ в приставку вводят одинаковые пробы масла с различным содержанием газов. Результатом градуировки являются коэффициенты a_i и b_i зависимостей вида

$$S_i^M = a_i^{S(M)} + b_i^{S(M)} A_i^M \tag{\Gamma.11}$$

или

$$b_i^M = a_i^{h(M)} + b_i^{h(M)} A_i^M$$
 (Γ.12)

Расчет параметров градуировочной характеристики проводится так же, как в $\Gamma.8.2.1.$


В случае градуировки комплекса по методу АРП проводят выделение газов из градуировочного масляного раствора при тех же соотношениях V_2/V_M , при которых будет проводиться анализ образцов масла из оборудования, и

выделенные газы вводят в дозирующую петлю газового крана-дозатора комплекса.

Результатом такой градуировки являются величины коэффициентов a_i и b_i уравнений (Г.11) или (Г.12).

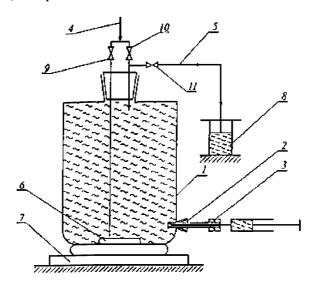
 Γ .8.3.3 Градуировка комплекса с применением метода насыщения масла чистым газом.

Этот метод заключается в насыщении масла анализируемым газом и разбавлении его тем же маслом, насыщенным газом-носителем. Приготовление градуировочных масел производится в устройстве, изображенном на рисунке Γ .3, при температуре в пределах от 18 до 22° C.

*пл. Бідлат.*1 - сосуд с маслом; 2 - трубка подвода газа; 3 - трубка вывода газа; 4 - приспособление с резиновой прокладкой; 5 - расширитель; 6 - шприц; 7 - масляный затвор.

Рисунок Г.3 – Прибор для приготовления масла, насыщенного газом

Насыщение масла газами ведут в приборе из металла, состоящем из сосуда (1) емкостью 5 мл, в котором имеется трубка для подвода газа (2), трубка для вывода газа (3) через масляный затвор (7) и приспособление с резиновой прокладкой (4) для введения иглы шприца (6).


Насыщение масла газом проводят путем барботажа. Чистый сухой сосуд (1) с расширителем (5) заполняют маслом и собирают прибор согласно рисунку Γ .3. Вводят иглу предварительно отградуированного шприца через резиновую прокладку, насыщают масло газом в течение 30 мин с расходом 15 мл/мин. При этом избыток масла сливается через масляный затвор (7). По окончании насыщения прибор выдерживают в течение 15 мин.

В процессе насыщения масла газом шприц следует промыть. Для промывки набирают в шприц (6) масло, содержимое шприца вводят обратно в сосуд (I) и вновь набирают масло. Операцию повторяют трижды. После окончания процедуры насыщения через 15 мин заполняют шприц маслом, вынимают иглу из приспособления (4) и герметизируют ее резиновой пробкой.

Концентрацию газа в масле определяют с учетом его коэффициента растворимости (см. таблицу Γ .2) с поправкой на атмосферное давление, по формуле:

$$A_{i(\text{nac.})}^{M} = \frac{B_i P A_z^i}{760} \tag{\Gamma.13}$$

Разбавление масла, насыщенного газом, до необходимой концентрации проводят в приборе, изображенном на рисунке Γ .4.

I - сосуд; 2 - приспособление для ввода и отбора пробы масла; 3 - резиновая прокладка; 4 - трубка подвода газа-носителя; 5 - трубка вывода газа-носителя; 6 - магнитная мешалка; 8 - масляный затвор; 9-11 - краны.

Рисунок Г.4 – Прибор для разбавления масла, насыщенного газом

Прибор состоит из предварительно отградуированного сосуда (1) емкостью 2 л с нижним тубусом, приспособления для ввода и отбора проб масла (2), резиновой прокладки (3), трубок для подвода газа-носителя (4) и для вывода газа-носителя (5), снабженных кранами (9-11), магнита (6), магнитной мешалки (7) и масляного затвора (8).

Собирают прибор согласно рисунке Г4. В тубус сосуда (1) через пробку вставляют приспособление (2) с резиновой прокладкой (3). В сосуд опускают магнит (6). Заливают маслом сосуд (I) и масляный затвор (8). Закрывают сосуд пробкой с трубками для подвода и вывода газа-носителя. Соединяют прибор с трубкой для подвода газа-носителя (4), открывают краны (9) и (11), закрывают кран (10) и продувают газ-носитель через масло в течение 3 ч. Закрывают кран *(9)*. Шприц, содержащий насыщенное градуировочным газом приготовленное в приборе, приведенном на рисунке Г.3, вкалывают в приспособление (2) и вводят из него заданное количество масла в сосуд (1) с маслом, насыщенным газом-носителем. Масло перемешивают с помощью магнитной мешалки в течение 1 ч. Открывают кран (10) для ввода газа-носителя в сосуд (1) и под его напором отбирают масло через иглы в несколько шприцев. Иглы герметизируют резиновыми пробками. Операция отбора проб масла в

шприцы проводится быстро (до 10 мин). Из сосуда отбирают не более половины объема масла. В этих условиях газ из нижней половины масла практически не успевает перейти в газовое пространство.

Концентрацию газа в масле рассчитывают по формуле:

$$A_{i(zpa\delta)}^{M} = \frac{A_{i(nac)}^{M} V_{\delta}^{M}}{V_{\delta}^{C}}$$
 (Γ.14)

Градуировка комплекса проводится так же, как в Γ .8.2.1. Результатом градуировки являются коэффициенты a_i и b_i уравнений (Γ .11) и (Γ .12).

Г.8.3 Оперативный контроль точности выполнения измерений

Оперативный контроль точности ВИ проводится перед рабочими измерениями на градуированном комплексе для подтверждения попадания рабочих измерений в доверительный интервал градуировочной характеристики.

Для проведения оперативного контроля используют два градуировочных раствора (смеси), которые содержат газы с концентрациями из начальной и конечной областей градуировочной характеристики. Предварительно для этих смесей по градуировочным характеристикам (Γ .7), (Γ .8) или (Γ .11), (Γ .12) с доверительных интервалов параметров a_i и b_i рассчитывают максимальную и минимальную величину площади или высоты соответствующую концентрации газа в градуировочной смеси. Далее в комплекс вводят обе смеси по три раза каждую, рассчитывают средние значения величин плошадей или высот пиков для всех компонентов введенных смесей и определяют попадают ли определенные при оперативном контроле площади или высоты пиков в интервал между их максимальным и минимальным значениями, рассчитанными из градуировочных характеристик. Если величины площадей или высот пиков попадают в эти интервалы, то комплекс можно использовать для проведения анализов. Если нет, то необходимо либо устранить причину несоответствия (в основном это может быть связано с нарушением режимных параметров), либо провести новую градуировку комплекса.

- Г.9 Анализ газов, растворенных в масле
- Г.9.1 Анализ растворенных в масле газов, извлеченных с применением метода АРП или методики ВТИ проводится в тех же условиях, что и градуировка.
 - Г.9.2 Анализ газов на специализированной аппаратуре

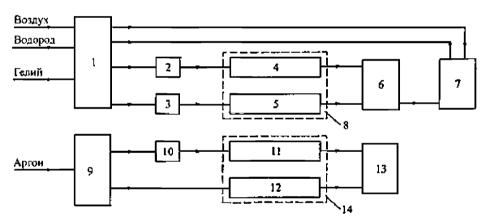
Для проведения анализа рекомендуется применять оборудование, указанное в Г.1.1. Это оборудование снабжено всеми необходимыми устройствами (колонки, устройства выделения газов из масла и т.п.) для проведения анализа и полным комплектом методической документации.

Г.9.3 Анализ газов на неспециализированной аппаратуре

Для проведения анализа рекомендуется применять оборудование, указанное в п.Г.1.2, с помощью которого могут быть реализованы различные схемы проведения анализа.

В качестве основных рекомендуются две схемы.

Г.9.3.1 Анализ извлеченных из масла газов с применением двух газовносителей - гелия и аргона


Хроматографический комплекс при применении такой схемы состоит из двух хроматографов, один из которых имеет два детектора (ДТП и ДИП), а второй - ДТП. В качестве таких хроматографов можно использовать, например, хроматографы модель 3700 и Цвет-500 с двумя детекторами (ДТП и ДИП).

Хроматограф с двумя детекторами (ДТП и ДИП), которые соединены последовательно, предназначен для анализа СО, СО₂, СН₄, С₂H₂, С₂H₄ и С₂H₆, а хроматограф с ДТП - для анализа H₂.

В хроматограф с двумя детекторами помещают колонки с ПАУ-1 для анализа CO_2 и углеводородов, а также для анализа CO. В качестве газа-носителя в этом хроматографе используют гелий.

В хроматограф с ДТП помещают колонку с ПАУ-1 для анализа H_2 . В качестве газа-носителя в этом хроматографе используют аргон.

Схема хроматографического комплекса приведена на рисунке Г.5. Извлечение газов из масла при применении такой схемы анализа может вестись как методом АРП, так и по методике ВТИ. При применении для извлечения газов из масла метода АРП в качестве дозаторов (2, 3, 10) используют газовые краныдозаторы с объемом рабочих петель 2 мл.

1 - блок подготовки газов хроматографа для анализа CO, CO₂ и углеводородов; 2 - дозатор для анализа CO; 3 - дозатор для анализа CO₂ и углеводородов; 4 - колонка для анализа CO; 5 - колонка для анализа CO₂ и углеводородов; 6 - ДТП хроматографа для анализа CO, CO₂ и углеводородов; 7 - ДИП того же хроматографа; 8 - термостат того же хроматографа; 9 - блок подготовки газов храмотографа для анализа H₂; 10 - дозатор для анализа H₂; 11 - колонка для анализа H₂; 12 - колонка сравнения для анализа H₂; 13 - ДТП хроматографа для анализа H₂; 14 - термостат хроматографа для анализа H₂

Рисунок Γ .5 — Схема комплекса для проведения хроматографического анализа газов, извлеченных из масла, с применением двух газов-носителей

При применении методики ВТИ для извлечения газов из масла в качестве дозаторов используют приставки ВТИ объемом 8,0 мл дозаторы (2) и (10) и объемом 1,25 мл дозатор (3).

По схеме, приведенной на рисунке Г.5, анализ проводится следующим образом.

В хроматографы подаются газы-носители аргон и гелий, а также водород и воздух.

Температуры: термостатов колонок (8) и (14) в пределах от 80 до 120°С, ДТП (6) и (13) и ДИП (7) – в пределах от 150 до 250°С. Ток моста ДТП (6) хроматографа для анализа СО, СО $_2$ и углеводородов в пределах от 140 до 160 мА, а ДТП (13) хроматографа для анализа H_2 – в пределах от 80 до 90 мА. Расходы аргона и гелия в пределах от 20 до 30 мл/мин. Расходы вспомогательных газов составляют: водорода от 15 до 25 мл/мин, воздуха от 200 до 300 мл/мин.

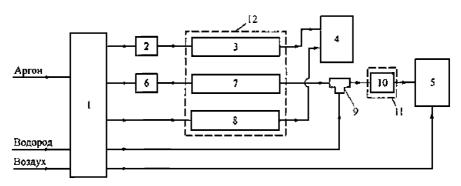
После выхода хроматографов на рабочий режим (примерно 2 ч) с помощью дозатора (3) в хроматограф для анализа CO, CO₂ и углеводородов вводят пробу для анализа CO₂, CH₄, C₂H₂ и C₂H₆. Извлеченные из масла компоненты, разделенные на колонке (5), попадают в ДТП (6), который регистрирует пики воздуха и CO₂, а затем в ДИП (7), который регистрирует CH₄, C₂H₂, C₂H₄ и C₂H₆.

После того как из колонки (5) выйдут все компоненты, с помощью дозатора (2) того же хроматографа в него вводят пробу для анализа СО. Разделенные на колонке (4) компоненты попадают в ДТП (6), который регистрирует пики воздуха и СО.

При работе с хроматографом для анализа CO, CO₂ и углеводородов с извлечением газов из масла методом АРП газовый объем в шприце с маслом организуется гелием.

Одновременно с проведением анализа СО, СО₂ и углеводородов в хроматограф для анализа H_2 с помощью дозатора (10) вводят пробу для анализа H_2 . Извлеченные из масла компоненты, разделенные на колонке (11), попадают в ДТП (13), который регистрирует пики водорода и воздуха.

При работе с хроматографом, для анализа H_2 с извлечением газов из масла методом АРП газовый объем в шприце с маслом организуется аргоном.


Г.9.3.2 Анализ извлеченных из масла газов по схеме с применением метанатора и одного газа-носителя аргона.

Хроматографический комплекс при применении такой схемы состоит из одного хроматографа с двумя детекторами (ДТП и ДИП), в который встроен метанатор, позволяющий определять CO и CO_2 после превращения их в метан.

В термостат хроматографа помещают колонку для анализа CO, CO $_2$ и углеводородов с Порапаком N и колонку с цеолитом CaA или NaX.

В одном из испарителей хроматографа монтируются метанатор, заполненный катализатором.

Схема хроматографического комплекса приведена на рисунке Г.6. Извлечение газов из масла может вестись методами, описанными в Г.3. В качестве дозаторов (2) и (6) можно использовать либо газовые краны-дозаторы с объемом рабочих петель от 1 до 2 мл, либо приставки ВТИ объемом 1,25 мл дозатор (6) и 8.0 мл дозатор (2).

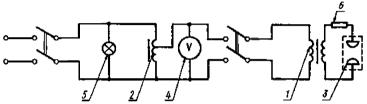
1 - блок подготовки газов хроматографа; 2 - дозатор для анализа H_2 ; 3 - колонка для анализа H_2 ; 4 - ДТП; 5 - ДИП; 6 - дозатор для анализа CO, CO_2 и углеводородов; 7 - колонка для анализа CO, CO_2 и углеводородов; 8 - колонка сравнения для анализа H_2 ; 9 - тройник; 10 - метанатор; 11 - термостат метанатора; 12 - термостат хроматографа.

Рисунок Г.6 – Схема комплекса для проведения хроматографического анализа газов, извлеченных из масла, с применением одного газа-носителя (аргона) и метанатора

В хроматограф (см. рисунок Г.6) подают газ-носитель (Аргон), а также Водород и воздух, причем Водород через тройник (9) подают в метанатор (10).

Температуры: термостата колонок (12) в пределах от 60 до 80° С, ДТП (4) и ДИП (5) — в пределах от 150 до 250° С, метанатора - 375° С. Ток моста ДТП (4) в пределах от 70 до 90 мА. Расход аргона в пределах от 20 до 30 мл/мин. Расходы вспомогательных газов составляют: Водорода — от 20 до 30 мл/мин, воздуха от 200 до 300 мл/мин.

После выхода хроматографа на рабочий режим (примерно 2 ч) с помощью дозатора (2) в колонку для анализа Водорода (3) вводят пробу. Извлеченные из масла компоненты, разделенные на колонке (3), попадают в ДТП (4), который регистрирует пики Водорода (H_2), Кислорода (O_2) и Азота O_2 .


Одновременно с анализом Водорода (H_2) с помощью дозатора (6) в колонку для анализа CO, CO_2 и углеводородов (7) вводят пробу для анализа CO, CO_2 , CH_4 , C_2H_4 , C_2H_6 и C_2H_2 . Извлеченные из масла компоненты, разделенные на колонке (7), попадают сначала в метанатор (10), где CO и CO_2 превращаются в метан, а затем в ДИП (5), который регистрирует CO (в виде CH_4), CH_4 , CO_2 (в виде CH_4), C_2H_4 , C_2H_6 и C_2H_2 .

При проведении анализа газов, извлеченных из масла с применением метода АРП, газовый объем в шприце с маслом организуется аргоном.

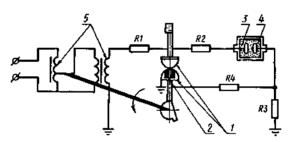
Приложение Д (рекомендуемое)

Методы определения параметров трансформаторного масла

- Д.1 Метод определения пробивного напряжения при частоте 50 Гц
- Д.1.1 Аппаратура, измерительная ячейка.
- Д.1.1.1 Для определения пробивного напряжения жидких электроизоляционных материалов используют установку, принципиальная схема которой приведена на рисунке Д.1.

1 - высоковольтный испытательный трансформатор; 2 - регулировочный трансформатор; 3 - измерительная ячейка; 4 - вольтметр; 5 - сигнальная лампа; 6 - защитное сопротивление. Рисунок Д.1 — Принципиальная схема установки для определения пробивного напряжения жидких электроизоляционных материалов при промышленной частоте

Д.1.1.2 Источник питания


Источником питания установки служит испытательный трансформатор с регулятором напряжения, обеспечивающий получение при промышленной частоте на электродах испытательной ячейки напряжения, характеризуемого практически синусоидальной формой кривой напряжения. Коэффициент амплитуды (отношение максимального значения напряжения к эффективному испытательному напряжению) должен быть в пределах ($\sqrt{2}\pm5$ %) или в пределоах от от 1,34 до 1,48. Трансформатор должен быть выбран так, чтобы:

- среднее пробивное напряжение жидкого материала составляло не менее 15 % значения номинального напряжения трансформатора;
- мощность трансформатора была достаточной для обеспечения при пробое на стороне высокого напряжения тока не менее 20 мА во всем диапазоне используемых при испытаниях напряжений, превышающих 15 кВ.

Д.1.1.3 Защитная аппаратура

Для защиты обмоток трансформатора от перегрузок, связанных с воздействием токов короткого замыкания при пробоях в жидкостях, и уменьшения разложения жидкого материала в момент пробоя необходимо обеспечить минимально короткое время горения дуги и ограничить силу тока при пробое. Для выполнения первого условия в цепи обмотки низкого напряжения трансформатора предусматривается автоматический выключатель, время срабатывания которого не должно превышать 0,02 с. Ограничение силы тока при пробое образца жидкости может быть достигнуто за счет выбора трансформатора

соответствующим реактансом или включением токоограничивающего сопротивления в пределах от 0,2 до 1,0 Ом на 1 В высокого напряжения испытательного трансформатора для напряжений до 110 кВ включительно. При определении пробивного напряжения синтетических жидких материалов на основе хлорированных ароматических углеводородов, кремнийорганических веществ и др. продукты разложения, образующиеся при первых пробоях в существенно снижают пробивное напряжение жидкости последующих пробоях. Для устранения этого влияния для таких случаев может быть использована установка, выполненная по схеме рисунке Л.2. При этом продолжительность пробоя становится настолько малой (в пределах ± 5 мкс), что разложением материала пренебречь. практически онжом квадратическая ошибка результатов определения пробивного напряжения жидкого материала при последовательных пробоях в одной порции составляет не более предела ± 2.5 %.

I - шаровой разрядник; 2 - поджигающий электрод; 3 - сосуд с жидким диэлектриком; 4 - электроды в жидкости; 5 - повышающий и регулировочный трансформаторы RI-R4 сопротивления

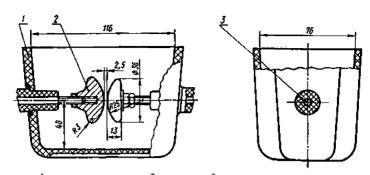
Рисунок Д.2 — Принципиальная схема установки для быстрого отключения образца жидкого электроизоляционного материала после пробоя

Устройство действует по принципу отсечки напряжения, при этом основным элементом является шаровой разрядник (1) с поджигающим электродом (2). По мере подачи напряжения на образец жидкости (3) и на разрядник нижняя полусфера (при помощи механического приспособления, действующего синхронно с регулировочным трансформатором) удаляется от верхней на такое расстояние, которое обеспечивает сохранение электрической прочности воздушного зазора.

Значение сопротивлений R в схеме подбирают таким образом, чтобы в момент пробоя жидкости обеспечивался пробой поджигающего промежутка. При этом напряжение на разряднике падает до значения, недостаточного для повторного пробоя образца жидкости, дуга в которой до этого момента горела лишь за счет стекания зарядов с емкости между электродами.

Д.1.1.4 Регулирование напряжения

Регулирующее устройство должно обеспечивать плавный подъем напряжения с постоянной скоростью, равной 2 кB/с \pm 20 %. Предпочтительно применение автоматической системы подъема напряжения.


Д.1.1.5 Измерение испытательного напряжения

Напряжение должно измеряться амплитудным вольтметром или вольтметром иного типа, который присоединяют к обмотке высокого или низкого напряжения испытательного трансформатора или к специальной измерительной обмотке трансформатора. Применяемые приборы, если они установлены на стороне ВН испытательного трансформатора, должны быть отградуированы по шаровому разряднику в воздухе по ГОСТ 17512 на все значения напряжения, которые желательно измерить. Снятие соответствующих градуировочных кривых при применении шарового разрядника должно проводиться совместно с включенной в схему измерительной ячейкой. Шаровой разрядник может отключаться во время проведения обычных испытаний, если известно, что наличие разрядника не оказывает существенного влияния на отношение значений напряжения, полученного при помощи шарового разрядника, к показанию вторичного (показывающего) прибора (вольтметра). Приборы, применяемые при измерении напряжения, должны иметь класс точности не ниже 1,5.

Применяют регистрирующие приборы или приборы с цифровой системой отсчета в сочетании со счетно-печатающим устройством.

Д.1.1.6 Измерительная ячейка

Сосуд для жидкости должен быть изготовлен из материала, который не растворяется в жидких электроизоляционных материалах (и применяемых для очистки ячейки растворителях), а также не оказывает влияния на испытываемые например. электроизоляционного стекла, жидкости. ИЗ электроизоляционной пластмассы. Сосуд должен иметь такую форму, чтобы его стенки во всех случаях находились не менее чем на 12 мм от поверхности электродов. Верхний край сосуда должен находиться примерно на расстоянии 40 мм от горизонтальной плоскости, проходящей через центр электродов. Глубина погружения электрода в жидкий материал должна быть не менее 15 мм. Конструкция измерительной ячейки должна обеспечивать возможность быстрого и простого демонтажа электродов для их очистки и полировки, а также точной юстировки зазора между электродами при повторном монтаже электродов. Примерная конструкция измерительной ячейки, удовлетворяющая указанным требованиям, приведена на рисунке Д.3.

1 - сосуд для жидкости; 2 - электрод; 3 - вводы электродов. Рисунок Д.3 — Измерительная ячейка для определения пробивного напряжения

Допускается, чтобы электроды не находились постоянно в измерительной ячейке, а погружались в сосуд только для проведения испытаний.

Электроды по форме, указанной на рисунке Д.З, должны быть изготовлены из металлов, устойчивых против коррозии, вызываемой испытуемой жидкостью или промывочным составом, и не оказывающие каталитического влияния на окисление испытуемой жидкости. Шероховатость рабочих поверхностей электродов не должна превышать 0,20 мкм на базовой длине l = 0,25 мм.

Электроды должны быть смонтированы так, чтобы их оси располагались на одной горизонтальной линии, лежащей в плоскости, параллельной нижней поверхности испытательной ячейки. Зазор между электродами должен быть в пределах (2,50±0,05) мм. Проверка зазора должна осуществляться шаблоном калибром: шаблон с номинальным размером 2,45 мм должен проходить между электродами, а шаблон с номинальным размером 2,55 мм не должен проходить между электродами.

Д.1.2 Проведение испытаний

Д.1.2.1 Подготовка измерительной ячейки

При применении новой измерительной ячейки или после длительного ее хранения, при изменении типа испытываемой жидкости или после испытания сильно загрязненной жидкости ячейку следует обработать растворителями.

Для промывки ячейки, заполненной нефтяным изоляционным маслом, последовательно керосин или аналогичный **УГЛЕВОДОРОДНЫЙ** применяют растворитель по нормативно-технической документации и петролейный эфир с пределами кипения от 80 до 120°C; ячейки, заполненной хлорированными или фторированными углеводородами, а также кремнийорганическими жидкостями. последовательно толуол по ГОСТ 9880, трихлорбензол или ацетон; ячейки, заполненной касторовым маслом, - ацетон по ГОСТ 2603. При применении легкокипящих растворителей, в результате быстрого испарения последних, электроды могут охладиться, и на их поверхности возможна конденсация влаги. В таких случаях ячейку следует слегка нагреть. Для периодической очистки поверхности электродов следует применять полировочные составы, следы

которых после окончания полировки необходимо тщательно удалять, промывая указанными растворителями.

В тех случаях, когда визуально обнаружено потемнение поверхности электродов, эти электроды должны быть предварительно демонтированы, отполированы замшей, промыты растворителем и вновь смонтированы. После обработки, указанной выше, ячейку ополаскивают испытываемой жидкостью и затем заполняют порцией жидкости, предназначенной для испытания. В тех случаях, когда ежедневно проводят контрольные, приемо-сдаточные и др. испытания жидкого электроизоляционного материала, а значения пробивного напряжения жидкости не ниже установленных норм, обработка испытательной ячейки сводится к ее ополаскиванию испытываемой жидкостью. В нерабочем состоянии измерительную ячейку необходимо хранить заполненной жидким материалом. При этом пробивное напряжение такой жидкости должно быть в пределах норм на этот показатель для данного типа жидкости.

Д.1.2.2 Подготовка пробы

Сосуд с пробой жидкого материала несколько раз осторожно переворачивают вверх дном с тем, чтобы содержащиеся в пробе случайные загрязнения равномерно распределились по всему объему жидкости. При этом избегают интенсивного встряхивания во избежание попадания в жидкость пузырьков воздуха. Непосредственно после этого небольшим количеством жидкости ополаскивают ячейку, в том числе электроды, затем медленно заполняют ячейку, следя за тем, чтобы струя жидкости стекала по ее стенке и не образовывалось пузырьков воздуха.

При наличии в жидкости пузырьков воздуха их следует удалить осторожным перемешиванием жидкости стеклянной палочкой.

Температура пробы жидкости при испытании не должна отличаться от температуры помещения и должна находиться в пределах от 15 до 35° C.

- Д.1.2.3 Через 10 мин после заполнения ячейки на образец подают электрическое напряжение, плавно поднимают до пробоя и фиксируют значение пробивного напряжения.
- Д.1.2.4 При одном заполнении ячейки жидким электроизоляционным материалом осуществляют шесть последовательных пробоев с интервалами между каждым из них, равными 5 мин. После каждого пробоя при помощи стеклянной палочки жидкость между электродами осторожно перемешивают для удаления продуктов разложения из межэлектродного пространства, не допуская при этом образования воздушных пузырьков.
- $\rm Д.1.2.5\, \Pi pu$ испытании при комнатной температуре жидких материалов с вязкостью более $50\cdot 10^{-6}$ м²/с при $20^{\circ}\mathrm{C}$, когда удаление твердых продуктов разложения из межэлектродного пространства после пробоя затруднено, каждый последующий пробой осуществляют в отдельной порции жидкости, взятой из одной и той же пробы. Перед испытанием вязкая жидкость в закрытом сосуде должна принять температуру помещения (или прогрета в том же сосуде до температуры не выше $40^{\circ}\mathrm{C}$, если при температуре помещения вязкость жидкости настолько велика, что ее перемешать нельзя) и после этого должна быть перемешана путем выдержки сосуда в течении 30 минут с пробой в положении

«пробкой вниз». Непосредственно перед заполнением ячейки сосуд возвращают в обычное положение. Жидкость, предварительно нагретая для ее перемешивания, перед определением должна быть охлаждена в ячейке до окружающей температуры или дополнительно нагрета до той температуры испытания, которая указана в стандарте на данный жидкий электроизоляционный материал. При испытании нагретой жидкости, вязкость которой при температуре испытания менее $50\cdot10^{-6}$ м²/с, допускается проводить все шесть пробоев в одной порции жидкости в соответствии с п. Д.2.4.

Д.1.2.6 При проведении испытаний при повышенной температуре продолжительность нагревания ячейки с жидкостью до температуры испытания должна быть указана в стандарте на испытуемый материал.

Температура жидкости при испытании должна поддерживаться с погрешностью ± 2 °C.

- Д.1.3 Обработка результатов испытания

$$\overline{U}_{\text{rp}} = \frac{1}{n} \sum_{i=1}^{n} U_{\text{rpi}} , \qquad (\text{Д.1})$$

где $\overline{U}_{\mathbf{m},i}$ - величина, полученная при последовательных пробоях, кВ;

n - число пробоев.

Среднюю квадратическую ошибку σ_u среднего арифметического значения пробивного напряжения вычисляют по формуле:

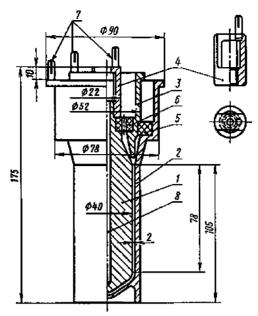
$$\sigma_{u} = \sqrt{\frac{\sum_{i=1}^{n} (U_{\text{mp}i} - \overline{U}_{\text{mp}})^{2}}{n(n-1)}}.$$
(Д.2)

Д.1.3.2 Оценка достоверности результатов испытаний

Значение пробивного напряжения должно отвечать нормированному значению коэффициента вариации V, вычисленного по формуле

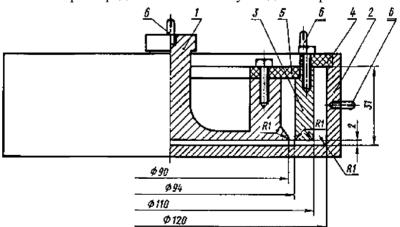
$$V = \frac{\sigma_U \cdot 100}{\overline{U}_{\text{mo}}}.$$
 (Д.3)

Если значение коэффициента вариации превышает 20 %, то в этом случае дополнительно производят еще одно заполнение испытательной ячейки порцией жидкости из того же сосуда с пробой жидкости (после перемешивания последней по Д.2.3), проводят еще шесть определений пробивного напряжения и для расчета по формулам (Д.2) и (Д.3) число пробоев (n) принимают равным 12.


Если коэффициент вариации превышает 20 %, качество диэлектрика следует считать неудовлетворительным.

Д.1.4 Оформление протокола испытания

Протокол испытания должен содержать следующие сведения:


- наименование жидкого электроизоляционного материала;
- наименование стандарта;
- наименование объекта, из которого взята проба (аппарат, емкость и т.д.);

- дата взятия пробы;
- внешний вид жидкости (цвет, наличие включений);
- температуры жидкости и помещения при испытании;
- влажность окружающего воздуха при испытании;
- количество отдельных значений пробивного напряжения;
- среднее арифметическое значение $\overline{U}_{\mathbf{p}}$;
- средняя квадратическая ошибка:
- а) из шести значений, если они удовлетворяют нормированному коэффициенту вариации;
- б) из двенадцати значений при двух заполнениях испытательной ячейки, если они не удовлетворяют нормированному коэффициенту вариации;
 - условия подготовки порции пробы (сушка, фильтрация и т.д.);
 - дата проведения испытания;
 - тип измерительной установки.
- $\rm Z.2$ Методы определения тангенса угла диэлектрических потерь при частоте 50 $\rm \Gamma u$
 - Д.2.1 Измерительная ячейка и аппаратура
- Д.2.1.1 Конструкция ячейки должна быть удобной для ее разборки и тщательной очистки. Электроды должны сохранять первоначальное положение относительно друг друга (т.е. собственная емкость ячейки должна воспроизводиться с погрешностью не более ± 3 %). Типы измерительных ячеек с указанием габаритных размеров представлены на рисунках Д.4, Д.5, Д.6 и Д.7. А также других размеров при сохранении ими воспроизводимости результатов и удовлетворяющих требованиям по стабильности размеров при измерениях, обеспечивающих необходимую напряженность электрического поля и его равномерность в измерительной зоне ячейки.

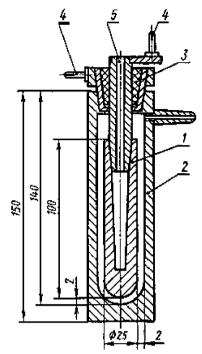

1 - измерительный электрод (внутренний); 2 - высоковольтный электрод (внешний); 3 - охранный электрод; 4 - экранирующий колпачок; 5, 6 - прокладка их твердого изоляционного материала с высоким электрическим сопротивлением; 7 – зажимы для соединения с измерительной схемой; 8 - карман для термометра (термопары)

Рисунок Д.4 – Схема цилиндрической измерительной ячейки трехзажимного типа, применяемой при определении тангенса угла диэлектрических потерь.

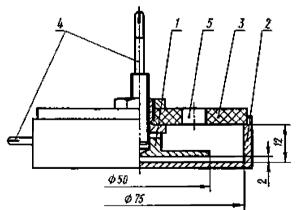

1 - измерительный электрод (внутренний); 2 - высоковольтный электрод (внешний); 3 - охранный электрод; 4, 5 - прокладки их твердого изоляционного материала с высоким электрическим сопротивлением; 6 – зажимы для соединения с измерительной схемой

Рисунок Д.5 – Схема плоской измерительной ячейки трехзажимного типа, применяемой при определении тангенса угла диэлектрических потерь.

1 - измерительный электрод (внутренний); 2 - высоковольтный электрод (внешний); 3 - прокладка из твердого изоляционного материала с высоким электрическим сопротивлением; 4 - зажимы для соединения с измерительной схемой; 5 - карман для термометра (термопары)

Рисунок Д.6 – Схема цилиндрической измерительной ячейки двухзажимного типа, применяемой при определении тангенса угла диэлектрических потерь

1 - измерительный электрод (внутренний);
 2 - высоковольтный электрод (внешний);
 3 - прокладка из твердого изоляционного материала с высоким электрическим сопротивлением;
 4 - зажимы для соединения с измерительной схемой;
 5 - отверстие для термометра (термопары)
 Рисунок Д.7 — Схема плоской измерительной ячейки двухзажимного типа,
 применяемой при определении тангенса угла диэлектрических потерь

Материалы, применяемые при изготовлении ячеек, должны выдерживать требуемые температуры, а изменение температуры не должно влиять на взаимное расположение электродов.

Для изготовления электродов измерительной ячейки должны применяться металлы, устойчивые против коррозии, вызываемой испытуемой жидкостью или промывочным составом, и не оказывающие каталитического влияния на окисление испытуемой жидкости.

Шероховатость рабочих поверхностей электродов по ГОСТ 2789 R_a не должна превышать 0,20 мкм на базовой длине l=0,25 мм.

Твердые электроизоляционные материалы, применяемые в конструкции ячейки, не должны адсорбировать испытываемые жидкости, а также промывочные составы, растворяться в них или оказывать влияния на испытуемые жидкости и результаты измерений.

В качестве твердого электроизоляционного материала применяются плавленый кварц, фторопласт-4 или керамика, отвечающие указанным выше требованиям.

Для измерения тангенса угла диэлектрических потерь допускается использовать измерительные ячейки различных типов (плоскую или цилиндрическую двух- или трехзажимного типа), которые отвечают указанным выше требованиям. Тип измерительной ячейки указывается в стандартах или технических условиях на конкретные виды жидких электроизоляционных материалов.

Ячейки двухзажимного типа допускается использовать при проведении приемо-сдаточных испытаний, входном и периодическом контроле, если такое указание имеется в стандарте на материал. В остальных случаях должны применяться ячейки трехзажимного типа.

Обязательными размерами в конструкции измерительной ячейки являются: зазор между измерительными и высоковольтными электродами, который должен быть равен $(2,0\pm0,1)$ мм; зазор между измерительным и охранным электродами, который должен быть равен $(2,0\pm0,1)$ мм.

Электроды ячейки должны иметь контактные зажимы, обеспечивающие надежное соединение электродов с соответствующими элементами схемы. Все соединения ячейки с измерительным прибором выполняются экранированным кабелем. При этом охранный электрод трехзажимного типа ячейки должен быть присоединен к заземлению и экрану кабеля, соединяющего внутренний (измерительный) электрод с измерительным прибором. При применении ячейки двухзажимного типа экран высоковольтного кабеля должен быть присоединен к заземленной клемме.

Д.2.1.2 Требования к измерительной аппаратуре

Общие требования к установкам для измерения тангенса угла диэлектрических потерь:

- измерительная установка или прибор состоит из источника (генератора) напряжения, измерительного устройства и индикатора;
- источник напряжения должен обеспечивать получение практически синусоидальной формы кривой напряжения (коэффициент амплитуды в пределах

 $\sqrt{2}\pm5$ % или от 1,34 до 1,48; колебания напряжения не более 1 %; изменение частоты не более 0,5 %);

- чувствительность нулевого индикатора должна быть не менее 1 мкВ на одно деление;
- установка должна обеспечивать измерение емкости от $20 \cdot 10^{-12}$ до $1000 \cdot 10^{-12}$ Ф с погрешностью не более $\pm (0.01 \, C_{\star} + 1 \cdot 10^{-12})$ Ф, измерение тангенса угла диэлектрических потерь от 0,0001 до 1,0000 с погрешностью не более $\pm (0.05 \cdot tg \delta_{\kappa} + 0.0002)$.

Напряженность электрического поля при измерении должна быть указана в стандартах или технических условиях на конкретный материал. Если таких указаний не имеется, измерение производят при напряженности $1 \text{ MB} \cdot \text{M}^{-1} \pm 3 \%$.

- Д.2.2 Проведение испытаний
- Д.2.2.1 Подготовка измерительной ячейки

Перед проведением измерения ячейка должна быть полностью демонтирована и все ее детали должны быть дважды тщательно промыты растворителем.

Растворитель, используемый для очистки измерительной ячейки, должен быть технически чистым и храниться в стеклянных сосудах, защищенных от дневного света.

При испытании хлорированных углеводородов для очистки ячейки должны быть использованы хлорированные растворители.

При испытании нефтяных масел для очистки ячейки должны быть использованы углеводородные растворители (петролейный эфир, толуол и др.).

После промывки растворителями все детали ячейки ополаскивают ацетоном и промывают мыльным раствором или детергентом и кипятят в 5 %-ном растворе фосфата натрия в дистиллированной воде не менее 5 мин. Затем несколько раз детали промывают и кипятят в дистиллированной воде в течение 1 ч.

Для удаления влаги детали ячейки сушат при температуре в пределах от 105 до 110° С в течение периода от 60 до 90 минут. Если после сушки и охлаждения ячейку сразу не используют для измерения, ее хранят в эксикаторе с сухим воздухом.

После сушки, детали измерительной ячейки следует охладить до температуры, которая от 5 до 7°С выше комнатной, а затем смонтировать ячейку, избегая прикосновения незащищенными руками к рабочей поверхности электродов (например: данную операцию производят руками в чистых хлопчатобумажных или капроновых перчатках).

Собранную ячейку присоединяют к измерительной схеме и определяют емкость пустой ячейки (C_0) . Одновременно с этим определяют тангенс угла диэлектрических потерь пустой ячейки. При температуре в пределах от 15 до 35°C для трехзажимных ячеек измеренное значение тангенса угла диэлектрических потерь не должно превышать 0,0001, а для двухзажимных - 0,0003. На основании этих измерений оценивают чистоту изоляционных прокладок ячейки. При больших значениях тангенса угла диэлектрических потерь

ячейку следует разобрать и вновь тщательно промыть согласно требованиям указанным выше.

В тех случаях. проводят когда ежедневно испытания жидкого электроизоляционного материала, а значение тангенса угла диэлектрических потерь не выше установленных норм, обработку испытательной ячейки допускается ополаскиванием производить трехкратным испытываемой жидкостью.

Л.2.2.2 Подготовка пробы

В тех случаях, когда электрофизические показатели определяют в пробе жидкости, взятой из электрических аппаратов, или в пробе жидкости, подготовленной для заполнений таких аппаратов, предварительную обработку пробы не осуществляют.

В случае испытания жидких материалов после их транспортировки или хранения на складе необходимо определять электрофизические показатели сухой жидкости. При этом производят предварительную сушку. Способ сушки пробы **указывается** В стандартах на конкретные электроизоляционных материалов. В тех случаях, когда такого указания не имеется, жидкий материал пропускают через фильтрующую воронку типа ВФ ПОР-40 или ВФ ПОР-10 по ГОСТ 25336 диаметром 35 мм при температуре от 60 до 80° С (в зависимости от вязкости жидкости) при давлении от 1333 до 2666 Па (от 10 до 20 мм рт. ст.) с последующей выдержкой при таких условиях в тонком (от 5 до 10 мм) слое в течение 50 мин. В случае маловязких (менее $50 \cdot 10^{-6}$ м²/с при 20°C) жидкостей допускается производить их сушку в эксикаторе в тонком слое (от 5 до 10 мм) в течение 20 ч над твердым осущителем (хлористым кальшием, пятиокисью фосфора, перхлоратом магния и др.). Слой осушителя в эксикаторе от 5 до 10 мм.

Д.2.2.3 Проведение определения тангенса угла диэлектрических потерь

Перед измерением ячейку заполняют испытываемой жидкостью. Не проводя измерения, жидкость выливают из ячейки и повторно заполняют ячейку до уровня от 3 до 5 мм превышающего нижний край охранного электрода.

Примечание — При использовании высоковязких жидких материалов (вязкость при 20° C более $50\cdot10^{-6}$ м 2 /с) последние предварительно нагревают до температуры в пределах от 40 до 60° C.

Заполненную измерительную ячейку помещают в предварительно нагретый до температуры испытания термостат, присоединяют к электрической схеме и после достижения ячейкой заданной температуры проводят измерение. Для измерения при комнатной температуре термостат не используют. Порции жидкости под напряжением выдерживают только в процессе определения тангенса угла диэлектрических потерь жидкости. Отсчет значений тангенса угла диэлектрических потерь проводят не позже чем через 3 мин после включения напряжения.

При определении тангенса угла диэлектрических потерь вязких (более $50 \cdot 10^{-6}$ м 2 /с при 20°C) жидкостей, например, жидкостей на основе хлорированных ароматических углеводородов (типа совола, совтола 10 и других) при одном значении температуры (выше комнатной) процедура заполнения ячейки

указывается в стандартах на конкретные виды жидких электроизоляционных материалов. Если такого указания не имеется, применяют следующую методику. Чистую собранную ячейку нагревают до температур от 5 до 10°С превышающей заданную температуру измерения, и заполняют порцией предварительно нагретой жидкости. Для промывки ячейки жидкость выливают и ячейку вновь заполняют порцией нагретой жидкости. Затем ячейку с жидкостью выдерживают 20 мин при заданной температуре, после чего проводят определение тангенса угла диэлектрических потерь.

При проведении двух определений тангенса угла диэлектрических потерь жидкостей измерение предпочтительно осуществлять в двух отдельных ячейках. Допускается последовательное использование одной ячейки при условии обработки ячейки после первого определения по Д.2.2.1.

Расхождение между результатами двух определений, при измерении тангенса угла диэлектрических потерь жидкости, не должно превышать 15 % от значения большего результата +0,0002.

В противном случае проводят повторно еще два определения на вновь подготовленных по Д.2.2.1 ячейках с двумя порциями жидкости, взятыми из той же пробы.

Если расхождения между результатами измерений при повторном определении характеристик превышают допустимые пределы, то продолжают измерения на новых порциях диэлектрика до получения результатов, удовлетворяющих требованиям настоящего стандарта.

В тех случаях, когда в стандартах на конкретные виды жидких электроизоляционных материалов предусмотрено определение тангенса угла диэлектрических потерь этих материалов при нескольких температурах, эти измерения должны проводиться, начиная от температуры, ближайшей к температуре помещения.

Тангенс угла диэлектрических потерь вычисляют по формулам, приведенным в таблице Д.1.

За результат измерения тангенса угла диэлектрических потерь принимают меньшее из двух измеренных значений.

Таблица Д.1

Вид измерительной ячейки	Формула для расчета $tg\delta$
Трехзажимная ячейка	
$tq\delta_1<0,1$	$tqoldsymbol{\delta}_1 - rac{C_0}{C_1} \cdot tqoldsymbol{\delta}_0$
$tq \delta_1 > 0.1$	$tg\delta_1$
Двухзажимная ячейка	C_1 C_0 C_0
$tq\delta_1<0,1$	$\frac{C_1}{C_1 - C_{\pi}} (tq\delta_1 - \frac{C_0}{C_1} tq\delta_0)$
$tq\delta_1>0,1$	$\frac{C_1 \cdot tq \delta_1}{C_1 - C_{\mathrm{rr}}(1 + tq^2 \delta_1)}$

Примечание – в формулах настоящей таблицы:

 C_0 , $tg\delta_0$ - соответственно емкость (Фарад) и тангенс угла диэлектрических потерь измерительной ячейки с воздухом;

 C_1 , $tg\delta_1$, - соответственно емкость (Фарад) и тангенс угла диэлектрических потерь измерительной ячейки, заполненной испытуемым диэлектриком;

 C_n - паразитная емкость ячейки, обусловленная наличием твердых электроизоляционных прокладок, пустот, емкости проводов и т.д., (Фарад).

$$C_{\pi} = \frac{C_0 \varepsilon_{\kappa} - C_{\kappa}}{\varepsilon_{\kappa} - 1}, \tag{A.4}$$

где C_{κ} - емкость измерительной ячейки, заполненной жидкостью с известным значением ε_{κ} (калибровочной жидкостью) и $tg\delta_x < 0.01$ Ф.

Д.2.2.4 Оформление протокола испытания

Протокол испытания должен содержать:

- наименование материала;
- обозначение стандарта;
- наименование объекта, из которого взята проба (аппарат, емкость);
- дату отбора пробы;
- внешний вид жидкости (цвет, наличие включений);
- условия подготовки порции пробы (сушка, фильтрация и т.д.);
- тип измерительного оборудования;
- температуру порции пробы при измерении, в градусах Цельсия;
- тип измерительной ячейки;
- значение средней напряженности электрического поля при измерении, MB м ⁻¹;
 - минимальное значение тангенса угла диэлектрических потерь;
 - температуру (в градусах Цельсия) и влажность окружающей среды.

Д.3 Метод определения кислотного числа

Д.3.1 Аппаратура, реактивы и материалы

Колбы Кн-1-100-29/32 ТС, Кн-2-100-34 ТХС, Кн-2-100-22 ТХС, Кн-1-250-29/32 ТС, Кн-2-250-34, КГУ-2-1-1000-29/32 ТС, КГУ-2-2-1000-34 ТХС по ГОСТ 25336.

Дефлегматор елочный длиной не менее 400 мм.

Холодильники ХТП-1-400-14/23, ХНЫ-400-29/32 ХС, ХШ-3-400 ТХС по ГОСТ 25336 или холодильник воздушный, или трубки стеклянные длиной 700—750 мм с внутренним диаметром 10-12 мм.

Цилиндры по ГОСТ 1770 типов 1-50; 1-100; 3-50; 3-100, 1-1000, 1-2000.

Бюретки по НТД типов 1-2-25; 3-2-25; 6-2-2; 6-2-5; 7-2-3; 7-2-10.

Пипетки 2-1-50, 2-3-50 по НТД.

Колбы 1-100-2, 2-100-2, 1-1000-2, 2-1000-2 по ГОСТ 1770.

Стакан или чашка выпарительная по ГОСТ 9147.

Электроплитка с закрытой спиралью любого типа.

Стаканчики для взвешивания (бюксы) по ГОСТ 25336.

Воронка с обогревом.

Секундомер или часы песочные ЧПН-5.

Склянка (бутылка) из темного стекла или окрашенная в черный цвет.

Шпатель.

Эксикатор по ГОСТ 25336.

Капельница лабораторная стеклянная по ГОСТ 25336. Шкаф сушильный или печь муфельная.

Весы лабораторные общего назначения с пределом взвешивания 200 г не ниже 2-го класса точности.

Весы технические.

Трубка хлоркальциевая.

Спирт этиловый ректификованный по ГОСТ 18300.

Калия гидроокись, х. ч. или ч. д. а., 0,05 моль/дм 3 спиртовой титрованный раствор.

Кальций хлористый 2-водный по ТУ 6-09-5077 или кальций хлористый по ТУ 6-09-47

Натронная известь или аскарит.

Калий фталево-кислый кислый (бифталат калия).

Кислота янтарная, х.ч. или ч.д.а. по ГОСТ 6341.

Бензол по ГОСТ 5955 или ГОСТ 9572. Ксилол по ГОСТ 9410 или ГОСТ 9949 Толуол по ГОСТ 14710 или ГОСТ 9880.

Щелочной голубой 6Б, готовят следующим образом: 0,8 г щелочного голубого 6Б растворяют в 1000 см³ этилового спирта 96 %, затем добавляют 1500 см³ бензола до полного растворения индикатора. После добавления бензола смесь выдерживают в течение 12 ч, затем прозрачный раствор отфильтровывают.

Кислота соляная 0,1 моль/дм³.

Допускается использовать стандартный раствор соляной кислоты, приготовленный из фикса-нала..

Индикатор нитрозиновый желтый, 0,5 %-ный водный раствор.

Индикатор фенолфталеин по ТУ 6–09–5360, 1 % спиртовой раствор, приготовленный по ГОСТ 4919.1.

Вода дистиллированная рН 5,4-6,6.

Допускается применять реактивы, качество которых не ниже указанных в стандарте.

Д.3.2 Подготовка к испытанию

- Д.3.2.1 Отбор проб проводят по ГОСТ 2517.
- Д.3.2.2 Для приготовления титрованных растворов применяют свежеперегнанный этиловый спирт. Перегонку спирта осуществляют в колбе вместимостью 1000 см³ с дефлегматором.
- Д.3.2.3 Для приготовления 85 % раствора этилового спирта смешивают 89 см 3 этилового спирта и 11 см 3 дистиллированной воды.
 - Д.3.2.4 Приготовление индикаторов

Для приготовления 0,5 % водного раствора индикатора нитрозинового желтого 0,5 г индикатора растворяют в 100 см³ дистиллированной воды.

Для установления титра спиртового раствора гидроокиси калил применяют перекристаллизованный кислый фталево-кислый калий (бифталат калия) или янтарную кислоту.

70 г бифталата калия растворяют в 200 см³ дистиллированной горячей воды. Перекристаллизацию ведут при температуре не ниже 25°C, так как при более низкой температуре образуются кристаллы трифталата калия – более кислой соли. Полученные кристаллы сушат до постоянной массы при (105±5)°C.

100 г янтарной кислоты растворяют при кипячении в 165 мл дистиллированной воды, раствор фильтруют через воронку с обогревом. После охлаждения раствора кристаллы отфильтровывают на отсасывающей воронке и снова перекристаллизовывают. Кристаллы высушивают при (105±5)°С до постоянной массы.

Перекристаллизованные бифталат калия и янтарную кислоту помещают в бюксы и хранят в эксикаторе. Перед каждым установлением титра бифталат калия и янтарную кислоту сушат 1 ч при (105±5)°С.

Д.3.2.5 Приготовление 0,05 моль/дм³ спиртового раствора гидроокиси калия.

3 г кристаллической гидроокиси калия взвешивают с погрешностью не более 0.1 г, растворяют в 1000 см 3 этилового спирта. Полученный раствор тщательно перемешивают и выдерживают не менее 24 ч в темном месте.

Отстоявшийся прозрачный раствор отделяют от осадка декантацией в склянку для бюретки или в бутылку с пробкой из темного стекла или окрашенные в черный цвет.

Бюретка должна быть защищена трубкой с натронной известью или аскаритом.

Титр раствора гидроокиси калия устанавливают по бифталату калия. Допускается при отсутствии бифталата калия устанавливать титр по янтарной кислоте.

В коническую колбу вместимостью 250 см³ помещают от 0,05 до 0,07 г бифталата калия или янтарной кислоты, взвешенных с погрешностью не более, 0,0002 г, и растворяют их в 50 см³ свежей кипяченой дистиллированной воды, добавляют от 3 до 5 капель фенолфталеина и титруют 0,05 моль/дм³ раствором гидроокиси калия при непрерывном перемешивании до появления розовой окраски.

Окраска должна быть устойчивой без перемешивания в течение 30 с.

Титр раствора гидроокиси калия в мг/см³ определяют по формуле:

$$T = \frac{56,11 \cdot m}{9 \cdot V} 1000 \tag{Д.5}$$

где 56,11 – д эквивалентная масса гидроокиси калия, в граммах;

T – масса бифталата калия или янтарной кислоты, в граммах;

- Э эквивалентная масса бифталата калия или янтарной кислоты, соответственно равная 204,23 и 59,04 грамм;
- V_1 объем 0,05 моль/дм 3 раствора гидроокиси калия, израсходованный на титрование массы бифталата калия или янтарной кислоты, в сантиметрах кубических.

За результат определения титра принимают среднее арифметическое не менее трех параллельных определений, расхождение между которыми не превышает 0,03 мг. Титр раствора проверяют не реже одного раза в две недели.

Д.3.2.6Подготовка образца

Пробу нефтепродукта тщательно перемешивают встряхиванием в течение 5 мин в склянке, заполненной не более чем на 3 / $_{4}$ ее объема.

Вязкие и парафинистые нефтепродукты предварительно нагревают до 60°C.

При испытании пластичных смазок с поверхности испытуемой смазки снимают и отбрасывают верхний слой. Затем в нескольких местах (не менее трех) отбирают пробы примерно в равных количествах на расстоянии не менее 5 мм от стенок сосуда, помещают в фарфоровую чашку и тщательно перемешивают.

Д.3.3 Проведение испытания

Таблица Д.2

Кислотное число, мг КОН/г	Масса пробы, г
До 0,2 включительно	20 ±2
Свыше 0,2 до 0,5 включительно	10 ±2 5,
свыше 0,5 до 1,0 включительно	0±0,5 2,
свыше 1,0	0±0,5

При испытании пластичных смазок в коническую колбу вместимостью 250 см³ помещают от 5 до 8 г испытуемого продукта, взвешенного с погрешностью не более 0,01 г.

Д.3.3.2В другую коническую колбу наливают 50 см³ 85 % раствора этилового спирта и кипятят с обратным холодильником водяным или воздушным в течение 5 мин. В прокипяченный спирт добавляют от 8 до 10 капель (0,25 см³) индикатора нитрозинового желтого и нейтрализуют в горячем состоянии при непрерывном перемешивании, 0,05 нормальным спиртовым раствором гидроокиси калия до первого изменения желтой окраски в зеленую.

Д.3.3.3 Определение кислотного числа

В коническую колбу помещают пробу испытуемого продукта в количестве, указанном в Д.З.З.1. Добавляют при взбалтывании не менее 40 см³ щелочного голубого 6Б до полного растворения пробы. Затем содержимое колбы титруют при легком взбалтывании спиртовым раствором гидроокиси калия до изменения голубой окраски на красную или голубого оттенка на красный.

Параллельно проводят контрольный опыт без испытуемой пробы, применяя то же количество раствора щелочного голубого 6Б,

В случае плохого растворения пробы содержимое колбы кипятят с обратным холодильником в течение 5 мин при постоянном перемешивании.

При испытании смазки продолжительность кипячения увеличивают на 5 мин. после полного ее растворения.

Допускается проводить определение кислотного числа следующим образом: нейтрализованный горячий спирт, подготовленный как указано в Д.3.3.2, приливают в колбу с испытуемым продуктом. Содержимое колбы кипятят с обратным холодильником в течение 5 мин при постоянном перемешивании. Смесь в горячем состоянии титруют спиртовым раствором гидроокиси калия, как указано в Д.3.3.3.

При наличии в смеси зеленой (или зеленой с оттенками) окраски титрование раствором гидроокиси калия не производят. В этом случае Органические кислоты в испытуемом нефтепродукте отсутствуют.

разногласиях в оценке качества нефтепродуктов определение кислотного числа проводят с применением индикатора щелочного голубого 6Б.

Д.3.4 Обработка результатов

 Π .3.4.1 Кислотное число испытуемой пробы (K_1) в миллиграммах КОН/г при использовании в качестве индикатора щелочного голубого вычисляют по формуле:

$$K_1 = \frac{(V_3 - V_4) \cdot T}{m_1} \tag{Д.6}$$
 где V_3 — объем 0,05 моль/дм³ спиртового раствора гидроокиси калия,

калия, израсходованный на титрование, в сантиметрах кубических;

 V_4 – объем 0,05 моль/м³ спиртового раствора гидроокиси калия, израсходованный на контрольный опыт, в сантиметрах кубических;

T – титр 0.05 моль/дм³ спиртового раствора гидроокиси калия, в граммах на сантиметр кубический:

 m_1 — масса пробы, г.

Кислотное число испытуемой пробы (К2) в мг КОН/г при использовании в качестве индикатора нитрозинового желтого определяют по формуле:

$$K_2 = \frac{V_3 \cdot T}{m_1} \tag{Д.7}$$

где V_3 – объем 0,05 моль/дм³ спиртового раствора гидроокиси калия, израсходованный на титрование, в сантиметрах кубических;

T – титр 0.05 моль/дм³ спиртового раствора гидроокиси калия, в миллиграммах на сантиметр кубический;

 m_1 — масса пробы, в граммах.

Д.3.4.23а результат испытания принимают среднее арифметическое результатов двух параллельных определений.

Два результата определений, полученные одним лаборантом, признаются достоверными при доверительной вероятности 0,95 %, если расхождение между ними не превышает значений, указанных в таблицах Д.2, Д.3.

Два результата испытаний, полученные в двух разных лабораториях, признаются достоверными при доверительной вероятности 95 %, если расхождение между ними не превышает значений, указанных в таблице Д.З.

Таблица Д.3.

Кислотное число, мг КОНД	Сходимость	Воспроизводимость
До 0,5 включительно	0,06	0,10
Свыше 0,5 до 1,0 включительно	0,10	0,20
Свыше 1,0	0,20	0,40

Результаты испытания округляют до второго десятичного знака.

- Д.4 Метод определения температуры вспышки в закрытом тигле
- Д.4.1 Аппаратура, реактивы и материалы
- Д.4.1.1 При определении температуры вспышки в закрытом тигле применяют:
- аппарат для определения температуры вспышки нефтепродуктов в закрытом тигле типа ТВ3 (ТВ-1), а также автоматический прибор типа АТВ3 (АТВ-1), обеспечивающие точность метода;
- термометры типов ТИН I-1, ТИН I-2, ТН I-1, ТН I-2, ТН 6 по ГОСТ 400. Термометр ТН 6 применяют при испытании продуктов с температурой вспышки ниже 12°C:
- растворители: Нефрас C2-80/120, Нефрас C3-80/120, Нефрас C-50/170 по ГОСТ 8505 или бензин прямой перегонки, не содержащий присадок, или углеводороды галоидопроизводные;
 - секундомер;
- барометр или барометр-анероид по технической документации, утвержденной в установленном порядке;
- экран, окрашенный с внутренней стороны черной краской, каждая секция которого имеет ширину около 46 см и высоту 61 см;
- кальций хлористый гранулированный или натрий хлористый по ГОСТ 4233 или натрий сернокислый безводный по ГОСТ 4166;
 - бумага фильтровальная лабораторная по ГОСТ 12026;
 - смесь охладительная или камера холодильная.

Допускается применять импортную посуду, аппаратуру и реактивы соответственно класса точности и квалификации не ниже предусмотренных стандартом.

Примечание. Индекс «3» указывает на назначение прибора или аппарата (для определения температуры вспышки в закрытом тигле).

- Д.4.2 Подготовка к испытанию
- Д.4.2.1 Подготовка образца

Испытуемый образец продукта перед испытанием перемешивают в течение 5 мин встряхиванием в склянке, заполненной не более чем на $\frac{2}{3}$ ее вместимости.

Образцы продуктов, имеющих температуру вспышки ниже 50°C, охлаждают до температуры, которая не менее чем на 17°C ниже предполагаемой температуры вспышки.

Образцы очень вязких и твердых продуктов перед испытанием нагревают до достаточной текучести, но не выше температуры, которая на 17°C ниже предполагаемой температуры вспышки.

Образцы нефтепродуктов, содержащие воду в количестве более 0,05 %, обезвоживают обработкой их свежепрокаленными и охлажденными хлористым натрием, хлористым кальцием или сернокислым натрием или фильтрованием через фильтровальную бумагу, после этого на испытание берут верхний слой.

При необходимости (в случае содержания в образце воды) допускается непродолжительный нагрев образца, но не выше температуры, которая на 17°C ниже предполагаемой температуры вспышки.

Если предполагается, что образец нефтепродукта содержит летучие примеси, то обработки, указанные выше, исключают и на испытание берут верхний слой.

Д.4.2.2 Подготовка прибора

Прибор устанавливают на ровном устойчивом столе в таком месте, где нет заметного движения воздуха и свет настолько затемнен, что вспышка хорошо видна. Для защиты от движения воздуха прибор с трех сторон окружают экраном, Допускается при применении нескольких приборов соответственно увеличить ширину экрана.

Тигель и крышку прибора промывают растворителем, высушивают, удаляя все следы растворителя, и охлаждают до температуры не менее чем на 17°C ниже предполагаемой температуры вспышки.

При испытании продуктов с температурой вспышки до 50°C нагревательную ванну охлаждают до температуры окружающей среды. Тигель должен иметь температуру образца, подготовленного по Д.4.2.1.

Испытуемый продукт наливают в тигель до метки, не допуская смачивания стенок тигля выше указанной метки.

Тигель закрывают крышкой, устанавливают в нагревательную ванну, вставляют термометр и зажигают зажигательную лампочку, регулируя пламя так, чтобы форма его была близкой к шару диаметром от 3 до 4 мм.

При испытании токсичного продукта или продукта, который выделяет токсичные вещества при разложении и горении, испытание проводят при соблюдении правил по технике безопасности, принятых для работ с токсичными веществами. В этом случае прибор устанавливают в вытяжном шкафу или применяют соответствующий противогаз и дегазационные средства.

- Д.4.2.3 Для контроля правильности результатов определения, а также проверки аппаратов типов ТВЗ (ТВ-1), полуавтоматических приборов типа АТВЗ (АТВ-1) допускается использовать стандартные образцы температуры вспышки в закрытом тигле ГСО 4088, ГСО 4092 или других образцов аналогичного назначения. Порядок применения ГСО изложен в свидетельстве.
 - Д.4.3 Проведение испытания
- Д.4.3.1 Нагревательную ванну включают и нагревают испытуемый продукт в тигле.
- Д.4.3.2Перемешивание ведут, обеспечивая частоту вращения мешалки от 1,5 до $2,0c^{-1}$, а нагрев продукта со скоростью от 5 до 6° С в 1 мин.
 - Д.4.3.3 Измеряют барометрическое давление.

Д.4.3.4Испытания на вспышку проводят при достижении температуры на 17°C ниже предполагаемой температуры вспышки.

Испытание на вспышку проводят при повышении температуры на каждый 1°C для продуктов с температурой вспышки до 104°C и на каждые 2°C для продуктов с температурой вспышки выше 104°C.

В момент испытания на вспышку перемешивание прекращают, приводят в действие расположенный на крышке механизм, который открывает заслонку и опускает пламя. При этом пламя опускают в паровое пространство за 0,5 с, оставляют в самом нижнем положении 1 с и в верхнее положение.

Д.4.3.53а температуру вспышки каждого определения принимают показания термометра в момент четкого появления первого (синего) пламени над поверхностью продукта внутри прибора. Не следует принимать за температуру вспышки окрашенный (голубоватый) ореол, который иногда окружает пламя перед тем, как оно вызывает фактическую вспышку.

При появлении неясной вспышки она должна быть подтверждена последующей вспышкой при повышении температуры на 1 или 2°С. Если при этом вспышка не произойдет, испытание повторяют вновь.

Д.4.3.6 При применении газовой зажигательной лампочки последняя в процессе испытания должна находиться в зажженном состоянии для исключения возможности проникновения газа в тигель.

Если в процессе какого-либо испытания на вспышку зажигательная лампочка погаснет в момент открытия отверстий крышки, то результат этого определения не учитывают.

Д.4.3.7 Если испытанию подвергают продукт с неизвестной температурой вспышки, то проводят предварительно определение по Д.4.3.1–Д.4.3.6.

Примечание — Данный результат не учитывают, если расхождения между этим определением и последующим превышают нормы, указанные ниже в Д.4.4.2–Д.4.4.4.

Д.4.4 Обработка результатов

Д.4.4.1 Поправка на барометрическое давление.

Вычисляют температуру вспышки с поправкой на стандартное барометрическое давление 101, 325 кПа, 1,013 бар, 760 мм рт.ст. алгебраическим сложением найденной температуры и поправки, определенной по одной из следующих формул

$$\Delta t = \frac{101,325 - P}{3.3} \cdot 0.9,$$
 (Д.8)

$$\Delta t = \frac{1,013 - P}{0,033} \cdot 0,9,\tag{Д.9}$$

$$\Delta t = 0.0362(760-P),$$
 (Д.10)

где P – фактическое барометрическое давление в (Д.8) - кПа, (Д.9) - бар, (Д.10) - мм рт. ст.

Допускается пользоваться поправками, вычисленными с погрешностью не более 1° С по формуле (Д.10), приведенными в таблице Д.4.

Таблица Д.4

Б	Поправки				
кПа	кПа бары мм рт. ст.				
84,8-88,4	0,848-0,884	636-663	Плюс 4		
88,5-92,1	0,885-0,921	664-691	Плюс 3		
92,2-95,7	0,922-0,957	692-718	Плюс 2		
95,8-99,4	0,958-0,994	719-746	Плюс 1		
103,2-106,8	1,032-1,068	774-801	Минус 1		

Д.4.4.2 За результат испытания принимают среднее арифметическое не менее двух последовательных определений. Полученное значение температуры вспышки (°C) округляют до целого числа.

Д.4.4.3 Точность метода:

- сходимость двух результатов определений, полученные одним исполнителем в одной лаборатории, признаются достоверными (с доверительной вероятностью 0,95), если расхождения между ними не превышают значений, указанных в таблице Д.5.
- воспроизводимость двух результатов испытаний, полученные в двух разных лабораториях, признаются достоверными (с доверительной вероятностью 0,95), если расхождения между ними не превышают значений, приведенных в таблице Д.5.

Таблица Д.5

Температура вспышки,°С	Сходимость, °С	Воспроизводимость, °С
До 104	2	4
Св. 104	5	8

Д.5 Метод определения содержания механических примесей

Д.5.1 Аппаратура, материалы и реактивы

Насос водоструйный или вакуумный.

Шкаф сушильный или термостат, обеспечивающие температуру нагрева (105 \pm 2)°C.

Баня водяная или электроплитка с закрытой спиралью.

Весы аналитические с погрешностью взвешивания не более 0,0002 г.

Стеклянная лабораторная посуда и оборудование по ГОСТ 25336:

- стаканы B-1-600 TC, B-1-1000 TC или колбы Кн-2-500-34 TC, Кн-2-500-50 TC, Кн-2-750-34 TC, Кн-2-1000-34 TC, Кн-2-1000-42 TC, Кн-2-1000-50 TC;
 - стаканчики СВ 14/8, 19/9, 24/10, 34/12;
 - воронки В 56-80ХС, В75-110ХС;
 - колбы 1-500, 1-1000;
 - эксикаторы 1-190; 1-250; 2-190, 2-250.

Воронки Бюхнера 1, 2, 3, 4, 5 по ГОСТ 9147.

Воронка для горячего фильтрования.

Стеклянная палочка длиной от 150 до 200 мм с оплавленным концом.

Промывалка с резиновой грушей.

Беззольный бумажный фильтр марки «Белая лента» или «Красная лента».

При разногласиях в оценке качества продукции по механическим примесям применяют бумажный фильтр марки «Белая лента».

Нефрас-С 50/170 по ГОСТ 8505.

Спирт этиловый ректификованный технический по ГОСТ 18300.

Эфир этиловый технический.

Толуол нефтяной по ГОСТ 14710.

Смесь этилового спирта и толуола один к четырем (по объему).

Смесь этилового спирта и этилового эфира четыре к одному (по объему).

Серебро азотнокислое по ГОСТ 1277, раствор 0,1 моль/дм³.

Вода дистиллированная по ГОСТ 6709.

Все растворители перед применением должны быть профильтрованы.

Д.5.2 Подготовка к испытанию

 $\rm Д.5.2.1 Пробу$ нефтепродукта хорошо перемешивают встряхиванием в течение 5 мин в емкости, заполненной не более $^{3}/_{4}$ ее вместимости. Парафинистые и вязкие нефтепродукты предварительно нагревают до температуры в пределах от 40 до 80° C.

Пробы присадок к маслам нагревают до температуры в пределах от 70 до $80^{\circ}\mathrm{C}$ и затем тщательно перемешивают стеклянной палочкой в течение 5 мин.

Д.5.2.2При анализе нефтепродуктов, содержащих воду, затрудняющую фильтрование, пробу продукта обезвоживают перегонкой или фильтруют раствор пробы по Д.5.3.2.

Примечание. Если для определения содержания механических примесей берется проба массой менее 50 г, обезвоженную пробу перемешивают встряхиванием и отбирают требуемую массу.

Д.5.2.3 Бумажный или стеклянный фильтр промывают тем же растворителем, который применяют при испытании. Бумажный фильтр помешают в чистый, сухой стаканчик для взвешивания (бюксу). Стаканчик с фильтром с открытой крышкой или стеклянный фильтр сушат в сушильном шкафу при температуре (105±2)°С в течение 45 мин, после чего стаканчик закрывают крышкой, охлаждают в эксикаторе в течение 30 мин и взвешивают с погрешностью не более 0,0002 г.

Стаканчик высушивают и взвешивают до получения расхождения между двумя последовательными взвешиваниями не более 0,0004 г. Повторные высушивания фильтра производят в течение 30 мин.

Если для испытания в качестве растворителя используют спирто-толуольную или спирто-эфирную смесь, то перед высушиванием и доведением до постоянной массы фильтры дополнительно обрабатывают 50 см³ горячего спирта.

При необходимости фильтр промывают 50 см³ горячей дистиллированной воды.

Д.5.3 Проведение испытания

Д.5.3.1В стакан вместимостью 600 или 1000 см3 помещают подготовленную пробу испытуемого продукта и разбавляют подогретым растворителем (бензином) в соответствии с таблицей Д.6.

Таблина Л.6

Характеристика образца	Масса пробы, г	Погрешность взвешивания, р	Отношение объема растворителя к массе пробы
Нефтепродукты с вязкостью при			
100°C:			
не более 20 мм ² /с включительно	100	0,05	от 2 до 4
свыше ² 0 мм ² /с	50	0,01	от 4 до 6
Нефть с массовой долей			
механическихпримесей не более 1 %			
включительно	50	0,01	от 5 до 10
Топливо котельное с массовой долей			
механических примесей:			
не. более 1 % включительно	25	0,01	от 5 до 30
свыше 1 %	10	0,01	до 15
Присадки	10	0,01	до 15

При определении механических примесей в нефтях, темных неочищенных нефтепродуктах, смазочных маслах с присадками с повышенным щелочным числом и в присадках допускается в качестве растворителя применять толуол.

Бензин и толуол для растворения пробы испытуемых продуктов подогревают на водяной бане.

Кипение растворителя при подогреве не допускается.

Д.5.3.2 Содержимое стакана фильтруют через бумажный или стеклянный фильтр, помещенный в стеклянную воронку, укрепленную в штативе.

Раствор наливают на фильтр по стеклянной палочке, воронку с фильтром наполняют раствором не более чем на 3/4 высоты фильтра. Остаток на стакане смывают на фильтр чистым бензином (толуолом) до тех пор, пока капля фильтрата, помещенная на фильтровальную бумагу, не будет оставлять масляного пятна после испарения,

Остатки нефтепродукта или твердые примеси, приставшие к стенкам стакана, снимают стеклянной палочкой и смывают на фильтр горячим чистым бензином (толуолом).

Д.5.3.3 Если испытуемый продукт содержит воду, затрудняющую фильтрование, то раствор образца отстаивают от 10 до 20 мин, после чего сначала фильтруют бензиновый (толуольный) раствор, осторожно сливая его с отстоя, затем отстой разбавляют от 5 до 15 кратным (по объему) количеством спиртоэфирной смеси и переносят на фильтр. Остаток в колбе смывают на фильтр спирто-эфирной смесью и подогретым бензином (толуолом).

Д.5.3.4 При определении содержания механических примесей в медленно фильтрующихся продуктах допускается фильтровать раствор образца, промывать фильтрат под вакуумом и применять воронку для горячего фильтрования.

Для фильтрования под вакуумом воронку для фильтрования с помощью резиновой пробки присоединяют к колбе для фильтрования под вакуумом, соединенной с насосом. Бумажный фильтр смачивают растворителем и помещают в воронку так, чтобы фильтр плотно прилегал к стенкам воронки.

При фильтровании в воронке Бюхнера загнутые края фильтра должны плотно прилегать к стенкам воронки.

Воронку заполняют раствором не более чем на ³/₄ высоты фильтра, каждую новую порцию добавляют после того, как предыдущая стекла достаточно полно.

При фильтровании с применением воронки для горячего фильтрования не допускается вскипание фильтруемого раствора.

Д.5.3.5 После фильтрации фильтр с осадком при помощи «промывалки» с резиновой грушей промывают подогретым бензином до тех пор, пока на фильтре не будет следов нефтепродукта и растворитель не будет стекать совершенно прозрачным и бесцветным.

При определении механических примесей в маслах с присадками и повышенным щелочным числом допускается промывать фильтр с осадком толуолом.

При определении механических примесей в маслах с присадками при наличии на фильтре осадка, не растворяющегося в бензине и толуоле, допускается дополнительно промыть фильтр подогретой спирто-толуольной смесью.

Д.5.3.6 Если при определении механических примесей в присадках и маслах с присадками допускается дополнительно промывать фильтр горячей дистиллированной водой, фильтр с осадком после промывки органическими растворителями просушивают на воздухе в течение от 10 до 15 мин и затем промывают горячей дистиллированной воды объемом от 200 до 300 см³.

Промывку горячей водой ведут до отсутствия хлорид-ионов в фильтрате. Наличие хлорид-ионов проверяют раствором азотнокислого серебра 0,1 моль/дм³.

 $\rm Д.5.3.7\Piо$ окончании промывки фильтр с осадком переносят в стаканчик для взвешивания с открытой крышкой, в котором сушился чистый фильтр, и сушат в сушильном шкафу при температуре $(105\pm2)^{\circ}$ С не менее 45 мин. Затем стаканчик закрывают крышкой, охлаждают в эксикаторе в течение 30 мин и взвешивают с погрешностью не более $0.0002~\rm r.$

Стаканчик с фильтром высушивают и взвешивают до получения расхождения между двумя последовательными взвешиваниями не более 0,0004 г. Повторные высушивания фильтра производят в течение 30 мин.

Примечание – При применении стеклянных фильтров бюксы не используют.

Д.5.3.8 Если содержание механических примесей не превышает нормы, установленной в нормативно-технической документации на нефтепродукт или присадку, фильтр до постоянной массы не доводят.

Д.5.4 Обработка результатов

Д.5.4.1 Массовую долю механических примесей (X) в процентах вычисляют по формуле:

$$X = \frac{m_1 - m_2}{m_3} 100, \tag{Д.11}$$

где m_1 – масса стаканчика для взвешивания (бюксы) с бумажным фильтром и механическими примесями или масса стеклянного фильтра с механическими примесями, Γ ;

 m_2 — масса стаканчика для взвешивания (бюксы) с чистым подготовленным бумажным фильтром или масса подготовленного стеклянного фильтра, г;

 m_3 — масса пробы, г.

Д.5.4.2. За результат испытания принимают среднее арифметическое результатов двух параллельных определений.

Д.5.4.3 Повторяемость

Два результата определения, полученные одним лаборантом, на одной и той же аппаратуре и пробе продукта, признаются достоверными (при доверительной вероятности 0,95), если расхождения между ними не превышают значения, указанные в таблице Д.7.

Д.5.4.4 Воспроизводимость

Два результата испытания, полученные разными лаборантами, в двух разных лабораториях, на одной и той же пробе продукта, признаются достоверными (при доверительной вероятности 0,95), если расхождения между ними не превышают значения, указанные в таблице Д.7.

Таблица Д.7

Механические примеси, %	Повторяемость, %	Воспроизводимость, %
до 0,01 включительно	0,0025	0,005
свыше 0,01 до 0,10 включительно	0,0050	0,010
свыше 0,1 до 1,00 включительно	0,0100	0,020
свыше 1,0	0,1000	0,200

Массовую долю механических примесей до 0,005 % включительно оценивают как отсутствие механических примесей.

Д.6 Класс чистоты жидкостей

Д.6.1 Классы чистоты жидкостей должны выбираться из указанных в таблице Д.8.

Таблица Д.8

Класс	Число частиц загрязнений в объеме жидкости (100±0,5) не более при размере частиц, мкм							Масса загрязнений		
чистоты жидкостей	от 0,5	св.1	св. 2	св. 5	св. 10	св. 25	св. 50	св.100	волокна	, %, не
жидкостси	до 1	до 2	до 5	до 10	до 25	до 50	до 100	до 200	БОЛОКНа	более
00	800	400	32	8	4	1	Отсутс	A.O.	A.O.	He
0	1600	800	63	16	8	2	твие	Отсутс		нормируетс
1		1600	125	32	16	3		твие	Отсутств	Я
2			250	63	32	4	1		ие	
3				125	63	8	2			
4				250	125	12	3			
5	1			500	250	25	4	1		
6				1000	500	50	6	2	1	0,0002
7	Не нормируется			2000	100Q	100	12	4	2	0,0002
8				4000	2000	200	25	6	3	0,0004
9		l			4000	400	50	12	4	0,0006
10				16000	8000	800	100	25	5	0,0008
11				31500	1600Q	1600	200	50	10	0,0016
12				63000	31500	3150	400	100	20	0,0032
13					63000	6300	800	200	40	0,005
14					12500	12500	1600	400	80	0,008
					C					
15						25000	3150	800	160	0,015
16						50000	6300	1600	315	0,032

		_			
17		12500	3150	630	0,063
Прим	лечания				

1 «Отсутствие» – означает, что при взятии одной пробы жидкости частицы заданного размера не обнаружены или при взятии нескольких проб общее число обнаруженных частиц меньше числа взятых проб.

- 2 «А.О.» абсолютное отсутствие частиц загрязнений.
- 3 Масса загрязнений для классов с 6 по 12 не является обязательным контрольным параметром. Контроль может ввести разработчик системы, применяющей жидкость.
- Д.6.2 Частицами загрязнения считаются все посторонние частицы, включая смолообразования, органические частицы, колонии бактерий и продукты их жизнедеятельности. Размер частиц загрязнений, кроме волокон, принимается по наибольшему измерению. Волокнами считаются частицы толщиной не более 30 мкм при отношении длины к толщине 10:1, не менее.
- Д.6.3 Частицы загрязнений размером более 200 мкм (не считая волокон) в жидкости не допускаются.
- Д.6.4 Классы чистоты жидкости следует указывать в технических требованиях к жидкостям при их поставке, транспортировании и хранении, в требованиях к эксплуатации машин и устройств и в технологической документации по изготовлению и ремонту систем, устройств машин и деталей.
- Д.7 Метод измерения содержания Ионола в трансформаторном масле методом газовой хроматографии
- Д.7.1 Измерения выполняют путем равновесного извлечения (экстракции) Ионола из трансформаторного масла в этиловый спирт и последующего газохроматографического анализа спиртового экстракта.

Условия измерений при хроматографировании градуировочных смесей и анализируемых образцов:

-	температура термостата испарителя	200°C;
-	температура термостата колонок	110°C;
-	температура термостата ДИП или ДТП	260°C;
-	ток моста ДТП	150 мА;
_	расход газа-носителя (с любым детектором)	20 см ³ /ми

- расходы вспомогательных газов (при применении ДИП):

а) водорода
 б) воздуха
 20 см³/мин;
 200 см³/мин;

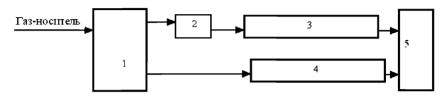
- объем вводимой пробы экстракта:

а) при применении ДИП

0,5 мкл; 5.0 мкл:

б) при применении ДТП - объем масла в экстракторе при установлении равновесия 2,0 см³;

- объем спирта в экстракторе при установлении равновесия 2,0 см³;
- время интенсивного встряхивания смеси масла со спиртом 2 мин;
- время установления равновесия, не менее 5 ч.


Д.7.2 Подготовка к выполнению измерений

При подготовке к выполнению измерений проводят:

- сборку установки для проведения измерения содержания Ионола в трансформаторном масле;
 - определение нижнего предела обнаружения Ионола;

- градуировку хроматографа или оперативный контроль точности выполняемых измерений:
- отбор, транспортирование и хранение проб трансформаторного масла из электрооборудования;
 - извлечение Ионола из трансформаторного масла.
 - Д.7.3 Сборка установки для измерения содержания Ионола в масле

Сборку установки производят в соответствии со схемой, приведенной на рисунке Д.б.

1 - Блок подготовки газов хроматографа; 2 - Испаритель; 3 - Хроматографическая колонка; 4 - Колонка сравнения; 5 - ДИП или ДТП.

 Π р и м е ч а н и е - При проведении анализа на хроматографе с ДИП в схеме отсутствует колонка сравнения.

Рисунок Д.6 – Схема установки для проведения анализа Ионола

Согласно схеме приведенной на рисунке Д.6 в газовый хроматограф помещают предварительно откондиционированную при 250°С хроматографическую колонку с 3 % XE-60 на Инертоне-Супер, подсоединяя ее к испарителю и входу ДИП. При применении хроматографа с ДТП хроматографическую колонку подключают одним концом к испарителю, а другим концом к входу ДТП. В этом случае в схему дополнительно включают колонку сравнения, которую подключают к другому испарителю и другому входу ДТП.

Для проведения анализа рекомендуется использовать паспортизованные колонки. Допускается самостоятельное изготовление колонок из стальных трубок длиной от 1 до 2 м с внутренним диаметром 2-3 мм, заполненных указанным выше сорбентом с применением приемов, описанных в литературе по газовой хроматографии.

К месту установки хроматографа подводятся линия газа-носителя (для любого детектора), линии водорода и воздуха (для ДИП), электрическое питание и линия внешнего заземления.

Подключение хроматографа к электрической сети, линии газа-носителя и компьютеру осуществляют в соответствии с руководством по эксплуатации хроматографа. При работе с ДИП хроматограф дополнительно подключают к линиям водорода и воздуха.

После подключения хроматографа в него из баллона подают газ-носитель (гелий в случае ДТП, а также аргон или азот в случае ДИП) и в соответствии с Д.7.1 устанавливают его требуемый расход. Кроме того, при применении ДИП в хроматограф подаются водород и воздух с необходимыми расходами. После этого задают необходимые температуры термостатов испарителя, колонок и ДИП или

ДТП. При применении хроматографа с ДТП задают необходимый ток питания его моста.

Через два часа после включения хроматограф готов к началу работы.

Д.7.4 Определение нижнего предела обнаружения Ионола

Перед проведением градуировки хроматографа определяют соответствие его нижнего предела обнаружения (ПО) для Ионола.

Определение ПО хроматографа в этом случае осуществляют с использованием градуировочного раствора Ионола в спирте, который готовят следующим образом.

Навеску Йонола (примерно $0,1~\mathrm{r}$), взвешенную на аналитических весах с точностью до $0,0002~\mathrm{r}$, растворяют в $20~\mathrm{cm}^3$ этилового спирта, также взвешенного на аналитических весах.

Концентрацию Ионола в градуировочном растворе определяют по формуле:

$$A_u^{2p} = \frac{P_u}{P_{co} + P_u} \cdot 100, \tag{Д.12}$$

где A_u^{ep} – оконцентрация Ионола в градуировочном растворе, % масс.;

 P_{u} – навеска Ионола, г;

 P_{cn} — навеска спирта, г.

Приготовленный таким образом градуировочный раствор Ионола в этиловом спирте, перенесенный в герметичный сосуд может храниться в темном месте до 6 месяпев.

Далее 0,5 мкл (при применении ДИП) или 5,0 мкл (при применении ДТП) приготовленного градуировочного раствора с помощью микрошприца на 1,0 мкл (при применении ДИП) или 10 мкл (при применении ДТП) вводят в испаритель хроматографа и получают хроматограммы Ионола в спирте. Полученные на хроматограммах пики Ионола обрабатывают с помощью средств вычислительной техники или вручную с применением известных методик. При обработке хроматограмм проводят идентификацию на них пиков Ионола, а также определение высот пиков, соответствующих Ионолу. При проведении процедуры определения ПО необходимо получить при четырехкратном вводе пробы градуировочного раствора не менее 3 пиков Ионола, отличающихся по высоте не более чем на 5 % относительно среднего значения. Расчет производится аналогично оценке сходимости результатов в соответствии с Д.7.9 (формула (22).

Кроме того, при проведении определения ПО необходимо измерить шум хроматографа. Для этого в течение 10 мин. прописывают нулевую линию хроматографа на мониторе компьютера или на самописце и далее обрабатывают ее либо с помощью имеющихся программ (при применении для обработки хроматограмм средств вычислительной техники), либо с помощью измерительной линейки (при ручной обработке хроматограмм). При ручном измерении на хроматограмме, полученной на максимально возможном масштабе делителя усилителя ДИП или ДТП, измеряют наиболее часто встречающиеся отклонения сигнала на самописце от нулевой линии, усредняют их и далее используют в расчетах ПО.

Расчет нижнего предела обнаружения для Ионола в масле проводят по формуле:

$$\Pi O = \frac{2 \cdot h_{utym} \cdot A_u^M}{h_u} \tag{Д.13}$$

где h_{uvm} - величина шума хроматографа;

 h_u - высота пика Ионола на хроматограмме градуировочной смеси;

 $A_{\scriptscriptstyle M}^{\scriptscriptstyle M}$ - концентрация Ионола в трансформаторном масле, % масс., рассчитанная по формуле:

$$A_u^{\scriptscriptstyle M} = B_{\scriptscriptstyle 1} \times A_u^{\scriptscriptstyle 2p}, \tag{Д.14}$$

где A_u^{ep} - концентрация Ионола в градуировочном растворе, % масс.;

 B_u - коэффициент распределения Ионола между трансформаторным маслом и спиртом (B_u = 2,2 для спирта с содержанием воды не более 8 % масс. и в диапазоне температур от 20 до 25°C);

При ручной обработке величины шума хроматографа и высот пиков на хроматограммах должны быть измерены в одних единицах, например, в мм. Кроме того, эти величины должны быть приведены к одному масштабу делителя усилителя ДИП или ДТП.

Определяют среднее арифметические значение величины ПО Ионола для всех измерений и устанавливают его соответствие нормируемому нижнему пределу обнаружения, который не должен превышать 0,03 % масс. В случае несоответствия определенного ПО нормируемому значению устраняют возможные причины этого несоответствия и снова проводят определение ПО.

При соответствии определенного значения ПО нормируемому значению приступают к градуировке хроматографа.

Д.7.5 Градуировка хроматографа и оперативный контроль точности выполняемых измерений

Д.7.5.1 Градуировка хроматографа заключается в установлении зависимостей концентраций определяемых компонентов A_i от площадей соответствующих им пиков S_i на получаемых хроматограммах и, в данном случае, представляет собой процедуру установления градуировочных коэффициентов b_i анализируемых компонентов для зависимости вида $A_i = b_i$ х S_i .

Градуировку хроматографа проводят при вводе его в эксплуатацию, при установке новой методики или при выходе результатов оперативного контроля точности выполняемых измерений за пределы контрольных параметров.

Оперативный контроль точности выполняемых измерений осуществляют каждый раз перед началом анализов. Для проведения оперативного контроля точности выполняемых измерений применяются те же смеси, что и при градуировке.

Градуировку проводят аналогично процедуре определения ПО в соответствии с п.Д.7.4.

Отличие заключается в том, что в качестве определяемых на хроматограммах параметров берут площади пиков Ионола, а для проведения градуировки применяют два градуировочных раствора, приготовление одного из них описано в

Д.7.4. Второй градуировочный раствор готовят также, как первый. Для его приготовления 0,1г Ионола растворяют в 100 мл спирта. Определение площадей пиков Ионола на хроматограммах осуществляют используя средства вычислительной техники или вручную.

Градуировочный коэффициент b_u для определения Ионола рассчитывают по формуле:

$$b_u = B_u \cdot A_u^{zp} / S_u^{zp}, \tag{II.15}$$

где B_u - коэффициент распределения Ионола между трансформаторным маслом и спиртом (B_u = 2,2 для спирта с содержанием воды не более 8 % масс. и в диапазоне температур от 20 до 25°C);

 A_{ν}^{ep} - концентрация Ионола в градуировочном растворе, % масс.;

 S_u^{ep} - площадь пика Ионола на хроматограмме градуировочного раствора.

Все значения b_u , полученные для Ионола, усредняют. В результате получают средние арифметические значения b_u для Ионола. Эти значения далее используют при обработке результатов анализов и расчете суммарной погрешности измерений.

Д.7.5.2 Оперативный контроль точности выполняемых измерений

Оперативный контроль точности выполняемых измерений проводят перед проведением анализа с целью подтверждения стабильности градуировочных коэффициентов b_u для Ионола.

Оперативный контроль точности выполняемых измерений проводят аналогично процедуре градуировки.

Полученные на хроматограммах пики Ионола обрабатывают с помощью средств вычислительной техники или вручную. При обработке хроматограмм проводят идентификацию на них пиков Ионола, а также расчет площадей пиков, соответствующих Ионолу. Далее, используя значения полученных при градуировке градуировочных коэффициентов для определения Ионола, проводят расчет концентрации Ионола в градуировочном растворе по формуле:

$$A_{\nu}^{\kappa} = b_{\nu} \cdot S_{\nu}^{2p} \cdot 100/B_{\nu} \tag{\text{$ \Pi$.} 16)}$$

где A_u^{κ} - к онцентрация Ионола в градуировочном растворе при оперативном контроле, % масс.;

 b_{μ}^{-} градуировочный коэффициент для определения Ионола;

 S_{tt}^{K} – площадь пика Ионола при оперативном контроле;

 B_u — коэффициент распределения Ионола между трансформаторным маслом и спиртом (B_u = 2,2 для спирта с содержанием воды не более 8 % масс. и в диапазоне температур от 20 до 25°C).

Для дальнейших расчетов берут средние арифметические величины A^{κ}_{u} , полученные из трех параллельных измерений.

Далее сравнивают полученные при оперативном контроле концентрации Ионола в спирте с концентрацией Ионола в градуировочном растворе. Относительное отклонение этих величин друг от друга рассчитывают по формуле:

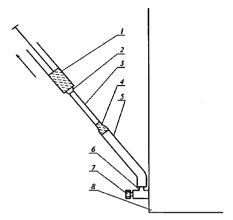
$$\Delta_{omu} = (A_u^{\kappa} - A_u^{ep}) \cdot 100 / A_u^{ep}, \tag{II.17}$$

где Δ_{omn} - относительное отклонение концентрациии Ионола при оперативном контроле от концентрации Ионола в градуировочном растворе, % отн.;

 A_{n}^{κ} - концентрация Ионола, полученная при оперативном контроле, % масс;

 A_{y}^{ep} - концентрация Ионола в градуировочном растворе, % масс.

При проведении оперативного контроля точности выполняемых измерений необходимо, чтобы получаемые значения концентраций Ионола, полученные при оперативном контроле, отличались от значений концентраций Ионола в градуировочном растворе не более чем на 10 % отн.


Если Δ_{omn} превышает эту величину, то необходимо проверить режимные параметры, при необходимости скорректировать их и провести новую градуировку.

Д.7.6 Отбор, транспортирование и хранение проб трансформаторного масла Д.7.6.1 Отбор проб масла из электрооборудования

Отбор трансформаторного масла проводят в любую герметично закрывающуюся емкость объемом не менее 10 см³. В качестве таких емкостей можно использовать любые флаконы с плотно завинчивающимися крышками, либо медицинские шприцы с заглушками, изготовленными, например, из иглы и резиновой пробки.

Перед отбором масла для определения Ионола маслоотборный штуцер электроборудования очищают от загрязнений.

Отбор масла из штуцера осуществляют с помощью маслоотборного устройства (рисунок Д.7), которое может состоять, например, из резиновой трубки с внутренним диаметром от 4 до 6 мм, металлического или стеклянного переходника и вакуумной или обычной резиновой трубки с внутренним диаметром от 2 до 3 мм. Основным требованием к маслоотборному устройству при отборе масла в шприцы является обеспечение соединения штуцера электрооборудования и шприца, поэтому один его конец должен плотно надеваться на штуцер, а другой на канюлю шприца. При отборе масла во флаконы свободный конец маслоотборного устройства помещают на дно флакона.

I - Шприц медицинский; 2 - Канюля шприца; 3 - Резиновая трубка с внутренним диаметром от
 2 до 3 мм; 4 - Металлический или стеклянный переходник; 5. Резиновая трубка с внутренним диаметром от
 4 до 6 мм; 6 - Штуцер; 7 - Вентиль; 8 - Электрооборудование, из которого отбирают масло.

Рисунок Д.7 – Отбор трансформаторного масла из электрооборудования в шприцы

К штуцеру электрооборудования подсоединяют маслоотборное устройство, открывают вентиль и сливают в любую емкость не менее 0,5 л масла. Затем при отборе масла в шприц, не закрывая вентиль, вставляют в свободный конец маслоотборного устройства канюлю шприца с вдвинутым до конца поршнем. Шприц заполняют маслом. При заполнении поршень шприца придерживают для того, чтобы он самопроизвольно не выпал из цилиндра. После этого вынимают его из маслоотборного устройства и масло из шприца выдавливают в любую емкость, например, ведро. При выполнении этой процедуры вентиль на оборудовании не закрывают. Снова соединяют шприц с маслоотборным устройством и процедуры заполнения шприца и удаления из него масла (промывки) повторяют еще дважды.

Далее производят заполнение шприца маслом на весь его объем и закрывают вентиль на оборудовании. После этого вынимают шприц из маслоотборного устройства, надевают на его канюлю заглушку, в качестве которой может быть использована медицинская игла с резиновой пробкой.

Если пробу масла отбирают во флаконы, то их предварительно промывают не менее чем двукратным объемом отбираемого масла, а затем заполняют последним и флакон закрывают.

Из каждой точки отбирают один шприц или флакон емкостью не менее $10 \, \mathrm{cm}^3$.

Шприц или флакон снабжают сопроводительной документацией, в которой указывают номер пробоотборника, место установки электрооборудования, станционный номер оборудования, его тип, мощность, завод-изготовитель, заводской номер, даты изготовления и ввода в эксплуатацию, причину отбора, дату отбора, фамилию лица, проводившего отбор.

Д.7.6.2 Транспортирование проб масла

Пробы трансформаторного масла, отобранные из оборудования во флаконы или шприцы, транспортируют к месту анализа в любых контейнерах, обеспечивающих их целостность и исключающих попадание на них света.

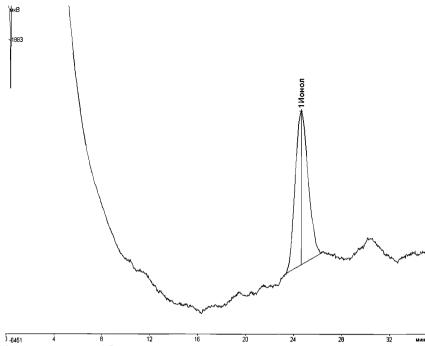
Д.7.6.3 Хранение проб масла

Пробы трансформаторного масла хранят при комнатной температуре в защищенном от света месте во флаконах или шприцах.

Время хранения пробы трансформаторного масла в пробоотборнике или в шприце от момента отбора пробы из электрооборудования до момента проведения анализа не должно превышать 30 суток.

Д.7.7 Извлечение Ионола из масла

Для проведения извлечения Ионола из трансформаторного масла в пробирку на 5 см³ с делениями, снабженную притертой пробкой (далее экстрактор), помещают 2 см³ этилового спирта и 2 см³ отобранного на анализ масла. Экстрактор закрывают пробкой и его содержимое интенсивно встряхивают в течение 2 мин. После встряхивания экстрактор помещают в штатив для пробирок и оставляют в спокойном состоянии в защищенном от света месте не менее, чем на 5 часов, после чего экстракт готов для анализа на хроматографе.


Приготовленные таким образом экстракты должны быть проанализированы в течение 7 суток. Необходимым условием является хранение экстрактов в темноте.

Д.7.8 Выполнение измерений

Измерения Ионола в экстракте из масла проводят следующим образом.

Хроматограф выводят на рабочий режим согласно Д.7.1 Микрошприцем на 1 мкл (при использовании ДИП) или на 10 мкл (при использовании ДТП) отбирают из экстрактора 0,5 мкл (при использовании ДИП) или 5 мкл (при использовании ДТП) спиртового экстракта Ионола, который находится в верхнем слое расслоившейся в экстракторе смеси спирта и масла. Отобранную пробу вводят в испаритель хроматографа.

Разделенные на колонке Ионол и сопутствующие ему компоненты, извлеченные из трансформаторного масла, регистрируются ДИП или ДТП и фиксируются в виде хроматограммы. Типичная хроматограмма анализа Ионола в спиртовом экстракте из трансформаторного масла приведена на рисунке Д.8.

Метод расчета: Абсолютная градуировка

Способ расчета: По площади

Рисунок Д.8 – Типичная хроматограмма Ионола в спиртовом экстракте из трансформаторного масла.

При каждом анализе проводят не менее двух параллельных измерений Ионола в экстракте из трансформаторного масла.

Ежедневно после проведения анализов проводят регенерацию хроматографической колонки, для чего поднимают температуру в термостате колонок до 200°С. Время регенерации составляет 1 час. При применении ДТП его ток при проведении регенерации отключают.

Д.7.9 Обработка результатов измерений

Концентрацию Ионола в анализируемом образце трансформаторного масла определяют по формуле:

$$A_u^M = b_u \times S_u^{aH}, \tag{Д.18}$$

где $A_{\mathcal{U}}^{M}$ — концентрация Ионола в анализируемом образце трансформаторного масла, % масс.;

 $b_{\mathcal{U}}$ — градуировочный коэффициент для определения Ионола, полученный при градуировке хроматографа;

 $S_{u}^{\mathcal{CH}}$ – площадь пика Ионола на хроматограмме образца трансформаторного масла.

Все значения A_U^M , полученные для Ионола, усредняют. В результате получают средние арифметические значения A_U^M для содержания Ионола в трансформаторном масле. Эти значения далее используют при оформлении результатов анализов и расчете суммарной погрешности измерений.

Д.7.10 Контроль точности результатов измерений. Оценка суммарной погрешности измерений содержания Ионола в масле

Контроль точности результатов измерения производится после проведения измерений сопоставлением полученной погрешности измерений с нормируемой суммарной погрешностью измерений.

Суммарную погрешность измерения оценивают в соответствии с ГОСТ 8.207 с учетом случайной погрешности измерения и неисключенной систематической погрешности определения коэффициента распределения B_u и погрешности установки объемов спирта V_{cu} и трансформаторного масла V_{uc} .

Среднее квадратическое отклонение за счет случайной погрешности измерения A_{U}^{m} рассчитывают по формуле:

$$S_{A_{u}^{u}} = \frac{S_{u_{0}}}{b_{u}} \times \sqrt{\frac{1}{L} + \frac{1}{l \times m} + \frac{l \times m \times (A_{u}^{au} - \overline{A}_{u})^{2}}{(b_{u})^{2} \times [l \times m \sum S_{u}^{2} - (\sum S_{u})^{2}]}}$$
 (Д.19)

где $S_{A_a^\mu}$ — среднее квадратическое отклонение за счет случайной погрешности измерения концентрации Ионола в трансформаторном масле;

 S_{u_0} — величина среднего квадратического отклонения Ионола от своих градуировочных характеристик;

 b_u – градуировочный коэффициент для определения Ионола;

L — число параллельных анализов образцов трансформаторного масла (2 анализа);

l – число точек на градуировочной характеристике (1 точка);

m — число параллельных измерений в каждой точке градуировочной характеристики (3 измерения);

 A_{u}^{an} — концентрация Ионола в трансформаторном масле, полученная при анализе, % масс.;

 \overline{A}_{u} — генеральное среднее значение концентрации Ионола при градуировке в пересчете на трансформаторное масло, % масс.;

 S_{u} — площадь пика Ионола на хроматограмме градуировочного раствора.

Величину среднего квадратического отклонения для Ионола при градуировке S_{u_0} вычисляют по формуле:

$$S_{u_0} = \sqrt{\frac{\sum (B_u \times A_u^{2p})^2 - b_u \sum (b_u \times A_u^{2p} \times S_u)}{n-1}},$$
 (Д.20)

где B_u – коэффициент распределения Ионола между трансформаторным маслом и спиртом ($B_u = 2,2$ для спирта с содержанием воды не более 8 % масс. и в диапазоне температур от 20 до 25°C);

 A_u^{zp} — концентрация Ионола в градуировочном растворе, % масс.;

 $b_{\it u}$ – градуировочный коэффициент для определения Ионола;

 $S_{\scriptscriptstyle u}$ – площадь пика Ионола на хроматограмме градуировочного раствора;

 $n = 1 \times m$ — число измерений при градуировке по Ионолу (1x3).

Генеральное среднее значение концентрации Ионола \overline{A}_{u} в трансформаторном масле вычисляют по формуле:

$$\overline{A}_{u} = B_{u} X A_{u}^{au} A_{u}^{p}, \tag{\square.21}$$

где B_u – коэффициент распределения Ионола между трансформаторном маслом и спиртом ($B_u = 2,2$ для спирта с содержанием воды не более 8 % масс. и в диапазоне температур от 20 до 25°C);

 A_{u}^{2p} — концентрация Ионола в градуировочном растворе, % масс.

Относительную неисключенную систематическую погрешность рассчитывают по формуле:

$$\Theta_{u(omu)} = 1,1 \times \sqrt{\frac{\Delta B_u^2}{B_u^2} + \frac{\Delta V_{cn}^2}{V_{cn}^2} + \frac{\Delta V_u^2}{V_u^2}},$$
(Д.22)

где $\Theta_{u(omn)}$ — относительная неисключенная систематическая погрешность;

 $\Delta B_{\text{и}},~\Delta V_{\text{сп}},~\Delta V_{\text{M}}$ — погрешности измерения коэффициента распределения Ионола, объемов этилового спирта и трансформаторного масла в экстракторе, соответственно;

 $B_{uv}\ V_{crv}\ V_{M}$ — коэффициент распределения Ионола, объемы этилового спирта и трансформаторного масла в экстракторе, соответственно.

В практических расчетах принимают следующие значения относительных погрешностей измерения коэффициента распределения Ионола, объемов спирта и трансформаторного масла:

$$\frac{\Delta B_u}{B_u} = 0.07;$$
 $\frac{\Delta V_{cn}}{V_{cn}} = \frac{\Delta V_{M}}{V_{M}} = 0.03;$

Абсолютную неисключенную систематическую погрешность рассчитывают по формуле:

$$\Theta_{u(a\delta c)} = A_u^{\mathsf{M}} \times \Theta_{u(omn)}, \tag{Д.23}$$

где $\Theta_{{\scriptscriptstyle M}(a\delta c)}$ – абсолютная неисключенная систематическая погрешность;

 $A_{\!\scriptscriptstyle u}^{\scriptscriptstyle M}$ – измеренная концентрация Ионола в трансформаторном масле, % масс.

Суммарную погрешность измерения \varDelta рассчитывают в зависимости от величины соотношения $\Theta_{u(abc)}/S_{_{a^m}}$.

Если это отношение меньше 0,8, то суммарную погрешность измерения Δ оценивают по формуле Д.19. Если это отношение больше 8, то суммарную погрешность измерения Δ оценивают по формуле Д.22. Если это отношение попадает в интервал между 0,8 и 8, то суммарную погрешность оценивают по формуле:

$$\Delta = K \times S \,, \tag{II.24}$$

где Δ – суммарная погрешность измерения;

К – коэффициент рассчитываемый по формуле:

$$K = \frac{(t_{p,f} \times S_{A_u^u}) + \Theta_{u(a\delta c)}}{S_{A_u^u} + \sqrt{\sum \frac{\Theta_{u(a\delta c)}^2}{3}}}$$
 (Д.25)

S- суммарное среднее квадратическое отклонение результата измерения, определяемое по формуле:

$$S = \sqrt{\sum \frac{\Theta_{u(\alpha\delta\delta)}}{3} + S_{A_{\mu}^{u}}^{2}} \tag{Д.26}$$

Д.7.11 Оформление результатов измерений

Результат измерений представляют в виде концентрации Ионола ($A_i^M \pm \Delta$) с указанием величины суммарной погрешности Δ рассчитанной по формуле Д.24, либо результат может быть представлен в виде ($A_u^M \pm \Delta_{omin}$) с указанием величины относительной погрешности Δ_{omin} , определяемой по формуле:

$$\Delta_{omn.} = \frac{\Delta \times 100}{A_{...}^{M}} \tag{Д.27}$$

Численное значение результата измерения должно оканчиваться цифрой того же разряда, что и значение погрешности Δ .

Результаты измерений оформляют протоколом, форма которого приведена ниже.

ПРОТОКОЛ №____

результатов измерений содержания Ионола в образцах трансформаторного масла

 Место расположения оборудования:
 Дата проведения измерения
 Ам масс. ± Дата проведения измерения

 1
 2
 —

 ...
 —
 —

 Анализ провел:
 —
 —

 Подпись
 (ФИО)

- Д.8 Метод определения шлама в эксплуатационных трансформаторных маслах
- Д.8.1 Сущность метода заключается в определение содержания твердого и растворенного осадка в эксплуатационных изоляционных маслах.

Твердый осадок – любое твердое вещество, не растворяющееся в маслах и в смеси равных количеств толуола, ацетона и 95 % этилового спирта после разбавления масла H-гептаном.

Растворимый осадок — продукты окислительного старения масла или загрязняющие примеси, которые становятся нерастворимыми при разбавлении масла Н-гептаном, но растворяющиеся в упомянутой выше смеси толуола, ацетона и спирта.

Д.8.2 Аппаратура и реактивы

- конические колбы или цилиндр с притертыми пробками вместимостью 250 мл.
 - колбы конические ГОСТ 19908 вместимостью 50 мл.
 - воронки стеклянные ГОСТ 19908 диаметром 100 мл.
 - водяная баня.
 - Эксикатор.
 - обеззоленный фильтр, синяя лента, диаметром от 11 до 12,5 мм.
 - Толуол ГОСТ 5789 (чистый для анализа).
 - апетон.
 - Н-гептан.
 - Спирт этиловый ректификат технический ГОСТ 18300, высший сорт.
 - Д.8.3 Ход анализа
- Д.8.3.1 Определение суммы нерастворимого в масле осадка и растворимого осадка, осаждаемого гептаном

В том случае, если в масле визуально содержится осадок, пробу масла необходимо тщательно перемешать до тех пор, пока осадок равномерно не распределится в масле во взвешенном состоянии.

Взвесить 10 г масла с точностью до 0,1 г в колбе или цилиндре с притертой пробкой и разбавить Н-гептаном из расчета 10 мл на 1 г масла.

Пробу и растворитель тщательно перемешать и оставить в темноте на 18-24 ч при температуре окружающей среды для выделения осадка.

Если при этом образуется осадок, раствор профильтровать через тарированный обеззоленный фильтр, синяя лента от 11 до 12,5 мм. Фильтр и осадок промыть гептаном до полного удаления следов масла.

Гептану дать возможность испариться, затем просушить фильтр с осадком в сушильном шкафу в течение часа при температуре от 100 до 110°С, охладить в эксикаторе, взвесить и рассчитать количество осадка в % к массе взятого масла (величина A).

Д.8.3.2 Определение растворимого (осаждаемого) осадка (В)

Полученный на фильтре осадок обработать минимальным количеством смеси (равные количества толуола, ацетона и 95 % спирта) при 50°C, собирая раствор в коническую колбу вместимостью 50 мл, доведенную до постоянной массы.

Смесь отгонять из конической колбы на водяной бане. Осадок в колбе просушить в сушильном шкафу при температуре 110°С в течение часа, охладить в эксикаторе и взвесить. Количество растворенного (осаждаемого) осадка рассчитать в процентах на масло (величина В).

Д.8.3.3 ДОпределение твердого осадка

Разность A-B, если такая получается, представляет собой процент нерастворимого в масле («твердого») осадка.

- Д.9 Метод измерения фурановых производных в трансформаторных маслах методом газовой хроматографии
- Д.9.1 Измерения выполняются путем равновесного извлечения (экстракции) фурановых производных из трансформаторного масла в смесь воды с ацетонитрилом и последующего газохроматографического анализа экстракта.

Д.9.2 Условия измерений

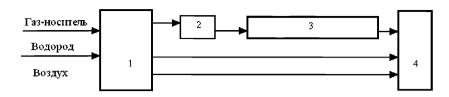
При хроматографировании градуировочных смесей и анализируемых образцов соблюдаются следующие условия:

-	температура термостата испарителя	200°C;
-	температура термостата колонок	110°C;
-	температура термостата ДИП	200°C;
-	расход газа-носителя (гелия)	20 см ³ /мин:

- расходы вспомогательных газов:
 - а) водорода
 20 см³/мин;

 б) воздуха
 200 см³/мин;
- объем вводимой пробы экстракта

2,0 мкл:


- объем масла в экстракторе при установлении равновесия 20,0см³;
- объем экстрагента в экстракторе при установлении равновесия 1,0 см³;
- время интенсивного встряхивания смеси масла с экстрагентом 2 мин;
- время установления равновесия, не менее 5 ч.

Д.9.3 Подготовка к выполнению измерений

При подготовке к выполнению измерений проводят следующие работы:

- сборку установки для проведения измерения содержания фурановых производных в трансформаторном масле;
 - определение нижнего предела обнаружения фурановых производных;
- градуировку хроматографа или оперативный контроль точности выполняемых измерений;
- отбор, транспортировку и хранение проб трансформаторного масла из электрооборудования;
 - извлечение фурановых производных из трансформаторного масла.
- Д.9.3.1 Сборка установки для измерения содержания фурановых производных в масле

Сборку установки производят в соответствии со схемой, приведенной на рисунке Д.9. Согласно схеме, в газовый хроматограф помещают предварительно откондиционированную при 230°C хроматографическую колонку с 10 % Карбовакса 20М на Инертоне AW-DMCS, подсоединяя ее к испарителю и входу ДИП.

1 - блок подготовки газов; 2 - испаритель; 3 - аналитическая колонка; 4 - ДИП

Рисунок Д.9 – Схема установки для проведения анализа фурановых производных Для проведения анализа рекомендуется использовать паспортизованные колонки

Допускается самостоятельное изготовление колонок из стальных трубок длиной 3 м с внутренним диаметром 2-3 мм, заполненных указанным выше сорбентом с применением приемов, описанных в литературе по газовой хроматографии.

К месту установки хроматографа подводятся линия газа-носителя, водорода и воздуха, электрическое питание и линия внешнего заземления.

Подключение хроматографа к электрической сети, линиям газа-носителя, водорода и воздуха, а также к компьютеру осуществляют в соответствии с руководством по эксплуатации хроматографа.

После подключения хроматографа в него из баллона подают газ-носитель (гелий), водород и воздух и в соответствии с Д.9.1 устанавливают их требуемые расходы. После этого задают необходимые температуры термостатов испарителя, колонок и ДИП.

Через два часа после включения хроматограф готов к началу работы.

Д.9.3.2 Определение нижнего предела обнаружения фурановых производных.

Перед проведением градуировки хроматографа определяют соответствие его нижнего предела обнаружения (ПО) для фурановых производных, который должен быть не выше 0,0001 % масс.

Определение ПО хроматографа в этом случае осуществляют с использованием градуировочного раствора фурановых производных в спирте, который готовят следующим образом.

Сначала готовят раствор всех фурановых производных в толуоле. Для этого точную навеску каждого фуранового производного (примерно $0,025\,$ г), взвешенную в мерной колбе на $25\,$ см 3 с точностью до 0,0002г на аналитических весах, растворяют в толуоле, доводя объем толуольного раствора до метки.

Концентрацию каждого фуранового производного в толуольном растворе рассчитывают по формуле:

$$A_{i}^{T} = \frac{P_{i}}{V_{T}} \tag{Д.28}$$

где A_i^{T} – концентрация і-ого фуранового производного, г/мл.;

 P_i – навеска і-ого фуранового производного, г;

 V_T – объем спирта, см³;

Далее с помощью пипетки отбирают 1 см^3 приготовленного раствора толуола и переносят его в мерную колбу на 100 см^3 , доводя объем раствора в колбе до метки этиловым спиртом.

Концентрацию фурановых производных в приготовленным таким образом исходном градуировочном растворе определяют по формулам:

$$A_{i0}^{\text{rp}} = \frac{P_i}{V_{\text{cr}}} \tag{Д.29}$$

или

$$A_{t0}^{\rm rp} = \frac{P_t}{V_{\rm cn}/\rho_{\rm cn}} \tag{Д.30}$$

где $A_{i0}^{\Gamma p}$ — концентрация *i*-того фуранового производного в исходном градуировочном растворе, в г/см³ или в % масс.;

 P_{i} – навеска i-ого фуранового производного, г;

 V_{cn} – объем спирта, см³;

 ρ_{cn} – плотность спирта, г/см³ (при 20°С ρ_{cn} =0,789).

Приготовленный таким образом градуировочный раствор фурановых производных в этиловом спирте, перенесенный в герметичный сосуд (например, в стеклянный флакон с закатанной резиновой пробкой) может храниться в темном месте до 2 недель.

Далее 2,0 мкл приготовленного градуировочного раствора с помощью микрошприца объемом 10,0 мкл вводят в испаритель хроматографа. Полученные на хроматограммах пики фурановых производных обрабатывают с помощью средств вычислительной техники или вручную. При обработке хроматограмм проводят идентификацию на них пиков фурановых производных, а также определение соответствующих им высот пиков. При проведении процедуры определения ПО необходимо получить при четырехкратном вводе пробы градуировочного раствора не менее 3 пиков каждого фуранового производного, отличающихся по высоте не более, чем на 10 % относительно среднего значения.

Кроме того, при проведении определения ПО необходимо измерить шум хроматографа. Для этого в течение 10 мин. прописывают нулевую линию хроматографа на мониторе компьютера или на самописце и далее обрабатывают ее либо с помощью имеющихся программ (при применении для обработки хроматограмм средств вычислительной техники), либо с помощью измерительной линейки (при ручной обработке хроматограмм). При ручном измерении на хроматограмме, полученной на максимально возможном масштабе делителя усилителя ДИП, измеряют наиболее часто встречающиеся отклонения сигнала на самописце от нулевой линии, усредняют их и далее используют в расчетах ПО.

Нижний ПО для фурановых производных в масле определяют по формуле:

$$\Pi O = \frac{2 \cdot h_{uvw} \cdot A_i^M}{h_i} \tag{Д.31}$$

где h_{uym} – величина шума хроматографа;

 h_i — высота пика і-ого фуранового производного на хроматограмме градуировочной смеси;

 A_i^M — концентрация і-ого фуранового производного в трансформаторном масле, % масс., рассчитанная по формуле:

$$A_i^M = B_i \times A_i^{\mathcal{P}}, \tag{Д.32}$$

где A_i^{2p} — концентрация і-ого фуранового производного в градуировочном растворе, % масс.;

 B_i - коэффициент экстракции *i*-ого фуранового производного из трансформаторного масла в экстрагент в диапазоне температур от 20 до 25°C при соотношении объемов масла и экстрагента 20:1 (см. таблицу Д.9).

$\overline{}$	_			$TT \cap$
11	an	TI IX	11 2	Д.9
	av	JI 11	ца	4.7

Наименование фуранового соединения	Коэффициент экстракции B_i
Фурфурол	0,107
Ацетилфуран	0,138
5-метил-фурфурол	0,109
Фурфуриловый спирт	0,600

При ручном определении величины шума хроматографа и высот пиков на хроматограммах должны быть измерены в одних единицах, например, в мм. Кроме того, эти величины должны быть приведены к одному масштабу делителя усилителя ДИП.

Определяют средние арифметические значения величин ПО фурановых производных для всех измерений и устанавливают их соответствие нормируемым значениям. В случае несоответствия определенных ПО нормируемым значениям устраняют возможные причины этого несоответствия и снова проводят определение ПО.

При соответствии определенных значений ПО нормируемым значениям приступают к градуировке хроматографа.

Д.9.3.3 Градуировка хроматографа и оперативный контроль точности выполняемых измерений

Градуировка хроматографа заключается в установлении зависимостей концентраций определяемых компонентов A_i от площадей соответствующих им пиков S_i на получаемых хроматограммах и, в данном случае, представляет собой процедуру установления градуировочных коэффициентов b_i анализируемых компонентов для зависимости вида

$$A_i = b_i \cdot S_i. \tag{II.33}$$

Градуировку хроматографа проводят при вводе его в эксплуатацию, при установке новой методики или при выходе результатов оперативного контроля точности выполняемых измерений за пределы контрольных параметров.

Оперативный контроль точности выполняемых измерений осуществляют каждый раз перед началом анализов. Для проведения оперативного контроля точности выполняемых измерений применяются те же смеси, что и при градуировке

Градуировка хроматографа

Градуировку проводят аналогично процедуре определения ПО.

Отличие заключается в том, что в качестве определяемых на хроматограммах параметров берут площади пиков фурановых производных. Полученные на хроматограммах пики фурановых производных обрабатывают с помощью средств вычислительной техники или вручную.

Градуировочные коэффициенты b_i для определения i-тых фурановых производных рассчитывают по формуле:

$$\boldsymbol{b}_{t} = \frac{\boldsymbol{B}_{t} \boldsymbol{A}_{t}^{\text{rp}}}{\boldsymbol{S}^{\text{rp}}} \tag{\boldsymbol{\Pi}.34}$$

- где B_i коэффициент распределения і-ого фуранового производного между трансформаторным маслом и экстрагентом в диапазоне температур 20-25°C (таблица Д.9);
- A_i^{zp} концентрация і-ого фуранового производного в градуировочном растворе, % масс.;
- $S_i^{\it ep}$ площадь пика і-ого фуранового производного на хроматограмме градуировочного раствора.

Все значения b_i , полученные для каждого фуранового производного, усредняют. В результате получают средние арифметические значения b_i для каждого фуранового производного. Эти значения далее используют при обработке результатов анализов и расчете суммарной погрешности измерений

Оперативный контроль точности выполняемых измерений

Оперативный контроль точности выполняемых измерений проводят перед проведением анализа с целью подтверждения стабильности градуировочных коэффициентов b_i для фурановых производных.

Оперативный контроль точности выполняемых измерений проводят аналогично процедуре градуировки.

Полученные на хроматограммах пики фурановых производных обрабатывают с помощью средств вычислительной техники или вручную. При обработке хроматограмм проводят идентификацию на них пиков фурановых производных, а также расчет соответствующих им площадей пиков. Далее, полученных при градуировке градуировочных используя значения коэффициентов для определения фурановых производных, проводят расчет концентраций фурановых производных в градуировочном растворе A^k по формуле:

$$A_i^k = \frac{b_i S_i^k \cdot 100}{B_i} \tag{Д.35}$$

где A_i^k — концентрация i-ого фуранового производного в градуировочном растворе при оперативном контроле, % масс.;

- $m{b_i}$ градуировочный коэффициент для определения *i*-ого фуранового производного;
- $m{S}_{i}^{k}$ площадь пика *i*-ого фуранового производного при оперативном контроле;
- B_i коэффициент экстракции i-ого фуранового производного из трансформаторным масла в экстрагент в диапазоне температур от 20 до 25°C при соотношении объемов масла и экстрагента 20:1 (таблица Д9).

Для дальнейших расчетов берут средние арифметические величины A_i^k для каждого фуранового производного, полученные из трех параллельных измерений.

Далее сравнивают полученные при оперативном контроле концентрации фурановых производных в спирте с концентрациями соответствующих фурановых производных в градуировочном растворе. Относительное отклонение этих величин друг от друга рассчитывают по формуле:

$$\Delta_{i(\text{OTH})} = \frac{(A_i^k - A_i^{\text{P}}) \cdot 100}{A_i^{\text{P}}},\tag{Д.36}$$

где $\Delta_{i(omn)}$ — относительное отклонение концентрации соответствующего фуранового производного при оперативном контроле от его концентрации в градуировочном растворе, % отн.;

 A_i^{κ} — концентрация *i*-ого фуранового производного, полученная при оперативном контроле, % масс;

 A_i^{ep} — концентрация *i*-ого фуранового производного в градуировочном растворе, % масс.

При проведении оперативного контроля точности выполняемых измерений необходимо, чтобы получаемые значения концентраций соответствующих фурановых производных, полученные при оперативном контроле, отличались от значений их концентраций в градуировочном растворе не более чем на 10 % отн.

Если $\Delta_{i(omn)}$ превышает эту величину, то необходимо проверить режимные параметры, при необходимости скорректировать их и провести новую градуировку.

Д.9.3.4 Отбор, транспортирование и хранение проб трансформаторного масла Отбор проб масла

Отбор трансформаторного масла проводят в герметично закрывающуюся емкость объемом не менее 20 см³. В качестве таких емкостей можно использовать любые флаконы с плотно завинчивающимися крышками, либо медицинские шприцы с заглушками, изготовленными, например, из иглы и резиновой пробки.

При отборе проб масла из электрооборудования маслоотборный штуцер очищают от загрязнений. Отбор масла в шприцы осуществляют с помощью маслоотборного устройства, которое может состоять, например, из резиновой трубки с внутренним диаметром 4-6 мм, металлического или стеклянного переходника и вакуумной или обычной резиновой трубки с внутренним диаметром от 2 до 3 мм. Основным требованием к маслоотборному устройству является обеспечение соединения штуцера электрооборудования и шприцапробоотборника, поэтому один его конец должен плотно надеваться на штуцер электрооборудования, а другой на канюлю шприца.

Шприц предварительно промывают маслом не менее трех раз. Процедура промывки проводится следующим образом. Сначала промывают маслотборное устройство, сливая не менее 0,5 л масла в любую емкость. Затем подключают к нему шприц и заполняют его маслом. Подачу масла в шприц прекращают и удаляют из него масло в любую емкость. Затем опять открывают вентиль на оборудовании, и шприц снова заполняют маслом. Процедуру промывки шприца

повторяют не менее трех раз. После последней промывки шприц заполняют маслом и устанавливают на него заглушку.

Если пробу масла отбирают в любую другую емкость, то ее предварительно промывают маслом не менее чем двукратным объемом масла, а затем заполняют последним.

Из каждой точки отбирают не менее двух шприцев или флаконов емкостью не менее $20~{\rm cm}^3$. При заполнении маслом второго шприца или флакона не надо повторно сливать масло из оборудования.

Шприц или флакон снабжают сопроводительной документацией, в которой указывают место установки электрооборудования, его тип, мощность, заводизготовитель, заводской номер, даты изготовления и ввода в эксплуатацию, причину отбора, дату отбора, фамилию лица, проводившего отбор.

Транспортирование проб масла

Пробы трансформаторного масла, отобранные из оборудования в пробоотборники или шприцы, транспортируют к месту анализа в любых контейнерах, обеспечивающих сохранность шприцев или иных пробоотборников и исключающих попадание на них света.

Хранение проб масла

Пробы трансформаторного масла хранят при комнатной температуре в защищенном от света месте в пробоотборниках или шприцах.

Время хранения пробы трансформаторного масла в пробоотборнике или в шприце от момента отбора пробы из электрооборудования до момента проведения анализа не должно превышать 30 дней.

Д.9.3.5 Извлечение фурановых производных из масла

Извлечение фурановых производных из трансформаторного масла проводят в герметично закрытых шприцах объемом 20 см³ (далее экстракторах) смесью воды и ацетонитрила в соотношении 1:1 (далее экстрагента).

Для проведения экстракции в экстрактор помещают 20 см³ трансформаторного масла и через его канюлю с помощью шприца объемом 2 см³ добавляют 1 см³ экстрагента. Экстрактор закрывают заглушкой, состоящей из иглы и резиновой пробки и его содержимое интенсивно встряхивают в течение 2 мин. После встряхивания экстрактор устанавливают иглой вниз и оставляют в спокойном состоянии не менее, чем на 5 часов, после чего экстракт (экстрагент с извлеченными в него фурановыми производными) готов для анализа на хроматографе.

Приготовленные таким образом экстракты должны быть проанализированы в течение 5 суток. Необходимым условием является хранение экстрактов в темноте.

Для анализа полученный экстрагент, находящийся в нижней части расположенного заглушкой вниз экстрактора, переводят в микропробирку объемом 1 см^3 . Микропробирку закрывают пробкой. При переводе экстрагента в микропробирку следят за тем, чтобы в нее не попало трансформаторное масло.

Д.9.4 Выполнение измерений

Измерения проводят следующим образом.

Хроматограф выводят на рабочий режим согласно Д.9.2. Микрошприцем на 10 мкл отбирают из микропробирки 2 мкл экстракта и вводят пробу в испаритель хроматографа.

Разделенные на колонке фурановые производные регистрируются ДИП. Типичная хроматограмма фурановых производных в экстракте из трансформаторного масла приведена на рисунке Д.10.

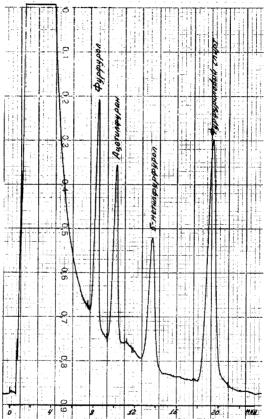


Рисунок Д.10 – Типичная хроматограмма фурановых производных в экстракте из трансформаторного масла

При каждом анализе проводят не менее двух параллельных измерений фурановых производных из каждого экстракта.

Ежедневно после проведения анализов выполняют регенерацию хроматографической колонки, для чего поднимают температуру в термостате колонок до 180°C. Время регенерации составляет 1 час.

Д.9.5 Обработка результатов измерений

Концентрацию фурановых производных в анализируемом образце трансформаторного масла определяют по формуле:

$$A_i^{\scriptscriptstyle M} = b_i \cdot S_i^{\scriptscriptstyle an}, \tag{Д.37}$$

где A_i^{M} — концентрация *i*-ого фуранового производного в анализируемом образце трансформаторного масла, % масс.;

 b_i — градуировочный коэффициент для определения *i*-ого фуранового производного, полученный при градуировке хроматографа;

 S_i^{as} — площадь пика *i*-ого фуранового производного на хроматограмме образца трансформаторного масла.

Все значения A_i^{μ} , полученные для соответствующих фурановых производных, усредняют. В результате получают средние арифметические значения A_i^{μ} для содержания соответствующих фурановых производных в трансформаторном масле. Эти значения далее используют при оформлении результатов анализов и расчете суммарной погрешности измерений.

Д.9.6 Контроль точности результатов измерений. Оценка суммарной погрешности измерений содержания фурановых производных в масле

Контроль точности результатов измерения производят после проведения измерений сопоставлением полученной погрешности измерений с нормируемой суммарной погрешностью измерений.

Суммарную погрешность измерения оценивают в соответствии с ГОСТ 8.207 с учетом случайной погрешности измерения и неисключенной систематической погрешности определения коэффициента распределения B_i и погрешности установки объемов экстрагента $V_{\rm эк}$ и трансформаторного масла $V_{\rm sk}$.

Среднее квадратическое отклонение за счет случайной погрешности измерения A_i^M рассчитывают по формуле:

$$S_{A_{i}^{u}} = \frac{S_{i_{0}}}{b_{i}} \times \sqrt{\frac{1}{L} + \frac{1}{l \times m} + \frac{l \times m \times (A_{i}^{au} - \overline{A}_{i})^{2}}{(b_{i})^{2} \times [l \times m \sum S_{i}^{2} - (\sum S_{i})^{2}]}}, \quad (\text{Д.38})$$

где $S_{A_i^\mu}$ — среднее квадратическое отклонение за счет случайной погрешности измерения концентрации i-ого фуранового производного в трансформаторном масле;

- S_{i_0} величина среднего квадратического отклонения *i*-ого фуранового производного от своих градуировочных характеристик;
- b_{i} градуировочный коэффициент для определения i-ого фуранового производного;
- L число параллельных анализов образцов трансформаторного масла (два анализа);
 - l число точек на градуировочной характеристике (1 точка);
- m число параллельных измерений в каждой точке градуировочной характеристики (три измерения);
- A_i^{an} концентрация *i*-ого фуранового производного в трансформаторном масле при анализе, % масс.;

- \overline{A}_{i} генеральное среднее значение концентрации і-ого фуранового производного при градуировке в пересчете на трансформаторное масло, % масс.;
- S_i площадь пика i-ого фуранового производного на хроматограмме градуировочной смеси.

Величину среднего квадратического отклонения для i-ого фуранового производного при градуировке S_i вычисляют по формуле:

$$S_{i_0} = \sqrt{\frac{\sum (B_i \times A_i^{zp})^2 - b_u \sum (b_i \times A_i^{zp} \times S_i)}{n-1}},$$
 (Д.39)

где B_i — коэффициент распределения і-ого фуранового производного между трансформаторным маслом и экстрагентом в диапазоне температур от 20 до 25°C (таблица Π 9):

 A_{i}^{zp} — концентрация *i*-ого фуранового производного в градуировочном растворе, % масс.;

 b_i — градуировочный коэффициент для определения *i*-ого фуранового производного;

 S_i — площадь пика *i*-ого фуранового производного на хроматограмме градуировочного раствора;

 $n=l \times m$ — число измерений при градуировке по фурановым производным (1·3).

$$n = l \cdot m \tag{II.40}$$

Генеральное среднее значение концентрации і-ого фуранового производного \overline{A} , в трансформаторном масле вычисляют по формуле:

$$\overline{A}_i = B_i \cdot A_i^{zp}, \tag{Д.41}$$

где B_i — коэффициент экстракции i-ого фуранового производного из трансформаторного масла в экстрагент в диапазоне температур от 20 до 25°C при соотношении объемов масла и экстрагента 20:1 (таблица Д.9);

 A_i^{sp} — концентрация і-ого фуранового производного в градуировочном растворе, % масс.

Относительную неисключенную систематическую погрешность рассчитывают по формуле:

$$\Theta_{i(omn)} = 1.1 \times \sqrt{\frac{\Delta B_i^2}{B_i^2} + \frac{\Delta V_{sx}^2}{V_{sy}^2} + \frac{\Delta V_{M}^2}{V_{u}^2}}$$
 (Д.42)

где $\Theta_{i(omn)}$ — относительная неисключенная систематическая погрешность;

 ΔB_{i} $\Delta V_{_{>\!K}}$ $\Delta V_{_{M}}$ — погрешности измерения коэффициента экстракции і-ого фуранового производного, объемов экстрагента и трансформаторного масла в экстракторе;

 B_{i} $V_{2\kappa}$ V_{i} — коэффициенты экстракции *i*-ого фуранового производного, объемы экстрагента и трансформаторного масла в экстракторе, соответственно.

В практических расчетах принимают следующие значения относительных погрешностей коэффициентов экстракции фурановых производных и объемов экстрагента и трансформаторного масла:

$$\frac{\Delta B_i}{B_i} = 0.07; \quad \frac{\Delta V_{_{9K}}}{V_{_{2K}}} = \frac{\Delta V_{_{M}}}{V_{_{1K}}} = 0.03;$$

Абсолютную неисключенную систематическую погрешность рассчитывают по формуле:

$$\Theta_{i(abc)} = A_i^{\mathsf{M}} \times \Theta_{u(omu)}, \tag{A.43}$$

где $\Theta_{i(a6c)}$ – абсолютная неисключенная систематическая погрешность;

 A_i^{M} — измеренная концентрация і-ого фуранового производного в трансформаторном масле, % масс.

Суммарную погрешность измерения Δ рассчитывают в зависимости от величины соотношения $\Theta_{i(a6c)}/S_{_{A^{M}}}$.

Если это отношение меньше 0,8, то суммарную погрешность измерения Δ оценивают по формуле 39. Если это отношение больше 8, то суммарную погрешность измерения Δ оценивают по формуле 42. Если это отношение попадает в интервал между 0,8 и 8, то суммарную погрешность оценивают по формуле:

$$\Delta = K \times S \,, \tag{\Pi.44}$$

K – коэффициент;

S – суммарное среднее квадратическое отклонение результата измерения.

Суммарное среднее квадратическое отклонение результата измерения S рассчитывают по формуле:

$$S = \sqrt{\sum \frac{\Theta_{i(a\delta c)}}{3} + S_{A_i^u}^2} \tag{II.45}$$

К рассчитывают по формуле:

$$K = \frac{(t_{p,f} \times S_{A_i^{\mathbf{m}}}) + \Theta_{i(a\delta c)}}{S_{A_i^{\mathbf{m}}} + \sqrt{\sum \frac{\Theta_{i(a\delta c)}^2}{3}}}$$
 (Д.46)

Рассчитанную по формуле 44 величину суммарной погрешности используют при представлении результата анализа фурановых производных в трансформаторном масле (формула 48).

Сходимость результатов двух измерений одного и того же образца масла определяют по формуле:

$$\frac{A_{i(1)}^{M} - A_{i(2)}^{M}}{\overline{A}_{i}} \times 100 \tag{Д.47}$$

где $A_{i(1)}^{M}$ – результат 1-ого измерения і-ого фуранового производного, % масс;

 $A_{i(2)}^{M}$ — результат 2-ого измерения іого фуранового производного, % масс;

 \bar{A}_{i}^{M} — среднее арифметическое значение двух измерений, % масс.

Д.9.7 Оформление результатов измерений

Результат измерений представляют в виде $A_i^{\scriptscriptstyle M} \pm \Delta$

где $A_i^{\scriptscriptstyle M}$ — измеренная концентрация *i*-ого фуранового производного в масле, % масс.

Результат измерения может быть представлен в виде $A_i^M \pm \Delta_{oms.}$

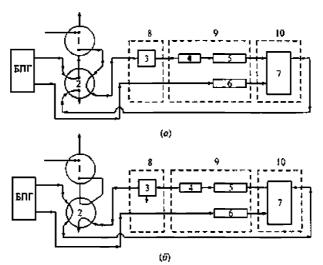
где Δ_{omh} определяют по формуле:

$$\Delta_{\scriptscriptstyle OMH.} = \frac{\Delta \times 100}{A_{\scriptscriptstyle i}^{M}} \tag{Д.48}$$

Численное значение результата измерения должно оканчиваться цифрой того же разряда, что и значение погрешности Δ .

Результаты измерений оформляют протоколом, форма которого приведена ниже

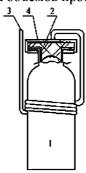
жин	æ.		_							
(лис	т формата А.4)									
	ПРОТОКОЛ № результатов измерений содержания фурановых производных в образцах трансформаторного масла									
	Место расположения оборудования:									
№		Дата	Дата		A_i^M ,%масс	$\pm \Delta(\Delta_{_{OMH.}}, \%$	b) .			
пп	Оборудование	отбора масла	проведения анализа	Фурфурол	Ацетилфуран	5-метил- фурфурол	Фурфуриловый спирт			
		_								
	Анализ прове	эл:			(ФИО)					


- Д.10 Методики анализа общего газосодержания и влажности в трансформаторных маслах
- Д.10.1 Газохроматографическая методика анализа общего газосодержания и общего влагосодержания (растворенная и связанная вода) в трансформаторных маслах с прямым вводом масла в испаритель хроматографа (методика ВНИИЭ)
- Д.10.1.1 Методика может быть реализована на любом газовом хроматографе с детектором по теплопроводности (ДТП).

Методика основана на прямом вводе малой пробы масла (от 25 до 100 мкл) в испаритель хроматографа. Температура испарителя в пределах от 250 до 300°С, поэтому вся вода, присутствующая в масле, переходит в газообразное состояние. Вода и воздух газом-носителем (гелием) переносятся в хроматографическую колонку, где происходит их разделение, а затем - в ДТП. Типичная хроматограмма приведена на рисунке Д.11.

Рисунок Д.11 — Разделение воздуха и воды при анализе общего газасодержания и влажности трансформаторных масел хроматографическим методом

Д.10.1.2 Для защиты колонки от масла служит предколонка. Колонка и предколонка после проведения серии анализов регенерируются методом обратной продувки (рисунок Д12) при температурах от 150 до 160°С для колонки и от 300 до 350°С для испарителя. Электрическое питание ДТП отключено. Время регенерации в режиме обратной продувки не менее 2 ч.



(а) - анализ; (б) - регенерация; БПГ - блок подготовки газов хроматографа; 1 - дозатор; 2 - переключатель рода работ; 3 - испаритель; 4 - предколонка; 5 - аналитическая колонка; 6 - колонка сравнения; 7 - ДТП; 8-10 - термостаты соответственно испарителя, колонок и ДТП

Рисунок Д.12 — Схема хроматографической установки для анализа воздуха и воды в трансформаторных маслах с устройством регенерации колонки и предколонки:

Д.10.1.3 Отбор, транспортировка и хранение проб масла

Отбор масла производят в стеклянные медицинские шприцы емкостью от 20 до 50 мл из пробоотборного штуцера трансформатора через гибкий шланг. При заполнении шприца необходимо следить за тем, чтобы в него не попал атмосферный воздух. После заполнения шприца масло из него сразу вводится в пробоотборник, возможная конструкция которого приведена на рисунке Д.13. Для этого иглу шприца вводят в пробоотборник таким образом, чтобы ее конец располагался как можно ближе ко дну пробоотборника. При этом вытесняемый воздух должен находиться в верхней части пробоотборника и удаляться через трубку масляного затвора. Объем масла, пропущенного через пробоотборник, должен составлять не менее четырех объемов пробоотборника.

1 - флакон; 2 - резиновая пробка; 3 - трубка масляного затвора; 4 - металлическая крышка Рисунок Д.13 — Пробоотборник

Пробы транспортируют в пробоотборниках с масляными затворами, расположенными открытыми концами вверх.

Пробы масла хранятся в пробоотборниках не более 5 дней.

При транспортировании и хранении необходимо исключить резкие перепады температуры и давления, а также попадание света на образцы масла.

Д.10.1.4 Условия выполнения измерений

Измерения проводятся на любом газовом хроматографе с ДТП, используя гелий в качестве газа-носителя. Колонка длиной от 2 до 3 м с внутренним диаметром от 2 до 3 мм, заполнена 15 % ПЭГА на Полисорбе-1. Температуры в пределах: для испарителя — от 250 до 300° С; для термостата колонок — от 100 до 120° С, термостата ДТП — 150° С. Расход гелия — от 20 до 30 мл/мин. Ток моста ДТП — в пределах от 150 до 180 мА. Объем вводимой пробы масла при анализе — от 25 до 100 мкл. Общий объем вводимого до регенерации масла не более 0,6 мл.

Д.10.1.5 Калибровка хроматографа по воздуху

Калибровка хроматографа по воздуху осуществляется с помощью газового микродозатора, который обеспечивает ввод проб воздуха в диапазоне доз 0,5-20 мкл, или с помощью любого другого аналогичного устройства.

При калибровке на хроматограмме регистрируется пик воздуха. Измеряется высота этого пика. Рассчитывается поправочный коэффициент чувствительности по воздуху $\mathcal{K}_{\mathcal{B}}$:

$$K_B = \frac{h_K M}{V_B} \,, \tag{Д.49}$$

где h_K – высота пика воздуха при калибровке, мм;

M – масштаб делителя ДТП;

 V_B — объем вводимой при калибровке пробы воздуха, мкл.

Д.10.1.6 Калибровка хроматографа по воде.

Калибровка хроматографа по воде осуществляется по этиловому спирту с известным содержанием воды, которое определено хроматографическим методом добавок воды к калибровочному спирту.

При калибровке на хроматограмме регистрируются 2 пика: воды и спирта. У пика воды измеряется площадь и затем рассчитывается поправочный коэффициент чувствительности по воде $K_{\rm H_2O}$:

$$K_{\rm H_2O} = \frac{S_K M}{A_{\rm H_2O} V_{CII}}, \tag{Д.50}$$

где S_K — площадь пика воды при калибровке, мм²; $A_{\rm H_2O}$ — содержание воды в калибровочном спирте, % масс; V_{CII} — объем спирта при калибровке, мкл.

Д.10.1.7 Расчет общего газосодержания в масле.

На хроматограмме анализируемой пробы масла (рисунок Д.11) измеряется высота пика воздуха и рассчитывается общее газосодержание, A_8 % об.:

$$A_{B} = \frac{h_{M}}{K_{B} V_{M}} 100, \qquad (\text{Д}.51)$$

где h_{M} - высота пика воздуха на хроматограмме при анализе, мм;

 V_{M} объем пробы масла при анализе, мкл.

Д.10.1.8 Расчет общего влагосодержания в масле

На хроматограмме анализируемой пробы масла (рисунок Д.11) измеряется площадь пика воды и рассчитывается общее влагосодержание (растворенная и связанная сода суммарно), $A_{\text{H},\text{O}}$ г/т:

$$A_{\rm H_2O} = \frac{SM \cdot 10^4}{K_{\rm H_2O} V_M} \,, \tag{II.52}$$

где S – площадь пика воды в анализируемом масле, мм²;

 $K_{H,o}$ – поправочный коэффициент чувствительности по воде.

- Д.10.2 Газохроматографический анализ общего газосодержания и влажности (растворенной воды) в трансформаторных маслах с использованием калибровочных растворов газов в масле (на основе методики ВТИ без вакуумирования приставки)
- Д.10.2.1 При газохроматографическом анализ общего газосодержания и влажности используют способ полного извлечения растворенных в масле воздуха и последующий анализ выделенных компонентов для достижения требуемой чувствительности производят с использованием хроматографов с ДТП. Калибровка осуществляется по калибровочным растворам воздуха и воды в масле.

Д.10.2.2 Отбор, транспортировка и хранение проб масла

Рекомендуемый отбор проб масла производят шприцами медицинскими стеклянными вместимостью от 5 до 10 мл. Поскольку воздух и влага адсорбируются на стенках шприца, необходимо промыть шприц анализируемым маслом не менее пяти раз.

Д.10.2.3 Приготовление калибровочного масла с известным количеством растворенной воды производится следующим образом.

Калибровочное масло марки ГК помещается в колбу объемом 50 мл и продувается атмосферным воздухом при комнатной температуре с помощью микрокомпрессора типа МК (для аквариумов) в течение 15 мин со скоростью от 2 до 3 пузырей в секунду. Масло поглощает воду в концентрации, прямо пропорциональной упругости паров воды в воздухе:

$$A_{\rm H_2O}^{\rm M} = \alpha_t P_{\rm H_2O}^{\rm B},$$
 (Д.53)

где α_t - коэффициент Генри;

 $P_{\mathrm{H_2O}}^{B}$ - упругость водяных паров в воздухе, мм рт. ст.

С помощью метода Карла Фишера определяют концентрацию воды, растворенной в этом масле ($A_{\rm H_{2}O}$, % масс).

Определяют упругость водяных паров в воздухе $P_{\mathrm{H}_2\mathrm{O}}^B$.

С помощью гигрометра (психрометра) по разности температур сухого и влажного термометров ($\Delta t = t_C - t_{B,T}$) оценивают относительную влажность воздуха (Ψ) по рисунок Д.14 и таблице Д.10.

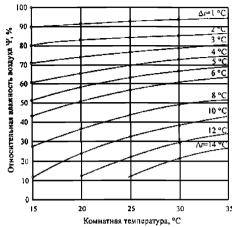


Рисунок Д.14 — Определение зависимости относительной влажности воздуха от комнатной температуры и разности температур (Δt) сухого и влажного термометров

Таблица Д.10 — Относительная влажность воздуха ψ , %

$\triangle t$										
	15	20	25	30	35					
1	90	91	92	93	94					
2	80	83	84	86	87					
3	71	74	77	79	81					
4	61	66	70	73	75					
5	52	59	63	67	69					
6	44	51	57	61	64					
8	27	37	44	50	53					
10	12	24	33	39	44					
12	-	12	22	30	35					
14	-	-	12	21	27					
16	-	-	-	13	20					
18	-	-	-	5	13					
20	-	-	-	<u>-</u>	7					

Согласно таблице Д.11 находят упругость насыщенных паров воды при комнатной температуре ($P_{\rm H_2O}^B$). Упругость паров воды в воздухе $P_{\rm H_2O}^B$:

$$P_{\rm H_2O}^B = P_{\rm H_2O}^H \Psi$$
. (Д.54)

Таблица Д.11 – Упругость насыщенных паров воды, мм рт. ст. при разных температурах в градусах Цельсия

Десятки	Единицы градусов									
градусов	0	1	2	3	4	5	6	7	8	9
10	9,2	9,8	10,5	11,2	12,0	12,8	13,6	14,5	15,5	16,5
20	17,5	18,6	19,8	21,0	22,3	23,7	25,1	26,7	28,3	29,9
30	31,7	33,6	35,5	37,6	39,8	42,0	44,4	46,9	49,5	52,3

Коэффициент Генри a_t для данного калибровочного масла при температуре опыта t определяют по формуле:

$$\alpha_t = \frac{A_{\rm H_2O}}{P_{\rm H_2O}^B} \,, \tag{\text{$($\pm$.55)}}$$

где $P_{\rm H_2O}^B$ - упругость водяных паров в воздухе в момент опыта при температуре t. Примечание – При 20°C для масла марки ГК $\alpha_t = 2.9 \cdot 10^{-4}$.

Зная α_t , определяют содержание воды в калибровочном масле по для свежей порции масла:

$$A_{\rm H_2O}^{K.M} = \alpha_t P_{\rm H_2O,t}^B,$$
 (Д.56)

Вводим поправку для растворимости водяных паров в калибровочном масле с учетом температуры опыта t_1 согласно рисунку Д.15 и таблице Д.12, которая для масла ГК составляет 0,24 г/т при изменении температуры на 1°C в интервале от 15 до 30°C:

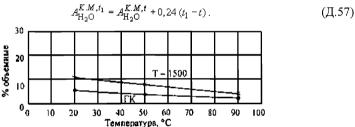


Рисунок Д.15 — Растворимость воды в маслах в зависимости от температуры при давлении водяных паров в воздухе, равном 17,5 мм рт. ст.

11.2

8,9

4,5

81

64

43

760 мм рт. ст. и температурах от 20 до 100°C										
Марка масла Температура, Воздух, % об. Н ₂ О*										
	°C		Водяные пары, % об.	_ r/T						
ГК	20	10,3	5,7	40						
	50	11,6	4,6	32						
	90	12,9	2,9	20						
	100	12 1								

9.1

10.1

12,0

12.2

Примечание - * При парциальном давлении водяных паров воздуха 17,6 мм рт. ст.

Таблица Д12 – Растворимость газов в маслах различных марок при давлении 760 мм рт. ст. и температурах от 20 до 100°C

Пример: определение содержания воды, растворенной в калибровочном масле

Температура 25°С. Разность температур в психрометре 8°С. Согласно таблице Д.10 относительная влажность воздуха ψ = 44 %. Упругость насыщенных паров воды при 25°С находят согласно таблице. Д.11 $P_{\rm H_2O}^H$ = 23,7 мм

рт. ст. Тогда упругость паров воды в воздухе
$$P_{\rm H_2O}^{\rm B} = \frac{23,7}{100} = 10,428$$
 мм рт. ст.

Коэффициент Генри α_t (в калибровочном масле ГК) равен 2,9·10⁻⁴ при 20°С. Продуваем воздух через калибровочное масло при t_1 = 25 °С.

Содержание воды в этом образце калибровочного масла при 20°C составляет:

$$A_{\rm H_2O}^{K.M,\,20} = \alpha_{20}\,P_{\rm H_2O}^B = 2.9\cdot10^{-4}\cdot10,428 = 30,24\cdot10^{-4}\%\ {\rm macc.} = 30,24\ {\rm c/m}.$$

Вносят поправку в растворимость водяных паров в калибровочном масле на температуру опыта 25°C.

$$A_{\rm H_2O}^{K.M,\,25} = A_{\rm H_2O}^{20} + 0.24\,(25-20) = 30.24 + 1.2 = 31.44\,c/m.$$

Калибровочное масло содержит 31,44 г/т воды.

Д.10.2.4 Приготовление калибровочного масла (ГК)

Масло готовится так же, как в п. Д.10.3.1.

20

50

90

100

T-1500

По рисунку Д.16 определяют содержание растворенного в масле воздуха при 20° С и давлении воздуха 760 мм рт. ст.

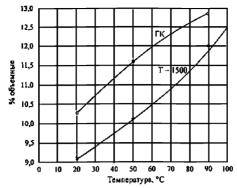


Рисунок Д.16 — Растворимость воздуха в маслах в зависимости от температуры при давлении воздуха 760 мм рт. ст.

В растворимость воздуха в калибровочном масле вносят поправку на температуру в комнате.

Для масла ГК в интервале температур от 15 до 35°C повышение температуры на 1°C увеличивает растворимость воздуха на 0.0433% объемн.

Отсюда растворимость воздуха в масле при комнатной температуре

$$A_B^{KT} = A_B^{20} + 0.043 (t_{KT} - 20)$$
. (Д.58)

В растворимость воздуха в калибровочном масле вносят поправку на атмосферное давление. Барометрическое давление находят по прибору или по метеорологической сводке. Растворимость с учетом давления:

$$A_B^P = A_B^{K.T} \frac{P}{760}. (Д.59)$$

Пример: Определить содержание растворенного воздуха в калибровочном масле

Плотность калибровочного масла ρ_{20} = 0,8562 г/см³; температура масла и воздуха при продувке, согласно Д.10.2.4 - 16°C, атмосферное давление 745 мм рт. ст.

Согласно рисунка Д.17 при ρ_{20} = 0,8562 содержание растворенного воздуха при 20°С и атмосферном давлении 760 мм рт. ст. составит A_B^{20} = 10,3 % об.

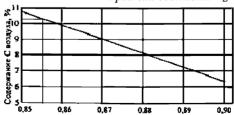


Рисунок Д.17 – Зависимость растворимости воздуха в масле от плотности ρ при 20°C и 760 мм рт. ст.

Вносим поправку на температуру опыта 16°C

$$A_B^{K,T} = A_B^{20} + 0.043 \ (t_{K,T} - 20) = 10.3 + 0.043 (16 - 20) = 10.127 \% \text{ of.}$$

Вносим поправку на атмосферное давление 745 мм рт. ст.

$$A_B^P = A_B^{K.T} \frac{P}{760} = 10,127 \frac{745}{760} = 9,93 \% \text{ of.}$$

Калибровочное масло содержит 9,93 % воздуха.

Д.10.2.5 Для оценки концентрации воды и воздуха, растворенных в исследуемом масле, необходима следующая аппаратура и реактивы.

Газовые хроматографы любой марки, оборудованные ДТП.

Приставка к хроматографу.

Газ-носитель гелий.

Колонки и сорбенты, обеспечивающие надежное разделение воздуха и воды.

Для определения содержания воздуха и воды рекомендуется использовать полисорбы-1 или 10 с зернением от 0,25 до 0,50 мм. Для улучшения разделительной способности адсорбента полезно обработать полисорб полиэтиленгликолем (15 % масс).

Рекомендуется колонка длиной 3 м и внутренним диаметром 3 мм.

Заполнение хроматографических колонок указанными сорбентами производят согласно п.5.3 [7], термообработка (кондиционирование) колонок с сорбентами согласно п.5.4 [7].

Д.10.2.6 Проведение анализа

Собирают приставку в соответствии со схемой на рисунке Д.18.

1-3 – краны одноходовые; 4 – электрообогрев; 5 – реакционный сосуд; 6 – устройство для ввода пробы; 7 – гайка накидная с прокладкой для слива отработанного масла; 8 – расширитель Рисунок Д.18 – Схема приставки к хроматографу:

Приставка состоит из:

- реакционного сосуда (5) с внешним электрообогревом (4), обеспечивающим нагрев масла, введенного в (5) для анализа, до 100°C;
- устройства (6) для ввода пробы масла в реакционный сосуд и (7) для слива масла из него:
- металлических капиллярных трубок со штуцерами и накидными гайками (на рисунке Д.18 не обозначены), предназначенными для соединения всех частей приставки;
 - расширителя для предотвращения попадания масла в колонку (8).

Приставку подключают к хроматографу в линию газа-носителя перед колонками, продувают газом-носителем (краны 1 и 3 открыты, кран 2 — закрыт), затем проверяют ее на герметичность, для чего закрывают краны 1 и 3, открывают кран 2, выдерживают в течение 3 мин, открывают краны 1 и 3, а кран 2 закрывают; отсутствие пиков на хроматограмме указывает на герметичность приставки.

Д.10.2.7 Хроматографический метод определения содержания воды

Растворимость воды в масле (при соприкосновении водной и масляных фаз) повышается с ростом температуры. Так, если при температуре 20°C она составляет 50 г/т, то при 60°C – 200 г/т, следовательно, при охлаждении с 60 до 20°C вода может выделяться в виде эмульсии (мути около 150 г/т). При отсутствии водной фазы растворимость прямо пропорциональна упругости водяных паров. При постоянной упругости водяных паров в воздухе повышение температуры масла приводит к уменьшению концентрации воды, поэтому в «дышащем» трансформаторе с повышением температуры концентрация воды в масле, следовательно, из пробы масла в шприце эмульсионная вода не должна выделяться. Исключение может составлять масло в герметичном трансформаторе в том случае, если твердая изоляция плохо высущена или образуется много реакционной воды. В лаборатории шприцы с пробами масла осматриваются: если они прозрачны, то масло готово для анализа, если есть пузырь воздуха или масло содержит эмульсионную воду, то шприцы с маслом подогреваются до той температуры, при которой масло станет прозрачным и в нем растворятся избыточные вода и воздух. В этом случае в приставку хроматографа вводится «горячая» проба масла.

Условия хроматографирования: газ-носитель — гелий, скорость гелия 50 ± 1 мл/мин, скорость ленты - 60 мм/ч, ток детектора 170 мА, температура хроматографической колонки - комнатная, температура реакционного сосуда $100^{\circ}\mathrm{C}$.

Последовательность проведения анализа

Поток гелия направляют через реакционный сосуд приставки и колонки хроматографа (краны 1 и 3 открыты, кран 2 закрыт). Реакционный сосуд приставки нагревают до 100°С. Выводят хроматограф на устойчивый режим. После этого в реакционный сосуд приставки вводят исследуемую пробу масла в количестве 1 мл, при этом положение кранов не меняют. Определяют площадь пика воды в исследуемой пробе масла.

В реакционный сосуд приставки вводят 1 мл калибровочного масла, приготовленного по Д.10.2.4, и оценивают площадь пика.

Расчет содержания воды в исследуемой пробе масла $A_{\rm H_2O}^M$ выполняют по формуле:

$$A_{\rm H_2O}^{M} = A_{\rm H_2O}^{K,M} \frac{S_{M,M}^{\rm H_2O}(h)}{S_{K,M}^{\rm H_2O}(h)}, \tag{A.60}$$

где $A_{\rm H_2O}^{\rm K.M}$ - содержание воды в калибровочном масле, г/т;

 $S_{\emph{UM}}^{\textrm{H}_2\textrm{O}}(\emph{h})$ - площадь (высота) пика воды для исследуемого масла, мм 2 (мм);

 $S_{KM}^{\mathrm{H}_2\mathrm{O}}(h)$ - площадь (высота) пика воды для калибровочного масла, мм 2 (мм).

Пример: содержание воды в калибровочном масле - 30 г/т (см. п.Д.10.2.4), площадь пика воды для исследуемого масла (при дозе 1 мл) $S_{HM}(h)$ = 80 мм, площадь пика воды для калибровочного масла $S_{KM}(h)$ = 40 мм². Содержание воды в исследуемом масле:

$$A_{\rm H_2O}^{M} = 30 \frac{80}{40} = 60 \, \Gamma/{\rm T}.$$

Д.10.2.8 Хроматографический анализ содержания воздуха в масле

Условия хроматографирования и последовательность проведения анализа те же, что при анализе содержания воды по Л.10.2.7.

Расчет содержания воздуха в исследуемой пробе, % об.:

$$A_{B}^{M} = A_{B}^{KM} \frac{S_{IIM}^{B}(h)}{S_{VM}^{E}(h)}, \qquad (\text{Д.61})$$

где $A_{B}^{K.M}$ - содержание воздуха в калибровочном масле, % об.

Пример: содержание воздуха в калибровочном масле

$$A_{\rm R}^{\rm K.M}$$
 = 9,93 % o6.

Площадь пика воздуха для исследуемого масла (при дозе 1 мл) S_{HM}^B = 20 мм 2 , а для калибровочного масла S_{KM}^B = 120 мм 2 . Содержание воздуха в исследуемом масле

$$A_{B}^{M} = A_{B}^{K,M} \frac{S_{M,M}^{B}}{S_{K,M}^{E}} = 9.93 = 1.65 \% \text{ ob}.$$

- Д.10.3 Методика анализа общего газосодержания и влажности (растворенной воды) в трансформаторных маслах с использованием их равновесного извлечения в устройстве УИВВМ (методика ВНИИЭ)
- Д.10.3.1 Методика предназначена для периодического контроля содержания воздуха и воды в трансформаторных маслах в процессе эксплуатации трансформаторов при заливке их маслом.
- - Д.10.3.3 Отбор, транспортировка и хранение проб масла

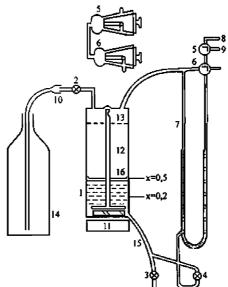
Отбор масла из трансформатора проводится в бутыль емкостью от 0.5 до 1.0 л. Объем горлышка должен быть не менее 5 % объема бутыли. Объем масла, пролитого через бутыль, должен составлять не менее трех объемов бутыли. После отбора пробы бутыль закрыть крышкой.

Транспортироване проб масла осуществляют в бутылях горлышками вверх.

Срок хранения проб масла допускается не более пяти дней в сухом отапливаемом помещении.

При транспортировании и хранении необходимо исключить резкие перепады температур, давления, а также попадание прямого света на образцы масла.

Д.10.3.4 Условия выполнения измерения


Устройство предназначено для периодического контроля проб трансформаторного масла.

Устройство может работать при температуре заливаемой пробы от 10 до 30° C.

Перед испытанием температуру пробы масла довести до температуры помещения лаборатории.

Д.10.3.5 Проведение измерений

Проба масла вводится в предварительно вакуумированный испытательный сосуд (рисунок Д.19). Газ, растворенный в масле, распределяется между жидкой и фазами до установления равновесия. По масляному манометру h_1 . определяется давление системе Затем надмасляное пространство В вакуумируется и проба масла перемешивается до установления равновесия между жидкой и газовой фазами. Измеряют новое давление h_2 . Полученные из опыта значения используют для расчета концентраций растворенных в масле воздуха A_B^M и воды $A_{\text{H}_2\text{O}}^M$.

1 - испытательный сосуд; 2-4 - вакуумные одноходовые краны игольчатого типа; 5-6 - трехходовые стеклянные вакуумные краны; 7 - жидкостный манометр; 8 - вывод в атмосферу; 9 - вывод к вакуумному насосу; 10 - ввод масла; 11 - магнитная мешалка; 12 - устройство для перемешивания масла и воздуха; 13 - диафрагма пеноотражателя; 14 - бутылка с пробой масла; 15 - шланг; 16 - перегородка

Рисунок Д.19 – Устройство УИВВМ

Д.10.3.6 Обработка результатов измерений

Расчет общего газосодержания и влажности (в процентах по объему) в масле выполняют по формулам:

$$A_{B}^{M} = \frac{(1+BX)^{2} B_{1}}{X h_{0}(B_{1}-B)} h_{1} - \frac{(1+BX)^{2} (1+B_{1}X)}{X^{2} h_{0}(B_{1}-B)} h_{2} - (1-B) \frac{h_{OCT}}{h_{0}}; \quad (\text{$I\!\!\!\!/}.62)$$

И

$$A_{\rm H_2O}^{M} = \frac{(1+B_1X)^2(1+BX)}{X^2h_0(B_1-B)}h_2 - \frac{(1+B_1X)^2B}{Xh_0(B_1-B)}h_1, \qquad (\text{Д}.63)$$

где h_1 и h_2 — значения давлений по масляному манометру, мм;

 h_0 - высота столба масла, залитого в манометр, которая соответствовала бы нормальному атмосферному давлению, мм;

 B_1 - коэффициент растворимости воды в испытываемом масле;

B - условный коэффициент растворимости воздуха в испытываемом масле; h_{OCT} - остаточное давление в приборе, мм;

 $X = V_{M} / V_{T}$ - метка, соответствующая объему залитого масла;

X = 0.20 - для трансформаторов без пленочной защиты;

X = 0.50 - для трансформаторов с пленочной защитой.

Пересчет процентных значений концентрации воды ($A_{\rm H_2O}^{M}$) в массовые проводят по формуле:

$$A_{\rm H_2O}^{M}({\rm r/r}) = 8,5 \cdot A_{\rm H_2O}^{M}$$
 (% об.). (Д.64)

Д.10.3.7 Измерение коэффициента растворимости воды

Измерение делается при помощи устройства УИВВМ в тех случаях, когда коэффициент растворимости воды в испытываемом масле заранее неизвестен, например, если неизвестен сорт масла.

Для этого масло в испытательном сосуде дегазируют, затем в надмасляное пространство запускают водяной пар, который растворяют в пробе масла. В процессе опыта измеряется давление в системе при помощи масляного манометра.

Коэффициент растворимости воды рассчитывают по формуле:

$$B_1 = 2\frac{h_1' - h_2'}{h_2'}, \tag{Д.65}$$

где h_1' , h_2' - измеренные значения давления, мм.

Д.10.4 Методика анализа влажности (растворенной воды) в трансформаторных маслах с помощью прибора ПВН (ГОСТ 7822)

Анализ влажности трансформаторного масла выполняют в соответствии с ГОСТ 7822.

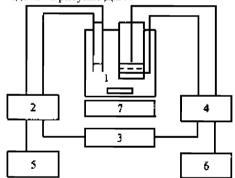
- Д.10.5 Анализ влажности (растворенной воды) в трансформаторных маслах кулонометрическим титрованием
- Д.10.5.1 Настоящая методика описывает способ определения воды в свежих эксплуатационных и отработанных жидких диэлектриках кулонометрическим титрованием на автоматическом приборе по методу К.Фишера. Метод применим для содержания воды от 2 до 100 г/т.
- Д.10.5.2 Во время титрования методом К.Фишера происходят сложные химические реакции, но, в основном, это реакция воды с йодом и двуокисью серы. Их можно представить следующим образом:

$$H_2O + J_2 + SO_2 + 3C_5H_5N \rightarrow 2C_5H_5NHJ + C_5H_5NSO_3$$
; (Д.66)
 $C_5H_5NSO_3 + CH_3OH \rightarrow C_5H_5NHSO_4CH_3$. (Д.67)

В кулонометрическом титровании К.Фишера образец смешивается с раствором йода и двуокиси серы в пиридин-метанольной смеси. Йод, образующийся электролитическим путем, взаимодействует с водой по механизму реакций (Д.66) и (Д.67).

По закону Фарадея количество образующегося йода пропорционально количеству электричества, израсходованного на реакцию:

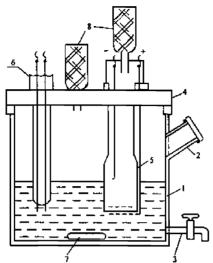
$$2J^{-} - 2e^{-} \rightarrow J_{2}. \tag{Д.68}$$


Как показано выше, происходит стехиометрическое взаимодействие 1 моля йода с 1 молем воды таким образом, что 1 мг воды соответствует 10.72 Кл. Основываясь на этом принципе, онжом рассчитать количество воды количеству электричества непосредственно по (количеству кулонов). израсходованных на электролиз.

Д.10.5.3 Аппаратура

Для исследования рекомендуется прибор РОКБА

Описание прибора


Общая схема приведена на рисунке Д.20.

1 - комплект для титрования; 2 - контур детектирования; 3 - контур стабилизации тока; 4 - питание постоянным током (для электролиза); 5 - индикация конца титрования; 6 - интегратор тока; 7 - электромагнитная мешалка

Рисунок Д.20 – Схема автоматического титратора

На рисунке Д.21 приведена возможная конструкция измерительной ячейки (комплект для титрования). Конструкция ячейки может отличаться от приведенной на рисунке.

1 - реакционный сосуд (анодное отделение); 2 - отверстие для ввода масла; 3 - спускной кран; 4 - политетрафторэтиленовая крышка; 5 - генераторная система (катодное отделение); 6 - пара платиновых электродов для измерения потенциала; 7 - стержень мешалки с политетрафторэтиленовым покрытием; 8 - осущительные трубки

Рисунок Д.21 – Комплект для титрования (измерительная ячейка):

Принцип действия:

Комплект для титрования (измерительная ячейка) состоит из электролитического элемента с двумя камерами, разделенными пористой диафрагмой. Анодная камера содержит смесь реагента, растворителя и образца (анодный раствор), катодная камера (генераторная система) содержит безводный реагент. По обеим сторонам пористой диафрагмы находятся электроды для электролиза.

Йод, генерированный электролизом, взаимодействует с водой по реакциям К.Фишера (Д.66) и (Д.67). Окончание реакции детектируется парой платиновых электродов, погруженных в анодный раствор. По окончании титрования избыток реагента Карла Фишера деполяризует катод пары платиновых электродов, что вызывает увеличение тока, который зажигает индикацию измерения и останавливает интегратор тока.

Интегратор тока определяет количество электричества, израсходованное во время электролиза, рассчитывает по закону Фарадея содержание воды и показывает его на дисплее в микрограммах воды.

Д.10.5.4 Реагенты и вспомогательные материалы

Готовые для использования реагенты имеются в продаже. Однако необходимо удостовериться, что реагент подходит к используемому типу аппарата.

В случае необходимости и в соответствии с местными условиями соответствующие реагенты могут быть приготовлены одним из методов, описание которых может быть дано в приложении к инструкции по эксплуатации прибора.

Д.10.5.5 Для подготовки пробы необходимо:

- промыть и высушить при (115±5)°С в хорошо вентилируемой сушильной печи реакционный сосуд, пару платиновых электродов, генераторную систему, стержень мешалки и шприцы;
- смазать притертые края реакционного сосуда. Внести в него стержень мешалки;
- закрепить генераторную систему, пару электродов и осушительную трубку в измерительной ячейке (см. рисунок Д.21);
- поставить реакционный сосуд на магнитную мешалку и произвести электрические соединения (см. рисунок Д.20);
- приготовить, как указано, анодный раствор и ввести его в реакционный сосуд;
 - добавить около 6 см³ катодного раствора в генераторную систему;
- включить электромагнитную мешалку, а также различные электронные приборы.

Если анодный раствор не истощен, вставить в шприц на 10 см³ иглу, набрать от 2 до 10 см³ нейтрализующего раствора и вводить в реакционный сосуд до истощения анодного раствора.

осуществить электролиз, чтобы израсходовать избыток присутствующей воды.

оставить систему для стабилизации в течение 1 ч. После этого система готова для работы.

Примечание – У некоторых приборов есть защитная блокировка, которая мешает работе аппарата, пока не будет завершена стабилизация.

Д.10.5.6 Методы отбора проб

Отбор проб осуществляют, как правило, методами ГОСТ 6433.5.

Д.10.5.7 Проведение испытаний

Если образцы были отобраны в стеклянные сосуды, наполните шприц изоляционной жидкостью, держа конец иглы глубоко от поверхности жидкости. Немедленно закройте сосуд. Держите шприц вертикально иглой вверх, удалите пузырьки воздуха и опорожните шприц.

Снова наполните шприц и взвесьте его с точностью до 0,1 г. Если пробы были отобраны шприцем, слейте около 2 см 3 изоляционной жидкости, чтобы промыть иглу, затем взвесьте шприц с точностью до 0,1 г.

Количество отбираемого образца зависит от предполагаемого содержания воды в пробе, и рекомендуемые значения составляют:

до 10 г/т	от 10 до 20 см ³ пробы;
от 10 до 50 г/т	от 5 до 10 см ³ пробы;
от 50 до 100 г/т	от 2 до 5 см ³ пробы.

Проткнув мембрану, введите соответствующее количество изоляционной жидкости в реакционный сосуд и снова взвесьте шприц. Запишите массу впрыснутой жидкости.

Начните электролиз. Когда титрование будет закончено, считайте на дисплее количество титрованной воды (микрограммы).

Проведите второе титрование.

После нескольких операций скапливается значительное количество жидкости. Отключите систему и подождите, пока растворитель не отделится от изоляционной жидкости. В зависимости от плотности изоляционной жидкости ее избыток можно отсосать пипеткой или слить через спускной кран. После нескольких сливов титровальный раствор генераторной системы необходимо заменить свежими растворами в соответствии с рекомендациями фирмыизготовителя прибора.

Д.10.5.8 Результаты определяют по формуле:

$$A_{\rm H_2O}^M = \frac{W}{M} \,, \tag{Д.69}$$

где $\mathit{A}_{\mathrm{H}_{2}\mathrm{O}}^{\mathrm{M}}$ - влагосодержание электроизоляционной жидкости, г/т;

W - число, показываемое дисплеем, микрограмм воды;

M - масса образца изоляционной жидкости, г.

Д.10.5.9 Обработка результатов

Содержание воды в изоляционной жидкости записывают как среднее арифметическое двух параллельных измерений, округленное до близкого целого, в миллиграммах (граммах) воды на килограмм (тонну) изоляционной жидкости.

Приложение Е

(рекомендуемое)

Определение степени полимеризации бумажной изоляции силовых трансформаторов

Е.1 Общие сведения

Состояние бумажной изоляции трансформатора со значительным сроком эксплуатации может быть оценено по степени ее полимеризации, которая определяется вискозометрическим методом по вязкостным характеристикам раствора бумажной изоляции в кадоксене.

Растворы бумажной изоляции в кадоксене обладают устойчивыми вязкостными характеристиками и используются для определения степени полимеризации бумажной изоляции силовых трансформаторов в эксплуатации.

Поскольку кадоксен является высокотоксичным реагентом, работа с ним требует строгого соблюдения требований по безопасности.

Е.2 Аппаратура и реактивы.

Е.2.1 Перечень оборудования для получения кадоксена.ЭлектромоторКолба трехгорловая (1 л) с притертой или резиновой проби	-1 шт. кой и
турбиновой или винтовой мешалкой	-2 шт.
Термометр стеклянный (-10-0)°С	-2 шт.
ЛАТР	-1 шт.
Фильтр Шотта № 2 (2 л)	-2 шт.
Колба Бунзена (2 л) с резиновым кольцом	-1 шт.
Водоструйный насос или резиновая груша	-1 шт.
Бюретки для титрования	-2 шт.
Штатив химический с лапкой	-1 шт.
Воронка стеклянная (диаметр 100 мм)	-1 шт.
Баня водяная (5 л)	-1 шт.
Холодильник для перегонки этилендиамина	-1 шт.
Круглодонная колба (1 л) из термостойкого стекла	-1 шт.
Коническая колба (приемник, 1 л)	-1 шт.
Колбонагреватель или электроплитка с песчаной баней	-1 шт.
Дьюар для сухого льда	-1 шт.
Центрифуга (25, V = 250 мл)	-1 шт.
Холодильник бытовой для реактивов	-1 шт.
Набор ареометров (диапозон 0,700-1840)	-1 шт.
Печь муфельная для прокаливания Cd(OH) ₂	-1 шт.
Тигли керамические ($V = 250 \text{ мл}$)	-3 шт.
Весы лабораторные ВЛР-200 или аналогичные.	
Е.2.2 Перечень необходимых реактивов.	
Этилендиамин 50 % водный раствор	по ТУ 6-09-146

или технический (90 %). Окись кадмия (CdO), XЧ по ГОСТ 11120. Трилон Б, 0,1 Н раствор, ХЧ по ГОСТ 10652. Индикаторы: ГОСТ 4919.1 метилоранж хромоген черный ЕТ-00. Аммиак водный, 1.0 Н раствор, ХЧ по ГОСТ 3760. Цинковая пыль, ХЧ. Сухой лед. Хлористый натрий. ХЧ по ГОСТ 4233. Серная кислота, фиксаналы нормадозы по ГОСТ 4204. по ГОСТ 3773. Аммония хлорид, ЧДА

Е.3 Приготовление кадоксена

50 или 90% водный раствор этилендиамина в количестве до 1,5 л 6 перегоняют над цинковой пылью, или стружками. При этом цинк должен находится под слоем кубовой жидкости. Отбирают фракцию, кипящую при 118°С. Затем определяют содержание этилендиамина. Для этого в коническую колбу объемом 250 мл с притертой пробкой на аналитических весах берут навеску этилендиамина (0,1±0,0002) г, прибавляют от 15 до 20 мл дистиллированной воды и 2 капли метилоража из индикаторной склянки. Оттитровывают 1,0 Н раствором серной кислоты до розового окрашивания (раствор в точке эквивалентности имеет «цвет чайной розы»). Содержание этилендиамина вычисляют по формуле:

ЭД (%) =
$$(B \cdot H \cdot 0.03 \cdot 100)/a$$
, (E.1)

где a –навеска этилендиамина, г;

B- количество однонормального раствора серной кислоты, израсходованного на титрование, мл;

H – нормальность раствора серной кислоты;

0,03 — масса этилендиамина, соответствующая 1 мл однонормального раствора серной кислоты.

Далее, из концентрированного раствора этилендиамина приготовляют 29 % раствор.

Пример:

Из товарного этилендиамина путем перегонки над цинковой пылью получен «свежеперегнанный» раствор этилендиамина объемом V (310 мл) с концентрацией (C) по результатам титрования равной 90,56 %. Плотность (ρ) раствора, измеренная ареометром составила 0,996 г/мл.

1) Масса этилендиамина составляет:

$$M_{\rm DJJ} = V \times \rho \times C = 310 \times 0.996 \times 0.9056 = 279.6 \, z$$

2) Масса воды в 310 мл перегнанного раствора составляет:

$$ho \times V - M_{\rm DJI} = 308,76 - 279,6 = 29,1~c$$

3) Всего воды в приготовляемом 29 %-ом растворе этилендиамина:

$$M_{H2O} = 71 \times 279,6 / 29,1 = 683,1$$
 г или мл

4) К 310 мл перегнанного раствора этилендиамина следует добавить воды: 683, I-29, I=654 г или мл.

Получили 964 мл 29 % раствора этилендиамина.

5) Взвешивают на аналитических весах с точностью до 0,1 окись кадмия в пластмассовом или стеклянном стакане из расчета 80 г CdO на 1000 мл 29 % раствора этилендиамина, то есть:

$$M_{CdO} = 964 \times 80 / 1000 = (77,12 \pm 0,2) \text{ s.}$$

 $1\ n\ 29\ \%$ раствора этилендиамина (в рассмотренном примере $-\ (964\pm 1)\$ мл) помещают в трехгорлую колбу (рисунок E.1), которую охлаждают при перемешивании раствора лопастной мешалкой с помощью ледяной бани (раствор хлористого натрия в воде с добавками сухого льда) до минус 3° С. Динамику охлаждения раствора наблюдают по изменениям показаний термометра в трехгорлой колбе. При этом необходимо следить за тем, чтобы количество льда в водяной бане не превышало 2° по объему, а также за тем, чтобы трехгорлая колба не была затерта и разрушена образующимся в бане льдом.

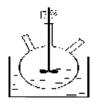


Рисунок Е1 – Схема установки для получения кадоксена

В охлажденный раствор при интенсивном перемешивании в течение от одного до полутора часов шпателем небольшими порциями добавляют окись кадмия (80 г на 1 л; для рассмотренного примера расчета — 77,12 г). При этом температура охлаждаемого раствора не должна подниматься выше, чем 0°С. Каждую следующую порцию окиси кадмия засыпают в трехгорлую колбу спустя 1-2 минуты после исчезновения коричневого окрашивания раствора. После введения всего количества окиси кадмия раствор перемешивают еще от 45 до 60 минут при температуре ниже 0°С. Затем трехгорлую колбу с кадоксеном оставляют в холодильнике до следующего дня (минимум от 8 до 10 часов), чтобы образовавшаяся гидроокись кадмия осела на стенках колбы. Затем полученный прозрачный раствор сливают в фильтр Шотта (\mathbb{N} 2, \mathbb{V} = 1 л) и фильтруют в колбу Бунзена посредством водоструйного насоса.

В том случае, если после этих операций раствор оказался мутным или опалестирующим, его подвергают центрифугированию небольшими порциями, а затем фильтруют вновь. Прозрачный раствор полученного кадоксена сливают в темную склянку с притертой пробкой и хранят в холодильнике при температуре меньше или равной 0°С.

Е.4 Анализ кадоксена.

Для определения содержания этилендиамина в кадоксене в коническую колбу (250 мл) отбирают приблизительно ($1\pm0,2$) г кадоксена, контролируя его вес на аналитических весах, добавляют 20 мл воды и далее титруют серной кислотой в присутствии метилоранжа, как это описано в Е.3.

Содержание кадмия определяют следующим образом: в коническую колбу взвешивают на аналитических весах 0,3 г кадоксена, прибавляют 20 мл воды, 1 мл буферного раствора (в 1 л раствора содержится 570 мл 23 %-ого раствора аммиака и 70 г хлористого аммония, рН = 10), добавляют индикатор – хромоген черный (1 весовая час ть хромогена на 200 частей хлористого натрия) и оттитровывают 0,1 М раствором трилона Б, фиксируя переход от фиолетового к синему в отраженном свете.

Содержание кадмия (в процентах) определяют по формуле:

$$C = (0.1124 \cdot V \cdot M \cdot 100)/a,$$
 (E.2)

где 0,1124 – масса кадмия, соответствующая 1 мл 0,1 М раствора трилона Б;

V – количество 0,1 M раствора трилона Б, пошедшее на титрование, мл;

M – молярность раствора трилона Б;

a – навеска кадоксена в г, отобранного для анализа.

Полученные растворы кадоксена содержат, обычно, этилендиамина – $(27,7\pm0,5)$ % и кадмия – $(5,6\pm0,2)$ %. Удельный вес растворов составляет от 1,06 до 1,09 мг/мл.

Е.5 Регенерация кадоксена.

Использованный кадоксен (кадоксеновый раствор целлюлозы) сливают обычно в склянку с надписью «Слив кадоксена» (не более 1 л). Затем раствор перегоняют, отбирая фракцию по достижении температуры 118°С, с любой скоростью. При этом комплексы целлюлозы с кадоксеном термически разрушаются. Полученный этилендиамин возможно укрепить свежеперегнанным товарным этилендиамином и использовать вновь для получения кадоксена.

Оставшуюся гидроокись кадмия прокаливают в керамических тиглях в муфельной печи при 400-600°С до полного разложения и образования окиси, которую затем используют вновь.

Е.6 Определение степени полимеризации бумажной изоляции силовых трансформаторов

Е.6.1 Общие свеления

Определение степени полимеризации бумажной изоляции производится по характеристикам проб изоляции растворах кадмийэтилендиаминового комплекса (кадоксена), не разрушающих макромолекулы целлюлозы в процессе ee растворения И обладающих стабильными вязкостными характеристиками.

При этом лигноуглеводный комплекс изоляции, включающий лигнин в количестве до 3 % мас., растворяется полностью.

- Е.6.2 Перечень оборудования для определения степени полимеризации бумажной изоляции:
- термостат циркуляционный для вискозиметрических испытаний 1 шт.
 - вискозиметр стеклянный типа ВПЖ-1, ВПЖ-2, ВПЖ-4 3 шт.
- колбы конические с притертыми стеклянными пробками (шлиф 14, V = 25 мл, вес не более 12 ± 2 г) 8 шт.

```
BIOHIT
    - пипетка
                химическая
                               автоматическая
                                                           или
                                                                 аналогичная
(V = 5 MЛ)
                                                     2 шт.
    - пипетка химическая (V = 10 \text{ мл}), ГОСТ 29228
                                                     -2 шт.
    - пипетка химическая (V = 25 мл)
                                                     1 шт.
    - фильтр Шотта № 2 (1) (V = 20-30 мл)
                                                     – 2 шт.
                                                     -2 шт.
    - зажимы химические
    - шкаф сушильный вакуумный T = 200°C (ШСВ)
                                                     - 1 шт.
                                                     – 1 шт.
    - холодильник
    - весы аналитические ВЛР-200 или аналогичные
                                                     — 1 шт.
                                                     – 1 шт.
    - колба Бунзена с воронкой Бюхнера
    Е.6.3 Перечень необходимых реактивов:
```

- раствор кадмийэтилендиаминового комплекса (кадоксен).
- Спирт этиловый, ректификат.
- Бензол, ХЧ.
- 1,4 диоксан, XЧ.

Е.6.4 Отбор образца бумажной изоляции из силового трансформатора и подготовка его к анализу.

Для объективной оценки состояния изоляции обмоток трансформатора необходимо проводить измерение степени полимеризации образца витковой изоляции, взятого из зоны обмотки, имеющей наибольшую температуру при эксплуатации трансформатора, чему в максимальной степени отвечает образец с верхних катушек обмоток.

Отбор образца витковой изоляции может быть выполнен на отключенном трансформаторе при проведении ремонта. Представительность заложенного в трансформатор образца целлюлозной изоляции, а также образцов барьерной изоляции в отношении достигнутого уровня деструкции изоляции обмоток не обеспечивается в полной мере, поскольку такие образцы расположены в баке трансформатора в условиях, не отвечающих наиболее нагретой зоне.

ВНИМАНИЕ! Отбор изоляции требует большой аккуратности, чтобы не повредить изоляцию обмотки трансформатора, что может привести в дальнейшем к его повреждению. Для проведения анализа в соответствии с изложенной далее методикой с использованием кадоксена, необходимо отобрать от 0,3 до 0,5 г бумажной изоляции. При этом нет необходимости, чтобы отобранный образец был единым куском.

При возможности отбора витковой изоляции обмоток в доступном месте одной из верхних катушек острым перочинным ножом или скальпелем аккуратно вырезается фрагмент внешнего слоя бумажной изоляции, прорезание других слоев не допускается. При этом вырезаемая площадь образца должна быть меньше площади внешней поверхности витка (располагаться внутри с некоторым отступом между верхним и нижним краем витка) с одной стороны, и не выходить за ширину намоточной бумаги (чтобы не нарушить плотность намотки). Затем делается подмотка изоляции полоской высушенной крепированной бумаги или лакотканью.

При наличии хрупкой и ветхой изоляции внешнего слоя витка необходимо аккуратно отделить необходимый фрагмент (или несколько франментов) внешнего слоя в месте ее отслоения.

Отобранный образец изоляции помещается в чистую и просушенную стеклянную емкость с притертой крышкой, в которую предварительно заливается трансформаторное масло из бака трансформатора. Емкость с трансформаторным маслом и помещенными образцами изоляции должна быть промаркирована и далее храниться при комнатной температуре в защищенном от света месте до проведения анализа.

При невозможности отбора витковой изоляции обмоток, наиболее представительным может являться образец бумажной изоляции, отобранный с отвода НН в доступном месте, наиболее приближенным к обмотке. Однако значение степени полимеризации такого образца будет заведомо выше, чем витковой, что может не позволить принять решение о состоянии бумажной изоляции обмоток трансформатора.

Е.6.5 Подготовка образца бумажной изоляции из силового трансформатора к анализу.

Подготовка пробы включает в себя отмывку пробы целлюлозной изоляции без потери ее массы от масла и присадок системой не разрушающих поли – и олигосахариды органических растворителей и водой при 90°C с последующим инклюдированием и осушкой.

Бумажную изоляцию (от 0,3 до 0,5 г) измельчают (1 мм в любом направлении) (250 меш.) и отмывают от трансформаторного масла и присадок тремя порциями 1,4-диоксана по 30 мл, затем – спиртобензольной смесью (50/50 % объемных) при модуле 1:20 в течение двух часов. Затем образец переносят на воронку Бюхнера и промывают последовательно диоксаном, дистиллированной водой при 90°C, этиловым спиртом. Далее образцы изоляции сушат на воздухе при комнатной температуре до воздушно-сухого состояния. Затем изоляцию взвешивают. При количестве воздушно-сухого вещества 0,2 г и менее ее высушивают, согласно ГОСТ 16932 при температуре в пределах от 70 до 105°С под вакуумом до постоянного веса. Полученные таким образом образцы бумажной изоляции хранят в эксикаторе над пятиокисью фосфора вплоть до измерения вязкости их кадоксеновых растворов. При количестве воздушно-сухого вещества 0,3 г и более допускается определение влажности в отдельной навеске аналогично ГОСТ 16932 с точностью до пятого знака. В последнем случае в вискозиметрических исследованиях используется воздушно-сухая бумажная изоляция.

Е.6.6 Измерение вязкостных характеристик и расчет степени полимеризации бумажной изоляции.

В коническую колбу объемом 25 мл отбирают с точностью до четвертого знака навеску измельченной и подготовленной бумажной изоляции 0,02 г. Затем добавляют 10 мл кадоксена. Раствор взвешивают и его концентрацию (в граммах на миллилитр) рассчитывают из следующего соотношения:

$$C = (\rho_{\kappa} \cdot (100 - \varphi) \cdot a)/\epsilon, \tag{E.3}$$

где ρ_{κ} – плотность кадоксена, г/мл;

 φ — влажность целлюлозы, % (для «абсолютно-сухой», т.е. высушенной под вакуумом до постоянного веса — $\varphi \approx 2$ %, для «воздушно-сухой» — $\varphi \approx 6$ %);

a — навеска целлюлозы, г;

6 – вес раствора целлюлозы в кадоксене, г.

Колбу с раствором закрывают притертой стеклянной пробкой и периодически встряхивают до полного растворения образца изоляции, определяемого визуально (примерно, 40 мин., но не менее 20 мин.). Затем оставляют колбу с раствором в холодильнике на один час при температуре 0°С. При данной температуре раствор устойчив более суток с момента изготовления.

По истечении одного часа (или на следующий день) раствор фильтруют через фильтр Шотта № 2 в колбу объемом от 25 до 30 мл и от 8 до 10 мл его пипеткой заливают в колено вискозиметра, помещенного в циркуляционный термостат или, в зависимости от конструкции, термостатируемый стеклянный стакан при $(20\pm0,1)^{\circ}$ С.

Тип используемых вискозиметров представлен на рисунке Е.2.

Рисунок Е.2

Их оптимальные характеристики для достижения времени истечения раствора не менее 100 с, обеспечивающие необходимую точность вискозиметрических измерений, приведены в таблице Е.1.

Таблица Е.1 – Характеристики используемых вискозиметров

таблица Е.т. жарактериетики используемых вискозиметров								
Марка и тип вискозимера	Диаметр	Диапазон измеряемой						
	капилляра, мм	кинематической вязкости, сСт						
ВПЖ-1 (вискозиметр	0,54	2-10						
Убеллоде)								
ВПЖ-2	0,56	2-10						
ВПЖ-4 (вискозиметр	0,62	2-10						
Оствальда)								

При выполнении анализа описанным ниже «экстраполяционным» методом следует использовать Вискозиметр Убеллоде (ВПЖ-1 или ВПЖ-2), в котором положение нижнего висящего уровня фиксировано, и средняя величина гидростатического давления, под действием которого происходит истечение раствора из капилляра, не зависит от объема жидкости в резервуаре. При этом раствор полимера при измерениях вязкости при нескольких концентрациях раствора разбавляют непосредственно в вискозиметре.

При необходимости определения относительной вязкости при нескольких концентрациях раствора посредством вискозиметра Оствальда (ВПЖ-4) готовят

40-50 мл раствора целлюлозной изоляции в кадоксене с концентрацией 2 г/л, разбавлением аликвотных частей которого затем готовят не менее трех растворов меньших концентраций с тем, чтобы число измеряемых растворов составляло не менее четырех. Далее поочередно измеряют время истечения равных объемов приготовленных растворов и растворителя (кадоксена), очищая вискозиметр между измерениями, как это описано ниже.

Термостатирование раствора в вискозиметре перед измерениями времени истечения проводят не менее 20 минут (в летнее время при температуре оборотной воды более 20°C при термостатировании возможно использовать лед из дистиллированной воды, который для поддержания температуры в термостате порциями добавляют в термостат).

Затем измеряется время истечения раствора через капилляр вискозиметра посредством секундомера. Проводят не менее пяти измерений, как показано в таблице 1 примера. Далее раствор разбавляют не менее трех раз, доливая в колено вискозиметра от 1 до 2 мл кадоксена и замеряя при этом время истечения раствора (τ) при каждой операции разбавления. Затем, промыв вискозиметр дватри раза чистым кадоксеном, замеряют время истечения чистого растворителя (τ ₀).

После окончания экспериментов использованный кадоксен сливают в склянку с надписью «Слив» для последующей регенерации, а использованную посуду моют сначала большим количеством водопроводной воды. Затем ополаскивают хромпиком и моют дистиллированной водой до «полного стекания». После этого сушат в сушильном шкафу, избегая «отпотевания» посуды.

Результаты измерений сводят в таблицу, как это показано в примере приведенном

Пример:

Измерения вязкости:

Дата: 3.07.01.

Объект: витковая целлюлозная изоляция.

Навеска: 0.02260г.

Растворитель: кадоксен (плотность при $20^{\circ}C - 1,098$ г/мл).

Тип вискозиметра: Убеллоде (№ 1), секундомер двухстрелочный.

No

Взято в вискозиметр: 8 мл раствора.

Температура опыта: 20 ± 0.1 °C.

Таблица I-Времена истечения, c, кадоксена (au_0) и раствора изоляции (au_1 - au_5) при разбавлении.

Номер замера $\tau_5 (+1.5 \text{ MJ})$ τ_2 (+1.5мл) τ_3 (+1.5мл) τ_4 (+1.5мл) τ_0 τ_I 622.9 1 420.0 587.2 560.4 541.9 527.8 2 419.7 623,4 586.8 560.8 542.5 527.4 3 419,1 623,0 587.0 560.6 542.2 527.5 4 419,0 623.5 586,8 560.5 542.5 527.3 5 419,2 623,7 586,7 560.7 542,4 527,5 6 419,1

7	419,0					
Среднее	419,3	623,3	586,9	560,6	542,3	527,5

Обработка результатов измерений.

Удельную вязкость находят из усредненных значений времен истечения по следующей формуле:

$$\eta_{y\partial.} = (\tau_{p-pa} / \tau_{p-na}) - 1, \tag{E.4}$$

где τ_{p-pq} — время истечения раствора;

 au_{p-ng} — время истечения растворителя.

Из тех же данных находят относительную вязкость по формуле:

$$\eta_{omh.} = \tau_{p-pa} / \tau_{p-ng}. \tag{E.5}$$

C учетом изменения концентрации при разбавлении для всех случаев находят величины η_{yd}/C и $\ln \eta_{omn}/C$ (приведенные удельная и относительная вязкости). Результаты измерений и расчетов сводят в таблицу E.3, которая для рассматриваемого примера выглядит следующим образом.

Таблица 2 – Обработка результатов измерений.

Номер	Общий	Концентра	Средне	Удельна	Приведе	Относ	приведен
замера	объем	ция	е время	я	нная	ительна	ная
	раствора в	раствора в	истечен	вязкость	удельная	я	относите
	вискозиметре	вискозимет	ия	$\eta_{y\partial.}$	вязкость	вязкост	льная
	$V_1 + V_2$, мл *	pe	раство		$\eta_{v\partial}/C$	ь	вязкость
		С, г/100мл	ров			$\eta_{\scriptscriptstyle Om\scriptscriptstyle H.}$	$n \eta_{omh}/C$
			τ, c				
1	8	0	419,3		_	_	_
2	8	0,2399	623,3	0,4865	2,028	1,4865	1,6525
3	9,5	0,2021	586,9	0,3997	1,978	1,3997	1,6638
4	11	0,1745	560,6	0,3370	1,931	1,3370	1,6643
5	12,5	0,1535	542,3	0,2933	1,911	1,2933	1,6756
6	14	0,1371	527,5	0,2580	1,882	1,2580	1,6741

Примечание — Характеристическую вязкость раствора [η] твердой целлюлозной изоляции находят экстраполяцией зависимостей $\eta_{yz}/C=f(C)$ и ln $\eta_{orn}/C=f(C)$ к нулевой концентрации посредством стандартной программы аппроксимации Origin для Windows или аналогичной.

Результаты аппроксимации:

$$npu [\eta_x] = 1,6898 \quad (\eta_{vo}/C) = (1,6898 \pm 0,0099) + (1,412 \pm 0,054) \cdot C,$$

$$npu[\eta] = 1,7057$$
 $ln \eta_{omn}/C = (1,7057 \pm 0,0073) - (0,2184 \pm 0,053) \cdot C$,

Стандартная ошибка аппроксимации в обоих случаях не должна превышать 5 %.

В случае расхождения результатов экстраполяции величину [η] определяют, как среднюю из двух, полученных экстраполяцией значений [η]. Для рассмотренного примера [η]=1,6978. Поправкой на кинетическую энергию, составляющей менее 2% измеряемой величины вязкости (в пределах ошибки измерений), возможно пренебречь.

При удельной вязкости исходного раствора 0,6 и выше допустимо вычисление характеристической вязкости по п. 3.4 ГОСТ 25438.

Средневязкостную степень полимеризации бумажной изоляции рассчитывают из соотношения:

 $[\eta_x] = 7, 1.10^{-3} \cdot P^{0.94},$

где P-степень полимерзации.

Для приведенного примера $P_{v}=340$.

ВЫВОД: ресурс изоляции не исчерпан, т.к. $P_{v} > P_{don} = 250$ единии.

- Е.7 Требования по безопасности при проведении работ по определению степени полимеризации бумажной изоляции силовых трансформаторов.
- Е.7.1 Окись кадмия относится к первому классу опасности, бензол ко второму, этилендиамин и 1,4-диоксан к 3 классу опасности по ГОСТ 12.1.007.

Е.7.2 Предельно-допустимые концентрации (ПДК) в воздухе рабочей зоны:

для окиси кадмия в виде аэрозолей
 для этилендиамина в виде паров
 от 0,1 до 0,03 мг/м³,
 для этилендиамина в виде паров

для этилендиамина в виде паровдля бензола в виде паров

– 5 мг/м³, – 10 мг/м³

- для 1,4 диоксана в виде паров Е.7.3 Водный раствор

- кадмийэтилендиаминового комплекса
- пожаровзрывобезопасен. Е.7.4 Этилендиамин и окись кадмия не образуют токсичные соединения в воздушной среде и сточных водах.
- Е.7.5 Работы, связанные с подготовкой проб бумажной изоляции, приготовлением и регенерацией кадоксена следует проводить в местном вытяжном устройстве (вытяжном шкафу) при исправной системе вентиляции.
- Е.7.6 При работе с органическими растворителями, применяемыми при реализации методики пожарная безопасность должна отвечать требованиям ГОСТ 12.1.004.
- Е.7.7 При приготовлении раствора кадоксена и работах по подготовке проб бумажной изоляции работающий должен применять средства защиты согласно ГОСТ 12.4.011
- Е.7.8 Для работы с кадоксеном и органическими растворителями допускаются лица не моложе 18 лет. Организация обучения работающих безопасности труда согласно ГОСТ 12.0.004.
- Е.7.9 Водные растворы этилендиамина следует хранить в бутылях в темном месте. Бутыли с 1,4-диоксаном и бензолом должны храниться в металлической таре в специально отведенных местах.

Окисью кадмия следует пользоваться только в заводской упаковке и хранить в закрывающихся шкафах для химических реактивов.

Кадоксен следует хранить в герметических темных склянках с узким горлом только в холодильнике для реактивов.

- E.7.10~ При разливе растворителей на рабочую поверхность или кожу работающего необходимо смыть их водой. При попадании порошка окиси кадмия на рабочую поверхность следует его собрать, смыть 10~% раствором соли аммония и водой.
- Е.7.11 При измерении СП все операции по приготовлению растворов целлюлозы равно как и при измерении времен их истечения производятся только резиновой грушей или автоматической пипеткой, съемные наконечники которой, а также вискозиметр и использованная лабораторная посуда отмываются затем

большим количеством водопроводной воды, споласкиваютя однократно хромпиком, а затем промываются дистиллированной водой.

Е.7.12 Отработанные растворы бумажной изоляции в кадоксене подлежат регенерации согласно п. Е.4.5 настоящих методических указаний, либо должны собираться в специальные плотно закрывающиеся емкости и сливаться в специально отведенных местах.

Приложение Ж

(рекомендуемое)

Измерения параметров вводов

Ж.1 Измерение сопротивления изоляции измерительного или специального выводов

Измерение производят мегаомметром на напряжении от 1000 до 2500 В.

Вывод должен быть в чистом и сухом состоянии.

Один проводник от мегаомметра подсоединяют к выводу, второй – к соединительной втулке. При этом измерительный вывод разземляют.

Результаты измерения считают удовлетворительными, если сопротивление измерительного или специального вывода ввода соответствует значению, указанному в ГОСТ 10693 или руководстве по эксплуатации на ввод завода-изготовителя.

Ж.2 Измерение емкости (C) и тангенса угла диэлектрических потерь ($tg\delta$).

Тангенс угла диэлектрических потерь и емкость измеряют с помощью измерительного моста переменного тока или аналогичным по назначению прибором.

Измерения $tg\delta_1$ и C_1 основной изоляции производят до и после приложения каждого вида испытательного напряжения.

При проведении измерений $tg\delta_1$ и C_1 соединительную втулку заземляют, напряжение подают на контактную клемму, измерительный провод моста подключают к предварительно разземленному измерительному выводу ввода.

Измерения $tg\delta_2$ и C_2 измерительного конденсатора или $tg\delta_3$ и C_3 между последней обкладкой и втулкой производят по нормальной или перевернутой схеме.

Результаты измерений считают удовлетворительными, если $tg\delta_1$ и его прирост $\Delta tg\delta_1$, а также $\Delta tg\delta_2$ или $\Delta tg\delta_3$ не превышают значений, указанных в ГОСТ 10693 для соответствующего типа ввода или в руководстве по эксплуатации ввода завода-изготовителя.

Приложение И

(рекомендуемое)

Методика измерения оптической мутности трансформаторного масла герметичных высоковольтных вводов трансформаторов классов напряжения 110 кВ и выше

И.1 Общие положения

Методика измерений оптической мутности трансформаторного масла предназначена для оценки развития коллоидно-дисперсных процессов на изоляционные характеристики масляного канала высоковольтных герметичных вводов трансформаторов.

Сущность метода заключается в расчете мутности на основе определения оптической плотности при температуре 20° С на длине волны λ =490 нм, измеряемой на угле 0° к направлению освещающего пучка относительно эталонной жидкости.

И.2 Аппаратура и материалы

- фотометр фотоэлектрический типа КФК-3 или аналогичный, позволяющий проводить измерения на длине волны λ =490 нм;
- набор аттестованных измерительных прямоугольных кювет с рабочей длиной 5, 10, 20, 30, 100 мм;
 - дистиллированная вода.

И.3 Подготовка к измерениям

Перед проведением измерений необходимо провести подготовку фотометра для измерений оптической плотности на длине волны λ =490 нм в соответствии с инструкцией по эксплуатации.

И.4 Выбор кюветы

Относительная погрешность измерений оптической плотности достигает минимума при значении оптической плотности 0,4. Поэтому при работе на фотометре рекомендуется путем соответствующего выбора кювет работать вблизи указанного значения оптической плотности от 0,3 до 0,6.

Предварительный выбор кювет производится визуально по степени мутности исследуемого трансформаторного масла. Если масло имеет большую мутность, следует пользоваться кюветами длиной 5 и 10 мм. В случае слабой мутности рекомендуется работать с кюветами длиной 20 и 50 мм.

В предварительно выбранную кювету заливается исследуемое масло и измеряется его оптическая плотность на выбранной длине волны. Если величина оптической плотности не попадает в диапазон от 0,3 до 0,6, следует испробовать кювету меньшей длины. Если величина оптической плотности меньше 0,3, следует выбрать кювету с большей рабочей длиной.

И.5 Измерение оптической плотности трансформаторного масла

Измерение оптической плотности трансформаторного масла производится с помощью фотометра.

В качестве эталона используется дистиллированная вода.

Измерения производятся в следующем порядке:

- в предварительно выбранную измерительную кювету залить исследуемое трансформаторное масло;
 - в кювету такой же длины залить дистиллированную воду;
- визуально на просвет оценить необходимое отсутствие пузырьков и посторонних включений в измеряемых образцах;
 - подготовленные кюветы поместить в измерительный блок фотометра;
- далее проводятся измерения значения оптической плотности в соответствии с инструкцией по эксплуатации фотометра.

Значение мутности трансформаторного масла определяется в соответствии с формулой

$$\tau = \frac{D_{omn}}{0.43 \cdot \chi} \text{ M}^{-1} \tag{H.1}$$

где $D_{\mathit{отн}}$ — измеренное значение оптической плотности трансформаторного масла в относительных единицах;

И.6 Анализ результатов.

Значение мутности трансформаторного масла 40 м⁻¹ и более в высоковольтных герметичных вводах трансформаторов свидетельствует о развитии коллоидно-дисперсных процессов, приводящих к снижению электрической прочности масляного канала.

При достижении значения мутности масла более 40 м⁻¹ ввод может подлежать замене или ремонту с частичной разборкой, заменой масла и очисткой внутренней поверхности фарфоровой покрышки.

Приложение К

(рекомендуемое)

Контроль изоляции под рабочим напряжением

Контроль изоляции вводов под рабочим напряжением рекомендуется производить у вводов классов напряжений от 110 до 750 кВ с бумажно-масляной изоляцией конденсаторного типа на автотрансформаторах с номинальным напряжением 330 кВ и выше и трансформаторах с номинальным напряжением 110 кВ и выше, установленных на электростанциях и узловых подстанциях.

Контролируемые параметры: изменение тангенса угла диэлектрических потерь ($\Delta t g \delta$) и емкости ($\Delta C/C$) основной изоляции или/и изменение ее модуля полной проводимости ($\Delta Y/Y$). Допускается контроль по одному из параметров $\Delta t g \delta$ или ($\Delta Y/Y$).

Изменение значений контролируемых параметров определяется как разность результатов очередных измерений и измерений при вводе в работу системы контроля под напряжением.

Для вводов классов напряжений от 330 до 750 кВ рекомендуется автоматизированный непрерывный контроль с сигнализацией о предельных значениях измеряемых параметров.

Приложение Л

(рекомендуемое)

Измерение сопротивления изоляции измерительных трансформаторов

- Л.1 Методика измерения сопротивления изоляции трансформаторов тока (TT)
- Л.1.1 Измерение сопротивления изоляции первичных обмоток измерительных трансформаторов тока производится мегаомметром на напряжение 2500 В по схемам, приведенным на рисунках Л.1 и Л.2.

При измерении сопротивления изоляции обмоток высокого напряжения выводы вторичных обмоток (две и более в зависимости от типа и номинального напряжения измерительного трансформатора) и цоколь (корпус) измерительного трансформатора должны быть объединены, заземлены и подсоединены к выводу «З» мегаомметра. Вывод моста «г_х» подсоединяется к первичной обмотке (выводы «Л1» или «Л2» для трансформаторов тока).

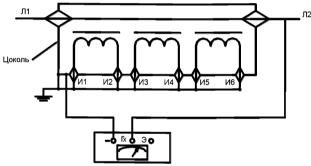
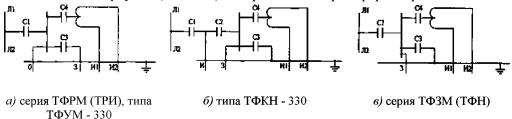


Рисунок Л.1 – Схема измерения сопротивления изоляции первичных обмоток ТТ.


У трансформаторов тока с конденсаторной изоляцией, емкостные схемы замещения изоляции которых приведены на рисунке Л.2, сопротивление изоляции определяется по отдельным зонам с учетом конструкции изоляции ТТ.

У каскадных ТТ на напряжение 500 кВ и выше производится измерение сопротивления изоляции промежуточных обмоток относительно среднего цоколя каскада. На ТТ, находящихся в работе, при этом предварительно должны быть сняты перемычки между промежуточными обмотками ступеней, а также между выводом «И2» И цоколем. При измерениях вывод «(r_x)» мегаомметра подсоединяется к выводам промежуточных обмоток (имеющих в промежуточном цоколе обозначения «И1» и «И2» для верхней ступени, «Л1», «Л2» для нижней ступени), вывод мегаомметра «3» к соответствующему цоколю.

Схемы измерения сопротивления изоляции обмоток ТТ типа ТФКН - 330 (рисунок Л2, б) приведены в таблице Л.1.

У ТТ с конденсаторной изоляцией (серии ТРН, ТФРМ, ТФУМ) измеряется сопротивление изоляции нулевых обкладок основной изоляции (у каскадных ТТ на каждой ступени) относительно корпуса и вторичных (промежуточных) обмоток. Для этого вывод « r_x » мегаомметра подсоединяется к выводу «О» ТТ, а вывод «З» мегаомметра ко всем остальным выводам обмоток (вторичных, технологической, выводу экрана или магнитопровода) и заземленному цоколю, первичная обмотка при этом должна быть заземлена.

Л.1.2 Сопротивление изоляции вторичных обмоток ТТ измеряется мегаомметрами на напряжение 1000 В. Измерение производится на каждой обмотке по отношению к корпусу и присоединенным к нему остальным обмоткам. Вывод мегаомметра «г_х» присоединяется к выводам проверяемой обмотки, а вывод «З» мегаомметра - к выводам заземленных остальных обмоток, соединенных с корпусом (цоколем) измерительного трансформатора.

Обозначения: Л1,Л2 - выводы первичной обмотки; С1 -емкость основной изоляции; С2 - емкость измерительного конденсатора (ТФКН - 330); С3 - емкость последних слоев изоляции; С4 -емкость вторичных обмоток (относительно корпуса, магнитопровода, экрана); И1, И2 - выводы вторичных обмоток; 3 - вывод последней обкладки (ТФКН - 330), магнитопровода или экрана (ТФРМ, ТФЗМ, ТФУМ - 330); О - вывод нулевой обкладки (ТФРМ, ТФУМ -330).

Рисунок Л.2 – Емкостные схемы замещения изоляции трансформаторов тока: Таблица Л1 – Схемы измерения сопротивления изоляции обмоток ТТ ТФКН - 330

Измеряемый	Соелинение	зажимов мегао	мметра.	Примечание
участок изоляции	V		«Э»	
Основная изоляция	С выводом «Л	Заземлен		Цоколь, выводы вторичных
«C1»	1» («Л2»)			обмоток, измерительные
	первичной			обкладки «И» и последней
	обмотки			обкладки «3» заземлены.
Основная изоляция	Тоже	С выводом	Заземлен	Цоколь, выводы вторичных
«CP1»		измерительно		обмоток и последней обкладки
		й обкладки		«3» заземлены.
		«И»		
Изоляция	С выводом	С выводом		Цоколь и выводы вторичных
измерительного	измерительной	последней		обмоток заземлены
конденсатора «С2»	обкладки «И»	обкладки «3»		
Изоляция	Тоже	Заземлен	Заземлен	Цоколь и выводы вторичных
последней обкладки				обмоток заземлены
«C3»				

Л.2 Методика измерения сопротивления изоляции обмоток трансформаторов напряжения.

Л.2.1 Измерение сопротивления изоляции первичных обмоток трансформаторов напряжения производится магаомметром на напряжение 2500 В. Схема измерения приведена на рисунке Л.3.

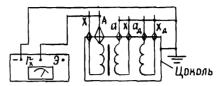
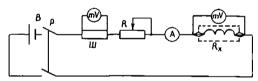


Рисунок Л.3 — Схема измерения сопротивления изоляции первичных обмоток трансформаторов напряжения.


- Л.2.2 Измерения сопротивления изоляции вторичных обмоток, а также связующих обмоток каскадных трансформаторов напряжения производится мегаомметром на напряжение 1000 В.
- Л.2.3 Сопротивление изоляции относительно земли следует определять для полностью собранной схемы с подключенными обмотками трансформатора напряжения, со всеми включенными реле и приборами, при всех положениях аппаратов, переключающих цепи напряжения с одного трансформатора на другой.

Приложение М

(обязательное)

Методика измерения сопротивления обмоток постоянному току для измерительных трансформаторов.

- М.1 Измерение сопротивления обмоток постоянному току для измерительных трансформаторов могут производиться любым способом: одинарными и двойными мостами (класса точности не ниже 4), методом амперметра-вольтметра. Зажимы мостов постоянного тока и выводы вторичных обмоток измерительных трансформаторов соединяются в соответствии с инструкцией по эксплуатации используемого прибора. Одинарные мосты постоянного тока не рекомендуется использовать при значениях измеряемого сопротивления меньше 1 Ом.
- М.2 Схема измерений сопротивлений постоянному току методом амперметра-вольтметра приведена на рисунке М.1. Приборы должны быть класса точности не ниже 0,5. Вольтметр необходимо подключать непосредственно к выводам обмоток измерительных трансформаторов. Значение тока должно быть таким, чтобы отсчет показаний прибора производился по второй половине шкалы. Для измерения тока допускается использование как амперметров, так и шунтов. Целесообразно во всех случаях до разрыва цепи тока разрывать цепь напряжения, чтобы исключить резкое отклонение стрелки вольтметра или милливольтметра.

Обозначения: E - аккумуляторная батарея; E - рубильник; E - измерительный шунт; E - амперметр; E - милливольтметр; E - регулировочный реостат; E - обмотка трансформатора тока.

Рисунок М.1 — Схема измерений сопротивлений постоянному току обмоток трансформаторов тока.

Приведение измеренных значений сопротивлений обмоток постоянному току к заданной температуре.

Для возможности сопоставления измеренных значений сопротивлений обмоток постоянному току все они приводятся к одной температуре по формуле:

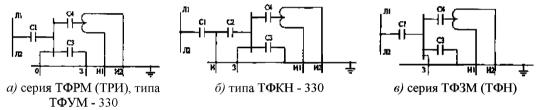
$$R_{\rm np} = R_{\rm u} \cdot (235 + t)/(235 + t_{\rm u}) \tag{M.1}$$

где $R_{\rm np}$ — приведенное значение сопротивления;

 $R_{\rm u}$ – измеренное значение сопротивления;

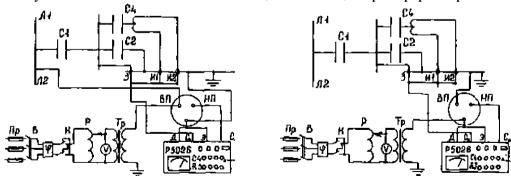
 $t_{\rm u}$ – температура обмотки при измерении, в градусах Цельсия;

t — температура, к которой требуется привести сопротивление, в градусах Цельсия.


За температуру обмотки принимают температуру верхних слоев масла.

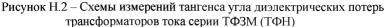
Приложение Н

(рекомендуемое)


Методика измерения тангенса угла диэлектрических потерь и емкости трансформаторов тока

- H.1 Измерение тангенса угла диэлектрических потерь основной изоляции производится у маслонаполненных ТТ всех типов на напряжении 10 кВ. Во всех случаях должна применяться нормальная схема измерительного моста. Снятие ошиновки с первичных выводов не требуется.
- H.2 Измерение тангенса угла диэлектрических потерь производят с использованием мостов переменного тока (*Например: типов Вектор-2M*, *Тангенс-2000*, *P5026 или подобных с приемлемыми пределами измерений*).
- H.3 На рисунке H.1 приведены емкостные схемы замещения маслонаполненных ТТ с указанием обозначения выводов. На рисунках H.2, H.3, H.4 и в таблице H.1 указаны типовые схемы измерений с использованием моста переменного тока типа P5026.

Обозначения: Л1,Л2 - выводы первичной обмотки; С1 -емкость основной изоляции; С2 - емкость измерительного конденсатора (ТФКН - 330); С3 - емкость последних слоев изоляции; С4 -емкость вторичных обмоток (относительно корпуса, магнитопровода, экрана); И1, И2 - выводы вторичных обмоток; 3 - вывод последней обкладки (ТФКН - 330), магнитопровода или экрана (ТФРМ,ТФЗМ,ТФУМ - 330); О - вывод нулевой обкладки (ТФРМ, ТФУМ -330).


Рисунок Н.1 – Емкостные схемы замещения изоляции трансформаторов тока

а) основной изоляции по нормальной схеме;

б) изоляции последних слоев по перевернутой схеме.

Обозначения: $\mathit{Пp}$ - предохранитель; B - выключатель (рубильник); K - переключатель полярности напряжения; P - регулятор напряжения; Tp - испытательный трансформатор; φ - фазорегулятор; V - вольтметр.

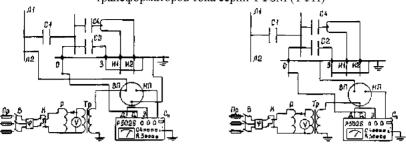
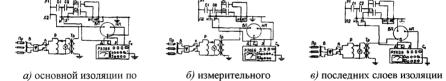



Рисунок Н.3 — Схемы измерений тангенса угла диэлектрических потерь трансформаторов тока серий ТФРМ (ТРН) ТФУМ-330).

Примечание – Обозначения те же, что и на рисунке Н.2.

нормальной схеме конденсатора по нормальной по перевернутой схеме схеме Рисунок Н.4 – Схемы измерений тангенса угла диэлектрических потерь

Примечание – Обозначения те же, что и на рисунке Н.2.

Н.4 Фазорегулятор и переключатель полярности напряжения используется при наличии помех от токов влияния электрического поля в распределительных устройствах напряжением 330 кВ и выше при измерении мостом Р5026. При измерениях в распределительных устройствах напряжением 220 кВ и ниже фазорегулятор и переключатель полярности в подавляющем большинстве случаев может не использоваться.

трансформаторов тока серии ТФКН-330:

- Н.5 Измерение тангенса угла диэлектрических потерь (и емкости изоляции) для всех типов ТТ производятся без отсоединения вторичных цепей. В качестве испытательного трансформатора используются измерительные трансформаторы напряжения.
- Н.6 При измерении тангенса угла диэлектрических потерь основной изоляции ТТ серии ТФЗМ (ТФН) необходимо учитывать погрешность из-за влияния на результаты измерений емкости между экраном или магнитопроводом и вторичными обмотками (емкость С4 на рисунке Н.1), которая оказывается подключенной параллельно плечу R моста.

- H.7 Для TT со звеньевой изоляцией серии $T\Phi 3M$ ($T\Phi H$) можно рекомендовать также схему измерений тангенса угла диэлектрических потерь основной изоляции с отсоединением от измерительных проводов («ИГ», «И2», ...) вторичных цепей и подключением их к выводу моста « C_x » вместе с выводом «3» TT или проведением измерений по перевернутой схеме. При этих схемах емкость C4 не оказывает влияния на результаты измерений.
- Н.8 У ТТ с конденсаторной изоляцией (ТФРМ, ТРН, ТФКН, ТФУМ) емкость C4 не оказывает практического влияния на результат измерений.
- У каскадных TT измерения тангенса угла диэлектрических потерь производятся для каждой ступени в отдельности.
- Н.9 Для измерения тангенса угла диэлектрических потерь изоляции верхней ступени ТТ типа ТФЗМ-500 кВ (ТФНКД-500 кВ) необходимо разобрать ошиновку выводов промежуточных обмоток, вывод моста «С_х» подсоединяется к выводам промежуточной обмотки и выводу «З» экрана и магнитопровода. При измерении параметров изоляции нижнего каскада восстанавливается связь между выводами промежуточных обмоток, шунтируется перемычкой верхний каскад. Последующие действия производятся так же, как и для однокаскадных ТТ серии ТФЗМ (ТФН), с подачей напряжения на первичную обмотку верхнего каскада. Нижний цоколь проверяемой ступени на время измерений заземляется.
- $\rm H.10$ При измерении тангенса угла диэлектрических потерь TT типа ТФРМ-750 кВ разборка ошиновки промежуточных обмоток не требуется. На всех ступенях TT серии ТФРМ вывод моста « $\rm C_x$ » присоединяется к выводу нулевой обкладки ступени. Выводы промежуточных обмоток и технологической обмотки соединяются с нижним цоколем проверяемой ступени и заземляются. Испытательное напряжение подается на ошиновку первичной обмотки. При измерении тангенса угла диэлектрических потерь нижней ступени верхние ступени шунтируются перемычкой.
- H.11 Приведение измеренных значений тангенса угла диэлектрических потерь изоляции обмоток к заданной температуре.
- Н.12 Для возможности сопоставления измеренных значений тангенса угла диэлектрических потерь изоляции обмоток с базовыми значениями и для принятия решения о возможности дальнейшей эксплуатации трансформатора измеренные значения тангенса угла диэлектрических потерь приводятся к температуре обмоток, при которой измерялись базовые значения параметров. Перерасчет производят по формулам:
- при $tg\delta_{\!\scriptscriptstyle H}$ измеренном при температуре ниже той, при которой измерялось базовое значение параметра:

$$tg\delta_{np} = tg\delta_{H} \cdot K_{1}, \tag{H.1}$$

где $tg\delta_{\rm np}$ – приведенное значение $tg\delta_{\rm r}$

 $tg\delta_{\text{H}}$ – измеренное значение $tg\delta$;

К1 – коэффициент приведения;

- при $tg\delta_{u}$ измеренном при температуре выше той, при которой измерялось базовое значение параметра:

$$tg\delta_{\rm np} = tg\delta_{\rm H}/K_1 \tag{H.2}.$$

Значения K_1 приведены в таблице H.2.

Таблица Н.2 – Значения коэффициента K_1 в зависимости от разности температур (t_2-t_1)

Наименование показателя	Соответствующие значения											
Разность температур t_2 — t_1	1	2	3	4	_5	6	7	10	15	20	25	30
K_1	1,03	1,06	1,09	1,12	1,15	1,18	1,21	1,31	1,51	1,75	2,00	2,30

Примечания:

 $1 t_2$ — наибольшая температура; t_1 — наименьшая температура.

2 Значения коэффициентов K_1 , не указанные в таблице, определяют умножением соответствующих коэффициентов.

Например: Коэффициент K_1 , соответствующий разности температур $12^{\circ}C$ определяют по формуле: (H.3)

 $K_{12} = K_{10} \cdot K_2.$ $K_{12} = 1.31 \cdot 1.06 = 1.39.$ Подставляя значение получаем:

Таблица Н.1 – Схемы измерений тангенса угла диэлектрических потерь маслонаполненных трансформаторов тока

маслонаполненных трансформаторов тока.						
Номер	Контр	Вид	Соедине	ние точек мостовой	схемы	Примечание
рисунк	олируе	мост	Вывод «Сх»	Вывод «ВП»	Вывод	
a	мая	овой	моста	конденсатора	«земля»	
	зона	схем			конденса	
	изоляц	ы			тора	
	ии					
H.2, a)	Основ	Нор	С выводами	С выводами «Л1»,	Заземлен	Выводы «Д» и «Э»
	ная	маль	«3» и	«Л2» ТТ и с		моста соединены с
	изоляц	ная	измеритель	выводом		выводом «земля»
	ия		ных	испытательного		конденсатора и
	«C1»		обмоток	трансформатора		заземлены
			(И1,И2,)	Тр		
Н.2,б)	Изоля	Пер	С выводами	Заземлен	C	Выводы «Д» и «Э»
	ция	евер	«3» и		выводом	моста соединены с
	послед	нута	измеритель		испытате	выводом «земля»
	них	Я	ных		льного	конденсатора, а
	слоев		обмоток		трансфор	выводы «Л1», «Л2» ТТ
	«C2»		(И1,И2,)		матора	разземлены
					Тр	
H.2, a)	Основ	Hop	С выводом	С выводами «Л1»,	Заземлен	Выводы «Д» и «Э»
	ная	маль	«3» TT	«Л2 «ТТ и с		моста, «ИГ, «И2» ТТ
	изоляц	ная		выводом		заземлены
	ИЯ			испытательного		
	«C1»			трансформатора		
-				Тр		
H.21,	Изоля	Пер	С выводом	Заземлен	C	Выводы НД» и «Э»
б)	ция	евер	«3» TT		выводом	моста соединены с
	послед	нута			испытате	выводом
	них	Я			льного	испытательного
	слоев				трансфор	трансформатора Тр,
	«C2»				матора	выводы «И1», «И2»,
					Тр	заземлены, выводы
						«Л1», «Л2» ТТ
Н 21	Oarran	Llan	C propagati	C principal "III"	2000117011	разземлены
H.3, a)	Основ	Нор	С выводом	С выводами «Л1», «Л2» ТТ и с	Заземлен	Выводы «Д» и «Э»
	ная	маль	«0» TT			моста соединены с
	изоляц ия «С»	ная		выводом		выводом «земля» конденсатора, выводы
	ия «С»			испытательного		«3»и измерительных
				трансформатора Тр		«э»и измерительных обмоток ТТ заземлены
H.3, 6)	Изоля	Пер	С выводом	Заземлен	C	Выводы «Д» и»Э»
11.5, 0)	изоля кид	евер	«0» ТТ	Jasewhien	выводом	моста соединены с
	послед	нута	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		испытате	моста сосдинены с выводом «земля»
	них	пута Я			льного	конденсатора, выводы
	слоев	"			трансфор	«3» и измерительных
	«C2»				матора	обмоток ТТ заземлены
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				Тр	COMOTOR 11 SUSCIMPIONED
H.4, 6)	Основ	Нор	С выводом	С выводом «Л1»	Заземлен	Выводы «Д» и «Э»
11. 1, 0)	ная	маль	«И» ТТ	ТТ и с выводом		моста, выводы «3»
1	11471		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0 2222040111		· ·
	изоляц	ная		испытательного		измерительных

Номер	Контр	Вид	Соедине	ние точек мостовой	схемы	Примечание
рисунк	олируе	мост	Вывод «Сх»	Вывод «ВП»	Вывод	
a	мая	овой	моста	конденсатора	«земля»	
	зона	схем			конденса	
	изоляц	ы			тора	
	ии					
	ия «С»			трансформатора		обмоток ТТ заземлены
				Тр		
H.4, 6)	Измер	Hop	С выводом	С выводом «И»	Заземлен	Выводы «Д» и «Э»
	ительн	маль	«3» TT	ТТ и с выводом		моста, выводы «3»
	ого	ная		испытательного		измерительных
	конден			трансформатора		обмоток ТТ заземлены
	сатора			Тр		
	«C2»					
H.4, e)	Изоля	Пер	С выводами	Заземлен	C	Выводы «Д» и «Э»
	ция	евер	«З» и «И»		выводом	моста соединены с
	послед	нута	TT		испытате	выводом «земля»
	них	Я			льного	конденсатора, выводы
	слоев				трансфор	измерительных
					матора	обмоток ТТ заземлены.
					Тр	

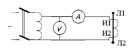
Приложение П

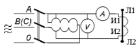
(рекомендуемое)

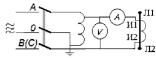
Методика снятия характеристик намагничивания трансформаторов тока

Снятие характеристик намагничивания (зависимости напряжения на вторичной обмотке от тока намагничивания на ней) производится путем подачи регулируемого напряжения на одну из вторичных обмоток при разомкнутой первичной обмотке по схемам, приведенным на рисунке $\Pi.1$. Схема испытаний рисунок $\Pi.1$, δ) обеспечивает регулирование напряжения от нуля до линейного, схема на рис. $\Pi.1$, ϵ) - от фазного до линейного. При испытании одной из вторичных обмоток все остальные вторичные обмотки проверяемого ТТ должны быть замкнуты.

Значение напряжения на вторичной обмотке при снятии характеристики намагничивания не должно превышать 1800 В. Если для снятия характеристики намагничивания потребуется напряжение выше значения линейного напряжения питающей сети, то необходимо использовать схему рисунок П.1, в) с дополнительным повысительным трансформатором. Мощность этого трансформатора должна быть согласована с током насыщения при испытании проверяемого ТТ.


При проверке характеристик намагничивания на обмотках с ответвлениями измерительные обмотки выносных TT) напряжение рекомендуется подавать на всю обмотку (проверка характеристик намагничивания на всех ответвлениях не требуется). В противном случае допустимое напряжение $U_{\rm p}$ (в вольтах) для рабочего (проверяемого) ответвления определяется по соотношению:


$$U_{\rm p} = \frac{\kappa_{\rm pa6}}{\kappa_{\rm marc}} \cdot 1800,\tag{\Pi.1}$$


где $K_{\text{раб}}$ - коэффициент трансформации проверяемого ответвления;

 $K_{\text{макс}}$ - максимальный для данного TT коэффициент трансформации.

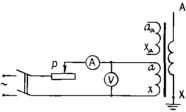
Для ТТ, изготовленных в 1981 г. и позже, в паспорте которых указаны параметры контрольной точки характеристики намагничивания, снятие характеристики намагничивания может быть заменено измерением напряжения и тока намагничивания в контрольной точке. Параметры контрольной точки характеристики намагничивания проверяются по одной из схем рисунок П.1 в зависимости от требуемого значения напряжения.

а) с одним регулировочным устройством;

б) с двумя регулировочными устройствами

в) с одним регулировочным устройством

Рисунок $\Pi.1-$ Схемы снятия характеристик намагничивания трансформаторов тока


Для измерения тока намагничивания должны применяться приборы, измеряющие действующее значение тока. Измерение напряжения должно производиться вольтметром, измеряющим среднее значение. Показания прибора при этом следует умножить на коэффициент 1,11. На практике рекомендуется использовать комбинированные приборы серии Ц (*Например: комбинированный прибор Ц4312*), показания которых пропорциональны среднему значению, а шкала проградуирована в действующих значениях. В этом случае умножать показания прибора на указанный выше коэффициент 1,11 не требуется.

Приложение Р

(рекомендуемое)

Методика измерения тока холостого хода трансформаторов напряжения

Измерения тока холостого хода производятся по схеме на рисунке Р.1 на полностью собранных каскадных трансформаторах напряжения (серии НКФ), а также электромагнитных устройств емкостных трансформаторов напряжения подачей на вторичную обмотку ТН номинального напряжения данной обмотки. Значение номинального напряжения вторичной обмотки определяется типом ТН и выбирается по его паспортным данным.

P – регулировочное устройство, A – амперметр, V – вольтметр. Рисунок P.1 – Схема измерения тока холостого хода трансформаторов напряжения.

Измерительная аппаратура (в основном регулировочное устройство) должна быть рассчитана на длительное протекание тока не менее 30 A, соответствующего действительным токам холостого хода ТН. Для регулировки тока рекомендуется применять нагрузочные реостаты необходимых параметров. При применении в качестве регулирующих устройств автотрансформаторов происходит значительное искажение формы тока холостого хода и поэтому амперметр будет показывать заниженное значение.

Персонал при измерениях должен проявлять осторожность, так как на выводах первичной обмотки будет наведено номинальное напряжение проверяемого аппарата. Кроме того, необходимо следить за тем, чтобы ток во вторичной обмотке не превышал значения, определяемого по его максимальной мошности.

Приложение С

(рекомендуемое)

Тепловизионный контроль электрооборудования и воздушных линий электропередачи

С.1 Общие положения

- C.1.1 При тепловизионном контроле электрооборудования и ВЛ должны применяться тепловизоры с разрешающей способностью не ниже 0.1° С предпочтительно со спектральным диапазоном от 8 до 12 μ M.
- С.1.2 Оценку теплового состояния электрооборудования и токоведущих частей, в зависимости от условий их работы и конструкции, целесообразно осуществлять:
 - по нормированным температурам нагрева (превышениям температуры);
 - по избыточной температуре;
 - по коэффициенту дефектности;
 - динамике изменения температуры во времени, с изменением нагрузки;
- сравнением измеренных значений температуры в пределах фазы, между фазами, с заведомо исправными участками;
- т.п., в соответствии с указаниями отдельных пунктов настоящего приложения.
- С.1.3 Предельные значения температуры нагрева и ее превышения приведены в таблице С.1.

Таблица С.1 – Допустимые температуры нагрева

	Наибольшее допустимое значение		
Контролируемые узлы	температуры нагрева, °С	превышения температуры, °C	
1. Токоведущие (за исключением контактов и контактных			
соединений) и нетоковедущие металлические части:			
- неизолированные и не соприкасающиеся с изоляционными	120	80	
материалами			
- изолированные или соприкасающиеся с изоляционными			
материалами классов нагревостойкости по ГОСТ 8865			
Y	90	50	
A	100	60	
E	120	80	
В	130	90	
F	155	115	
Н	180	140	
2. Контакты из меди и медных сплавов:			
- без покрытий, в воздухе/в изоляционном масле	75/80	35/40	
- с накладными серебряными пластинами, в воздухе/в	120/90	80/50	
изоляционном масле			
- с покрытием серебром или никелем, в воздухе/в	105/90	65/50	
изоляционном масле			
- с покрытием серебром толщиной не менее 24 мкм	120	80	

	Наибольшее значе	-
Контролируемые узлы	температуры нагрева, °С	превышения температуры, °C
- с покрытием оловом, в воздухе/в изоляционном масле 3. Контакты металлокерамические вольфрамо- и молибденосодержащие в изоляционном масле: на основе меди/на основе серебра	90/90 85 /90	50/50 45/50
4. Аппаратные выводы из меди, алюминия и их сплавов, предназначенные для соединения с внешними проводниками электрических цепей:		
- без покрытия	90	50
- с покрытием оловом, серебром или никелем	105	65
5. Болтовые контактные соединение из меди, алюминия и их		
сплавов:		
- без покрытия, в воздухе/в изоляционном масле	90/100	50/60
- с покрытием оловом, в воздухе/в изоляционном масле	105/100	65/60
- с покрытием серебром или никелем, в воздухе/в	115/100	75/60
изоляционном масле		
6. Предохранители переменного тока на напряжение 3 кВ и		
выше:		
- соединения из меди, алюминия и их сплавов в воздухе без		
покрытий/с покрытием оловом		
- разъемным контактным соединением, осуществляемым	75/95	35/55
пружинами		
- с разборным соединением (нажатие болтами или винтами), в том числе выводы предохранителя	90/105	50/65
- металлические части, используемые как пружины из меди	75	35
- из фосфористой бронзы и аналогичных сплавов	105	65
7. Изоляционное масло в верхнем слое коммутационных	90	50
аппаратов		
8. Встроенные трансформаторы тока:		
- обмотки	-	10
- магнитопроводы	-	15
9. Болтовое соединение токоведущих выводов съемных вводов в масле/в воздухе	-	85/65
10. Соединения устройств РПН силовых трансформаторов из меди, ее сплавов и медесодержащих композиций без покрытия		
меди, ее сплавов и медесодержащих композиции оез покрытия серебром при работе на воздухе/в масле:		
	_	40/25
- с нажатием болтами или другими элементами, обеспечивающими жесткость соединения		40/23
- с нажатием пружинами и самоочищающиеся в процессе	_	35/20
переключения		33/20
- с нажатием пружинами и не самоочищающиеся в процессе	_	20/10
переключения		
11. Токоведущие жилы силовых кабелей в режиме		
длительном/аварийном при наличии изоляции:		
- из поливинилхлоридного пластика и полиэтилена	70/80	_
- из вулканизирующегося полиэтилена	90/130	_
- из резины	65/-	_
- из резины повышенной теплостойкости	90/-	_

	Наибольшее допустимое значение		
Контролируемые узлы	Контролируемые узлы температуры нагрева, °С		
- с пропитанной бумажной изоляцией при вязкой/обедненной			
пропитке и номинальном напряжении, кВ:			
1 и 3	80/80	_	
6	65/75	_	
10	60/-	_	
20	55/-	_	
35	50/-	_	
12. Коллекторы и контактные кольца, незащищенные и			
защищенные при изоляции классов нагревостойкости:			
A/E/B	-	60/70/80	
F/H	-	90/100	
13. Подшипники скольжения/качения	80/100	_	
Примечание - Данные, приведенные в таблице, применяют в то	ом случае, если для	конкретных видог	

Примечание - Данные, приведенные в таблице, применяют в том случае, если для конкретных видогоборудования не установлены другие нормы.

C.1.4 Для контактов и болтовых КС нормативами таблицы П.1 следует пользоваться при токах нагрузки от 0,6 до 1,0 от номинального ($I_{\text{ном}}$) после соответствующего пересчета.

Пересчет превышения измеренного значения температуры к нормированному осуществляется исходя из соотношения:

$$\frac{\Delta T_{\text{NOM}}}{\Delta T_{no\bar{n}}} = \left(\frac{I_{\text{NOM}}}{I_{no\bar{n}}}\right)^2,\tag{C.1}$$

где $\Delta T_{\text{ном.}}$ - превышение температуры при $I_{\text{ном.}}$;

 $\varDelta T_{\mathrm{pa6.}}$ - то же, при $I_{\mathrm{pa6.}}$

Тепловизионный контроль электрооборудования и токоведущих частей при токах нагрузки 0,3 $I_{\text{ном.}}$ и ниже не способствует выявлению дефектов на ранней стадии их развития.

C.1.5 Для контактов и болтовых КС при токах нагрузки от 0,3 до 0,6 номинального ($I_{\text{ном}}$) оценку их состояния проводят по избыточной температуре. В качестве норматива используют значение температуры, пересчитанное на половыну номинального тона нагрузки.

Пересчет выполняют по формуле:

$$\frac{\Delta T_{0,5}}{\Delta T_{\text{pab}}} = \left(\frac{0.5 I_{\text{NOM}}}{I_{\text{pab}}}\right)^2,\tag{C.2}$$

где $\Delta T_{0,5}$ – избыточная температура при токе нагрузки 0,5 $I_{\text{ном.}}$

При оценке состояния контактов и болтовых КС по избыточной температуре и токе нагрузки $0.5\ I_{\text{ном.}}$ различают следующие области по степени неисправности.

Избыточная температура от 5 до 10°C

Начальная степень неисправности, которую следует держать под контролем и принимать меры по ее устранению во время проведения ремонта, запланированного по графику.

Избыточная температура от 10 до 30°C

Развившийся дефект. Принять меры по устранению неисправности при ближайшем выводе электрооборудования из работы.

Избыточная температура более 30°С

Аварийный дефект. Требует немедленного устранения.

- С.1.6 Оценку состояния сварных и выполненных обжатием КС рекомендуется производить по избыточной температуре или коэффициенту дефектности.
- С.1.7 При оценке теплового состояния токоведущих частей различают следующие степени неисправности исходя из приведенных ниже значений коэффициента дефектности:
- не более 1,2 начальная степень неисправности, которую следует держать под контролем;
- от 1,2 включительно до 1,5 включительно развившийся дефект, требующий принятия мер по устранению неисправности при ближайшем выводе электрооборудования из работы;
 - более 1,5 аварийный дефект, требующий немедленного устранения.
- С.1.8 Принимается следующая периодичность проведения тепловизионного контроля.

Электрооборудование распределительных устройств классов напряжений:

- 35 кВ и ниже один раз в три года;
- от 110 до 220 кB один раз в два года;
- от 330 до 750 кB ежегодно.

Распределительные устройства (РУ) всех напряжений при усиленном загрязнении электрооборудования - ежегодно.

Внеочередной ИК-контроль электрооборудования РУ всех напряжений проводится после стихийных воздействий (значительные ветровые нагрузки, КЗ на шинах РУ, землетрясения, сильный гололед и т.п.).

Воздушные линии электропередачи - проверка всех видов контактных соединений проводов:

- вновь вводимые в эксплуатацию ВЛ в первый год ввода их в эксплуатацию;
- ВЛ, находящиеся в эксплуатации 25 лет и более, при отбраковке 5 % контактных соединений ежегодно, при отбраковке менее 5 % контактных соединений не реже оного раза в три года;
- ВЛ, работающие с предельными токовыми нагрузками, или питающие ответственных потребителей, или работающие в условиях повышенных загрязнений атмосферы, больших ветровых и гололедных нагрузках ежегодно;
 - остальные ВЛ не реже одного раза в шесть лет.
- С.2 Силовые трансформаторы, автотрансформаторы, масляные реакторы (в дальнейшем трансформаторы)

Термографическое обследование трансформаторов классов напряжений 110 кВ и выше производят при решении вопроса о необходимости их капитального ремонта.

Термограммы составляют для:

- поверхностей бака трансформатора;
- в местах расположения отводов обмоток;
- по высоте бака;
- по периметру верхней части трансформатора;
- в местах болтового крепления колокола бака системы охлаждения и ее элементов;
 - и других мест возникновения нагрева.

При обработке термограмм:

- сравнивают нагревы крайних фаз;
- сравнивают нагревы однотипных трансформаторов;
- оценивают динамику изменений нагревов во времени и в зависимости от нагрузки;
 - определяют локальные нагревы и места их расположения;
- сопоставляют места нагрева с расположением элементов магнитопровода, обмоток;
 - определяют эффективность работы системы охлаждения.
 - С.3 Маслонаполненные трансформаторы тока
 - С.3.1 Внутренняя изоляция обмоток

Измеряются температуры нагрева поверхностей фарфоровых покрышек трансформаторов тока (ТТ), которые не должны иметь локальных нагревов, а значения температуры, измеренные в аналогичных зонах покрышек трех фаз, не должны отличаться между собой более чем на 0,3°C.

С.3.2 Внутренние и внешние переключающие устройства.

Оценка состояния контактных соединений внутреннего переключающего устройства ТТ производится путем сравнения температур на поверхности расширителей трех фаз. Предельное превышение температуры на поверхности расширителя, характеризующее аварийное состояние контактных соединений переключающего устройства, при номинальном токе не должно превышать 60°С. Температура нагрева контактных соединений внешнего переключающего устройства не должна превышать значений, указанных в таблице С.1 (пп.4 и 5).

С.3.3 Аппаратные выводы трансформаторов тока.

Нагрев аппаратных выводов TT не должен превышать значений, приведенных в таблице C.1 (п.4).

С.4 Электромагнитные трансформаторы напряжения

Температуры нагрева измеряют на поверхности фарфоровых покрышек.

Отличие значений температур, измеренных в одинаковых зонах покрышек трех фаз, должно быть не более 0.3° С.

С.5 Выключатели

При контроле контактов и контактных соединений измеряются температуры нагрева контактов и контактных соединений (таблица С.2), соединений камер и модулей между собой и ошиновкой.

Таблица С.2 Объем тепловизионного контроля контактов и контактных соединений выключателей

соединении выключат	CJCH		
	Измеряемый	Предельная	
Вид выключателя	контактный узел	температура	Точка контроля
	KOIITAKTIIBIH YSOSI	нагрева	
Маломасляные (6-10 кВ)	Шина - токоведущий	см. 4 и 5	Болтовое КС
серий ВМГ-133, ВМП-10	вывод	таблицы С.1	соответствующего узла
и им подобные			
	Вывод - гибкая связь		
	Гибкая связь - свеча		
	Шина - нижний		
	контакт бака		
	Дугогасительная	(1	Поверхность корпуса
	камера		выключателя в зоне
	жатора		размещения дугогасительной
			камеры
Маломасляные	Шина - токоведущий	см. 4 и 5	Болтовое КС узла
(110 кВ и выше) серий		таблицы С.1	Zemezet ite jem
ВМТ, МГ-110 и им		ruomida o.i	
подобные			
подосиви	Токопровод		Верхний фланец выключателя
	неподвижного		Deprim quency spinore revessi
	контакта к фланцу		
	выключателя		
	Роликовый токосъем	(1	Поверхность фарфоровой
	Дугогасительная	(1	покрышки в зоне размещения
	камера		токосъема и дугогасительной
	Камора		камеры
Баковые масляные	Шина - токоведущий	см. 4 и 5	Болтовое КС узла
Bukobbie macibilibie	вывод	таблицы С.1	Bositoboe ito yasia
	Дугогасительная	(1	Поверхность бака
	камера		выключателя в зоне
	Камора		размещения дугогасительной
			камеры
Воздушные	Шина - токоведущий	см. 4 и 5	Болтовое КС
Воздушпые	вывод	таблицы С.1	соответствующего узла
	Токоведущие	см. 4 и 5	Соответетвующего узла
	соединения модулей		
	ВВ	таолицы С.1	
	Дугогасительная	(1	Поверхность изоляционной
	камера, отделитель		покрышки цилиндра в зоне
	патора, отдолитоль		размещения контактов
Элегазовые	Рабочие и	(1	То же
выключатели	дугогасительные		10 ///
DDIGITO IGTORIT	контакты		
Вакуумные	То же	(1	«
выключатели	10 ///		, ,
	 нка состояния осуществляет	ся путем спавнени	 я измеренных значений температур на
			окальные нагревы в точках контроля.

С.6 Разъединители и отделители

С.6.1 Контактные соединения

Предельные значения температуры нагрева КС не должны превышать данных, приведенных в таблице С.1 (п.5).

С.6.2 Контакты

Предельные значения температуры нагрева контактов не должны превышать данных, приведенных в таблице C.1 (п.2).

С.6.3 Выводы разъединителей и отделителей

Предельные значения температуры нагрева выводов из меди, алюминия и их сплавов, предназначенных для соединения с внешними проводниками, не должны превышать данных, приведенных в таблице C.1 (п.4).

С.7 Маслонаполненные вводы

С.7.1 Оценка внутреннего состояния ввода

Проверка отсутствия короткозамкнутого контура в расширителе ввода производится у маслонаполненных герметичных вводов серии ГБМТ-220/2000.

Нагрев поверхности корпуса расширителя ввода не должен отличаться от такового у вводов других фаз.

Проверка состояния внутренних контактных соединений ввода производится путем измерения температур по высоте ввода у маслобарьерных вводов 110 кВ (заводские чертежи № 669, 146 и др.), 220 кВ (заводской чертеж № 200-0-0), выпуска до 1968 г. конденсаторных негерметичных вводов 110 кВ (заводской чертеж № 132-0-0), 220 кВ (заводской чертеж № 133-0-0, 208-0-0Б) и 500 кВ (заводской чертеж № 179-0-0, 206-0-0).

Маслонаполненный ввод не должен иметь локальных нагревов в зоне расположения контактных соединений.

Проверка состояния верхней части остова ввода производится у маслонаполненного ввода негерметичного исполнения.

Маслонаполненный ввод не должен иметь резкого изменения температуры или локальных нагревов по высоте покрышки по сравнению с вводами других фаз.

Сказанное может быть следствием опасного понижения уровня масла во вводе или увлажнения (зашламления) верхней части остова.

С.7.2 Выводы вводов

Предельные значения температуры нагрева вводов из меди, алюминия и их сплавов, предназначенных для соединения с внешними проводниками, не должны превышать данных, приведенных в таблице C.1 (п.4).

С.8 Воздушные линии электропередач

С.8.1 Тепловизионный контроль контактных соединений проводов ВЛ осуществляется с вертолета.

С.8.2 Болтовые контактные соединения проводов ВЛ

Измеренные значения температур нагрева не должны превышать значений, приведенных в таблице C.1 (п.5).

С.8.3 Сварные контактные соединения проводов ВЛ и контактные соединения, выполненные обжатием

Коэффициент дефектности у соединений проводов, выполненных из алюминия, не должен превышать значений, приведенных в С.1.7 настоящего приложения.

С.8.4 Грозозащитные тросы

Проверяют отсутствие нагрева в местах изоляции троса от опоры (состояние изолятора и искрового промежутка).

Приложение Т

(рекомендуемое)

Методы оценки технического состояния высоковольтных выключателей

- Т.1 Параметры, контролируемые с помощью датчиков перемещения
- Т.1.1 Скорость включения и отключения.

Измерение скорости включения и отключения должно производиться датчиком угловых перемещений, фиксирующим угловые перемещения вала который устанавливается в шкафу привода на заземленном элементе.

Т.1.2 Ход контактов при включении/отключении.

Измерение хода контактов при включении/отключении должно производиться с помощью датчиков угловых перемещений, установленных в шкафах привода на заземленном элементе.

Т.1.3 Демпфирование в процессе включения и (или) отключения.

Контроль процесса демпфирования в конце хода подвижной системы при включении и отключении должен производиться с помощью датчиков угловых перемещений, установленных в шкафах привода на заземленном элементе.

- Т.2 Параметры, контролируемые с помощью измерительного шунта
- Т.2.1 Ток катушки включения/отключения.

Контроль тока катушки включения электромагнитного привода, должен осуществляться с помощью установки измерительного шунта и подачи сигнала в устройство диагностики. Изменение значения тока по отношению к нормированному предприятием изготовителем свидетельствует о неисправности цепи.

Т.2.2 Состояния и тока цепей обогрева полюсов выключателя и привода.

Контроль должен осуществляться путем измерения тока в цепи подогревателей, предпочтительно с помощью измерительного шунта. Сигнал должен подаваться на вход устройства непрерывного контроля.

Т.2.3 Ток и напряжение электродвигателя привода.

Величина тока электродвигателя заводки пружин должна измеряться при помощи измерительного шунта.

Напряжение замеряется непосредственно.

- Т.3 Параметры, регистрируемые устройствами непрерывного контроля.
- Т.3.1 Давление жидкости в гидравлическом приводе.

Давление жидкости в гидроприводе должно регистрироваться устройством непрерывного контроля, к которому подводится сигнал от установленного в системе датчика давления.

Т.3.2 Давление воздуха в резервуаре пневмопривода

Давление воздуха в резервуаре пневмопривода должно регистрироваться устройством непрерывного контроля, обрабатывающим сигнал датчика давления, установленного в приводе.

Т.3.3 Уровня масла в масляных выключателях.

Уровень масла должен регистрироваться системой непрерывного контроля, с помощью оптического датчика – регистратора уровня, установленного на корпусе бака.

Т.3.4 Давление воздуха в резервуарах воздушных выключателей.

Давление воздуха в резервуарах воздушных выключателей должно регистрироваться устройством непрерывного контроля, обрабатывающим сигналы датчиков давления, установленных в полюсах выключателя.

Т.3.5 Расход воздуха на вентиляцию каждого полюса воздушных выключателей.

Расход воздуха на вентиляцию должен регистрироваться системой контроля, в которую должен поступать сигнал с датчиков давления, установленных в полюсах выключателя

- Т.4 Параметры, регистрируемые дискретными методами контроля
- Т.4.1 Расход воздуха на утечки для каждого полюса воздушных выключателей.

Расход воздуха на утечки должен регистрироваться системой контроля в интервалы времени, когда не выполняются операции выключателя, по сигналам датчиков давления, установленных в полюсах выключателя.

На основе показаний датчиков, должен определяться суммарный перепад давления, а так же перепад давлений в режиме вентиляции и в режиме сброса давления при отключении.

Т.4.2 Сброс давления при отключении полюсов воздушных выключателей.

Сброс давления должен регистрироваться системой контроля, в которую должен поступать сигнал с датчиков давления, установленных в полюсах выключателя. На основе показаний датчиков давления в режиме сброса давления при отключениях, программное обеспечение диагностического устройства должно вычислять перепад давлений и сравнивать с допустимыми значениями.

Т.4.3 Время восстановления давления после операции отключения воздушных выключателей.

Время восстановления давления должно контролироваться системой диагностики путем регистрации показаний датчика давления, установленного в полюсе выключателя, с момента сброса давления при операции отключения до момента восстановления давления.

- Т.4.4 Давление элегаза в элегазовых выключателях.
- Т.4.4.1 Давление элегаза (смеси газов, обеспечивающей работоспособность выключателя при низких температурах) должно измеряться с помощью датчиков давления, устанавливаемых на полюсах выключателя.

Должен выполняться контроль температуры с помощью датчиков температуры установленных на полюсах выключателя, так как давление газа в замкнутом объеме зависит от его температуры.

- T.4.4.2 Данные датчиков давления и температуры подаются в устройство непрерывного контроля, которое сохраняет их в памяти, а также определяет давление газа, приведенное к температуре 20^{0} C, являющееся однозначной характеристикой плотности газа, при помощи встроенной зависимости давления газа от температуры.
- Т.4.4.3 Устройство контроля должно сравнивать приведенные значения давления элегаза с допустимыми значениями, предоставленными предприятием изготовителем.

Т.4.5 Влагосодержания элегаза

Влагосодержание элегаза (смеси газов, обеспечивающей работоспособность выключателя при низких температурах) должно определяется периодически, путем отбора проб элегаза, в соответствии с инструкцией по эксплуатации.

Влагосодержание характеризуется температурой точки росы газа. Значения точки росы должны вводиться в устройство диагностики оперативным или ремонтным персоналом.

Т.4.6 Герметичности элегазового выключателя/полюсов

Контроль герметичности выключателя должен проводят с использованием сигнала датчиков давления и температуры, установленных в полюсах выключателя.

Устройство контроля приведенного давления элегаза должно через определенные промежутки времени фиксировать значения давления элегаза и при помощи программы обработки данных сравнивать эти значения и определять разницу.

Разность приведенных давлений, характеризующая утечку элегаза из полюса выключателя, приводят к величине «%/год» и сравнивают с допустимыми значениями указанными в эксплуатационных документах завода-изготовителя.

Т.5 Выключатели

- Т.5.1 Полное время отключения определяют по интервалу времени между моментом подачи команды на отключение выключателя, находящегося во включенном положении, и моментом прекращения протекания тока через главную токоведущую цепь.
- Т.5.2 Собственное время отключения определяется путем вычитания из полного времени отключения разницы в размыкании вспомогательных блок-контактов и контактов выключателя. Значение интервала времени между размыканием основных контактов и вспомогательных блок-контактов предоставляется предприятием изготовителем.
- Т.5.3 Сопоставление результатов измерения собственного времени отключения с нормированным значением и изменения значений собственного времени отключения в процессе эксплуатации должно производится при равных значения тока катушки отключения.
- Т.5.4 Полученные значения полного времени отключения не должны превышать значения, указанного изготовителем выключателя времени отключения для данного тока отключения. Если изготовителем указано одно значение полного времени отключения для всего диапазона токов КЗ, то оно не

должно быть превышено при токах более 30 % от номинального тока отключения. При меньших токах допускается увеличение полного времени отключения на время не более 10 мс.

Т.5.5 Время включения определяется по интервалу времени между моментом подачи команды на включение выключателя, находящегося в отключенном положении, и моментом появления тока в первом полюсе.

Сопоставление результатов измерения времен включения и изменения значений времени включения в процессе эксплуатации должно производиться при равных значениях тока включения.

Т.5.6 Наработка механического ресурса

Для контроля наработки механического ресурса требуется установка в шкафу привода счетчика числа механических операций и подача показаний счетчика или информации о каждой выполненной операции в устройство диагностики, программное обеспечение которого должно производить подсчет и суммирование числа срабатываний.

- Т.5.7 Наработка коммутационного ресурса
- Т.5.7.1 Наработку коммутационного ресурса за одно отключение высоковольтных выключателей определяют по формуле:

$$U_1 = a \cdot I_1^{\alpha} \cdot t_{II} \tag{T5}$$

где *И* – износ за одну операцию.

I – эффективное значение отключаемого тока, кА;

 t_{∂} – время горения дуги;

а – коэффициент пропорциональности;

 α — показатель степени (может принимать значения от 0 до 3 в зависимости от вида выключателя)

Значение тока отключения должно определяться устройством диагностики на основании регистрации тока, подаваемого в устройство от трансформаторов тока.

Значение времени горения дуги определяется устройством диагностики как разность между полным и собственным временем отключения.

Т.5.8 Время заводки пружин пружинного привода.

Время заводки пружин привода должно регистрироваться устройством диагностики, на которое подаются сигналы срабатывания блок-контактов, подающих и снимающих импульс двигателя заводки пружин. Промежуток времени между импульсами включения и отключения электродвигателя будет являться временем заводки пружин.

Т.5.9 Температура контактной системы токоведущих контуров фаз выключателя

Контроль температуры контактной системы токоведущих контуров фаз выключателя (ошиновка-ввод выключателя, токосъемные устройства, соединения модулей, контактной системы дугогасительной камеры, контактной системы вывода выключателя-ошиновка), должен проводиться с помощью тепловизора (см. Приложение С).

Данные тепловизионного контроля выявляют местоположение температурных аномалий.

Состояние контактной системы зависит от материала контактов и оцениваются по превышению значения температуры контактной системы над температурой окружающей среды (воздуха, масла, элегаза) при номинальной нагрузке по току или по так называемой избыточной температуре.

Т.5.10 Состояние изоляционной среды масляных выключателей.

Состояние масла должно периодически контролироваться по его электрической прочности в стандартном пробойнике и цвету.

Отбор масла должен проводиться в периоды, указанные в инструкции по эксплуатации, а также после пяти - восьми отключений коротких замыканий. Результаты контроля должны вноситься и храниться в памяти в устройства лиагностики.

На основе показаний датчиков давления в режиме вентиляции, система должна вычислять перепад давлений, определять на его основе расход воздуха на вентиляцию и сравнивать с допустимыми значениями.

Т.5.11 Состав элегаза и его влагосодержания в элегазовых выключателях

Отклонение содержания O_2 , N_2 , CF_4 , SF_6 , H_2O от норматива характеризует аппарат как неисправный. Электрическая прочность газового промежутка обеспечивается нормированным содержанием шестифтористой серы указанным предприятием изготовителем .

Превышение норматива по кислороду способствует разложению элегаза.

Превышение норматива по влагосодержанию ухудшает качество элегаза как изолирующей среды.

Количественное содержание перечисленных составляющих рекомендуется определять на двухканальном хроматографическом комплексе, оснащенным двумя детекторами (по теплопроводности и ионизационно-плазменным). Комплекс позволяет по первому каналу в одной хроматограмме осуществить анализ элегаза на содержание O_2 , N_2 , $H_2O_2CF_4$. Второй канал предназначен для анализа воздуха рабочего зала с элегазовым оборудованием на следовые количества SF_6 .

Приложение У

(рекомендуемое)

Методы оценки технического состояния высоковольтных разъединителей

- У.1 Параметры, контролируемые дискретными методами
- У.1.1 Температура главной электрической цепи.

Температура главной электрической цепи должна фиксироваться дискретно или непрерывно с помощью тепловизионного оборудования (см. Приложение C).

У.1.2 Механическая прочность опорно-стержневых изоляторов разъединителей.

Механическая прочность опорно-стержневых изоляторов контролируется фоторегистрацией, акустико-эмиссионным методом или методом тепловизионного контроля (Приложение C).

- У.2 Параметры, контролируемые датчиками перемещений
- У.2.1 Измерение хода контактов при включении/отключении.

Ход подвижных контактов разъединителя должен фиксироваться с помощью датчиков перемещений (угловых или линейных), установленных в шкафах привода на заземленном элементе.

У.2.2 Фиксация полного включенного положения.

Фиксация полного включенного положения при операции включения должна регистрироваться датчиком перемещения (угловых или линейных).

- У.3 Параметры, измеряемые с помощью измерительного шунта
- У.3.1 Ток электромагнитов управления

Ток электромагнитов управления электромагнитного привода разъединителя контролируется измерительным шунтом передающим сигнал в устройство диагностики.

У.3.2 Ток и напряжение электродвигателя привода

Ток и напряжение электродвигателя привода должна измеряться при помощи измерительного шунта.

Напряжение замеряется непосредственно.

У.4 Устройствами непрерывного контроля осуществляют мониторинг давления воздуха в резервуаре пневматического привода разъединителя.

Давление воздуха в резервуаре пневматического привода разъединителя должно регистрироваться устройством непрерывного контроля, обрабатывающим сигнал датчика давления, установленного в приводе.

Приложение Ф

(рекомендуемое)

Методы оценки технического состояния опор и фундаментов

- Ф.1 Деревянные опоры.
- $\Phi.1.1$ Степень загнивания древесины деревянных опор должно определяться ультразвуковым методом, который позволяет дать качественную оценку состояния древесины деталей опор.

Ультразвуковые колебания, генерируемые излучателем, проходят через древесину и преобразуются в приемнике в электрический сигнал, при этом в неповрежденной древесине колебания распространяются практически без затухания, но поглощаются загнившей древесиной. Приемник излучения контактирует с древесиной с ее противоположной стороны и позволяет по наличию или отсутствию затухания судить о состоянии древесины (хорошее, незначительное загнивание, критическое) и определить линейные координаты зон загнивания.

Измерения глубины загнивания следует проводить в трех точках окружности детали под углом 120° — для деталей, расположенных вертикально или наклонно (приставки, стойки, подкосы, раскосы), и в двух точках окружности (сверху в месте наибольшего загнивания и внизу против первого) — для деталей, расположенных горизонтально (траверсы, распорки и т.п.).

При производстве ультразвукового контроля необходимо соблюдать следующие условия:

- обеспечивать плотное прилегание датчиков прибора к поверхности древесины;
 - производить работы при температуре воздуха от +10 до +30°C;
 - древесина не должна быть влажной;
 - участки древесины для контроля должны выбираться без видимых трещин.
- Ф.1.2 Для определения степени прочности древесины следует использовать метод, по которому замеряется усилие, затрачиваемое на проталкивание игольчатого бурава в дерево. Под действием вращающегося усилия бур вкручивают в дерево на угол, пропорциональный прилагаемому усилию и степени прочности древесины. Угол фиксируют указателем на шкале устройства.
 - Ф.2 Железобетонные опоры и фундаменты
- Ф.2.1 Прочность бетона и железобетонных конструкций определяют в первую очередь в тех элементах и на тех участках, где согласно схеме работы конструкции прочность бетона имеет наибольшее значение. К ним относят:
 - опорные участки;
 - сжатые зоны;
 - зоны анкерования арматуры и закладных деталей.

Прочность бетона фундаментов и железобетонных опор должна определяться на основе применения ультразвукового, механического и вибрационного методов.

Ультразвуковые методы используются для выявления дефектов в бетоне на ранней стадии их появления и оценки развитие этих дефектов.

Механические методы используются для выявления дефектов в бетоне на поздних стадиях их развития.

Контроль прочности бетона ультразвуковым методом следует проводить при поверхностном или сквозном прозвучивании.

- Ф.2.2 При выборе участков испытаний необходимо, чтобы не менее 60 % из них приходилось на наиболее нагруженные сечения, работающие преимущественно на сжатие. Участки должны охватывать как наиболее, так и наименее поврежденные места конструкций.
- Ф.2.3 Ультразвуковые методы оценки прочности бетона, основаны на существовании зависимости скорости распространения ультразвуковых колебаний в бетоне от состояния его структуры, наличия и накопления в нем тех или иных дефектов и повреждений. С появлением внутренних дефектов изменяется скорость и время распространения ультразвука в бетоне.

Размеры и величины дефектов бетона (глубина распространения трещин в бетоне, а также размеры каверн и зон неуплотненного бетона) устанавливаются при сопоставлении результатов измерений с градуировочными зависимостями.

- Ф.2.4 Механический метод оценки прочности бетона железобетонных конструкций (упругого отскока, пластических деформаций) основан на применении приборов, принцип действия которых использует зависимости между прочностью бетона, его твердостью и силами сцепления в нем.
- Ф.2.5 Контроль координат арматурных стержней железобетонных конструкций следует проводить с помощью магнитного метода, который основан на взаимодействии магнитного поля со стальной арматурой железобетонного фундамента. Этот метод позволяет выявить расположение стержневой арматуры, а также оценить диаметр арматуры. Использование магнитного метода дает возможность уточнить соответствие железобетонных конструкций проектным решениям в части диаметра и расположения арматуры.
- Ф.2.6 Оценку технического состояния конструкции железобетонного фундамента в целом следует проводить, используя вибрационный метод диагностики.

Метод основан на сравнительном анализе декрементов затухания механических колебаний низкой и высокой частоты, искусственно возбуждаемых в железобетонной конструкции. Между параметрами этих колебаний и состоянием бетона, арматуры и их сцеплением между собой существует определенная зависимость. С появлением трещин в бетоне или коррозии арматуры их взаимодействие нарушается.

Техническое состояние конструкции оценивается при сопоставлении результатов измерений с градуировочными зависимостями

Ф.2.7 Объем выборки железобетонных стоек опор для обследования должен составлять не менее 3 % опор каждого типа, установленного на линии электропередачи. Выявляются железобетонные стойки опор, имеющие продольные и поперечные трещины.

Если количество железобетонных стоек опор с трещинами составляет более 30 % выборки, то выборку следует увеличить до 10 %.

Если, из 10 % выборки, количество железобетонных стоек опор с трещинами составляет 10 и более процентов выборки, то проводят 100 % (тотальное) обследования опор.

- Ф.2.8 Отклонение опоры от вертикальной оси и отклонение траверс опор измеряется геодезическими приборами (теодолитом, индикатором угла отклонений элементов линии), а также методом лазерного сканирования.
- Ф.2.9 Деформация стоек опор (прогибы и перекосы) должна определяться с помощью стальной струны диаметром 1,0 мм, натягиваемой вдоль прогнутой стойки в плоскости прогиба. Концы струны закрепляются бандажами наверху и внизу стойки. Значение кривизны измеряется линейкой с ценой деления 1,0 мм, прикладываемой в месте наибольшего прогиба стойки, между натянутой струной и осью.

Количественную оценку дефектов по характеру и значениям прогибов, перекосов и перемещений должна производят путем сравнения фактических значений с предельно допустимыми по нормам СП 20.13330.2011 [3].

Ф.3 Металлические опоры

Ф.3.1 Снижение прочности металлических опор должно оцениваться по коррозионному износу. Коррозионный износ определяется как уменьшение толщины стальных элементов, из которых выполнена ферменная конструкция опоры. Измерения толщины стенки стального элемента производится на очищенных с двух сторон от продуктов коррозии участках этого элемента.

На очищенном участке при общей коррозии производят от восьми до 10 измерений толщины стенки элемента X, а при наличии питинговой (язвенной) коррозии — от 20 до 30 измерений.

Ф.3.2 Объем выборки при проведении периодических обследований металлических опор должен составлять от 5 до 10 % от количества опор данного типа, примененных на обследованных линиях электропередачи, с учетом степени агрессивности атмосферы вдоль трассы.

Выборки следует производить на участках линии, где ожидаются повышенные коррозионные потери стальных конструкций опор. По результатам измерений определяется характер коррозии – общая или питинговая.

При получении стабильных результатов скорости коррозионных процессов общей коррозии объем выборки может быть принят по нижней границе (5 % от общего числа опор).

При выявлении существенных различий коррозионного износа на разных участках линии и по высоте опоры необходимо скорректировать объем и место выборки.

Приложение Х

(рекомендуемое)

Методы оценки технического состояния проводов, грозозащитных тросов, их соединений и тросовых оттяжек

- Х.1 Провода и грозозащитные тросы
- Х.1.1 В полевых условиях должны проводиться измерения коррозионного износа сталеалюминиевых проводов и грозозащитных тросов методом магнитной дефектоскопии.

Метод состоит в том, что несущий стальной канат намагничивается устройством до состояния близкого к насыщению. Величина магнитного потока вокруг стального каната пропорциональна значению поперечного сечения каната. Изменение площади поперечного сечения или появление локального дефекта каната вызывает перераспределение магнитного потока вокруг каната. Это перераспределение регистрируется охватывающими провод измерительными катушками. Провод или трос контролируются в процессе перемещения элементов устройства вдоль провода, т.е. метод работает без вырезки образцов. В результате определяется степень коррозионного износа проводов и грозотросов путем установления потерь сечения стального сердечника в %, а также наличие локальных дефектов (обрывы проволок, пятна коррозии, места сварки проволок).

- Х.1.2 Для проведения лабораторных испытаний проводов и грозозащитных тросов места отбора образцов с линии электропередачи уточняются в процессе полевых обследований.
- Х.1.3 Лабораторные испытания проводов и грозозащитных тросов на растяжение до разрыва проводят:
 - на относительно коротких образцах провода (троса) длиной около 0,5 м;
 - на длинных образцах длиной не менее 10 м.

Образец провода целесообразно взять из средней части пролета на расстоянии 5 и более метров от поддерживающего или натяжного зажима.

Если трасса линии проходит в районах с локальными промышленными или природными загрязнениями атмосферы (солончаки), то образцы провода и грозозащитного троса должны быть получены с каждого из локальных участков линии.

- X.1.4 Испытания на коротком образце провода. Образец провода разбирается на отдельные проволоки по повивам и каждая проволока испытывается на растяжение до разрыва.
- Х.1.5 Испытания на длинном образце провода. Для определения остаточной прочности провода проводятся испытания на растяжение (нагрузочноразгрузочные испытания) и испытания до разрыва.

Результаты испытаний должны использоваться для анализа степени износа грозозащитных тросов и для оценки их технического состояния и темпов старения.

X.1.6 Анализ коррозионных потерь сечения стального каната, проведенный по результатам прямых испытаний каната, демонтированного с ВЛ после

длительного периода эксплуатации дает с высокой точностью объективные данные, которые невозможно получить путем инструментальных измерений.

- Х.2 Соединения проводов и грозозащитных тросов
- X.2.1 Дефекты сварного соединения проводов выявляются методом ультразвуковой дефектоскопии.
- X.2.2 Обнаружение смещения при опрессовании стальной гильзы соединителя по отношению к месту соединения проводов осуществляется методом магнитной дефектоскопии.

В корпусе устройства на оси поворачивается постоянный магнит. При перемещении устройства вдоль провода в момент, когда магнит оказывается над краем стальной гильзы, происходит его притяжение к стальной гильзе, что фиксируется прибором.

X.2.3 Контроль состояния контактных болтовых соединений проводится на основании оценки переходного сопротивления соединения или его теплового состояния.

Величина переходного сопротивления устанавливается путем измерения под нагрузкой падения напряжения на контактном соединении при известном токе в проводе.

- X.2.4 Оценка теплового состояния (температуры) контактных соединений проводов линии (болтовых, опрессованных, сварных, выполненных с применением овальных соединительных зажимов) осуществляется методом тепловизионного контроля по:
- превышению температуры (разности между измеренной температурой нагрева и температурой окружающего воздуха);
- избыточной температуре (превышению измеренной температуры контролируемого узла над температурой аналогичных исправных узлов других фаз, находящихся в одинаковых условиях);
- коэффициенту дефектности (отношению превышения температуры КС к превышению температуры шины (провода), измеренному на участке, отстоящем от контактного соединения на расстоянии не менее 1,0 м).

Предельные значения температуры нагрева и ее превышения для болтовых контактных соединений из меди, алюминия и их сплавов без покрытия, в воздухе составляют:

- по температуре нагрева 90°C;
- по превышению температуры 50°C.

Для контактов и болтовых контактных соединений предельные значения даны для токовых нагрузок от 0,6 до 1,0 номинального значения тока нагрузки $(I_{\text{ном}})$.

X.2.5 Пересчет превышения измеренного значения температуры в нормированному осуществляется исходя из соотношения:

$$\Delta I_{\text{hom}}/\Delta I_{\text{pa6}} = (I_{\text{hom}}/\Delta I_{\text{pa6}})^2 \tag{X.1}$$

где $\Delta I_{\text{ном}}$ — превышение температуры при номинальном значении тока нагрузки ($I_{\text{ном}}$);

 ΔI_{pa6} – то же при I_{pa6} .

Для контактов и болтовых контактных соединений при токах нагрузки от 0,3 до 0,6 номинального ($I_{\text{ном}}$) оценку их состояния проводят по избыточной температуре. В качестве норматива используется значение температуры, пересчитанное на половину номинального тока нагрузки (0,5 $I_{\text{ном}}$) по формуле, аналогичной X.1.

- X.2.6 Оценку состояния болтовых контактных соединений рекомендуется производить по избыточной температуре и половине номинального тока нагрузки $(0.5\ I_{\text{Hom}})$.
- X.2.7 Оценку состояния сварных, опрессованных и выполненных с применением овальных соединителей контактных соединений по избыточной температуре и коэффициенту дефектности.
- X.2.8 При оценке теплового состояния контактных соединений следует пользоваться таблицей X.1, характеризующей степень неисправности контактных соединений и рекомендациями для персонала по их устранению.

То	ςπ	тт	тт О	V2
1 8	Oll	ΙИ	па	ΔZ

Избыточная температура, °C	Коэффициент дефектности $K_{\rm д}$	Степень неисправности
5-10	Не более 1,2	Начальная степень неисправности
10-30	1,2-1,5	Развивающийся дефект
>30	>1,5	Аварийный дефект

- X.2.9 Должна проводиться проверка уровней радио и телевизионных помех, создаваемых на элементах арматуры, проводах и изоляции линии за счет коронирования и разрядов в зазорах в диапазоне частот от 0,15 до 1000,00 МГц.
 - Х.3 Тросовые оттяжки
- X.3.1 Коррозионный износ тросовых оттяжек опор следует рассматривать в двух аспектах:
 - износ стальных тросовых оттяжек;
- износ U-образных проушин закладных железобетонных плит и U-образных болтов.
- X.3.1.1Тяжение оттяжек должно быть равномерным не зависимо от направления ветра относительно ВЛ.
 - Х.3.1.2Угол наклона тросов к земле должен составлять 50° и больше.
- Х.3.1.3 Коррозионный износ стальных тросовых оттяжек подобен износу стальных грозозащитных тросов.
- X.3.1.4При полевых обследованиях оценка технического состояния стальных тросов должна проводиться по результатам измерения площади поперечного сечения методом магнитной дефектоскопии.
- Х.3.1.5Для получения полноценных данных о темпах снижения механической прочности тросов оттяжек опор необходимо провести механические испытания на разрыв демонтированных с опоры образцов оттяжек

длиной 0,5 м, полученных при отрезании свободных выпусков тросов из клиновых зажимов.

При однородной атмосфере вдоль трассы линии достаточно провести лабораторные испытания одного троса оттяжки.

Х.3.1.6Для оценки технического состояния металлических U-образных болтов закладных плит и тросовых оттяжек применяется трудоемкий метод осмотра с выборочным открытием котлованов, в которых установлены закладные фундаменты для оттяжек. Такие работы, периодически проводимые на разных участках линии электропередачи, позволяют оценить темпы коррозии *U*-образных болтов и прогнозировать их срок службы.

Выборка по количеству обследованных деталей закладных плит и Uобразных болтов должна составлять не менее трех на каждые 100 км линии электропередачи.

Приложение Ц

(рекомендуемое)

Методы оценки технического состояния подвесных гирлянд изоляторов и линейной арматуры

Ц.1 Гирлянды изоляторов

Ц.1.1 Техническое состояние гирлянд изоляторов может быть оценено на основании сведений о ежегодном потоке отказов подвесных изоляторов, как по поддерживающим, так и по натяжным гирляндам изоляторов на обследуемой линии.

Показателями надежности гирлянд изоляторов является вероятность их безотказной работы.

Ц.1.2 Оценка технического состояния должна производиться для каждой линии электропередачи или ее участка с учетом типа гирлянды, типа изолятора, времени его установки.

По этим данным производится статистическая обработка потока отказов изоляторов на ВЛ.

Ц.1.3 Строятся «кривые жизни» (распределение Вейбулла) — зависимости вероятности отказов изоляторов от времени эксплуатации для каждого типа изоляторов и каждой линии отдельно.

Анализ надежности работы подвесных линейных изоляторов из закаленного стекла оценивается на основе «кривой жизни», характеризуемой кривой с двумя изломами. По изломам на кривой жизни определяются характерные периоды жизненного цикла изолятора:

- в периоде приработки уровни отказов изоляторов во времени снижаются;
- в периоде нормальной работы уровни отказов изоляторов остаются постоянными во времени;
- в периоде прогрессирующего старения уровни отказов изоляторов возрастают во времени;
- Ц.1.4 Обследование гирлянд изоляторов в полевых условиях должно включать:
- для фарфоровых изоляторов осмотр и измерения величины падения напряжения на изоляторах в гирлянде выявление «нулевых изоляторов». Выявление должно быть выполнено на не менее чем 10 % гирлянд изоляторов, установленных на ВЛ;
- для стеклянных изоляторов осмотр и регистрацию числа осыпавшихся изоляторов в натяжных и поддерживающих гирляндах. В ведомости обследования должны указываться номер опоры, фаза, число изоляторов в гирлянде и порядковый номер осыпавшегося изолятора в гирлянде, считая от провода;
 - для полимерных изоляторов осмотр.
- Ц.1.5 Различные повреждения поверхности стеклянных и фарфоровых изоляторов (сколы, микротрещины, повреждение и ожоги глазури и т.п.), а также

оболочек полимерных изоляторов могут быть выявлены по регистрации и анализе излучений в ультрафиолетовом (УФ) и инфракрасном (ИК) диапазонах длин волн.

Ц.1.6 Регистрация излучений в ультрафиолетовом диапазоне длин волн должна использоваться также для выявления пробитых (нулевых) фарфоровых изоляторов в гирлянде.

Метод выявления гирлянд с нулевыми изоляторами состоит в сравнении величины регистрируемого оптического сигнала от изоляторов гирлянды со средним уровнем, измеренным на некотором количестве гирлянд.

При наличии в гирлянде двух и более пробитых изоляторов напряжение на первых от провода изоляторах существенно возрастает, а интенсивность свечения увеличивается от полутора до двух раз.

Ц.1.7 Для обнаружения дефектных изоляторов в гирлянде следует использовать также метод инфрокрасного контроля изоляции (ИК-контроля).

При пробое одного или нескольких изоляторов большая часть рабочего напряжения ложится на исправные изоляторы, в особенности на изоляторы, примыкающие к фазному проводу. Такой же характер носит и распределение температуры изоляторов вдоль гирлянды. Появившиеся в гирлянде дефектные изоляторы приобретают температуру окружающего воздуха, а на остальных изоляторах температура повышается.

Разность температур исправного и дефектного изоляторов в гирлянде может находиться в пределах от 0,3 до 0.5°C.

Ц.1.8 ИК-контроль гирлянд должен проводиться одновременно для всех трех фаз линии в облачную погоду или ночью. Оценку результатов измерения температур гирлянд изоляторов рекомендуется производить путем пофазного сравнения.

При ИК-контроле изоляции, выявляющем локальное повышение температуры за счет электроразрядных процессов на поверхности изоляторов, может быть обнаружено нарушение клеевого шва между силиконовой рубашкой (ребрами) и изоляционным стержнем полимерного изолятора.

- Ц.1.9 Техническое состояние полимерных изоляторов на действующей линии оценивается по результатам тепловизионного контроля или контроля электронно-оптическими приборами, а также фоторегистрации цифровыми фотокамерами с большой разрешающей способностью.
- Ц.1.10 Степень загрязнения поверхности изоляторов может быть оценена при регистрации и анализе излучений в ультрафиолетовом диапазоне длин волн. Методика основана на явлении смещения спектра излучения поверхности изоляторов по мере ее загрязнения. Измерять степень загрязнения поверхности изоляторов следует при высокой влажности воздуха. По мере загрязнения спектр излучений смещается в длинноволновую сторону к желтому и красному свечению. Минимальное излучение загрязненного изолятора наблюдается в голубой области спектра.
- Ц.1.11 Лабораторные испытания проводятся на гирляндах изоляторов, демонтированных с линии электропередачи.

Величина выборки демонтированных гирлянд изоляторов должна составлять:

- одна поддерживающая гирлянда на 10 км линии;

- одна натяжная гирлянда на 20 км линии.
- Ц.1.12 Для оценки возможного снижения механической прочности всего массива изоляторов под воздействием длительно приложенных эксплуатационных нагрузок необходимо проведение лабораторных испытаний на растяжение на достаточной выборке подвесных изоляторов.
- Ц.1.13 Оценка технического состояния полимерных изоляторов может быть получена путем проведения лабораторных нагрузочно-разгрузочных испытаний.

Электрические и механические характеристики изоляторов, полученные при проведении испытаний, сравниваются с паспортными характеристиками данного типа изоляторов.

- Ц.2 Линейная арматура
- Ц.2.1 Качество монтажа и износ линейной арматуры могут быть оценены по измерению уровней излучения в широком диапазоне длин волн, возникающих изза электрических разрядов (искра, поверхностные частичные и дуговые разряды) у элементов линейной арматуры:
- между плохо контактирующими металлическими частями в соединениях гирлянды с опорой или проводом ВЛ;
 - между деталями арматуры;
 - между замком в шапке и стержнем в гирлянде изоляторов;
 - между заземляющими спусками и арматурой;
 - при коронировании деталей линейной арматуры.
- Ц.2.2 Повышение температуры в местах дефекта линейной арматуры можно обнаружить с помощью тепловизионного контроля приемником излучения, работающим в ИК-диапазоне длин волн.
- Ц.2.3 Оценка технического состояния линейной арматуры должна проводиться на основе результатов осмотров, обмеров арматуры, демонтированной с ВЛ.
- Ц.2.4 При лабораторных испытаниях необходимо проводить измерения остаточной механической прочности арматуры, подвергшейся коррозии.
- Ц.2.5 В случае выявления локальных износов линейной арматуры, необходимо расчетным путем определять степень снижения прочности отдельных элементов арматуры.

Приложение Ш (рекомендуемое) Оценка технического состояния линий электропередачи

- Ш.1 Наиболее полноценным и прогрессивным методом для оценки технического состояния линий электропередач в целом является лазерное аэросканирование изоляционных расстояний.
- Ш.2 Измерение расстояний от проводов (тросов) до поверхности земли и различных объектов проводят методами геофизических измерений, в период воздействия на линию предельных токовых, механических нагрузок и максимальной температуре воздуха.
- Ш.3 Расстояния (угол) между проводами в расщепленной фазе допускается измерять вручную с помощью простых измерительных средств (*Например*: Металлической линейкой, рулеткой или с помощью портативных лазерных устройств для измерения расстояний).

БИБЛИОГРАФИЯ

- [1] Межотраслевые правила по охране труда (Правила безопасности) при эксплуатации электроустановок. Утверждены Министерством труда и социального развития Российской Федерации и Приказом Министерством энергетики Российской Федерации от 27.12.2000 № 163. Москва, издательство НЦ ЭНАС, 2003 г. [*CO 153-34.03.150-2003 (РД 153-34.0-03.150-00)]
- [2] Правила работы с персоналом в организациях электроэнергетики Российской Федерации. Утверждены Приказом Минэнерго России от 19.02.2000 г. № 49, зарегистрированы в Минюсте России № 2150 16.03.2000 г.
- [3] СП 20.13330.2011 Нагрузки и воздействия. Актуализированная редакция СНиП 2.01.07-85*. Свод правил утвержден Приказом Минрегиона России от 27.12.2010 № 787; СНиП от 27.12.2010 № 2.01.07-85*; СП от 27.12.2010 № 20.13330.2011

УДК 621.311

OKC 11.040.55

ОКП 42 2231 45 7740

Ключевые слова: ЭКСПЛУАТАЦИЯ, ВЫКЛЮЧАТЕЛЬ, РАЗЪЕДИНИТЕЛЬ, ТРАНСФОРМАТОР, ЭЛЕМЕНТ ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ, ЛЭП, ВЛ, ДИАГНОСТИКА, ДИАГНОСТИКА СОСТОЯНИЯ, СИСТЕМА, ОБОРУДОВАНИЕ ПОДСТАНЦИЙ.

Организация — разработчик: Открытое акционерное общество «Научнотехнический центр электроэнергетики» (ОАО «НТЦ электроэнергетики»)

Научный руководитель ОАО «НТЦ электроэнергетики»	hum	ЮГ. Шакарян
Руководитель разработки Зам. научного руководителя Исполнители:	Thurs	Л.В. Тимашова
Зав, лабораторией	ans	Ю.Н. Львов
Зав. сектором	secus for	И.Л. Шлейфман
Зав. сектором	899	Е.Н. Ефимов
Ст.научн. сотр.	A STATE OF THE STA	А.С. Хлызов
Научи, сотр.	4	В.С. Богомолов
Гл. специалист	her-	Н.В.Ясинская
Ст. научн. сотр.	Brook	В.А. Костюшко
Ст. научн. сотр.	Ma-	И.А. Назаров