РОССИЙСКАЯ АССОЦИАЦИЯ ЭКСПЕРТНЫХ ОРГАНИЗАЦИЙ ТЕХНОГЕННЫХ ОБЪЕКТОВ ПОВЫШЕННОЙ ОПАСНОСТИ

РОСТЕХЭКСПЕРТИЗА

Серия 03

Нормативные документы межотраслевого применения по вопросам промышленной безопасности и охраны недр

РАСЧЕТ НА ПРОЧНОСТЬ СОСУДОВ И АППАРАТОВ

CA 03-004-07

РОССИЙСКАЯ АССОЦИАЦИЯ ЭКСПЕРТНЫХ ОРГАНИЗАЦИЙ ТЕХНОГЕННЫХ ОБЪЕКТОВ ПОВЫШЕННОЙ ОПАСНОСТИ

РОСТЕХЭКСПЕРТИЗА

Серия 03

Нормативные документы межотраслевого применения по вопросам промышленной безопасности и охраны недр

Рекомендовано к применению Федеральной службой по экологическому, Технологическому и атомному надзору. Письмо от 27.11.2006, №КЧ-50/1220

РАСЧЕТ НА ПРОЧНОСТЬ СОСУДОВ И АППАРАТОВ

CA 03-004-07

MOCKBA 2007 УДК 622.279-192(083.74) ББК 33.36 Р24

РАЗРАБОТАН:

Научно-техническим предприятием «Трубопровод» (ООО «НТП «Трубопровод»)

В разработке приняли участие:

А.А.Шаталов, к.т.н.; Н.А.Хапонен (Ростехнадзор)

А.Н.Краснокутский, Л.Р.Кабо; В.Я.Магалиф (ООО НТП «Трубопровод»)

Редакционная группа:

А.З.Миркин, В.В.Усиньш, М.М.Глазман, А.И.Тимошкин (ООО НТП «Трубопровод»)

Утвержден протоколом № 19 заседания НТС ООО «НТП «Трубопровод» и ЗАО «ИПН» от « 29 » декабря 2004 г. (Стандарт предприятия СТП 10-04-02).

Рекомендован Ростехнадзором в качестве документа межотраслевого применения (письмо KY - 50/1220 от 27.11.2006).

Настоящий стандарт Ассоциации устанавливает методы расчета на прочность и устойчивость сосудов и аппаратов (в том числе колонного типа), работающих под внутренним избыточным давлением, вакуумом или наружным давлением или без давления (под налив), а также под действием внешних нагрузок.

Стандарт Ассоциации разработан для использования при проектировании, реконструкции и диагностике сосудов и аппаратов в нефтеперерабатывающей, химической, нефтехимической, нефтяной, газовой и других смежных отраслях промышленности.

Подписано в печать 29.06.07 Формат 60x90/16 Тираж 500 экз.

Отпечатано ЗАО «ГРАНП Полиграф» 111141, г. Москва, ул. Плеханова, д. 7 оф. 405 Тел.: 741-02-21, 672-32-84, 672-32-76 http://www.granp.ru

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	12
ТОМ 1. РАСЧЕТ ВЕРТИКАЛЬНЫХ И ГОРИЗОНТАЛЬНЫХ	
сосудов	15
1. Основные условные обозначения	
2. Общие требования	
2.1. Расчетные давления, усилия и моменты	
2.2. Допускаемые напряжения, коэффициенты запаса прочности и	2
устойчивости	22
2.3. Прибавки к расчетным толщинам	
2.4. Коэффициенты прочности сварных швов	
3. Цилиндрические обечайки	
3.1. Расчетные схемы.	
3.2. Гладкие обечайки (без колец жесткости)	
3.2.1. Обечайки, нагруженные внутренним избыточным давлением	
3.2.2. Обечайки, нагруженные наружным давлением	
3.2.3. Обечайки, нагруженные осевым растягивающим усилием	
3.2.4. Обечайки, нагруженные осевым расти ньагощим усилием	
3.2.5. Обечайки, нагруженные изгибающим моментом	
3.2.6. Обечайки, нагруженные поперечным усилием	
3.2.7. Обечайки, работающие под совместным действием наружног	
давления, осевого сжимающего усилия, изгибающего момента и поперечного усилия	2.4
поперечного усилия	34
3.2.8. Обечайки, работающие под совместным действием	
внутреннего давления, осевого растягивающего усилия и	
изгибающего момента	
3.3. Обечайки, подкрепленные кольцами жесткости	
3.3.1. Расчетные величины колец жесткости	
3.3.2. Обечайки, нагруженные внутренним избыточным давлением	
3.3.3. Обечайки, нагруженные наружным давлением	37
3.3.4. Обечайки, нагруженные осевым растягивающим или	
сжимающим усилием, изгибающим моментом или поперечным	
усилием как раздельно, так и совместно	
4. Выпуклые днища	
4.1. Расчетные схемы	
4.2. Эллиптическое днище	40
4.2.1. Эллиптическое днище, нагруженное внутренним избыточны	M
давлением	
4.2.2. Эллиптическое днище, нагруженное наружным давлением	41
4.3. Полусферическое днище	42
4.3.1. Полусферическое днище, нагруженное внутренним	
избыточным давлением	42
4.3.2. Полусферическое днище, нагруженное наружным давлением	42

	4.4. T	оросферическое днище	.43
	4.4.1.	Торосферическое днище, нагруженное внутренним	
	избы	точным давлением	43
	4.4.2.	. Торосферическое днище, нагруженное наружным давлением	46
5.	Плос	ские днища и крышки	
		Лоские днища, нагруженные внутренним или наружным	
	давлени	ıем	47
		Лоские крышки с дополнительным краевым моментом,	
		енные внутренним давлением	.51
		Лоские днища с радиальными ребрами жесткости	
6.		рические неотбортованные днища и крышки	
		асчетные схемы	
		ферические неотбортованные днища и крышки, нагруженные	
		ним избыточным давлением	.58
		ферические неотбортованные днища и крышки, нагруженные	
		ым давлением	.59
7.		ические обечайки и соединения	
		асчетные схемы	
	7.2. Γ.	ладкие конические обечайки	.62
	7.2.1.		
	давле	ением	.63
		Конические обечайки, нагруженные наружным давлением	
	7.2.3.		
	растя	гивающей силой	.64
		Конические обечайки, нагруженные осевой	
		ающей силой	64
	7.2.5.	Конические обечайки, нагруженные изгибающим моментом	64
	7.2.6.		
	внутр	реннего давления, осевого растягивающего усилия и	
	изгиб	рающего момента	65
	7.2.7.	Конические обечайки, нагруженные совместным действием	
	нарух	жного давления, осевого сжимающего усилия и изгибающего	
	моме	нта	65
	7.3. C	оединение конических обечаек без тороидального перехода	66
	7.3.1.	. Соединение, нагруженное внутренним или наружным	
	давле	ением	66
	7.3.2.	Соединение, нагруженное осевой растягивающей или	
	сжим	ающей силой	
	7.3.3.	Соединение, нагруженное изгибающим моментом	67
	7.3.4.		
	7.4. C	оединение конических обечаек с тороидальным переходом	
	7.4.1.	Соединение, нагруженное внутренним или наружным	
	давле	ением	68

		_
	7.4.2. Соединение, нагруженное осевой растягивающей или	
	сжимающей силой	69
	7.4.3. Соединение, нагруженное изгибающим моментом и	
	совместным действием нагрузок	
	7.5. Соединение конических обечаек с укрепляющим кольцом	69
	7.5.1. Соединение, нагруженное внутренним или наружным	
	давлением	70
	7.5.2. Соединение, нагруженное осевой растягивающей или	
	сжимающей силой	7
	7.5.3. Соединение, нагруженное изгибающим моментом и	
	совместным действием нагрузок	7
	7.6. Соединение штуцера или внутреннего цилиндрического корпуса	C
	конической обечайкой	72
	7.6.1. Соединение, нагруженное внутренним или наружным	
	давлением	72
	7.6.2. Соединение, нагруженное осевой растягивающей или	
	сжимающей силой	7
	7.6.3. Соединение, нагруженное изгибающим моментом и	
	совместным действием нагрузок	7
8.	Конические днища	
	В.1. Расчетные схемы	
	В.2. Коническое днище с тороидальным переходом	7
	8.2.1. Коническое днище, нагруженное внутренним избыточным	
	давлением	
	8.2.2. Коническое днище, нагруженное наружным давлением	7:
	В.3. Коническое днище с укрепляющим кольцом	7
	8.3.1. Коническое днище, нагруженное внутренним избыточным	
	давлением	7
	8.3.2. Коническое днище, нагруженное наружным давлением	7
	8.4. Коническое днище без тороидального перехода и укрепляющего	
	кольца	7
	8.4.1. Коническое днище, нагруженное внутренним избыточным	
	давлением	7
	8.4.2. Коническое днище, нагруженное наружным давлением	
9.	Воздействие опорных нагрузок	7
	9.1. Горизонтальные сосуды и аппараты на седловых опорах	7
	9.1.1. Определение расчетных усилий и моментов	7
	9.1.2. Несущая способность обечайки в области опорного узла	
	9.1.3. Несущая способность обечайки сосуда между	
	опорными узлами	9
	9.2. Вертикальные сосуды и аппараты на опорных лапах	9
	9.2.1. Расчетная схема	
	9.2.2. Определение расчетных усилий	
	9.2.3. Несущая способность обечайки	

9.3. Вертикальные сосуды и аппараты на опорных стойках	95
9.3.1. Расчетные схемы	96
9.3.2. Выпуклое днище на опорных стойках круглого сечения	
9.3.3. Эллиптическое днище на опорах-стойках	98
9.3.4. Коническое днище на опорах-стойках	103
10. Укрепление отверстий	106
10.1. Расчетные схемы	106
10.2. Определение расчетных размеров и коэффициентов	108
10.2.1. Расчетные диаметры	
10.2.2. Расчетные толщины стенок	110
10.2.3. Расчетные длины штуцеров	
10.2.4. Расчетная ширина	111
10.3. Расчет укрепления отверстия	113
10.4. Учет взаимного влияния отверстий в сосудах и аппаратах,	
нагруженных внутренним давлением.	114
10.5. Укрепление отверстий в сосудах и аппаратах, нагруженных	
наружным давлением	116
10.6. Минимальные размеры сварных швов	117
11. Прочность и герметичность фланцевых соединений сосудов и	i
аппаратов	118
11.1. Расчетные схемы	118
11.2. Допускаемые напряжения	123
11.3. Расчет вспомогательных величин	124
11.4. Коэффициенты жесткости фланцевого соединения	129
11.5. Нагрузки, действующие на болты (шпильки)	131
11.6. Расчет болтов (шпилек)	133
11.7. Расчет прокладок	134
11.8. Расчет фланцев	134
11.8.1. Фланцы приварные встык	135
11.8.2. Фланцы плоские приварные, под зажимы и	
приварные кольца	137
11.8.3. Фланцы свободные на приварных кольцах	138
11.8.4. Фланцы контактирующие	138
11.9. Жесткость фланцев	139
12. Прочность и герметичность фланцевых соединений арматури	
трубопроводов	
12.1. Расчетные схемы	140
12.2. Допускаемые напряжения	
12.3. Расчет вспомогательных величин	
12.4. Коэффициенты жесткости фланцевого соединения	
12.5. Нагрузки, действующие на болты (шпильки)	
12.6. Моменты, действующие на фланцы	
12.7. Расчет болтов (шпилек)	
12.8. Расчет прокладок	

12.9. Расчет фланцев	150
12.9.1. Фланцы приварные встык и плоские приварные	
интегрального типа	150
12.9.2. Фланцы свободные на приварных кольцах и плоские	
приварные свободного типа	152
12.10. Жесткость фланцев	
13. Прочность и жесткость мест врезки штуцеров	
13.1. Расчетная схема	153
13.2. Условия применения	
13.3. Прочность места врезки штуцера	
13.3.1. Общие положения	
13.3.2. Цилиндрическая обечайка	156
13.3.3. Патрубок штуцера, соединенный с цилиндрической	
обечайкой	
13.3.4. Сферическая оболочка	
13.3.5. Патрубок штуцера, соединенный со сферической оболочкой	
13.4. Жесткость места соединения штуцера	
13.4.1. Общие положения	
13.4.2. Цилиндрическая обечайка	
13.4.3. Сферическая обечайка	
14. Сосуды с рубашками	182
14.1. Расчетные схемы	
14.2. Сосуды с U-образной рубашкой	
14.2.1. Цилиндрические обечайки	185
14.2.2. Днища	186
14.2.3. Сопряжение рубашки с корпусом сосуда при	
помощи конуса	186
14.2.4. Сопряжение рубашки с корпусом сосуда при	
помощи кольца	
14.2.5. Нагрузка от собственного веса	191
14.3. Сосуды с цилиндрическими рубашками	192
14.3.1. Цилиндрические обечайки	
14.3.2. Сопряжение при помощи конуса	192
14.3.3. Сопряжение при помощи кольца	192
14.3.4. Нагрузка от собственного веса сосуда или рубашки	193
14.4. Сосуды, частично охваченные рубашками, сопряженными с	
корпусом анкерными трубами и отбортовками	193
14.4.1. Цилиндрическая обечайка	193
14.4.2. Днища	194
14.4.3. Плоские участки	194
14.5. Сосуды с каналами	
14.5.1. Цилиндрическая обечайка	
14.5.2. Полоса обечайки под каналами	
14.5.3. Днища	198

CA 05-004-07 (CTIT 10-04-02)	
14.5.4. Каналы	198
14.5.5. Распределительные каналы в сосудах с регистровыми	
каналами	199
15. Расчет элементов сосудов и аппаратов, работающих в	
коррозионно-активных сероводородсодержащих средах	200
15.1. Условия применения	
15.2. Допускаемые напряжения, коэффициенты запаса прочности	
15.3. Расчет обечаек и днищ	201
15.4. Расчет укрепления отверстий	202
15.5. Прочность места врезки штуцера	203
15.6. Расчет фланцевых соединений	
16. Расчет сосудов и аппаратов методом конечных элементов	
16.1. Общие положения	
16.2. Расчет прочности и жесткости места соединения штуцера с	
сосудом (аппаратом) при статическом нагружении	207
16.2.1. Допускаемые нагрузки на штуцер	
16.2.2. Жесткость врезки	
16.3. Примеры расчета прочности и устойчивости сосудов и	
резервуаров	211
ТОМ 2. РАСЧЕТ АППАРАТОВ КОЛОННОГО ТИПА	216
1. Основные условные обозначения	216
2. Определение расчетных усилий	
2.1. Расчетная схема	219
2.2. Определение периода собственных колебаний	
2.3. Определение расчетного изгибающего момента от ветровой	
нагрузки	223
2.4. Определение расчетного изгибающего момента от сейсмическо	й
нагрузки	225
3. Расчет на прочность и устойчивость	228
3.1. Расчетные сечения	228
3.2. Расчетные нагрузки	229
3.2.1. Расчетные давления	
3.2.2. Нагрузки от собственного веса	229
3.2.3. Расчетные изгибающие моменты	229
3.2.4. Сочетание нагрузок	229
3.3. Корпус аппарата	230
3.3.1. Проверка прочности	230
3.3.2. Проверка устойчивости	
3.4. Опорная обечайка	
3.5. Элементы опорного узла	
3.6. Анкерные болты	237
Нормативно-технические документы	
ПРИЛОЖЕНИЕ 1. Допускаемые напряжения для сталей [2]	241
ПРИЛОЖЕНИЕ 2. Механические характеристики сталей [2]	246

CA 03-004-07 (CTII 10-04-02)

ПРИЛОЖЕНИЕ 3. Приведенные нагрузки и расстояния до центра	_
тяжести отдельных элементов сосудов (аппаратов)	253
ПРИЛОЖЕНИЕ 4. Поперечное усилие и изгибающий момент от	
распределенной нагрузки в обечайке	257
ПРИЛОЖЕНИЕ 5. Свойства материалов болгов (шпилек) для расчет	а ·
	259
ПРИЛОЖЕНИЕ 6. Коэффициенты для расчета фланцевых	
	261
ПРИЛОЖЕНИЕ 7. Свойства материалов болтов (шпилек) для расчет	a
фланцевых соединений арматуры и трубопроводов[10, 25]	
ПРИЛОЖЕНИЕ 8. Коэффициенты для расчета укрепления отверсти	
сосудов и аппаратов, работающих в коррозионно-активных	
сероводородсодержащих средах [16]	268
ПРИЛОЖЕНИЕ 9. Перемещения в элементах колонного аппарата от	
-	272
ПРИЛОЖЕНИЕ 10. Геометрические характеристики поперечного	
	275

ВВЕДЕНИЕ

Стандарт Ассоциации (СА) включает нормы и методы расчета на элементов сосудов и аппаратов прочность ИЗ углеродистых легированных сталей, химической. применяемых В нефтеперерабатывающей И других отраслях промышленности, работающих под внутренним избыточным давлением, вакуумом или наружным давлением, а также под действием осевых, поперечных усилий и изгибающих моментов.

Расчет сосудов и аппаратов на прочность и устойчивость проводится с целью оценки их несущей способности в рабочих условиях, в условиях испытаний и монтажа при соблюдении требований, установленных в [1]. Методики расчетов основаны в большинстве случаев на отечественных стандартах и нормативных документах (НД), а также на зарубежных нормах, когда использование российских норм по тем или иным причинам не представляется возможным (например, при их отсутствии).

Целью создания настоящего СА являлось объединение НД в единый сборник для облегчения их использования инженерами, занимающимися расчетами на прочность и устойчивость сосудов и аппаратов по аналогии с зарубежными национальными стандартами (ASME Sect.VIII Div.1,2; EN 13445-3; PD 5500). Одновременно в расчетные формулы внесены корректировки в тех случаях, когда были допущены опечатки и неточности. В стандарте сделана попытка унифицировать терминологию и обозначения одних и тех же элементов, содержащихся в разных НД.

Использование расчетных формул методик настоящего СА предполагает применение ЭВМ. В этой связи в ряде случаев приближенные или упрощенные формулы и графики заменены на более точные аналитические зависимости.

Расчеты производятся поэлементно и включают в себя:

- цилиндрические обечайки (гладкие и подкрепленные кольцами жесткости) [2];
- конические переходы [2];
- приварные днища (сферические, эллиптические, торосферические, конические, плоские (в том числе с ребрами жесткости), сферические неотбортованные) [2,3,12,13];
- отъемные днища (плоские, эллиптические, сферические неотбортованные) [2,3,15];
- обечайки горизонтальных сосудов и аппаратов в местах опирания на седловые опоры [4];
- обечайки и днища вертикальных сосудов и аппаратов в местах опирания на опорные стойки и лапы [4,14];
- укрепление отверстий [5];

- узлы врезки штуцеров в обечайки и выпуклые днища [10,42-46];
- фланцевые соединения сосудов и аппаратов [11];
- фланцевые соединения арматуры и трубопроводов [11,40];
- рубашки сосудов и аппаратов [9];
- элементы аппаратов колонного типа [6,7] и др.

Принятые в НД конфигурации сосудов и аппаратов, а также условия их нагружения не всегда позволяют выполнить расчеты в строгом соответствии с нормами без упрощений расчетных моделей, что приводит к недостаточной точности получаемых результатов. В настоящем стандарте в ряде случаев расширена область применения расчетных молелей.

При расчете горизонтальных сосудов и аппаратов на седловых опорах в отличие от методики, описанной в [4], при определении изгибающих моментов и сил, как над опорами, так и между ними сосуды могут быть произвольной конфигурации, а опоры располагаться в любом месте цилиндрических обечаек.

Для определения низшей собственной частоты колебаний колонного аппарата используется метод Рэлея [48], позволяющий рассчитывать период колебаний для аппаратов с произвольным количеством участков и учитывающий сосредоточенные весовые нагрузки (площадки, насадки, опоры трубопроводов и др.).

В случае неточности или отсутствия методик расчета в отечественных НД использованы зарубежные источники. Это касается, например, расчета прочности и жесткости узлов врезок штуцеров в цилиндрические обечайки и выпуклые днища, работающих под действием внутреннего давления и внешних нагрузок. В основу расчета положены известные зарубежные методики [42-46]. Оценка полученных напряжений выполнена с учетом [10].

Для арматурных фланцев расчет проводится в соответствии с [40]. Помимо давления, при расчете учитываются внешние нагрузки и изгибающие моменты, а также напряжения, вызванные разницей линейных удлинений фланцев и шпилек (болтов) при температурном воздействии, ояределяемых по [11].

Расчеты сосудов и аппаратов проводятся в условиях однократных и многократных статических нагрузок (количество циклов нагружения от давления, температурных или других воздействий не превышает 10^3).

Сосуды и аппараты, работающие при многократных нагрузках, проверяют на циклическую прочность по [8].

Расчет элементов сосудов и аппаратов, работающих в коррозионно-активных сероводородсодержащих средах, проводится с учетом [16,17].

В случае, когда ограничения условий применения той или иной методики не могут быть соблюдены, целесообразно воспользоваться

численными методами расчета элементов сосудов и аппаратов, реализующих метод конечных элементов (МКЭ).

В СА приведены примеры расчетов с использованием МКЭ и оценки полученных результатов. Особое внимание уделено расчету узла врезки штуцеров в обечайки и днища и определению допускаемых нагрузок, действующих на штуцер.

Методики расчета изложены в двух томах.

Том 1. Расчет вертикальных и горизонтальных сосудов.

Том 2. Расчет аппаратов колонного типа.

ТОМ 1. РАСЧЕТ ВЕРТИКАЛЬНЫХ И ГОРИЗОНТАЛЬНЫХ СОСУДОВ

1. Основные условные обозначения

	Условное
Термин:	обозначение
	<u> </u>
Длина выступающей цилиндрической части сосуда, включая	a
отбортовку днища; размер сварного шва плоского днища, мм	4
Расстояние между двумя смежными кольцами жесткости;	
ширина седловой опоры; минимальное расстояние между	ь
наружными поверхностями двух соседних штуцеров; длина	Ĭ
основания опоры, мм	
Ширина прокладки фланцевого соединения, мм	b_n
Сумма прибавок к расчетным толщинам стенок, мм	c
Сумма прибавок к расчетным толщинам стенок колец	C _k
жесткости, мм	- x
Сумма прибавок к расчетной толщине втулки плоского	c_0
днища с ребрами жесткости, мм	
Сумма прибавок к расчетным толщинам стенок патрубков	C,
штуцеров, мм	-3
Внутренний диаметр сосуда (аппарата), фланца, приварного	D
кольца, мм	_
Диаметр окружности расположения болтов, мм	D_6
Наружный диаметр фланца, приварного кольца, мм	$D_{\scriptscriptstyle{N}}$
Наружный диаметр свободного фланца на приварном кольце,	D_{\scriptscriptstyleHK}
MM	,
Средний диаметр прокладки, мм	D_{cn}
Расчетный диаметр гладкой конической обечайки;	_
внутренний диаметр свободного фланца на приварном	D_{κ}
кольце; наибольший внутренний диаметр компенсатора, мм	ļ
Расчетный диаметр днища (крышки) и конической обечайки,	D_{p}
ММ	"
Наружный диаметр сосуда или аппарата; внутренний	_
диаметр цилиндра у меньшего основания конической	D_I
обечайки, мм	
Диаметр отверстия в днище (крышке); наружный диаметр	d
болта (шпильки); внутренний диаметр штуцера, мм	
Диаметр отверстия под болты (шпильки), мм	d_{δ}
Расчетный диаметр отверстия, мм	d_p
Модуль продольной упругости при расчетной температуре,	E E
МПа	_

(C1103 001 07 (C111 10 01 02)	Условное
Термин:	обозначение
•	:
Условный модуль сжатия материала прокладки, МПа	E_n
Расстояние между центром тяжести поперечного сечения	
кольца жесткости и срединной поверхностью обечайки, м	e
Расчетное осевое растягивающее или сжимающее усилие (без	
учета нагрузки, возникающей от внутреннего избыточного	F
или наружного давления), Н	
Усилие, действующее на опору, Н	$F_{1(2)}$
Допускаемое растягивающее или сжимающее усилие, Н	[F]
Допускаемое осевое сжимающее усилие из условия	$[F]_E$
устойчивости в пределах упругости, Н	l ¹ JE
Допускаемое осевое сжимающее усилие из условия	[F]₁₁
прочности, Н	[1][[
Площадь поперечного сечения болта (шпильки) по	f_6
внутреннему диаметру резьбы, мм ²	J6
Вес сосуда (аппарата) в условиях эксплуатации или	G
испытаний, Н	
Высота выпуклой части днища без учета цилиндрической	H
части; относительный размер кольца, мм	
Толщина фланца; высота вертикальной стойки; кольца	h
жесткости, мм	
Длина цилиндрической части отбортовки днищ; высота	_
опорной лапы; ширина ленты направляющей спирали;	h_{I}
высота упора, мм	
Эффективный момент инерции расчетного поперечного	I
сечения кольца жесткости, мм4	
Коэффициент ослабления плоских днищ (крышек)	K_{o}
отверстием	,
Ширина зоны укрепления, прилегающей к штуцеру, мм	L_{o}
Расчетная длина цилиндрической обечайки, укрепленной	L
кольцами жесткости; расчетная длина рубашки, м	
Расчетная длина гладкой обечайки; длина конической втулки	1
фланца, м	M
Расчетный изгибающий момент, Н⋅мм	
Допускаемый изгибающий момент, Н-мм	[M]
Допускаемый изгибающий момент из условия устойчивости	$[M]_E$
в пределах упругости, Н-мм	. ,,
Допускаемый изгибающий момент из условия прочности,	$[M]_{B}$
H·mm	, J.,
Число опор; радиальных ребер в плоской крышке; болтов (шпилек)	n
Коэффициент запаса прочности по временному	n_s

Термин: сопротивлению (пределу прочности) Коэффициент запаса прочности по пределу длительной прочности коэффициент запаса прочности по пределу ползучести Коэффициент запаса прочности по пределу текучести Коэффициент запаса прочности по пределу текучести Коэффициент запаса прочности по пределу текучести Коэффициент запаса устойчивости Расчетное внутреннее избыточное или наружное давление, МПа Расчетное давление в рубашке или в канале в состоянии эксплуатации или испытания, МПа Допускаемое внутреннее избыточное или наружное давление или допускаемое наружное давление из условия прочности или устойчивости всей обечайки (с кольцами жесткости), МПа Допускаемое наружное давление из условия прочности или всей обечайки (с кольцами жесткости) в пределах упругости, МПа Допускаемое наружное давление из условия прочности или всей обечайки (с кольцами жесткости) в пределах упругости, МПа Допускаемое наружное давление из условия прочности всей обечайки, МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости обечайки жежду двумя соседними кольцами жесткости; допускаемое внутреннее избыточное давление в рубашке или в канале, МПа Расчетное поперечное усилие, Н робашке или в канале, МПа Расчетное поперечное усилие, Н	CA 03-004-07 (CTIT 10-04-02)	
: сопротивлению (пределу прочности) Коэффициент запаса прочности по пределу длительной прочности Коэффициент запаса прочности по пределу ползучести Коэффициент запаса прочности по пределу текучести Коэффициент запаса прочности по пределу текучести Коэффициент запаса устойчивости Расчетное внутреннее избыточное или наружное давление, МПа Расчетное давление в рубашке или в канале в состоянии эксплуатации или испытания, МПа Допускаемое внутреннее избыточное или наружное давление, МПа Допускаемое наружное давление из условия устойчивости в пределах упругости, МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости всей обечайки (с кольцами жесткости), МПа Допускаемое наружное давление из условия устойчивости всей обечайки (с кольцами жесткости), МПа Допускаемое наружное давление из условия прочности или всей обечайки (с кольцами жесткости) в пределах упругости, МПа Допускаемое наружное давление из условия прочности всей обечайки, МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости обечайки между двумя соседними кольцами жесткости; допускаемое внутреннее избыточное давление в рубашке или в канале, МПа Расчетное поперечное усилие, Н		Условное
: сопротивлению (пределу прочности) Коэффициент запаса прочности по пределу длительной прочности Коэффициент запаса прочности по пределу ползучести Коэффициент запаса прочности по пределу текучести Коэффициент запаса прочности по пределу текучести Коэффициент запаса устойчивости Расчетное внутреннее избыточное или наружное давление, МПа Расчетное давление в рубашке или в канале в состоянии эксплуатации или испытания, МПа Допускаемое внутреннее избыточное или наружное давление, МПа Допускаемое наружное давление из условия устойчивости в пределах упругости, МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости всей обечайки (с кольцами жесткости), МПа Допускаемое наружное давление из условия устойчивости всей обечайки (с кольцами жесткости), МПа Допускаемое наружное давление из условия прочности или всей обечайки (с кольцами жесткости) в пределах упругости, МПа Допускаемое наружное давление из условия прочности всей обечайки, МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости обечайки между двумя соседними кольцами жесткости; допускаемое внутреннее избыточное давление в рубашке или в канале, МПа Расчетное поперечное усилие, Н	Термин:	обозначение
Коэффициент запаса прочности по пределу длительной прочности Коэффициент запаса прочности по пределу ползучести Коэффициент запаса прочности по пределу текучести Коэффициент запаса прочности Расчетное внутреннее избыточное или наружное давление, МПа Допускаемое внутреннее избыточное или наружное давление, МПа Допускаемое наружное давление из условия прочности или рустойчивости всей обечайки (с кольцами жесткости), МПа Допускаемое наружное давление из условия устойчивости всей обечайки (с кольцами жесткости) в пределах упругости, МПа Допускаемое наружное давление из условия прочности или допускаемое наружное давление из условия прочности всей обечайки, МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости обечайки между двумя соседними кольцами жесткости; допускаемое внутреннее избыточное давление в рубашке или в канале, МПа Расчетное поперечное усилие, Н	•	:
Коэффициент запаса прочности по пределу длительной прочности Коэффициент запаса прочности по пределу ползучести Коэффициент запаса прочности по пределу текучести Коэффициент запаса прочности Расчетное внутреннее избыточное или наружное давление, МПа Допускаемое внутреннее избыточное или наружное давление, МПа Допускаемое наружное давление из условия прочности или рустойчивости всей обечайки (с кольцами жесткости), МПа Допускаемое наружное давление из условия устойчивости всей обечайки (с кольцами жесткости) в пределах упругости, МПа Допускаемое наружное давление из условия прочности или допускаемое наружное давление из условия прочности всей обечайки, МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости обечайки между двумя соседними кольцами жесткости; допускаемое внутреннее избыточное давление в рубашке или в канале, МПа Расчетное поперечное усилие, Н	сопротивлению (пределу прочности)	
прочности Коэффициент запаса прочности по пределу ползучести Коэффициент запаса прочности по пределу текучести Коэффициент запаса прочности по пределу текучести Коэффициент запаса устойчивости Расчетное внутреннее избыточное или наружное давление, МПа Расчетное давление в рубашке или в канале в состоянии эксплуатации или испытания, МПа Допускаемое внутреннее избыточное или наружное давление, МПа Допускаемое наружное давление из условия устойчивости в пределах упругости, МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости всей обечайки (с кольцами жесткости), МПа Допускаемое наружное давление из условия устойчивости всей обечайки (с кольцами жесткости), МПа Допускаемое наружное давление из условия прочности всей обечайки, МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости обечайки между двумя соседними кольцами жесткости; допускаемое внутреннее избыточное давление в рубашке или в канале, МПа Расчетное поперечное усилие, Н		
Коэффициент запаса прочности по пределу ползучести Коэффициент запаса прочности по пределу текучести Коэффициент запаса устойчивости Расчетное внутреннее избыточное или наружное давление, МПа Расчетное давление в рубашке или в канале в состоянии эксплуатации или испытания, МПа Допускаемое внутреннее избыточное или наружное давление, МПа Допускаемое наружное давление из условия устойчивости в пределах упругости, МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости всей обечайки (с кольцами жесткости), МПа Допускаемое наружное давление из условия прочности или устойчивости всей обечайки (с кольцами жесткости) в пределах упругости, МПа Допускаемое наружное давление из условия прочности всей обечайки, МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности всей обечайки, МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости обечайки между двумя соседними кольцами кесткости; допускаемое внутреннее избыточное давление в рубашке или в канале, МПа Расчетное поперечное усилие, Н		$n_{\rm A}$
Коэффициент запаса прочности по пределу текучести Коэффициент запаса устойчивости Расчетное внутреннее избыточное или наружное давление, МПа Расчетное давление в рубашке или в канале в состоянии эксплуатации или испытания, МПа Допускаемое внутреннее избыточное или наружное давление, МПа Допускаемое наружное давление из условия устойчивости в пределах упругости, МПа Допускаемое наружное давление из условия прочности , МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости всей обечайки (с кольцами жесткости) в пределах упругости, МПа Допускаемое наружное давление из условия прочности всей обечайки, МПа Допускаемое наружное давление из условия прочности всей обечайки, МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости обечайки между двумя соседними кольцами жесткости; допускаемое внутреннее избыточное давление в рубашке или в канале, МПа Расчетное поперечное усилие, Н пт пу		
Коэффициент запаса устойчивости Расчетное внутреннее избыточное или наружное давление, МПа Расчетное давление в рубашке или в канале в состоянии эксплуатации или испытания, МПа Допускаемое внутреннее избыточное или наружное давление, МПа Допускаемое наружное давление из условия устойчивости в пределах упругости, МПа Допускаемое наружное давление из условия прочности , МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости всей обечайки (с кольцами жесткости), МПа Допускаемое наружное давление из условия устойчивости всей обечайки (с кольцами жесткости) в пределах упругости, МПа Допускаемое наружное давление из условия прочности всей обечайки, МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости обечайки между двумя соседними кольцами жесткости; допускаемое внутреннее избыточное давление в рубашке или в канале, МПа Расчетное поперечное усилие, Н		l
Расчетное внутреннее избыточное или наружное давление, МПа Расчетное давление в рубашке или в канале в состоянии эксплуатации или испытания, МПа Допускаемое внутреннее избыточное или наружное давление, МПа Допускаемое наружное давление из условия устойчивости в пределах упругости, МПа Допускаемое наружное давление из условия прочности , МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости всей обечайки (с кольцами жесткости), МПа Допускаемое наружное давление из условия устойчивости всей обечайки (с кольцами жесткости) в пределах упругости, МПа Допускаемое наружное давление из условия прочности всей обечайки, МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости обечайки между двумя соседними кольцами жесткости; допускаемое внутреннее избыточное давление в рубашке или в канале, МПа Расчетное поперечное усилие, Н		n_T
Расчетное давление в рубашке или в канале в состоянии рясксплуатации или испытания, МПа Допускаемое внутреннее избыточное или наружное давление, МПа Допускаемое наружное давление из условия устойчивости в пределах упругости, МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости всей обечайки (с кольцами жесткости), МПа Допускаемое наружное давление из условия устойчивости всей обечайки (с кольцами жесткости), МПа Допускаемое наружное давление из условия прочности всей обечайки, МПа Допускаемое наружное давление из условия прочности всей обечайки, МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости обечайки между двумя соседними кольцами жесткости; допускаемое внутреннее избыточное давление в рубашке или в канале, МПа Расчетное поперечное усилие, Н		n _y
Расчетное давление в рубашке или в канале в состоянии эксплуатации или испытания, МПа Допускаемое внутреннее избыточное или наружное давление, МПа Допускаемое наружное давление из условия устойчивости в пределах упругости, МПа Допускаемое наружное давление из условия прочности , МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости всей обечайки (с кольцами жесткости), МПа Допускаемое наружное давление из условия устойчивости всей обечайки (с кольцами жесткости) в пределах упругости, МПа Допускаемое наружное давление из условия прочности всей обечайки, МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости обечайки между двумя соседними кольцами жесткости; допускаемое внутреннее избыточное давление в рубашке или в канале, МПа Расчетное поперечное усилие, Н	Расчетное внутреннее избыточное или наружное давление,	
рустойчивости всей обечайки (с кольцами жесткости), МПа Допускаемое наружное давление из условия устойчивости в пределах упругости, МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости всей обечайки (с кольцами жесткости), МПа Допускаемое наружное давление из условия устойчивости всей обечайки (с кольцами жесткости), МПа Допускаемое наружное давление из условия устойчивости всей обечайки (с кольцами жесткости) в пределах упругости, МПа Допускаемое наружное давление из условия прочности всей обечайки, МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости обечайки между двумя соседними кольцами жесткости; допускаемое внутреннее избыточное давление в рубашке или в канале, МПа Расчетное поперечное усилие, Н	МПа	<i>P</i>
рустойчивости всей обечайки (с кольцами жесткости), МПа Допускаемое наружное давление из условия устойчивости в пределах упругости, МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости всей обечайки (с кольцами жесткости), МПа Допускаемое наружное давление из условия устойчивости всей обечайки (с кольцами жесткости), МПа Допускаемое наружное давление из условия устойчивости всей обечайки (с кольцами жесткости) в пределах упругости, МПа Допускаемое наружное давление из условия прочности всей обечайки, МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости обечайки между двумя соседними кольцами жесткости; допускаемое внутреннее избыточное давление в рубашке или в канале, МПа Расчетное поперечное усилие, Н	Расчетное давление в рубашке или в канале в состоянии	
Допускаемое внутреннее избыточное или наружное давление, МПа Допускаемое наружное давление из условия устойчивости в пределах упругости, МПа Допускаемое наружное давление из условия прочности , МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости всей обечайки (с кольцами жесткости), МПа Допускаемое наружное давление из условия устойчивости всей обечайки (с кольцами жесткости) в пределах упругости, МПа Допускаемое наружное давление из условия прочности всей обечайки, МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости обечайки между двумя соседними кольцами жесткости; допускаемое внутреннее избыточное давление в рубашке или в канале, МПа Расчетное поперечное усилие, Н		p_2
давление, МПа Допускаемое наружное давление из условия устойчивости в пределах упругости, МПа Допускаемое наружное давление из условия прочности , МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости всей обечайки (с кольцами жесткости), МПа Допускаемое наружное давление из условия устойчивости всей обечайки (с кольцами жесткости) в пределах упругости, МПа Допускаемое наружное давление из условия прочности всей обечайки, МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости обечайки между двумя соседними кольцами жесткости; допускаемое внутреннее избыточное давление в рубашке или в канале, МПа Расчетное поперечное усилие, Н		
Допускаемое наружное давление из условия устойчивости в пределах упругости, МПа Допускаемое наружное давление из условия прочности , МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости всей обечайки (с кольцами жесткости), МПа Допускаемое наружное давление из условия устойчивости всей обечайки (с кольцами жесткости) в пределах упругости, МПа Допускаемое наружное давление из условия прочности всей обечайки, МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости обечайки между двумя соседними кольцами жесткости; допускаемое внутреннее избыточное давление в рубашке или в канале, МПа Расчетное поперечное усилие, Н	' ' '	[p]
пределах упругости, МПа Допускаемое наружное давление из условия прочности , МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости всей обечайки (с кольцами жесткости), МПа Допускаемое наружное давление из условия устойчивости всей обечайки (с кольцами жесткости) в пределах упругости, МПа Допускаемое наружное давление из условия прочности всей обечайки, МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости обечайки между двумя соседними кольцами жесткости; допускаемое внутреннее избыточное давление в рубашке или в канале, МПа Расчетное поперечное усилие, Н		
Допускаемое наружное давление из условия прочности , МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости всей обечайки (с кольцами жесткости), МПа Допускаемое наружное давление из условия устойчивости всей обечайки (с кольцами жесткости) в пределах упругости, МПа Допускаемое наружное давление из условия прочности всей обечайки, МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости обечайки между двумя соседними кольцами жесткости; допускаемое внутреннее избыточное давление в рубашке или в канале, МПа Расчетное поперечное усилие, Н		$[p]_E$
МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости всей обечайки (с кольцами жесткости), МПа Допускаемое наружное давление из условия устойчивости всей обечайки (с кольцами жесткости) в пределах упругости, МПа Допускаемое наружное давление из условия прочности всей обечайки, МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости обечайки между двумя соседними кольцами жесткости; допускаемое внутреннее избыточное давление в рубашке или в канале, МПа Расчетное поперечное усилие, Н		
Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости всей обечайки (с кольцами жесткости), МПа Допускаемое наружное давление из условия устойчивости всей обечайки (с кольцами жесткости) в пределах упругости, МПа Допускаемое наружное давление из условия прочности всей обечайки, МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости обечайки между двумя соседними кольцами жесткости; допускаемое внутреннее избыточное давление в рубашке или в канале, МПа Расчетное поперечное усилие, Н	; '	[p] _a
наружное, определяемое из условия прочности или устойчивости всей обечайки (с кольцами жесткости), МПа Допускаемое наружное давление из условия устойчивости всей обечайки (с кольцами жесткости) в пределах упругости, МПа Допускаемое наружное давление из условия прочности всей обечайки, МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости обечайки между двумя соседними кольцами жесткости; допускаемое внутреннее избыточное давление в рубашке или в канале, МПа Расчетное поперечное усилие, Н		LFJ#
устойчивости всей обечайки (с кольцами жесткости), МПа Допускаемое наружное давление из условия устойчивости всей обечайки (с кольцами жесткости) в пределах упругости, МПа Допускаемое наружное давление из условия прочности всей обечайки, МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости обечайки между двумя соседними кольцами жесткости; допускаемое внутреннее избыточное давление в рубашке или в канале, МПа Расчетное поперечное усилие, Н		
Допускаемое наружное давление из условия устойчивости всей обечайки (с кольцами жесткости) в пределах упругости, МПа Допускаемое наружное давление из условия прочности всей обечайки, МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости обечайки между двумя соседними кольцами жесткости; допускаемое внутреннее избыточное давление в рубашке или в канале, МПа Расчетное поперечное усилие, Н	наружное, определяемое из условия прочности или	[p] ₁
всей обечайки (с кольцами жесткости) в пределах упругости, МПа Допускаемое наружное давление из условия прочности всей обечайки, МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости обечайки между двумя соседними кольцами жесткости; допускаемое внутреннее избыточное давление в рубашке или в канале, МПа Расчетное поперечное усилие, Н	устойчивости всей обечайки (с кольцами жесткости), МПа	
всей обечайки (с кольцами жесткости) в пределах упругости, МПа Допускаемое наружное давление из условия прочности всей обечайки, МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости обечайки между двумя соседними кольцами жесткости; допускаемое внутреннее избыточное давление в рубашке или в канале, МПа Расчетное поперечное усилие, Н	Допускаемое наружное давление из условия устойчивости	
МПа Допускаемое наружное давление из условия прочности всей обечайки, МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости обечайки между двумя соседними кольцами жесткости; допускаемое внутреннее избыточное давление в рубашке или в канале, МПа Расчетное поперечное усилие, Н		[p] _{IE}
Допускаемое наружное давление из условия прочности всей обечайки, МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости обечайки между двумя соседними кольцами жесткости; допускаемое внутреннее избыточное давление в рубашке или в канале, МПа Расчетное поперечное усилие, Н	l ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	LPJ IE
обечайки, МПа Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости обечайки между двумя соседними кольцами жесткости; допускаемое внутреннее избыточное давление в рубашке или в канале, МПа Расчетное поперечное усилие, Н [P] III [P]		
Допускаемое внутреннее избыточное давление или наружное, определяемое из условия прочности или устойчивости обечайки между двумя соседними кольцами жесткости; допускаемое внутреннее избыточное давление в рубашке или в канале, МПа Расчетное поперечное усилие, Н Q		[р] _{ІП}
наружное, определяемое из условия прочности или устойчивости обечайки между двумя соседними кольцами жесткости; допускаемое внутреннее избыточное давление в рубашке или в канале, МПа Расчетное поперечное усилие, Н Q		
устойчивости обечайки между двумя соседними кольцами [p] ₂ жесткости; допускаемое внутреннее избыточное давление в рубашке или в канале, МПа Расчетное поперечное усилие, Н		
жесткости; допускаемое внутреннее избыточное давление в рубашке или в канале, МПа Расчетное поперечное усилие, Н		
рубашке или в канале, МПа Расчетное поперечное усилие, Н Q		lpJ₂
Расчетное поперечное усилие, Н Q		
	рубашке или в канале, МПа	
Попускаемое поперенное усилие Н	Расчетное поперечное усилие, Н	Q
donyckacinoc nonchemoc jemino, n	Допускаемое поперечное усилие, Н	[Q]
Попускаемое поперенное усилие из условия устойнивости в	Допускаемое поперечное усилие из условия устойчивости в	
	пределах упругости, Н	<i>[Q]</i>
	Допускаемое поперечное усилие из условия прочности, Н	(01,
	Внутренний радиус отбортовки конической обечайки	الخاا
	(днища); радиус нейтральной линии кольца жесткости;	
		r
	радиус отбортовки или торовой части торообразной вставки,	l
	MM	
	Радиус кривизны в вершине днища сосуда по внутренней	
	поверхности; радиус бурта для опирания зажима; радиус	R
сферы сферической неотбортованной крышки, мм	сферы сферической неотбортованной крышки, мм	

	Условное
Термин:	обозначение
•	:
Минимальное значение предела текучести при расчетной	
температуре, МПа	R_e
Минимальное значение предела текучести, при температуре	R_e^{20}
20°С, МПа	R _e
Минимальное значение условного предела текучести при	
расчетной температуре (напряжение, при котором остаточное	$R_{p0,2}$
удлинение составляет 0,2%), МПа	-
Минимальное значение условного предела текучести при	n20
температуре 20°С, МПа	$R_{p0,2}^{20}$
Минимальное значение временного сопротивления (предела	
прочности) при расчетной температуре, МПа	R_m
Минимальное значение временного сопротивления (предела	R_m^{20}
прочности) при температуре 20°С, МПа	I I'm
Среднее значение предела длительной прочности за 10 ⁵ ч при	$R_{m/10}^{5}$
расчетной температуре, МПа	1 m/10
Средний 1%-ный предел ползучести за 10 ⁵ при расчетной	$R_{p1,0/10}^{5}$
температуре, МПа	1\p1,W10
Минимальное значение условного предела текучести при	
расчетной температуре (напряжение, при котором остаточное	$R_{p1,0}$
удлинение составляет 1%), МПа	
Исполнительная толщина стенки обечайки, мм	S
Исполнительная толщина стенки днища (крышки);	
сферического сегмента; переходной части конической	s_{i}
обечайки; стенки штуцера; толщина конической втулки в	<i>5</i> ,
месте соединения с фланцем, мм	
Исполнительная толщина стенки переходной части обечайки,	
подкладного листа, накладного кольца; исполнительная	S2
толщина стенки цилиндрической обечайки рубашки и конуса	-2
или канала, мм	
Исполнительная толщина крышки вне уплотнения,	. S3
внутренней части штуцера, мм	,
Исполнительная толщина стенки конической обечайки, мм	S_{κ}
Толщина крышки в месте уплотнения, мм	S_n
Расчетная толщина стенки обечайки, мм	S_p
Расчетная толщина стенки конической обечайки, мм	S _{K.p}
Расчетная толщина стенки днища (крышки), сферического	s_{Ip}
сегмента) или переходной части конической обечайки, мм	_
Расчетная толщина стенки переходной части обечайки, мм	s_{2p}
Исполнительная толщина стенки тороидального перехода	s_T
конической обечайки, мм	,
Исполнительная толщина стенки пологого конического	s'

CA 65-004-07 (CTIT 10-04-02)	Vacantina
T	Условное
Термин:	обозначение
<u> </u>	:
днища, мм	
Рабочая температура, ⁰С	T
Ширина поперечного сечения кольца жесткости в месте его	t
приварки к обечайке, мм	
Момент упругого сопротивления кольца жесткости при	W_I
изгибе; момент сопротивления сварного шва на единицу его	J
длины между корпусом сосуда и кольцом, мм ³	
Момент упругого сопротивления кольца жесткости при кручении, мм ³	W_K
Расстояние от центра укрепляемого отверстия до оси	x
эллиптического днища, мм	1 ~
Половина угла раствора при вершине конической обечайки,	$\alpha; \alpha_1; \alpha_2$
град	α, α ₁ , α ₂
Температурный коэффициент линейного расширения	a_{ϕ}
фланца, град	
Температурный коэффициент линейного расширения болтов	α_6
(шпилек), град	
Температурный коэффициент линейного расширения	α_{κ}
свободного кольца, град-1	
Температурный коэффициент линейного расширения	$\alpha_{\kappa p}$
крышки, град	
Отношение допускаемых напряжений	X
Минимальный размер сварного шва, мм	Δ
Угол охвата седловой опоры, град	δ_l
Угол охвата сосуда подкладным листом, град	δ_2
Коэффициент, учитывающий расстояние между корпусом	ε
сосуда и рубашкой	ļ
Поправочный коэффициент к допускаемым напряжениям;	η
коэффициент нагружения	
Гибкость элемента; коэффициент длины сопряжения	λ
Общие мембранные напряжения, МПа	σ_m
Допускаемое напряжение при расчетной температуре, МПа	[σ]
Допускаемое напряжение при температуре 20°C, МПа	$[\sigma]^{20}$
Допускаемое напряжение для болта при расчетной	[0]6
температуре, МПа	'''
Допускаемое напряжение для болта в условиях монтажа,	$[\sigma]_{6}^{20}$
МПа	[-70
Допускаемое напряжение для кольца жесткости при	[\sigma]_k
расчетной температуре, МПа	1-7"
Допускаемое напряжение для ребер жесткости плоского	[7],
днища, МПа	'''
	

CA 03-004-07 (CTII 10-04-02)

C/1 03-004-07 (C111 10-04-02)	
	Условное
Термин:	обозначение
	::
Допускаемое напряжение для фланца при расчетной	[σ] _φ
температуре, МПа	
Допускаемое напряжение для пітуцера или сопрягаемой	[σ] _ш
обечайки фланца при расчетной температуре, МПа	
Допускаемое напряжение для кольца сопряжения или	[0]0
анкерной трубы при расчетной температуре; допускаемое	1-30
напряжение для втулки плоской крышки с ребрами, МПа	
Допускаемое напряжение для плоского днища с ребрами	$[\sigma]_i$
жесткости; сферического неотбортованного днища при	' '
расчетной температуре, МПа	
Допускаемое напряжение для стенки рубашки или канала	[σ]₂
при расчетной температуре, МПа	' '
Допускаемое напряжение для переходных частей обечаек	[σ] _i ; [σ] ₂
(цилиндрических и конических) при расчетной температуре,	
МПа	
Коэффициент прочности сварных швов	φ
Коэффициент прочности продольного сварного шва	$arphi_ ho$
Расчетный коэффициент прочности сварного шва	φ_P
Коэффициент прочности кольцевого сварного шва	$arphi_T$

2. Общие требования

2.1. Расчетные давления, усилия и моменты

Под расчетным давлением для элементов сосудов и аппаратов следует понимать давление, на которое проводится их расчет на прочность и устойчивость. Расчетное давление определяется автором технологического проекта. Расчетное давление принимают, как правило, выше рабочего.

Под рабочим давлением для сосуда и аппарата следует понимать внутреннее избыточное максимальное или наружное возникающее при нормальном протекании рабочего процесса, без учета гидростатического давления среды без учета И кратковременного повышения лавления BO время лействия предохранительного клапана или других предохранительных устройств. Если на элемент сосуда или аппарата действует гидростатическое давление, составляющее 5% и выше рабочего, то расчетное давление для этого элемента должно быть повышено на это же значение.

При повышении давления в сосуде или аппарате во время действия предохранительных устройств более чем на 10%, по сравнению с расчетным, элементы аппарата должны рассчитываться на давление, равное 90% давления при полном открытии клапана или предохранительного устройства.

Для элементов, разделяющих пространства с разными давлениями (например, в аппаратах с обогревающими рубашками), за расчетное давление следует принимать либо каждое давление в отдельности, либо давление, которое требует большей толщины стенки рассчитываемого элемента. Если обеспечивается одновременное действие давлений, то допускается производить расчет на разность давлений. Разность давления принимается в качестве расчетного давления также для таких элементов, которые отделяют пространства с внутренним избыточным давлением от пространства с абсолютным давлением, меньшим чем атмосферное. Если отсутствуют точные данные, то абсолютное давление, меньшее чем атмосферное, принимают равным нулю.

Под пробным давлением в сосуде или аппарате следует понимать давление, при котором проводится испытание сосуда или аппарата. Расчет элементов сосудов или аппаратов при условиях испытания производится на давление, которому они подвергаются во время пробного испытания, включая гидростатическое давление. Расчет на прочность цилиндрических обечаек и конических элементов, выпуклых и плоских днищ для условий испытания проводить не требуется, если давление в

условиях испытания будет меньше, чем расчетное давление, умноженное

на 1,35
$$\frac{[\sigma]^{20}}{[\sigma]}$$
.

При расчете на прочность и устойчивость элементов сосудов и аппаратов помимо расчетного давления, необходимо учитывать действующие усилия и моменты. Эти усилия и моменты могут возникать в результате действия собственной массы, веса изоляции, внутренних и наружных устройств, присоединенных трубопроводов, ветровой, снеговой и других нагрузок.

2.2. Допускаемые напряжения, коэффициенты запаса прочности и устойчивости

Допускаемые напряжения при расчете по предельным нагрузкам сосудов и аппаратов, работающих при статических нагрузках [2]:

для углеродистых и низколегированных сталей

$$\left[\sigma\right] = \eta \cdot \min\left(\frac{R_e \text{ или } R_{p0,2}}{n_{_{\mathrm{T}}}}; \frac{R_m}{n_{_{\mathrm{g}}}}; \frac{R_{m/10^5}}{n_{_{\mathrm{B}}}}; \frac{R_{p1,0/10^5}}{n_{_{\mathrm{B}}}}\right)$$
(2.1)

для аустенитных сталей

$$[\sigma] = \eta \cdot \min \left(\frac{R_{p1,0}}{n_{_{\rm T}}}; \frac{R_{_{m}}}{n_{_{\rm g}}}; \frac{R_{_{m/10^5}}}{n_{_{\rm B}}}; \frac{R_{_{p1,0/10^5}}}{n_{_{\rm B}}} \right)$$
(2.2)

Поправочный коэффициент к допускаемым напряжениям η должен быть равен единице, за исключением стальных отливок, для которых η имеет следующие значения:

0,8 - для отливок, подвергающихся индивидуальному контролю неразрушающими методами;

0,7 - для остальных отливок.

Для условий испытания допускаемое напряжение: для углеродистых и низколегированных сталей

$$\left[\sigma\right] = \eta \frac{R_{\rm e}^{20} \text{ или } R_{p0,2}^{20}}{n_{\scriptscriptstyle T}} \tag{2.3}$$

для аустенитных сталей

$$\left[\sigma\right] = \eta \frac{R_{\rho 0,2}^{20} \text{ или } R_{\rho 1,0}^{20}}{n_{\text{\tiny T}}} \tag{2.4}$$

Коэффициенты запаса прочности должны соответствовать значениям, приведенным в табл. 2.1.

Таблица 2.1

Условие нагружения	Коэффициент запаса прочности			
э словие нагружения	пт	n_s	пд	пп
Рабочие условия	1,5	2,4	1,5	1,0
Условия испытания:				
гидравлические испытания	1,1	-	-	-
пневматические испытания	1,2	-	-	-
Условия монтажа	1,1			<u>-</u>

Для сосудов и аппаратов группы 3, 4 по [1] коэффициент запаса прочности по временному сопротивлению $n_{\hat{a}}$ допускается принимать равным 2,2.

В случае если допускаемое напряжение для аустенитных сталей определяют по условному пределу текучести $R_{p0,2}$ запас прочности \mathbf{n}_{T} для рабочих условий принимается равным 1,3.

Для сталей, широко используемых в химическом, нефтехимическом и нефтеперерабатывающем машиностроении, допускаемые напряжения для рабочих условий при $\eta=1$ должны соответствовать значениям, приведенным в Приложении 1.

За расчетную температуру стенки сосуда принимают наибольшее значение температуры стенки. При температуре ниже 20° C за расчетную температуру при определении допускаемых напряжений принимают температуру 20° C.

Расчетные значения предела текучести, временного сопротивления, модуля продольной упругости и коэффициентов линейного расширения в зависимости от температуры принимаются в соответствии с Приложением 2.

Коэффициент запаса устойчивости (*ny*) при расчете сосудов и аппаратов на устойчивость по нижним критическим напряжениям в пределах упругости следует принимать:

2,4 - для рабочих условий;

1,8 - для условий испытания и монтажа.

При расчетной температуре для углеродистой стали свыше 380^{9} С, для низколегированной свыше 420^{9} С, для аустенитной свыше 525^{9} С необходимо учитывать ползучесть материала.

Для элементов сосудов и аппаратов, работающих в условиях ползучести при разных за весь период эксплуатации расчетных температурах, в качестве допускаемого напряжения разрешается принимать эквивалентное допускаемое напряжение:

$$[\sigma_{sks}] = \frac{[\sigma]_1}{\left[\sum_{i=1}^{n} \frac{T_i}{T_0} \left(\frac{[\sigma]_1}{[\sigma]_i}\right)^m\right]^{\frac{1}{m}}},$$
(2.5)

где $[\sigma]_i = [\sigma]_1; \ [\sigma]_2; ... [\sigma]_n$ - допускаемое напряжение для расчетного срока эксплуатации при температурах t_i (i =1,2...);

 T_i - длительность этапов эксплуатации элементов с температурой стенки соответственно t_i (i =1,2...);

$$T_0 = \sum_{i=1}^{n} T_i$$
 - общий расчетный срок эксплуатации;

m - показатель степени в уравнениях длительной прочности стали (для легированных жаропрочных сталей при разнице расчетных температур эксплуатации не более 300С рекомендуется принимать m=8).

Этапы эксплуатации при разной температуре стенки рекомендуется принимать по ступеням температуры в 5 и 10 °C.

Для элементов сосудов и аппаратов, рассчитываемых не по предельным нагрузкам (например, узлы врезки штуцеров или фланцевые соединения) допускаемые напряжения определяются по соответствующей нормативно-технической документации [11, 10, 16, 41].

Для сосудов и аппаратов, работающих при многократных нагрузках, допускаемую амплитуду напряжений определяют по [8].

2.3. Прибавки к расчетным толщинам

При расчете сосудов и аппаратов необходимо учитывать прибавку c к расчетным толщинам элементов:

$$c = c_1 + c_2 + c_3, (2.6)$$

где $\,c_1^{}\,$ - прибавка для компенсации коррозии и эрозии;

 \boldsymbol{c}_2 - прибавка для компенсации минусового допуска;

 C_3 - прибавка технологическая.

При двухстороннем контакте с коррозионной и (или) эрозионной средой прибавку c_1 для компенсации коррозии и (или) эрозии необходимо соответственно увеличивать.

Технологическая прибавка c_3 предусматривает компенсацию утонения стенки элемента сосуда или аппарата при технологических операциях - вытяжке, штамповке, гибке труб и т. д. При расчете эллиптических днищ, изготовляемых штамповкой, технологическую прибавку c_3 для компенсации утонения в зоне отбортовки не учитывают, если ее значение не превышает 15% расчетной толщины листа.

Прибавки c_2 и c_3 учитывают в тех случаях, когда их суммарное значение превышает 5% номинальной толщины листа

Если известна фактическая толщина стенки, то при поверочном расчете c2 и c3 можно не учитывать.

2.4. Коэффициенты прочности сварных швов

При расчете на прочность сварных элементов сосудов и аппаратов в расчетные формулы следует вводить коэффициент прочности сварных соединений ϕ .

Числовые значения этих коэффициентов должны соответствовать значениям, приведенным в таблице 2.2.

Таблица 2.2

	Значение коэффициентов прочности сварных швов		
	Длина	Длина	
Вид сварного шва	контролируемых	контролируемых	
	швов от общей	швов от общей	
	длины составляет	длины составляет	
	100%*	от 10 до 50%*	
Стыковой или тавровый с			
двусторонним сплошным проваром,			
выполняемый автоматической и	1,0	0,9	
полуавтоматической сваркой	-7-	-,-	
Стыковой с подваркой корня шва или тавровый с двусторонним сплошным проваром, выполняемый вручную	1,0	0,9	
Стыковой, доступный сварке только с одной стороны и имеющий в процессе сварки металлическую подкладку со стороны корня шва, прилегающую по всей длине шва к основному металлу	0,9	0,8	
Втавр, с конструктивным зазором свариваемых деталей	0,8	0,65	
Стыковой, выполняемый автоматической и	0,9	0,8	

CA 03-004-07 (CTTI 10-04-02)

(21115 001 07 (211110 01 02)			
	Значение коэффициентов прочности		
Вид сварного шва	сварных швов		
	Длина	Длина	
	контролируемых	контролируемых	
	швов от общей	швов от общей	
	длины составляет	длины составляет	
	100%*	от 10 до 50%*	
полуавтоматической сваркой с			
одной стороны с флюсовой или			
керамической подкладкой			
Стыковой, выполняемый вручную с	0,9	0,65	
одной стороны	0,9	0,03	

*Объем контроля определяется техническими требованиями на изготовление, техническими регламентами и правилами безопасности Ростехнадзора РФ.

Для бесшовных элементов сосудов и аппаратов $\varphi = 1$.

3. Цилиндрические обечайки

Расчет цилиндрических обечаек на прочность и устойчивость проводится на основании [2] с дополнениями по расчету характеристик колец жесткости. Добавлен расчет на прочность от изгибающего момента с учетом коэффициента прочности кольцевого сварного шва, а также от совместного действия внутреннего давления, растягивающего усилия и изгибающего момента.

3.4.

3.1. Расчетные схемы

Расчетные схемы цилиндрических обечаек приведены на рис. 3.1-

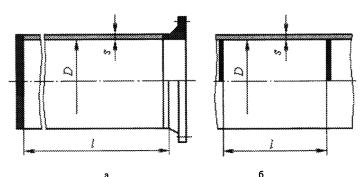


Рис. 3.1. Гладкие цилиндрические обечайки (а - обечайка с фланцем или с плоским днищем, б - обечайка с жесткими перегородками)

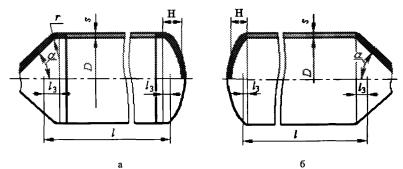


Рис. 3.2. Гладкие обечайки с выпуклыми или коническими днищами

(а – обечайка с отбортованными днищами, б – обечайка с неотбортованными днишами)

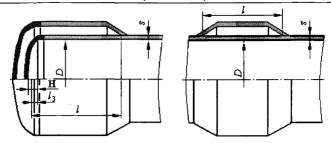


Рис.3.3. Гладкие обечайки с рубашкой

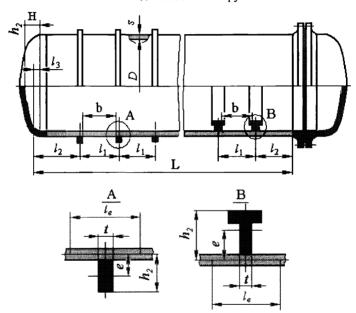


Рис. 3.4. Цилиндрические обечайки, подкрепленные кольцами жесткости

Условия применения:

$$\frac{s-c}{D} \leq 0,\! 1\,$$
 - для обечаек и труб при $D \geq 200$ мм;

$$\frac{s-c}{D} \le 0.3$$
 - для труб при $D < 200$ мм (3.1)

Расчетные формулы, приведенные в пп. 3.2.2; 3.2.4-3.2.7 и 3.3.3 следует применять при условии, что расчетные температуры не превышают значений, при которых учитывается ползучесть материалов. При отсутствии точных данных формулы допускается применять при условии, что расчетная температура стенки обечайки из углеродистой стали не превышает 380° С, из низколегированной 420° С, из аустенитной 525° С

3.2. Гладкие обечайки (без колец жесткости)

3.2.1. Обечайки, нагруженные внутренним избыточным давлением

Расчетная толшина стенки обечайки:

$$s_p = \frac{pD}{2[\sigma]\varphi_p - p} \tag{3.2}$$

Условие выполнения прочности стенки обечайки:

$$s \ge s_p + c \tag{3.3}$$

Допускаемое избыточное внутреннее давление:

$$[p] = \frac{2[\sigma]\varphi_p(s-c)}{D+(s-c)}$$
(3.4)

3.2.2. Обечайки, нагруженные наружным давлением

Допускаемое давление из условия прочности:

$$[p]_{II} = \frac{2[\sigma](s-c)}{D+(s-c)}$$
 (3.5)

Допускаемое давление из условия устойчивости в пределах упругости:

$$[p]_{E} = \frac{20.8 \cdot 10^{-6} E}{n_{y} B_{1}} \frac{D}{l} \left[\frac{100(s-c)}{D} \right]^{2.5},$$

$$\text{где } B_{1} = \min \left\{ 1,0; 9,45 \frac{D}{l} \sqrt{\frac{D}{100(s-c)}} \right\}.$$
(3.6)

Допускаемое наружное давление:

$$[p] = \frac{[p]_{II}}{\sqrt{1 + \left(\frac{[p]_{II}}{[p]_E}\right)^2}}$$
(3.7)

При определении расчетной длины обечайки l длину примыкающего элемента l_3 в зависимости от его вида (рис.3.2) следует определять по формулам:

$$l_3 = \frac{H}{3}$$
 - для выпуклых днищ;

$$l_3 = \frac{D}{6 t g \, lpha}\,$$
 - для конических обечаек (дниш) без отбортовки, но

не более длины конического элемента;

$$l_3 = \max \left\{ r \cdot \sin \alpha; \frac{D}{6 t g \alpha} \right\}$$
 - для конических обечаек (днищ) с

отбортовкой, но не более длины конического элемента;

Расчетная толщина стенки обечайки s_p определяется итерационно по формулам (3.5-3.7) при заданной расчетной длине l и условии, что p = p.

Условие выполнения прочности стенки обечайки:

$$s \ge s_n + c \tag{3.8}$$

Максимально допустимая расчетная длина обечайки l_p определяется итерационно по формулам (3.5-3.7) при заданной толщине стенки с учетом суммарной прибавки (s-c) и условии, что [p]=p.

3.2.3. Обечайки, нагруженные осевым растягивающим усилием

Расчетная толщина стенки обечайки:

$$s_p = \frac{F}{\pi \cdot D[\sigma] \varphi_T} \tag{3.9}$$

Условие выполнения прочности стенки обечайки:

$$s \ge s_p + c \tag{3.10}$$

Допускаемое осевое растягивающее усилие:

$$[F] = \pi (D + s - c)(s - c)[\sigma] \varphi_T \tag{3.11}$$

3.2.4. Обечайки, нагруженные осевым сжимающим усилием

Допускаемое осевое сжимающее усилие из условия прочности

$$[F]_n = \pi (D + s - c)(s - c)[\sigma]$$
 (3.12)

Допускаемое осевое сжимающее усилие из условия устойчивости в пределах упругости:

$$[F]_E = \min\{[F]_{E_i}; [F]_{E_2}\}, \tag{3.13}$$

где
$$[F]_{E_1} = \frac{310 \cdot 10^{-6} E}{n_v} D^2 \left[\frac{100(s-c)}{D} \right]^{2.5}$$
 - допускаемое осевое

сжимающее усилие из условия местной устойчивости в пределах упругости;

$$[F]_{E_2} = \frac{\pi \cdot (D+s-c)(s-c)E}{n_y} \left(\frac{\pi}{\lambda}\right)^2$$
 - допускаемое

осевое сжимающее усилие из условия общей устойчивости в пределах упругости.

Гибкость λ определяется по формуле:

$$\lambda = \frac{2,83 l_{np}}{D + s - c},\tag{3.14}$$

где приведенная длина l_{np} в зависимости от условий нагружения и закрепления принимается по таблице 3.1. В случае, если $\frac{l}{D} < 10 \,, \quad [F]_E = [F]_{E_1} \,.$

Допускаемое осевое сжимающее усилие:

$$[F] = \frac{[F]_{II}}{\sqrt{1 + \left(\frac{[F]_{II}}{[F]_{E}}\right)^{2}}}$$
(3.15)

		Габлица 3.1
Расчетная схема	$\frac{f}{l}$	l_{np}
l F	-	1
l	_	21
I F		0,71
1 F	-	0,51
	0 0,2 0,4 0,6 0,8 1,0	2,00 <i>l</i> 1,73 <i>l</i> 1,47 <i>l</i> 1,23 <i>l</i> 1,06 <i>l</i> 1,00 <i>l</i>
	0 0,2 0,4 0,6 0,8 1,0	2,00 <i>l</i> 1,70 <i>l</i> 1,40 <i>l</i> 1,11 <i>l</i> 0,85 <i>l</i> 0,70 <i>l</i>

3.2.5. Обечайки, нагруженные изгибающим моментом

Допускаемый изгибающий момент из условия прочности:

$$[M]_{np} = \frac{D}{4}[F] \tag{3.16}$$

где [F] определяется по (3.11).

Допускаемый изгибающий момент цилиндрической обечайки:

$$[M] = \frac{[M]_{\Pi}}{\sqrt{1 + \left(\frac{[M]_{\Pi}}{[M]_{E}}\right)^{2}}}$$
(3.17)

где
$$[M]_{\Pi} = \frac{D}{4} [F]_{\Pi}; [M]_{E} = \frac{D}{3.5} [F]_{E_{1}};$$

 $[F]_{\Pi}$ и $[F]_{E_1}$ берутся равными допускаемым сжимающим усилиям по (3.12) и (3.13) соответственно.

3.2.6. Обечайки, нагруженные поперечным усилием

Допускаемое поперечное усилие из условия прочности:

$$[O]_n = 0.25\pi D(s-c)[\sigma]$$
 (3.18)

Допускаемое поперечное усилие из условия устойчивости в пределах упругости:

$$[Q]_E = \frac{2.4E(s-c)^2}{n_y} \left[0.18 + 3.3 \frac{D(s-c)}{l^2} \right]$$
 (3.19)

Допускаемое поперечное усилие:

$$[Q] = \frac{[Q]_{\pi}}{\sqrt{1 + \left(\frac{[Q]_{\pi}}{[Q]_{E}}\right)^{2}}}$$
(3.20)

3.2.7. Обечайки, работающие под совместным действием наружного давления, осевого сжимающего усилия, изгибающего момента и поперечного усилия

Обечайки проверяют на устойчивость по формуле:

$$\frac{p}{[p]} + \frac{F}{[F]} + \frac{M}{[M]} + \left(\frac{Q}{[Q]}\right)^2 \le 1,0,$$
 (3.21)

где [p] - допускаемое наружное давление по (3.7); [F] - допускаемое осевое сжимающее усилие по (3.15); [M] - допускаемый изгибающий момент по (3.17); [Q] - допускаемое поперечное усилие по (3.20).

При внутреннем давлении следует принять p = 0.

3.2.8. Обечайки, работающие под совместным действием внутреннего давления, осевого растягивающего усилия и изгибающего момента

Кроме проверки условий прочности от отдельных нагрузок, необходимо проверить выполнение условия:

$$\frac{F + p\frac{\pi D^2}{4}}{[F]} + \frac{M}{[M]_{np}} \le 1,0,$$
(3.22)

где [F] и $[M]_{np}$ определяются по (3.11) и (3.16) соответственно.

3.3. Обечайки, подкрепленные кольцами жесткости

Расчетная схема цилиндрических обечаек, подкрепленных кольцами жесткости, приведена на рис. 3.4.

Дополнительное условие применения:

$$\dfrac{h_2}{D} \leq 0,2$$
, где h_2 - высота сечения кольца жесткости,

измеряемая от срединной поверхности обечайки

Кольца для укрепления обечайки используются единого типоразмера.

Расчетные формулы применяются при условии равномерного расположения колец жесткости. В тех случаях, когда кольца жесткости установлены неравномерно, значения b, l_1 и l_2 следует подставлять для тех участков, на которых расстояние между двумя соседними кольцами жесткости максимальное.

3.3.1. Расчетные величины колец жесткости

Расстояние между центром тяжести поперечного сечения кольца жесткости и срединной поверхности обечайки e, площадь поперечного сечения A_k и момент инерции относительно оси, проходящей через центр тяжести I_k в зависимости от сечения кольца, определяются по таблице 3.2. Размеры колец жесткости принимаются с учетом суммарной прибавки C_k .

Таблица 3.2

Сечение кольца	е	A_k	I_k
le le	$\frac{h+s-c}{2}$	ht	$\frac{th^3}{12}$
b_4 $t = S_4$ $t = S_4$ $t = S_4$ $t = S_4$	$\frac{th^2 + b_4 s_5 (2h + s_5)}{2(th + b_4 s_5)} + \frac{s - c}{2}$	$th + b_4 s_5$	$\frac{1}{3}t(e_k^3 + (h - e_k)^3) + \frac{1}{12}b_4s_5\left(s_5^2 + 12\left(h - e_k + \frac{s_5}{2}\right)^2\right)$ $\Gamma Ae e_k = e - \frac{s - c}{2}$
\$ t 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	$\frac{ts_6^2 + s_4 h(h + 2s_6)}{2(ts_6 + s_4 h)} + \frac{s - c}{2}$	$ts_6 + s_4 h$	$\frac{1}{3}s_4((h+s_6-e_k)^3+(e_k-s_6)^3)+$ $+\frac{1}{12}ts_6\left(s_6^2+12\left(e_k-\frac{s_6}{2}\right)^2\right)$ где $e_k=e-\frac{s-c}{2}$

Сечение кольца	e	A_k	I_k
S ₆	$\frac{s_4h(h+2s_6)+ts_6^2}{2(t(s_5+s_6)+s_4h)} + \frac{ts_5(2h+2s_6+s_5)}{2(t(s_5+s_6)+s_4h)} + \frac{s-c}{2}$	t(s ₅ + s ₆) + + s ₄ h	$\frac{1}{3}s_{4}((h+s_{6}-e_{k})^{3}+(e_{k}-s_{6})^{3})+$ $+\frac{1}{12}ts_{6}(s_{6}^{2}+12(e_{k}-\frac{s_{6}}{2})^{2})+$ $\frac{1}{12}ts_{5}(s_{5}^{2}+12(h+s_{6}-e_{k}+\frac{s_{5}}{2})^{2})$ $\text{ГДе} e_{k}=e-\frac{s-c}{2}$
\$ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\frac{2s_4h^2 + ts_5(2h + s_5)}{2(2s_4h + ts_5)} + \frac{s - c}{2}$	2s ₄ h + ts ₅	$\frac{2}{3}s_{4}(e_{k}^{3}+(h-e_{k})^{3})+$ $+\frac{1}{12}ts_{5}\left(s_{5}^{2}+12\left(h-e_{k}+\frac{s_{5}}{2}\right)^{2}\right)$ где $e_{k}=e-\frac{s-c}{2}$

3.3.2. Обечайки, нагруженные внутренним избыточным давлением

При выполнении п.3.2.1 расчета гладких обечаек от внутреннего давления укрепления обечайки кольцамижесткости не требуется.

При невыполнении п.3.2.1 определяется коэффициент K_4 :

$$K_4 = \frac{p(D+s-c)}{2\varphi_n[\sigma](s-c)} - 1 \tag{3.23}$$

В диапазоне $0 < K_4 < 2 \frac{\varphi_T}{\varphi_P} - 1$ условие прочности будет

выполнено в случае, если максимальное расстояние между смежными кольцами:

$$b \le \sqrt{D(s-c)\left[\frac{2}{K_4} - \frac{\varphi_P}{\varphi_T}\left(1 + \frac{1}{K_4}\right)\right]},$$
(3.24)

а площадь поперечного сечения кольца:

$$A_{k} \ge l_{R}(s-c) \frac{[\sigma] \cdot \varphi_{P}}{[\sigma]_{K} \cdot \varphi_{K}} K_{4}, \tag{3.25}$$

где $\mathbf{l_R} = \max\{l_1; l_2\}$ - расчетная длина между кольцами жесткости.

В случае если $K_4 \ge 2 \frac{\varphi_T}{\varphi_P} - 1$, толщину стенки необходимо

увеличить до такого размера, чтобы выполнялось условие:

$$0 < K_4 < 2\frac{\varphi_T}{\varphi_P} - 1 \tag{3.26}$$

Допускаемое внутреннее избыточное давление из условия прочности всей обечайки:

$$[p]_1 = \frac{2[\sigma]\varphi_p(s-c) + 2\frac{A_k}{l_R}[\sigma]_K \varphi_K}{D + (s-c)}$$
(3.27)

Допускаемое внутреннее избыточное давление из условия прочности обечайки между двумя соседними кольцами жесткости:

$$[p]_{2} = \frac{2[\sigma]\varphi_{T}(s-c)}{D+(s-c)} \frac{2+\lambda_{\Pi}^{2}}{1+\frac{\varphi_{T}\lambda_{\Pi}^{2}}{\varphi_{D}}},$$
(3.28)

где
$$\lambda_{\Pi}^2 = \frac{b^2}{D(s-c)}$$
.

Допускаемое внутреннее избыточное давление:

$$[p] = \min\{[p], [p], [p], \}$$
(3.29)

3.3.3. Обечайки, нагруженные наружным давлением

Расчетные параметры подкрепленной обечайки.

Эффективная длина стенки обечайки l_e :

$$l_e = \min\{V_R; t + 1, 1\sqrt{D(s - c)}\}$$
 (3.30)

Эффективный момент инерции поперечного сечения кольца жесткости:

$$I = I_K + \frac{l_R (s - c)^3}{10.9} + e^2 \frac{A_K l_e (s - c)}{A_K + l_e (s - c)}$$
(3.31)

Коэффициент жесткости обечайки, подкрепленной кольцами жесткости:

$$k = \sqrt{\frac{10.9I}{I_R(s-c)^3}}$$
 (3.32)

Допускаемое давление из условия прочности всей обечайки:

$$[p]_{1II} = \frac{2[\sigma](s-c) + 2\frac{A_k}{l_R}[\sigma]_K}{D + (s-c)}$$
(3.33)

Допускаемое давление из условия устойчивости всей обечайки в пределах упругости:

$$[p]_{1E} = \frac{20.8 \cdot 10^{-6} E}{k B_2 n_y} \frac{D}{L} \left[\frac{100 k (s - c)}{D} \right]^{2.5},$$

$$\text{где } B_2 = \min \left\{ 1.0; 9.45 \frac{D}{L} \sqrt{\frac{D}{100 k (s - c)}} \right\}.$$
(3.34)

Допускаемое давление из условия устойчивости всей обечайки:

$$[p]_{1} = \frac{[p]_{1\Pi}}{\sqrt{1 + \left(\frac{[p]_{1\Pi}}{[p]_{1E}}\right)^{2}}}$$
(3.35)

Допускаемое давление из условия прочности между кольцами жесткости:

$$[p]_{2\Pi} = \frac{2[\sigma](s-c)}{D+(s-c)} \frac{2+\lambda_{\Pi}^{2}}{1+\frac{\lambda_{\Pi}^{2}}{\varphi_{P}}},$$
(3.36)

Допускаемое давление из условия устойчивости между кольцами жесткости в пределах упругости:

$$[p]_{2E} = \frac{20.8 \cdot 10^{-6} E}{n_y B_1} \frac{D}{l} \left[\frac{100(s-c)}{D} \right]^{2.5},$$

$$r_{AB} = \max \left\{ b; l_2 - \frac{t}{2} \right\};$$

$$B_1 = \min \left\{ 1.0; 9.45 \frac{D}{l} \sqrt{\frac{D}{100(s-c)}} \right\}$$
(3.37)

Допускаемое давление из условий устойчивости обечайки между кольцами жесткости:

$$[p]_{2} = \frac{[p]_{2\pi}}{\sqrt{1 + \left(\frac{[p]_{2\pi}}{[p]_{2E}}\right)^{2}}}$$
(3.38)

Допускаемое наружное давление определяется из условия:

$$[p] = \min\{[p]_1; [p]_2\}$$
 (3.39)

3.3.4. Обечайки, нагруженные осевым растягивающим или сжимающим усилием, изгибающим моментом или поперечным усилием как раздельно, так и совместно

Допускаемые нагрузки и проверку на устойчивость при совместном воздействии всех нагрузок определяют как для гладких обечаек при условии $l=\max\left\{b;l_2-\frac{t}{2}\right\}$.

При определении расчетной длины l_{np} по таблице 3.1 вместо l следует принимать общую длину L.

4. Выпуклые днища

Расчет выпуклых днищ на прочность и устойчивость проводится на основании [2].

4.1. Расчетные схемы

Расчетные схемы выпуклых днищ приведены на рис. 4.1.

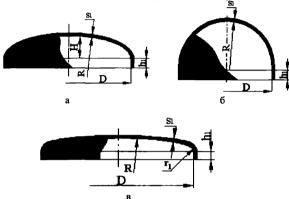


Рис. 4.1. Выпуклые днища.

а - эллиптическое днище; б - полусферическое днище; в - торосферическое днище

Условия применения:

$$0,002 \le \frac{s_1 - c}{D} \le 0,100$$
; $0,2 \le \frac{H}{D} \le 0,5$; $R \le D$; $(r_1 - s) \ge 0,1D$ (4.1)

Формулы, приведенные в пп. 4.2.2; 4.3.2 и 4.4.2 следует применять при условии, что расчетные температуры не превышают значений, при которых учитывается ползучесть материалов. При отсутствии точных данных формулы допускается применять при условии, что расчетная температура стенки обечайки из углеродистой стали не превышает 380° C, из низколегированной 420° C, из аустенитной 525° C.

4.2. Эллиптическое днище

4.2.1. Эллиптическое днище, нагруженное внутренним избыточным давлением

Радиус кривизны в вершине днища равен:

$$R = \frac{D^2}{4H} \tag{4.2}$$

Расчетная толщина стенки днища:

$$s_{1p} = \frac{pR}{2[\sigma]\varphi - 0.5p} \tag{4.3}$$

Условие выполнения прочности стенки днища:

$$s_1 \ge s_{1p} + c \tag{4.4}$$

Допускаемое внутреннее избыточное давление:

$$[p] = \frac{2[\sigma]\varphi (s_1 - c)}{R + 0.5(s_1 - c)}$$

(4.5)

Если длина цилиндрической части отбортованного днища $h_1 > 0.8 \sqrt{D(s_1-c)}$, то расчетная толщина стенки днища должна быть не менее:

$$s_{1p} = \frac{pD}{2[\sigma] - p} \tag{4.6}$$

4.2.2. Эллиптическое днище, нагруженное наружным давлением

Допускаемое давление из условия прочности:

$$[p]_{II} = \frac{2[\sigma](s_1 - c)}{R + 0.5(s_1 - c)}$$
(4.7)

Допускаемое давление из условия устойчивости в пределах упругости:

$$[p]_E = \frac{26 \cdot 10^{-6} E}{n_y} \left[\frac{100(s_1 - c)}{K_3 R} \right]^2, \tag{4.8}$$

где
$$K_3 = \frac{1 + (2,4 + 8\chi)\chi}{1 + (3,0 + 10\chi)\chi}$$
 при $\chi = 10\frac{s_1 - c}{D} \left(\frac{D}{2H} - \frac{2H}{D}\right)$.

Допускаемое наружное давление:

$$[p] = \frac{[p]_{\Pi}}{\sqrt{1 + \left(\frac{[p]_{\Pi}}{[p]_{E}}\right)^{2}}}$$

$$(4.9)$$

Расчетная толщина стенки днища с учетом прибавок определяется итерационно по формулам (4.7-4.9) при условии, что [p]=p .

Условие выполнения прочности стенки днища:

$$s_1 \ge s_{1p} + c \tag{4.10}$$

4.3. Полусферическое днище

Расчетная схема полусферического днища приведена на рис. 4.1,6.

4.3.1. Полусферическое днище, нагруженное внутренним избыточным давлением

Радиус кривизны в вершине днища равен:

$$R = H = 0.5D (4.11)$$

Расчетная толщина стенки днища:

$$s_{1p} = \frac{pR}{2[\sigma]\varphi - 0.5p} \tag{4.12}$$

Условие выполнения прочности стенки днища:

$$s_1 \ge s_{1p} + c \tag{4.13}$$

Допускаемое внутреннее избыточное давление:

$$[p] = \frac{2[\sigma]\varphi (s_1 - c)}{R + 0.5(s_1 - c)}$$
(4.14)

Если длина цилиндрической части отбортованного днища $h_1>0.3\sqrt{D(s_1-c)}$, то расчетная толщина стенки днища должна быть не менее:

$$s_{1p} = \frac{pD}{2[\sigma] - p} \tag{4.15}$$

4.3.2. Полусферическое днище, нагруженное наружным давлением

Допускаемое давление из условия прочности:

$$[p]_{II} = \frac{2[\sigma](s_1 - c)}{R + 0.5(s_1 - c)}$$
(4.16)

Допускаемое давление из условия устойчивости а пределах упругости:

$$[p]_E = \frac{0.26E}{n_y} \left[\frac{s_1 - c}{R} \right]^2 \tag{4.17}$$

Допускаемое наружное давление:

$$[p] = \frac{[p]_{\pi}}{\sqrt{1 + \left(\frac{[p]_{\pi}}{[p]_E}\right)^2}}$$

$$(4.18)$$

Расчетная толщина стенки днища с учетом прибавок определяется итерационно по формулам (4.16-4.18) при условии, что [p]=p .

Условие выполнения прочности стенки днища:

$$s_1 \ge s_{1p} + c \tag{4.19}$$

4.4. Торосферическое днище

Расчетная схема торосферического днища приведена на рис. 4.1,в. В зависимости от соотношения параметров R, D_{I} , r_{I} приняты следующие типы днищ:

- тип А $R \approx D_1$, $r_l \ge 0.095 D_l$;
- тип В $R \approx 0.95D_1$, $r_1 \ge 0.170D_1$;
- тип С $R \approx 0.85D_1$, $r_1 \ge 0.150D_1$.

4.4.1. Торосферическое днище, нагруженное внутренним избыточным давлением

Расчетная толщина стенки днища в краевой зоне:

$$s_{1p} = \frac{pD_1\beta_1}{2[\sigma]\varphi},\tag{4.20}$$

где коэффициент β_I определяется в зависимости от типа днища и отношения $\frac{p}{[\sigma]}$ по рис.4.2.

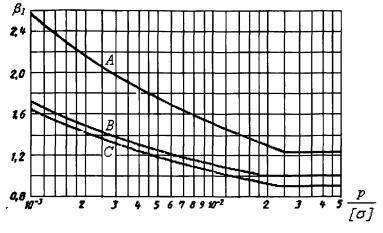


Рис. 4.2. График для определения коэффициента β_I

Для сварных днищ дополнительно определяется расчетная толщина стенки в центральной зоне:

$$s_{1p} = \frac{pR}{2[\sigma]\varphi - 0.5p} \tag{4.21}$$

Условие выполнения прочности стенки днища:

$$s_1 \ge s_{1p} + c \tag{4.22}$$

Допускаемое внутреннее избыточное давление из условия прочности краевой зоны:

$$[p]_{1} = \frac{2[\sigma]\varphi (s_{1} - c)}{D_{1}\beta_{2}},$$
(4.23)

где коэффициент eta_2 определяется в зависимости от типа днища и отношения $\dfrac{D_1}{s_1-c}$:

тип А:
$$\beta_2 = \max \left\{ 1,25; 0,25 \left(\sqrt[3]{\frac{D_1}{s_1 - c}} + 1,00 \right) \right\}$$
тип В: $\beta_2 = \max \left\{ 1,0; 0,12 \left(\sqrt[3]{\frac{D_1}{s_1 - c}} + 3,75 \right) \right\}$ (4.24)

тип C:
$$\beta_2 = \max \left\{ 0.9; 0.12 \left(\sqrt[3]{\frac{D_1}{s_1 - c}} + 3.20 \right) \right\}$$

Для сварных днищ допускаемое внутреннее избыточное давление в центральной зоне:

$$[p]_2 = \frac{2[\sigma]\varphi(s_1 - c)}{R + 0.5(s_1 - c)}$$
(4.25)

Допускаемое внутреннее избыточное давление:

$$[p] = \min\{[p], [p],\}$$
 (4.26)

Таблица 4.1

Для днищ, изготовленных из целой заготовки, коэффициент $\varphi=1$. Для днищ, изготовленных из нескольких частей, коэффициент φ определяется по таблице 4.1.

Эскиз днища φ для формул 4.20 и 4.25 и 4.25 и 4.25 и 4.25 Для шва А φ_A 1 Для шва В φ_B При $\frac{d}{D} < 0.6$

В случае сварки днищ из листов различной толщины в формулы (4.23), (4.25) следует подставлять соответствующие значения толщин стенок для краевой и центральной зон.

 φ_R

Если длина цилиндрической части отбортованного днища $h_1>0.8\sqrt{D_1(s_1-c)}$, то дополнительно определяется расчетная толщина цилиндрической части днища:

$$s_{1p} = \frac{pD}{2[\sigma] - p} \tag{4.27}$$

При $\frac{d}{D} \ge 0,6$

1

4.4.2. Торосферическое днище, нагруженное наружным давлением

Допускаемое давление из условия прочности:

$$[p]_{II} = \frac{2[\sigma](s_1 - c)}{R + 0.5(s_1 - c)}$$
(4.28)

Допускаемое давление из условия устойчивости в пределах упругости:

$$[p]_E = \frac{26 \cdot 10^{-6} \cdot E}{n_y} \left[\frac{100(s_1 - c)}{R} \right]^2$$
 (4.29)

Допускаемое наружное давление:

$$[p] = \frac{[p]_{II}}{\sqrt{1 + \left(\frac{[p]_{II}}{[p]_{E}}\right)^{2}}}$$
(4.30)

Допускаемое наружное давление из условия прочности краевой зоны:

$$[p]_1 = \frac{2[\sigma]\varphi \ (s_1 - c)}{D_1 \beta_2} \tag{4.31}$$

Расчетная толщина стенки днища с учетом прибавок определяется итерационно по формулам (4.28-4.31) при условии, что $[p] = [p]_1 = p$.

Условие выполнения прочности стенки днища:

$$s_1 \ge s_{1p} + c \tag{4.32}$$

5. Плоские днища и крышки

Расчет плоских днищ на прочность и устойчивость проводится на основании [2] с дополнением расчета плоского отбортованного днища (тип 11, табл.5.1) по [13] и днищ с радиальными ребрами жесткости по [12]. В отличие от [12] при определении $[p_2]$ (формула (5.32)) учитывается прибавка на коррозию.

5.1. Плоские днища, нагруженные внутренним или наружным давлением

Расчетные схемы плоских днищ приведены в табл. 5.1

Таблица 5.1

Тип	Чертеж	Условия применения днищ и крышек	К
1	a S D	$a \ge 1.7s$ $D_p = D$	0,53
2	a si	$a \ge 0.85s$ $D_p = D$	0,50
	¹ S	$\frac{s-c}{s_1-c} < 0.25$	0,45
3	S D	$\frac{s-c}{s_i-c} \ge 0.25$	0,41
		$D_p = D$	
	· S	$\frac{s-c}{s_1-c} < 0.5$	0,41
4	<u>s</u>	$\frac{s-c}{s_1-c} \ge 0.5$ $D_p = D$	0,38

47

CA 03-004-07 (C111 10-04-02)					
Тип	Чертеж	Условия применения днищ и крышек	К		
	Is	$\frac{s-c}{s_1-c} < 0.25$	0,45		
5	$\frac{s}{D}$	$\frac{s-c}{s_1-c} \ge 0.25$	0,41		
		$D_p = D$			
6	a 5 - D	$a > 0.85s$ $D_p = D$	0,50		
	S ₂	$\frac{s-c}{s_1-c} < 0.5$	0,41		
7	S D	$\frac{s-c}{s_1-c} \ge 0.5$	0,38		
	1	$D_p = D$:		
	Sz	$\frac{s-c}{s_1-c} < 0,5$	0,41		
8	S	$\frac{s-c}{s_1-c} \ge 0.5$	0,38		
	8	$D_p = D$			
9	s D	$\max \{s; 0,25s_I\}$ $\leq r \leq \min\{s_I;$ $0,1D\}$ $h_I \geq r$	$K = \max \left\{ 0.41 \times \left(1 - 0.23 \frac{s - c}{s_1 - c} \right) \right\}$		
	1	$D_p = D - 2r$			

CA 03-004-07 (CTII 10-04-02)

Тип	Чертеж	Условия применения днищ и крышек	К
	\$2 1	$\frac{s-c}{s_1-c} < 0,5$	0,41
10		$\frac{s-c}{s_1-c} \ge 0.5$ $D_p = D$ $0.25 \cdot s_1 \le r \le s_1 - s_2; 30^{\circ} \le \gamma \le 90^{\circ}$	0,38
	75	$D_p = D - r$	
11	<u>s</u> <u>D</u>	$D_p - D - \gamma$ $r \ge \max \{30 \text{MM};$ $2s\}$	0,35
12	D_2 D_6	$D_p = D_6$	0,40
13	D_{cn}	D_p = D_{cn}	0,41

Условие применения:

$$\frac{s_1 - c}{D_p} \le 0.11 \tag{5.1}$$

При $\frac{s_1-c}{D_P} > 0,11$ значение допускаемого давления,

рассчитанного по формуле (5.8) или (5.18), умножается на поправочный коэффициент:

$$K_{P} = \frac{2,2}{1 + \sqrt{1 + \left(6\frac{s_{1} - c}{D_{p}}\right)^{2}}}$$
 (5.2)

Значение расчетной толщины (формулы (5.3) или (5.11) умножается на $\sqrt{\frac{1}{K_p}}$.

Расчетная толщина стенки днища:

$$s_{1P} = KK_0 D_p \sqrt{\frac{p}{\varphi[\sigma]}}, \tag{5.3}$$

где коэффициент K, расчетный диаметр D_P и некоторые ограничения определяются в зависимости от конструкции днищ по табл.5.1.

Значение коэффициента ослабления K_0 для днищ, имеющих одно отверстие:

$$K_0 = \sqrt{1 + \frac{d}{D_p} + \left(\frac{d}{D_p}\right)^2}$$
 (5.4)

Значение коэффициента ослабления K_0 для днищ, имеющих несколько отверстий:

$$K_0 = \sqrt{1 + \frac{\sum d_i}{D_p} + \left(\frac{\sum d_i}{D_p}\right)^2},$$
 (5.5)

где $\sum d_i$ - максимальная сумма хорд отверстий в наиболее ослабленном диаметральном сечении днища или крышки. Значение K_0 для днищ без отверстий принимают равным 1,0.

Условие выполнения прочности стенки днища:

$$s_1 \ge s_{1p} + c \tag{5.6}$$

Во всех случаях минимальная толщина днища должна быть больше или равна толщине обечайки, рассчитанной в соответствии с п.3.2:

$$S_{1p} \ge S_p \tag{5.7}$$

Допускаемое давление на плоское днище:

$$[p] = \left(\frac{s_1 - c}{KK_0 D_p}\right)^2 [\sigma] \varphi \tag{5.8}$$

Толщина s_2 для типов 10,12,13 должна удовлетворять условиям:

$$s_{2} \geq \left\{ \max \left\{ 1, 1(s-c); \frac{s_{1}-c}{1+\frac{D_{p}-2r}{1,2(s_{1}-c)} \cdot \sin \gamma} \right\} + c - \text{для ттип } \text{Ne}10;$$
 (5.9)
$$\max \left\{ 0,5D_{p} \frac{p}{[\sigma]}; \ (s_{1}-c)\sqrt{2\frac{D_{p}-D_{2}}{D_{p}}} \right\} + c - \text{для ттипо } \text{Ne}12,13.$$

5.2. Плоские крышки с дополнительным краевым моментом, нагруженные внутренним давлением

Расчетные схемы плоских крышек с дополнительным краевым моментом представлены на рис.5.1.

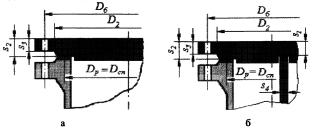


Рис. 5.1. Плоские крышки с дополнительным краевым эффектом

Дополнительное условие применения:

$$\sum d_i \le 0.7D_p \tag{5.10}$$

Расчетная толщина стенки крышки:

$$s_{1P} = K_6 K_0 D_p \sqrt{\frac{p}{\varphi[\sigma]}} \tag{5.11}$$

Значения коэффициента K_{δ} :

$$K_{6} = 0.41 \sqrt{\frac{1 + 3\psi \left(\frac{D_{6}}{D_{cn}} - 1\right)}{\frac{D_{6}}{D_{cn}}}},$$
(5.12)

где
$$\psi = \max \begin{cases} 1 + \frac{R_n}{Q_o} \\ \frac{P_o + \Delta P_o}{Q_o} \end{cases}$$
;

 $Q_{\it o},~~R_{\it re}~P_{\it fe}~~\Delta~P_{\it f}~~$ - определяются из расчета фланцевого соединения по п.11.5.

Коэффициент ослабления отверстиями K_0 определяется по формулам (5.4), (5.5). При этом отверстия для болтов в расчет не принимают.

Условие выполнения прочности стенки плоской круглой крышки с дополнительным краевым моментом:

$$s_1 \ge s_{1n} + c \tag{5.13}$$

Для крышки, имеющей паз для перегородки (рис.5.1,6) значение коэффициента K_6 для определения толщины в месте паза рассчитывается с учетом усилия от сжатия прокладки в пазе:

$$K_{6} = 0.41 \sqrt{\frac{1 + 3\psi \left(\frac{D_{6}}{D_{cn}} - 1\right) + 9.6 \frac{D_{6}}{D_{cn}} \frac{S_{4}}{D_{cn}}}{\frac{D_{6}}{D_{cn}}}}$$
(5.14)

Толщина плоской круглой крышки с дополнительным краевым моментом в месте уплотнения:

$$s_{2} \ge \max \left\{ K_{7} \sqrt{\Phi}; \frac{0.6}{D_{cn}} \Phi \right\} + c$$
где
$$\Phi = \max \left\{ \frac{P_{6} + \Delta P_{6}}{[\sigma]}; \frac{P_{6}}{[\sigma]^{20}} \right\}$$
(5.15)

Значение коэффициента K_7 :

$$K_7 = 0.8 \sqrt{\frac{D_3}{D_{cn}} - 1} \tag{5.16}$$

Толщина края плоской круглой крышки с дополнительным краевым моментом вне зоны уплотнения:

$$s_3 \ge \max \left\{ K_7 \sqrt{\Phi}; \frac{0.6}{D_{cn}} \Phi \right\} + c, \qquad (5.17)$$

где
$$\Phi = \max \left\{ \frac{P_6 + \Delta P_6}{[\sigma]_6}; \frac{P_6}{[\sigma]_6^{20}} \right\}; K_7 = 0.8 \sqrt{\frac{D_3}{D_2} - 1}$$

Допускаемое давление для плоской круглой крышки с дополнительным краевым моментом:

$$[p] = \left(\frac{s_1 - c}{K_0 K_6 D_p}\right)^2 [\sigma] \varphi \tag{5.18}$$

5.3. Плоские днища с радиальными ребрами жесткости

Расчетные схемы плоских днищ с радиальными ребрами жесткости приведены на рис. 5.2.

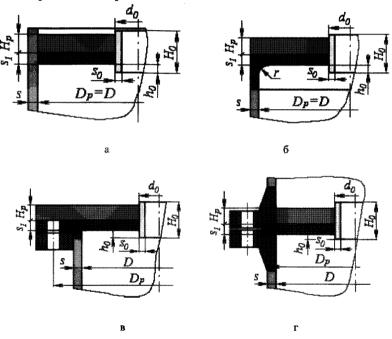


Рис. 5.2. Плоские днища с радиальными ребрами жесткости

Условия применения:

$$\frac{D_p - d_0}{2H_p} \ge 10; \quad n \ge 6; \quad \frac{nA_p[\sigma_p]}{\pi D_p s_1[\sigma_1]} \le 1; \quad \frac{4e_0^2}{A_p} \le 10, \tag{5.19}$$

где $\, {
m D}_{
m p} \,$ - расчетный диаметр в зависимости от конструкции днища; $\, {
m H}_{
m p} \,$ - высота ребра; $\, d_0 \,$ - наружный диаметр центральной втулки; $\, {
m n} \,$ - количество ребер.

Возможно применение ребер с произвольной формой поперечного сечения. Для профилей стандартного сечения расстояние от центра тяжести поперечного сечения ребра жесткости до его основания $e_0=e_k$, а площадь поперечного сечения $A_p=A_k$, где e_k и A_k определяются по таблице 3.2.

Расчетное расстояние от поверхности днища до нижнего торца втулки:

$$h_{0P} = \min \left\{ h_0; 0.27 \sqrt{(d_0 - s_0) s_0} \right\}, \tag{5.20}$$

где $\, h_0 \,$ - расстояние от нижней поверхности крышки (днища) до нижнего торца втулки; $\, s_0 \,$ - толщина втулки.

Расчетная высота втулки:

$$H_{0P} = \min \{ H_0; (H_p + s_1 + h_0) \}, \tag{5.21}$$

где H_0 - высота втулки.

Относительный наружный радиус втулки:

$$\rho_0 = \frac{d_0}{D_p} \tag{5.22}$$

Расстояние от срединной поверхности днища до нейтральной поверхности:

$$e = \frac{nA_p[\sigma_p]}{2\pi D_p[\sigma_1]} \tag{5.23}$$

Изгибающий момент втулки, отнесенный к длине контурной линии:

$$M_0 = \frac{[\sigma_0]\varphi(s_0 - c_0)}{d_0 - s_0 + c_0} \left[\left(H_{0p} - e - h_{0p} - \frac{s_1}{2} \right)^2 + \left(e + h_{0p} + \frac{s_1}{2} \right)^2 \right]$$
 (5.24)

Расчетный изгибающий момент днища, отнесенный к длине контурной линии:

$$M_{1} = \left[\sigma_{1}\right] \left[e^{2} + \left(\frac{s_{1} - c}{2}\right)^{2}\right]$$
 (5.25)

Расчетный изгибающий момент оребренного днища, отнесенный к длине контурной линии:

$$M_2 = M_1 + \frac{[\sigma_p] \varphi \, n A_p}{\pi \, d_0} \left(e_0 - e + \frac{s_1 - c}{2} \right) \tag{5.26}$$

Расчетный обобщенный изгибающий момент, отнесенный к длине контурной линии:

$$M_{0p} = \min\{M_0; M_2\} \tag{5.27}$$

Расчетный суммарный изгибающий момент, отнесенный к длине контурной линии:

$$M_c = M_1(1 - \rho_0) + M_{0p}\rho_0 \tag{5.28}$$

При отсутствии центральной втулки ($ho_0 = 0$) и пересечении ребер в центре, а также в случае если вместо втулки используется сплошная бобышка:

$$M_{c} = M_{1} + \frac{[\sigma_{p}]\varphi \, nA_{p}}{\pi \, D_{p}} \left(e_{0} - e + \frac{s_{1} - c}{2} \right)$$
 (5.29)

Условие выполнения прочности при действии дополнительного усилия, действующего на центральную часть днища (вес двигателя, редуктора и т.п.):

$$Q_0 \le 0.9 \frac{2\pi M_c}{1 - \rho_0} \tag{5.30}$$

Расчетное допускаемое давление, действующее на плоское днище в целом:

$$[p_1] = \frac{12[2\pi M_c + Q_0(1 - \rho_0)]}{\pi D_\rho^2(1 - \rho_0^2)}$$
 (5.31)

Если действие Q_0 направлено в туже сторону, что и давление p , то в формуле (5.31) перед Q_0 следует поставить знак минус.

Расчетное допускаемое давление, действующее в промежутке между ребрами:

$$[p_2] = \frac{12[\sigma_1](s_1 - c)^2 \left(1 + \sin\frac{\pi}{n}\right)^2}{D_p^2 \left(\sin\frac{\pi}{n}\right)^2}$$
 (5.32)

Допускаемое избыточное давление:

$$[p] = \min\{[p_1]; [p_2]\}$$
 (5.33)

55

6. Сферические неотбортованные днища и крышки

Расчет сферических неотбортованных днищ на прочность и устойчивость проводится на основании [3] с дополнениями относительно расчета моментов, действующих на фланец днища типа 6 с учетом [11] и [15].

6.1. Расчетные схемы

Расчетные схемы днищ приведены в табл. 6.1.

Таблица 6.1.

Гип	Чертеж	M	[M]	A_k
1	S. D.	-	-	0
2	S ₁	-	-	0
3	s D	-	-	0
4	h s ₁	$\left p \frac{D^2}{4} e_1 t g \psi \right $	$\frac{\pi[\sigma]_k ht^2}{2}$	th
5	h 32 51	0	-	$(h+s_2)t$

Гип	Чертеж	M	[M]	A _k
6	$\frac{h}{e_2}$ s_1	При затяжке болтов: P_6e_3 , где P_6 определяется по п.11.5 при условии отсутствия внешних сил и моментов При рабочих условиях:)	$(h-d_6)t$
	de R _n	$(P_6 + \Delta P_6)e_3 + Q_3(e_2 - e_3 - e_1 g \psi)$ где ΔP_6 и Q_3 определяются из расчета фланцевого соединения по п.11.5.	$\frac{\pi[\sigma]_{\kappa}(h-d_{\delta})t^{2}}{2}$	

Условия применения:

$$\frac{s_1 - c}{R} \le 0.1;$$
 $0.85D \le R \le D$ (6.1)

Для днищ типа 1-3, нагруженных внутренним избыточным давлением, расчетные формулы следует применять при дополнительном условии:

$$\frac{s_1 - c}{R} \ge 0,002 \tag{6.2}$$

Угловые швы должны быть выполнены с двусторонним сплошным проваром.

Дополнительные нагрузки на кольца не учитываются.

Формулы, приведенные в п.6.3, следует применять при условии, что расчетные температуры не превышают значений, при которых учитывается ползучесть материалов. При отсутствии точных данных формулы допускается применять при условии, что расчетная температура стенки обечайки из углеродистой стали не превышает 380°C, из низколегированной 420°C, из аустенитной 525°C.

6.2. Сферические неотбортованные днища и крышки, нагруженные внутренним избыточным давлением

Расчетная толщина стенки днища:

$$s_{1p} = \max \begin{cases} \frac{pR}{2[\sigma]_1 \varphi - p}; \\ \frac{pD\beta}{2[\sigma]_1 \varphi_k - p} \end{cases}$$
(6.3)

Значение коэффициента β :

$$\beta = 0.5 + \frac{tg\psi}{\chi_{t} \frac{4A_{t}}{D(s_{1}-c)} \sqrt{1 - \frac{M}{[M]}} + 3\sqrt{\frac{s_{1}-c}{D}} \left[\frac{1}{\sqrt{\cos\psi}} + \left(\chi \frac{s-c}{s_{1}-c}\right)^{\frac{3}{2}} + \left(\chi_{2} \frac{s_{2}-c}{s_{1}-c}\right)^{\frac{3}{2}} \right]}$$
где $\chi_{t} = \frac{[\sigma]_{t}}{[\sigma]_{1}}; \quad \chi = \frac{[\sigma]}{[\sigma]_{1}}; \quad \chi_{2} = \frac{[\sigma]_{2}}{[\sigma]_{1}}$ - отношения допускаемых

напряжений;

$$\psi = ar\cos(D/(2R)).$$

Величины A_k , M, [M] определяются в зависимости от конструкции днищ по табл.6.1. При этом для днищ типов 4, 6 должно выполняться условие M < [M]. Если в днище типа 6 прокладка лежит по всей привалочной поверхности, в формуле при определении M принимается $e_3 = 0$.

Условие выполнения прочности стенки днища:

$$s_1 \ge s_{1n} + c \tag{6.5}$$

Допускаемое избыточное внутреннее давление определяется по формуле:

$$[p] = \min \begin{cases} \frac{2(s_1 - c)\varphi_k[\sigma]_1}{D\beta + (s_1 - c)} \\ \frac{2(s_1 - c)\varphi[\sigma]_1}{R + (s_1 - c)} \end{cases}$$

$$(6.6)$$

6.3. Сферические неотбортованные днища и крышки, нагруженные наружным давлением

Допускаемое давление из условия прочности в центральной зоне:

$$[p]_{\Pi} = \frac{2[\sigma](s_1 - c)}{R + (s_1 - c)} \tag{6.7}$$

Допускаемое давление из условия устойчивости в пределах упругости:

$$[p]_E = \frac{KE}{n_v} \left[\frac{(s_1 - c)}{R} \right]^2,$$
 (6.8)

где коэффициент К в зависимости от параметра $\frac{R}{(s_1-c)}$

определяется по таблице 6.2.

Допускаемое наружное давление:

$$[p] = \min \begin{cases} \frac{2(s_1 - c)\varphi_k[\sigma]_1}{D\beta + (s_1 - c)} \\ \frac{[p]_{II}}{\sqrt{1 + \left(\frac{[p]_{II}}{[p]_E}\right)^2}} \end{cases}$$

$$(6.9)$$

Расчетная толщина стенки днища с учетом прибавок определяется итерационно по формулам (6.7-6.9) при условии, что [p]=p .

Условие выполнения прочности стенки днища:

$$s_1 \ge s_{1p} + c \tag{6.10}$$

Таблица 6.2

Расчет- ные	Значение коэффициента К при отношении $\frac{R}{(s_1-c)}$								
модели	5	50	75	100	150	200	250	300	≥ 350
Днище (тип 1-5)	0,33	0,19	0,17	0,15	0,13	0,12	0,12	0,11	0,11
Крышка (тип 6)	0,46	0,30	0,25	0,22	0,19	0,17	0,16	0,13	0,12

7. Конические обечайки и соединения

Расчет конических обечаек и соединений на прочность и устойчивость проводится на основании [2].

7.1. Расчетные схемы

Расчетные схемы соединения конических обечаек представлены на рис.7.1.-7.4.

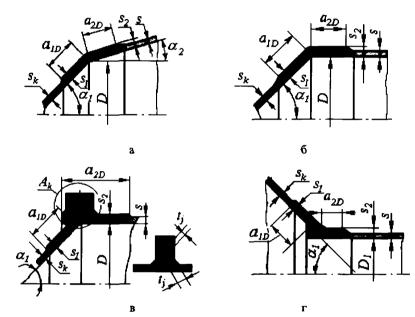


Рис. 7.1. Соединение обечаек без тороидального перехода а - соединение двух конических обечаек,

б - соединение конической и цилиндрической обечаек,

в - соединение конической и цилиндрической обечаек с укрепляющим кольцом, г - соединение конической обечайки с цилиндрической меньшего диаметра

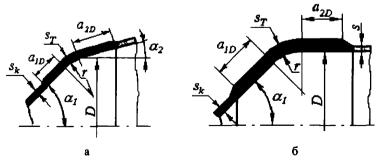


Рис. 7.2. Соединение обечаек с тороидальным переходом а - соединение двух конических обечаек, 6 - соединение конической и цилиндрической обечаек

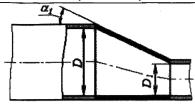


Рис. 7.3. Соединение кососимметричных обечаек

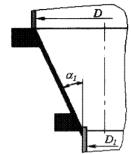


Рис. 7.4. Коническая обечайка с кольцами жесткости

Общие условия применения:

$$0,001 \le \frac{s_1 \cos \alpha_1}{D} \le 0,05;$$

$$\alpha_1 \le 70^0; \quad 0 \le \alpha_2 \le \alpha_1; \quad s_1 \ge s_k; \quad s_2 \ge s_k; \quad s_T \ge s_k,$$
(7.1)

где l - длина перехода; $a_{\rm l}$ - расчетная длина переходной части.

Расчетные коэффициенты прочности сварных швов переходов обечаек определяют по табл.7.1.

Таблица 7.1

	Расчетный коэффициент прочности сварных швов				
Вид соединений обечаек	Соединение обечаек с укрепляющим кольцом	Соединение обечаек без укрепляющего кольца	Соединение штуцера или внутреннего цилиндра с конической обечайкой		
Внутреннее давление или растягивающая сила	$arphi_{ m p} = \sqrt{arphi_T} \ arphi_{ap} = arphi_a$	$\varphi_{\mathrm{P}} = \sqrt{\varphi_{\mathrm{T}}}$	$\varphi_{P} = \min \left\{ \varphi_{P}; \sqrt{\varphi_{T}} \right\}$		
Наружное давление или	$\varphi_{\rm P} = \min \left\{ \varphi_p; \sqrt{\varphi_T} \right\}$	$\varphi_{\rm P} = \min \left\{ \varphi_{\rm p}; \sqrt{\varphi_{\rm T}} \right\}$	$ \varphi_{\mathrm{P}} = \sqrt{\varphi_{T}} $		

31103 001 01 (0 11110 01 02)					
	Расчетный коэффициент прочности сварных швов				
Вид соединений обечаек	Соединение обечаек с укрепляющим кольцом	Соединение обечаек без укрепляющего кольца	Соединение штуцера или внутреннего цилиндра с конической обечайкой		
сжимающая сила	$\varphi_{ap} = 1$				
Изгибающий момент	$\varphi_{p} = \min \{ \varphi_{p}; \sqrt{\varphi_{T}} \}$ $\varphi_{ap} = \varphi_{a}$	$\varphi_{P} = \min \left\{ \varphi_{P}; \sqrt{\varphi_{T}} \right\}$	$\varphi_{\rm P} = \min \left\{ \varphi_{\rm p}; \sqrt{\varphi_{\rm T}} \right\}$		

где φ_{T} - коэффициент прочности кольцевого сварного шва;

 $arphi_p$ - коэффициент прочности продольного сварного шва;

 $arphi_{
m a}$ - коэффициент прочности поперечного сварного шва для укрепляющего кольца.

Расчетные формулы не применимы, если расстояние между двумя соседними узлами обечаек менее суммы соответствующих расчетных длин обечаек, или, если расстояние от узлов до опорных элементов сосуда (за исключением юбочных опор и опорных колец) менее удвоенной расчетной длины обечайки.

Расчетные формулы узлов конических и цилиндрических обечаек без тороидального перехода применимы при условии выполнения углового шва с двусторонним сплошным проваром.

Формулы, приведенные в пп. 7.2.2; 7.2.4; 7.2.5 и 7.2.7 следует применять при условии, что расчетные температуры не превышают значений, при которых учитывается ползучесть материалов. При отсутствии точных данных формулы допускается применять при условии, что расчетная температура стенки обечайки из углеродистой стали не превышает 380°C, из низколегированной 420°C, из аустенитной 525°C.

7.2. Гладкие конические обечайки

Расчетный диаметр конической обечайки без торроидального перехода (рис.7.1):

$$D_k = D - 1.4a_1 \sin \alpha_1 \tag{7.2}$$

Расчетный диаметр конической обечайки с торроидальным переходом (рис.7.2):

$$D_{k} = D - 2[r(\cos\alpha_{2} - \cos\alpha_{1}) + 0.7a_{1}\sin\alpha_{1}]$$
 (7.3)

7.2.1. Конические обечайки, нагруженные внутренним избыточным давлением

Расчетная толщина стенки обечайки:

$$s_{kp} = \frac{pD_k}{2[\sigma]\varphi_p - p} \frac{1}{\cos\alpha_1} \tag{7.4}$$

Условие выполнения прочности стенки обечайки:

$$s_k \ge s_{ko} + c \tag{7.5}$$

Допускаемое внутреннее давление из условия прочности стенки обечайки:

$$[p] = \frac{2[\sigma]\varphi_p(s_k - c)}{\frac{D_k}{\cos \alpha_1} + (s_k - c)}$$
(7.6)

7.2.2. Конические обечайки, нагруженные наружным давлением

Допускаемое давление из условия прочности стенки обечайки:

$$[p]_{II} = \frac{2[\sigma](s_k - c)}{\frac{D_k}{\cos \alpha_1} + (s_k - c)}$$
(7.7)

Допускаемое давление из условия устойчивости обечайки в пределах упругости:

$$[p]_{E} = \frac{20.8 \cdot 10^{-6} E}{n_{y} B_{1}} \frac{D_{E}}{l_{E}} \left[\frac{100(s_{k} - c)}{D_{E}} \right]^{2.5}$$

$$\text{ГДЕ } B_{1} = \min \left\{ 1.0; \ 9.45 \frac{D_{E}}{l_{E}} \sqrt{\frac{D_{E}}{100(s_{k} - c)}} \right\};$$

$$l_{E} = \frac{D - (D_{1} + 2s_{2})}{2 \sin \alpha_{1}};$$

$$D_{E} = \max \left\{ \frac{D + D_{1} + 2s_{2}}{2 \cos \alpha_{1}}; \ \frac{D}{\cos \alpha_{1}} - 0.31(D + D_{1} + 2s_{2}) \sqrt{\frac{D + D_{1} + 2s_{2}}{s_{k} - c}} tg\alpha_{1} \right\}.$$

Допускаемое наружное давление:

$$[p] = \frac{[p]_{\pi}}{\sqrt{1 + \left(\frac{[p]_{\pi}}{[p]_{E}}\right)^{2}}}$$
(7.9)

7.2.3. Конические обечайки, нагруженные осевой растягивающей силой

Расчетная толщина стенки обечайки конического перехода:

$$s_{kp} = \frac{F}{\pi (D_1 + 2s_2)\varphi_T[\sigma]} \frac{1}{\cos \alpha_1}$$
 (7.10)

Условие выполнения прочности стенки обечайки:

$$s_k \ge s_{kp} + c \tag{7.11}$$

Допускаемая растягивающая сила из условия прочности обечайки:

$$[F] = \pi (D_1 + 2s_2)(s_k - c)\varphi_T[\sigma]\cos\alpha$$
(7.12)

7.2.4. Конические обечайки, нагруженные осевой сжимающей силой

Допускаемая сила из условия прочности обечайки:

$$[F]_{\pi} = \pi D_F(s_k - c)[\sigma] \cos \alpha_1,$$
где $D_F = \frac{0.9D + 0.1(D_1 + 2s_2)}{\cos \alpha_1}.$ (7.13)

Допускаемая сила из условия устойчивости обечайки:

$$[F]_E = \frac{310 \cdot 10^{-6} E}{n_y} (D_F \cos \alpha_1)^2 \left[\frac{100(s_k - c)}{D_F} \right]^{2.5}$$
 (7.14)

Допускаемая осевая сжимающая сила конической обечайки в пределах упругости:

$$[F] = \min \left\{ \frac{[F]_{\pi}}{\sqrt{1 + \left(\frac{[F]_{\pi}}{[F]_{E}}\right)^{2}}}, \frac{D_{1} + 2s_{2}}{D_{F}}[F]_{\pi} \right\}$$
(7.15)

7.2.5. Конические обечайки, нагруженные изгибающим моментом

Допускаемый изгибающий момент конической обечайки:

$$[M] = \frac{[M]_{\text{ln}}}{\sqrt{1 + \left(\frac{[M]_{\text{ln}}}{[M]_{\text{E}}}\right)^2}}$$
(7.16)

где
$$[M]_{\Pi} = \frac{D_F}{4} [F]_{\Pi}$$
; $[M]_{E} = \frac{D_F}{3.5} [F]_{E}$; $[F]_{\Pi}$ и $[F]_{E}$ беругся

равными допускаемым сжимающим силам для обечаек по (7.13) и (7.14) соответственно.

Допускаемый изгибающий момент конической обечайки из условия прочности:

$$[M]_{np} = \frac{D_1 + 2s_2}{4} [F], \tag{7.17}$$

где [F] определяется по (7.12).

7.2.6. Конические обечайки, нагруженные совместным действием внутреннего давления, осевого растягивающего усилия и изгибающего момента

Если сумма эквивалентных давлений от нагружения осевой силы $p_F = \frac{4F}{\pi D_p^2} \quad \text{и момента} \quad p_M = \frac{16M}{\pi D_p^3} \quad \text{составляет для соответствующего}$

диаметра менее 10% расчетного давления, то коническую обечайку рассчитывают только на действие давления.

Кроме проверки условий прочности от отдельных нагрузок, необходимо проверить выполнение условия:

$$\frac{F + p \frac{\pi (D_1 + 2s_2)^2}{4}}{[F]} + \frac{M}{[M]_{np}} \le 1,0,$$
(7.18)

где [F] и $M_{\it np}$ определяются по (7.12) и (7.17) соответственно.

7.2.7. Конические обечайки, нагруженные совместным действием наружного давления, осевого сжимающего усилия и изгибающего момента

Конические обечайки проверяют на устойчивость по формуле:

$$\frac{p}{[p]} + \frac{F}{[F]} + \frac{M}{[M]} \le 1,0,$$
(7.19)

где [p], [F] и [M] определяются по (7.9), (7.15) и (7.16) соответственно.

При внутреннем давлении следует принять p = 0.

7.3. Соединение конических обечаек без тороидального перехода

Расчетные схемы соединения конических обечаек без тороидального перехода представлены на рис.7.1,а,б.

Дополнительные условия применения:

 $a_{1D} \ge a_1; \ a_{2D} \ge a_2$. Если $a_{1D} < a_1$ и (или) $a_{2D} < a_2$ при расчете перехода от давления вместо s_1 и s_2 подставляются:

$$s_{1E} = \max \left\{ \frac{a_{1D}}{a_1} s_1; s_k \right\}; \ s_{2E} = \max \left\{ \frac{a_{2D}}{a_2} s_2; s \right\}, \tag{7.20}$$
 где
$$a_1 = 0.7 \sqrt{\frac{D}{\cos \alpha_1} (s_1 - c)}; \qquad a_2 = 0.7 \sqrt{\frac{D}{\cos \alpha_2} (s_2 - c)}$$

расчетные длины переходных частей.

 $s_1 \ge {\rm s}_2$. Если $s_1 < s_2$, то при поверочном расчете следует принимать $s_1 = {\rm s}_2$.

7.3.1. Соединение, нагруженное внутренним или наружным давлением

Расчетная толщина стенок соединения обечаек:

$$s_{2p} = \frac{pD\beta_1}{2[\sigma]_2 \varphi_P - p} \cdot \frac{1}{\cos \alpha_2} \tag{7.21}$$

В случае соединения конической и цилиндрической обечаек $\cos \alpha_2 = 1$.

Коэффициент формы перехода:

$$\beta_{1} = \max\{0,5; \beta\},$$

$$\beta = 0,4\sqrt{\frac{D}{s_{2}-c}} \frac{(tg\alpha_{1}-tg\alpha_{2})\cos\alpha_{2}}{1 + \chi \left(\frac{s_{1}-c}{s_{2}-c}\right)^{2} \chi \left(\frac{s_{1}-c}{s_{2}-c}\right)} -0,25$$

$$\frac{1}{\sqrt{\cos\alpha_{1}}} + \sqrt{\frac{1 + \chi \left(\frac{s_{1}-c}{s_{2}-c}\right)^{2}}{2\cos\alpha_{1}} \chi \left(\frac{s_{1}-c}{s_{2}-c}\right)}$$

Условия выполнения прочности соединения обечаек:

$$s_2 \ge s_{2p} + c$$
; $s_1 \ge \left(\frac{s_1 - c}{s_2 - c}\right) s_{2p} + c$ (7.23)

Допускаемое давление из условия прочности соединения обечаек:

$$[p] = \frac{2[\sigma]_2 \varphi_P(s_2 - c)}{\frac{D \beta_1}{\cos \alpha_2} + (s_2 - c)}$$
(7.24)

7.3.2. Соединение, нагруженное осевой растягивающей или сжимающей силой

Допускаемая осевая растягивающая или сжимающая сила из условия прочности соединения обечаек:

$$[F] = \pi D \frac{(s_2 - c)\varphi_p[\sigma]_2 \cos \alpha_2}{\beta_5},$$

$$\text{где } \beta_5 = \max\{1,0; \quad (2\beta + 1,2)\}.$$
(7.25)

7.3.3. Соединение, нагруженное изгибающим моментом

Допускаемый изгибающий момент соединения обечаек из условия прочности:

$$[M] = \frac{D}{4}[F], \tag{7.26}$$

где [F] берется равной допускаемой растягивающей (сжимающей) силе для соединения обечаек по (7.25).

7.3.4. Соединение, нагруженное совместным действием нагрузок

При проверке прочности для совместного действия нагрузок в формулах для расчетного наружного давления подставляют минус p, а для осевой сжимающей силы минус F. Изгибающий момент M всегда принимают со знаком плюс.

Условия прочности для переходной части обечайки:

$$|p| \le [p]; |F| \le [F]; |M| \le [M]; \left| \frac{p}{[p]} + \frac{F}{[F]} \right| + \frac{M}{[M]} \le 1,$$
 (7.27)

где [p], [F] и [M] определяются по (7.24), (7.25) и (7.26) соответственно.

7.4. Соединение конических обечаек с тороидальным переходом

Расчетные схемы соединения конических обечаек с тороидальным переходом представлены на рис.7.2.

Дополнительное условие применения:

$$0 \le \frac{r}{D} < 0.3 \tag{7.28}$$

 $a_{1D} \ge a_1$; $a_{2D} \ge a_2$; $s_I = s_2 = s_T$. Если $a_{1D} < a_1$ и (или) $a_{2D} < a_2$ при расчете перехода от давления вместо s_1 и s_2 подставляются:

$$s_{1E} = \max \left\{ \frac{a_{1D}}{a_1} s_T; s_k \right\}; s_{2E} = \max \left\{ \frac{a_{2D}}{a_2} s_T; s \right\}, \tag{7.29}$$

$$rde \quad a_1 = 0.7 \sqrt{\frac{D}{\cos \alpha_1} (s_1 - c)}; \quad a_2 = 0.5 \sqrt{\frac{D}{\cos \alpha_2} (s_2 - c)} - \text{pacчетныe}$$

длины переходных частей.

7.4.1. Соединение, нагруженное внутренним или наружным давлением

Расчетная толщина стенки тороидального перехода:

$$s_{T_{\mathbf{p}}} = \frac{pD\beta_3}{2[\sigma]_T \varphi_P - p} \frac{1}{\cos \alpha_2} \tag{7.30}$$

Коэффициент формы перехода:

$$\beta_{3} = \max\{0,5; \beta \cdot \beta_{T}\}, \qquad (7.31)$$

$$\Gamma_{D}^{TRE} \beta = 0,4\sqrt{\frac{D}{s_{2}-c}} \frac{(tg\alpha_{1} - tg\alpha_{2})\cos\alpha_{2}}{1 + \left(\frac{s_{1}-c}{s_{2}-c}\right)^{2}} - 0,25;$$

$$\beta_{T} = \frac{1}{0,028 \frac{r}{D} \sqrt{\frac{D}{s_{T}-c}}(\alpha_{1}-\alpha_{2})} + \frac{1}{\sqrt{\cos\alpha_{1}}} + \frac{1}{\sqrt{\cos\alpha_{2}}}$$

Условие выполнения прочности стенки тороидального перехода:

$$s_T \ge s_{Tp} + c \tag{7.32}$$

Допускаемое избыточное внутреннее или наружное давление из условия прочности тороидального перехода:

$$[p] = \frac{2[\sigma]_T \varphi_P(s_T - c)}{\frac{D \beta_3}{\cos \alpha_2} + (s_T - c)}$$
(7.33)

7.4.2. Соединение, нагруженное осевой растягивающей или сжимающей силой

Допускаемая осевая растягивающая или сжимающая сила из условия прочности тороидального перехода:

$$[F] = \pi D \frac{(s_T - c)\varphi_P[\sigma]_T \cos \alpha_2}{\beta_7},$$
где $\beta_7 = \max\{1,0; \quad \beta_T(2\beta + 1.2)\}.$ (7.34)

7.4.3. Соединение, нагруженное изгибающим моментом и совместным действием нагрузок

Допускаемый момент, а также условия прочности и устойчивости перехода при совместном действии нагрузок определяются по пп. 7.3.3 и 7.3.4. При этом [p] и [F] определяются по (7.33) и (7.34) соответственно.

7.5. Соединение конических обечаек с укрепляющим кольцом

Расчетная схема соединения конических обечаек с укрепляющим кольцом представлена на рис.7.1, в.

Дополнительные условия применения:

 $a_{1D} \ge a_1; \ a_{2D} \ge a_2$. Если $a_{1D} < a_1$ и (или) $a_{2D} < a_2$ при расчете перехода от давления вместо s_1 и s_2 подставляются:

$$s_{1E} = \max\left\{\frac{a_{1D}}{a_1}s_1; s_k\right\}; \quad s_{2E} = \max\left\{\frac{a_{2D}}{a_2}s_2; s\right\},$$
 (7.35)
где $a_1 = 0.7\sqrt{\frac{D}{\cos a_1}(s_1 - c)}; \quad a_2 = 0.7\sqrt{D(s_2 - c)}$ -

расчетные длины переходных частей.

 $s_1 \geq {\rm s}_2$. Если $s_1 < s_2$, то при поверочном расчете следует принимать $s_1 = {\rm s}_2$.

Для конической обечайки с кольцами жесткости (рис. 7.4) изгибающие моменты на кольцах отсутствуют.

7.5.1. Соединение, нагруженное внутренним или наружным давлением

Расчетная площадь поперечного сечения укрепляющего кольца:

$$A_{l_{\varphi}} = \frac{pD^2 tg\alpha_1}{8[\sigma]_{l_{\varphi}} \varphi_{m}} \left(1 - \frac{\beta_A + 0.25}{\beta + 0.25} \right), \tag{7.36}$$

гπе

$$\beta_{A} = \left(\frac{2[\sigma]_{2}\varphi_{p}}{p} - 1\right)\frac{s_{2} - c}{D};$$

$$\beta = 0.4 \sqrt{\frac{D}{s_2 - c}} \frac{(tg\alpha_1 - tg\alpha_2)\cos\alpha_2}{\frac{1}{\sqrt{\cos\alpha_2}} + \sqrt{\frac{1 + \chi\left(\frac{s_1 - c}{s_2 - c}\right)^2}{2\cos\alpha_1}} \chi\left(\frac{s_1 - c}{s_2 - c}\right)}$$

Условие выполнения прочности соединения обечаек с укрепляющим кольцом:

$$A_k \ge A_{kp} \tag{7.37}$$

При $A_{kp} \leq 0$ укрепление кольцом жесткости не требуется.

При определении площади поперечного сечения кольца A_k также учитывается сечение стенок обечаек, расположенное между наружными швами кольца и обечаек.

Допускаемое внутреннее или наружное избыточное давление из условий прочности соединения обечаек:

$$[p] = \frac{2[\sigma]_2 \varphi_p(s_2 - c)}{D\beta_2 + (s_2 - c)}$$
(7.38)

Общий коэффициент формы для соединения обечаек:

$$\beta_2 = \max\{0, 5; \beta_0\},\tag{7.39}$$

ГДе
$$\theta_{0} = \frac{0.4\sqrt{\frac{D}{s_{2}-c}}tg\,\alpha_{1}-B_{3}}{B_{2}+\left[1+\sqrt{\frac{1+\chi\left(\frac{s_{1}-c}{s_{2}-c}\right)^{2}}{2\cos\alpha_{1}}\chi\left(\frac{s_{1}-c}{s_{2}-c}\right)}\right];}$$

$$B_{2} = \frac{1.6A_{k}}{(s_{2}-c)\sqrt{D(s_{2}-c)}}\frac{[\sigma]_{k}\,\varphi_{ap}}{[\sigma]_{2}\,\varphi_{p}}; \quad B_{3} = 0.25; \quad \chi = \frac{[\sigma]_{1}}{[\sigma]_{2}}.$$

Условие выполнения прочности соединения обечаек для конической обечайки с кольцами жесткости (рис7.4):

$$A_k \ge \frac{pD^2 tg\alpha_1}{8[\sigma]_k \varphi_{ap}} \tag{7.40}$$

Допускаемое внутреннее или наружное избыточное давление из условий прочности соединения обечаек с кольцами жесткости (рис7.4):

$$[p] = A_k \frac{8[\sigma]_k \varphi_{aP}}{D^2 t g \alpha_1}$$
(7.41)

Условие выполнения прочность сварного шва укрепляющего кольца:

$$\sum t_j \ge \frac{4A_{kp}}{D},\tag{7.42}$$

где $\sum t_j$ - сумма всех эффективных ширин несущих сварных швов между укрепляющим кольцом и обечайкой (рис.7.1,в), причем расстояние между концами прерывистых сварных швов должно быть не более восьми толщин стенки обечайки и сумма всех длин сварных швов не менее половины длины контура кольца.

7.5.2. Соединение, нагруженное осевой растягивающей или сжимающей силой

Допускаемая осевая растягивающая или сжимающая сила соединения обечаек:

$$[F] = \pi D \frac{(s_2 - c)\varphi_P[\sigma]_2}{\beta_6}, \tag{7.43}$$

 $_{\text{где}}\beta_{6} = \max\{1,0; 2\beta_{0}\};$ при определении β_{0} в (7.39) следует принять $B_3 = -0.35$.

7. 5. 3. Соединение, нагруженное изгибающим моментом и совместным действием нагрузок

Допускаемый момент, а также условия прочности и устойчивости перехода при совместном действии нагрузок определяются по пп. 7.3.3 и 7.3.4. При этом допускаемое давление [p] и осевую силу [F]определяются по (7.38) и (7.43) соответственно.

7.6. Соединение штуцера или внутреннего цилиндрического корпуса с конической обечайкой

Расчетная схема соединения внутреннего цилиндрического корпуса с конической обечайкой представлена на рис. 7.1, г.

Дополнительные условия применения:

при $a_{1D} < a_1$ и $a_{2D} < a_2$ при расчете перехода от давления вместо S_1 и S_2 подставляются:

$$s_{1E} = \max\left\{\frac{a_{1D}}{a_1}s_1; s_k\right\}; \quad s_{2E} = \max\left\{\frac{a_{2D}}{a_2}s_2; s\right\},$$
 (7.44)
где $a_1 = \sqrt{\frac{D_1}{\cos a_1}(s_1 - c)}; \quad a_2 = 1,25\sqrt{D_1(s_2 - c)}$ - расчетные

длины переходных частей.

Соединение, нагруженное внутренним или наружным 7.6.1. давлением

Расчетная толщина стенки переходной части:

$$s_{2,P} = \frac{pD_1\beta_4}{2[\sigma]\varphi_P - p} \tag{7.45}$$

Коэффициент формы перехода

$$\beta_{4} = \max\{1,0; \beta_{n}\},$$

$$rde \qquad \beta_{n} = 0.4\sqrt{\frac{D_{1}}{s_{2}-c}} \frac{tg\alpha_{1}}{1+\sqrt{\frac{1+\chi\left(\frac{s_{1}-c}{s_{2}-c}\right)^{2}}{2\cos\alpha_{1}}} \chi\left(\frac{s_{1}-c}{s_{2}-c}\right)}$$
(7.46)

$$\text{ при } \quad \chi \left(\frac{s_1 - c}{s_2 - c} \right)^2 \ge 1 \, ;$$

$$\beta_u = 0.4 \sqrt{\frac{D_1}{s_2 - c}} \frac{tg\alpha_1}{\sqrt{\frac{s_1 - c}{s_2 - c}} \sqrt{\frac{s_1 - c}{(s_2 - c)\cos\alpha_1}}} + \sqrt{\frac{1 + \chi \left(\frac{s_1 - c}{s_2 - c} \right)^2}{2}}$$
 при
$$\chi \left(\frac{s_1 - c}{s_2 - c} \right)^2 < 1 \, .$$

Условие выполнения прочности стенки перехода:

$$s_2 \ge s_{2p} + c \tag{7.47}$$

Допускаемое избыточное внутреннее или внешнее давление из условия прочности соединения обечаек:

$$[p] = \frac{2[\sigma]_2 \varphi_P(s_2 - c)}{D_1 \beta_4 + (s_2 - c)}$$
(7.48)

7.6.2. Соединение, нагруженное осевой растягивающей или сжимающей силой

Допускаемая осевая растягивающая или сжимающая сила соединения обечаек:

$$[F] = \pi D_1 \frac{(s_2 - c)\varphi_P[\sigma]_2}{\beta_8}, \qquad (7.49)$$

где
$$\beta_8 = \max\{1,0; (2\beta_{_H} - 1)\}; \beta_{_H}$$
 определяется по (7.46).

7.6.3. Соединение, нагруженное изгибающим моментом и совместным действием нагрузок

Допускаемый момент, а также условия прочности и устойчивости перехода при совместном действии нагрузок определяются по пп. 7.3.3 и 7.3.4. При этом допускаемое давление [p] и осевую силу [F] определяются по (7.48) и (7.49) соответственно.

8. Конические днища

Расчет конических днищ на прочность и устойчивость проводится на основании [2].

8.1. Расчетные схемы

Расчетные схемы конических днищ представлены на рис. 8.1.

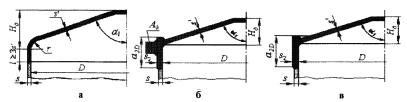


Рис. 8.1. Пологие конические днища

а – днище с тороидальным переходом, б – днище с укрепляющим кольцом,
 в – днище без тороидального перехода и укрепляющего кольца

Условия применения:

$$\alpha_1 > 70^{\circ}; \ \frac{H_D tg\alpha_1}{D} \ge 0.125; \quad 0 \le \frac{r}{D} < 0.3$$
 (8.1)

Расчетные коэффициенты прочности сварных швов определяются, как и в случае конических переходов, по таблице 7.1.

 $s' \ge s_2$. Если $s' < s_2$, то при поверочном расчете следует принимать $s' = s_2$.

В случае присоединения конического днища к цилиндрической обечайке $\cos \alpha_2 = 1$

При $\alpha_1 \le 70^0$ расчет конических днищ осуществляется как для конических переходов (см. п.7). При этом принимается $S_k = S'$.

Расчетные формулы, приведенные в пп.8.2.2; 8.3.2; и 8.4.2 следует применять при условии, что расчетные температуры не превышают значений, при которых учитывается ползучесть материалов. При отсутствии точных данных формулы допускается применять при условии, что расчетная температура стенки обечайки из углеродистой стали не превышает 380° C, из низколегированной 420° C, из аустенитной 525° C.

8.2. Коническое днище с тороидальным переходом

8.2.1. Коническое днище, нагруженное внутренним избыточным давлением

Условие выполнения прочности стенки днища:

$$s' \ge \min \left\{ \max \left\{ s_{kp} + c; s_{Tp} + c \right\}; s'_p + c \right\},$$
 (8.2) где $s'_p = 0,3(D-r) \frac{\alpha_1}{90} \sqrt{\frac{p}{[\sigma] \varphi_p}};$

$$s_{kp} = rac{pD}{2arphi_p[\sigma] - p} rac{1}{\coslpha_1}$$
 - расчетная толщина гладкой

конической обечайки;

$$s_{Tp} = \frac{pD\beta_3}{2\varphi_p[\sigma] - p}$$
 - расчетная толщина переходной

части.

Коэффициент β_1 определяется по формуле:

$$\beta_{3} = \max \{0,5; \beta \beta_{T}\},$$
THE
$$\beta = 0.4 \sqrt{\frac{D}{s' - c}} \frac{tg \alpha_{1}}{1 + \frac{1}{\sqrt{\cos \alpha_{1}}}} - 0.25$$
(8.3)

$$\beta_{T} = \frac{1}{1 + \frac{0,028 \frac{r}{D} \sqrt{\frac{D}{s'-c}} \alpha_{I}}{1 + \frac{1}{\sqrt{\cos \alpha_{I}}}}}$$

Допускаемое внутреннее избыточное давление на днище принимается как:

$$[p] = \max\{[p]_1; \min\{[p]_2, [p]_3\}\},$$

$$\text{ГДЕ} [p]_1 = \varphi_p[\sigma] \left[\frac{(s'-c)}{0.3(D-r)} \frac{90^{\circ}}{\alpha_1} \right]^2; [p]_2 = \frac{2[\sigma]\varphi_p(s'-c)}{\frac{D}{\cos\alpha_1} + (s'-c)};$$

$$\text{2[-1]} (s'-c)$$

$$[p]_3 = \frac{2[\sigma]\varphi_P(s'-c)}{D\beta_3 + (s'-c)}.$$

8.2.2. Коническое днище, нагруженное наружным давлением

Допускаемое давление из условия прочности:

$$[p]_{\pi} = \frac{2[\sigma](s'-c)}{\frac{D_k}{\cos \alpha_1} + (s'-c)}$$
(8.5)

где
$$D_k = D - 2[r(1-\cos\alpha_1) + 0.7a_1\sin\alpha_1]$$
 - расчетный диаметр;
$$a_1 = 0.7\sqrt{\frac{D}{\cos\alpha_1}(s'-c)}$$
 - расчетная длина переходной части.

Допускаемое давление из условия устойчивости в пределах упругости:

$$[p]_{E} = \frac{4EK}{n_{y}} \left(\frac{s'-c}{D_{k}}\right)^{2} \cos^{2} \alpha_{1},$$

$$\text{г.д.е.} K = \min\left\{0,36; \max\left\{\frac{0,1\xi+5}{\xi-4}; 0,12\right\}\right\};$$

$$\xi = \frac{D_{k}}{2(s'-c)\cos\alpha_{k}}$$
(8.6)

Допускаемое наружное давление:

$$[p] = \frac{[p]_{\Pi}}{\sqrt{1 + \left(\frac{[p]_{\Pi}}{[p]_{E}}\right)^{2}}}$$
(8.7)

8.3. Коническое днище с укрепляющим кольцом

Расчетная схема конического днища с укрепляющим кольцом представлена на рис.8.1,б.

8.3.1. Коническое днище, нагруженное внутренним избыточным давлением

Расчетная толщина стенки днища:

$$s_P' = \frac{pD}{2\varphi_p[\sigma] - p} \frac{1}{\cos \alpha_1} \tag{8.8}$$

Условие выполнения прочности стенки днища:

$$s' \ge s'_P + c \tag{8.9}$$

Расчетная площадь поперечного сечения укрепляющего кольца:

$$A_{kp} = \frac{pD^2 tg\alpha_1}{8[\sigma]_k \varphi_{ap}} \left(1 - \frac{\beta_A + 0.25}{\beta + 0.25} \right), \tag{8.10}$$

ГДЕ
$$\beta_A = \left(\frac{2[\sigma]_2 \varphi_p}{p} - 1\right) \frac{s_2 - c}{D}, \quad \beta = 0, 4\sqrt{\frac{D}{s_2 - c}} tg \alpha_1 - 0.25.$$

При $A_{kn} \leq 0$ укрепление кольцом жесткости не требуется.

Допускаемое внутреннее избыточное давление для конического лиша:

$$[p] = \frac{2[\sigma]\varphi_{P}(s'-c)}{\frac{D}{\cos\alpha_{1}} + (s'-c)}$$
(8.11)

Коэффициент формы для переходной части:

$$\beta_2 = \max \left\{ 0.5; \quad \frac{0.4\sqrt{\frac{D}{s_2 - c}} tg\alpha_1 - 0.25}{B_2 + 1} \right\}$$
 (8.12)

где
$$B_2 = \frac{1,6A_\kappa}{(s_2 - c)\sqrt{D(s_2 - c)}} \frac{[\sigma]_\kappa \varphi_{a\varphi}}{[\sigma]_2 \varphi_{\varphi}}$$

Допускаемое внутреннее избыточное давление для укрепляющего кольца:

$$[p] = \frac{2[\sigma]_2 \varphi_p(s_2 - c)}{D\beta_2 + (s_2 - c)}$$
(8.13)

Условие выполнения прочность сварного шва укрепляющего кольца:

$$\Sigma t_{j} \ge \frac{4A_{\kappa p}}{D},\tag{8.14}$$

где $\sum t_j$ - сумма всех эффективных ширин несущих сварных швов между укрепляющим кольцом и обечайкой, причем расстояние между концами прерывистых сварных швов должно быть не более восьми толщин стенки обечайки и сумма всех длин сварных швов не менее половины длины контура кольца.

8.3.2. Коническое днище, нагруженное наружным давлением

Допускаемое наружное давление определяется по формулам п. 8.2.2 при условии, что:

$$D_k = D - 1.4a_1 \sin \alpha_1,$$

The $a_1 = 0.7 \sqrt{\frac{D}{\cos \alpha_1} (s' - c)}$.

8.4. Коническое днище без тороидального перехода и укрепляющего кольца

Расчетная схема конического днища без тороидального перехода и укрепляющего кольца представлена на рис. 8.1, в.

8.4.1. Коническое днище, нагруженное внутренним избыточным давлением

Условие выполнения прочности стенки днища:

$$s' \ge \min \{ \max \{ s_{kp} + c; s_{lp} + c \}; s_{p'} + c \},$$
 (8.16)

где
$$s_p' = 0.3D \frac{\alpha_1}{90^0} \sqrt{\frac{p}{[\sigma] \varphi_p}}$$
;

$$s_{k\!p}=rac{pD}{2oldsymbol{arphi}_p[\sigma]-p}rac{1}{\coslpha_1}$$
 - расчетная толщина гладкой

конической обечайки:

$$s_{1P} = \left(\frac{s'-c}{s_2-c}\right) \frac{pD\beta_1}{2[\sigma]_2 \varphi_P - p}$$
 - расчетная толщина переходной

части.

Коэффициент формы перехода:

$$\beta_1 = \max\{0,5; \beta\},\tag{8.17}$$

где коэффициент

$$\beta = 0.4 \sqrt{\frac{D}{s_2 - c}} \frac{tg\alpha_1}{1 + \chi \left(\frac{s' - c}{s_2 - c}\right)^2} \times \left(\frac{s' - c}{s_2 - c}\right)$$

Допускаемое внутреннее избыточное давление днище принимается как:

$$[p] = \max\{[p]_1; \min\{[p]_2, [p]_3\}\},$$
(8.18)

где
$$[p]_1 = \varphi_p[\sigma] \left[\frac{(s'-c)}{0.3D} \frac{90^0}{\alpha_1} \right]^2; [p]_2 = \frac{2[\sigma]\varphi_p(s'-c)}{\frac{D}{\cos\alpha_1} + (s'-c)};$$

$$[p]_3 = \frac{2[\sigma]_2 \varphi_P(s_2 - c)}{D \beta_1 + (s_2 - c)}.$$

Коническое днище, нагруженное наружным давлением Допускаемое наружное давление определяется по п. 8.3.2.

9. Воздействие опорных нагрузок

9.1. Горизонтальные сосуды и аппараты на седловых опорах

Расчет на прочность и устойчивость горизонтальных сосудов и аппаратов от воздействия опорных нагрузок проводится на основании [4] с дополнениями расчета сил и моментов в элементах сосудов произвольной конструкции. Приведен расчет характеристик колец жесткости, а также весовых нагрузок элементов в зависимости от их конструкции и степени заполнения рабочей жидкостью. В условиях применения расчетных формул при наличии подкладных листов используется условие $\delta_2 \geq \delta_1 + 20^0$, что при незначительном изменении условия $f \geq 0,1D$ (рис.9.4) позволяет при расчетах учитывать наличие подкладных листов в стандартных опорах, где $\delta_1 = 120^0$, а $\delta_2 = 140^0$.

9.1.1. Определение расчетных усилий и моментов

В случае использования сосуда с одинаковым диаметром обечайки, равномерным распределением нагрузки по длине и опирающимся симметрично на седловые опоры используются расчетные схемы, представленные на рис.9.1.

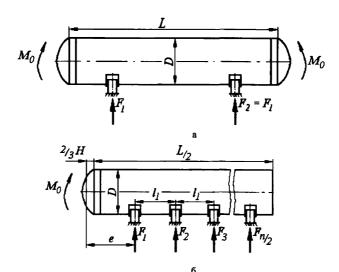


Рис. 9.1. Схемы расположения седловых опор на сосуды

79

Распределенная нагрузка по длине сосуда:

$$q = \frac{G}{L + \frac{4}{3}H},\tag{9.1}$$

где G - полный вес сосуда.

Краевой момент, определяемый смещением горизонтальной составляющей силы гидростатического давления относительно оси обечайки:

$$M_0 = q \frac{G_*}{G_*} \frac{D^2}{16}, \tag{9.2}$$

где G_{∞} - вес заполняемой жидкости.

Опорное усилие:

$$F_{i} = \psi_{i} \frac{G}{n},$$
где $\psi_{i} = \begin{cases} 1.0 - \partial n & n = 2; \\ \text{по рис.} 9.2 - \text{для } 3 \leq n \leq 8. \end{cases}$
(9.3)

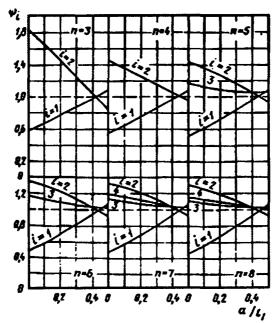


Рис. 9.2. Коэффициент ψ

Изгибающие моменты следует определять в сечениях обечайки над опорами M_i и между опорами M_{ij} в сечениях, где они имеют наибольшие значения.

Поперечные усилия следует определять в сечениях обечайки над опорами Q_i .

Момент M_i над i -й опорой:

для схемы опирания по рис. 9.1, а

$$\mathbf{M}_1 = \mathbf{M}_2 = \frac{qe^2}{2} - M_0; \tag{9.4}$$

для схемы опирания по рис. 9.1,6

$$\mathbf{M_{i}} = \begin{cases} \max \left\{ \frac{qe^{2}}{2} - M_{0}; \frac{ql_{1}^{2}}{8} \right\} - \partial n \mathbf{n} \ \mathbf{i} = 1 \ \mathbf{m} \ \mathbf{i} = \mathbf{n} \\ \frac{ql_{1}^{2}}{8} - \partial n \mathbf{n} \ \mathbf{i} = 2 \dots \mathbf{n} - 1 \end{cases}$$
(9.5)

Максимальный момент M_{ij} между опорами i и j: для схемы опирания по рис.9.1,а

$$M_{12} = M_0 + F_1 \left(\frac{L}{2} - 1\right) - \frac{q}{2} \left(\frac{L}{2} + \frac{2}{3}H\right)^2;$$
 (9.6)

 $M_{
m H}\,$ - для схемы опирания по рис.9.2,6 - не определяется.

Поперечное усилие в сечении оболочки над i -й опорой: для схемы опирания по рис.9.1,а

$$Q_1 = Q_2 = F_1 \frac{L - 2a}{L + \frac{4}{3}H};$$
(9.7)

для схемы опирания по рис. 9.1, б

$$Q_i \approx 0.5F_i. \tag{9.8}$$

В случае расчета горизонтальных сосудов и аппаратов с переменными диаметрами и произвольным расположением опор в качестве расчетной схемы для определения опорных усилий, моментов и поперечных усилий над опорами принимают как балку переменного

кольцевого сечения, шарнирно опертую в местах расположения опор (рис.9.3).

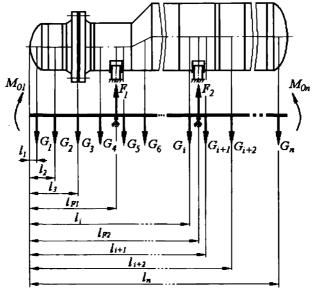


Рис. 9.3. Расчетная схема горизонтального сосуда (аппарата) на седловых опорах

 $G_1,....,G_n$ - сосредоточенные весовые нагрузки от веса элементов сосуда с учетом заполняемой жидкости, изоляции, внешних и внутренних устройств, площадок и др.;

 F_1 , F_2 - опорные нагрузки;

 $l_1,....,l_n$ – расстояние от края сосуда до центра приложения нагрузки;

 $l_{{\scriptscriptstyle FI}}, l_{{\scriptscriptstyle F2}}$ - расстояние от края сосуда до опорной нагрузки.

 $M_{\rm 0l}$ и $M_{\rm 0n}$, определяемые смещением горизонтальной составляющей силы гидростатического давления относительно оси обечайки, в месте расположения седловой опоры [45]:

$$M_{01(0n)} = \xi \, \rho_{\infty} \, \pi \, \frac{D_{F1(2)}^4}{64} \, g \tag{9.9}$$

где $^{D_{F1(2)}}$ - диаметр обечайки в месте расположения 1(2)—ой седловой опоры;

 ξ - коэффициент заполнения сосуда жидкостью;

коэффициент заполнения сосуда жидкостью;

 $ho_{_{\infty}}$ - плотность жидкости.

Определение приведенных нагрузок и расстояния до центра тяжести отдельных элементов сосудов (аппаратов) приведено в Приложении 3.

После определения весовых нагрузок G_i , длин l_i , $L_{F1(2)}$ элементов сосуда и краевых моментов $M_{01(0n)}$ определяются силы и моменты над опорами.

В случае применения двух опор

$$F_{1} = \frac{-M_{01} + M_{0n} - \sum_{i=1}^{n} G_{i} l_{i} + \sum_{i=1}^{n} G_{i} l_{F2}}{l_{F2} - l_{F1}}; F_{2} = \sum_{i=1}^{n} G_{i} - F_{1};$$

$$M_{F1} = \sum_{i=1}^{n} G_{i} (l_{F1} - l_{i}) - M_{01}; M_{F2} = -\sum_{i=n}^{n} G_{i} (l_{i} - l_{F2}) + M_{0n}$$
(9.10)

где n_I — номер последнего элемента перед I-ой опорой; n_2 — номер первого элемента после второй опоры.

Поперечное усилие в сечении оболочки над опорами:

$$Q_{1} = \max \left\{ \sum_{i=1}^{n} G_{i}; (F_{1} - \sum_{i=1}^{n} G_{i}) \right\}; Q_{2} = \max \left\{ \sum_{i=n}^{n} G_{i}; (F_{2} - \sum_{i=n}^{n} G_{i}) \right\}$$
(9.11)

В случае применения 3-х и более опор расчетные усилия определяются по правилам строительной механики как статически неопределимую систему.

9.1.2. Несущая способность обечайки в области опорного узла

На рис.9.4 представлена расчетная схема седловой опоры без колец жесткости.

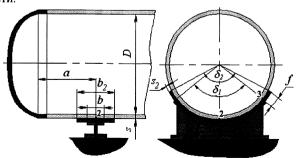


Рис. 9.4. Седловая опора без колец жесткости

9.1.2.1. Цилиндрическая обечайка без подкладных листов и колец жесткости

Условия применения расчетных формул:

$$60^{\circ} \le \delta_1 \le 180^{\circ}; \ \frac{s-c}{D} \le 0,05$$
 (9.12)

Несущая способность проверяется в точках (2) и (3) каждой опоры в осевом и окружном направлениях соответственно.

Для определения допускаемых опорных усилий необходимо определить коэффициенты, учитывающие особенности геометрии и расположения опор.

Параметр, определяемый шириной пояса опоры:

$$\beta = 0.91 \frac{b}{\sqrt{D(s-c)}} \tag{9.13}$$

Коэффициенты, учитывающие влияние ширины пояса опоры (δ $_1$ подставляют в радианах):

$$K_{10} = \max\left\{\frac{e^{-\beta}\sin\beta}{\beta}; 0,25\right\};$$
 (9.14)

$$K_{11} = \frac{1 - e^{-\beta} \cos \beta}{\beta}; \tag{9.15}$$

$$K_{17} = \frac{1}{1 + 0.6 \sqrt[3]{\frac{D}{s - c} \cdot \frac{b}{D} \delta_1}}.$$
(9.16)

Коэффициенты, учитывающие влияние угла охвата опоры (δ $_1$ подставляют в радианах):

$$K_{12} = \frac{1,15 - 0,1432\delta_{1}}{\sin(0,5\delta_{1})};$$
(9.17)

$$K_{13} = \frac{\max\left\{1,7 - \frac{2,1\delta_{1}}{\pi};0\right\}}{\sin(0,5\delta_{1})};$$
(9.18)

$$K_{14} = \frac{1,45 - 0,43\delta_1}{\sin(0,5\delta_1)};$$
(9.19)

$$K_{19} = \frac{5}{6\sqrt[3]{\frac{D}{s-c} \cdot \delta_1}}$$
 (9.20)

Параметр, определяемый расстоянием до днища:

$$\gamma = 2,83 \frac{a}{D} \sqrt{\frac{s-c}{D}} \tag{9.21}$$

Коэффициенты, учитывающие влияние расстояния до днища:

$$K_{15} = \min\left\{1,0; \frac{0.8\sqrt{\gamma} + 6\gamma}{\delta_1}\right\};$$
 (9.22)

$$K_{16} = 1 - \frac{0.65}{1 + (6\gamma)^2} \sqrt{\frac{\pi}{3 \delta_1}}$$
 (9.23)

Общее осевое мембранное напряжение изгиба в области опорного узла:

$$\overline{\sigma}_{mx} = \frac{4M_F}{\pi D^2 (s-c)} \tag{9.24}$$

Предельное напряжение изгиба:

$$\left[\sigma_{i}\right] = K_{1}\left[\sigma\right] \frac{n_{T}}{K_{2}},\tag{9.25}$$

гле

$$K_{1} = \left\{ \begin{pmatrix} \frac{1+3\vartheta_{1}\cdot\vartheta_{2}}{3\vartheta_{1}^{2}} \end{pmatrix} \left(\pm \sqrt{\frac{9\vartheta_{1}^{2}(1-\vartheta_{2}^{2})}{(1+3\vartheta_{1}\vartheta_{2})^{2}} + 1 - 1} \right); \quad K_{1} \geq 0 \text{ при } \vartheta_{1} \neq 0 \right\};$$

$$K_{2} = \left\{ \begin{matrix} 1,2-\partial_{1}\vartheta_{1} & \text{ рабочих условий;} \\ 1,0-\partial_{1}\vartheta_{1} & \text{ условий испытания и монтажа.} \end{matrix} \right\};$$

Для определения $[\sigma_i]$ в расчетных точках используются значения θ_1 и θ_2 , приведенные в таблице 9.1. Для θ_2 принимают соответственно $\theta_{2,1}$ или $\theta_{2,2}$, дающие наименьшее предельное

напряжение изгиба. При $\mathcal{G}_2 < 0$ принимается $\mathcal{G}_2 = \left|\mathcal{G}_2\right|$, а знак коэффициента \mathcal{G}_1 меняется на противоположный.

Таблица 9.1

Расчетная точка	9,	$\theta_{2,1}$ ($p=0$)	9 2,2
2	$-\frac{0.23 \cdot K_{13} \cdot K_{15}}{K_{12} \cdot K_{10}}$	$-\sigma_{mx} \cdot \frac{K_2}{n_T[\sigma]}$	$\left(\frac{pD}{4(s-c)} - \frac{1}{\sigma_{\text{max}}}\right) \cdot \frac{K_2}{n_T[\sigma]}$
3	$-\frac{0.53K_{11}}{K_{14} \cdot K_{16} \cdot K_{17} \cdot \sin(0.5\delta_{1})}$	0	$\frac{pD}{2(s-c)} \cdot \frac{K_2}{n_T[\sigma]}$

Допускаемое опорное усилие от нагружения в осевом направлении в т.2 (рис.9.4):

$$[F]_2 = \frac{0.7 [\sigma_i]_2 \sqrt{D(s-c)}(s-c)}{K_{10} K_{12}}$$
(9.26)

Допускаемое опорное усилие от нагружения в окружном направлении в т.3 (рис.9.4):

$$[F]_3 = \frac{0.9[\sigma_i]_3 \sqrt{D(s-c)}(s-c)}{K_{14} \cdot K_{16} \cdot K_{17}}$$
(9.27)

Условие прочности обечайки над опорой:

$$F_{i} \leq \min\{ [F]_{2}, [F]_{3} \} \tag{9.28}$$

Эффективное осевое усилие от местных мембранных напряжений:

$$F_e = F \frac{\pi}{4} \sqrt{\frac{D}{(s-c)}} K_{13} \cdot K_{15}$$
 (9.29)

Условие устойчивости:

$$\frac{|p|}{[p]} + \frac{M_F}{[M]} + \frac{F_e}{[F]} + \left(\frac{Q}{[Q]}\right)^2 \le 1, \tag{9.30}$$

где допускаемые нагрузки [p], [M], [F], [Q] определяются из расчета элемента сосуда, находящегося над опорой (см.п.3).

Для сосудов, работающих под внутренним избыточным давлением, принимается p=0.

9.1.2.2. Цилиндрическая обечайка с подкладными листами

Дополнительные условия применения расчетных формул:

$$s_2 \ge s \; ; \; \delta_2 \ge \delta_1 + 20^0 \; .$$
 (9.31)

При выполнении условия:

$$b_2 \ge K_{19} \cdot D + 1.5b \tag{9.32}$$

условие прочности обечайки над опорой:

$$F_i \le 1.5 \min\{ [F]_2, [F]_3 \}$$
 (9.33)

В случае невыполнения условия (9.32) проверка несущей способности проверяется для следующих случаев:

Подкладной лист рассматривается как седловая опора шириной b_2 и углом охвата δ_2 , при этом толщину подкладного листа не учитывают.

Подкладной лист рассматривается как усиление стенки сосуда, при этом во всех формулах при расчете допускаемых усилий вместо (s-c) следует подставлять:

$$s_{ef} = (s - c)\sqrt{1 + \left(\frac{s_2}{s - c}\right)^2}$$
 (9.34)

Устойчивость во всех случаях проверяют по (9.30) без увеличения толщины стенки.

9.1.2.3. Цилиндрическая обечайка с кольцом жесткости в области опорного узла

На рис.9.5 представлена расчетная схема седловой опоры с кольцом жесткости в области опорного узла.

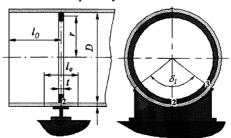


Рис. 9.5. Седловая опора с кольцом жесткости

Условие прочности сосудов, работающих под внутренним избыточным давлением:

$$\frac{pD}{4(s-c)} + \frac{4M_F}{\pi D^2(s-c)} \le \left[\sigma\right] \tag{9.35}$$

Устойчивость проверяется по (9.30), принимая F_e =0.

Эффективная толщина S_e и длина l_e обечайки:

$$s_e = (s - c) \left(1 - \frac{|p|D}{4(s - c)[\sigma]} \right) \frac{[\sigma]}{[\sigma]_k}$$

$$(9.36)$$

$$l_e = \min\left\{t + 4\sqrt{D(s-c)}; \frac{A_k}{s_e}\right\},$$
 (9.37)

где A_k определяется по таблице 3.2.

Прочность кольца жесткости, расположенного снаружи сосуда обеспечивается выполнением условия:

$$F_{i} \le \frac{K_{18}[M_{T}]\varphi}{(0.5D + s + e_{4})} \tag{9.38}$$

Прочность кольца жесткости, расположенного внутри сосуда обеспечивается выполнением условия:

$$F_{i} \leq \frac{K_{18}[M_{T}]\varphi}{(0.5D - e_{4})} \tag{9.39}$$

Нейтральная ось, проходящая на расстоянии e_4 от поверхности обечайки, разделяет площадь поперечного сечения профиля на две равные части.

 K_{18} определяется в зависимости от угла охвата опоры и ее вида по таблице 9.2.

Таблица 9.2

		K ₁₈
δ_{l}	седловая опора со сплошным сечением	опора в виде двух отдельно стоящих столбиков
600	14	-
900	21	20
120 ⁰	33	28
150°	56	50
180°	103	-

 $[M_T]$, e_4 определяется в зависимости от сечения кольца по таблице 9.3. При этом размеры колец жесткости принимаются с учетом суммарной прибавки c_k .

В случае применения профиля, не представленного в табл.9.3, $\left[M_{_T} \right]$ следует определять по формуле:

$$\begin{bmatrix} M_T \end{bmatrix} = W_n \begin{bmatrix} \sigma \end{bmatrix}_k, \tag{9.40}$$

где W_p - пластический момент сопротивления площади поперечного сечения профиля, включая площадь $l_e s_e$.

 e_{\star}

Сечение

кольца

 $\frac{th - l_e s_e}{2t} \qquad \frac{th - l_e s_e}{2t} \qquad 0.5[t(h - e_4)^2 + te_4^2 + \\ + (2e_4 + s_e)l_e s_e][\sigma]_k$ $\frac{b_4 s_5 + h s_4 - l_e s_e}{2s_4} \qquad 0.5[s_4(h - e_4)^2 + s_4 e_4^2 + \\ + (2e_4 + s_e)l_e s_e + \\ + (2e_4 + s_e)l_e s_e + \\ + (2h - 2e_4 + s_5)b_4 s_5][\sigma]_k$

Таблица 9.3

 $[M_{\tau}]$

	CA 03-004-07 (CTH 10-04-02)					
Сечение	$e_{\scriptscriptstyle 4}$	$[M_{\tau}]$				
кольца <i>t S S I S S I S S</i>	$\frac{hs_4 + ts_5 + 2s_4s_6 - ts_6 - l_es_e}{2s_4},$ при $hs_4 + ts_5 \ge (ts_6 + l_es_e)$	$0.5[s_4(h+s_6-e_4)^2+s_4(e_4-s_6)^2+\\+ts_5(2(h+s_6-e_4)+s_5)+ts_6(2e_4-s_6)+\\+(2e_4+s_e)l_es_e][\sigma]_k$				
	$\frac{hs_4 + ts_5 + ts_6 - l_e s_e}{2t},$ при $l_e s_e - ts_6 \le hs_4 + ts_5 < (ts_6 + l_e s_e)$	$0.5[s_4h(2s_6 - 2e_4 + h) + t(s_6 - e_4)^2 + ts_5(2(h + s_6 - e_4) + s_5) + te_4^2 + t(2e_4 + s_e)l_e s_e][\sigma]_k$				
5. 5 z	$rac{hs_4 + 2s_4s_6 - ts_6 - l_es_e}{2s_4}$, при $hs_4 \geq (ts_6 + l_es_e)$	$0.5[s_4(h+s_6-e_4)^2+s_4(e_4-s_6)^2+\\+ts_6(2e_4-s_6)+(2e_4+s_e)l_es_e][\sigma]_k$				
	$\frac{hs_4 + ts_6 - l_e s_e}{2t},$ при $(l_e s_e - ts_6) \le hs_4 < (ts_6 + l_e s_e)$	$0.5[s_4h(2s_6 - 2e_4 + h) + t(s_6 - e_4)^2 + te_4^2 + (2e_4 + s_e)l_e s_e][\sigma]_k$				

	011 03 00 10 (011110 04-02)					
Сечение кольца	e_4	$[M_T]$				
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	$\frac{2s_4h + ts_5 - l_es_e}{4s_4}$	$0.5[2s_4(h-e_4)^2+2s_4e_4^2+(2e_4+s_e)l_es_e+\\+(2h-2e_4+s_5)ts_5][\sigma]_k$				

9.1.3. Несущая способность обечайки сосуда между опорными узлами

Для сосудов, работающих под внутренним избыточным давлением и осевым растягивающим усилием, условие прочности для *i*-го элемента в случае цилиндрической обечайки:

$$\frac{pD}{4(s-c)} + \frac{1}{\pi D(s-c)} \left(F \pm \frac{4MK_9}{D} \right) \le \left[\sigma \right] \varphi, \tag{9.41}$$

где $K_9 = \max\{z; 1,0\}$ - коэффициент, учитывающий частичное заполнение жидкостью.

$$z = 1,6 - 0,20924(w - 1) + 0,028702w(w - 1) + 0,4795 \cdot 10^{-3}w(w - 1) - 0,2391 \cdot 10^{-6}wy(w - 1) - 0,29936 \cdot 10^{-2}(w - 1)w^{2} - 0,85692 \cdot 10^{-6}(w - 1)y^{2} + 0,88174 \cdot 10^{-6}w^{2}(w - 1)y - 0,75955 \cdot 10^{-8}y^{2}(w - 1)w + 0,82748 \cdot 10^{-4}(w - 1)w^{3} + 0,48168 \cdot 10^{-9}(w - 1)y^{3}$$

$$y = \frac{D_{p}}{s - c}; \ w = \frac{L_{_{3K8}}}{D}, \tag{9.42}$$

где $L_{_{_{^{3\!K\!S}}}}$ - общая длина обечаек всего сосуда, включая отбортовки днищ.

В случае конической обечайки:

$$\frac{pD_{R}}{4(s-c)} + \frac{1}{\pi D_{K} \cos \alpha (s-c)} \left(F \pm \frac{4MK_{9}}{D_{K}} \right) \leq \left[\sigma \right] \varphi, \qquad (9.43)$$
где $D_{K} = \left(D_{1} + \frac{D_{2} - D_{1}}{L} x \right); \ D_{R} = \frac{D_{K}}{\cos \alpha}.$

Условие прочности для обечайки зависит от текущего положения сечения и проверяется по всей длине элемента. Определение поперечного

усилия и изгибающего момента для элементов сосудов (аппаратов), расположенных между опорными узлами приведено в Приложении 4.

Для элементов, работающих под совместным действием наружного давления, осевого сжимающего усилия, изгибающего момента и поперечного усилия условие устойчивости:

$$\frac{p}{[p]} + \frac{F}{[F]} + \frac{M}{[M]} + \left(\frac{Q}{[Q]}\right)^2 \le 1,0,$$
 (9.44)

где допускаемые нагрузки [p], [M], [F], [Q] определяются из расчета соответствующих элементов сосуда (см.пп.3,7).

Для сосудов, работающих под внутренним избыточным давлением, принимается p=0.

9.2. Вертикальные сосуды и аппараты на опорных лапах

Расчет на прочность и устойчивость цилиндрических или конических обечаек вертикальных сосудов и аппаратов от воздействия опорных усилий проводится на основании [4]. В отличие от [4] в формуле (9.39) для определения усилия, действующего на опорную лапу для 3 опор, в знаменателе вместо 0,866 подставляется 0,75.

9.2.1. Расчетная схема

На рис. 9.6 показаны расчетные схемы опорных лап, присоединенных к цилиндрическим или коническим обечайкам.

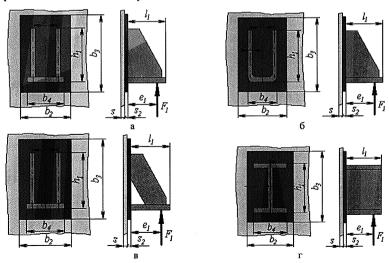


Рис. 9.6. Опорные лапы

Условия применения расчетных формул:

$$\frac{s-c}{D_{\rm p}} \le 0.05$$
, (9.45)

где
$$D_{p} = \begin{cases} D - 6 \ \text{случае} \ \text{чилиндрических обечаек;} \ ; \ D_{K} - \text{диаметр} \\ \frac{D_{K}}{\cos \alpha} - 6 \ \text{случае} \ \text{конических обечаек.} \end{cases}$$

конической обечайки в месте расположения опор.

При наличии подкладного листа:

$$s_2 \ge s$$
; $g \ge 0.2h_1$; $b_2 \ge 0.6b_3$; $b_3 \le 1.5h_1$ (9.46)

$$s_2 \geq s$$
 ; $g \geq 0.2h_1$; $b_2 \geq 0.6b_3$; $b_3 \leq 1.5h_1$ (9.46) При $b_2 < 0.6b_3$ значение $[F]_1$, полученное по (9.57),

необходимо умножить на $\left(0,4+\frac{b_2}{h}\right)$.

9.2.2. Определение расчетных усилий

Усилие, действующее на опорную лапу:

$$F_{1} = \begin{cases} \frac{G}{2} + \frac{M}{D + 2(e_{1} + s + s_{2})} & -\partial n n = 2 u n = 4; \\ \frac{G}{3} + \frac{M}{0,75(D + 2(e_{1} + s + s_{2}))} & -\partial n n = 3. \end{cases}, \tag{9.47}$$

где G - общая весовая нагрузка элементов сосуда, включая вес жидкости, внутренних и внешних устройств.

В случае конических обечаек принимается $D = D_{\kappa}$.

Если точное значение e_1 неизвестно, то принимается $e_1 = \frac{5}{6} l_1$.

При наличии момента M аппарат допускается устанавливать на две опоры при условии действия момента в плоскости опор.

При количестве опор n = 4, обеспечивающих равномерное распределение нагрузок между всеми опорными лапами (точный монтаж, установка прокладок, подливка бетона и т.п.), усилие на опорную лапу определяется как:

$$F_1 = \frac{G}{4} + \frac{M}{D + 2(e_1 + s + s_2)} \tag{9.48}$$

9.2.3. Несущая способность обечайки

Несущая способность обечайки в месте приварки опорной лапы без подкладного листа определяется выполнением условия:

$$F_{1} \leq [F]_{1} = \frac{[\sigma_{i}]h_{1}(s-c)^{2}}{K_{7}e_{1}}$$
(9.49)

При $\frac{g}{h_{\rm l}} < 0.5$ значение $[F]_{\rm l}$, полученное по (9.49), необходимо

умножить на
$$\left(0,5 + \frac{g}{h_1}\right)$$
.

Коэффициент K_7 определяется в зависимости от конструкции опорной лапы.

Для конструкций, соответствующих рис. 9.6, а, в:

$$K_{\gamma} = z, \qquad (9.50)$$

гле

$$+0,4833x^2y+0,8469xy^2+1,428y^3)\cdot 10^{-2}; \quad x=\ln\left(\frac{D_p}{2(s-c)}\right); \quad y=\ln\frac{h_i}{D_R}.$$

Для конструкций, соответствующих рис. 9.6,6:

$$K_7 = \min(u, z), \tag{9.51}$$

гле

$$\ln u = (-26,791 - 6,936x - 36,330y - 3,503x^2 - 3,357xy + 2,786y^2 + 0,2267x^3 + 0,2831x^2y + 0,3851xy^2 + 1,370y^3) \cdot 10^{-2};$$

x; y; z определяются по (9.50).

Для конструкций, соответствующих рис. 9.6,г:

$$\ln K_7 = (-29,532 - 45,958x - 91,759y - 1,801x^2 - 12,062xy - 18,872y^2 + (9.52) + 0,1551x^3 + 1,617x^2y + 3,736xy^2 + 1,425y^3) \cdot 10^{-2};$$

$$x = \ln\left(\frac{D_p}{2(s-c)}\right); \quad y = \ln\frac{b_4}{D_p}.$$

Предельное напряжение изгиба $\left[\sigma_{i}\right]$ определяется по (9.25), причем K_{1} вычисляют при $\vartheta_{1}=0,3$;

$$\theta_2 = K_2 \frac{\overline{\sigma}_m}{n_T [\sigma] \varphi} \tag{9.53}$$

Значение мембранного напряжения σ_m зависит от конструкции опоры.

Для опор, соответствующих рис. 9.6, а, б, в:

$$\overline{\sigma}_m = \frac{pD_p}{2(s-c)} \tag{9.54}$$

Для опоры по рис. 9.6, г в случае цилиндрической обечайки:

$$\overline{\sigma}_{m} = \frac{pD}{4(s-c)} + \frac{1}{\pi D (s-c)} \left(F \pm \frac{4M}{D} \right)$$
 (9.55)

в случае конической обечайки:

$$\overline{\sigma}_{m} = \frac{pD_{K}}{4(s-c)\cos\alpha} + \frac{1}{\pi D_{K}\cos\alpha(s-c)} \left(F \pm \frac{4M}{D_{K}}\right)$$
(9.56)

Несущая способность обечайки в месте приварки опорной лапы с подкладным листом определяется выполнением условия:

$$F_1 \le [F]_1 = \frac{[\sigma_i]b_3(s-c)^2}{K_8(e_1 + s_2)}$$
(9.57)

Значение коэффициента K_8 :

$$K_8 = \min(v, z), \tag{9.58}$$

гле

$$\ln v = (-49,919 - 39,119x - 107,01y_1 - 1,693x^2 - 11,920xy_1 - 39,276y_1^2 + 0,237x^3 + 1,608x^2y_1 + 2,761xy_1^2 - 3,854y_1^3) \cdot 10^{-2}; \quad y_1 = \ln \frac{b_3}{D_p};$$

x; z определяются по (9.50).

Предельное напряжение изгиба $[\sigma_i]$ определяется по (9.25), причем K_1 вычисляют при $\mathcal{G}_1=0.4$; \mathcal{G}_2 - по (9.53).

9.3. Вертикальные сосуды и аппараты на опорных стойках

Расчет на прочность и устойчивость выпуклых и конических днищ вертикальных сосудов и аппаратов от воздействия опорных усилий проводится на основании [4] и [14]. В отличие от [4] и [14] формулах (9.59), (9.65) для определения усилия, действующего на опоры для n=3, а также в формулах (9.61), (9.67), (9.68) в знаменателе вместо 0,866 подставляется 0,75.

9.3.1. Расчетные схемы

На рис.9.7 показаны расчетные схемы опорных стоек, присоединенных к выпуклым и коническим днищам.

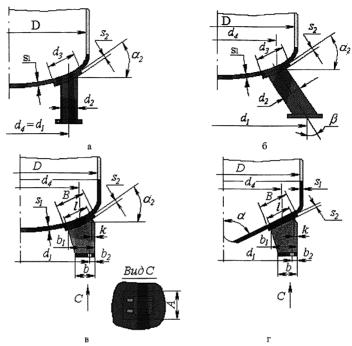


Рис. 9.7. Опорные стойки а, 6 – стойки круглого сечения; в, г - опоры-стойки по [27]

Область применения расчетных формул: сосуды работают под действием внутреннего избыточного давления.

9.3.2. Выпуклое днище на опорных стойках круглого сечения

Дополнительные условия применения расчетных формул:

- диаметр подкладного листа $d_3 \le 1,6d_2$;
- к торосферическим днищам опорные стойки должны присоединяться в области сферического сегмента, к эллиптическим в области $d_4 \le 0.8D$;
 - взаимное перемещение наклонных стоек исключено.

9.3.2.1. Определение расчетных усилий

Вертикальное усилие, действующее на опорную стойку:

$$F_{1} = \begin{cases} \frac{G}{2} + \frac{M}{d_{4}} & -\partial n\pi \ n = 4; \\ \frac{G}{3} + \frac{M}{0,75d_{4}} & -\partial n\pi \ n = 3. \end{cases}$$
(9.59)

При количестве стоек n=4, обеспечивающих равномерное распределение нагрузок между всеми опорными лапами (точный монтаж, установка прокладок, подливка бетона и т.п.), усилие определяется как:

$$F_1 = \frac{G}{4} + \frac{M}{d_4} \tag{9.60}$$

Действие момента M допускается только в том случае, если опорные стойки связаны между собой жесткой рамой, препятствующей взаимному перемещению стоек.

При этом должно быть выполнено условие:

$$\frac{G}{2} > \frac{M}{d_4} - \partial_{\Lambda R} \ n = 4;$$

$$\frac{G}{3} > \frac{M}{0.75d_4} - \partial_{\Lambda R} \ n = 3.$$
(9.61)

9.3.2.2. Несущая способность днища

Несущая способность выпуклого днища в месте приварки опорной стойки определяется выполнением условий:

$$F_1 \le [F]_1; \tag{9.62}$$

$$\frac{F_1 - p \frac{\pi d_e^2}{4}}{[F]_1} + \frac{p}{[p]_1} \le 1,0 , \qquad (9.63)$$

где
$$[F]_1 = 1.57 [\sigma] (s_1 - c)^2 \frac{\cos \beta}{\cos(\alpha_2 - \beta)} \sqrt{1 + 5 \frac{d_e^2}{r_m(s_1 - c)}}$$

допускаемое вертикальное усилие;

$$d_e = \begin{cases} d_2 & -\partial \text{ля опорных стоек без подкладного листа;} \\ d_3 & -\partial \text{ля опорных стоек с подкладным листом;} \end{cases}$$

 $[p]_{\rm I}$ - допускаемое внутреннее избыточное давление в срединной части выпуклого днища, определяемое по п.4;

 r_{m} и α_{2} определяется в соответствии с таблицей 9.4.

	Таолица 9.4					
	Вид днища					
	Сфери- ческое	кое Эллиптическое днище с		Торосферическое днище типов		
	днище	днище	H=0,25D	Α	В	С
r _m	$\frac{D}{2}$	$\frac{\frac{D^2}{2H}\sqrt{1-d_4^2\frac{D^2-4H^2}{D^4}}}{1+\frac{1}{1-d_4^2\frac{D^2-4H^2}{D^4}}}$	$\frac{2D\sqrt{1-\frac{3}{4}\left(\frac{d_{4}}{D}\right)^{2}}}{1+\frac{1}{1-\frac{3}{4}\left(\frac{d_{4}}{D}\right)^{2}}}$	D	0,9 <i>D</i>	0,8 <i>D</i>
$\sin \alpha_2$	$\frac{d_4}{D}$	$\frac{d_4}{\frac{D^2}{2H}\sqrt{1-d_4^2\frac{D^2-4H^2}{D^4}}}$	$\frac{d_4}{2D\sqrt{1-\frac{3}{4}\left(\frac{d_4}{D}\right)^2}}$	$\frac{d_4}{2D}$	$\frac{d_4}{1,8D}$	$\frac{d_4}{1,6D}$

Табпина 9 4

9.3.3. Эллиптическое днище на опорах-стойках

Расчетная схема опор-стоек, присоединенных к эллиптическому дницу представлена на рис.9.7,в.

Дополнительные условия применения расчетных формул:

$$0,003 \le \frac{s_1 - c}{D} \le 0,02 \; ; \; \frac{d_*}{D} \ge 0,7 \; ; \; 0,1 \le \frac{l}{D} \le 0,35 \; ; \; B \ge 1,2l \; ; \; A \ge 0,6B \; ; \; s_2 \ge s_1 \quad (9.64)$$

9.3.3.1. Определение расчетных усилий

Вертикальное усилие, действующее на опору-стойку:

$$F_{1} = \begin{cases} \frac{G}{2} + \frac{M}{d_{1}} - \partial_{\Lambda} n = 4; \\ \frac{G}{3} + \frac{M}{0.75d_{1}} - \partial_{\Lambda} n = 3. \end{cases}$$
(9.65)

где F>0 при внешней осевой сжимающей нагрузке; F<0 при внешней осевой растягивающей нагрузке;

При количестве стоек n=4, обеспечивающих равномерное распределение нагрузок между всеми опорными лапами (точный монтаж, установка прокладок, подливка бетона и т.п.), усилие определяется как:

CA 03-004-07 (CTTI 10-04-02)
$$F_1 = \frac{G}{4} + \frac{M}{d_1}$$
(9.66)

При действии изгибающего момента M необходимо выполнить расчет на прочность фундаментного болта от действия растягивающего усилия:

$$F_{\delta} = \begin{cases} \frac{M}{d_1} - \frac{G}{2} & -\partial n n = 4; \\ \frac{M}{0.75d_1} - \frac{G}{3} & -\partial n n = 3. \end{cases}$$
(9.67)

При выполнении условия:

$$\frac{G}{2} > \frac{M}{d_4} - \partial_{\pi} n = 4;$$

$$\frac{G}{3} > \frac{M}{0.75d_4} - \partial_{\pi} n = 3.$$
(9.68)

расчет на прочность фундаментного болта производить не требуется.

Меридиональный момент, передаваемый на днище опорной стойкой:

$$M_1 = \frac{1}{2}F_1(b_1 - b + k) \tag{9.69}$$

9.3.3.2. Несущая способность днища

Несущая способность днища для опор-стоек определяется выполнением условия:

$$\frac{F_1 \cos \alpha_2}{[F_1]} + \frac{M_1}{[M_1]} + \frac{p}{[p]} \le 1,$$
(9.70)

где [р] - допускаемое внутреннее давление, определяемое по п.4.2.

 α , определяется в соответствии с таблицей 9.4, $d_4 = d_1 + 2b_2 - k - b_1$

Допускаемое нормальное усилие для неподкрепленного эллиптического лниша:

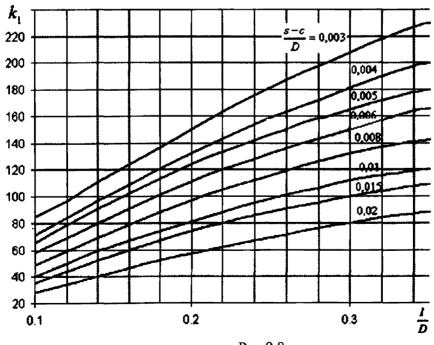
$$[F_1] = \frac{k_1 m_T \left(0.2 + \frac{d_4}{D}\right)}{n_{np}},\tag{9.71}$$

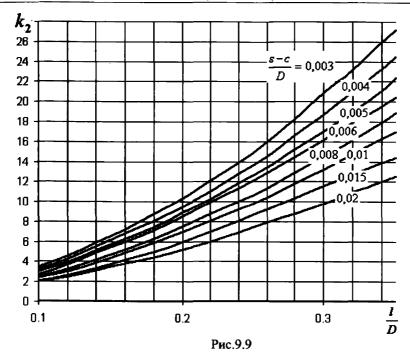
где
$$m_T = \frac{R_{0,2}(s-c)^2}{4}$$
 - предельный момент сопротивления;

$$n_{np} = \begin{cases} 2,4 & -\partial ля\ pабочего\ pежима; \\ 1,8 & -\partial ля\ pежима\ ucnытаний \end{cases}$$
 - коэффициент запаса

прочности.

Допускаемый меридиональный момент для неподкрепленного эллиптического днища:


$$[M_1] = \frac{k_2 m_T D \left(0.2 + \frac{d_4}{D}\right)}{n_{np}} \tag{9.72}$$


Коэффициенты k_1 и k_2 в зависимости от относительной толщины днища $\frac{(s-c)}{D}$ и относительной длины линии контакта опоры с

днищем $\frac{l}{D}$ определяются по рис. 9.8 и 9.9 соответственно.

Длина линии контакта опоры с днищем:

$$l = \frac{(b_1 - k)}{\cos \alpha_2} \tag{9.73}$$

Допускаемое нормальное усилие для подкрепленного подкладным листом эллиптического днища:

$$[F_1] = \frac{k_1 k_3 m_T \left(0.2 + \frac{d_4}{D}\right)}{n_{np}} \tag{9.74}$$

Допускаемый меридиональный момент для подкрепленного подкладным листом эллиптического днища:

$$[M_1] = \frac{k_2 k_4 m_T D \left(0.2 + \frac{d_4}{D}\right)}{n_{np}}$$
(9.75)

Коэффициенты k_3 и k_4 определяются по рис.9.10 и 9.11 соответственно.

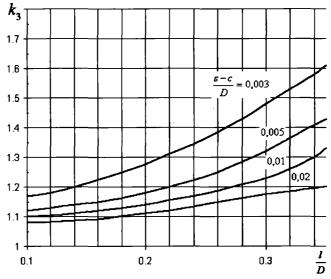
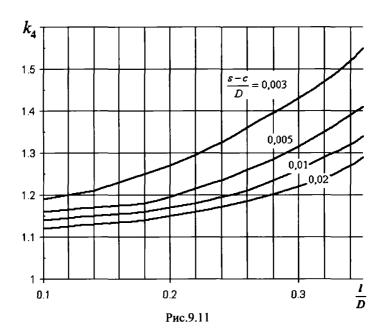



Рис.9.10

9.3.4. Коническое днище на опорах-стойках

Расчетная схема опор-стоек, присоединенных к коническому днищу представлена на рис.9.7,г.

Пополнительные условия применения расчетных формул:

$$0.002 \le \frac{s_1 - c}{D_p} \le 0.02$$
; $0.1 \le \frac{l}{D_p} \le 0.4$; $B \ge 1.2l$; $A \ge 0.4B$; $s_2 \ge s_1$; $60^0 \le 2\alpha \le 120^0$ (9.76)

где $D_p = \frac{d_1 + 2b_2 - k - b_1}{\cos \alpha}$ - расчетный диаметр.

9341 Определение расчетных усилий

Расчетные усилия и моменты, действующие на опору-стойку, определяют по формулам (9.65-9.69).

9342 Несущая способность днища

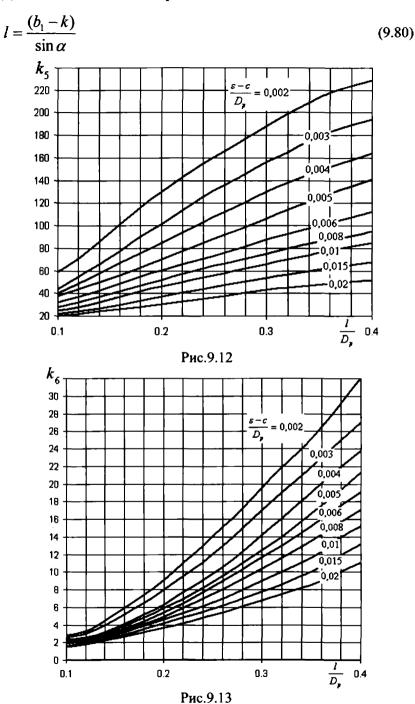
Несущая способность днища для опор-стоек определяется выполнением условия:

$$\frac{F_1 \sin \alpha}{[F_1]} + \frac{M_1}{[M_1]} + \frac{p}{[p]} \le 1,$$
(9.77)

где [p] – допускаемое внутреннее давление, определяемое по п.7. Допускаемое нормальное усилие неподкрепленного для конического днища:

$$[F_1] = \frac{k_5 m_T}{n_{mo}}, \tag{9.78}$$

где
$$m_T = \frac{R_{0,2}(s-c)^2}{4}$$
 - предельный момент сопротивления;
$$n_{np} = \begin{cases} 2,4 & -\partial ля\ pабочего\ pежима; \\ 1,8 & -\partial ля\ peжима\ ucnыmaнuй \end{cases}$$
 - коэффициент запаса

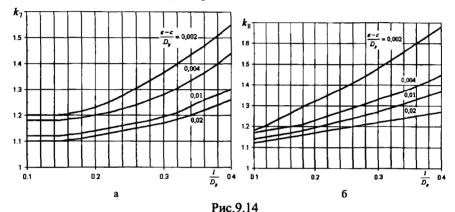

прочности.

Допускаемый меридиональный момент для неподкрепленного конического днища:

$$[M_1] = \frac{k_6 m_T D_p}{n_{np}} \tag{9.79}$$

Коэффициенты k_s и k_s в зависимости от относительной толщины днища (s-c) и относительной длины линии контакта опоры с днищем lопределяются по рис. 9.12 и 9.13 соответственно.

Длина линии контакта опоры с днищем:

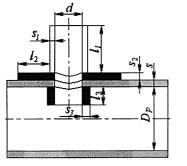

Допускаемое нормальное усилие для подкрепленного подкладным листом конического днища:

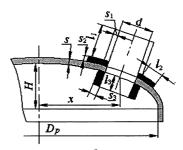
$$[F_1] = \frac{k_5 k_7 m_T}{n_{np}} \tag{9.81}$$

Допускаемый меридиональный момент для подкрепленного подкладным листом конического днища:

$$[M_1] = \frac{k_6 k_8 m_T D_p}{n_{np}} \tag{9.82}$$

Коэффициенты k_7 и k_8 определяются по рис.9.14.




10. Укрепление отверстий

Расчет на прочность укрепления отверстий проводится на основании [5]. В отличие от [5] при определении минимальных размеров сварных швов вместо расчетных величин длин и толщин подставляются исполнительные.

10.1. Расчетные схемы

На рис.10.1 представлены общие расчетные схемы соединения штуцера с обечайкой (а) и днищем (б).

а 6 Рис.10.1. Расчетные схемы штуцера

Пределы применения расчетных формул и номограмм ограничиваются условиями, приведенными в табл. 10.1.

Таблица 10.1

	Условия применения формул для расчета укрепления отверстий		
Наименование параметров	в цилиндрических обечайках	в конических обечайках, переходах или днищах	в эллиптических сферических и торосферических днищах
Отношение диаметров	$\frac{d_p - 2c_s}{D} \le 1.0$	$\frac{d_p - 2c_s}{D_K} \le 1.0$	$\frac{d_p - 2c_s}{D} \le 0.6$

(CIII 10-04-02)					
Отношение толщины стенки обечайки или днища к диаметру	$\frac{s-c}{D} \le 0,1$	$\frac{s-c}{D_K} \le \frac{0,1}{\cos \alpha}$	$\frac{s-c}{D} \le 0,1$		

Приведенные методы расчета применимы для определения размеров укрепляющих элементов, а также допускаемых давлений цилиндрических и конических обечаек, выпуклых и конических днищ с круглыми и овальными отверстиями.

При значениях отношений, превышающих пределы, установленные в табл. 10.1, рекомендуется использовать специальные методы расчета на прочность укреплений отверстий, в частности метод конечных элементов.

При установке наклонных штуцеров с круговым поперечным сечением настоящий метод применим, если угол γ (рис.10.2,a) не превышает 45°, а отношение осей овального отверстия d_1 и d_2 (рис.10.2,6) удовлетворяет условию:

$$\frac{d_1}{d_2} \le 1 + 2 \frac{\sqrt{D_p(s-c)}}{d_2} \tag{10.1}$$

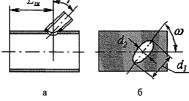


Рис.10.2. Расположение наклонного штуцера

Эти ограничения не распространяются на наклонные штуцера, ось которых лежит в плоскости поперечного сечения обечайки (рис.10.3).

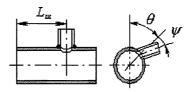


Рис. 10.3. Наклонный штуцер в плоскости поперечного сечения обечайки

Для смещенных (нецентральных) штуцеров на эллиптических днищах угол γ не должен превышать 60° .

Расстояние от края штуцера до края внешней поверхности сферического неотбортованного и торосферического днища, измеряемое по проекции образующей на плоскости основания днища, должно быть не менее $\max\{0.10(D+2s),0.09D+s\}$.

Малые отверстия, диаметр которых удовлетворяет условию:

$$d_p \le \max\{(s-c); 0, 2\sqrt{D_p(s-c)}\}$$
 (10.2)

допускается размещать в краевой зоне выпуклых днищ без специальных расчетных или экспериментальных обоснований.

В краевой зоне эллиптических и полусферических днищ допускается размещение отверстий без ограничений.

10.2. Определение расчетных размеров и коэффициентов

10.2.1. Расчетные диаметры

Расчетные диаметры укрепляемых элементов определяются по формулам:

$$D_{p} = D\,$$
 - для цилиндрической обечайки и сферических днищ;

$$D_{_{P}} = 2 \mathrm{R} \,$$
 - для торосферических днищ вне зоны отбортовки;

$$D_{p} = \frac{D_{k}}{\cos \alpha}$$
 - для конической обечайки, перехода или днища;

$$D_p = \frac{D^2}{2H} \sqrt{1 - 4 \frac{(D^2 - 4H^2)}{D^4} \cdot x^2}$$
 - для эллиптических днищ

Расчетный диаметр отверстия в стенке обечайки, перехода или днища при наличии штуцера с круглым поперечным сечением, ось которого совпадает с нормалью к поверхности в центре отверстия, а также лежит в плоскости поперечного сечения цилиндрической или конической обечайки (рис.10.3):

$$d_p = \overline{d} + 2c_s, \tag{10.3}$$

где $\overline{d} = d$ - для непроходящих штуцеров;

$$\overline{d} = d + 2s_1(1 - x_1)$$
 - для проходящих штуцеров (рис.10.6);

Расчетный диаметр отверстия для штуцера с круглым поперечным сечением при наличии отбортовки или торообразной вставки (рис.10.4):

$$d_p = \overline{d} + 1.5(r - s_p) + 2c_s, \tag{10.4}$$

где $s_p = \frac{pD}{2[\sigma]\phi - p}$ - расчетная толщина стенки обечайки.

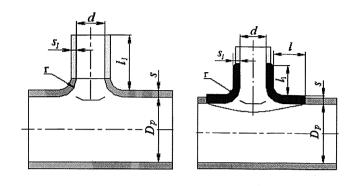
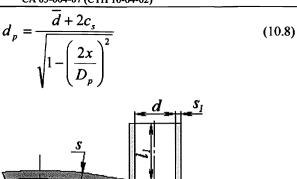


Рис.10.4. Штуцер с отбортовкой (а) и торообразной вставкой (б)

При наличии наклонного штуцера, когда большая ось овального отверстия составляет угол ω с образующей обечайкой (рис.10.2), расчетный диаметр отверстия:

$$d_p = \left(\overline{d} + 2c_s\right)\left(1 + tg^2\gamma\cos^2\omega\right) \tag{10.5}$$

Для цилиндрических и конических обечаек, когда ось штуцера лежит в плоскости продольного сечения обечайки ($\omega=0$), а также для всех отверстий в сферических и торосферических днищах расчетный диаметр отверстия:


$$d_p = \frac{\overline{d} + 2c_s}{\cos^2 \gamma} \tag{10.6}$$

Расчетный диаметр овального отверстия для перпендикулярно расположенного штуцера к поверхности обечайки:

$$d_p = \left(\overline{d_2} + 2c_s\right) \left[\sin^2 \omega + \frac{\left(\overline{d_1} + 2c_s\right)\left(\overline{d_1} + \overline{d_2} + 4c_s\right)}{2\left(\overline{d_2} + 2c_s\right)^2} \cos^2 \omega\right]$$
(10.7)

Для выпуклых днищ $\omega = 0$.

Расчетный диаметр отверстия смещенного штуцера на эллиптическом днище (рис.10.1,б):

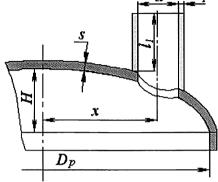


Рис. 10.5. Смещенный штуцер на эллиптическом днище

10.2.2. Расчетные толщины стенок

Если ось сварного шва обечайки (днища) удалена от наружной поверхности штуцера на расстояние более чем три толщины укрепляемого элемента (3s), то коэффициент прочности этого сварного соединения следует принимать $\varphi=1$. В исключительных случаях, когда сварной шов пересекает отверстие, или удален от наружной поверхности штуцера на расстояние менее 3s, коэффициент сварного шва принимается в зависимости от вида и качества сварного шва (таблица 2.2).

Расчетные толщины стенок укрепляемых элементов определяются в соответствии с пп.3-8.

Если плоскость, проходящая через продольный шов вальцованного штуцера и ось этого штуцера, образует угол с плоскостью продольного осевого сечения цилиндрической или конической обечайки не менее 60° , то коэффициент сварного шва принимается $\varphi_1 = 1$. В остальных случаях $\varphi_1 \leq 1$ в зависимости от вида и качества сварного шва.

Для эллиптических днищ, работающих под внутренним давлением, расчетная толщина стенки:

$$s_p = \frac{pD_p}{4\varphi \left[\sigma\right] - p} \tag{10.9}$$

Расчетная толщина стенки штуцера, нагруженного как внутренним, так и наружным давлением:

$$s_{1p} = \frac{p(d+2c_s)}{2[\sigma]_1 \varphi_1 - p} \tag{10.10}$$

Для овального штуцера в этой формуле $d = d_1$.

10.2.3. Расчетные длины штуцеров

Расчетные длины внешней и внутренней частей штуцера, участвующие в укреплении отверстий и учитываемые при расчете:

$$l_{1p} = \min \left\{ l_i ; 1,25\sqrt{(d+2c_s)(s_i - c_s)} \right\}$$
 (10.11)

$$l_{3p} = \min \left\{ l_3; 0.5\sqrt{(d+2c_s)(s_3 - 2c_s)} \right\}$$
 (10.12)

Для овального штуцера в формулах (10.11) и (10.12) принимается $\mathbf{d} = \mathbf{d}_2$.

В случае проходящего штуцера (рис. 10.6) $s_3 = s_1$.

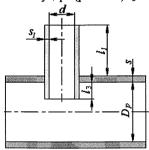


Рис. 10.6. Проходящий штуцер

10.2.4. Расчетная ширина

Ширина зоны укрепления в обечайках, переходах и днищах:

$$L_0 = \sqrt{D_p(s - c)} {(10.13)}$$

Расчетная ширина зоны укрепления в стенке обечайки, перехода или днища в окрестности штуцера при наличии торообразной вставки (рис.10.4,6) или вварного кольца (рис.10.7):

$$l_p = \min \left\{ l; L_0 \right\} \tag{10.14}$$

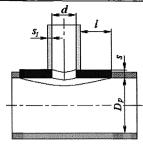


Рис. 10.7. Укрепление отверстия вварным кольцом

В случае отбортовки (рис.10.4,а), а также при отсутствии торообразной вставки или вварного кольца:

$$l_{p} = L_{0} (10.15)$$

Расчетная ширина накладного кольца:

$$l_{2p} = \min \{ l_2; \sqrt{D_p(s_2 + s - c)} \}$$
 (10.16)

Для отверстий, удаленных от от других конструктивных элементов на расстояние $L_{\kappa} < L_0$, расчетная ширина l_p , l_{2p} определяется следующим образом:

для зоны соединения обечайки с кольцом жесткости, плоским днищем, трубной решеткой - по формулам (10.14) или (10.15) и (10.16);

для зоны соединения конической обечайки с другой обечайкой и обечайки с коническим или выпуклым днищем, а также с фланцем или седловой опорой сосуда по формулам:

$$l_p = L_{\kappa}; \quad l_{2p} = \min\{l_2; L_{\kappa}\}$$
 (10.17)

Отношения допускаемых напряжений:

1) для внешней части штуцера $x_1 = \min \left\{ 1, 0; \frac{[\sigma]_1}{[\sigma]} \right\};$

2) для накладного кольца $x_2 = \min \bigg\{1,0; \frac{\left[\sigma\right]_2}{\left[\sigma\right]} \bigg\};$

3) для внутренней части штуцера $x_3 = \min \left\{ 1, 0; \frac{[\sigma]_3}{[\sigma]} \right\}$,

где $[\sigma]_1$, $[\sigma]_2$, $[\sigma]_3$ - допускаемые напряжения для материала внешней части штуцера, накладного кольца и внутренней части штуцера при расчетной температуре соответственно.

10.3. Расчет укрепления отверстия

Отверстие считается одиночным, если ближайшее к нему отверстие не оказывает на него влияния, что имеет место, когда расстояние между наружными поверхностями соответствующих штуцеров (рис.10.8) удовлетворяет условию:

$$b \ge \sqrt{D_p'(s-c)} + \sqrt{D_p'(s-c)}$$
 (10.18)

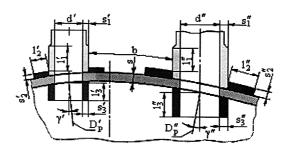


Рис. 10.8. Укрепление взаимовлияющих отверстий

Расчетов укрепления одиночного отверстия не требуется, если его расчетный удовлетворяет условию:

$$d_p \le d_0, \tag{10.19}$$

где
$$d_0 = 2 \left(\frac{s-c}{s_p} - 0.8 \right) \sqrt{D_p(s-c)}$$
 - расчетный диаметр

одиночного отверстия, не требующего дополнительного укрепления, при наличии избыточной толщины стенки сосуда.

В случае укрепления отверстия утолщением стенки сосуда или штуцера либо накладным кольцом, либо торообразной вставкой или отбортовкой должно выполняться условие:

$$l_{1p}(s_1 - s_{1p} - c_s)x_1 + l_{2p}s_2x_2 + l_{3p}(s_3 - c_s - c_{s1})x_3 + l_p(s - s_p - c) \ge (10.20)$$

$$\ge 0.5(d_p - d_{op})s_p$$

где при укреплении отверстия торообразной вставкой или вварным кольцом $s=s^{^{*}};$

$$d_{0n} = 0.4 \sqrt{D_n(s-c)}$$
 - расчетный диаметр.

В случае укрепления отверстия без использования накладного кольца при расчете принимается $s_2=0$. При этом длина внешней части штуцера l_1 отсчитывается от наружной поверхности аппарата.

При укреплении отверстия штуцером произвольной формы (рис.10.9) условие укрепления выражается в общем виде:

$$A_1 + A_3 \ge A = 0.5(d_p - d_{0h})s_p,$$
 (10.21)

где площади A_1 и A_3 определяются без учета прибавок c , c_s и расчетных толщин стенок штуцера s_{1p} и сосуда s_p .

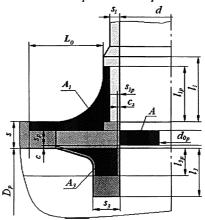


Рис. 10.9. Укрепление отверстия штуцером произвольной формы

Если $s_2 > 2s$, то накладные кольца рекомендуется устанавливать снаружи и изнутри сосуда или аппарата, причем толщина наружного кольца принимается $0.5s_2$, внутреннего - $(0.5s_2)+c$.

Допускаемое внутреннее избыточное давление:

$$\begin{split} \left[p\right] &= \frac{2K_{1}(s-c)\varphi\left[\sigma\right]}{D_{p} + (s-c)V}V, \end{split} \tag{10.22} \\ \text{где} \quad V &= \min \begin{cases} 1 + \frac{l_{1p}(s_{1}-c_{s})\chi_{1} + l_{2p}s_{2}\chi_{2} + l_{3p}(s_{3}-2c_{s})\chi_{3}}{l_{p}(s-c)} \\ 1 + 0.5\frac{d_{p}-d_{op}}{l_{p}} + K_{1}\frac{d+2c_{s}}{D_{p}}\frac{\varphi}{\varphi_{1}}\frac{l_{1p}}{l_{p}} \end{cases}; \\ K_{1} &= \begin{cases} 1 - \partial \text{ля цилиндрических обечаек;} \\ 2 - \partial \text{ля выпуклых дниц.} \end{cases} \end{split}$$

Для овального штуцера в формуле (10.22) принимается $d = d_1$.

10.4. Учет взаимного влияния отверстий в сосудах и аппаратах, нагруженных внутренним давлением

Если условие расположения одиночного отверстия не выполнимо, то расчет взаимовлияющих отверстий выполняется следующим образом: вначале рассчитываются укрепления для каждого из

этих отверстий отдельно в соответствии с разд.10.3, затем проверяется достаточность укрепления перемычки между отверстиями, для чего определяется допускаемое давление для перемычки по формуле:

$$[p] = \frac{2K_1(s-c)\varphi[\sigma]}{0.5(D'_p + D''_p + (s-c))V} \cdot V,$$
где

$$V = \min \left\{ l; \frac{1 + \frac{l_{1p}'(s_{1}' - c_{s}')\chi_{1}' + l_{2p}'s_{2}'\chi_{2}' + l_{3p}'(s_{3}' - 2c_{s}')\chi_{3}' + l_{1p}''(s_{1}'' - c_{s}'')\chi_{11}'' + l_{2p}''s_{2}''\chi_{2}'' + l_{3p}''(s_{3}'' - 2c_{s}')\chi_{3}''}{b(s - c)} \right\} \\ K_{3}\left(0.8 + \frac{d_{1p}' - d_{1p}''}{2b}\right) + K_{1}\left(\frac{d' + 2c_{s}'}{D_{p}'} \cdot \frac{\varphi_{1}'}{\varphi_{1}'} \cdot \frac{l_{1p}'}{b} + \frac{d'' + 2c_{s}''}{Q''_{1}''} \cdot \frac{\varphi_{1}''}{b}\right) \right\}$$

При совместном укреплении двух взаимовлияющих отверстий общим накладным кольцом коэффициент понижения прочности:

$$V = \min \left\{ 1; \frac{1 + \frac{l'_{lp}(s'_1 - c'_s)\chi'_1 + l''_{lp}(s''_1 - c_s)\chi''_1 + L_2s_2\chi_2 + l'_{3p}(s'_3 - 2c'_s)\chi'_3 + l''_{3p}(s''_3 - 2c'_s)\chi''_3}{b(s - c)} \right\}$$

$$K_3 \left(0,8 + \frac{d'_p - d''_p}{2b} \right) + K_1 \left(\frac{d' + 2c}{D_p} \cdot \frac{\varphi}{\varphi'_1} \cdot \frac{l'_{1p}}{b} + \frac{d'' + 2c''_s}{D''_p} \frac{\varphi''_{1p}}{\varphi''_1} \frac{h}{b} \right)$$

$$\text{ГДе } L_2 = \min \left\{ b; l'_{2p} + l''_{2p} \right\}.$$
(10.24)

Для овальных штуцеров в формулах (10.23) и (10.24) $d'=d_1''$ и $d''=d_1'''$.

Если ось сварного шва обечайки (днища) удалена от наружных поверхностей обоих штуцеров более чем на три толщины стенки укрепляемого элемента (3s) и не пересекает перемычку, то коэффициент прочности этого сварного шва следует принимать $\varphi=1$. В остальных случаях $\varphi \leq 1$ в зависимости от вида и качества этого сварного шва.

Коэффициент К₃ для цилиндрических и конических обечаек:

$$K_3 = \frac{1 + \cos^2 \beta}{2} \tag{10.25}$$

Угол $oldsymbol{eta}$ определяется в соответствии с рис.10.10. Для выпуклых днищ $\mathbf{K}_3 = \mathbf{1}$.

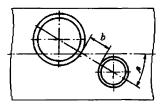


Рис. 10.10. Расположение взаимовлияющих отверстий

Расчет по разд. 10.4 не применим, если имеются взаимовлияющие отверстия с торообразной вставкой или вварным кольцом.

При укреплении двух близко расположенных отверстий другими способами необходимо, чтобы половина площади, необходимой для укрепления в продольном сечении (рис.10.8) размещалась между этими отверстиями.

Для ряда отверстий (рис.10.11) коэффициент понижения прочности:

$$V = \min \left\{ 1; \frac{2b_1}{(b_1 + d + 2c_s)(1 + \cos^2 \beta_1)}; \frac{2b_2}{(b_2 + d + 2c_s)(1 + \cos^2 \beta_2)} \right\}$$
(10.26)

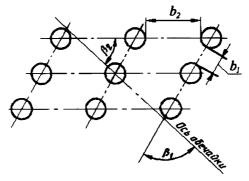


Рис.10.11. Ряды отверстий

10.5. Укрепление отверстий в сосудах и аппаратах, нагруженных наружным давлением

Допустимое наружное давление определяют по формуле:

$$[p] = \frac{[p]_p}{\sqrt{1 + \left(\frac{[p]_p}{[p]_E}\right)^2}}$$
(10.27)

где $[p]_p$ - допускаемое наружное давление в пределах пластичности, определяется по (10.21) как допускаемое внутреннее избыточное давление для сосуда или аппарата с отверстием при $\varphi=1$; $\varphi_1=1$;

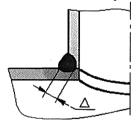
 $[p]_{\!\scriptscriptstyle E}$ - допускаемое наружное давление в пределах упругости, определяемое по пп.3,4 для соответствующих обечайки или днища без отверстий.

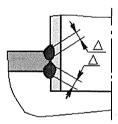
При наличии взаимного влияния отверстий $[p]_p$ определяется аналогично [p] по (10.22) для каждого отверстия в отдельности и по (10.23) для перемычки, а затем из полученных значений принимается меньшее. При этом все коэффициенты сварных швов принимаются равными 1.

Для обечаек или днищ с кольцами жесткости расчет проводится отдельно для каждого участка с отверстиями между соседними кольцами.

10.6. Минимальные размеры сварных швов

Минимальные размеры сварных швов Δ , Δ_1 , Δ_2 , соединяющих приварные штуцера или накладные кольца с корпусом сосуда или аппарата, должны удовлетворять следующим условиям:


- для штуцеров в соответствии с рис.10.12, а, б


$$\Delta \ge 2.1 \frac{l_{1p} s_{1p}}{d + 2s_{1p}} \tag{10.28}$$

- для накладных колец (рис.10.12,в)

$$\left(1 + \frac{2l_{2p}}{d + 2s_{1p}}\right) \Delta_1 + \Delta_2 \ge 2, 1 \frac{l_{2p}s_2}{d + 2s_{1p}},\tag{10.29}$$

где Δ , Δ_1 , Δ_2 - минимальные размеры сечения сварных швов.

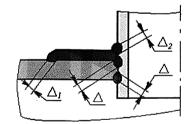


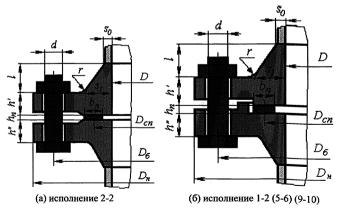
Рис.10.12. Размеры сварных швов

11. Прочность и герметичность фланцевых соединений сосудов и аппаратов

Расчет фланцевых соединений сосудов и аппаратов проводится на основании [11].

В отличие от [11] при определении параметров фланцев и коэффициентов жесткости учитывается прибавка на коррозию. При определении допускаемых напряжений учитываются свойства материала сопрягаемой обечайки (втулки).

При расчете болтов, а также болтовой нагрузки в условиях монтажа для контактирующих фланцев вместо P_{61} принято обозначение


 P_6 . Для определения угловой податливости эллиптических крышек использовались положения [15].

Для фланцевого соединения со свободными кольцами (черт.3 [11]) принято обозначение: фланцы свободные на приварных кольцах (рис11.3).

При выполнении условий применения данный расчет допускается применять для расчета фланцевых соединений трубопроводов и штуцеров.

11.1. Расчетные схемы

На рис.11.1.-11.5. представлены расчетные схемы фланцевых соединений.

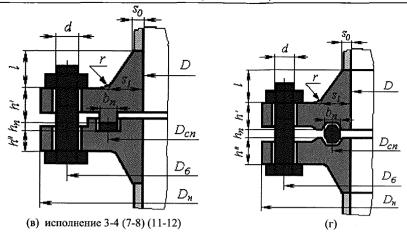
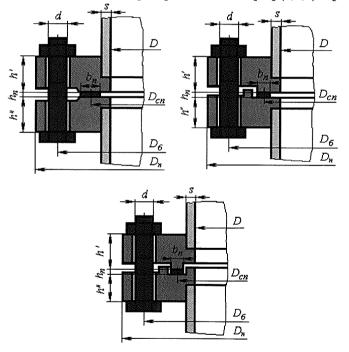



Рис.11.1. Фланцы, приварные встык по [19] (а,б,в) и [20] (г)

исполнение 1-1 (6-6) (11-11) исполнение 4-5 (9-10) (14-15) исполнение 2-3 (7-8) (12-13)

Рис.11.2. Плоские приварные фланцы по [21]

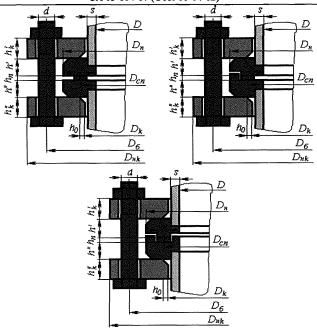


Рис.11.3. Фланцы свободные на приварных кольцах

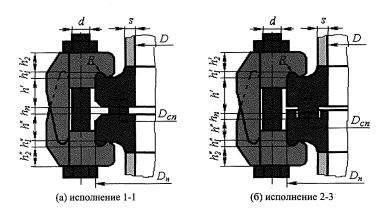


Рис.11.4. Фланцы под зажимы по [26]

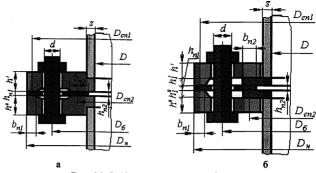


Рис.11.5. Контактирующие фланцы

Условия применения:

$$\frac{D_n}{D} \le 2; \qquad \frac{2h}{D_n - D} \ge 0.25$$
 (11.1)

В случае соединения с разными (по материалам или размерам) фланцами расчет производится для каждого фланца.

Расчетная температура элементов фланцевого соединения при расчетной температуре $t > 20^{\circ} C$ определяется по табл.11.1.

Таблица 11.1

Тип фланцевого	I I	Ізолирован	ные	Неизолированные			
соединения	t_{ϕ}	t _K	t_{6}	$t_{m{\phi}}$	t_{κ}	t_6	
Плоские, приварные встык (рис.11.1.1., 11.1.2.)	t	-	0,97t	0,96t	-	0,85t	
Со свободными кольцами (рис.11.1.3.)	t	0,97t	0,90t	0,96t	0,90t	0,81t	
Приварные под зажимы (рис.11.1.4.)	t	-	0,55t	0,96t	-	0,55t	

Характеристики прокладки m, $q_{o6ж}$, K, E_n принимаются по таблице 11.2.

Таблица 11.2

		T	T	100	олица 11.2
Тип и материал прокладки	Коэф-т т	Удельное давление обжатия <i>Фобжо</i> МПа	Допус- каемое удельное давление [<i>q</i>], МПа	Коэф-т обжа- тия К	Условный модуль сжатия E_{n} ·10 5 , МПа
Плоская из резины по ГОСТ 7338 с твердостью по Шору А до 65 ед.	0,5	2,0	18,0	0,04	$0.3 \cdot 10^{-4} \left(1 + \frac{b_n}{2h_n}\right)$
Плоская из резины по ГОСТ 7338 с твердостью по Шору А более 65 ед.	1,0	4,0	20,0	0,09	$0.4 \cdot 10^{-4} \left(1 + \frac{b_n}{2h_n}\right)$
Плоская из паронита по ГОСТ 481 при толщине не более 2мм*	2,5	20,0	130,0	0,90	0,02
Плоская из картона асбестового по ГОСТ 2850 при толщине 1-3 мм	2,5	20,0	130,0	0,90	0,02
Плоская из фторопласта-4 по ГОСТ 10007 при толщине 1-3 мм	2,5	10,0	40,0	1,0	0,02
Плоская из алюминия марки АД по ГОСТ 21631	4,0	60,0	-	•	-
Плоская из латуни марки Л63 по ГОСТ 2208	4,75	90,0	•	-	•
Плоская из стали 05КП по ГОСТ 9045 или стали 08Х13 по ГОСТ 5632	5,5	125,0	-	-	-
Плоская из стали 08X18H10T по ГОСТ 5632	6,5	180,0	-	-	-

	CA 05-	004-07 (C111 10-	04-02)		
Плоская из асбеста	-				
по ГОСТ 2850 в]	
оболочке из:					
- алюминия	3,25	38,0	_	_	0,04
- меди или латуни	3,5	46,0		-	
- стали 05КП	3,75	53,0			
- стали типа	3,75	63,0		1	0,05
12X18H10T					
Спирально-навитая					
СНП [10]					
- жидкие среды	1,5	27,0			
- воздух, пар,				}	
пароводяная смесь	2,5	50,0	-	-	-
-газы с с высокой					
проникающей					
способностью					
(водород, гелий)	4,0	70,0			
Кольцо с овальным					
или восьмигранным					
сечением из:					
Ст. 05КП по ГОСТ		1	-	-	-
9045 или 08Х13 по		l			
ГОСТ 5632	5,5	125,0			
стали 08Х18Н10Т	6,5	180,0			

*Для сред с высокой проникающей способностью (водород, гелий, легкие нефтепродукты, сжиженные газы и т.п.) $q_{oбж}$ = 35,0 МПа.

11.2. Допускаемые напряжения

Допускаемые напряжения для материалов фланца и приварного кольца $[\sigma]_{\phi}$, фланца свободного на приварном кольце $[\sigma]_k$, а также сопрягаемой обечайки $[\sigma]_{u}$ при расчете статической прочности определяются по Приложению 1 или по формулам 2.1, 2.2. При этом коэффициенты запаса прочности определяются по таб.2.1 для рабочих условий.

Допускаемые напряжения для материалов болтов (шпилек):

а) если расчетная температура для болтов из углеродистых сталей не превышает 380^{0} C, низколегированных сталей 420^{0} C, аустенитных сталей 525^{0} C

$$[\sigma]_6 = \frac{R_e \text{ или } R_{p0,2}}{n_{_T}}$$
 (11.2)

б) если расчетная температура превышает указанную в п.(а)

$$\left[\sigma\right]_{6} = \min\left(\frac{R_{e} \text{ или } R_{p0,2}}{n_{_{\text{T}}}}; \frac{R_{_{m/10^{5}}}}{n_{_{\text{B}}}}; \frac{R_{_{p1,0/10^{5}}}}{n_{_{\text{B}}}}\right)$$
(11.3)

Коэффициент запаса прочности n_T в зависимости от материала и условий нагружения определяется по табл. 11.3.

Коэффициент запаса прочности по пределу длительной прочности n_{π} =1,8.

Коэффициент запаса прочности по пределу ползучести $n_{II}=1,1$.

Допускаемые напряжения для материалов болтов (шпилек) для рабочих условий принимаются по Приложению 3 [5].

Таблица 11.3.

Материал болтов		n_T							
		·	условия и монтажа	Условия испытаний					
		затяжка не контролиру ется	затяжка контролиру ется	затяжка не затяжка контролиру ется ется					
Углеро-	$\frac{R_e}{R_m} \ge 0.7$	2,6-2,8	2,4	2,1	1,8				
дистые стали	$\frac{R_e}{R_m} < 0.7$	2,3	2,1	1,7	1,6				
Аустенитные стали		1,9	1,8	1,4	1,3				

11.3. Расчет вспомогательных величин

Эффективная ширина прокладки, мм: для плоских прокладок

$$\begin{cases} b_0 = b_n & npu \quad b_n \le 15,0 \text{ MM} \\ b_0 = 3,8\sqrt{b_n} & npu \quad b_n > 15,0 \text{ MM} \end{cases}; \tag{11.4}$$

для прокладок овального или восьмигранного сечения

$$b_0 = 0.25b_n. ag{11.5}$$

Податливость прокладки:

$$y_n = \frac{h_n K}{E_n \pi D_{cn} b_n} \tag{11.6}$$

Для соединения с контактирующими фланцами податливость контактных поясов:

$$y_{n1} = \frac{h_{n1}K}{E_n\pi D_{cn1}b_{n1}}; \qquad y_{n2} = \frac{h_{n2}K}{E_n\pi D_{cn2}b_{n2}}$$
(11.7)

Для металлических и асбоцементных прокладок $y_n = 0$.

Расстояние между опорными поверхностями гайки и головки болта:

для фланцев, приварных встык и плоских - $L_{60} = h' + h'' + h_n$; для фланцев со свободными кольцами -

$$L_{60} = h' + h'_k + h'' + h''_k + h_n;$$

для фланцев под зажимы -

$$L_{60} = h' + h'_1 + h'_2 + h'' + h''_1 + h''_2 + h_n; (11.8)$$

для контактирующих фланцев (рис.11.1.5,а) -

$$L_{60} = h' + h'' + h_{n1};$$

для контактирующих фланцев (рис.11.1.5,б) -

$$L_{60} = h' + h_1' + h'' + h_1'' + h_{n1}.$$

Если между фланцами зажата трубная решетка или установлены дополнительные шайбы, то при определении $L_{60}\,$ необходимо учесть их толшины.

Податливость болтов (шпилек):

$$y_6 = \frac{L_6}{E_6^{20} f_6 n},\tag{11.9}$$

где $L_6 = L_{60} + 0.28d$ - для болта;

$$L_6 = L_{60} + 0,56d$$
 - для шпильки;

 f_6 - принимается по таблице 11.4.

Таблина 1	

						_				_		1110 1 1	• •
Диаметр болта шпильки) d, мм	M10	M12	91M	M20	M24	M27	M30	M36	M42	M48	M52	95W	09W
Площадь сеч. по внутр. диаметру резьбы* f_6 , мм 2	2,22	76,2	144	225	324	430	520	160	1045	0861	1820	1960	2300

*В случае применения шпилек с проточкой стержня до диаметра, меньшего внутреннего диаметра резьбы, значение площади поперечного сечения определяется по диаметру проточки.

Податливость зажимов для фланцев:

$$y_{s} = \frac{\lambda_{s}}{n}, \tag{11.10}$$

где λ , - принимается по таблице 11.5 [26].

Таблица 11.5

Диаметр болта <i>d</i> ,		ая способнос при температ	Податливость зажима $\lambda_{_3} \cdot 10^8$, м/Н при температуре, _0 С						
	-70÷100	200	300	-70÷100	200	300			
M12	9,5	8,55	7,4	7,71	8,14	8,61			
M16	18,0	16,2	14,0	7,05	7,44	7,88			
M20	28,0	25,2	21,8	6,08	6,41	6,79			
M24	40,0	36,0	31,2	2,28	2,41	2,55			
M27	53,0	47,6	41,2	1,47	1,55	1,64			

Эквивалентная толщина втулки для фланца, приварного встык:

$$s_{2} = \kappa(s_{0} - c), \tag{11.11}$$

$$\kappa = 1 + (\beta - 1) \frac{x}{x + \frac{1 + \beta}{4}}; \quad \beta = \frac{(s_1 - c)}{(s_0 - c)}; \quad x = \frac{l}{\sqrt{(D + 2c)(s_0 - c)}}$$

Для остальных фланцев и приварного кольца $s_3 = (s - c)$.

Угловая податливость фланца и приварного кольца:

$$y_{\phi} = \frac{\left[1 - \omega (1 + 0.9\lambda)\right] \psi_{z}}{E_{\phi}^{20} h^{3}}$$

$$\Gamma_{AB} = \omega = \frac{1}{1 + 0.9\lambda \left(1 + \psi_{1} j^{2}\right)}; \lambda = \frac{h}{\sqrt{(D + 2c)s_{z}}}; j = \frac{h}{s_{3}};$$

$$\psi_{1} = 1.28 \lg \frac{D_{u}}{(D + 2c)}; \psi_{z} = \frac{D_{u} + (D + 2c)}{D_{u} - (D + 2c)}.$$
(11.12)

Угловая податливость фланца со сферической неотбортованной и эллиптической крышкой при $h_{\rm l} < \sqrt{Ds_{\rm l}}$ (рис11.6):

$$y_{\kappa p} = \frac{\left[1 - \omega_1 \left(1 + 1,285\lambda_1\right)\right] \psi_{\varepsilon}}{E_{\phi}^{20} h_{\kappa p}^3},$$
(11.13)

ГДЕ
$$\lambda_1 = \frac{h_{xp}}{(D+2c)} \sqrt{\frac{(R+c)}{(s_1-c)}}; \ \omega_1 = \frac{1}{1+1,285\lambda_1+1,274\lambda_1\psi_1 j_1^2};$$

$$j_1 = \frac{h_{xp}}{(s_1-c)}.$$

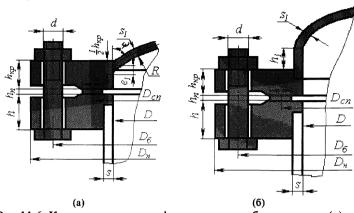


Рис.11.6. Крышки отъемные сферические неотбортованные (а) и эллиптические (б)

Угловая податливость фланца с эллиптической крышкой при $h_1 \geq \sqrt{Ds_1}$ определяется по (11.12) при $h = h_{\kappa p}$, $s_3 = s_1 - c$ и $j = \frac{h_{\kappa p}}{(s_1 - c)}$.

Угловая податливость фланца свободного на приварном кольце:

$$y_{\kappa} = \frac{1}{E_{\kappa}^{20} h_{\kappa}^{3} \psi_{\kappa}}, \tag{11.14}$$

где
$$\psi_{\kappa}=1{,}28\lg{D_{{\scriptscriptstyle M}{\kappa}}\over D_{\kappa}}$$
 .

Угловая податливость фланца с плоской крышкой (рис.11.7):

$$y_{\kappa p} = \frac{x_{\kappa p}}{E_{\kappa p}^{20} s_2^3},\tag{11.15}$$

где
$$x_{\kappa p} = \frac{0.67 \left[K_{\kappa p}^2 \left(1 + 8.55 \lg K_{\kappa p} \right) - 1 \right]}{\left(K_{\kappa p} - 1 \right) \left[K_{\kappa p}^2 - 1 + (1.857 K_{\kappa p}^2 + 1) \left(\frac{s_2}{s_3} \right)^3 \right]}; \quad K_{\kappa p} = \frac{D_{\kappa}}{D_{cn}}$$

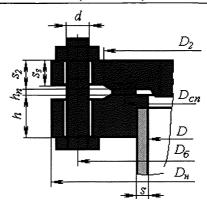


Рис.11.7. Крышки отъемные плоские

Угловая податливость фланца, нагруженного внешним изгибающим моментом:

для фланцев, приварных встык, плоских и с зажимами

$$y_{\phi M} = \left(\frac{\pi}{4}\right)^3 \frac{D_6}{E_{\phi}^{20} D_{\mu} h^3} \tag{11.16}$$

для приварного кольца

$$y_{\phi M} = \left(\frac{\pi}{4}\right)^3 \frac{D_s}{E_{\phi}^{20} D_{\kappa} h^3} \tag{11.17}$$

для фланца свободного на приварном кольце

$$y_{\phi c} = \left(\frac{\pi}{4}\right)^3 \frac{D_6}{E_{\kappa}^{20} D_{nk} h_{\kappa}^3} \tag{11.18}$$

Плечи моментов:

- для фланцев, приварных встык и плоских

$$b = 0.5(D_6 - D_{cn}); e = 0.5(D_{cn} - (D + 2c) - s_3)$$
 (11.19)

- для фланцев свободных на приварных кольцах

$$a = 0.5(D_6 - D_s); b = 0.5(D_s - D_{cn});$$

 $e = 0.5(D_{cn} - (D + 2c) - s_s),$ (11.20)
The $D_c = 0.5(D_u + D_c + 2h_0);$

- для фланцев под зажимы

$$b = 0.5(D_u - 2R - D_{cr}); e = 0.5(D_{cr} - (D + 2c) - s_s)$$
 (11.21)

- для контактирующих фланцев:

$$a = 0.5(D_{cn1} - D_6); b = 0.5(D_6 - D_{cn2});$$

$$e = 0.5(D_{cn2} - (D + 2c) - s_2)$$
(11.22)

11.4. Коэффициенты жесткости фланцевого соединения

Фланцевое соединение, нагруженное внутренним или наружным давлением и внешней осевой силой.

Для фланцев, приварных встык, плоских и под зажимы:

$$\alpha = 1 - \frac{y_n - (y_\phi' e'b' + y_\phi'' e''b'')}{\eta},$$
(11.23)

где для приварных встык и плоских фланцев

$$\eta = y_n + y_6 + y_\phi' b'^2 + y_\phi'' b''^2;$$

для фланцев под зажимы $\eta = y_n + y_3 + y_\phi' b'^2 + y_\phi'' b''^2$.

Для фланцев свободных на приварных кольцах: $\alpha = 1$.

Для фланцевого соединения с крышкой:

$$\alpha = 1 - \frac{y_{\pi} - (y_{\phi}e + y_{\varphi}b)b}{\eta},$$
(11.24)

где $\eta = y_n + y_6 + (y_{\phi} + y_{\kappa \phi})b^2$.

Фланцевое соединение, нагруженное внешним изгибающим моментом:

$$\alpha_{\mu} = -(1 + \beta_{\mu}), \tag{11.25}$$

где для фланцев, приварных встык, плоских и под зажимы:

$$\beta_{M} = \frac{y_{\phi M}' b' e' \left(1 - \frac{e'}{D_{cn}}\right) + y_{\phi M}'' b'' e'' \left(1 - \frac{e''}{D_{cn}}\right) - y_{n} \left(\frac{D_{6}}{D_{cn}}\right)^{2}}{y_{6} + y_{n} \left(\frac{D_{6}}{D_{-}}\right)^{2} + y_{\phi M}' b''^{2} + y_{\phi M}'' b''^{2}};$$
(11.26)

для фланцев свободных на приварных кольцах:

$$\beta_{M} = \frac{y'_{\phi M}b'e'\left(1 - \frac{e'}{D_{cn}}\right) + y''_{\phi M}b''e''\left(1 - \frac{e''}{D_{cn}}\right) - y_{s}\left(\frac{D_{6}}{D_{cn}}\right)^{2}}{y_{6} + y_{s}\left(\frac{D_{6}}{D_{cn}}\right)^{2} + y'_{\phi c}a'^{2} + y''_{\phi A}a''^{2} + y'_{\phi M}b'^{2} + y''_{\phi M}b''^{2}}.$$
(11.27)

Коэффициенты для фланцев с контактирующими фланцами:

$$\alpha_{1} = \frac{1}{\eta_{2}} \begin{bmatrix} y_{n2} a(y'_{\phi}(a+b+e') + y''_{\phi}(a+b+e'')) + \\ + y_{n1}(y_{n2} - b(y'_{\phi}e' + y''_{\phi}e'')) \end{bmatrix},$$
(11.28)

rge $\eta_2 = y_{a1}(y_6 + y_{a2} + (y_A' + y_A'')b^2) + y_{a2}(y_6 + (y_A' + y_A'')a^2) + y_6(y_A' + y_A'')(a+b)^2;$

$$\alpha_2 = \frac{1}{\eta_2} \begin{bmatrix} y_6(a+b)((y_{\phi}'(a+b+e') + y_{\phi}''(a+b+e'')) + \\ + y_{\mu}(y_6 + b(y_{\phi}'(b+e') + y_{\phi}''(b+e''))) \end{bmatrix}$$
(11.29)

$$\eta_1 = \frac{y_{n1} + (y_{\phi}' + y_{\phi}'')a(a+b)}{y_{n1} + y_{n2} + (y_{\phi}' + y_{\phi}'')(a+b)^2};$$
(11.30)

$$\lambda_{1} = \frac{h'}{E'_{A}(D'_{A} - D')} + \frac{h''}{E''_{A}(D''_{B} - D'')} + \frac{h_{B}}{2E_{A}(b_{A} + b_{B})};$$
(11.31)

$$\rho_{1} = \left(\frac{\pi D_{\delta}}{n}\right)^{4} \frac{192}{\left(D' - D'\right)E'_{1}(h')^{3} + \left(D'' - D''\right)E''_{1}(h'')^{3}};$$
(11.32)

$$j_1 = \frac{\frac{\lambda_1}{\rho_1} + 0,0106}{\frac{\lambda_1}{\rho_1} + 0,0019},$$
(11.33)

$$K_{1} = \frac{\frac{\lambda_{1}}{\rho_{1}} - 0,0024}{\frac{\lambda_{1}}{\rho_{1}} + 0,0019};$$
(11.34)

$$\varepsilon = \Delta t_1 b + \Delta t_2 a - \Delta t_6 (a+b); \tag{11.35}$$

$$\gamma = \Delta t_2 - \Delta t_6, \tag{11.36}$$

где $\Delta t_6 = \alpha_6 t_6 l_{60}$.

Для контактирующих фланцев по рис.11.5,а

$$\Delta t_1 = \Delta t_2 = (\alpha_{\phi}' h' + \alpha_{\phi}'' h'') t_{\phi}$$
 (11.37)

Для контактирующих фланцев по рис.11.5,6

$$\Delta t_1 = (\alpha'_{\phi}(h' + h'_1) + \alpha''_{\phi}(h'' + h''_1))t_{\phi}; \tag{11.38}$$

$$\Delta t_2 = (\alpha'_{\phi}(h' + s'_{\flat}) + \alpha''_{\phi}(h'' + s''_{\flat}))t_{\phi}$$
 (11.39)

11.5. Нагрузки, действующие на болты (шпильки)

Равнодействующая давления:

$$Q_{\delta} = p \frac{\pi D_{cn}^2}{4},\tag{11.40}$$

где для контактирующих фланцев $\, D_{\rm cn} = D_{\rm cn2} \, . \,$

Для условий вакуума или наружного давления принимается p < 0 .

Реакция прокладки в рабочих условиях:

$$R_n = \pi D_{cn} b_0 m |p| \tag{11.41}$$

Нагрузка от температурных деформаций:

в соединении приварных встык и плоских фланцах (рис.11.1,

11.2):

$$Q_{t} = \frac{1}{\eta_{t}} \left(\alpha_{\phi}' h' t_{\phi} + \alpha_{\phi}' h'' t_{\phi} - \alpha_{\delta} l_{\delta 0} t_{\delta} \right), \tag{11.42}$$

где
$$\eta_{t}=y_{n}+y_{6}\frac{E_{6}^{20}}{E_{6}}+\left(y_{\phi}^{\prime}\frac{E_{\phi}^{\prime20}}{E_{\phi}^{\prime}}+y_{\phi}^{\prime\prime}\frac{E_{\phi}^{\prime\prime20}}{E_{\phi}^{\prime\prime}}\right)b^{2};$$

в соединении фланцев свободных на приварных кольцах (рис.11.3):

$$Q_{t} = \frac{1}{\eta_{t}} \left((\alpha_{\phi}^{\prime} h^{\prime} + \alpha_{\phi}^{\prime\prime} h^{\prime\prime}) t_{\phi} + (\alpha_{k}^{\prime} h_{k}^{\prime} + \alpha_{k}^{\prime\prime} h_{k}^{\prime\prime}) t_{\kappa} - \alpha_{\delta} l_{\delta 0} t_{\delta} \right)$$
(11.43)

гле

$$\eta_{t} = y_{n} + y_{6} \frac{E_{6}^{20}}{E_{6}} + y_{k}' \frac{E_{\kappa}'^{20}}{E_{\kappa}'} a'^{2} + y_{k}'' \frac{E_{\kappa}''^{20}}{E_{\kappa}''} a''^{2} + y_{\phi}' \frac{E_{\phi}'^{20}}{E_{\phi}'} b'^{2} + y_{\phi}'' \frac{E_{\phi}''^{20}}{E_{\phi}''} b''^{2}$$

в соединении фланцев под зажимы (рис.11.4):

$$Q_{t} = \frac{1}{\eta_{t}} \begin{pmatrix} \alpha_{\phi}' (h' + h_{1}') t_{\phi} + \alpha_{\phi}'' (h'' + h_{1}'') t_{\phi} + \\ + (\alpha_{s}' h_{2}' + \alpha_{s}'' h_{2}'') t_{6} - \alpha_{6} l_{60} t_{6} \end{pmatrix},$$
(11.44)

где
$$\eta_i = y_n + y_s \frac{\lambda_s^{20}}{\lambda_s} + y_\phi' \frac{E_\phi'^{20}}{E_\phi'} b'^2 + y_\phi'' \frac{E_\phi''^{20}}{E_\phi''} b''^2;$$

в соединении контактирующих фланцев (рис.11.5):

$$Q_{16} = \frac{\varepsilon \left[y_{n2} + (y_{\phi}' + y_{\phi}'')b(a+b) \right] + \gamma \left(b y_{n1} - a y_{n2} \right)}{b \eta_2}; \quad (11.45)$$

$$Q_{tc} = \frac{\varepsilon \left[(y_{\phi}' + y_{\phi}'')ab - y_{6} \right] + \gamma \left(y_{6}(a+b) + by_{n1} \right)}{b \eta_{2}}; \quad (11.46)$$

в соединении с крышкой:

$$Q_{t} = \frac{1}{\eta_{t}} \left(\alpha_{\phi} h t_{\phi} + \alpha_{\kappa \phi} h_{\kappa \phi} t_{\phi} - \alpha_{\delta} l_{\delta 0} t_{\delta} \right), \tag{11.47}$$

где
$$\eta_t = y_n + y_6 \frac{E_6^{20}}{E_6} + \left(y_\phi \frac{E_\phi^{20}}{E_\phi} + y_{\kappa\rho} \frac{E_{\kappa\rho}^{20}}{E_{\kappa\rho}} \right) b^2;$$

 $lpha_{_{m{\phi}}}$, $lpha_{_{m{\kappa}}}$, $E_{_{m{\phi}}}$, $E_{_{m{\kappa}}}$, $E_{_{m{\kappa}}}$ определяются по Приложению 2;

 $\alpha_{\scriptscriptstyle 6}$, $E_{\scriptscriptstyle 6}$ определяются по Приложению 5.

При определении нагрузок от температурных деформаций расчетную температуру фланцев, крышки, болтов (шпилек), трубной решетки, свободного кольца следует уменьшить на температуру сборки фланцевого соединения (20^{0} C).

Болтовая нагрузка P_6 в условиях монтажа принимается большей из следующих значений:

$$P_{6} = \max \begin{cases} \alpha(Q_{o} + F) + R_{n} - Q_{i} + \left| \frac{4\alpha_{m}M}{D_{cn}} \right| \\ 0.5\pi D_{cn}b_{0}q_{o6m} \\ 0.4[\sigma]_{6}^{20} nf_{6} - кроме фланцев под зажимы \\ 0.4B_{i}n - для фланцев под зажимы \end{cases}, (11.48)$$

где F < 0, если усилие сжимающее;

при $\alpha < 1$ в формулах (11.49) и (11.51) принимается $\alpha = 1$;

при определении P_6 нагрузка от температурных деформаций Q_t учитывается только при $Q_t < 0$;

 B_I используется в соединении фланцев под зажимы и принимается по таблице 11.5.

Для соединения с контактирующими фланцами:

$$P_{\delta} = \max \begin{cases} \alpha_{2} \left(Q_{\delta} + \frac{4M}{D_{cn2}} + F \right) + \pi \left(D_{cn1} b_{01} + D_{cn2} b_{02} \right) m |p| - Q_{cc} \\ 0.5\pi \left(D_{cn1} b_{01} + D_{cn2} b_{02} \right) q_{o6xc} \\ 0.4 [\sigma]_{\delta}^{20} n f_{\delta} \end{cases}$$
(11.49)

Приращение нагрузки в болтах (шпильках) в рабочих условиях:

$$\Delta P_6 = (1 - \alpha)(Q_0 + F) + Q_t + \frac{4\beta_{M}M}{D_{cr}}$$
 (11.50)

Для соединения с контактирующими фланцами:

$$\Delta P_6 = \alpha_1 (Q_0 + \frac{4M}{D_{cn2}} + F) + Q_{t6}$$
 (11.51)

Реакция контактных поясов прокладки в рабочих условиях для соединения с контактирующими фланцами:

$$R_2 = \eta_1 P_6 - \alpha_2 \left(Q_{\dot{\sigma}} + \frac{4M}{D_{cr^2}} + F \right) + Q_{tc}$$
 (11.52)

$$R_1 = P_6 + \Delta P_6 - R_2 - \left(Q_{\partial} + \frac{4M}{D_{cn2}} + F\right)$$
 (11.53)

Расчет нагрузок, действующих на болты (шпильки) в условиях испытаний проводится для давления, сил и моментов, действующих в условиях испытаний, при этом нагрузка от температурных деформаций $Q_{\rm r}=0$.

11.6. Расчет болтов (шпилек)

Условия прочности болтов (шпилек) для фланцев приварных встык, плоских и свободных фланцев на приварных кольцах:

$$\sigma_{61} = \frac{P_6}{nf_6} \le \xi \left[\sigma\right]_6^{20} \tag{11.54}$$

$$\sigma_{62} = \frac{P_6 + \Delta P_6}{nf_6} \le \left[\sigma\right]_6,\tag{11.55}$$

где $\zeta = 1.1 \div 1.2$;

для фланцев под зажимы:

$$\sigma_{61} = \frac{1,25P_6}{nf_6} \le \xi \left[\sigma\right]_6^{20} \tag{11.56}$$

$$\sigma_{62} = \frac{1,25(P_6 + \Delta P_6)}{nf_6} \le [\sigma]_6 \tag{11.57}$$

для контактирующих фланцев

$$\sigma_{61} = \frac{P_6}{nf_6} \le 1{,}25\xi \left[\sigma\right]_6^{20} \tag{11.58}$$

$$\sigma_{62} = \frac{P_6 + \Delta P_6}{nf_6} \le 1,25[\sigma]_6 \tag{11.59}$$

При проверке прочности болтов для рабочих условий с учетом нагрузки на болты от стесненности температурных деформаций допускаемое напряжение может быть увеличено на 30%.

11.7. Расчет прокладок

Условие допускаемого давления, действующего на мягкие прокладки:

$$q = \frac{P_6}{\pi D_{\infty} b_{\pi}} \le [q] \tag{11.60}$$

для соединения с контактирующими фланцами:

$$q = \frac{R_1}{\pi D_{cri} b_{cri}} j_1 \le [q] \tag{11.61}$$

Условие герметичности для соединения с контактирующими фланцами:

$$\frac{R_2}{\pi D_{m2} b_{n2}} K_1 \ge m|p| \tag{11.62}$$

11.8. Расчет фланцев

Угол поворота фланца (приварного кольца) при затяжке:

$$\theta = M_{01} \frac{\left[1 - \omega(1 + 0.9\lambda)\right]\psi_2}{E_{\phi}^{20} h^3},$$
(11.63)

где $M_{01} = P_6 b$.

Приращение угла поворота фланца (приварного кольца):

$$\Delta \theta = \Delta M_{01} \frac{\left[1 - \omega (1 + 0.9\lambda)\right] \psi_2}{E_{\phi} h^3}, \qquad (11.64)$$

где
$$\Delta M_{01} = \Delta P_6 b + \left(Q_{\partial} + \frac{4M}{D_{cn}} + F\right)e$$
.

Максимальный изгибающий момент для соединения с контактирующими фланцами:

$$M_{0} = \max \begin{cases} \eta_{1} P_{6} b - (1 - \eta_{1}) P_{6} a + \left(\frac{4M}{D_{cn2}} + F\right) (b + e) \\ \left[R_{2} b - R_{1} a + \left(Q_{\partial} + \frac{4M}{D_{cn2}} + F\right) (b + e)\right] \frac{[\sigma]_{\phi}^{20}}{[\sigma]_{\phi}} \end{cases}$$
(11.65)

11.8.1. Фланцы приварные встык

Осевые напряжения при затяжке в обечайке (втулке) на наружной и внутренней поверхностях:

- в сечении
$$S_I$$

$$\sigma_{11} = \sigma_1; \qquad \sigma_{12} = -\sigma_1, \qquad (11.66)$$
 где
$$\sigma_1 = \frac{T\omega \, M_{01}}{D^*(s_1-c)^2}; \qquad T = \frac{\left(\frac{D_{_N}}{(D+2c)}\right)^2 \left[1+8,55\lg\left(\frac{D_{_N}}{(D+2c)}\right)\right]-1}{\left[1,05+1,945\left(\frac{D_{_N}}{(D+2c)}\right)^2\right] \left(\frac{D_{_N}}{(D+2c)}-1\right)};$$

$$D^* = (D+2c) \quad \text{при} \quad (D+2c) \geq 20(s_1-c);$$

$$D^* = D+c+s_0 \quad \text{при} \quad (D+2c) < 20(s_1-c) \quad \text{и} \quad f>1;$$

$$D^* = D+c+s_1 \quad \text{при} \quad (D+2c) < 20(s_1-c) \quad \text{и} \quad f=1,$$
 где f определяется по (46) Приложения 6;

- в сечении sa

$$\sigma_{21} = f\sigma_{1}, \qquad \sigma_{22} = -f\sigma_{1}. \tag{11.67}$$

Приращения осевых напряжений в обечайке (втулке):

- в сечении S₁

$$\Delta\sigma_{11} = \Delta\sigma_{M} + \Delta\sigma_{1}; \qquad \Delta\sigma_{12} = \Delta\sigma_{M} - \Delta\sigma_{1}, \tag{11.68}$$

$$\Gamma \Delta\sigma_{M} = \frac{Q_{o} + \frac{4M}{D_{cn}} + F}{\pi (D + 2c)(s_{1} - c)}; \qquad \Delta\sigma_{1} = \frac{T\omega \Delta M_{01}}{D^{*}(s_{1} - c)^{2}};$$

- в сечении ѕо

$$\Delta \sigma_{21} = \Delta \sigma_M + f \Delta \sigma_1; \quad \Delta \sigma_{22} = \Delta \sigma_M - f \Delta \sigma_1, \quad (11.69)$$

где
$$\Delta\sigma_{\scriptscriptstyle M} = \frac{Q_{\scriptscriptstyle o} + \frac{4M}{D_{\scriptscriptstyle cn}} + F}{\pi \; (D + 2c) \left(s_{\scriptscriptstyle 0} - c\right)}.$$

Окружные напряжения в обечайке (втулке):

- в сечении S₁

$$\sigma_{13} = \frac{E^{20}h\theta}{(D+2c)} + 0.3\sigma_1; \ \sigma_{14} = \frac{E^{20}h\theta}{(D+2c)} - 0.3\sigma_1; \tag{11.70}$$

- в сечении s₀

$$\sigma_{23} = 0.3 f \sigma_1; \ \sigma_{24} = -0.3 f \sigma_1.$$
 (11.71)

Приращения окружных напряжений в обечайке (втулке):

- в сечении S₁

$$\Delta\sigma_{13} = \frac{Eh\Delta\theta}{(D+2c)} + \frac{p(D+2c)}{D_n - (D+2c)} + 0,3\Delta\sigma_1;$$

$$\Delta\sigma_{14} = \frac{Eh\Delta\theta}{(D+2c)} + \frac{p(D+2c)}{D_n - (D+2c)} - 0,3\Delta\sigma_1$$
(11.72)

- в сечении sa

$$\Delta\sigma_{23} = \frac{p(D+2c)}{2(s_0-c)} + 0.3 f\Delta\sigma_1; \ \Delta\sigma_{24} = \frac{p(D+2c)}{2(s_0-c)} - 0.3 f\Delta\sigma_1.$$
 (11.73)

Условие прочности при расчете статической прочности в сечении s_I :

- при затяжке

$$\sigma_{s1} = \max \left\{ \frac{\sqrt{\sigma_{11}^2 + \sigma_{13}^2 - \sigma_{11}\sigma_{13}}}{\sqrt{\sigma_{12}^2 + \sigma_{14}^2 - \sigma_{12}\sigma_{14}}} \right\} \le 1.5 [\sigma]_{\phi}^{20};$$
(11.74)

- в рабочих условиях

$$\sigma_{_{31}} = \max \left\{ \frac{\sqrt{\left(\sigma_{_{11}} + \Delta\sigma_{_{11}}\right)^2 + \left(\sigma_{_{13}} + \Delta\sigma_{_{13}}\right)^2 - \left(\sigma_{_{11}} + \Delta\sigma_{_{11}}\right)\left(\sigma_{_{13}} + \Delta\sigma_{_{13}}\right)}}{\sqrt{\left(\sigma_{_{12}} + \Delta\sigma_{_{12}}\right)^2 + \left(\sigma_{_{14}} + \Delta\sigma_{_{14}}\right)^2 - \left(\sigma_{_{12}} + \Delta\sigma_{_{12}}\right)\left(\sigma_{_{14}} + \Delta\sigma_{_{14}}\right)}} \right\} \le 1,5 \left[\sigma\right]_{\phi}^{\phi}$$
(11.75)

- в условиях испытаний:

$$\sigma_{s1} = \max \left\{ \frac{\sqrt{\left(\sigma_{11} + \Delta\sigma_{11}\right)^2 + \left(\sigma_{13} + \Delta\sigma_{13}\right)^2 - \left(\sigma_{11} + \Delta\sigma_{11}\right)\left(\sigma_{13} + \Delta\sigma_{13}\right)}}{\sqrt{\left(\sigma_{12} + \Delta\sigma_{12}\right)^2 + \left(\sigma_{14} + \Delta\sigma_{14}\right)^2 - \left(\sigma_{12} + \Delta\sigma_{12}\right)\left(\sigma_{14} + \Delta\sigma_{14}\right)}} \right\} \le 2,0 \left[\sigma_{\phi}^{20}\right].$$
(11.76)

Условие прочности в сечении so:

- при затяжке

$$\sigma_{s0} = \max \left\{ \sqrt{\sigma_{21}^{2} + \sigma_{23}^{2} - \sigma_{21}\sigma_{23}} \right\} \leq \min \left\{ \left(4.5 - 2.0 \frac{R_{e\phi}^{20}}{R_{m\phi}^{20}} \right) [\sigma]_{\phi}^{20}; \left\{ 4.5 - 2.0 \frac{R_{e\phi}^{20}}{R_{m\omega}^{20}} \right] [\sigma]_{uu}^{20} \right\}; \quad (11.77)$$

- в рабочих условиях

$$\sigma_{s0} = \max \left\{ \frac{\sqrt{(\sigma_{21} + \Delta\sigma_{21})^2 + (\sigma_{23} + \Delta\sigma_{23})^2 - (\sigma_{21} + \Delta\sigma_{21})(\sigma_{23} + \Delta\sigma_{23})}}{\sqrt{(\sigma_{22} + \Delta\sigma_{22})^2 + (\sigma_{24} + \Delta\sigma_{24})^2 - (\sigma_{22} + \Delta\sigma_{22})(\sigma_{24} + \Delta\sigma_{24})}} \right\} \leq \min \left\{ \begin{bmatrix} 4.5 - 2.0 \frac{R_{e\phi}}{R_{m\phi}} \left[\sigma \right]_{\phi}; \\ 4.5 - 2.0 \frac{R_{e\omega}}{R_{m\omega}} \left[\sigma \right]_{uc} \end{bmatrix} \right\}$$

$$(11.78)$$

- в условиях испытаний

$$\sigma_{s0} = \max \begin{cases} \sqrt{\left(\sigma_{21} + \Delta\sigma_{21}\right)^{2} + \left(\sigma_{23} + \Delta\sigma_{23}\right)^{2} - \left(\sigma_{21} + \Delta\sigma_{21}\right)\left(\sigma_{23} + \Delta\sigma_{23}\right)}} \\ \sqrt{\left(\sigma_{22} + \Delta\sigma_{22}\right)^{2} + \left(\sigma_{24} + \Delta\sigma_{24}\right)^{2} - \left(\sigma_{22} + \Delta\sigma_{22}\right)\left(\sigma_{24} + \Delta\sigma_{24}\right)}} \end{cases} \leq \min \begin{cases} \left(6.0 - 2.7 \frac{R_{exp}^{20}}{R_{mip}^{20}}\right) \left[\sigma\right]_{\phi}^{20}; \\ \left(6.0 - 2.7 \frac{R_{exp}^{20}}{R_{min}^{20}}\right) \left[\sigma\right]_{iu}^{20}; \end{cases}$$

11.8.2. Фланцы плоские приварные, под зажимы и приварные кольца

Осевые напряжения при затяжке в обечайке на наружной и внутренней поверхности:

$$\sigma_{21} = \sigma_1; \qquad \sigma_{22} = -\sigma_1,$$
где $\sigma_1 = \frac{T\omega \, M_{01}}{(D+2c)(s-c)^2}.$

Приращения осевых напряжений:

$$\Delta \sigma_{21} = \Delta \sigma_M + \Delta \sigma_1; \quad \Delta \sigma_{22} = \Delta \sigma_M - \Delta \sigma_1, \tag{11.81}$$

где
$$\Delta\sigma_{\scriptscriptstyle M} = \frac{Q_{\scriptscriptstyle 0} + \frac{4M}{D_{\scriptscriptstyle cn}} + F}{\pi \left(D + 2c\right)\!\left(s - c\right)}; \quad \Delta\sigma_{\scriptscriptstyle 1} = \frac{T\omega \; \Delta M_{\scriptscriptstyle 01}}{D^{^{\bullet}}\!\left(s - c\right)^2} \; .$$

Окружные напряжения в обечайке (втулке):

$$\sigma_{23} = 0.3\sigma_1; \qquad \sigma_{24} = -0.3\sigma_1.$$
 (11.82)

Приращения окружных напряжений:

$$\Delta\sigma_{23} = \frac{p(D+2c)}{2(s-c)} + 0.3\Delta\sigma_1; \ \Delta\sigma_{24} = \frac{p(D+2c)}{2(s-c)} - 0.3\Delta\sigma_1. \ (11.83)$$

Условие прочности при расчете статической прочности при затяжке в рабочих условиях и условиях испытаний проверяется по формулам (11.78), (11.79) и (11.80) соответственно.

11.8.3. Фланцы свободные на приварных кольцах

Угол поворота фланца свободного:

$$\theta_{\kappa} = \frac{P_6 a}{E_{\kappa}^{20} h_{\kappa}^3 \psi_{\kappa}} + \frac{\Delta P_6 a}{E_{\kappa} h_{\kappa}^3 \psi_{\kappa}}$$
(11.84)

Кольцевое напряжение:

$$\sigma_{\kappa} = \frac{E_{\kappa} h_{\kappa} \theta_{\kappa}}{D_{\kappa}} \tag{11.85}$$

Условие выполнения прочности:

- в рабочих условиях

$$\sigma_{\kappa} \le 1,5[\sigma]_{k}; \tag{11.86}$$

- в условиях испытаний

$$\sigma_{\kappa} \le 2.0 [\sigma]_{k}^{20} \,. \tag{11.87}$$

11.8.4. Фланцы контактирующие

Осевое напряжение в обечайке (втулке) на наружной и внутренней поверхности в рабочих условиях и условиях испытаний:

$$\sigma_{21} = \frac{Q_o + \frac{4M}{D_{cm2}} + F}{\pi (D + 2c)(s - c)} + \frac{T\omega M_0}{(D + 2c)(s - c)^2}; \quad \sigma_{22} = \frac{Q_o + \frac{4M}{D_{cm2}} + F}{\pi (D + 2c)(s - c)} - \frac{T\omega M_0}{(D + 2c)(s - c)^2}$$
(11.88)

Окружное напряжение в обечайке (втулке):

$$\sigma_{23} = \frac{p(D+2c)}{2(s-c)} + 0.3 \frac{T\omega M_0}{(D+2c)(s-c)^2}; \quad \sigma_{24} = \frac{p(D+2c)}{2(s-c)} - 0.3 \frac{T\omega M_0}{(D+2c)(s-c)^2}$$
(11.89)

Условие прочности:

- в рабочих условиях

$$\sigma_{s0} = \max \left\{ \frac{\sqrt{\sigma_{21}^2 + \sigma_{23}^2 - \sigma_{21}\sigma_{23}}}{\sqrt{\sigma_{22}^2 + \sigma_{24}^2 - \sigma_{22}\sigma_{24}}} \right\} \le \min \left\{ \frac{\left(4,5 - 2,0\frac{R_{e\phi}}{R_{m\phi}}\right)[\sigma]_{\phi};}{\left(4,5 - 2,0\frac{R_{eu}}{R_{muu}}\right)[\sigma]_{u}} \right\}$$
(11.90)

- в условиях испытаний

$$\sigma_{s0} = \max \left\{ \frac{\sqrt{\sigma_{21}^{2} + \sigma_{23}^{2} - \sigma_{21}\sigma_{23}}}{\sqrt{\sigma_{22}^{2} + \sigma_{24}^{2} - \sigma_{22}\sigma_{24}}} \right\} \leq \min \left\{ \begin{cases} 6.0 - 2.7 \frac{R_{e\phi}^{20}}{R_{m\phi}^{20}} \left[\sigma \right]_{\phi}^{20}; \\ 6.0 - 2.7 \frac{R_{eu}^{20}}{R_{mu}^{20}} \left[\sigma \right]_{u}^{20} \end{cases} \right\}$$
(11.91)

11.9. Жесткость фланцев

Условие выполнения жесткости фланцев:

$$|\theta + \Delta \theta| \le [\theta] \tag{11.92}$$

где допускаемый угол поворота для фланцев приварных встык

- для рабочих условий:
$$[\theta] = 0,009$$
 при $D \le 2000$ мм;

$$[\theta]$$
 = 0,013 при $D > 2000$ мм;

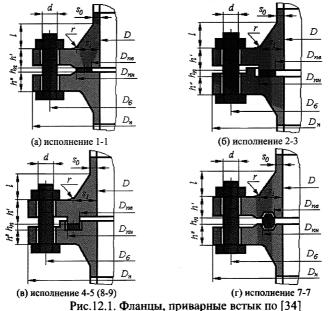
- для условий испытаний:
$$[\theta] = 0.011$$
 при $D \le 2000$ мм; $[\theta] = 0.015$ при $D > 2000$ мм;

для фланцев плоских приварных, под зажимы и приварных колеп:

- для рабочих условий
$$[\theta] = 0.013$$
;

- для условий испытаний
$$[\theta]$$
 = 0,017 .

12. Прочность и герметичность фланцевых соединений арматуры и трубопроводов


При выполнении условия (11.1) расчет фланцевых соединений арматуры и трубопроводов допускается проводить по п.11. В противном случае прочность и жесткость фланцевого соединения оценивается по Приложениям 2 и S ASME VIII-1 [40] соответственно. При этом нагрузки, действующие на элементы фланцевого соединения, помимо давления учитывают внешние усилия и моменты, а также нагрузки от температурных деформаций, принятые по аналогии с [11].

Расчет фланцевых соединений проводится для четырех случаев нагружения:

- расчет в рабочих условиях от давления и внешних усилий $(Q_t = 0);$
 - расчет в рабочих условиях с учетом температурной нагрузки;
 - расчет в условиях монтажа;
 - расчет в условиях испытаний.

12.1. Расчетные схемы

На рис.12.1.-12.3. представлены фланцевые соединения с исполнением уплотнительных поверхностей фланцев по [22].

© Ассоциация «Ростехэкспертиза»

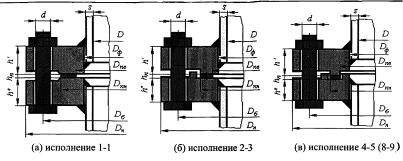


Рис.12.2. Плоские приварные фланцы по [23]

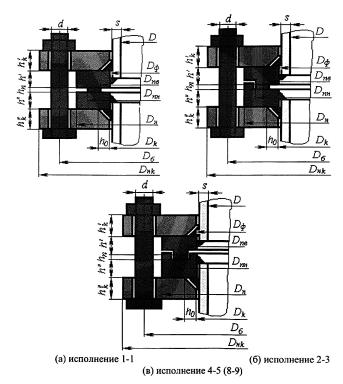
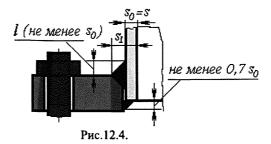



Рис.12.3. Фланцы свободные на приварных кольцах по [24]

Возможно применение соединений с разными (по материалам или размерам) фланцами, т.к. расчет производится для каждого фланца.

Плоские приварные фланцы могут быть рассчитаны как без учета присоединяемой стенки штуцера, арматуры или трубы (далее

свободного типа), так и с ее учетом (далее **интегрального типа**). Во втором случае, в отличие от схем рис.12.2, соединение фланцев со стенкой осуществляется в соответствии с рис.12.4.

Расчетные температуры элементов фланцевого соединения определяется по табл. 11.1.

Характеристики прокладки m, $q_{o6ж}$, K, E_n принимаются по таблице 11.2.

12.2. Допускаемые напряжения

При расчете фланцевых соединений величины допускаемых напряжений для материалов фланца и приварного кольца $[\sigma]_{\phi}$, фланца свободного на приварном кольце $[\sigma]_k$, а также сопрягаемой обечайки (штуцера) $[\sigma]_w$ в рабочих условиях (при рабочей температуре) и условиях монтажа (при t=200C) определяются как [41]:

а) если расчетная температура из углеродистых сталей не превышает 380^{0} C, низколегированных сталей 420^{0} C, аустенитных сталей 525^{0} C

$$[\sigma] = \min\left(\frac{R_e \text{ или } R_{p0,2}}{1,5}; \frac{R_m^{20}}{3,5}; \frac{1,1R_m}{3,5}\right); \tag{12.1}$$

б) если расчетная температура превышает указанную в п.(а)

$$[\sigma] = \min \left(\frac{R_e \text{ или } R_{p0,2}}{1,5}; \frac{R_m^{20}}{3,5}; \frac{1,1R_m}{3,5}; \frac{R_{m/10^3}}{1,25}; \frac{R_{p1,0/10^3}}{1,0} \right)$$
(12.1a)

Допускаемые напряжения в условиях испытаний:

$$\left[\sigma\right]_{u}^{20} = \frac{R_{e}^{20} \text{ или } R_{p0,2}^{20}}{11} \tag{12.2}$$

Механические свойства материалов патрубков, фланцев и колец принимаются по приложению 2 [1] или другой нормативной документации при расчетной температуре.

Допускаемые напряжения для материалов болтов (шпилек) $[\sigma]_{\delta}$ в рабочих условиях (при рабочей температуре) и условиях монтажа (при t=200C) определяются как [41]:

а) если расчетная температура для болтов из углеродистых сталей не превышает 380° C, низколегированных сталей 420° C, аустенитных сталей 525° C

$$\left[\sigma\right]_{\theta} = \min\left\{\frac{R_e^{20} \text{ или } R_{p0,2}^{20}}{4}; \frac{R_m^{20}}{5}; \frac{R_e \text{ или } R_{p0,2}}{1,5}; \frac{1,1R_m}{4}\right\}; \tag{12.3}$$

б) если расчетная температура превышает указанную в п.(а)

$$[\sigma]_{6} = \min \left\{ \frac{R_{e}^{20} \text{ или } R_{\rho 0,2}^{20}}{4}; \frac{R_{m}^{20}}{5}; \frac{R_{e} \text{ или } R_{\rho 0,2}}{1,5}; \frac{1,1R_{m}}{4}; \frac{R_{m/10^{5}}}{1,25}; \frac{R_{\rho 1,0/10^{5}}}{1,0} \right\}$$
(12.3a)

Допускаемые напряжения в условиях испытаний:

$$[\sigma]_{6u}^{20} = \frac{R_e^{20} \text{ или } R_{p0,2}^{20}}{3.0}$$
 (12.4)

Механические свойства для болтов арматурных фланцевых соединений приведены в Приложении 7 [10,25].

12.3. Расчет вспомогательных величин

Эффективная ширина прокладки, мм:

а) для плоских прокладок

$$b_0 = \frac{D_{nH} - D_{ne}}{2} \text{ при } \frac{D_{nH} - D_{ne}}{2} \le 12,7 \text{ мм};$$

$$b_0 = 3,56\sqrt{\frac{D_{nH} - D_{ne}}{2}} \text{ при } \frac{D_{nH} - D_{ne}}{2} > 12,7 \text{ мм}; \qquad (12.5)$$

б) для прокладок овального или восьмигранного сечения

$$b_0 = 0.25 \frac{D_{nH} - D_{ne}}{2} \tag{12.6}$$

Средний эффективный диаметр прокладки:

а) для плоских прокладок

$$D_{cn} = D_{nH} - b_0; (12.7)$$

б) для прокладок овального или восьмигранного сечения

$$D_{cn} = \frac{D_{n\mu} + D_{ns}}{2} \tag{12.8}$$

Податливость прокладки:

$$y_n = \frac{h_n K}{E_n \pi D_{cn} b_0} \tag{12.9}$$

Для металлических и асбометаллических прокладок $y_n = 0$.

Податливость болтов (шпилек) для фланцев:

$$y_6 = \frac{L_6}{E_6^{20} f_6 n},\tag{12.10}$$

где $L_6=L_{60}+0,28d$ - для болта; $L_6=L_{60}+0,56d$ - для шпильки; f_6 - принимается по таблице 11.4.

Эквивалентная толщина втулки для фланца приварного встык:

$$s_{\mathfrak{s}} = \kappa(s_0 - c), \tag{12.11}$$

$$\kappa = 1 + (\beta - 1) \frac{x}{x + \frac{1 + \beta}{4}}; \quad \beta = \frac{(s_1 - c)}{(s_0 - c)}; \quad x = \frac{l}{\sqrt{(D + 2c)(s_0 - c)}}.$$

Для плоского приварного интегрального типа и приварного кольца (рис.12.3) $s_{\mathfrak{z}} = s_{\mathfrak{0}} - c$.

Угловая податливость фланца приварного встык, плоского приварного интегрального типа и приварного кольца:

$$y_{\phi} = \frac{\left[1 - \omega (1 + 0.9\lambda)\right] \psi_{\varepsilon}}{E_{\phi}^{20} h^{3}},$$
(12.12)

где
$$\omega = \frac{1}{1+0.9\lambda (1+\psi_1 j^2)}; \ j = \frac{h}{s_9}; \ \psi_1 = 1,28 \lg \frac{D_u}{(D+2c)};$$

$$\lambda = \frac{h}{\sqrt{(D+2c)s_3}}; \ \psi_z = \frac{D_u + (D+2c)}{D_u - (D+2c)}.$$

Угловая податливость плоского приварного фланца свободного типа:

$$y_{\phi} = \frac{1}{E_{\phi}h^{3}\psi_{1}},$$

$$\text{где } \psi_{1} = 1,28 \lg \frac{D_{u}}{D_{\phi}};$$
(12.13)

Угловая податливость фланца свободного на приварном кольце:

$$y_{k} = \frac{1}{E_{\kappa}^{20} h_{\kappa}^{3} \psi_{\kappa}}, \tag{12.14}$$

где
$$\psi_{\kappa} = 1,28 \lg \frac{D_{\scriptscriptstyle MK}}{D_{\scriptscriptstyle K}}$$
.

Угловая податливость фланца со сферической неотбортованной крышкой (рис.11.6,а):

$$y_{\kappa pc} = \frac{\left[1 - \omega_1 \left(1 + 1,285\lambda_1\right)\right] \psi_z}{E_{\phi}^{20} h^3},$$
 (12.15)

где
$$\omega_1 = \frac{1}{1 + 1,285\lambda_1 + 1,274\lambda_1 \psi_1 j^2}$$
; $\lambda_1 = \frac{h}{(D + 2c)} \sqrt{\frac{R_s}{(s_0 - c)}}$

Угловая податливость плоской крышки (рис.5.1.):

$$y_{\kappa p} = \frac{x_{\kappa p}}{E_{\kappa p}^{20} s_2^3},\tag{12.16}$$

$$\text{ fight } x_{np} = \frac{0.67 \left[K_{np}^2 \left(1 + 8.55 \lg K_{np} \right) - 1 \right]}{\left(K_{np} - 1 \right) \left[K_{np}^2 - 1 + \left(1.857 K_{np}^2 + 1 \right) \left(\frac{s_2}{s_3} \right)^3 \right]}; \ \, K_{np} = \frac{D_{n}}{D_{cn}}.$$

Угловая податливость фланца, нагруженного внешним изгибающим моментом:

для фланцев приварных встык и плоских приварных как интегрального типа, так и свободного

$$y_{\phi M} = \left(\frac{\pi}{4}\right)^3 \frac{D_6}{E_{\phi}^{20} D_{\scriptscriptstyle R} h^3}; \tag{12.17}$$

для приварного кольца

$$y_{\phi M} = \left(\frac{\pi}{4}\right)^3 \frac{D_s}{E_{\phi}^{20} D_n h^3},\tag{12.18}$$

где $D_s = 0.5(D_{_H} + D_{_K} + 2h_0)$;

для фланца свободного на приварном кольце

$$y_{\phi c} = \left(\frac{\pi}{4}\right)^3 \frac{D_6}{E_{\kappa}^{20} D_{nk} h_{\kappa}^3}.$$
 (12.19)

Плечи моментов:

для фланцев, приварных встык и плоских интегрального типа

$$b = 0.5(D_6 - D_{cn}); e = 0.5(D_{cn} - (D + 2c) - s_3);$$
 (12.20)

для плоских приварных фланцев свободного типа

$$b = 0.5(D_6 - D_{cr}); e = 0.5(D_{cr} - (D_{dr} + 2c) - s_a);$$
 (12.21)

для фланцев свободных на приварных кольцах

$$a = 0.5(D_6 - D_s); b = 0.5(D_s - D_{cn}); e = 0.5(D_{cn} - (D + 2c) - S_s);$$

$$D_c = 0.5(D_u + D_r + 2h_0)$$
(12.22)

12.4. Коэффициенты жесткости фланцевого соединения

Коэффициенты жесткости фланцевых соединений, нагруженных давлением, а также внешней осевой силой и изгибающим моментом, определяются по формулам для фланцевых соединений сосудов и аппаратов (п.11.4).

12.5. Нагрузки, действующие на болты (шпильки)

На рис.12.5 представлена расчетная схема для определения прочности фланца.

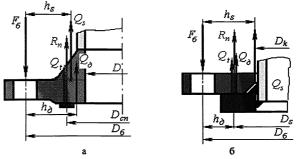


Рис. 12.5. Нагрузки, действующие на фланец а – приварной встык и плоский приварной интегрального типа, 6 – свободный на приварном кольце

Для соединения со свободными фланцами на приварных кольцах (рис.12.5,6) расположение силы реакции в прокладке, передающейся на фланец, не зависит от ее расположения. При этом для данного типа соединения принимается:

$$D_{cn} = D_s \tag{12.23}$$

Осевое усилие, действующее через обечайку смежного элемента:

$$Q_s = p \frac{\pi (D + 2c)^2}{4} + F + \frac{4M}{D_{cr}},$$
 (12.24)

где F и M внешняя осевая сила и момент, действующие на фланец (F>0 при растяжении, и F<0 при сжатии). Для условий вакуума или наружного давления p<0.

Осевое усилие от давления на внутреннюю поверхность фланца:

$$Q_{\delta} = p \frac{\pi \left(D_{cn}^2 - (D + 2c)^2 \right)}{4}$$
 (12.25)

Реакция прокладки в рабочих условиях:

$$R_n = |p|\pi D_{cn}b_0m \tag{12.26}$$

Нагрузка от температурных деформаций:

в соединении для фланцев приварных встык и плоских приварных

$$Q_{t} = \frac{1}{\eta_{t}} \left(\alpha_{\phi}' h' t_{\phi} + \alpha_{\phi}' h'' t_{\phi} - \alpha_{\delta} l_{\delta 0} t_{\delta} \right), \tag{12.27}$$

где
$$\eta_t = y_n + y_6 \frac{E_6^{20}}{E_6} + \left(y_\phi' \frac{E_\phi'^{20}}{E_\phi'} + y_\phi'' \frac{E_\phi''^{20}}{E_\phi''} \right) b^2;$$

в соединении для фланцев свободных на приварных кольцах

$$Q_{t} = \frac{1}{\eta_{t}} \left((\alpha_{\phi}^{\prime} h^{\prime} + \alpha_{\phi}^{\prime\prime} h^{\prime\prime}) t_{\phi} + (\alpha_{k}^{\prime} h_{k}^{\prime} + \alpha_{k}^{\prime\prime} h_{k}^{\prime\prime}) t_{\kappa} - \alpha_{\delta} l_{\delta 0} t_{\delta} \right) (12.28)$$

где

$$\eta_{i} = y_{n} + y_{6} \frac{E_{6}^{20}}{E_{6}} + y_{k}^{\prime} \frac{E_{\kappa}^{\prime 20}}{E_{\kappa}^{\prime}} a^{\prime 2} + y_{k}^{\prime\prime} \frac{E_{\kappa}^{\prime\prime 20}}{E_{\kappa}^{\prime\prime}} a^{\prime\prime 2} + y_{\phi}^{\prime\prime} \frac{E_{\phi}^{\prime\prime 20}}{E_{\phi}^{\prime\prime}} b^{\prime\prime 2} + y_{\phi}^{\prime\prime} \frac{E_{\phi}^{\prime\prime 20}}{E_{\phi}^{\prime\prime}} b^{\prime\prime 2}$$

в соединении с крышкой

$$Q_{t} = \frac{1}{\eta_{t}} \left(\alpha_{\phi} h t_{\phi} + \alpha_{\kappa \rho} h_{\kappa \rho} t_{\phi} - \alpha_{\delta} l_{\delta 0} t_{\delta} \right), \tag{12.29}$$

где
$$\eta_t = y_n + y_6 \frac{E_6^{20}}{E_6} + \left(y_\phi \frac{E_\phi^{20}}{E_\phi} + y_{\kappa p} \frac{E_{\kappa p}^{20}}{E_{\kappa p}} \right) b^2.$$

Нагрузка на болты:

- в рабочих условиях

$$P_{61} = Q_s + Q_o + R_n, (12.30)$$

- в рабочих условиях с учетом температурной нагрузки

$$P_{62} = P_{61} + Q_t, (12.31)$$

где Q_t учитывается только при $Q_t > 0$;

в условиях монтажа принимается большей из следующих значений:

$$P_{63} = \max \begin{cases} 0.5\pi D_{cn} b_0 q_{o6\infty} \\ 0.5[\sigma]_{6}^{20} \left(n f_6 + \frac{P_{61}}{[\sigma]_6} \right) \\ 0.5[\sigma]_{6}^{20} n f_6 + 0.25\pi D_{cn} b_0 q_{o6\infty} \end{cases};$$
 (12.32)

- в условиях испытаний:

$$P_{64} = Q_{s4} + Q_{04} + R_{n4}, (12.33)$$

где Q_{s4} , $Q_{\partial 4}$ и R_{n4} - определяются по формулам 12.24, 12.25, 12.26 соответственно для нагрузок, действующих в условиях испытаний.

12.6. Моменты, действующие на фланцы

Момент, действующий на фланец в рабочих условиях при действии внутреннего давления:

$$M_{01} = Q_s h_s + Q_{\partial} h_{\partial} + R_n 0.5 (D_6 - D_{cn}),$$
 (12.34)

где плечи h_s и h_{∂} в зависимости от типа фланца (рис.12.5) определяются по таблице 12.2.

Таблица 12.2

Типы фланцев	h_s	h_{∂}
Фланцы приварные встык и плоские приварные интегрального типа	$\frac{D_6 - (D + 2c)}{2} - 0.5(s_1 - c)$	$\frac{2D_6 - (D+2c) - D_{cn}}{4}$
Плоские приварные фланцы свободного типа	$\frac{D_6 - (D_{\phi} + 2c)}{2}$	$\frac{2D_6 - (D_{\phi} + 2c) - D_{cn}}{4}$
Фланцы свободные на приварных кольцах	$\frac{D_6 - D_k}{2}$	$\frac{D_6-D_s}{2}$

При действии наружного давления:

$$M_{01} = \max \left\{ \left(-p \frac{\pi (D+2c)^2}{4} - F + \frac{4M}{D_{cm}} \right) \left(h_s - \frac{D_6 - D_{cm}}{2} \right) - p \frac{\pi \left(D_{cm}^2 - (D+2c)^2 \right)}{4} \left(h_o - \frac{D_6 - D_{cm}}{2} \right) \right) \right\}$$

$$(12.35)$$

Момент, действующий на фланец в рабочих условиях при действии внутреннего давления с учетом нагрузки от температурных деформаций:

$$M_{02} = M_{01} + Q_t 0.5(D_6 - D_{cn}), (12.36)$$

где Q_t учитывается только при $Q_t > 0$.

При действии наружного давления:

$$M_{02} = \max \left(\left(-p \frac{\pi (D+2c)^{2}}{4} - F + \frac{4M}{D_{cn}} \right) \left(h_{o} - \frac{D_{o} - D_{cn}}{2} \right) - p \frac{\pi \left(D_{cm}^{2} - (D+2c)^{2} \right)}{4} \left(h_{o} - \frac{D_{o} - D_{cn}}{2} \right) \right)$$
(12.37)

Момент, действующий на фланец в условиях монтажа:

$$M_{03} = P_{63} 0.5(D_6 - D_{cn}) ag{12.38}$$

Момент, действующий на фланец в условиях испытаний:

$$M_{04} = Q_{s4}h_s + Q_{d4}h_d + R_{n4}0.5(D_6 - D_{cn})$$
 (12.39)

12.7. Расчет болтов (шпилек)

Условия прочности болтов (шпилек):

- в рабочих условиях
$$\sigma_{61} = \frac{P_{61}}{nf_6} \le [\sigma]_6;$$
 (12.40)

- в рабочих условиях с учетом нагрузки от температурных деформаций
$$\sigma_{62} = \frac{P_{62}}{nf_6} \leq 1,5 \big[\sigma\big]_6 \,;$$

- в условиях монтажа
$$\sigma_{63} = \frac{P_{63}}{nf_6} \le [\sigma]_6^{20};$$
 (12.42)

-в условиях испытаний
$$\sigma_{64} = \frac{P_{64}}{nf_6} \le [\sigma]_6. \tag{12.43}$$

(12.41)

12.8. Расчет прокладок

Условие прочности мягких прокладок:

$$q = \frac{P_{63}}{\pi D_{cn} b_0} \le [q] \tag{12.44}$$

12.9. Расчет фланцев

12.9.1. Фланцы приварные встык и плоские приварные интегрального типа

Условие прочности для осевого напряжения в обечайке (втулке): - в рабочих условиях

$$\sigma_{a1} = \frac{f \ M_{01}}{D^*(s_1 - c)^2 L} \le \min \begin{cases} 1.5[\sigma]_{\phi}; 2.5[\sigma]_{\omega} - \partial nn \ npu в aph ых в c mы \kappa \\ 1.5[\sigma]_{\phi}; 1.5[\sigma]_{\omega} - \partial nn \ nnoc k u x \end{cases}; \tag{12.45}$$

- в рабочих условиях с учетом нагрузки от температурных деформаций

$$\sigma_{a2} = \frac{f \ M_{02}}{D^*(s_1 - c)^2 L} \le \min\{3, 0[\sigma]_{\phi}; 3, 0[\sigma]_{uc}\}; \tag{12.46}$$

- в условиях монтажа

$$\sigma_{\sigma^3} = \frac{f \ M_{03}}{D^*(s_1 - c)^2 L} \le \min \begin{cases} 1.5 [\sigma]_\phi^{20}; 2.5 [\sigma]_w^{20} - \partial \text{ля приварных встык} \\ 1.5 [\sigma]_\phi^{20}; 1.5 [\sigma]_w^{20} - \partial \text{ля плоских} \end{cases}; \tag{12.47}$$

-в условиях испытаний

$$\sigma_{a4} = \frac{f \ M_{04}}{D^* (s_1 - c)^2 L} \le \min \left\{ \begin{cases} 1.5 [\sigma]_{\phi}; 2.5 [\sigma]_{\omega} - \partial nn \ npubaphux b c mbk \\ 1.5 [\sigma]_{\phi}; 1.5 [\sigma]_{\omega} - \partial nn \ nnockux \end{cases} \right\}, (12.48)$$

где f и L определяются по (46), (55) Приложения 6;

$$D^{\bullet} = (D+2c)$$
 при $(D+2c) \ge 20(s_1-c)$;

$$D^* = D + s_0 + c$$
 при $(D + 2c) < 20(s_1 - c)$ и $f > 1$;

$$D^* = D + s_1 + c$$
 при $(D + 2c) < 20(s_1 - c)$ и $f = 1$.

Условие прочности для радиального напряжения в тарелке фланца:

- в рабочих условиях
$$\sigma_{r1} = \frac{M_{01}(1,33he+1)}{DLh^2} \le \left[\sigma\right]_{\phi}; \qquad (12.49)$$

- в рабочих условиях с учетом нагрузки от температурных деформаций
$$\sigma_{r2} = \frac{M_{02} \left(1,33 he+1\right)}{DLh^2} \le 1,5 \left[\sigma\right]_{\phi}; \qquad (12.50)$$

- в условиях монтажа
$$\sigma_{r3} = \frac{M_{03}(1,33he+1)}{DLh^2} \le [\sigma]_{\phi}^{20};$$
 (12.51)

-в условиях испытаний
$$\sigma_{r4} = \frac{M_{04}(1,33he+1)}{DLh^2} \le [\sigma]_{\phi},$$
 (12.52)

где е определяется по (47) Приложения 6.

Условие прочности для окружного напряжения в тарелке фланца:

- в рабочих условиях
$$\sigma_{\theta 1} = \frac{YM_{01}}{Dh^2} - Z\sigma_{r1} \le [\sigma]_{\phi};$$
 (12.53)

- в рабочих условиях с учетом нагрузки от температурных деформаций
$$\sigma_{\theta 2} = \frac{YM_{02}}{Dh^2} - Z\sigma_{r2} \leq 1{,}5\big[\sigma\big]_{\phi}\,; \tag{12.54}$$

- в условиях монтажа
$$\sigma_{\theta 3} = \frac{YM_{03}}{Dh^2} - Z\sigma_{r3} \le [\sigma]_{\phi}^{20};$$
 (12.55)

-в условиях испытаний
$$\sigma_{\theta^4} = \frac{YM_{04}}{Dh^2} - Z\sigma_{r4} \le [\sigma]_{\phi}$$
, (12.56)

где Y и Z определяются по (51) (52) Приложения 6. Кроме того, необходимо выполнение дополнительных условий прочности:

$$\frac{\sigma_{a1} + \sigma_{r1}}{2} \leq \left[\sigma\right]_{\phi}; \frac{\sigma_{a2} + \sigma_{r2}}{2} \leq 1,5\left[\sigma\right]_{\phi};$$

$$\frac{\sigma_{a3} + \sigma_{r3}}{2} \leq \left[\sigma\right]_{\phi}^{20}; \frac{\sigma_{a4} + \sigma_{r4}}{2} \leq \left[\sigma\right]_{\phi} \tag{12.57}$$

$$\frac{\sigma_{a1} + \sigma_{\theta1}}{2} \leq \left[\sigma\right]_{\phi}; \frac{\sigma_{a2} + \sigma_{\theta2}}{2} \leq 1,5\left[\sigma\right]_{\phi};$$

$$\frac{\sigma_{a3} + \sigma_{\theta3}}{2} \le \left[\sigma\right]_{\phi}^{20}; \frac{\sigma_{a4} + \sigma_{\theta4}}{2} \le \left[\sigma\right]_{\phi}$$
(12.58)

12.9.2. Фланцы свободные на приварных кольцах и плоские приварные свободного типа

Условие прочности для свободных фланцев на приварных кольцах и плоских приварных фланцев свободного типа:

- в рабочих условиях
$$\sigma_{\theta 1} = \frac{YM_{01}}{D_{\phi(k)}h_{(k)}^2} \le [\sigma]_{\phi(k)};$$
 (12.59)

$$\sigma_{\theta 2} = \frac{YM_{02}}{D_{\phi(k)}h_{(k)}^2} \le 1,5[\sigma]_{\phi(k)}; \tag{12.60}$$

- в условиях монтажа
$$\sigma_{\theta 3} = \frac{YM_{03}}{D_{\phi(k)}h_{(k)}^2} \le [\sigma]_{\phi(k)}^{20};$$
 (12.61)

-в условиях испытаний
$$\sigma_{\theta 4} = \frac{YM_{04}}{D_{\phi(k)}h_{(k)}^2} \le [\sigma]_{\phi(k)}.$$
 (12.62)

12.10. Жесткость фланцев

Условие выполнения жесткости фланцев приварных в стык и плоских, выполненных как единое целое:

$$\frac{52,14M_0V}{LE_{\phi}(s_0-c)^2\sqrt{(D+2c)(s_0-c)}K_I} \le 1,$$
(12.63)

где $M_0 = \max\{M_{01}; M_{03}\};$

V ; L определяются по (53,a); (55) Приложения 6 соответственно;

 $K_I = 0,3$ - коэффициент жесткости для фланцев приварных в стык и плоских, выполненных как единое целое.

Условие выполнения жесткости фланцев плоских приварных свободного типа и фланцев свободных на приварных кольцах:

$$\frac{109,4M_0}{E_{\phi(k)}h_{(k)}^3\ln(K)K_L} \le 1,$$
(12.64)

где K определяется по (48,6) и (48,в) Приложения 6 для фланцев плоских приварных свободного типа и колец соответственно;

 $K_L = 0,2$ - коэффициент жесткости для фланцев плоских приварных свободного типа и фланцев свободных на приварных кольцах.

13.Прочность и жесткость мест врезки штуцеров

Методика предназначена для расчета прочности и жесткости места соединения штуцера с сосудом (аппаратом).

Точность расчетов на прочность сосудов, аппаратов и трубопроводов в месте врезки в значительной степени определяется учетом жесткости (податливости) врезки. Как правило, при расчетах на прочность трубопроводных систем соединение трубопровода и сосуда (аппарата) заменяется мертвой опорой, что приводит к получению завышенных усилий и напряжений в узле соединения.

Методика комплексного расчета жесткости и напряженного состояния узлов врезки штуцеров создана на основании [42-46] с учетом нормативных документов [2,10], регламентирующих предельно допустимый уровень напряжений.

13.1. Расчетная схема

На рис.13.1 представлен эскиз и расчетная модель места соединения штуцера и цилиндрической обечайки.

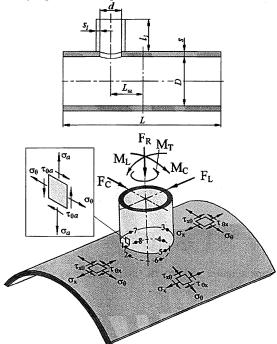


Рис.13.1. Соединение штуцера и цилиндрической обечайки

При определении расчетных изгибающих моментов в месте врезки помимо M_C и M_L необходимо учитывать дополнительные моменты от действия сил F_C и F_L с учетом точки приложения этих сил, соответственно.

13.2. Условия применения

Во всех расчетных случаях штуцер применяется к одиночному отверстию, при этом ось штуцера должна быть направлена по нормали к поверхности обечайки. Условия рассмотрения отверстия как одиночного рассмотрены в п.10.4.

При расчете на прочность места соединения патрубков с цилиндрическими обечайками необходимо выполнение условий:

$$0,0015 \le \frac{s-c}{D+s+c} \le 0,1; \quad 0,01 \le \frac{s_1-c_s}{d+2s_1} \le 0,1;$$

$$0,01 < \frac{d+2s_1}{D+s+c} < 0,6; 0,01 \le \frac{d+2s_1}{D+s+c} \sqrt{\frac{D+s+c}{s-c}} \le 10$$
(13.1)

При расчете на прочность места соединения патрубков с выпуклыми днищами:

$$0,0015 \le \frac{s-c}{D+s+c} \le 0,1; \ 0,01 \le \frac{s_1-c_s}{d+2s_1} \le 0,1;$$

$$0,07 < \frac{d+2s_1}{\sqrt{(D+s+c)(s-c)}} < 4; \ 0,25 \le \frac{s-c}{s_1-c_s} \le 10.$$
(13.2)

При определении жесткости (податливости) места соединения в цилиндрической обечайке:

$$0,0015 \le \frac{s}{D+s} \le 0,1; \ L - (2L_{u} + d + 2s_1) > \frac{D}{2}; \ \frac{d+2s_1}{D+s} \le 0,4;$$

$$0,2 \le \frac{s}{s_1} \le 10; \qquad 0,01 \le \frac{d+2s_1}{\sqrt{(D+s)s}} \le 10$$
(13.3)

При определении жесткости (податливости) места соединения в сферической обечайке:

$$0,0015 \le \frac{s}{D+s} \le 0,1;$$
 $\frac{d+2s_1}{D+s} \le 0,4;$ $0,07 < \frac{d+2s_1}{\sqrt{(D+s)s}} < 4$ (13.4)

В случае наклонных врезок, или не выполнении других условий применения, а также при наличии накладного (рис.10.1) или вварного кольца (рис.10.7) и торообразной вставки (рис.10.3,6) для оценки прочности и жесткости целесообразно воспользоваться методом конечных элементов (см.п.16).

13.3. Прочность места врезки штуцера

13.3.1. Общие положения

При расчете обечайки и штуцера, работающих под действием внутреннего давления p и внешних нагрузок F_R , M_C , M_L в месте соединения определяются местные мембранные $\sigma_{m\theta}$, σ_{mx} и местные изгибные $\sigma_{b\theta}$, σ_{bx} напряжения в окружном (θ) и продольном (x) (в случае штуцера осевом a) направлении соответственно (рис.13.1).

Напряжения в расчетных точках 1-8 определяются как:

$$\sigma_{\theta(x)} = \sigma_{m\theta(x)} \pm \sigma_{b\theta(x)} \tag{13.5}$$

При определении мембранных и изгибных напряжений используются зависимости безразмерных относительных параметров напряжений от геометрических характеристик элементов врезки [15,16]. При этом, задавая нагрузки, необходимо учитывать знаки. Положительные значения должны соответствовать направлениям стрелок на расчетной схеме (рис.13.1).

При нагружении штуцера крутящим моментом M_T , и сдвиговыми силами F_C , F_L в обечайке и штуцере создаются касательные напряжения τ_{th} .

Для оценки прочности места соединения штуцера с сосудом (аппаратом) используются максимальные значения [10]:

- приведенных местных мембранных напряжений от давления σ_{mo} ;
- приведенных общих (местные мембранные + местные изгибные + общие температурные + напряжения компенсации) напряжений от совместного действия давления и внешних нагрузок напряжений в расчетных точках $\sigma_{\rm h}$.

Для учета влияния внешних нагрузок на местные мембранные напряжения вводится дополнительный критерий для приведенных местных мембранных напряжений от совместного действия давления и внешних нагрузок σ_{ml} .

Приведенные эквивалентные напряжения определяются по критерию максимальных касательных напряжений для плоского напряженного состояния:

$$\sigma_{ses} = \max \left\{ \frac{1}{2} \left| \sigma_{\theta} + \sigma_{x} \pm \sqrt{(\sigma_{\theta} - \sigma_{x})^{2} + 4\tau_{dx}^{2}} \right| \right\}$$

$$\sqrt{(\sigma_{\theta} - \sigma_{x})^{2} + 4\tau_{dx}^{2}}$$
(13.6)

Условие выполнения прочности для приведенных местных мембранных напряжений от давления:

$$\sigma_{mp} \le 1,3[\sigma],\tag{13.7}$$

где
$$[\sigma] = \min \left\{ \frac{R_{p0,2}}{1,5}; \frac{R_m}{2,6}; \frac{R_{m/10^5}}{1,5} \right\}$$
 - номинальное допускаемое

напряжение.

Условие выполнения прочности для приведенных местных мембранных напряженй от совместного действия давления и внешних нагрузок:

$$\sigma_{ml} \le 1,5[\sigma] \tag{13.8}$$

Условие выполнения прочности для общих приведенных напряжений от совместного действия внутреннего давления и внешних нагрузок:

$$\sigma_{b} \leq \min \left\{ \begin{pmatrix} 2, 5 - \frac{R_{p0,2}}{R_{m}} \end{pmatrix} \cdot R_{p0,2} \\ 2R_{p0,2} \\ R_{m/10}, \end{pmatrix}$$
 (13.9)

Для аустенитных сталей вместо $\sigma_{0,2}$ принимается $\sigma_{I,0}$.

При расчетной температуре для углеродистой стали свыше 380^{0} С, для низколегированной свыше 420^{0} С, для аустенитной свыше 525^{0} С при задании значений для допускаемых напряжений необходимо учитывать ползучесть материала.

13.3.2. Цилиндрическая обечайка

При определении напряжений в цилиндрической обечайке используются относительные безразмерные усилия и моменты, которые зависят от геометрических параметров обечайки γ и штуцера β . Графики зависимостей приведены в [42].

Безразмерный геометрический параметр цилиндрической обечайки:

$$\gamma = \frac{R_m}{(s-c)},\tag{13.10}$$

где
$$R_m = \frac{D + s + c}{2}$$
 - средний радиус обечайки.

Безразмерный геометрический параметр штуцера:

$$\beta = \frac{0.875r_0}{R_m},\tag{13.11}$$

где $r_0 = \frac{d+2s_1}{2}$ - внешний радиус патрубка штуцера.

Относительные безразмерные усилия и моменты в окружном направлении:

 $n_{\theta F}$ - мембранное усилие от действия F_R ;

 $m_{a\!F}$ - изгибающий момент от действия $F_{\scriptscriptstyle R}$;

 $n_{\theta MC}$ - мембранное усилие от M_C ;

 $m_{ heta\!M\!C}$ - изгибающий момент от действия M_C ;

 $n_{\theta ML}$ - мембранное усилие от M_L ;

 $m_{ heta\!M\!L}$ - изгибающий момент от действия M_L .

Относительные безразмерные усилия и моменты в продольном направлении:

 n_{XF} - мембранное усилие от действия F_R ;

 $m_{X\!F}$ - изгибающий момент от действия F_R ;

 $n_{X\!M\!C}$ - мембранное усилие от M_C ;

 m_{XMC} - изгибающий момент от действия M_{C} ;

 n_{XML} - мембранное усилие от M_L ;

 $m_{\it XML}$ - изгибающий момент от действия $M_{\it L}$.

13.3.2.1. Расчет напряжений от силы F_R

Окружные мембранные напряжения от силы $F_{\it R}$:

$$\sigma_{m\theta}(F_R) = n_{\theta F} \frac{F_R}{R_m(s-c)}$$
 (13.12)

Окружные изгибные напряжения от силы F_R :

$$\sigma_{b\theta}(F_R) = m_{\theta F} \frac{6F_R}{(s-c)^2} \tag{13.13}$$

Продольные мембранные напряжения от силы F_R :

$$\sigma_{mx}(F_R) = n_{XF} \frac{F_R}{R_m(s-c)} \tag{13.14}$$

Продольные изгибные напряжения от силы F_R :

$$\sigma_{bx}(F_R) = m_{XF} \frac{6F_R}{(s-c)^2}$$
 (13.15)

13.3.2.2. Расчет напряжений от изгибающего момента в окружном направлении

Окружные мембранные напряжения от момента M_C :

$$\sigma_{m\theta}(M_C) = n_{\theta MC} \frac{M_C}{R_m^2 \beta (s - c)}$$
 (13.16)

Окружные изгибные напряжения от момента M_C :

$$\sigma_{b\theta}(M_C) = m_{\theta MC} \frac{6M_C}{R_m \beta (s-c)^2}$$
 (13.17)

Продольные мембранные напряжения от момента M_C :

$$\sigma_{mx}(M_C) = n_{XMC} \frac{M_C}{R_m^2 \beta (s - c)}$$
(13.18)

Продольные изгибные напряжения от момента M_C :

$$\sigma_{bx}(M_C) = m_{XMC} \frac{6M_C}{R_m \beta (s-c)^2}$$
(13.19)

13.3.2.3. Расчет напряжений от изгибающего момента в продольном направлении

Окружные мембранные напряжения от момента M_L :

$$\sigma_{m\theta}(M_L) = n_{\theta ML} \frac{M_L}{R_m^2 \beta (s - c)}$$
 (13.20)

Окружные изгибные напряжения от момента M_L :

$$\sigma_{b\theta}(M_L) = m_{\theta ML} \frac{6M_L}{R_m \beta (s-c)^2}$$
 (13.21)

Продольные мембранные напряжения от момента M_L :

$$\sigma_{mx}(M_L) = n_{XML} \frac{M_L}{R_m^2 \beta(s-c)}$$
 (13.22)

Продольные изгибные напряжения от момента M_L :

$$\sigma_{bx}(M_L) = m_{XML} \frac{6M_L}{R_m \beta (s-c)^2}$$
(13.23)

13.3.2.4. Расчет напряжений от крутящего момента M_T

От крутящего момента в соединении штуцера и обечайки возникают касательные напряжения:

$$\tau_{\rm ex} = \frac{M_T}{2\pi \, r_0^2 (s - c)} \tag{13.24}$$

13.3.2.5. Расчет напряжений от сдвиговых сил F_C и F_L

Силы F_C и F_L создают мембранные сдвиговые напряжения в продольном (т.1-4) и окружном (т.5-8) сечении соответственно:

$$\tau_{x\theta} = \frac{F_C}{\pi r_0(s-c)} \tag{13.25}$$

$$\tau_{\rm ex} = \frac{F_L}{\pi \, r_0(s-c)} \tag{13.26}$$

13.3.2.6. Расчет напряжений от внутреннего давления

Предложенный метод основан на двух допущениях [46].

- 1. Средние значения напряжений в расчетной зоне укрепления отверстия $\sigma_{\theta(x)cp}$ определяются из отношений силы давления к площади поперечного сечения в пределах расчетной области.
- 2. Мембранные напряжения имеют линейное распределение вдоль зоны укрепления отверстия (рис.13.2),

где $\sigma_{\theta(x)0}$ - напряжения в обечайке вне расчетной зоны;

 $\sigma_{\theta(x)cp}$ - средние напряжения в расчетной зоне укрепления отверстия;

 $\sigma_{\theta(x)p}$ - местные мембранные напряжения в расчетных точках сопряжения штуцера и обечайки.

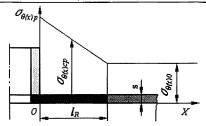


Рис. 13.2. Распределение напряжений в расчетной зоне штуцера

Мембранные напряжения в расчетных точках:

$$\sigma_{\theta(x)p} = 2\sigma_{\theta(x)cp} - \sigma_{\theta(x)0} \tag{13.27}$$

где $\sigma_{\theta(x)cp}$ - среднее напряжение в расчетной зоне укрепления отверстия;

 $\sigma_{ heta(x)0}$ - напряжение в обечайке вне зоны укрепления.

Местное мембранное окружное напряжение от внутреннего давления в зоне врезки штуцера представляется в виде:

$$\sigma_{\phi_p} = I_{\phi_p} p \frac{D + (s - c)}{2(s - c)},$$
(13.28)

где $I_{\theta p}$ - коэффициент интенсификации напряжения от давления в продольном сечении обечайки (т.1-4 рис.13.2). Для поперечного сечения (т.5-8) $I_{\theta p}$ =1.

Расчетная схема для определения коэффициента интенсификации в продольном сечении представлена на рис.13.3.

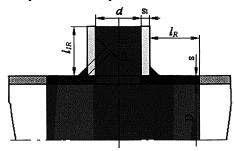


Рис. 13.3. Расчетная схема штуцера в продольном сечении обечайки

Коэффициент интенсификации напряжений от внутреннего давления в продольном сечении:

$$I_{qp} = \frac{2(s-c)[(d+2c_s)(l_{1R}-c)+(D+2c)(l_R+s_1+0.5d)]}{(D+s-c)[l_R(s-c)+l_{1R}(s_1-c_s)+\Delta^2]} - 1$$
 (13.29)

где $l_R = \min \left\{ 8(s-c); 2\sqrt{0.5D(s-c)} \right\}$ - расчетная длина обечайки;

$$l_{1R} = \min \left\{ 8(s-c); (s-c+0.55\sqrt{d(s_1-c_s)}+0.5\Delta) \right\}$$

расчетная длина внешней части штуцера;

Местное мембранное продольное напряжение от внутреннего давления:

$$\sigma_{xp} = I_{xp} p \frac{D + (s - c)}{4(s - c)} \tag{13.30}$$

Расчетная схема для определения коэффициента интенсификации в поперечном сечении представлена на рис.13.4.

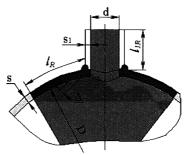


Рис.13.4. Расчетная схема штуцера в поперечном сечении обечайки

Коэффициент интенсификации напряжений от внутреннего давления в поперечном сечении:

$$I_{xp} = \frac{2(s-c)[2(d+2c_s)(l_{1R}-c)+(D+2c)(l_R+s_1+0.5d)]}{(D+s-c)[l_R(s-c)+l_{1R}(s_1-c_s)+\Delta^2]} - 1 \quad (13.31)$$

Для продольного сечения (т.1-4) $I_{xp} = 1$.

Если расчетные коэффициенты $I_{\theta(x)p} < 1$, то для определения окружных и продольных напряжений во всех расчетных точках врезки используются следующие выражения:

$$\sigma_{q_p} = (0.5 + 0.5I_{q_p})p \frac{D + (s - c)}{2(s - c)};$$
 (13.32)

$$\sigma_{xp} = (0.5 + 0.5I_{xp})p \frac{D + (s - c)}{4(s - c)}.$$
 (13.33)

13.3.2.7. Расчет напряжений при произвольном сложном нагружении

В общем случае все приложенные внешние нагрузки на штуцер можно разложить по трем направлениям, т.е. представить как одновременно действующие силы F_R , F_C , F_L , и моменты M_C , M_L , M_T . После определения напряжений от действующих сил и давления, суммарные напряжения в расчетных точках (1-8) определяются с учетом знаков согласно табл. 13.1.

Местные напряжения (с учетом знаков) обечайки в расчетных

Таблица 13.1

точках зо	ны врезки, нагруженной внутре нагрузками соглас			вле	нием	иин	знеш	НИИ	1И
Формула №	Окружные напряжения, $\sigma_{\!\scriptscriptstyle{ heta}}$	1	2	3	4	5	6	7	8
13.12	Мембранные от F_R	-	-	-	-				
13.12	Мембранные от F_R					-	-	-	-
13.13	Изгибные от F_R	-	+	•	+				
13.13	Изгибные от $F_{\it R}$					-	+	-	+
13.16	Мембранные от M_C					-		+	+
13.17	Изгибные от M_{C}					-	+	+	_
13.20	Мембранные от M_L	_	-	+	+				
13.21	Изгибные от M_{L}	-	+	+	-				
13.28	Окружные напряжения от давления $\sigma_{\theta p}$	+	+	+	+	+	+	+	+
Суммарные м	ембранные окружные напряжения $\sigma_{m\theta}$								
Суммарнь	ие окружные напряжения σ_{θ} (13.5)								
Формула №	Продольные напряжения, $\sigma_{\!X}$	1	2	3	4	5	6	7	8
13.14	Мембранные от $F_{\it R}$	-	-	-	-				
13.14	Мембранные от F_R					-	-	-	-
13.15	Изгибные от F_R	-	+	-	+				
13.15	Изгибные от $F_{\it R}$					_	+	_	+

	01103 001 07 (0111 10		-,						
13.18	Мембранные от M_C					-	-	+	+
13.19	Изгибные от $M_{\mathcal{C}}$					-	+	+	-
13.22	Мембранные от M_L	-	-	+	+				
13.23	Изгибные от <i>М</i> _L	-	+	+	-	***********			
13.30	Продольные напряжения от давления $\sigma_{\!xp}$	+	+	+	+	+	+	+	+
Суммарные м	Суммарные мембранные продольные напряжения σ_{mx}								
Суммарны	е продольные напряжения σ_x (13.5)								
13.24	Сдвиговые напряжения от M_t	+	+	+	+	+	+	+	+
13.25	Сдвиговые напряжения от $F_{\mathcal{C}}$	+	+	-	-				
13.26	Сдвиговые напряжения от F_L					-	-	+	+
Суммарные сдвиговые напряжения $ au_{ heta_{\!\scriptscriptstyle k}}$									
13.9	Приведенные общие напряжения $\sigma_{_{\!$								

13.3.3. Патрубок штуцера, соединенный с цилиндрической обечайкой

Также как и в случае цилиндрической обечайки, при расчете прочности патрубков в месте соединения используются безразмерные усилия и моменты в зависимости от геометрических параметров [43].

Безразмерные геометрические параметры:

$$\lambda = \frac{d + 2s_1}{D + s + c} \sqrt{\frac{D + s + c}{s - c}},$$
(13.34)

$$\eta = \frac{d+2s_1}{s_1 - c_s},\tag{13.35}$$

$$\rho = \frac{(s - c)}{(s_1 - c_s)} \tag{13.36}$$

Относительные безразмерные усилия и моменты в окружном (θ) направлении:

 $n_{\mathscr{G}}$ - мембранное усилие от действия F_{R} ;

 $m_{ heta\!F}$ - изгибающий момент от действия F_{R} ;

 $n_{\theta MC}$ - мембранное усилие от M_c ;

 $m_{ heta\!M\!C}$ - изгибающий момент от действия M_C ;

 $n_{\theta ML}$ - мембранное усилие от M_L ;

 $m_{
ho ML}$ - изгибающий момент от действия M_L .

Относительные безразмерные усилия и моменты в осевом (a) направлении:

 n_{RF} - мембранное усилие от действия F_{R} ;

 $m_{\scriptscriptstyle RF}$ - изгибающий момент от действия $F_{\scriptscriptstyle R}$;

 n_{RMC} - мембранное усилие от M_c ;

 m_{RMC} - изгибающий момент от действия M_{C} ;

 n_{RML} - мембранное усилие от M_{L} ;

 $m_{\scriptscriptstyle RML}$ - изгибающий момент от действия $M_{\scriptscriptstyle L}$.

13.3.3.1. Расчет напряжений от силы F_R

Окружные мембранные напряжения от силы F_R :

$$\sigma_{m\theta}(F_R) = n_{\theta F} \frac{F_R}{(s-c)^2} \tag{13.37}$$

Окружные изгибные напряжения от силы F_R по сравнению с мембранными значительно ниже, поэтому их значениями пренебрегают.

Осевые мембранные напряжения от силы F_R :

$$\sigma_{ma}(F_R) = \frac{F_R}{A},\tag{13.38}$$

где
$$A = \frac{\pi}{4} \left((d + 2s_1)^2 - (d + 2c_s)^2 \right)$$
 - расчетная площадь

поперечного сечения патрубка.

Осевые изгибные напряжения от силы F_R :

$$\sigma_{ba}(F_R) = \left[6m_{RF} - 3n_{RF}\right] \frac{F_R}{\left(s_1 - c_s\right)^2}$$
 (13.39)

13.3.3.2. Расчет напряжений от изгибающего момента в окружном направлении

Окружные мембранные напряжения от момента M_C :

$$\sigma_{m\theta}(M_C) = n_{\theta MC} \frac{M_C}{(s-c)^2 (d+2s_1)}$$
(13.40)

Окружные изгибные напряжения от момента M_C по сравнению с мембранными значительно ниже, поэтому их значениями пренебрегают.

Осевые мембранные напряжения от момента M_C :

$$\sigma_{ma}(M_C) = \frac{M_C}{W_s},\tag{13.41}$$

где
$$W_s = \frac{\pi \left((d + 2s_1)^4 - (d + 2c_s)^4 \right)}{32(d + 2s_1)}$$
 - расчетный момент

сопротивления изгибу поперечного сечения патрубка.

Осевые изгибные напряжения от момента M_C :

$$\sigma_{ba}(M_C) = \left(6m_{RMC} - 3n_{RMC}\right) \frac{M_c}{(s_1 - c_s)^2 (d + 2s_1)}$$
 (13.42)

13.3.3.3. Расчет напряжений от изгибающего момента в продольном направлении

Окружные мембранные напряжения от момента M_L :

$$\sigma_{m\theta}(M_L) = n_{\theta ML} \frac{M_L}{(s-c)^2 (d+2s_1)},$$
 (13.43)

Окружные изгибные напряжения от момента M_C по сравнению с мембранными значительно ниже, поэтому их значениями пренебрегают.

Осевые мембранные напряжения от момента M_L :

$$\sigma_{ma}(M_L) = \frac{M_L}{W_L} \tag{13.44}$$

Осевые изгибные напряжения от момента M_L :

$$\sigma_{ba}(M_L) = \left[6m_{RML} - 3n_{RML}\right] \frac{M_L}{(s_1 - c_s)^2 (d + 2s_1)}$$
(13.45)

13.3.3.4. Расчет напряжений от крутящего момента M_T

От крутящего момента в соединении штуцера и обечайки возникают касательные напряжения:

$$\tau_{\text{dx}} = \frac{M_T}{2\pi \ r_0^2 (s_1 - c_s)} \tag{13.46}$$

13.3.3.5. Расчет напряжений от сдвиговых сил F_C и F_L

Силы F_C и F_L создают мембранные сдвиговые напряжения в продольном (т.1-4) и окружном (т.5-8) сечении соответственно:

$$\tau_{x\theta} = \frac{F_C}{\pi \ r_0(s_1 - c_s)}; \tag{13.47}$$

$$\tau_{ex} = \frac{F_L}{\pi \ r_0(s_1 - c_s)}. \tag{13.48}$$

13.3.3.6. Расчет напряжений от внутреннего давления

Местные мембранные напряжения от внутреннего давления определяются в зависимости от коэффициентов интенсификации напряжения $I_{\theta(x)p}$ (13.29, 13.31).

Окружное напряжение от внутреннего давления в продольном сечении (т.1-4):

$$\sigma_{\theta p} = I_{\theta p} p \frac{D + (s - c)}{2(s - c)} \tag{13.49}$$

Для поперечного сечения (т.5-8):

$$\sigma_{\theta p} = I_{xp} p \frac{D + (s - c)}{4(s - c)}$$
 (13.50)

Осевые напряжения от внутреннего давления в продольном сечении (т.1-4) определяются по формуле (13.50) при $I_{xp}=1$. Для поперечного сечения (т.5-8) по формуле (13.49) при $I_{\theta p}=1$.

Если расчетные коэффициенты $I_{\theta(x)p} < 1$, то для определения окружных напряжений в продольном сечении (т.1-4) и осевых в поперечном сечении (т.5-8) используется зависимость:

$$\sigma_{\theta(a)p} = (0.5 + 0.5I_{\theta p})p \frac{D + (s - c)}{2(s - c)}$$
(13.51)

Для определения окружных напряжений в поперечном сечении (т.5-8) и осевых в продольном сечении (т.1-4):

$$\sigma_{\theta(a)p} = (0.5 + 0.5I_{xp})p \frac{D + (s - c)}{4(s - c)}$$
(13.52)

13.3.3.7. Расчет напряжений при произвольном сложном нагружении

В общем случае все приложенные внешние нагрузки на штуцер можно разложить по трем направлениям, т.е. представить как одновременно действующие силы F_R , F_C , F_L , и моменты M_C , M_L , M_T . После определения напряжений от действующих сил и давления, суммарные напряжения в расчетных точках 1-8 (рис.13.1.1) определяются с учетом знаков согласно табл. 13.2.

Местные напряжения (с учетом знаков) патрубка в расчетных точках зоны

Таблица 13.2

	груженной внутренним давлением [16]								
формула №	Окружные напряжения, σ_{θ}	1	2	3	4	5	6	7	8
13.37	Мембранные от $F_{\it R}$	-	-	-	-	-	-	-	-
13.40	Мембранные от M_{C}					-	-	+	+
13.43	Мембранные от M_L	-	-	+	+				
13.49-13.50	Окружные напряжения от давления $\sigma_{\theta p}$	+	+	+	+	+	+	+	+
Суммарные мембранные окружные напряжения $\sigma_{m\theta}$									
Суммај	рные окружные напряжения σ_{θ} (13.5)								
	Осевые напряжения, σ_a	1	2	3	4	5	6	7	8
13.38	Мембранные от F_R	-	-	-	-	-	-	-	-
13.39	Изгибные от F_R	-	+	-	+		+	-	+
13.41	Мембранные от M_C					-	-	+	+
13.42	Изгибные от $M_{\mathcal{C}}$					-	+	+	_
13.44	Мембранные от M_L	-	-	+	+				
13.45	Изгибные от M_L	-	+	+	-				

	C21 03-00+-07 (C111 10								
13.49-13.50	Осевые напряжения от давления σ_{ap}	+	+	+	+	+	+	+	+
Суммарные мембранные осевые напряжения σ_{ma}									
Сумм	марные осевые напряжения σ_a (13.5)								
13.46	Сдвиговые напряжения от M_t	+	+	+	+	+	+	+	+
13.47	Сдвиговые напряжения от $F_{\mathcal{C}}$	+	+	-	-				
13.48	Сдвиговые напряжения от F_L					1	-	+	+
Сум	Суммарные сдвиговые напряжения $ au_{ heta a}$								
13.9	Приведенные общие напряжения								
	$\sigma_{_{\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $							L	

13.3.4. Сферическая оболочка

Расчетная схема врезки штуцера в сферическую оболочку приведена на рис 13.5.

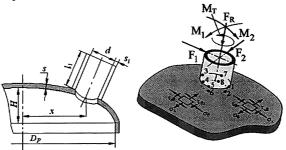


Рис. 13.5. Расчетная схема соединения штуцера со стенкой сосуда

Также как и в случае с цилиндрической обечайкой, при определении расчетных изгибающих моментов в месте врезки помимо M_1 и M_2 необходимо учитывать дополнительные моменты от действия сил F_1 и F_2 с учетом точки приложения этих сил, соответственно.

Расчетная схема врезки штуцера в сферическую оболочку может также использоваться при определении прочности и жесткости врезки штуцера в эллиптическое днище. При этом для определения R_m вместо диаметра D используется расчетный диаметр для эллиптических днищ (рис.13.5):

$$D_p = \frac{D^2}{2H} \sqrt{1 - 4\frac{(D^2 - 4H^2)}{D^4} \cdot x^2}$$
 (13.53)

При определении напряжений в сферической оболочке используются относительные безразмерные усилия и моменты, которые зависят от геометрических параметров оболочки и патрубка U, γ и ρ . Графики зависимостей приведены в [42].

Безразмерные геометрические параметры:

$$U = \frac{r_0}{\sqrt{R_m(s-c)}};$$
 (13.54)

$$\gamma = \frac{r_{\rm m}}{\left(s_{\rm i} - c_{\rm s}\right)},\tag{13.55}$$

где
$$r_m = \frac{d+s_1+c_s}{2}$$
 - средний радиус патрубка.
$$\rho = \frac{(s-c)}{(s_1-c_s)} \tag{13.56}$$

Относительные безразмерные усилия и моменты в тангенсальном (θ) направлении:

 $n_{\theta F}$ - мембранное усилие от действия F_R ;

 $m_{\theta \! F}$ - изгибающий момент от действия F_{R} ;

 $n_{\theta M}$ - мембранное усилие от $M_{1(2)}$;

 $m_{ heta\!M}$ - изгибающий момент от $M_{1(2)}$.

Относительные безразмерные усилия и моменты радиальном (X) направлении:

 $n_{\it RF}$ - мембранное усилие от действия $F_{\it R}$;

 m_{RF} - изгибающий момент от действия F_{R} ;

 n_{RM} - мембранное усилие от $M_{1(2)}$;

 $m_{\it RM}$ - изгибающий момент от $M_{\it l(2)}$.

13.3.4.1. Расчет напряжений от силы F_R

Тангенсальные мембранные напряжения от силы F_R :

$$\sigma_{m\theta}(F_R) = n_{\theta F} \frac{F_R}{R_m(s-c)} \tag{13.57}$$

Тангенсальные изгибные напряжения от силы F_R :

$$\sigma_{b\theta}(F_R) = m_{\theta F} \frac{6F_R}{(s-c)^2} \tag{13.58}$$

Радиальные мембранные напряжения от силы F_R :

$$\sigma_{mx}(F_R) = n_{RF} \cdot \frac{F_R}{\left(s - c\right)^2} \tag{13.59}$$

Радиальные изгибные напряжения от силы F_R :

$$\sigma_{bR}(F_R) = m_{RF} \frac{6F_R}{(s-c)^2}$$
 (13.60)

13.3.4.2. Расчет напряжений от изгибающих моментов M_1 и M_2

Тангенсальные мембранные напряжения в расчетных точках 1-4 от момента M_I и в точках 5-8 от момента M_2 :

$$\sigma_{m\theta}(M) = n_{\theta M} \frac{M}{(s-c)^2 \sqrt{R_m(s-c)}}$$
(13.61)

Тангенсальные изгибные напряжения от момента M_1 в точках 1-4 и от момента M_2 в точках 5-8:

$$\sigma_{b\theta}(M) = m_{\theta M} \frac{6M}{(s-c)^2 \sqrt{R_m(s-c)}}$$
 (13.62)

Радиальные мембранные напряжения от момента M_1 в точках 1-4 и от момента M_2 в точках 5-8:

$$\sigma_{mR}(M) = n_{RM} \frac{M}{(s-c)^2 \sqrt{R_m s}}$$
 (13.63)

Радиальные изгибные напряжения от момента M_1 в точках 1-4 и от момента M_2 в точках 5-8:

$$\sigma_{bR}(M) = m_{RM} \frac{6M}{(s-c)^2 \sqrt{R_m s}}$$
 (13.64)

13.3.4.3. Расчет напряжений от крутящего момента M_T

От крутящего момента в соединении штуцера и обечайки возникают касательные напряжения:

$$\tau_{\alpha} = \frac{M_T}{2\pi \, r_0^2 (s - c)} \tag{13.65}$$

13.3.4.4. Расчет напряжений от сдвиговых сил F_1 и F_2

Силы F_1 в точках 5-8 и F_2 в точках 1-4 создают мембранные сдвиговые напряжения:

$$\tau_{x\theta} = \frac{F_{1(2)}}{\pi \, r_0(s-c)} \tag{13.66}$$

13.3.4.5. Расчет напряжений от внутреннего давления

Местные мембранные напряжения от внутреннего давления определяются в зависимости от коэффициента интенсификации напряжения, полученного для поперечного сечения обечайки (13.31) $I_{\theta p} = I_{\chi p}$.

Окружное напряжение от внутреннего давления во всех расчетных точках:

$$\sigma_{\theta p} = I_{\theta p} p \frac{D + (s - c)}{4(s - c)} \tag{13.67}$$

Продольное (радиальное) напряжение от внутреннего давления во всех расчетных точках определяется по формуле 13.67 при $I_{dx}=1$.

Если расчетный коэффициент I_{Φ} < 1, то для определения окружных и осевых напряжений во всех расчетных точках врезки используется коэффициент интенсификации равный $(0.5+0.5I_{\Phi})$.

13.3.4.6. Расчет напряжений при произвольном сложном нагружении

В общем случае, все приложенные нагрузки на штуцер можно разложить по трем направлениям, т.е. представить как одновременно действующие силы F_R , F_1 , F_2 , и моменты M_1 , M_2 , M_T . После определения напряжений от действующих сил и давления, суммарные напряжения в расчетных точках (1-8) определяются с учетом знаков согласно табл. 13.3.

Таблица 13.3

TWO MAKE TO SEE											
штуцеј	Местные напряжения в сферической оболочке в зоне врезки штуцера, работающего под действием внутреннего давления и внешних нагрузок согласно [15]										
формула №	Окружные (отн. патр.) напряжения, σ_{θ}	1	2	3	4	5	6	7	8		
13.57	Мембранные от F_R	-	-	-	-	-	_	-	-		
13.58	Изгибные от F_R	-	+	-	+	-	+	-	+		
13.61	Мембранные от M_I					-	-	+	+		
13.62	Изгибные от M_1					-	+	+	-		
13.61	Мембранные от <i>М₂</i>	-	-	+	+						
13.62	Изгибные от <i>М</i> ₂	-	+	+	-						
13.67	Окружные напряжения от давления σ_{ep}	+	+	+	+	+	+	+	+		
Суммарі	Суммарные мембранные окружные напряжения $\sigma_{m heta}$										
Суммар	оные окружные напряжения σ_{θ} (13.5)										
	Радиальные (отн. патр.) напряжения, $\sigma_{\!\scriptscriptstyle x}$	1	2	3	4	5	6	7	8		
13.59	Мембранные от F_R	-	-	-	-	-	-	-	-		
13.60	Изгибные от $F_{\it R}$	-	+	-	+	-	+	-	+		
13.63	М ембранные от M_l						-	+	+		
13.64	Изгибные от M_I						+	+	-		
13.63	Мембранные от M_2	-	-	+	+						
13.64	Изгибные от M_2	-	+	+	-						
13.67	Радиальные напряжения от давления σ_{xp}	+	+	+	+	+	+	+	+		
Суммарные мембранные продольные напряжения σ_{nx}											
Суммар	ные продольные напряжения σ_x (13.5)										
13.65	Сдвиговые напряжения от M_t	+	+	+	+	+	+	+	+		
13.66	Сдвиговые напряжения от F_I					-	-	+	+		

13.66	Сдвиговые напряжения от F_2	+	+	-	-		
Сум	марные сдвиговые напряжения $ au_{ extcolored}$						
13.9	Приведенные общие напряжения $\sigma_{\!\scriptscriptstyle 3\kappa\delta}$						

13.3.5. Патрубок штуцера, соединенный со сферической оболочкой

При расчете патрубка используются относительные безразмерные усилия и моменты, полученные при расчете сферической оболочки.

13.3.5.1. Расчет напряжений от силы F_R

Окружные мембранные напряжения от силы F_R :

$$\sigma_{m\theta}(F_R) = n_{\theta F} \frac{F_R}{(s-c)^2} \tag{13.68}$$

Окружные изгибные напряжения в патрубке от силы F_R по сравнению с мембранными значительно ниже, поэтому их значениями пренебрегают.

Осевые мембранные напряжения от силы F_R :

$$\sigma_{ma}(F_R) = \frac{F_R}{A},\tag{13.69}$$

где
$$A = \frac{\pi}{4} \left((d + 2s_1)^2 - (d + 2c_s)^2 \right)$$
 - расчетная площадь

поперечного сечения патрубка.

Осевые изгибные напряжения от силы F_R для всех расчетных точек:

$$\sigma_{ba}(F_R) = \left[6m_{RF} - 3n_{RF}\right] \frac{F_R}{\left(s_1 - c_s\right)^2}$$
 (13.70)

13.3.5.2. Расчет напряжений от изгибающего момента М ₁₍₂₎

Окружные мембранные напряжения в расчетных точках 1-4 от момента M_I и в точках 5-8 от момента M_2 :

$$\sigma_{m\theta}(M) = n_{\theta M} \frac{M}{(s-c)^2 (d+2s_1)}$$
 (13.71)

Окружные изгибные напряжения от момента $M_{I(2)}$ по сравнению с мембранными значительно ниже, поэтому их значениями пренебрегают.

Осевые мембранные напряжения от момента M_1 в точках 1-4 и от момента M_2 в точках 5-8:

$$\sigma_{ma}(M) = \frac{M}{W_s} \,, \tag{13.72}$$

где
$$W_s = \frac{\pi \left((d+2s_1)^4 - (d+2c_s)^4 \right)}{32(d+2s_1)}$$
 - расчетный момент

сопротивления изгибу поперечного сечения патрубка.

Осевые изгибные напряжения от момента M_1 в точках 1-4 и от момента M_2 в точках 5-8:

$$\sigma_{ba}(M_C) = \left(6m_{RM} - 3n_{RM}\right) \frac{M_c}{\left(s_1 - c_s\right)^2 (d + 2s_1)}$$
 (13.73)

13.3.5.3. Расчет напряжений от крутящего момента M_T

От крутящего момента в соединении штуцера и обечайки возникают касательные напряжения:

$$\tau_{\rm dx} = \frac{M_T}{2\pi \ r_0^2 (s_1 - c_s)} \tag{13.74}$$

13.3.5.4. Расчет напряжений от сдвиговых сил F_1 и F_2

Силы F_1 в точках 5-8 и F_2 в точках 1-4 создают мембранные сдвиговые напряжения:

$$\tau_{x\theta} = \frac{F_{1(2)}}{\pi \, r_0(s-c)} \tag{13.75}$$

13.3.5.5. Расчет напряжений от внутреннего давления

Как и в случае для сферической обечайки, местные мембранные напряжения от внутреннего давления определяются в зависимости от коэффициента интенсификации напряжения, полученного для поперечного сечения обечайки (13.3.27) $I_{\theta p} = I_{xp}$.

Окружное напряжение от внутреннего давления во всех расчетных точках:

$$\sigma_{\theta p} = I_{\theta p} p \frac{D + ((s + s_2) - c)}{4((s + s_2) - c)}$$
(13.76)

Осевое напряжение от внутреннего давления во всех расчетных точках определяется по формуле 13.3.72 при $I_{\theta p}=1$.

Если расчетный коэффициент I_{Φ} < 1, то для определения окружных и осевых напряжений во всех расчетных точках врезки вместо коэффициента интенсификации в формулы (13.3.72) подставляется выражение $(0,5+0,5I_{\Phi})$.

13.3.5.6. Расчет напряжений при произвольном сложном нагружении

В общем случае все приложенные внешние нагрузки на штуцер можно разложить по трем направлениям, т.е. представить как одновременно действующие силы F_R , F_C , F_L , и моменты M_C , M_L , M_T . После определения напряжений от действующих сил и давления суммарные напряжения в расчетных точках (1-8) определяются с учетом знаков согласно табл. 13.4.

Таблица 13.4

Местные напряжения (с учетом знаков) патрубка в расчетных точках зоны врезки, нагруженной внутренним давлением и внешними нагрузками согласно [15]									
формула №	Окружные напряжения, $\sigma_{ heta}$	1	2	3	4	5	6	7	8
13.68	Мембранные от F_R	-	-	-	-	-	-	-	-
13.71	Мембранные от M_I					-	-	+	+
13.71	Мембранные от M_2	-	-	+	+	d.			
13.76	Окружные напряжения от давления σ_{qp}	+	+	+	+	+	+	+	+
Суммарные мембранные окружные напряжения $\sigma_{m\theta}$									
13.5	Суммарные окружные напряжения $\sigma_{ heta}$								

	Осевые напряжения, σ_a	1	2	3	4	5	6	7	8
13.69	Мембранные от F_R	-	-	-	-	-	-	-	-
13.70	Изгибные от F_R	-	+	-	+	-	+	-	+
13.72	Мембранные от M_I					ı	-	+	+
13.73	Изгибные от M_I					1	+	+	-
13.72	Мембранные от <i>М</i> ₂	-	-	+	+				
13.73	Изгибные от <i>М</i> ₂	_	+	+	•				
13.76	Осевые напряжения от давления σ_{ap}	+	+	+	+	+	+	+	+
Суммарн	ые мембранные осевые напряжения σ_{ma}								
Сумм	арные осевные напряжения σ_a (13.5)								
13.74	Сдвиговые напряжения от M_t	+	+	+	+	+	+	+	+
13.75	Сдвиговые напряжения от F_I	¢				-	-	+	+
13.75	Сдвиговые напряжения от F_2	+	+	-	-				
13.5	Суммарные сдвиговые напряжения $ au_{ heta a}$								
13.9	Приведенные общие напряжения _{Фэкв}						-		

Жесткость места соединения штуцера 13.4.

13.4.1. Общие положения

Расчет жесткостей (податливостей) места соединения штуцера с сосудом (аппаратом) производится в трех направлениях:

линейная жесткость вдоль оси штуцера (осевая), K_p ;

угловая жесткость в поперечной плоскости обечайки, K_a ;

угловая жесткость в продольной плоскости обечайки, K_{I} .

Соответствующие указанным жесткостям податливости

представляют собой обратные величины
$$\frac{1}{K_R}; \frac{1}{K_{\theta}}; \frac{1}{K_L}$$

Связи штуцера с обечайкой в остальных трех направлениях принимаются абсолютно жесткими. Податливости в этом случае задаются равными нулю.

В случае если конструкция врезки штуцера и обечайки не удовлетворяет условиям применения (см. п.13.2.) (например, наклонный штуцер) целесообразно применить метод конечных элементов.

13.4.2. Цилиндрическая обечайка

Определение осевой жесткости врезки штуцера в цилиндрическую обечайку проводится с помощью зависимостей безразмерного параметра $\begin{bmatrix} \delta & ER_m \\ F_R \end{bmatrix}$ от геометрических характеристик

деталей врезки
$$\left(\frac{R_{_{\!\!\!\!m}}}{s}\right)$$
, $\left(\frac{C}{R_{_{\!\!\!\!\!m}}}\right)$ и $\left(\frac{L_{_{\!\!\!\!e}}}{R_{_{\!\!\!\!m}}}\right)$ [44], представленных на рис.13.6,

где δ - перемещение штуцера вдоль его оси;

$$R_{_{m}} = rac{D+s}{2}$$
 - средний радиус цилиндрической обечайки без учета коррозии;

 L_e - эффективная длина цилиндрической обечайки, в случае смещения оси штуцера относительно центра обечайки на L_u ,

$$L_e = L - \frac{4L_w^2}{L}$$
 (puc.13.1);

$$C = 0.425(d + 2s_1)$$
 - приведенный радиус штуцера.

Осевая жесткость штуцера (радиальная обечайки) в месте врезки определяется как:

$$K_{R} = \frac{F_{R}}{\delta} = \frac{ER_{m}}{\left[\delta \frac{ER_{m}}{F_{R}}\right]}$$
(13.77)

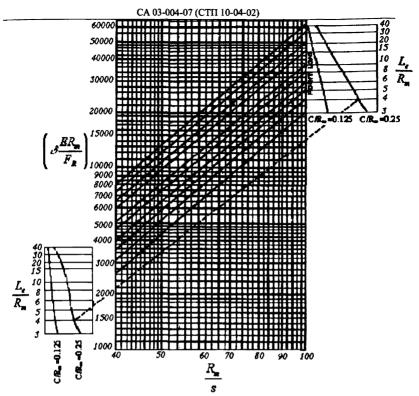


Рис.13.6. Относительное радиальное перемещение обечайки в зоне врезке штуцера

Для определения изгибной жесткости врезки штуцера в поперечной K_{θ} и продольной K_{L} плоскостях обечайки используются зависимости безразмерных параметров $\begin{bmatrix} M_{\theta(L)} \\ Es^3 \varphi_{\theta(L)} \end{bmatrix}$ от геометрических характеристик деталей врезки $\lambda = \frac{(d+2s_1)}{2R_m} \sqrt{\frac{2R_m}{s}}$, $\Lambda = \frac{L_{eb}}{\sqrt{2R_m s}}$ и $\left(\frac{s}{s_1}\right)$, представленных на рис. 13.7 , 13.8.

где $M_{\theta(L)}$ - изгибающий момент в поперечном (θ) и продольном (L) направлениях обечайки соответственно;

 $\varphi_{\theta(L)}$ - угол поворота штуцера от изгибающего момент в поперечном (θ) и продольном (L) направлениях соответственно;

$$L_{eb} = \frac{2L^2 - 8L_w^2}{L + 2\sqrt{0.25L^2 - L_w^2}}$$
 - эффективная длина обечайки для

определения изгибной жесткости.

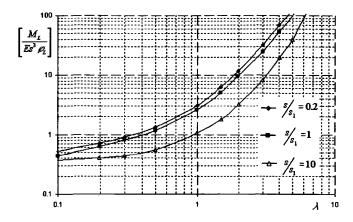


Рис.13.7. Относительное угловое перемещение в продольной плоскости при $\Lambda \ge 10$

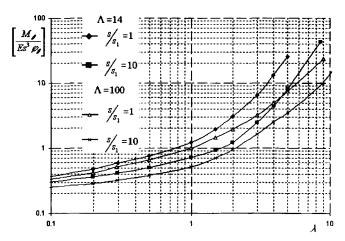


Рис.13.8. Относительное угловое перемещение в поперечной плоскости обечайки

Изгибная жесткость в окружном и продольном направлениях:

$$K_{\theta(L)} = \frac{M_{\theta(L)}}{\varphi_{\theta(L)}} = Es^3 \left(\frac{M_{\theta(L)}}{Es^3 \varphi_{\theta(L)}} \right)$$
 (13.78)

13.4.3. Сферическая обечайка

Определение жесткости в месте врезки штуцера в сферическую обечайку вдоль оси штуцера производится с помощью зависимости безразмерного параметра $\left[\mathcal{S} \, \frac{E \mathcal{S}^2}{F_R R_m} \right]$ от геометрической характеристики

деталей врезки
$$\left(u = \frac{0.91(d+s_1)}{\sqrt{R_m s}}\right)$$
 [44], представленной на рис.13.9.

Расчетная схема врезки штуцера в сферическую обечайку, как и в случае прочностных расчетов, может также использоваться при определении жесткости соединения штуцера в эллиптическое днище.

При этом для определения R_m используется расчетный диаметр для эллиптических днищ по (13.53).

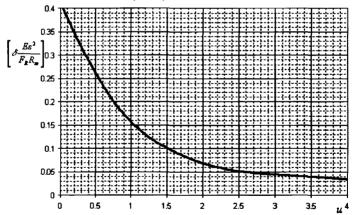


Рис.13.9. Относительное радиальное перемещение штуцера

Радиальная жесткость обечайки в месте врезки штуцера определяется как:

$$K_{R} = \frac{Es^{2}}{R_{m} \left[\delta \frac{Es^{2}}{F_{R}R_{m}} \right]}$$
 (13.79)

Для определения изгибной жесткости врезки штуцера в плоскости действия момента M используется зависимость безразмерного

параметра
$$\left[\frac{\mathcal{S} - E s^2}{M \sqrt{\frac{R_m}{s}}} \right]$$
 от геометрической характеристики деталей врезки

$$\left(u = \frac{0.91(d+s_1)}{\sqrt{R_m s}}\right)$$
, представленной на рис.13.10.

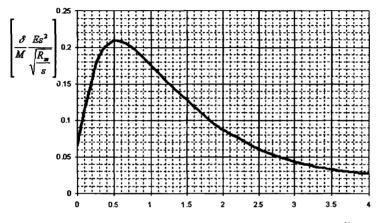


Рис.13.10. Относительное радиальное перемещение края штуцера

По полученным перемещениям определяются угловые перемещения оси штуцера:

$$\varphi = \frac{\delta}{0.5(d+s_1)} \tag{13.80}$$

Таким образом, изгибная жесткость врезки штуцера:

$$K_b = \frac{M}{\varphi} = \frac{0.5(d+s_1)Es^2}{\sqrt{\frac{R_m}{s}} \left[\frac{\delta \quad Es^2}{M \sqrt{\frac{R_m}{s}}} \right]}$$
(13.81)

14.Сосуды с рубашками

Расчет сосудов с рубашками на прочность и устойчивость проводится на основании [9].

14.1. Расчетные схемы

Расчетные схемы сосудов с рубашками приведены на рис. 14.1-14.4.

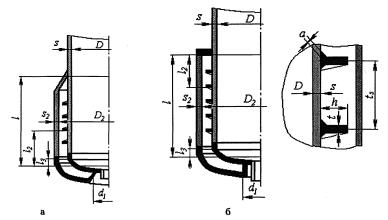


Рис. 14.1. Сосуды с U-образной рубашкой а - с сопряжением при помощи конуса; б - с сопряжением при помощи кольца

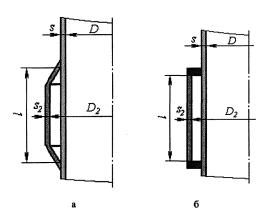


Рис. 14.2. Сосуды с цилиндрической рубашкой а – с сопряжением при помощи конуса; б-с сопряжением при помощи кольца

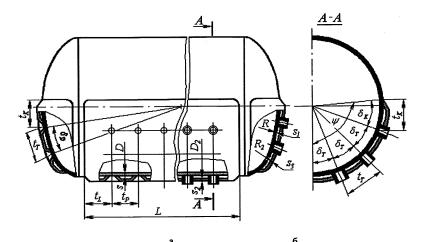


Рис.14.3. Сосуды с рубашками, сопряженными с корпусом сосуда анкерными трубами или отбортовкой а – с отбортовкой; 6 – с анкерными трубами

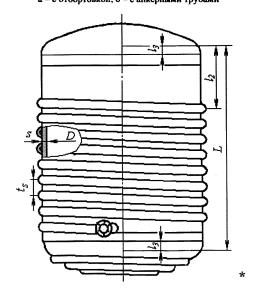


Рис. 14.4. Сосуды со змеевиковыми каналами

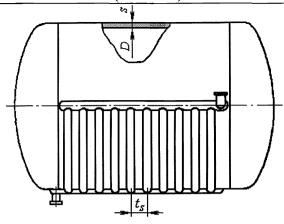


Рис.14.5. Сосуды с регистровыми каналами

Общее условие применения:

расчетные формулы применимы при условии, что в рубашке действует только избыточное внутреннее давление ($p_2 \ge 0$).

14.2. Сосуды с U-образной рубашкой

Условия применения:

$$\frac{D_2}{D} \le 1,2; \quad 0,001 \le \frac{s}{D} \le 0,5 \binom{D_2}{D} - 1; \quad \frac{s_2}{s} \le 1,2.$$
 (14.1)

Для сопряжений при помощи конуса:

$$\alpha = 30^{\circ}$$
, $\alpha = 45^{\circ}$; радиус отбортовки $r_0 = \frac{e_0 - 0.5s_2}{1 - \cos \alpha}$ (14.2)

Для сопряжения при помощи кольца:

 $h_0 \geq 1,5s_2$ - для U-образной рубашки;

$$0.5\sqrt{Ds} > h_0 \ge s_2$$
 - для цилиндрической рубашки. (14.3)

Диаметр окружности сопряжения рубашки с днищем сосуда:

$$d_1 \le 0.4D_2 \tag{14.4}$$

14.2.1. Цилиндрические обечайки

Расчет цилиндрических обечаек рубашки и сосуда на внутреннее избыточное давление проводится по п.3.2.1. Расчетное давление для рубашки равно p_2 и расчетное давление для сосуда p, если p > 0.

Расчет цилиндрической обечайки сосуда на наружное давление проводится по п.3.2.2. При p < 0 за расчетное давление для всего сосуда принимается p, а для зоны рубашки p, а при p > 0 расчетное давление в зоне рубашки равно p. Расчетные длины для всего сосуда p и для зоны рубашки p определяются по п.3.1.

Цилиндрическая стенка сосуда с кольцами жесткости рассчитывается по п.3.3. Направляющие спирали рассматриваются как кольца жесткости, если выполнены следующие условия:

- а) шаг спирали t_s должен быть не более 0,3 D. Если число витков направляющей спирали $n_1 \le 1$, то цилиндрическая обечайка рассчитывается как гладкая;
- б) за расчетную длину l_2 принимается расстояние вдоль оси сосуда от конечной точки расчетной длины (рис.14.1.1) до точки замыкания первого витка направляющей спирали, охватывающего всю окружность сосуда. Для направляющих спиралей, выполненных с концевыми кольцами, длина l_2 принимается равной расстоянию вдоль оси сосуда от конечной точки расчетной длины до концевого кольца;
- в) расчетные длины $b,\ l_1$ и l_2 при расчете по п.3.3 определяются по формулам:

$$b = \max\{t_s - t; t_2 - 0.5t\}; \tag{14.5}$$

$$l_1 = \frac{l}{n - 1}; (14.6)$$

$$l_e = \min \left\{ t_s; t + 1, 1\sqrt{D(s - c)} \right\}$$
 (14.7)

г) поперечное сечение направляющей спирали должно, удовлетворять условию $\frac{h}{t} \leq 8$, чтобы исключить потерю устойчивости из плоскости:

 д) для обеспечения прочности обоих угловых швов на направляющей спирали должно быть выполнено условие;

$$a \ge \frac{2th}{\varphi_0 D} \,. \tag{14.8}$$

Расчетный коэффициент сварного шва φ_0 определяется как отношение длины сварного шва к общей длине спирали. При этом расстояние между двумя концами прерванного шва не должно превышать восьмикратной толщины стенки обечайки s, а сумма длин сварных швов не должна быть меньше половины наружной поверхности направляющей спирали на одном витке. Оба конца спирали должны начинаться швом.

14.2.2. Днища

Расчет выпуклых днищ на внутреннее избыточное и наружное давление проводится по п.4. Расчетные давления определяются п.14.2.1.

При расчете днища рубашки отверстие диаметром d_1 не учитывается.

14.2.3. Сопряжение рубашки с корпусом сосуда при помощи конуса

На рис.14.6. представлены расчетные схемы сопряжения рубашки с корпусом.

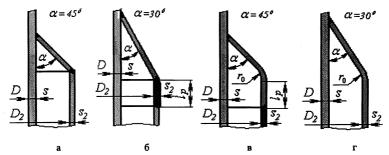


Рис.14.6. Сопряжение рубашки с корпусом сосуда при помощи конуса

14.2.3.1. Вспомогательные параметры.

Коэффициент осевого усилия:

$$A = \frac{DD_2 - d_1^2}{D_2^2} \tag{14.9}$$

Коэффициент, учитывающий расстояние между корпусом сосуда и рубашкой:

$$\varepsilon = \frac{e_0}{\sqrt{D_2(s_2 - c)}}\tag{14.10}$$

Коэффициент радиуса конической отбортовки:

$$\rho = \begin{cases} 0 & \text{для конусов по рис.14.2.1.a,6} \\ \frac{r_0 + 0.5s_2}{\sqrt{D_2(s_2 - c)}} & \text{для конусов почерт.14.2.1.в,2} \end{cases}$$
 (14.11)

Коэффициент длины сопряжения:

$$\lambda = \begin{cases} 2\varepsilon + 0.25\rho & \partial \pi \alpha = 30^{\circ} \\ \varepsilon \sqrt{2} + 0.45\rho & \partial \pi \alpha = 45^{\circ} \end{cases}$$
 (14.12)

Коэффициент отношения прочности корпуса сосуда и рубашки:

$$\chi = 1.25 \frac{[\sigma](s-c)\sqrt{D(s-c)}}{[\sigma]_{2}(s_{2}-c)\sqrt{D_{2}(s_{2}-c)}} \cdot \left[\sqrt{1 - \frac{pD}{2[\sigma](s-c)}} + \sqrt{1 - \frac{(p-p_{2})D}{2[\sigma](s-c)}}\right]$$
(14.13)

Если в сосуде вакуум (p < 0), то в формулу (14.13) подставляют p=0.

Расчетные коэффициенты прочности сварного шва:

$$\varphi_{R1} = \varphi_{T1}; \tag{14.14}$$

$$\varphi_{R2} = \begin{cases} \varphi_{72}, & -\partial \text{ля конусов по рис.14.2.1.в.,2} \\ \varphi_{72}, \text{если } l_R \le 0.5 \sqrt{D_2(s_2 - c)} \\ 1.0, & \text{если } l_R > 0.5 \sqrt{D_2(s_2 - c)} \end{cases} - \partial \text{ля конусов по рис.14.2.1.a.,6}$$
 (14.15)

Относительная эффективная несущая длина конуса:

$$\mu = \min \left\{ \frac{\varepsilon}{\sin \alpha}; \sqrt{\frac{\varphi_{R1} + \varphi_{R2}}{4\cos \alpha}} \right\}$$
 (14.16)

Допускаемое избыточное давление в рубашке:

$$[p_2] = \frac{2[\sigma]_2 (s_2 - c)\varphi_{p2}}{D_2 + (s_2 - c)} \cdot \frac{B}{A}$$
 (14.17)

Коэффициент сопряжения при помощи конуса

$$B = 2\sqrt{\frac{(s_2 - c)}{D_2}} \min\{X_1; X_2; X_3\},\tag{14.18}$$

rge
$$X_1 = \frac{\cos \alpha}{\varepsilon} \cdot \left(\frac{\varphi_{R1} + \varphi_{R2}}{4\cos \alpha} + \lambda f_1 \right);$$
 (14.19)

$$X_2 = f_2 \sqrt{1 + \varphi_{R2}}; ag{14.20}$$

$$X_3 = \chi f_3 + (\frac{\varphi_{R1} + \varphi_{R2}}{4\mu \cos \alpha} + \mu) f_4. \tag{14.21}$$

Коэффициент прочности f_1 :

$$f_{1} = \begin{cases} \frac{1}{2} \left(1 + \lambda + \chi - \frac{(1 - \chi)^{2}}{4\lambda} \right) & \partial n \lambda > \frac{|\chi - 1|}{2}; \\ \lambda + \min\{1; \chi\} & \partial n \lambda \le \frac{|\chi - 1|}{2}. \end{cases}$$
(14.22)

Коэффициент прочности f_2 :

- при
$$\alpha = 30^{\circ} f_2 = 1,22(1+0,51\rho+2\varepsilon z),$$
 (14.23)

где
$$z = \begin{cases} 2 \binom{\varepsilon_0}{\varepsilon} & \text{оля } \varepsilon \ge \varepsilon_0 \\ 1 + \binom{\varepsilon_0}{\varepsilon}^2 & \text{оля } \varepsilon < \varepsilon_0 \end{cases}$$
; $\varepsilon_0 = 0.38 \sqrt{1 + 0.54 \rho + 0.15 \rho^2}$;

- при
$$\alpha = 45^{\circ}$$
 $f_2 = 0.71 + 0.52 \rho + \varepsilon z$, (14.24)

где
$$z = \begin{cases} 2 \left(\frac{\varepsilon_0}{\varepsilon}\right) & \partial n s \ \varepsilon \ge \varepsilon_0 \\ 1 + \left(\frac{\varepsilon_0}{\varepsilon}\right)^2 & \partial n s \ \varepsilon < \varepsilon_0 \end{cases}$$
;
$$\varepsilon_0 = 0.60 \sqrt{1 + 0.83 \rho + 0.37 \rho^2}$$

Коэффициент прочности f_3 :

- при
$$\alpha = 30^{\circ}$$
 $f_3 = \sqrt{3} + \frac{1{,}34\rho^3 {\binom{0,2}{\varepsilon}}^4}{24\varepsilon + \rho^2 \max\left\{0; \left(\frac{0,5}{\sqrt{3}\varepsilon}\right)^3 - 1\right\}}$ (14.25)

- при
$$\alpha = 45^{\circ}$$
 $f_3 = 1 + \frac{12\rho^{3}\left(\frac{0,2}{\varepsilon}\right)^{4}}{12\varepsilon + \rho^{2}\max\left\{0;\left(\frac{0,5}{\varepsilon}\right)^{3} - 1\right\}}$ (14.26)

Коэффициент прочности f_4 :

- при
$$\alpha = 30^{\circ}$$

$$f_{4} = \sqrt{3} \max \left\{ 1; \min \left\{ 1; 0.8 + \frac{4.56}{100\varepsilon} \right\} + \frac{\rho}{3} \min \left\{ 1; \frac{\frac{4}{3}}{1 + \sqrt{3}\varepsilon \left(1 + \sqrt{3}\varepsilon \left(1 + 9.5\varepsilon \right) \right)} \right\} \right\}$$
(14.27)

- при
$$\alpha = 45^{\circ}$$

$$f_4 = \max \left\{ 1; \min \left\{ 1; 0.8 + \frac{6.0}{100\varepsilon} \right\} + \frac{\rho}{2} \min \left\{ 1; \frac{\frac{4}{3}}{1 + \varepsilon \left(1 + \varepsilon \left(1 + 5.5\varepsilon \right) \right)} \right\} \right\}$$
 (14.28)

14.2.3.2. Определение размеров сопряжения при помощи конуса.

Толщина стенки конуса должна быть равна или больше толщины стенки сопряженной цилиндрической рубашки. Если необходимо увеличить толщину стенки конуса, то следует одновременно увеличить и толщину стенки сопряженной цилиндрической обечайки рубашки на длине

$$l_{p} \ge \begin{cases} 0.7\sqrt{D_{2}(s_{2}-c)} & \text{для конусов по рис.}14.6.a,6; \\ 0.5\sqrt{D_{2}(s_{2}-c)} & \text{для конусов по рис.}14.6.в,2. \end{cases}$$
 (14.29)

Расчетная толщина стенки конуса:

$$s_{2p} = \frac{p_2 D_2}{2[\sigma]_2 \varphi_{p2} \cdot \frac{B}{A} - p_2}$$
 (14.30)

Условие выполнения прочности стенки конуса:

$$s_2 \ge s_{2p} + c \tag{14.31}$$

14.2.4. Сопряжение рубашки с корпусом сосуда при помощи кольца

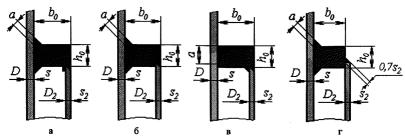


Рис.14.7. Сопряжение рубашки с корпусом сосуда при помощи кольца

Вспомогательные параметры.

Расчетные коэффициенты прочности сварного шва:

$$\varphi_{R1} = \begin{cases}
1,0 & \text{для колец по puc.14.7.a,6,2} \\
\left(\frac{a}{h_0}\right)^2 \varphi_{T1} & \text{для колец по puc.14.7.8}
\end{cases}$$
(14.32)

Параметры кольца:

$$H = \frac{h_0 - c}{\sqrt{D(s - c)}};\tag{14.34}$$

$$P = \frac{p_2}{[\sigma]_0 \varphi_{p0}}; \tag{14.35}$$

$$Q = \frac{D\varphi_{R1}}{2b_0\varphi_{n0}} \,. \tag{14.36}$$

Относительный момент нагружения:

$$M_0 = \frac{\varepsilon_0}{b_0} \cdot \frac{D_2^2}{2D(s-c)} A,$$
 (14.37)

где *А* – коэффициент осевого усилия по формуле (14.9). Относительный реактивный момент в стенке сосуда:

$$M_{1} = \frac{[\sigma](s-c)}{2[\sigma]_{0} \varphi_{p0} b_{0}} \left[2 - \frac{1}{2} \left(\frac{pD}{2[\sigma](s-c)} \right)^{2} - \frac{1}{2} \left(\frac{(p-p_{2})D}{2[\sigma](s-c)} \right)^{2} \right]$$
(14.38)

Если $p > p_2 > 0$, то в формулу (14.38) подставляют p = 0.

Относительный реактивный момент в стенке рубашки:

$$M_2 = \frac{[\sigma]_2(s_2 - c)\varphi_{R2}}{2[\sigma]_0\varphi_{p0}b_0} \cdot \frac{D_2(s_2 - c)}{D(s - c)}$$
(14.39)

Относительный реактивный момент в месте сопряжения кольца со стенкой сосуда:

$$M_3 = \min\{QH^2; (1+2H)M_I\}$$
 (14.40)

Допускаемое избыточное давление в рубашке:

$$[p_2] = (H^2 + M_2 + M_3) \frac{[\sigma]_0 \varphi_{p0}}{M_0}$$
 (14.41)

Расчетная высота кольца:

$$h_{0p} = \sqrt{D(s-c)} \max \left\{ \sqrt{\frac{PM_0 - M_2}{1+Q}}; \sqrt{PM_0 - M_1 - M_2 + M_1^2} - M_1 \right\}$$
 (14.42)

При наличии в формуле (14.42) отрицательного значения под знаком радикала соответствующий член при определении максимума не учитывают. Если в обоих членах значении под знаком радикала отрицательны, то толщину кольца определяют по (14.3).

Условие выполнения прочности стенки кольца:

$$h_0 \ge h_{0p} + c \tag{14.43}$$

Размер сварного шва между сосудом и кольцом при сопряжениях (см. рис.14.7. а,б,г) должен удовлетворять условию:

$$a \ge \frac{s - c}{2} \cdot \frac{\max\left\{\frac{p_2 D}{2(s - c)}; 2[\sigma]_0 \varphi_{p_0} (PM_0 - M_2 - H^2) \frac{b_0}{h_0}\right\}}{\min\left\{[\sigma]_0; [\sigma]\right\}}$$
(14.44)

14.2.5. Нагрузка от собственного веса

Собственные веса G и G_2 вызывают в конусе или в кольце осевое усилие

$$F = \begin{cases} + G_2, & \text{если опоры на сосуде} \\ -G, & \text{если опоры на рубашке} \end{cases}$$
 (14.45)

Несущая способность от совместного действия осевого усилия и избыточного давления в рубашке определяется по формуле:

$$\frac{\left|p_{2}\right|}{\left|p_{1}\right|} + \frac{4F}{\pi\left[p_{2}\right]D_{2}^{2}A} \le 1,\tag{14.46}$$

где $[p_2]$ — допускаемое избыточное давление по формуле (14.17) для сопряжения при помощи конуса и по формуле (14.41) для сопряжения при помощи кольца;

A – коэффициент осевого усилия по формуле (14.9).

14.3. Сосуды с цилиндрическими рубашками

Условия применения расчетных формул такие же, как и для сосудов с U- образными рубашками.

14.3.1. Цилиндрические обечайки

Цилиндрические обечайки рассчитывают в соответствии с п. 14.2.1.

14.3.2. Сопряжение при помощи конуса

Конические сопряжения удовлетворяют требованиям прочности, если они выполнены с толщиной стенки, равной толщине стенки цилиндрической обечайки рубашки, и выполняется условие:

$$e_0 \le 1.8\sqrt{D_2(s_2 - c)} \tag{14.47}$$

14.3.3. Сопряжение при помощи кольца

Расчетная высота кольца:

$$h_{0p} = 0.6e_0 \sqrt{\frac{p_2}{[\sigma]_2}} \tag{14.48}$$

Условие выполнения прочности стенки кольца:

$$h_0 \ge \max\{s_2; h_{0p} + c\}$$
 (14.49)

Размер сварного шва между сосудом и кольцом при сопряжениях по рис.14.2.a, δ , ϵ должен удовлетворять условию:

$$a \ge 0.4h_0 \frac{\max\left\{p_2 \frac{e_0}{h_0}; \min\left\{ [\sigma]_0; 2[\sigma] \cdot \left(\frac{s}{h_0}\right)^2 \right\} \right\}}{\min\left\{ [\sigma]_0; [\sigma] \right\}}$$

$$(14.50)$$

для колец при сопряжении по рис.14.2.в:

$$a = h_0 \tag{14.51}$$

14.3.4. Нагрузка от собственного веса сосуда или рубашки

Проверка несущей способности при нагружении конических или кольцевых сопряжений собственным весом сосуда или рубашки проводится по формуле:

$$|F| \le \frac{\pi}{4} D_2^2 [p_2] A,$$
 (14.52)

где F – осевое усилие по п. 14.2.5.;

 $[p_2]$ – допускаемое избыточное давление по формуле (14.17) для сопряжения при помощи конуса и по формуле (14.41) для сопряжения при помощи кольца;

А - коэффициент осевого усилия по формуле (14.9).

При наличии компенсатора на рубашке формула (14.52) применима при условии, что опорные элементы не расположены на рубашке.

14.4. Сосуды, частично охваченные рубашками, сопряженными с корпусом анкерными трубами и отбортовками

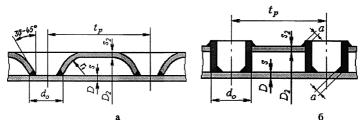


Рис.14.8. Сопряжение рубашки с корпусом сосуда а – отбортовкой; 6 – анкерными трубами.

Дополнительные условия применения:

$$\delta_{\tau} \le 30^{\circ} \min \left\{ 1; 4\sqrt{\frac{L}{D}} \cdot \sqrt[4]{\frac{s-c}{D}} \right\}; \ 0.8 \le \frac{t_p}{t_{\tau}} \le 1.25; \ a \ge 0.7 \min \left\{ s_0; s_2 \right\}$$
 (14.53)

Расчетная формула для сопряжения отбортовкой применима при углах отбортовки от 30 до 45° (рис.14.8) и при проваренных сварных швах.

14.4.1. Цилиндрическая обечайка

Расчет цилиндрической обечайки сосуда на внутреннее избыточное давление проводится по п.3.2.1.

Расчет цилиндрической обечайки сосуда на наружное давление проводится по п.3.2.2. При p < 0 за расчетное давление для всего сосуда принимается p .

Части цилиндрической обечайки сосуда, охваченные рубашкой, и цилиндрические части рубашки при нагружении давлением p_2 рассчитывают по п. 14.4.3. как плоские участки.

Если p < 0, то чтобы исключить появление вмятин на цилиндрической обечайке сосуда необходимо, чтобы:

$$\frac{s-c}{D} \ge \sqrt[3]{4.5 \cdot \frac{p}{E_1} \left(\frac{\delta_T}{360^{\circ}}\right)^2}$$
 (14.54)

14.4.2. Днища

Расчет выпуклых днищ на внутреннее избыточное и наружное давление проводится по п.4. Расчетные давления определяются п.14.2.1.

Части днища сосуда, охваченные рубашкой, и части рубашки в зоне днища при нагружении давлением p_2 рассчитывают по п.14.4.3 как плоские участки. При этом в формулы вместо толщины стенки цилиндрической обечайки s подставляют толщину днища сосуда s_1 и вместо толщины стенки цилиндрической обечайки s_2 толщину днища рубашки s_4 .

14.4.3. Плоские участки

Допускаемое избыточное давление в рубашке:

- для стенки сосуда

$$[p_{2}] = [\sigma] \frac{(s-c)^{2}}{t_{p}t_{T}} \cdot f_{5} \left[1 - \left(\frac{pD_{R}}{2[\sigma]_{1}(s-c)} \right)^{2} \right]$$
 (14.55)

- для стенки рубашки

$$[p_2] = [\sigma]_2 \cdot \frac{(s_2 - c)^2}{t_p t_T} \cdot f_6$$
 (14.56)

Коэффициенты прочности f_5 и f_6 определяются в зависимости от отношения d_0/t_0 и от относительного реактивного момента m:

$$f_5 = \frac{\pi}{2} \left(1 + 1.3 - \frac{1.8 + 2.3 \frac{d_0}{t_0}}{\ln \frac{t_0}{d_0}} \right)$$
 (14.57)

$$f_6 = \frac{\pi}{2} \left(1 + 1.3 \frac{1.3 + \frac{m}{2} + (1 + 1.3m) \frac{d_0}{t_0}}{\ln \frac{t_0}{d_0}} \right), \tag{14.58}$$

где $t_0 = \sqrt{t_p t_T}$ - эффективный шаг анкерных труб или отбортовок;

$$m = egin{dcases} 1,0 & -$$
 для сопряжений отбортовкой; $m = egin{dcases} 1, \left(\frac{a}{s_2} \right)^2; \left(\frac{s_0}{s_2} \right)^2 \end{Bmatrix}$ —для сопряжений анкерными трубами.

Расчетные величины шага:

$$t_1 = (s - c) \sqrt{\frac{[\sigma]}{p_2} \cdot f_5 \left[1 - \left(\frac{pD_R}{2[\sigma](s - c)} \right)^2 \right]}; \tag{14.59}$$

$$t_2 = (s_2 - c) \sqrt{\frac{[\sigma]_2}{p_2} \cdot f_6}$$
 (14.60)

Расчетные толщины стенок:

$$s_p = t_0 \sqrt{\frac{p_2}{[\sigma]f_5} + \left(\frac{pD_R}{2[\sigma]t_0}\right)^2}$$
 (14.61)

$$s_{2p} = t_0 \sqrt{\frac{p_2}{[\sigma]_2 f_6}}$$
 (14.62)

Условия выполнения прочности элементов плоских участков:

$$t_0 \le \min\{t_1; t_2\}; \tag{14.63}$$

$$s \ge s_p + c; \tag{14.64}$$

$$s_2 \ge s_{2p} + c \tag{14.65}$$

Размеры сопряжений при помощи конуса определяют по п. <u>14.3.2</u> и размеры сопряжений при помощи кольца — по п.<u>14.3.3</u>.

Расстояния от края рубашки до первого ряда анкерных труб или отбортовок должны удовлетворять условиям:

$$t_L \le t_p \min \left\{ 1; 0, 5 + \sqrt{\frac{t_T}{t_p f_6}} \right\};$$
 (14.66)

$$t_K \le t_T \min \left\{ 1; 0, 5 + \sqrt{\frac{t_p}{t_T f_6}} \right\}$$
 (14.67)

Расчетная толщина отбортовки:

$$s_{2p} = \frac{p_2 t_p t_T \eta}{0.7\pi (d_0 - s_2) \min\{ [\sigma]_2 \}}.$$
 (14.68)

где
$$\eta = 1 - \frac{\pi}{4} \left(\frac{d_0}{t_0} \right)^2$$
.

Условия выполнения прочности стенки отбортовки:

$$s_2 = a \ge s_{2p} + c \tag{14.69}$$

Расчетная толщина анкерных труб:

$$s_{0p} = \frac{p_2 t_p t_T \eta}{\pi (d_0 - 2s_0) \min\{ [\sigma]_0; [\sigma]; [\sigma]_2 \}}$$
(14.70)

Условия выполнения прочности анкерных труб:

$$a \ge 1.41s_{0p} + c;$$
 (14.71)

$$s_0 \ge s_{0p} + c \,. \tag{14.72}$$

14.5. Сосуды с каналами

центр тяжести поперчного сечения канала t_s t_s

Рис.14.9. Каналы

 а – полукруглое сечение с V-образным швом; б – полукруглое сечение с угловым швом; в – сегментное сечение. Условия применения:

$$b_2 \le 0.1D_1; \quad h_2 \ge s_2; \quad 20^\circ \le \gamma \le 90^\circ$$
 (14.73)

Расчетные формулы для каналов применимы при V-образных сварных швах с полным проваром, а для каналов полукруглого сечения также и при угловых швах.

14.5.1. Цилиндрическая обечайка

Расчет цилиндрической обечайки сосуда на внутреннее избыточное давление проводится по п.<u>3.2.1</u>.

Расчет цилиндрической обечайки сосуда на наружное давление проводится по п.3.2.2. При p < 0 за расчетное давление для всего сосуда принимается p.

- В сосудах со змеевиковым каналом (рис.14.4) его можно рассматривать как кольцо жесткости и цилиндрическую обечайку рассчитывать как укрепленную кольцами жесткости по п.<u>3.3</u>. при условии, что учитываются следующие особенности:
- а) шаг змеевикового канала t_3 должен быть не более 0,3D. Если $n_2 \le n_3 + 1$, то цилиндрическую обечайку рассчитывается как гладкая обечайка:
- б) расчетная длина l_2 при расчете по п.3.3. определяется как осевое расстояние от начала или конца расчетной длины (рис.3.1.4) до места окончания первого витка змеевикового канала, охватывающего всю окружность рубашки;
- в) расчетные значения $b,\, l_l$ и l_e при расчете по п.3.3 определяются по формулам:

$$b = \max\{t_s - b_2; l_2 - 0.5b_2; b_2\}; l_1 = \frac{L}{n_2 - n_3 - 1};$$

$$l_e = \min\begin{cases}t_s; 2(s_2 - c) + b_2 + 1.1\sqrt{D(s - c)}; t_s - b_2 + 1.1\sqrt{D(s - c)};\\2(s_2 - c) + 1.1\sqrt{D(s - c)}\end{cases}$$
(14.74)

г) используемые в п.3.3. величины e, I_{κ} и A_{κ} определяют по формулам:

$$e = e_{2} = \frac{s - c}{2} + 0,65h_{2}; \quad I_{K} = r_{3}h_{2}^{2}(s_{2} - c)0,3 \cdot \frac{\gamma}{90^{\circ}};$$

$$A_{K} = \begin{cases} r_{3}(s_{2} - c)\pi \frac{\gamma}{90^{\circ}} & \partial n\pi \ p_{1} \leq 0; \\ r_{3}(s_{2} - c)\pi \frac{\gamma}{90^{\circ}} - \frac{\pi}{4} \cdot \frac{p_{2}}{[\sigma]_{2}} \cdot h_{2}b_{2} \ \partial n\pi \ p_{1} > 0. \end{cases}$$

$$(14.75)$$

Цилиндрическую обечайку сосуда при нагружении давлением p_2 в каналах рассчитывают как полосу обечайки шириной b_2 по п. 14.5.3.

14.5.2. Полоса обечайки под каналами

Допускаемое избыточное давление в каналах по окружности цилиндрической обечайки:

$$[p_2] = \frac{4[\sigma](s-c)^2}{b_2^2 + 4r_3(s-c)\cos\gamma} \left(1 + \frac{b_2^2}{2D(s-c)}\right)$$
 (14.76)

Если p < 0, то должно дополнительно выполняться условие:

$$\frac{p_2}{[\sigma]_2} \le 1 - \left[\frac{|p|D}{4[\sigma](s-c)} \right] \left[\frac{D(s-c) + b_2^2}{D(s-c) + 0.5b_2^2} \right]$$
(14.77)

Если $p_2 > p > 0$, то должно дополнительно выполняться условие:

$$\frac{p_2 - p}{[p_2]} \le 1 - \left(\frac{pD}{4[\sigma](s - c)}\right) \tag{14.78}$$

Допускаемое избыточное давление в каналах вдоль оси цилиндрической обечайки и каналах на днище:

$$[p_2] = \frac{4[\sigma](s-c)^2}{b_2^2} \left[1 - \left(\frac{pD_R - 2p_2r_3\cos\gamma}{2[\sigma](s-c)} \right)^2 \right]$$
 (14.79)

14.5.3. Дниша

Выпуклые днища рассчитывают по п.4 на внутреннее избыточное давление с расчетным давлением p, если p > 0, и на наружное давление с расчетным давлением p, если p < 0. Выпуклые днища при нагружении давлением p_2 в каналах рассчитывают как полосу обечайки шириной b_2 по п. 14.5.2.

14.5.4. Каналы

Вспомогательные параметры.

Коэффициент понижения прочности V в зоне сопряжения штуцера с каналом рассчитывают по п.10.4. Если канал и штуцер выполнены из трубы одинаковых размеров и материала, то коэффициент V рассчитывают по формуле:

$$V = \frac{1}{0.9 + \sqrt{\frac{r_3}{8(s_2 - c)}}}$$
 (14.80)

Расчетное значение коэффициента прочности сварного шва: для V-образного шва (рис.14.9. *а. в*)

$$\varphi_{R5} = \varphi_{R6} = \varphi_{T2}; \tag{14.81}$$

для углового шва (рис.14.9. б)

$$\varphi_{R5} = \min \left\{ 0,4; 0,7 \frac{a}{s_2 - c} \right\}; \ \varphi_{R6} = 0,4$$
 (14.82)

Коэффициенты понижения прочности φ_3 и φ_4 каналов:

$$\varphi_3 = \min\{V; \varphi_{R5}\}; \ \varphi_4 = \min\{V; \varphi_{R6}\}$$
 (14.83)

Допускаемое избыточное давление в канале:

$$[p_2] = \frac{[\sigma]_2(s_2 - c)}{r_3} \cdot \varphi_3 \tag{14.84}$$

Расчетная толшина стенки канала:

$$s_{2p} = \frac{2r_2p_2}{2[\sigma]_2\varphi_4 + p_2};$$
(14.85)

Условия выполнения прочности стенки канала:

$$s_2 \ge s_{2p} + c \tag{14.86}$$

при этом размер сварного шва для угловых швов

$$a \ge 0.6s_{2n} \tag{14.87}$$

14.5.5. Распределительные каналы в сосудах с регистровыми каналами

Расчет производят в соответствии с п. <u>14.5.4</u>. , причем следует использовать величины $V, \, \varphi_3, \varphi_4$, определяемые по формулам:

$$V = 1 - \frac{b_2}{t_s}; \ \varphi_3 = V \varphi_{R5}; \ \varphi_4 = V \varphi_{R6}, \tag{14.88}$$

где $\varphi_{R5}, \varphi_{R6}$ определяются по (14.82).

15. Расчет элементов сосудов и аппаратов, работающих в коррозионно-активных сероводородсодержащих средах

Расчет элементов сосудов и аппаратов, работающих в коррозионно-активных сероводородсодержащих средах, проводится на основании [16,17].

15.1. Условия применения

Методика применяется для сосудов и аппаратов из углеродистых и низколегированных сталей, работающих при статических и повторностатических нагрузках и температуре не выше 200^{0} С и парциальном давлении сероводорода более 0,0003МПА [16].

В сосудах и аппаратах должны применяться следующие типы выпуклых днищ:

- эллиптические с отношением высоты выпуклой части к диаметру $\frac{H}{D} = 0.25$;

- полусферические.

Расстояние от края штуцера до края внешней поверхности выпуклого днища, измеряемое по проекции образующей на плоскости основания днища, должно быть:

при
$$s < 10$$
мм $0,10(D+2s)$;

при
$$s \ge 10$$
 мм $0,09D + s$.

Патрубки с внутренней части аппарата должны быть выполнены заподлицо с аппаратом.

Отношение толщины стенки патрубка к толщине стенки обечайки или днища не должно превышать 1,5.

Плоские приварные днища должны применяться только с отбортовкой (тип 11, табл.5.1.1).

Конические днища и переходы должны применяться только с отбортовкой независимо от центрального угла при вершине конуса.

Кольца жесткости применяются только с наружной стороны обечайки.

В сосудах и аппаратах, а также в трубопроводах должны применяться фланцы приварные встык на $P_{y} \ge 1,6M\Pi a$. Допускается применять плоские приварные фланцы при $D_{y} \ge 400$ мм и $P_{y} \le 1,0$ МПa при двухстороннем сплошном проваре.

15.2. Допускаемые напряжения, коэффициенты запаса прочности

Допускаемые напряжения в рабочих условиях [σ] при расчете по предельным нагрузкам:

$$\left[\sigma\right] = \eta \cdot \min\left(\frac{R_e \text{ или } R_{p0,2}}{n_{_{\mathrm{T}}}}; \frac{R_m}{n_{_{\mathrm{g}}}}\right) \tag{15.1}$$

Коэффициенты запаса прочности, в зависимости от группы аппарата в рабочих условиях определяются по таблице 15.1. Группа аппарата определяется по [22].

Таблица 15.1

Грудина адморода	Коэффициент запаса прочности		
Группа аппарата	n _T	пв	
I	2,0	3,0	
П	1,8	3,0	
III, IV	1,6	2,6	

Допускаемые напряжения для условий монтажа, гидро- и пневмоиспытаний и коэффициенты запаса устойчивости определяются по п.2.2.

Расчетные значения предела текучести, временного сопротивления и коэффициентов линейного расширения принимаются в соответствии с Приложениями 2,3.

Для элементов сосудов и аппаратов, рассчитываемых не по предельным нагрузкам (например, узлы врезки штуцеров или фланцевые соединения) допускаемые напряжения определяются по соответствующей нормативно-технической документации [11,16,10,41].

15.3. Расчет обечаек и днищ

Расчет обечаек и дниш производится по пп. 3, 4. При этом величины допускаемых напряжений определяются по п.15.2.

Дополнительной проверке подлежит толщина цилиндрической обечайки в месте присоединения плоского отбортованного днища. Напряжения в месте присоединения должны отвечать условию:

$$\alpha_{\delta} P \frac{D+s-c}{2(s-c)} \le 1,5 \left[\sigma\right] \tag{15.2}$$

где
$$\alpha_{\delta}$$
 определяется в зависимости от $\frac{r(s-c)}{(D+s-c)^2}$ по рис.15.1.

 α_{λ}

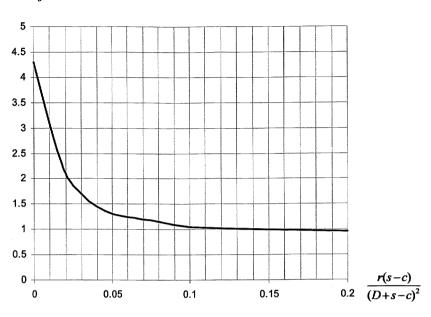


Рис.15.1.

15.4. Расчет укрепления отверстий

Расчет укрепления отверстий в обечайках и днищах проводится по п.10 с последующей проверкой условий прочности.

Расчетное напряжение в месте врезки штуцера в цилиндрическую обечайку должно отвечать условию:

$$Kp \frac{D_p + s - c}{2(s - c)} \le 1,5[\sigma]\chi_1$$
 (15.3)

Расчетное напряжение в месте врезки штуцера в выпуклое днище должно отвечать условию:

$$K_{\mathcal{A}} p \frac{D_p + s - c}{4(s - c)} \le 1,5 [\sigma] \chi_1$$
 (15.4)

Коэффициенты интенсификации напряжений K , $K_{\mathcal{A}}$ определяются по графикам Приложения 8 в зависимости от отношений $\frac{d_p}{D_p}$; $\frac{s-c}{D_p}$ и $\frac{s_1-c_s}{s-c}$.

При
$$\frac{d_p}{D_p} < 0.05$$
 величины $K_{\mathcal{A}}$ следует принимать как для

отношения
$$\dfrac{d_p}{D_p} = 0{,}05$$
 для соответствующих значений $\dfrac{s-c}{D_p}$ и $\dfrac{s_1-c_s}{s-c}$. В случае использования накладного кольца шириной

 $\frac{\mathrm{B} \quad \mathsf{случаe} \quad \mathsf{использования} \quad \mathsf{накладногo} \quad \mathsf{кольцa} \quad \mathsf{шириной} \\ l_2 \geq \sqrt{D_p(s-c)} \;, \; \mathsf{B} \; \mathsf{формулаx} \; (15.3) \; \mathsf{и} \; (15.4), \; \mathsf{a} \; \mathsf{такжe} \; \mathsf{при} \; \mathsf{определении} \\ K \;, \; K_{\mathcal{A}} \; \mathsf{вместo} \; (s-c) \; \mathsf{необходимо} \; \mathsf{подставлять} \; (s+s_2-c) \;.$

15.5. Прочность места врезки штуцера

Расчет на прочность места врезки радиального штуцера от действия внутреннего давления и внешних нагрузок производится по п.13.

При использовании наклонных и тангенциальных штуцеров определение расчетных растягивающих напряжений на внутренних поверхностях узлов врезок допускается производить численными методами (МКЭ) с использованием ЭВМ (см.п.16), с последующей оценкой полученных результатов в соответствии с п.13.3.1.

При этом в обоих случаях производится дополнительная проверка для максимальных растягивающих напряжений на внутренней поверхности, которые не должны превосходить $1.5[\sigma]$ для обечайки и $1.5[\sigma]\chi_1$ для патрубка штуцера.

15.6. Расчет фланцевых соединений

Расчет фланцевых соединений арматуры, сосудов и аппаратов в условиях монтажа до подачи среды, а также в условиях испытаний производится по пп.11, 12.

Условие прочности при расчете статической прочности для фланцев сосудов и аппаратов, приварных встык в сечении s_1 в рабочих условиях:

$$\sigma_{s1} = \max \left\{ \frac{\sqrt{(\sigma_{11} + \Delta\sigma_{11})^2 + (\sigma_{13} + \Delta\sigma_{13})^2 - (\sigma_{11} + \Delta\sigma_{11})(\sigma_{13} + \Delta\sigma_{13})}}{\sqrt{(\sigma_{12} + \Delta\sigma_{12})^2 + (\sigma_{14} + \Delta\sigma_{14})^2 - (\sigma_{12} + \Delta\sigma_{12})(\sigma_{14} + \Delta\sigma_{14})}} \right\} \le \left[\sigma\right] \quad (15.5)$$

В сечении s_0 для фланцев приварных встык и плоских:

$$\sigma_{s0} = \max \left\{ \frac{\sqrt{(\sigma_{21} + \Delta\sigma_{21})^2 + (\sigma_{23} + \Delta\sigma_{23})^2 - (\sigma_{21} + \Delta\sigma_{21})(\sigma_{23} + \Delta\sigma_{23})}}{\sqrt{(\sigma_{22} + \Delta\sigma_{22})^2 + (\sigma_{24} + \Delta\sigma_{24})^2 - (\sigma_{22} + \Delta\sigma_{22})(\sigma_{24} + \Delta\sigma_{24})}} \right\} \le 1,5[\sigma]$$
 (15.6)

Величины расчетных напряжений определяются по п.11.8.1.

Условие прочности для арматурных фланцев, приварных в стык для максимального осевого напряжения в обечайке (втулке):

- в рабочих условиях
$$\sigma_{a1} = \frac{f M_{01}}{D^* (s_1 - c)^2 L} \le [\sigma];$$
 (15.7)

- в рабочих условиях с учетом температурной
$$\sigma_{a2} = \frac{f \ M_{02}}{D^* (s_1 - c)^2 L} \le 1,5 [\sigma].$$
 (15.8)

16.Расчет сосудов и аппаратов методом конечных элементов

16.1. Общие положения

Многие сосуды и аппараты, вследствие сложности конструкции или условий нагружения, не могут быть рассчитаны в строгом соответствии с нормативными документами. В этом случае значительную помощь в оценке работоспособности конструкции может оказать использование численных методов расчета элементов сосудов и аппаратов. Наибольшее распространение при расчетах на прочность и устойчивость получил метод конечных элементов (МКЭ).

При заключении о работоспособности узлов сосудов и аппаратов с использованием МКЭ используются различные категории напряжений [10]:

- общие мембранные σ_m ;
- местные мембранные от действия давления σ_{mo} ;
- местные мембранные от действия давления и внешних нагрузок σ_{ml} ;
- общие изгибные σ_b ;
- местные изгибные σ_{hL} ;
- общие температурные $\sigma_{\scriptscriptstyle T}$;
- местные температурные σ_{TL} ;
- напряжения компенсации σ_k ;
- местные напряжения в зонах концентрации напряжений (пиковые).

Общими мембранными напряжениями являются средние напряжения растяжения или сжатия по толщине стенки обечайки или днища, вызываемые действием внутреннего или наружного давления.

Местными мембранными напряжениями являются мембранные напряжения в зонах присоединения оболочек к фланцам, патрубков к обечайкам (днищам) вне зоны сварного шва и др.

Общими изгибными напряжениями являются напряжения изгиба, вызываемые действием внешних сил и моментов, действующих на сосуд в целом, а также напряжения изгиба, вызываемые действием давления на плоские крышки.

Местными изгибными напряжениями являются напряжения изгиба в зонах присоединения патрубков к обечайкам (днищам), к фланцам и др.

205

Общими температурными напряжениями являются напряжения, вызываемые осевым перепадом температур в цилиндрической обечайке, перепадом температур по толщине плоских днищ и крышек, в стыковых соединениях обечаек, выполненных из разнородных материалов.

Местными температурными напряжениями являются локальные напряжения, вызываемые перепадом температур на небольших участках перегрева (или охлаждения), напряжения в облицовочных и других биметаллических элементах, вызванные разностью коэффициентов линейного расширения.

Максимальные значения напряжений в зонах концентрации (так называемые «пиковые» напряжения) являются напряжения в зонах отверстий, галтелей, резьб и используются при оценке прочности с циклическими изменениями нагрузки, а также для хрупких материалов.

Напряжения, определенные при расчете на статическую прочность элементов сосудов и аппаратов не должны превышать значений, указанных в таблице 16.1.

Таблица 16.1

допускаемые напряжения для расчетных напряжении					
Расчетная группа напряжений	Вид нагружений	Категории напряжений	Допускаемые значения*		
общие мембранные	давление	$\sigma_{\scriptscriptstyle m}$	$[\sigma]$		
местные мембранные + общие изгибные	давление	$\sigma_{\scriptscriptstyle mp}$	1,3[σ]		
местные мембранные + общие изгибные	давление, внешние нагрузки	$\sigma_{\scriptscriptstyle mL}$	1,5[σ]		
местные мембранные + местные изгибные + общие температурные + напряжения компенсации	давление, внешние нагрузки	$\sigma_{\rm mL} + \sigma_{\rm bL} + + + \sigma_{\rm T} + \sigma_{\rm k}$	$\min \left\{ \begin{pmatrix} 2, 5 - \frac{R_{p0,2}}{R_m} \end{pmatrix} \cdot R_{p0,2} \\ 2R_{p0,2} \\ R_{m/10^5} \end{pmatrix} \right\}$		

*
$$[\sigma] = \min \left\{ \frac{R_{p0,2}}{1,5}; \frac{R_m}{2,6}; \frac{R_{m/10^5}}{1,5} \right\}$$
 - номинальное допускаемое напряжение.

16.2. Расчет прочности и жесткости места соединения штуцера с сосудом (аппаратом) при статическом нагружении

При расчете напряженно-деформированного состояния (НДС) узла врезки методом конечных элементов используются оболочковые элементы. Расчетные значения нагрузок прикладываются в центре крышки штудера. Крышка представляет из себя плоский диск высокой жесткости. Значения и направления сил и моментов соответствуют схемам, приведенным на рис.16.1.

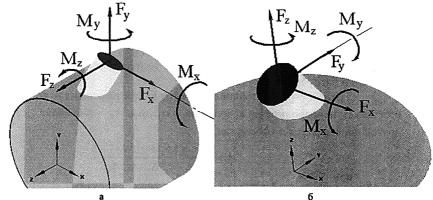


Рис.16.1.

Расчетные схемы нагружения для цилиндрической обечайки (a) и выпуклого днища (б)

При оценке прочности врезки используются общие положения изложенные в n.16.1.

При этом местные напряжения должны быть отделены от «пиковых», которые располагаются в очень малой зоне концентраторов напряжений, быстро затухают и на оценку прочности для статических расчетов конструкций из пластичных материалов практически не влияют.

Для разграничения зоны «пиковых» напряжений от зоны локальных используется подход, принятый известной компанией Paulin Research Group (создателя программ NozzlePRO, FEPipe и др.).

Конечные элементы, примыкающие непосредственно к линии пересечения патрубка и обечайки («элементы сварки»), обладают переменной толщиной, при определении которой учитываются минимальные размеры сварного шва, а также толщины обечайки и патрубка (рис.16.2).

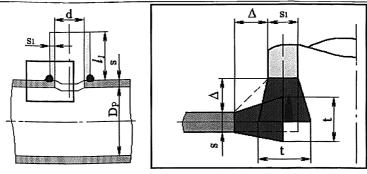


Рис. 16.2. Размеры элементов в зоне врезки

При определении толщин «элементов сварки» учитывается необходимость обеспечения равенства жесткостей сварного шва, обечайки и патрубка в зоне приварки.

С одной стороны толщина элементов, примыкающих к патрубку (обечайке) приравнивается к толщине патрубка s_1 (обечайки s), с другой определяется по формулам:

при
$$s \ge s_1$$

$$t = \max \begin{cases} 1.5 \frac{1.5ss_1 + 1.5\Delta s + 1.5\Delta s_1 + \Delta^2}{2\Delta + 0.5\Delta s + 0.5\Delta s_1} \\ s + 0.7\Delta \\ s + 0.5s_1 \end{cases};$$
при $s < s_1$

$$t = \max \begin{cases} 1.5 \frac{1.5ss_1 + 1.5\Delta s + 1.5\Delta s_1 + \Delta^2}{2\Delta + 0.5\Delta s + 0.5\Delta s_1} \\ s_1 + 0.5\Delta \\ s_1 + 0.5s \end{cases}$$
 (16.6)

Максимальные значения местных напряжений определяются для элементов непосредственно примыкающих к «элементам сварки». Напряжения для самих «элементов сварки» не определяются и не выводятся.

На полученные результаты большое влияние оказывает качество конечно-элементной разбивки, особенно непосредственно в месте врезки патрубка в обечайку, где имеет место высокий градиент напряжений. С увеличением количества элементов (уровня разбивки), описывающих место врезки возрастает точность распределения напряжений.

Кроме того, на точность полученных напряжений влияют тип врезки (наличие накладного кольца, угол наклона для косой врезки, и др.),

разница толщин обечайки и патрубка, толщина сварного шва, краевой эффект и др.

Пример распределения напряжений от действия момента M_z при различных видах разбивок для врезки с накладным кольцом показан на рис.16.3.

При увеличении количества элементов разбивки полученные значения максимальных напряжений возрастают. При этом максимальное влияние уровень разбивки оказывает на напряжения от действия сил и моментов, минимальное - от давления. Влияние уровня разбивки возрастает при применении накладного кольца или при увеличении толщины обечайки относительно толщины патрубка.

Качество конечно-элементной разбивки на полученные результаты необходимо учитывать при определении допускаемых напряжений для соответствующих уровней разбивки.

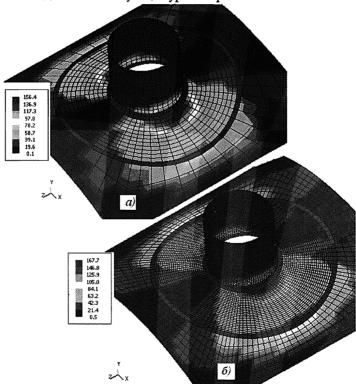


Рис.16.3. Общие (мембранные и изгибные) напряжения (МПа) на наружной поверхности в зависимости от уровней разбивки при действия момента $M_z=10^4\,H\cdot M$

16.2.1. Допускаемые нагрузки на штуцер

Для назначения допускаемых нагрузок, действующих на штуцер, проводятся расчеты по определению максимальных напряжений от действия единичных сил, моментов и давления поочередно. Т.е. при расчете от заданной единичной силы или момента все остальные нагрузки (включая давление) приравниваются θ . Для каждого вида напряжений (мембранных и общих) определяется минимальный запас прочности. При определении допускаемой нагрузки ее единичная величина умножается на полученный минимальный запас прочности. Полученные значения формируют таблицу индивидуальных допускаемых нагрузок (табл.16.2).

Таблица 16.2 Допускаемые индивидуальные нагрузки на штуцер при отсутствии действия остальных, включая давление

Activities and activities and activities						
F_x , H	F_y , H	F_z , H	$M_{_{x}}$,	М _у , Нм	M_z ,	<i>р</i> , МПа

Далее определяются допускаемые нагрузки на штуцер при отсутствии давления. В этом случае допускаемые нагрузки определяются из условия, что при их одновременном действии на штуцер при отсутствии давления максимальные напряжения не превышают допускаемые. Практика расчетов показывает, что данное условие выполняется при величине нагрузок, равной 1/3 от допускаемых индивидуальных нагрузок.

При действии расчетного давления допускаемые нагрузки дополнительно уменьшаются на величину $\left(1-0.87\frac{p}{[p]}\right)$, где p -

расчетное давление; [p] - допускаемая величина давления, которая определяется из таблицы 16.1. Коэффициент 0,87 учитывает, что при действии давления с нагрузками местные мембранные напряжения не должны превышать $1,5[\sigma]$, в то время как при действии только давления $-1,3[\sigma]$.

Полученные нагрузки формируют таблицу 16.3.

Допускаемые индивидуальные нагрузки на штуцер при расчетном

F_x , H	F_y , H	F_z , H	<i>М</i> _х ,	М _у , Нм	<i>М₂</i> , Нм	<i>р</i> , МПа

^{*} При превышении одного или нескольких компонентов необходим дополнительный расчет на прочность

Данная таблица может быть рекомендована при назначении допускаемых нагрузок на штуцер при прочностных расчетах трубопроводных обвязок сосуда (аппарата).

Следует отметить, что допускаемые нагрузки при расчетном давлении носят консервативный характер. Как правило, при их единовременном приложении с учетом давления максимальные напряжения составляют 50-80% от допускаемых величин. Поэтому в сноске к таблице 16.2 указывается, что при превышении нагрузок над допускаемыми величинами, для заключения о работоспособности врезки необходим дополнительный расчет с полученными нагрузками.

При этом нагрузки не могут превышать значений, указанных в таблице 16.1.

16.2.2. Жесткость врезки

Жесткость врезки определяется для точки приложения усилий (крышка штуцера) в каждом направлении в глобальной системе координат. При определении жесткости врезки суммарные прибавки не учитываются.

Жесткость врезки определяется как отношение прикладываемых сил (моментов) к полученным соответствующим перемещениям (углам) (таблица 16.4).

Таблица 16.4

Жесткость врезки

Л	Линейная, Н/мм			Угловая, Н м/гр		
C_x	C_{y}	C_z	MC_x	MC _y	MC_z	

16.3. Примеры расчета прочности и устойчивости сосудов и резервуаров

На рис.16.4. представлена конечно-элементная модель горизонтальной емкости на седловых опорах с технологической

площадкой. Емкость изготовлена из стали 09Г2С. Проведена оценка ее несущей способности при одновременном действии гидростатического и внутреннего давления (Р=0,6 МПа), а также давления на технологическую площадку (Р=0,002 МПа) и собственного веса конструкции.

Гидростатическое давление определяется наливом воды (ρ =1000кг/м3) при 100% заполнении сосуда от общего объема.

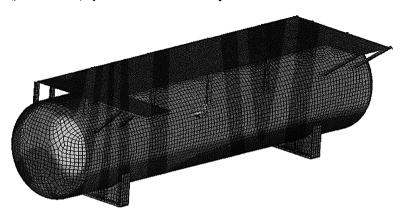
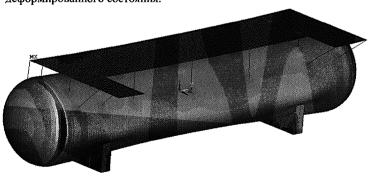



Рис. 16.4. Конечноэлементная модель емкости

На рис.16.5, 16.6 представлены результаты напряженно-деформированного состояния.

0 21.637 43.274 64.911 86.548 10.818 32.455 54.092 75.729 97.366

SEQV

Рис. 16.5. Эквивалентные мембранные напряжения, σ im , МПа

Максимальные эквивалентные мембранные напряжения находятся в зоне сопряжения обечайки и днища, определяются избыточным давлением и не превышают 100 МПа, что меньше допускаемых напряжений в рабочих условиях.

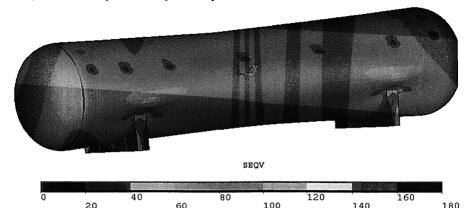


Рис. 16.6. Эквивалентные суммарные напряжения, оі, МПа

Максимальные значения «упругих» местных эквивалентных суммарных напряжений имеют место в районе сопряжения обечайки с седловой опорой, носят локальный характер и достигают 180 МПа, что не превышает предельный уровень.

На рис.16.7. показаны конечно-элементная модель и низшая форма потери устойчивости стенки резервуара для хранения нефтепродуктов с крышей, усиленной ребрами жесткости от наружного избыточного давления (вакуума).

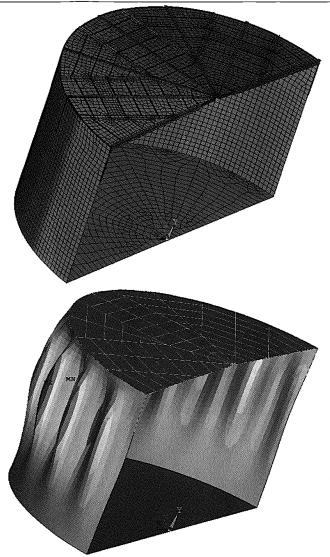


Рис.16.7. Низшая форма потери устойчивости резервуара

На рис. 16.8. показаны конечно-элементная модель и распределение напряжений в силосе для хранения сыпучих материалов и его опоре.

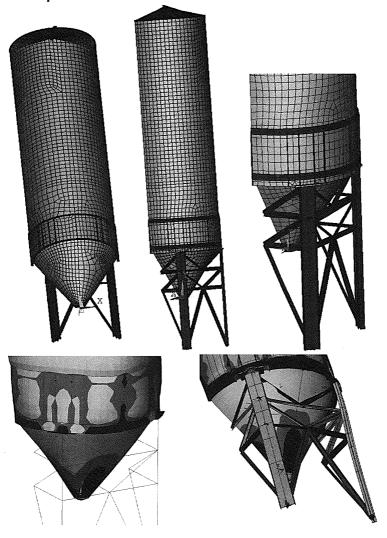


Рис.16.8. Конечно-элементная модель и распределение напряжений в силосе сыпучих материалов

ТОМ 2. РАСЧЕТ АППАРАТОВ КОЛОННОГО ТИПА

1. Основные условные обозначения

Термин:	Условное обозначение:
Площадь наиболее ослабленного поперечного сечения опорной обечайки, мм ²	А
Площадь поперечного сечения анкерного болта по внутреннему диаметру резьбы, мм ²	A_{σ}
Сумма всех прибавок к расчетной толщине, мм	c
Коэффициент неравномерности сжатия грунта, Н/мм ³	C_F
Диаметр окружности, вписанной в шестигранник гайки анкерного болта, мм	d
Внутренний диаметр резьбы анкерного болта, мм	d_6
Внутренний диаметр аппарата в расчетном сечении, мм	D
Внутренний диаметр опорной обечайки в расчетном сечении, мм	D_{θ}
Диаметр окружности анкерных болтов, мм	D_6
Модуль продольной упругости материала стенки аппарата при расчетной температуре, МПа	E
Расстояние от оси анкерного болта до опорной обечайки, м	e
Расчетное осевое сжимающее усилие в расчетном сечении, Н:	F
- в рабочих условиях	F_1
- в условиях испытания	F_2
- в условиях монтажа	F_3
Допускаемое осевое сжимающее усилие, Н	[<i>F</i>]
Суммарная вертикальная нагрузка в расчетном сечении, Н:	
- в рабочих условиях	G_1
- в условиях испытания	G_2
- в условиях монтажа (максимальная нагрузка от собственного веса)	G_3
- в условиях монтажа (минимальная нагрузка от собственного веса)	G ₄

Термин:	Условное
Высота аппарата, мм	обозначение:
	H
Высота опорного узла, мм	h
Минимальный момент инерции подошвы фундамента, мм4	I_F
Суммарный изгибающий момент у основания аппарата от действия весовых нагрузок, Н·мм	M _o
Максимальный изгибающий момент момент от действия сейсмических нагрузок в нижнем сечении аппарата, Н мм	M _{max}
Расчетный изгибающий момент от сейсмических нагрузок, H·мм	M_R
Изгибающие моменты в расчетных сечениях, Н мм:	
- в рабочих условиях	$M_1, M_{G_1}, M_{V_1},$
	$M_{\rm R}$ 1
- в условиях испытания	M_2 , M_{G_2} ,
	$M_{ m V_2}$, $M_{ m R_2}$
- в условиях монтажа (без изоляции)	M_3, M_{G_3}
,	$M_{\rm V_3}$, $M_{\rm R_3}$
- в условиях монтажа (с изоляцией)	M_4, M_{G_4}
	M_{V_4} , M_{R_4}
Допускаемый изгибающий момент, Н⋅мм	[<i>M</i>]
Количество участков аппарата; количество анкерных болтов	n
Допускаемое наружное давление, МПа	[<i>p</i>]
Нормативное значение давления ветра, МПа	q_0
Нормативное значение средней составляющей ветровой нагрузки на середине i-го участка аппарата, МПа	q _{ist}
Сейсмическая нагрузка в центре тяжести і-го участка аппарата, Н	Si
Исполнительная толщина стенки аппарата в расчетном сечении, мм	s
Исполнительная толщина стенки опорной обечайки, мм	s _o
Период низшей частоты собственных колебаний аппарата	T

CA 03-004-07 (CTII 10-04-02)

CA 03-004-07 (CTIT 10-04-02)	
Термин:	Условное
	обозначение:
Наименьший момент сопротивления сечения опорной	w
обечайки, мм3	
Катет сварного шва в месте приварки опорной обечайки,	Δ
MM	
Катет сварного шва в месте приварки опорной обечайки к	Δ_{I}
нижнему кольцу, мм	·
Продольные напряжения, МПа	σ_{x}
Кольцевые напряжения, МПа	
	σ_{y}
Эквивалентное напряжение, МПа	$\sigma_{\!\scriptscriptstyle m E}$
Допускаемое напряжение для соответствующего элемента	 [σ] _Λ
опорного узла при расчетной температуре, МПа	[OJA
Допускаемое напряжение для корпуса аппарата при	$[\sigma]_{K}$
расчетной температуре, МПа	f-1K
Допускаемое напряжение для опорной обечайки при	[ø]o
расчетной температуре, МПа	[2]0
Допускаемое напряжение для анкерных болтов, МПа	[σ]₃
Допускаемое напряжение бетона на сжатие, МПа	$[\sigma]_6$
Коэффициент прочности сварного шва	φ

2. Определение расчетных усилий

Аппараты, устанавливаемые на открытой площадке, подлежат расчету на ветровую нагрузку. Аппараты, предназначенные для установки в районах сейсмичностью 7 и более баллов по шкале Рихтера, подлежат расчету на сейсмическое воздействие.

Определение расчетных усилий, действующих на аппараты колонного типа от ветровых нагрузок и сейсмических воздействий, проводится на основании [6]. При определении расчетной сейсмической нагрузки учтено изменение № 5, утвержденное постановлением Госстроя России от 27.12.1999 г. № 91, и введенное в действие с 01.01.2000 г.

2.1. Расчетная схема

В качестве расчетной схемы колонного аппарата принимается консольный упруго защемленный стержень в нижнем сечении (рис.2.1).

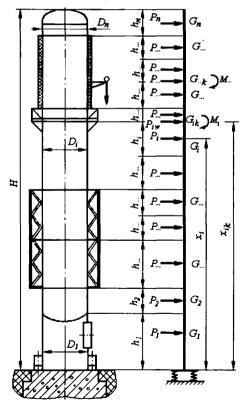


Рис. 2.1 Расчетная схема аппарата для расчета на прочность.

Аппарат по высоте разбивается на n участков постоянного поперечного сечения, при этом высота участка $h_i \leq 10 M$. Количество элементов в расчетной схеме зависит от количества участков колонны с постоянным сечением, а также количества сосредоточенных масс (тарелок, насадок, обслуживающих площадок, лестниц, опор трубопроводов и др.).

При определении h_2 , следует учесть расстояние между опорой и осью сварного соединения днища с корпусом (рис.2.2):

$$h' = h_o + \frac{H_o + s_1}{D + 2s_1} \sqrt{(D + 2s_1)^2 - D_0^2} , \qquad (2.1)$$

где h_{a} - длина цилиндрической части отбортовки днища;

 H_{δ} - высота выпуклой части днища без учета цилиндрической части;

 S_1 - исполнительная толщина стенки днища.

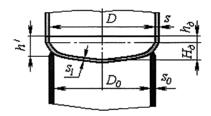


Рис. 2.2 Соединение опорной обечайки с днищем корпуса.

Распределенные нагрузки от веса i -го участка колонны (включая изоляцию и рабочую среду) рассматриваются как сосредоточенные силы G_i , приложенные в центрах тяжести каждого из участков, а сосредоточенные массы G_{ik} прикладываются к краю i -го участка. Весовые нагрузки прикладываются вертикально, а ветровая P_i и сейсмическая S_i нагрузки - горизонтально. Кроме того, при эксцентричном действии весовой нагрузки (от трубопроводов, площадок, лестниц и пр.) прикладываются соответствующие изгибающие моменты M_i .

2.2. Определение периода собственных колебаний

Для определения ветровых и сейсмических нагрузок необходимо найти низшую частоту и период собственных колебаний аппарата в рабочих условиях, а также в условиях испытаний и монтажа.

Для определения низшей собственной частоты колебаний колонного аппарата используется метод Рэлея, позволяющий рассчитывать период колебаний для аппаратов с произвольным количеством участков и учитывающий сосредоточенные весовые нагрузки (площадки, насадки, опоры трубопроводов и др.)[48].

Для аппаратов с произвольным количеством участков период собственных колебаний:

$$T = 2\pi \sqrt{\frac{\sum (G_i y_i^2 + G_{ik} y_{ik}^2)}{g \sum (G_i y_i + G_{ik} y_{ik})}},$$
 (2.2)

где y_i - перемещение i-го элемента в центре тяжести только от весовой нагрузки G_i , которая прикладывается в направлении, нормальном относительно оси аппарата;

 y_{ik} - перемещение края i-го элемента от весовой нагрузки G_{ik} (рис.2.3).

Для определения линии прогиба расчетная схема представляет из себя горизонтальный упруго защемленный стержень с жесткостными характеристиками сечений аппарата, нагруженный силами тяжести элементов аппарата. Расчетная схема для определения периода собственных колебаний по методу Релея представлена на рис.2.3.

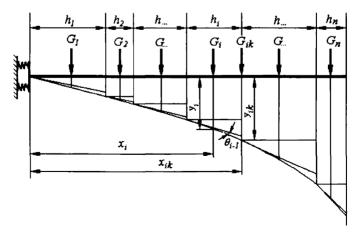


Рис. 2.3 Расчетная схема для определения периода колебаний

При этом весовые нагрузки определяются в зависимости от вида нагружения:

- для рабочих условий учитывается вес рабочей среды, а также обслуживающих площадок, внутренних устройств, изоляции, присоединяемых трубопроводов и др.;
- при гидроиспытании учитывается вес жидкости, заполняющей аппарат, а также обслуживающих площадок и изоляции при их наличии;
- в условиях монтажа учитывается максимальный вес аппарата и внутренних устройств.

Перемещение центра тяжести каждого элемента определяется нагрузкой и расположением элемента.

Начальный угол поворота у основания аппарата:

$$\theta_0 = \frac{M_0}{C_F I_F},\tag{2.3}$$

где
$$M_o = \sum_{i=1}^n \left(G_i x_i + G_{ik} x_{ik} \right)$$
 - суммарный изгибающий момент

у основания аппарата;

 C_{F} - коэффициент сжатия неравномерности грунта, определяется по данным инженерной геологии. При отсутствии таких данных C_{F} выбирается в зависимости от плотности грунтов по таблице 2.1 [29].

Таблица 2.1

	1 аолица 2.1
Грунт	Коэффициент неравномерности сжатия грунта, $\frac{H}{M^3}$
Слабые грунты (материал и шлам в пластичном состоянии, пылевой песок в состоянии средней плотности)	6·10 ⁷
Грунты средней плотности (материалы и шлам на границе течения, песок средней плотности)	$6\cdot10^7 \div 10^8$
Плотные грунты (твердый глинистый шлам, гравий и гравийный песок, плотный лесс)	$10^8 \div 2 \cdot 10^8$
Скальные грунты	2·10 ⁸

Перемещение у основания колонны $y_{ok} = 0$.

Нагрузки, действующие на i-ый элемент (i=1,n-1) со свободного конца определяются сосредоточенной силой G_{ik} (при их наличии), а также перерезывающей силой и изгибающим моментом от последующих элементов:

$$Q_{i} = G_{ik} + \sum_{l=i+1}^{n} (G_{l} + G_{lk}); M_{Gi} = \sum_{l=i+1}^{n} (G_{l}(h_{l} - h_{ik}) + G_{lk}(h_{lk} - h_{ik}))$$
(2.4)

Для последнего n -го элемента $Q_n = 0$; $M_{Gn} = 0$.

Для определения перемещений y_i (y_{ik}) в местах приложения соответствующих нагрузок G_i (G_{ik}) первоначально определяются силы и изгибающие моменты, действующие на каждый элемент, начиная с последнего.

Для определения линии прогиба весовые нагрузки от обечайки, изоляции или футеровки (при их наличии), а также веса жидкости принимаются распределенными, а нагрузки от внешних и внутренних устройств (площадки, насадки, тарелки и др.) – сосредоточенными.

Определение линейных и угловых перемещений в элементах аппарата для цилиндрической обечайки (i-го элемента) в ее центре тяжести и на конце под действием распределенной и сосредоточенной нагрузки, а также изгибающего момента приведены в Приложении 9.

Для аппаратов с числом участков не более трех для определения периода колебаний можно воспользоваться методикой, описанной в [6].

Общий период колебаний для групповых аппаратов (число аппаратов z_k), установленных на общем фундаменте и жестко связанных между собой в горизонтальном направлении [6]:

$$T = 3,63\sqrt{\frac{\sum_{l=1}^{z_k} G_l H_l^2}{gC_F I_F}},$$
(2.5)

2.3. Определение расчетного изгибающего момента от ветровой нагрузки

Ветровая нагрузка, действующая на аппарат, складывается из нагрузки, приложенной как непосредственно на корпус аппарата, так и на его наружные конструкции – обслуживающие площадки и лестницы.

Ветровая нагрузка, приложенная к \emph{i} -ому участку аппарата:

$$P_i = P_{ist} + P_{i\,dyn},\tag{2.6}$$

где $P_{ist} = q_{ist} D_{ni} h_i$ - средняя составляющая ветровой нагрузки на i-ом участке.

Нормативное значение средней составляющей ветровой нагрузки на $\emph{i}\text{-}$ ом участке:

$$q_{ist} = q_0 \theta_i K, \qquad (2.7)$$

где q_0 - нормативное значение ветрового давления, принимаемый по таблице 2.2[31];

$$\theta_i = \begin{cases} 0.8 & npu \ x_i \leq 5 \mathit{M} \\ \left(\frac{x_i}{10}\right)^{0.31} & npu \ x_i > 5 \mathit{M} \end{cases} - коэффициент, учитывающий$$

изменение ветрового давления по высоте аппарата;

K=0.7 - аэродинамический коэффициент для аппарата с цилиндрическим сечением.

Таблица 2.2

	_	HOPM	IIMDIIMC	Juatenn	a perbop	ого давл	CHMA	
Ветровые районы	Ia	I	Ш	III	IV	v	VI	VII
q_0 , кПа (кгс/м²)	0,17 (17)	0,23 (23)	0,30 (30)	0,38 (38)	0,48 (48)	0,60 (60)	0,73 (73)	0,85 (85)

принимаются по [31].

Пульсационная составляющая ветровой нагрузки:

$$P_{i\,dyn} = v\,G_i\xi\,\eta_i$$
, (2.8)
где $v = \begin{cases} 0.912 & npu\,\,x_i \le 5\,\text{м} \\ 0.968 - 0.025\sqrt{\text{H}} & npu\,\,x_i > 5\,\text{м} \end{cases}$ - коэффициент

пространственной корреляции пульсаций давления ветра;

$$\xi=1,1+\sqrt{15,5}\varepsilon\ \ \text{-коэффициент динамичности;}$$

$$\varepsilon=\frac{T\sqrt{q_0}}{790}\ (q_0\ \text{в Па});$$

$$\eta_i = y_i \frac{\displaystyle\sum_{l=1}^n y_l \mu_l P_{lst}}{\displaystyle\sum_{l=1}^n y_l^2 G_l}$$
 - приведенное относительное ускорение

центра тяжести і-го участка;

$$\mu_{1} = \begin{cases}
0,85 & npu \ x_{i} \leq 5M \\
0,76 \left(\frac{x_{i}}{10}\right)^{-0.15} & - коэффициенты пульсации
\end{cases}$$

давления ветра для к-го участка.

Ветровая нагрузка на обслуживающей площадке i -го элемента:

$$P_{iw} = q_0 \theta_i K \left(1 + 1{,}17\xi \ \mu_{ik} \left(\frac{x_{ik}}{H} \right)^{1,6} \right) \sum A_{pi} , \qquad (2.9)$$

где K = 1,4 - аэродинамический коэффициент для обслуживающих площадок;

$$\mu_{ik} = \begin{cases} 0.85 & npu \ x_{ik} \le 5 \text{м} \\ 0.76 \left(\frac{x_{ik}}{10}\right)^{-0.15} & - \text{коэффициент} \end{cases}$$

пульсации давления ветра для обслуживающей площадки i-го элемента:

 $\sum A_{pi}\,$ - сумма площадей всех проекций профилей площадки i -го элемента на плоскость, перпендикулярную направлению ветра.

При отсутствии точных данных о форме площадки:

$$P_{iw} = 0.85q_0\theta_i \left(1 + 1.17\xi \ \mu_{ik} \left(\frac{x_{ik}}{H} \right)^{1.6} \right) A_i, \qquad (2.10)$$

где A_i - площадь ограниченная контуром площадки i -го элемента.

Расчетный изгибающий момент в нижнем сечении i-го элемента (рис.2.1.) определяется по формуле:

$$M_{vi} = \sum_{l=i}^{n} \left[P_l \left(x_l - x_i + \frac{h_i}{2} \right) + P_{hv} \cdot \left(x_{lk} - x_i + \frac{h_i}{2} \right) \right]$$
 (2.11)

2.4. Определение расчетного изгибающего момента от сейсмической нагрузки

Сейсмическая нагрузка, приложенная в центре тяжести i-го элемента и соответствующая низшей частоте собственных колебаний аппарата:

$$S_{i} = 0,375K_{s}\beta G_{i}y_{i} \frac{\sum_{l=1}^{n} G_{l}y_{l}}{\sum_{l=1}^{n} G_{l}y_{l}^{2}},$$
(2.12)

где $\beta = 2.5 \sqrt{\frac{0.8}{T}}$ - коэффициент динамичности,

при $\beta < 0.8$ принимается $\beta = 0.8$, при $\beta > 2.5$ принимается $\beta = 2.5$;

 K_s - сейсмический коэффициент, выбирается в зависимости от района установки аппарата по таблице 2.3.

Таблица 2.3

 Сейсмический коэффициент

 Сейсмичность , балл
 7
 8
 9

 K,
 0,1
 0,2
 0,4

^{*}Интенсивность сейсмических воздействий в баллах (сейсмичность) для района строительства следует принимать на основе комплекта карт общего сейсмического районирования территории Российской Федерации по [32].

Сейсмическая нагрузка, приложенная в месте сосредоточенной массы i-го элемента S_{ik} (при ее наличии) и соответствующая первому тону собственных колебаний, определяется по (2.12), где вместо G_i и y_i подставляются G_{ik} и y_{ik} соответственно.

Максимальный изгибающий момент в нижнем сечении аппарата при учете только первой формы колебаний:

$$M_{\max} = \sum_{i=1}^{n} \left(S_i x_i + S_{ik} x_{ik} \right) \tag{2.13}$$

Приближенное выражение для расчетного изгибающего момента M_R в сечениях аппарата в зависимости от высоты с учетом влияния высших форм колебаний определяется по эпюре рис.2.4.

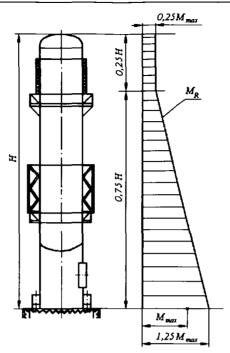


Рис. 2.4 Расчетный изгибающий момент от сейсмических воздействий

3. Расчет на прочность и устойчивость

Расчет на прочность и устойчивость аппаратов колонного типа проводится на основании [7] с дополнением расчета опорного узла облегченной цилиндрической опоры по [30].

В отличие от [7] для учета усиливающей пластины, приваренной к верхнему опорному кольцу, В формуле (3.18) коэффициент χ_3 умножается на s_3 , а не на s_2 .

Приводится расчет характеристик наиболее ослабленного отверстиями поперечного сечения опорной обечайки (Приложение 10). Приведены справочные таблицы расчетных характеристик фундаментных болтов и марок бетона.

3.1. Расчетные сечения

При расчете колонного аппарата устанавливаются следующие основные расчетные сечения:

- поперечные сечения корпуса, переменные по толщине стенки или диаметру, для аппаратов постоянного сечения (по диаметру и толщине стенки) - только поперечное сечение в месте присоединения к опорной обечайке;
- поперечное сечение опорной обечайки в месте присоединения к корпусу колонны (Γ - Γ , рис.3.1);
- поперечное сечение опорной обечайки в местах расположения отверстий (Д-Д, рис.3.1);
- поперечное сечение в месте присоединения опорного кольца (E-E, puc.3.1).

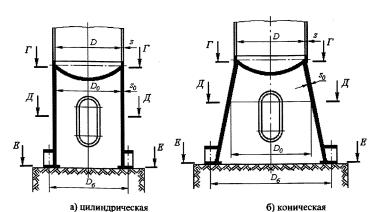


Рис.3.1 Расчетные сечения опорной обечайки

3.2. Расчетные нагрузки

3.2.1. Расчетные давления

Расчетное давление p_{I} в рабочих условиях и в условиях испытания p_{2} устанавливается по [2].

3.2.2. Нагрузки от собственного веса

При расчете должны быть учтены следующие весовые нагрузки, действующие над расчетными сечениями:

- G_1 вес аппарата в рабочих условиях, включая вес обслуживающих площадок, лестниц, изоляции, внутренних и наружных устройств и рабочей среды;
- G_2 вес аппарата при гидроиспытании, включая вес жидкости, заполняющей аппарат;
 - G_3 максимальный вес аппарата в условиях монтажа;
- G_4 минимальный вес аппарата в условиях монтажа после установки в вертикальное положение.

Необходимо учитывать, что нагрузка от веса воды, заполняющей аппарат в условиях гидроиспытаний, действует только на нижнее днище и расчетные сечения опорной обечайки.

3.2.3. Расчетные изгибающие моменты

При расчете учитываются следующие изгибающие моменты, действующие над расчетными сечениями:

- $M_{
 m G}$ максимальный изгибающий момент от действия эксцентрических весовых нагрузок, в том числе от присоединяемых трубопроводов и других нагрузок;
- M_{ν} изгибающие моменты от действия ветровых нагрузок, определяются по п.2.3 для трех расчетных условий:

 M_{vl} – для рабочих условий при нагрузке G_l ;

 $M_{\nu 2}$ - для условий испытаний при нагрузке G_2 ;

 $M_{\nu 3}$ - для условий монтажа при нагрузке G_3 ;

 M_R - изгибающие моменты от сейсмических воздействий, определяются по п.2.4 для двух расчетных условий:

 M_{RI} – для рабочих условий при нагрузке G_I ;

 M_{R3} - для условий монтажа при нагрузке G_3 ;

3.2.4. Сочетание нагрузок

Аппарат рассчитывается для следующих трех условий работы: рабочие условия;

условия испытания;

условия монтажа.

Сочетание нагрузок для этих условий приведено в таблице 3.1

Сочетание нагрузок

Таблица 3.1

Расчетное Осевое Расчетный изгибающий лавление **Условия** сжимающее момент M. р, работы усилие F, H МΠа Н.мм, (кгс.см) (KTC) $(K\Gamma C/CM^2)$ Большее из двух значений: Рабочее $F_I = G_I$ $M_1 = M_{GI} + M_{VI}$ p1условие $M_I = M_{GI} + M_{RI}$ **Условие** $M_2 = M_{C2} + 0.6 M_{\odot}$ $F_2 = G_2$ *p*2 испытания $F_3 = G_3$ Большее из двух значений: Для Условие $M_3 = M_{G3} + M_{V3}$ 0 анкерных монтажа болтов $M_3 = M_{G3} + M_{R3}$

3.3. Kopnyc annapama

Стенка колонного аппарата рассчитывается на прочность и устойчивость.

 $F_3 = G_4$

Расчет прочности проводится для рабочих условий и условия монтажа.

Расчет устойчивости проводится для рабочих условий и условия испытаний.

Расчет наружных элементов корпуса аппарата (патрубки, фланцы, кольца жесткости и др.) проводится по методикам, изложенным в т.І настоящего стандарта.

3.3.1. Проверка прочности

Продольные напряжения ох следует рассчитывать:

- на наветренной стороне:

$$\sigma_{x1} = \frac{p(D+s)}{4(s-c)} - \frac{F}{\pi D(s-c)} + \frac{4M}{\pi D^2(s-c)};$$
(3.1)

- на подветренной стороне:

$$\sigma_{x2} = \frac{p(D+s)}{4(s-c)} - \frac{F}{\pi D(s-c)} - \frac{4M}{\pi D^2(s-c)};$$
(3.2)

Кольцевые напряжения:

$$\sigma_{y} = \frac{p(D+s)}{2(s-c)}; \tag{3.3}$$

Эквивалентные напряжения определяются по критерию интенсивности напряжений для плоского напряженного состояния:

- на наветренной стороне

$$\sigma_{_{\mathsf{SKGI}}} = \sqrt{\sigma_{x\mathsf{I}}^2 - \sigma_{x\mathsf{I}}\sigma_{y} + \sigma_{y}^{\ 2}} \; ; \tag{3.4}$$

- на подветренной стороне

$$\sigma_{_{3K62}} = \sqrt{\sigma_{x2}^2 - \sigma_{x2}\sigma_y + \sigma_y^2}; \qquad (3.5)$$

Условия прочности проверяются:

- на наветренной стороне

$$\max\{\sigma_{x1};\sigma_{xe1}\} \leq [\sigma]_k \varphi; \tag{3.6}$$

- на подветренной стороне

$$\max\{\sigma_{x2};\sigma_{seg2}\} \leq [\sigma]_k \varphi; \tag{3.7}$$

где $[\sigma]_k$ - допускаемое напряжение для материала корпуса аппарата при расчетной температуре по Приложению 1.

ф - коэффициент прочности сварного шва по Таблице 2.2.

В случае, когда σ_{x1} и/или σ_{x2} сжимающие напряжения, значение φ в формулах (3.6), (3.7) принимается равным 1,0.

3.3.2. Проверка устойчивости

Для колонн, работающих под внутренним избыточным давлением или без давления, условие устойчивости для рабочих условий и условий испытания считается выполненным при:

$$\begin{bmatrix} F \\ F \end{bmatrix} + \begin{bmatrix} M \\ M \end{bmatrix} \le 1,0, \tag{3.8}$$

где F и M принимаются в соответствии с таблицей 3.1, а [F] и [M] определяются по п.3.2.4 и п.3.2.5 1-го Тома соответственно.

Для колонн, работающих под наружным давлением, условие устойчивости для рабочих условий считается выполненным при:

$$\frac{p}{[p]} + \frac{F}{[F]} + \frac{M}{[M]} \le 1,0,$$
 (3.9)

где p, F и M принимаются в соответствии с таблицей 3.1, а [p], [F] и [M] определяются по п.3.2.2, п.3.2.4 и п.3.2.5 1-го Тома соответственно.

Проверка устойчивости в условиях испытаний проводится по формуле (3.8).

3.4. Опорная обечайка

Расчет опорной обечайки проводится для рабочих условий и условий испытания в сечениях \mathcal{A} - \mathcal{A} , E-E, Γ - Γ (рис.3.1). Расчетные нагрузки и изгибающие моменты принимаются по таблице 3.1.

Условие прочности сварного шва, соединяющего корпус колонны с опорной обечайкой (сечение Γ - Γ), обеспечивается при:

$$\frac{1}{\pi D\Delta} \left(\frac{4M}{D_0} + F \right) \le 0.8 \cdot \min \left\{ \left[\sigma \right]_0; \left[\sigma \right]_k \right\}; \tag{3.10}$$

Устойчивость опорной обечайки в зоне отверстия (сечение \mathcal{A} - \mathcal{A} , рис.3.1) определяется выполнением условия:

$$\frac{F}{\psi_1[F]} + \frac{M + F \cdot \psi_3 \cdot D_3}{\psi_2[M]} \le 1,0, \tag{3.11}$$

где [F], [M] — определяются п.3.2.4 и п.3.2.5 1-го Тома соответственно;

 ψ 1, ψ 2, ψ 3 - коэффициенты, определяемые соответственно по формулам:

$$\psi_1 = \frac{A}{\pi (D_0 + s_0 + c)(s_0 - c)}, \ \psi_2 = \frac{4W}{\pi (D_0 + s_0 + c)^2 (s_0 - c)}, \ \psi_3 = \frac{b_s}{D_0}$$
(3.12)

где A, W, b_s - соответственно площадь, наименьший момент сопротивления и расстояние от центра тяжести наиболее ослабленного поперечного сечения до оси аппарата определяются по Приложению 10.

Отверстия диаметром менее $0,04D_0$ при расчете по формулам 3.11--3.12 не учитывают.

3.5. Элементы опорного узла

Расчет элементов опорного узла (рис.3.2) следует проводить для рабочих условий и для условий испытания. Расчетные нагрузки F и Mпринимают по таблице 3.1 для сечения E-E.

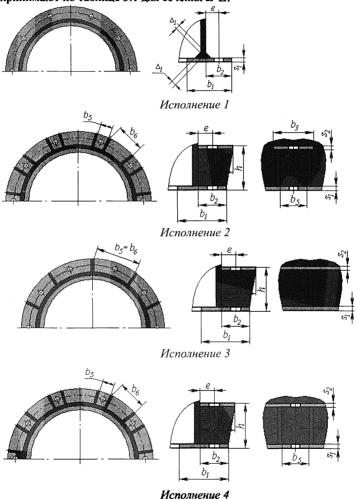


Рис.3.2 Опорный узел

233

Толщина нижнего опорного кольца должна удовлетворять условию:

$$s_{1} \geq \max \left\{ \chi_{1}b_{2}\sqrt{\frac{4M}{D_{6}} + F} \atop D_{6}b_{1}[\sigma]_{\mathcal{A}} + c; \ 1,5s_{0} \right\}, \tag{3.13}$$
 где
$$\chi_{1} = \left\{ \frac{1}{1 + 1,81\left(\frac{b_{2}}{b_{6}}\right)^{3}} - \partial_{\mathcal{A}\mathcal{B}} \text{ опорного кольца исполнения 1;} \right.$$

 $[\sigma]_{A}$ - допускаемое напряжение для материала опорного узла при расчетной температуре по Приложению 1.

Для опорного кольца исполнения 1 в случае, если $\left(\frac{4M}{D_0} - F\right) > 0$, толщина нижнего опорного кольца дополнительно

должна удовлетворять условию:

$$s_1 \ge \sqrt{\left(\frac{4M}{D_0} - F\right) \frac{4e}{\pi D_0[\sigma]_A}} + c,$$
 (3.14)

а толщина сварного шва в месте приварки опорной обечайки к нижнему опорному кольцу:

$$\Delta_1 \ge \frac{\frac{4M}{D_o} - F}{1,2\pi D_o[\sigma]_o} \tag{3.15}$$

Ширина нижнего опорного кольца b1, устанавливаемого на бетонном фундаменте, должна удовлетворять условию:

$$b_1 \ge \frac{\frac{4M}{D_6} + F}{\pi D_6 [\sigma]_6},\tag{3.16}$$

где $[\sigma]_6$ - допускаемое напряжение бетона на сжатие, определяемое в зависимости от марки бетона по таблице 3.2 [33, 34, 35].

Таблица 3.2

Допускаемое	напряжение	е бетоня ня	СЖЯТИЕ
AUIIYCKAEMUE	HAIIDNACHIN	S UCTUHA NA	. Сматис

Класс бетона	Ближайшая марка бетона	Допускаемое напряжение на сжатие $[\sigma]_{\!\scriptscriptstyle 6}$, МПа
B10	M150	6,0
B12,5	M150	7,5
B15	M200	8,5
B20	M250	11,5
B25	M350	14,5
B30	M400	17,0
B35	M450	19,5
B40	M550	22,0

Толщина верхнего опорного кольца должна удовлетворять условию:

$$s_{2} \ge \max \left\{ \chi_{2} \sqrt{\frac{A_{\sigma}[\sigma]_{B}}{[\sigma]_{A}}} + c; \ 1,5s_{0} \right\}, \tag{3.17}$$
 где $\chi_{2} = \sqrt{\frac{3\frac{b_{4}}{b_{5}}}{\left(\frac{b_{4}}{b_{5}}\right)^{2}}}; \frac{\left(\frac{b_{4}}{b_{5}}\right)^{2}}{1 - \frac{d}{b_{5}}}$

$$A_{\sigma} = \frac{\pi \ d_{\delta}^2}{4}$$
 - площадь поперечного сечения анкерного

болта по внутреннему диаметру резьбы $d_{\it 6}$, который принимается по таблице 3.3 [37, 38];

 $[\sigma]_B$ - допускаемое напряжение материала анкерных болтов принимается по таблице 3.4 [7];

d - диаметр окружности, вписанной в шестигранник гайки анкерного болта принимается по таблице 3.3 [38,39].

Таблина 3.3

Расчетные характеристики анкерных болтов

Номинальный диаметр резьбы, мм	Внутренний диаметр $ \text{резьбы} d_6, \text{мм} $	Диаметр окружности, вписанной в шестигранник гайки $d_{, \text{MM}}$
12	9,853	16,5
16	13,546	22,0
20	16,933	27,7
24	20,319	33,2
30	25,706	42,7
36	31,093	51,1
42	36,479	59,9
48	41,866	69,4
56	49,252	78,7
64	56,639	88,2
72	64,639	97,7
80	72,639	107,2
90	82,639	121,1
100	92,639	135,4
110	102,639	144,9
125	117,639	168.6
140	132,639	187.2

Таблица 3.4

Допускаемые напряжения анкерных болтов при температуре 200С

допускаемые наприжения анке	humy amilian lihu id	MIICPATYPE 200C
Марка стали	ВСт3	16ΓC, 09Γ2C, 10Γ2C1
Допускаемое напряжение $[\sigma]_B$, МПа	140	170

При наличии усиливающей пластины, приваренной к верхнему опорному кольцу, вместо условия (3.17), необходимо, чтобы выполнялось условие:

$$(s_2 + \chi_3 s_3) \ge \chi_2 \sqrt{\frac{A_{\sigma}[\sigma]_B}{[\sigma]_A}} + c, \qquad (3.18)$$

где
$$\chi_3 = \frac{b_7}{b_4} \left(\frac{s_3}{s_2}\right)^2$$
 при выполнении условий $0.2 \le \frac{s_3}{s_2} \le 1$ и

$$0,5 \leq \frac{b_7}{b_4} \leq 1$$

Толщина ребра должна удовлетворять условию:

$$s_4 \geq \max \left\{ \frac{A_{\sigma}[\sigma]_B}{\chi_4 b_2[\sigma]_A} + c; \ 0,4s_1 \right\}, \tag{3.19}$$
 где
$$\chi_4 = \left\{ \begin{array}{c} 2,0 - \text{для опорного узла исполнений 2 и 4 (рис.3.2);} \\ 1,0 - \text{для опорного узла исполнения 3 (рис.3.2).} \end{array} \right.$$

Прочность опорной обечайки в зоне верхнего опорного кольца обеспечивается при выполнении условия:

$$\frac{6\chi_5 A_{\sigma}[\sigma]_B e}{(s_0 - c)^2 h} \le 1,5[\sigma]_0, \tag{3.20}$$
 где
$$\chi_5 = -0,0248 \left\{ \ln \left(\frac{N}{1100} \right) - \sqrt{\left[\ln \left(\frac{N}{1100} \right) \right]^2 + 2,628} \right\} + K;$$

$$N = \frac{D_0}{2(s_0 - c)} \left(\frac{10b_3}{D_0} \right)^{2,05};$$

$$K = \left\{ \begin{array}{c} 0, \text{ при } N \le 10^4 \\ -0,002 \ln(10-4 \text{ N}), \text{ при } N > 10^4; \\ b_3 = \left\{ \begin{array}{c} b_4 - \text{ для опорного узла исполнений 3 (рис.3.2);} \\ (b_5 + b_6) - \text{ для опорного узла исполнения 4 (рис.3.2).} \end{array} \right.$$

3.6. Анкерные болты

Расчет прочности анкерных болтов следует производить для условий монтажа, если $M_3>0,44F_3D_6$. В случае, если $M_3\leq 0,44F_3D_6$, диаметр и количество болтов принимают конструктивно.

Внутренний диаметр резьбы анкерных болтов:

$$d_{6} \geq \chi_{6} \sqrt{\frac{M_{3} - 0.44F_{3} \cdot D_{6}}{n[\sigma]_{B} \cdot D_{6}}}, \qquad (3.21)$$

$$\text{ГДЕ}$$

$$\chi_{6} = \begin{cases} 2.25 + 0.3 \frac{F_{3}D_{6}}{M_{3}}, & npu & \frac{F_{3}D_{6}}{M_{3}} < 0.5\\ 2.7 - 2 \frac{F_{3}D_{6}}{M_{3}} + 3.7 \left(\frac{F_{3}D_{6}}{M_{3}}\right)^{2} - 2.5 \left(\frac{F_{3}D_{6}}{M_{3}}\right)^{3} + 0.65 \left(\frac{F_{3}D_{6}}{M_{3}}\right)^{4}, & npu & \frac{F_{3}D_{6}}{M_{3}} \geq 0.5 \end{cases}$$

Нормативно-технические документы

- 1. ПБ 03-576-03. Правила устройства и безопасной эксплуатации сосудов, работающих под давлением.
- 2. ГОСТ 14249-89. Сосуды и аппараты. Нормы и методы расчета на прочность.
- 3. ГОСТ 25221-82. Сосуды и аппараты. Днища и крышки сферические неотбортованные. Нормы и методы расчета на прочность.
- 4. ГОСТ 26202-84. Сосуды и аппараты. Нормы и методы расчета на прочность обечаек и днищ от воздействия опорных нагрузок.
- ГОСТ 24755-89. Сосуды и аппараты. Нормы и методы расчета на прочность укрепления отверстий.
- 6. ГОСТ Р 51273-99. Сосуды и аппараты. Нормы и методы расчета на прочность. Определение расчетных усилий для аппаратов колонного типа от ветровых нагрузок и сейсмических воздействий.
- 7. ГОСТ Р 51274-99. Сосуды и аппараты. Аппараты колонного типа. Нормы и методы расчета на прочность.
- 8. ГОСТ 25859-83. Сосуды и аппараты стальные. Нормы и методы расчета на прочность при малоцикловых нагрузках.
- 9. ГОСТ 25867-83. Сосуды и аппараты. Сосуды с рубашками. Нормы и методы расчета на прочность.
- 10. Нормы расчета на прочность оборудования и трубопроводов атомных энергетических установок. –М.: Энергоатомиздат, 1989.
- 11. РД 26-15-88. Сосуды и аппараты. Нормы и методы расчета на прочность и герметичность фланцевых соединений.
- 12. РД РТМ 26-01-96-83. Крышки и днища плоские круглые с радиальными ребрами жесткости сосудов и аппаратов.
- 13. РД 10-249-98. Нормы и расчета на прочность стационарных котлов и трубопроводов пара и горячей воды.
- 14. РД 26-01-169-89. Сосуды и аппараты. Нормы и методы расчета на прочность днищ в местах крепления опор-стоек.
- 15. РД 24.200.21-91. Сосуды и аппараты. Нормы и методы расчета на прочность элементов плавающих головок кожухотрубчатых теплообменных аппаратов.
- 16. РД 26-02-62-98. Расчет на прочность элементов сосудов и аппаратов, работающих в коррозионно-активных сероводородсодержащих средах.
- 17. РД 26-02-63-87. Технические требования к конструированию и изготовлению сосудов, аппаратов и технологических блоков установок подготовки нефти и газа, работающих в средах, вызывающих сероводородное коррозионное растрескивание.
- 18. ГОСТ 27772-88. Прокат для строительных стальных конструкций.
- ГОСТ 28759.3-90 Фланцы сосудов и аппаратов стальные приварные встык. Конструкция и размеры

- ГОСТ 28759.4-90 Фланцы сосудов и аппаратов стальные приварные встык под прокладку восьмиугольного сечения.
- 21. ГОСТ 28759.2-90 Фланцы сосудов и аппаратов стальные плоские приварные.
- ГОСТ 12815-80. Фланцы арматуры, соединительных частей и трубопроводов на P_y от 0,1 до 20,0 МПа (от 1 до 200 Krc/cm²). Типы. Присоединительные размеры и размеры уплотнительных поверхностей.
- ГОСТ 12821-80. Фланцы стальные приварные встык на P_y от 0,1 до 20,0 МПа (от 1 до 200 Кгс/см²). Конструкция и размеры.
- 24. ГОСТ 12820-80. Фланцы стальные плоские приварные на P_y от 0,1 до 20,0 МПа (от 1 до 200 Кгс/см²). Конструкция и размеры.
- ГОСТ 20700-75. Болты, шпильки, гайки и шайбы для фланцевых и анкерных соединений, пробки и хомуты с температурой среды от 0 до 650 °C.
- 26. ОСТ 26-01-64-83. Зажимы. Конструкция и размеры.
- 27. ОСТ 26-665-87. Опоры-стойки вертикальных аппаратов. Типы, конструкция и размеры
- 28. СНиП 2.09.03-85. Сооружения промышленных предприятий.
- ГОСТ 24756-81. Сосуды и аппараты. Аппараты колонного типа. Нормы и методы расчета на прочность. Определение расчетных усилий для аппаратов колонного типа от ветровых нагрузок и сейсмических воздействий.
- ГОСТ 24757-81. Сосуды и аппараты. Аппараты колонного типа. Нормы и методы расчета на прочность.
- 31. СНИП 2.01.07-85. Нагрузки и воздействия. 1996г.
- 32. СНиП II-7-81. Строительство в сейсмических районах. 2000г.
- 33. СНиП 2.03.01-84. Бетонные и железобетонные конструкции.
- 34. Пособие по проектированию анкерных болтов для крепления строительных конструкций и оборудования (к СНиП 2.09.03)
- ГОСТ 26633-91. Бетоны тяжелые и мелкозернистые. Технические условия.
- 36. ГОСТ 24379.1-80. Болты фундаментные. Конструкция и размеры.
- ГОСТ 24705-81. Основные нормы взаимозаменяемости. Резьба метрическая. Основные размеры.
- 38. ГОСТ 5915-70. Гайки шестигранные класса точности В. Конструкция и размеры.
- 39. ГОСТ 10605-94. Гайки шестигранные с диаметром резьбы свыше 48мм класса точности В. Технические условия.
- 40. ASME Boiler and Pressure Vessel Code Sec.VIII, Div 1, 2002.
- 41. ASME Materials Sec.II, Part D Properties. 2002.
- 42. WRC-107 Welding Research Council. Bulletin. "Local Stresses in Spherical and Cylindrical Shells due to External Loadings". 1979.

- WRC-297 Welding Research Council. Bulletin. "Local Stresses in Cylindrical Shells due to External Loadings on Nozzles – Supplement to WRC Bulletin №107". 1987.
- BS-5500: Specification for Unfired fusion welded pressure vessels. British Standards Institution. 1976.
- 45. WRC-368 Welding Research Council. Bulletin. "Stresses in Intersecting Cylinders subjected to Pressure". 1991. –32 p.
- Bildy, Les M., 2000, "A Proposed Method for Finding Stress and Allowable Pressure in Cylinders with Radial Nozzles," PVP Vol. 399, ASME, New York, NY, pp. 77-82.
- Zick, L.P., "Stresses in Large Horizontal Cylindrical Pressure Vessels on Two Saddle Supports", Welding Research Journal Supplement, September, 1951.
- C. E. FREESE. Vibrations of Vertical Pressure Vessels. Journal of Engineering for Industry.1959.

ПРИЛОЖЕНИЕ 1. Допускаемые напряжения для сталей [2]

Таблица 1 Допускаемые напряжения для углеродистых и низколегированных сталей

Расчетная		Допускаемое напряжение [σ], МПа (кгс/см²), для сталей марок						
температура	В	Ст3	09F2C	, 16ГС	20, 20K			
стенки	толщина, мм			10Γ2,	17FC,			
сосуда или						10	0912	17F1C,
аппарата,	до 20	свыше 20	до 32	свыше 32	до 160		0712	10F2C1
° C								
20	154(1540)	140(1400)	196(1960)	183(1830)	147(1470)	130(1300)	180(1800)	183(1830)
100	149(1490)	134(1340)	177(1770)	160(1600)	142(1420)	125(1250)	160(1600)	160(1600)
150	145(1450)	131(1310)	171(1710)	154(1540)	139(1390)	122(1220)	154(1540)	154(1540)
200	142(1420)	126(1260)	165(1650)	148(1480)	136(1360)	118(1180)	148(1480)	148(1480)
250	131(1310)	120(1200)	162(1620)	145(1450)	132(1320)	112(1120)	145(1450)	145(1450)
300	115(1150)	108(1080)	151(1510)	134(1340)	119(1190)	100(1000)	134(1340)	134(1340)
350	105(1050)	98(980)	140(1400)	123(1230)	106(1060)	88(880)	123(1230)	123(1230)
375	93(930)	93(930)	133(1330)	116(1160)	98(980)	82(820)	108(1080)	116(1160)
400	85(850)	85(850)	122(1220)	105(1050)	92(920)	77(770)	92(920)	105(1050)
410	81(810)	81(810)	104(1040)	104(1040)	86(860)	75(750)	86(860)	104(1040)
420	75(750)	75(750)	92(920)	92(920)	80(800)	72(720)	80(800)	92(920)
430	71* (710)	71*(710)	86(860)	86(860)	75(750)	68(680)	75(750)	86(860)
440		- 1	78(780)	78(780)	67(670)	60(600)	67(670)	78(780)
450	- 1	-	71(710)	71(710)	61(610)	53(530)	61(610)	71(710)
460	-		64(640)	64(640)	55(550)	47(470)	55(550)	64(640)
470	-	-	56(560)	56(560)	49(490)	42(420)	49(490)	56(560)
480	-	-	53(530)	53(530)	46* (460)	37(370)	46** (460)	53(530)

^{*} Для расчетной температуры стенки 425°C.

Примечания:

- 1. Для листового проката, изготовляемого согласно техническим условиям по двум группам прочности, допускаемые напряжения для первой группы принимают по таблице 1. Для листового проката второй группы прочности для сталей ВСтЗ и 09Г2С допускаемое напряжение увеличивают на 6%, а для стали 09Г2 на 7%. При применении стали ВстЗ второй группы прочности при температуре выше 250°С, а сталей 09Г2С и 092Г при температуре выше 300°С допускаемые напряжения принимают такими же, как для стали первой группы.
- 2. При расчетных температурах ниже 20° С допускаемые напряжения принимают такими же, как при 20° С, при условии допустимого применения материала при данной температуре.
- 3. Для промежуточных расчетных температур стенки допускаемое напряжение определяют линейной интерполяцией с

^{**} Для расчетной температуры стенки 475°C.

округлением результатов до 0,5 МПа (5 кгс/см²) в сторону меньшего значения.

- 4. Для стали марки 20 при $R_{\epsilon}^{20} < 220 M\Pi a$ (2200 кгс/см²) допускаемые напряжения, указанные в табл. 1, умножают на отношение $R_{\epsilon}^{20} / 220$ ($R_{\epsilon}^{20} / 2200$).
- 5. Для стали марки $10\Gamma 2$ при $^{R^{20}_{P0.2}} < 270$ МПа (2700 кгс/см²) допускаемые напряжения, указанные в табл. 1, умножают на отношение $^{20}_{P0.2} / 270$ ($^{R^{20}_{P0.2}} / 2700$).

Таблица 2 Допускаемые напряжения для теплоустойчивых хромистых сталей

Расчетная	Допускаемое напряжение [σ], МПа (кгс/см²), для сталей марок						
температура							
стенки сосуда или	12XM	12MX	15XM	15X5M	15X5M-Y		
аппарата, °С							
20	147(1470)	147(1470)	155(1550)	146(1460)	240(2400)		
100	146,5(1465)	146,5(1465)	153(1530)	141(1410)	235(2350)		
150	146(1460)	146(1460)	152,5(1525)	138(1380)	230(2300)		
200	145(1450)	145(1450)	152(1520)	134(1340)	225(2250)		
250	145(1450)	145(1450)	152(1520)	127(1270)	220(2200)		
300	141(1410)	141(1410)	147(1470)	120(1200)	210(2100)		
350	137(1370)	137(1370)	142(1420)	114(1140)	200(2000)		
375	135(1350)	135(1350)	140(1400)	110(1100)	180(1800)		
400	132(1320)	132(1320)	137(1370)	105(1050)	170(1700)		
410	130(1300)	130(1300)	136(1360)	103(1030)	160(1600)		
420	129(1290)	129(1290)	135(1350)	101(1010)	150(1500)		
430	127(1270)	127(1270)	134(1340)	99(990)	140(1400)		
440	126(1260)	126(1260)	132(1320)	96(960)	135(1350)		
450	124(1240)	124(1240)	131(1310)	94(9*40)	130(1300)		
460	122(1220)	122(1220)	127(1270)	91(910)	126(1260)		
470	117(1170)	117(1170)	122(1220)	89(890)	122(1220)		
480	114(1140)	114(1140)	117(1170)	86(860)	118(1180)		
490	105(1050)	105(1050)	107(1070)	83(830)	114(1140)		
500	96(960)	96(960)	99(990)	79(790)	108(1080)		
510	82(820)	82(820)	84(840)	72(720)	97(970)		
520	69(690)	69(690)	74(740)	66(660)	85(850)		
530	60(600)	57(570)	67(670)	60(600)	72(720)		
540	50(500)	47(470)	57(570)	54(540)	58(580)		
550	41(410)	-	49(490)	47(470)	52(520)		
560	33(330)	-	41(410)	40(400)	45(450)		
570	-	-		35(350)	40(400)		
580	-	-	-	30(300)	34(340)		
590	-	-	-	28(280)	30(300)		
600	<u> </u>	<u> </u>		25(250)	25(250)		

Примечания:

1. При расчетных температурах ниже 20° С допускаемые напряжения принимают такими же, как при 20° С при условии допустимого применения материала при данной температуре.

- 2. Для промежуточных расчетных температур стенки допускаемое напряжение определяют линейной интерполяцией с округлением результатов до 0,5 МПа (5 кгс/см²) в сторону меньшего значения.
- 3. При расчетных температурах ниже 200°C сталь марок 12МX, 12XM, 15XM применять не рекомендуется.

Таблица 3 Допускаемые напряжения для жаропрочных, жаростойких и коррозионностойких сталей аустенитного класса

Расчетная	Лопус	каемое напраже	ине [ст] иПа (кгс	/см ²), для сталей і	Manok
температура	допу	жистое папраже	ine [o], mia (are	08X18H10T,	12Х18Н10Т,
стенки сосуда				08X18H12T,	12X18H10T,
или аппарата,	03Х21Н21М4ГБ	03X18H11	03X17H14M3	08X17H13M2T,	10X17H13M2T,
°C				08X17H15M2T	10X17H13M21,
20	180(1800)	160(1600)	153(1530)	168(1680)	184(1840)
100	173(1730)	133(1330)	140(1400)	156(1560)	174(1740)
150	171(1710)	125(1250)	130(1300)	148(1480)	168(1680)
200	171(1710)	120(1200)	120(1200)	140(1400)	160(1600)
250	167(1670)	115(1150)	113(1130)	132(1320)	154(1540)
300	149(1490)	112(1120)	103(1030)	123(1230)	148(1480)
350	143(1430)	108(1080)	103(1030)	113(1130)	148(1480)
375	141(1410)	107(1070)	90(900)	108(1080)	144(1440)
400	140(1400)	107(1070)	87(870)	103(1030)	137(1370)
410	140(1400)				
420		107(1070) 107(1070)	83(830) 82(820)	102(1020) 101(1010)	136(1360) 135(1350)
430	_	107(1070)	82(820) 81(810)	100(5010)	133(1330)
440	-				
	-	107(1070)	81(810)	100(1000)	133(1330)
450 460	-	107(1070)	80(800)	99(990)	132(1320)
470	-	-	-	98(980)	131(1310)
480		•	•	97,5(975)	130(1300)
480	- 1	-	•	97(970)	129(1290)
500	-	-	-	96(960)	128(1280)
510	-	-	-	95(950)	127(1270) 126(1260)
520	•	-	-	94(940)	126(1260)
530	•	-	-	79(790) 79(790)	123(1230)
540	-	-	-		111(1110)
550	•	-	-	78(780)	111(1110)
560	•	•	-	76(760)	101(1010)
570	i - i	*	-	73(730)	
		-	-	69(690)	97(970)
580 590	_	-	-	65(650)	90(900)
	-	-	-	61(610)	81(810)
600 610	-	-	-	57(570)	74(740)
	_	-	-	-	68(680) 62(620)
620	-	-	-	i - I	62(620)
630	-	-	-	-	57(570)
640	-	-	-	-	52(520)
650	-	-	-	-	48(480)
660	-	-	-	-	45(450)
670	-	-	-	-	42(420)
680	-	-	-	-	38(380)
690	i - i	-	-	-	34(340)
700		<u> </u>			30(300)

Примечания:

- 1. При расчетных температурах ниже 20°C допускаемые напряжения принимают такими же, как и при 20°C, при условии допустимого применения материала при данной температуре.
- 2. Для промежуточных расчетных температур стенки допускаемое напряжение определяют интерполяцией двух ближайших значений, указанных в таблице, с округлением результатов до 0,5 МПа (5 кгс/см²) в сторону меньшего значения.
- 3. Для поковок из стали марок 12X18H10T, 10X17H13M2T, 10X17H13M3T допускаемые напряжения, приведенные в табл. 3 при температурах до 550°C, умножают на 0,83.
- 4. Для сортового проката из стали марок 12X18H10T, 10X17H13M2T, 10X17H13M3T допускаемые напряжения, приведенные в табл. 3 при температурах до 550°C, умножают на

отношение
$$\frac{R_{p0,2}^*}{240} \left(\frac{R_{p0,2}^*}{2400} \right)$$

где $R^*_{p0,2}$ — предел текучести материала сортового проката определен по ГОСТ 5949; для сортового проката из стали марки 03X18H11 допускаемые напряжения умножаются на 0,8.

- 5. Для поковок и сортового проката из стали марки 08X18H10T допускаемые напряжения, приведенные в табл. 7 при температурах до 550° C, умножают на 0.95.
- 6. Для поковок из стали марки 03X17H14M3 допускаемые напряжения, приведенные в табл. 3, умножают на 0,9.
- 7. Для поковок из стали марки 03X18H11 допускаемые напряжения, приведенные в табл. 3, умножают на 0,9; для сортового проката из стали марки 03X18H11 допускаемые напряжения умножают на 0,8.
- 8. Для труб из стали марки 03X21H21M4ГБ (3И-35) допускаемые напряжения, приведенные в табл. 3, умножают на 0,88.
- 9. Для поковок из стали марки 03X21H21M4ГБ (3И-35.) допускаемые напряжения, приведенные в табл. 3, умножают на отношение

$$\frac{R_{p0,2}^*}{250} \left(\frac{R_{p0,2}^*}{2500} \right)$$

где $R_{p0,2}^*$ — предел текучести материала поковок, определен по ГОСТ 25054 (по согласованию).

Допускаемые напряжения для жаропрочных, жаростойких и коррозионностойких сталей аустенитного и аустенито-ферритного

класса								
Расчетная	Į	Допускаемое напряжение [σ], МПа (кгс/см²), для сталей ма						
температура стенки сосуда или аппарата, °С				15X18H12C4TЮ (ЭИ-654)		08X22H6T, 08X21H6M2T		
20	230(2300)	233(2330)	133(1330)	233(2330)	147(1470)	233(2330)		
100	206(2060)	173(1730)	106,5(1065)	220(2200)	138(1380)	200(2000)		
150	190(1900)	153(1530)	100(1000)	206,5(2065)	130(1300)	193(1930)		
200	175(1750)	133(1330)	90(900)	200(2000)	124(1240)	188,5(1885)		
250	160(1600)	127(1270)	83(830)	186,5(1865)	117(1170)	166,5(1665)		
300	144(1440)	120(1200)	76,5(765)	180(1800)	110(1100)	160(1600)		
350	-	113(1130)	-	-	107(1070)	-		
375	-	110(1100)	-	-	105(1050)	-		
400	_	107(1070)	-	_	103(1030)	-		

Примечания:

- 1. При расчетных температурах ниже 20°C допускаемые напряжения принимают такими же, как и при 20°C, при условии допустимого применения материала при данной температуре.
- 2. Для промежуточных расчетных температур стенки допускаемое напряжение определяют интерполяцией двух ближайших значений, указанных в таблице, с округлением до 0,5 МПа (5 кгс/см²) в сторону меньшего значения.

ПРИЛОЖЕНИЕ 2. Механические характеристики сталей [2]

Механические характеристики:

для углеродистых и низколегированных сталей – табл. 1 и 2; для теплоустойчивых хромистых сталей – табл. 3 и 4;

для жаропрочных, жаростойких и коррозионностойких сталей аустенитного и аустенито-ферритного класса – табл. 5 и 6;

для жаропрочных, жаростойких и коррозионностойких сталей аустенитного класса— табл. 7, 8 и 9.

Таблица 1

Расчетная	Расч	етное знач	ение преде ла	текучести	Re, МПа (ктс/см ²), д	ля сталей м	арок
температура	BC	Ст3	09Г2С,	16ГС	20 и 20К	-		
стенки			толщина, мм				10Г2,	17ГС,
сосуда или						10	09Γ2	17Γ1C,
аппарата, °С	до 20	свыше 20	до 32	свыше 32	до 160			10Г2С1
	250(2500)	210(2100)	300(3000)	280(2800)	220(2200)	195(1950)	270(2700)	280(2800)
100	230(2300)	201(2010)	265,5(2655)	240(2400)	213(2130)	188(1880)	240(2400)	240(2400)
150	224(2240)	197(1970)	256,5(2565)	231(2310)	209(2090)	183(1830)	231(2310)	231(2310)
200	223(2230)	189(1890)	247,5(2475)	222(2220)	204(2040)	177(1770)	222(2220)	222(2220)
250	197(1970)	180(1800)	243(2430)	218(2180)	198(1980)	168(1680)	218(2180)	218(2180)
300	173(1730)	162(1620)	226,5(2265)	201(2010)	179(1790)	150(1500)	201(2010)	201(2010)
350	167(1670)	147(1470)	210(2100)	185(1850)	159(1590)	132(1320)	185(1850)	185(1850)
375			199,5(1995)					
400	- '	-	183(1830)	158(1580)	-	-	-	158(1580)
410	-	-		156(1560)		-	-	156(1560)
420	_	-		138(1380)	-		_	138(1380)

Расчетная	Расчетное	значение вре	менного соп	ротивления	Rт, МПа (кго	:/см ²), для ст	алей марок
температура	ВС	т3	09Г2С	, 16ГС	20 и 20К		10Г2, 09Г2,
стенки			толщина, мм	ı		10	17FC,
сосуда или	20	20	22		до 160	10	17Γ1C,
аппарата, °С	до 20			до 32 свыше 32			10Γ2C1
20	460(4600)	380(3800)	470(4700)	440(4400)	410(4100)	340(3400)	440(4400)
100	435(4350)	360(3600)	425(4250)	385(3850)	380(3800)	310(3100)	385(3850)
150	460(4600)	390(3900)	430(4300)	430(4300)	425(4250)	340(3400)	430(4300)
200	505(5050)	420(4200)	439(4390)	439(4390)	460(4600)	382(3820)	439(4390)
250	510(5100)	435(4350)	444(4440)	444(4440)	460(4600)	400(4000)	444(4440)
300	520(5200)	440(4400)	445(4450)	445(4450)	460(4600)	374(3740)	445(4450)
350	480(4800)	420(4200)	441(4410)	441(4410)	430(4300)	360(3600)	441(4410)
375	450(4500)	402(4020)	425(4250)	425(4250)	410(4100)	330(3300)	425(4250)

Таблица 3

Расчетная температура	Расчетное значение предела текучести Rp _{0,2} , МПа (кгс/см ²), для сталей										
стенки сосуда или			марок								
аппарата, °С	12MX	12XM	15XM	15X5M	15X5M-Y						
20	220(2200)	220(2200)	233(2330)	220(2200)	400(4000)						
100	219(2190)	219(2190)	230(2300)	210(2100)	352,5(3525)						
150	218(2180)	218(2180)	229(2290)	207(2070)	345(3450)						
200	217,5(2175)	217,5(2175)	228(2280)	201(2010)	337,5(3375)						
250	217,5(2175)	217,5(2175)	228(2280)	190(1900)	330(3300)						
300	212(2120)	212(2120)	220(2200)	180(1800)	315(3150)						
350	206(2060)	206(2060)	213(2130)	171(1710)	300(3000)						
375	202(2020)	202(2020)	210(2100)	164(1640)	270(2700)						
400	198(1980)	198(1980)	205(2050)	158(1580)	255(2550)						
410	195(1950)	195(1950)	204(2040)	155(1550)	240(2400)						
420	194(1940)	194(1940)	202(2020)	152(1520)	225(2250)						

Таблица 4

Расчетная	Расчетное значение временного сопротивления RT, МПа (кгс/см ²), для сталей											
температура стенки	марок											
сосуда или аппарата, °C	12MX	12XM	15XM	15X5M	15 X5M- Y							
20	450(4500)	450(4500)	450(4500)	400(4000)	600(6000)							
100	440(4400)	440(4400)	440(4400)	380(3800)	572(5720)							
150	434(4340)	434(4340)	434(4340)	355(3550)	555(5550)							
200	430(4300)	430(4300)	430(4300)	330(3300)	535(5350)							
250	440(4400)	437(4370)	437(4370)	320(3200)	520(5200)							
300	454(4540)	445(4450)	445(4450)	318(3180)	503(5030)							
350	437(4370)	442(4420)	442(4420)	314(3140)	492(4920)							
375	427(4270)	436(4360)	436(4360)	312(3120)	484(4840)							
400	415(4150)	426(4260)	426(4260)	310(3100)	472(4720)							
410	413(4130)	424(4240)	424(4240)	306(3060)	468(4680)							
420	410(4100)	421(4210)	421(4210)	300(3000)	462(4620)							

Расчетная	Расчетно	е значение п	редела текуч	ести Rp_{0,2}, МПа (к	гс/см²), для ста	пей марок
температура						
стенки	08Х18Г8Н2Т	07Х13АГ20				06ХН28МДТ,
сосуда или	(KO-3)	(YC-46)	(ЭП-794)	(ЭИ-654)	08X21H6M2T	03ХН28мдт
аппарата, °С	L					
20	350(3500)	350(3500)	200(2000)	350(3500)	350(3500)	220(2200)
100	328(3280)	260(2600)	160(1600)	330(3300)	300(3000)	207(2070)
150	314(3140)	230(2300)	150(1500)	310(3100)	280(2900)	195(1950)
200	300(3000)	200(2000)	135(1350)	300(3000)	283(2830)	186(1860)
250	287(2870)	190(1900)	125(1250)	280(2800)	250(2500)	175(1750)
300	274(2740)	180(1800)	115(1150)	270(2700)	240(2400)	165(1650)
350	-	170(1700)	-	-	-	160(1600)
375	-	165(1650)	-	-	-	157,5(1575)
400	-	160(1600)	-	-	-	155(1550)

Таблица 6

Расчетная	Расчетное зна	чение времени	юго сопротив	ения Rт, МПа (кго	/cм²), для сталей
температура стенки			марок		
сосуда, или аппарата,	08X18Γ8H2T	07X13AΓ20	02X8H22C6	15X18H12C4TIO	06ХН28МДТ,
℃	(KO-3)	(4C-46)	(ЭП-794)	(ЭИ-654)	03ХН28мдт
20	600(6000)	670(6700)	550(5500)	700(7000)	550(5500)
100	535(5350)	550(5500)	500(5000)	640(6400)	527,5(5275)
150	495(4950)	520(5200)	480(4800)	610(6100)	512,5(5125)
200	455(4550)	490(4900)	468(4680)	580(5800)	500(5000)
250	415(4150)	485(4850)	450(4500)	570(5700)	490(4900)
300	375(3750)	480(4800)	440(4400)	570(5700)	482,5(4825)
350	-	465(4650)	-	-	478(4780)
375] -]	458(4580)	-] -]	474(4740)
400	-	450(4500)	-		470(4700)

Таблица 7

Расчетная	Расчетное зна	чение предела те	кучести Кр _{і,0} , МПа	. (кгс/см²), для	г сталей марок
температура	12X18H10T,	08X18H10T,			
стенки сосуда	12X18H12T,	08X18H12T,	03Х21Н21М4ГБ	03X18H11	03X17H14M3
или аппарата,	10X17H13M2T,	08X17H13M2T,	U3AZINZIMI4I B	OSKIONII	U3A1/H14M3
°C	10X17H13M3T	08X17H15M3T			
20	276(2760)	252(2520)	270(2700)	240(2400)	230(2300)
100	261(2610)	234(2340)	260(2600)	200(2000)	210(2100)
150	252(2520)	222(2220)	257(2570)	187,5(1875)	195(1950)
200	240(2400)	210(2100)	257(2570)	180(1800)	180(1800)
250	231(2310)	198(1980)	250(2500)	173(1730)	170(1700)
300	222(2220)	184,5(1845)	223(2230)	168(1680)	155(1550)
350	216(2160)	169,5(1695)	215(2150)	162(1620)	152(1520)
375	210(2100)	162(1620)	212(2120)	160(1600)	135(1350)
400	205,5(2055)	154,5(1545)	210(2100)	160(1600)	130(1300)
410	204(2040)	153(1530)	-	160(1600)	125(1250)
420	202,5(2025)	151,5(1515)	-	160(1600)	123(1230)
430	201(2010)	150,75(1508)	-	160(1600)	122(1220)
440	199,5(1995)	150(1500)	-	160(1600)	121(1210)
450	198(1980)	148,5(1485)	-	160(1600)	120(1200)
460	196,5(1965)	147(1470)	-	-	-
470	195(1950)	146(1460)	-	-	•
480	193,5(1935)	145,5(1455)	-	-	-
490	192(1920)	144(1440)	-	-	-
500	190,5(1905)	142,5(1425)	- '	-	-
510	189(1890)	141(1410)			-
520	187,5(1875)	139,5(1395)	-	- '	•
530	186(1860)	138(1380)			•

Примечание. Предел текучести для поковок, сортового проката и труб при 20°C следует принимать:

для поковок из стали марок 12X18H10T, 10X17H13M2T, $10X17H13M3T - R_{pl.0}^{20}$ (листа);

1.2

для поковок и сортового проката из стали марки 08Х18Н10Т -

 $\frac{R_{p1,0}^{20}$ (листа)

для сортового проката из стали марок 12X18H10T, 10X17H13M2T, 10X17H13M3T -1,15 $R_{p0,2}^{20}$ (сорта).

для поковок из стали марок 03X17H14M3, 03X18H11 - $\frac{R_{p1,0}^{20}(\text{листа})}{1,11}$; $\frac{R_{p1,0}^{20}(\text{листа})}{1,21}$

для сортового проката из стали марки 03X18H11 - $\frac{1,25}{R_{pl,0}^{20}(\text{листа})}$

для труб из стали марки 03Х21Н21М4ГБ (ЗИ-35) - 1,14 ;

для поковок из стали марки 03Х21Н21М4ГБ (ЗИ-35) -1,08 $R_{p0,2}^{20}$ (поковки)

где $R_{p0,2}^{20}$ предел текучести материала поковок определен по ГОСТ 25054 (по согласованию).

Таблица 8

Расчетная	Расчетное:	значение предела	текучести Rp _{0,2} N	ИПа (кгс/см²),	для сталей марок
температура	12X18H10T,	08X18H10T,	_		
стенки сосуда	12X18H12T,	08X18H12T,	03Х21Н21М4ГБ	03X18H11	03X17H14M3
или аппарата,	10X17H13M2T,		U3A21H21WI41 B	USATORITI	USA1/H14MIS
°C	10X17H13M3T	08X17H13M3T			
20	240(2400)	210*(2100)	250(2500)	200(2000)	200(2000)
100	228(2280)	195(1950)	240(2400)	160(1600)	180(1800)
150	219(2190)	180(1800)	235(2350)	150(1500)	165(1650)
200	210(2100)	173(1730)	235(2350)	140(1400)	150(1500)
250	204(2040)	165(1650)	232(2320)	135(1350)	140(1400)
300	195(1950)	150(1500)	205(2050)	130(1300)	126(1260)
350	190(1900)	137(1370)	199(1990)	127(1270)	115(1150)
375	186(1860)	133(1330)	195(1950)	125(1250)	108(1080)
400	181(1810)	129(1290)	191(1910)	122,5(1225)	100(1000)
410	180(1800)	128(1280)	-	121,5(1215)	98(980)
420	180(1800)	128(1280)	-	121(1210)	97,5(975)
430	179(1790)	127(1270)	-	120,5(1205)	97(970)
440	177(1770)	126(1260)	-	120(1200)	96(960)
450	176(1760)	125(1250)	-	120(1200)	95(950)
460	174(1740)	125(1250)	-	-	-
470	173(1730)	124(1240)	-	-	-
480	173(1730)	123(1230)	-	-	-
490	171(1710)	122(1220)	- 1	-	-
500	170(1700)	122(1220)	-	-	-
510	168(1680)	120(1200)	-	-	-
520	168(1680)	119(1190)	-	-	-
530	167(1670)	119(1190)			-

 Для сталей 08X17H13M2T, 08X17H15M3T предел текучести при 20°C равен 200 (2000) МПа (ксг/см²). Примечания:

- 1. Для поковок из стали марок 12X18H10T, 10X17H13M2T, 10X17H13M3T, пределы текучести, приведенные в табл. 7 и 8, умножают на 0.83.
- 2. Для сортового проката из стали марок 12X18H10T, 10X17H13M2T, 10X17H13M3T пределы текучести, приведенные в табл. 8, умножают на

$$\frac{R_{p0,2}^*}{240} \left(\frac{R_{p0,2}^*}{2400} \right)$$

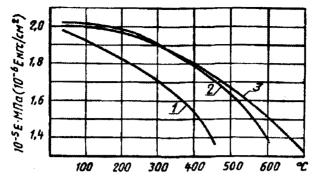
где $R^{\bullet}_{p0,2}$ — предел текучести материала сортового проката определен по ГОСТ 5949.

- 3. Для поковок и сортового проката из стали марки 08X18H10T пределы текучести, приведенные в табл. 16, умножают на 0,95.
- 4. Для поковок из стали марки 03X17H14M3 пределы текучести, приведенные в табл. 8, умножают на 0,9.
- 5. Для поковок из стали марки 03X18H11 пределы текучести, приведенные в табл. 8, умножают на 0,9; для сортового проката из стали марки 03X18H11 пределы текучести умножают на 0,8.
- 6. Для труб из стали марки 03X21H21M4ГБ (3И-35) пределы текучести, приведенные в табл. 8, умножают на 0,88.
- 7. Для поковок из стали марки 03X21H21M4ГБ (3И-35) пределы текучести, приведенные в табл. 8, умножают на отношение

$$\frac{R_{p0,2}^*}{250} \left(\frac{R_{p0,2}^*}{2500} \right)$$

где $R^*_{p0,2}$ – предел текучести материала поковок определен по ГОСТ 25054 (по согласованию).

						аолица 🥕
Расчетная	Расчетное зна	чение временн	ого сопротивл	ения Вт, М	Па (кгс/см²), для	сталей марок
температура стенки сосуда или аппарата, °С	03Х21Н21М4ГБ	08X22H6T, 08X21H6M2T	03X17H14M3	03X18H11	08X18H10T, 08X18H12T, 08X17H13M2T, 08X17H15M3T	12X18H10T, 12X18H12T, 10X17H13M2T, 10X17H13M3T
20	550(5500)	600(6000)	500(5000)	520(5200)	520(5200)	540(5400)
100	540(5400)	583(5830)	474(4740)	450(4500)	480(4800)	500(5000)
150	535(5350)	550(5500)	453(4530)	433(4330)	455(4550)	475(4750)
200	535(5350)	515(5150)	432(4320)	415(4150)	430(4300)	450(4500)
250	534(5340)	503(5030)	412(4120)	405(4050)	424(4240)	443(4430)
300	520(5200)	500(5000)	392(3920)	397(3970)	417(4170)	440(4400)
350	518(5180)	-	376(3760)	394(3940)	408(4080)	438(4380)
375	517(5170)	-	368(3680)	392(3920)	405(4050)	437(4370)
400	516(5160)	-	360(3600)	390(3900)	402(4020)	436(4360)
410	-	-	358(3580)	388(3880)	400(4000)	434(4340)


CA 03-007-07 (CTIT 10-04-02)											
Расчетная	Расчетное зна	чение времени	ого сопротивл	ения Вт, М	Па (кгс/см²), для	сталей марок					
температура стенки сосуда или аппарата, °C	03Х21Н21М4ГБ	08X22H6T, 08X21H6M2T	03X17H14M3	03X18H11	08X18H10T, 08X18H12T, 08X17H13M2T, 08X17H15M3T	12X18H10T, 12X18H12T, 10X17H13M2T, 10X17H13M3T					
420	-	-	356(3560)	386(3860)	398(3980)	432(4320)					
430	-	-	354(3540)	384(3840)	396(3960)	431(4310)					
440	-	-	352(3520)	382(3820)	394(3940)	430(4300)					
450	-		350(3500)	380(3800)	392(3920)	428(4280)					
460	-	<u>-</u>	-	-	390(3900)	426(4260)					
470	-	-	-	-	388(3880)	424(4240)					
480	-	-	-	-	386(3860)	422(4220)					
490	-	-	-		385(3850)	421(4210)					
500	-	-	-	-	383(3830)	420(4200)					
510	-	-	-	-	381(3810)	418(4180)					
520	-	-	-	-	380(3800)	416(4160)					
530	-		-	-	374*(3740)	412*(4120)					

^{*} Для расчетной температуры стенки 550°C.

Коэффициенты линейного расширения

Марка стали	Расчетное значение коэффициента $\alpha \cdot 10^6$, °C ⁻¹ , при температуре, °C							
•	20-100	20-200	20-300	20-400	20-500			
BCт3, 20, 20K, 09Г2С, 16ГС, 17ГС, 17Г1С, 10Г2С1, 10Г2	11,6	12,6	13,1	13,6	14,1			
12XM, 12MX, 15XM, 15X5M, 15X5M-У	11,9	12,6	13,2	13,7	14,0			
08X22H6T, 08X21H6M2T	9,6	13,8	16,0	16,0	16,5			
12X18H10T, 12X18H12T, 03X17H14M3, 10X17H13M2T, 10X17H13M3T, 08X18H10T, 08X18H12T, 03X18H11, 08X17H13M2T, 08X17H15M3T	16,6	17,0	18,0	18,0	18,0			
03Х21Н21М4ГБ	14,9	15,7	16,6	17,3	17,5			
06ХН28МДТ, 03ХН28МДТ	15,3	15,9	16,5	16,9	17,3			
08Х18Г8Н2Т	12,3	13,1	14,4	14,4	15,3			

Расчетные значения модуля упругости

I — углеродистые в низколегированные стали; 2 — теплоустойчивые и коррозионно-стойкие хромистые стали; 3 — жаропрочные, жаростойкие и коррозионно-стойкие аустенитные стали

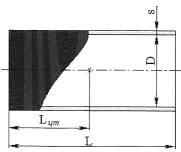
Сталь	Моду	Модуль продольной упругости 105 E, МПа (10-6 E кгс/см²) при температуре, °С												
Сталь	20	100	150	200	250	300	350	400	450	500	550	600	650	700
Углеродистые и низколегированные стали	1,99	1,91	1,86	1,81	1,76	1,71	1,64	1,55	1,40	-	-	-	-	,
Теплоустойчивые и коррозионно- стойкие хромистые стали	2.15	2,15	2,05	1,98	1,95	1,90	1,84	1,78	1,71	1,63	1,54	1,40	-	-
Жаропрочные и жаростойкие аустенитные стали	2,00	2,00	1,99	1,97	1,94	1,90	1,85	1,80	1,74	1,67	1,60	1,52	1,43	1,32

ПРИЛОЖЕНИЕ 3. Приведенные нагрузки и расстояния до центра тяжести отдельных элементов сосудов (аппаратов)

Цилиндрическая обечайка

Вес цилиндрической обечайки и залитой жидкости (весовая нагрузка):

$$G = \left[\rho_{cm} \pi Ls(D+s) + \xi \rho_{\infty} \pi L \frac{D^2}{4} \right] g$$

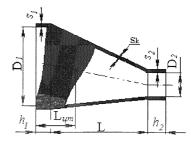

где $ho_{\it cm}$ - плотность материаластенки;

 $ho_{m{x}}$ - плотность жидкости;

 ξ - степень заполнения сосуда.

Расстояние от края элемента до

центра тяжести $L_{\psi m} = \frac{L}{2}$



Конический переход

Конический переход представляется тремя элементами: двумя цилиндрическими и одной конической обечайками.

Весовая нагрузка левой цилиндрической части перехода:

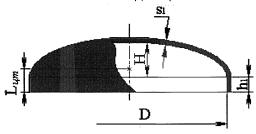
$$G_{1} = \left[\rho_{cm} \pi h_{1} s_{1} (D_{1} + s_{1}) + \xi \rho_{sc} \pi h_{1} \frac{D_{1}^{2}}{4} \right] g$$

Весовая нагрузка правой цилиндрической части перехода:

$$G_2 = \left[\rho_{cm} \pi \, h_2 s_2 (D_2 + s_2) + \xi \, \rho_{\infty} \pi \, h_2 \, \frac{D_2^2}{4} \right] g$$

Весовая нагрузка конической обечайки элемента:

$$G_{k} = \left[\rho_{cm} \pi \frac{1}{2} L s_{k} (D_{1} + D_{2} + 2s_{k}) + \xi \rho_{sc} \frac{1}{12} \pi L (D_{1}^{2} + D_{1}D_{2} + D_{2}^{2}) \right] g$$


Расстояние от края конического перехода до центра тяжести конической обечайки:

$$L_{k} = h_{1} + \frac{1}{3}L \frac{\rho_{cm}s_{k}(D_{1} + 2D_{2} + 3s_{k}) + \xi \rho_{sc} \frac{1}{8}(D_{1}^{2} + 2D_{1}D_{2} + 3D_{2}^{2})}{\rho_{cm}s_{k}(D_{1} + D_{2} + 2s_{k}) + \xi \rho_{sc} \frac{1}{6}(D_{1}^{2} + D_{1}D_{2} + D_{2}^{2})}$$

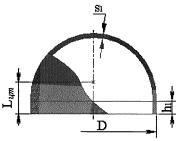
Расстояние от края элемента до центра тяжести

$$L_{um} = \frac{G_{1} \frac{h_{1}}{2} + G_{k} (h_{1} + L_{k}) + G_{2} \left(h_{1} + L + \frac{h_{2}}{2}\right)}{G}$$

Эллиптическое днище

Весовая нагрузка:

$$G = \begin{bmatrix} \rho_{cm} \frac{1}{6} \pi & s_1 (4DH + 4Hs_1 + D^2 + 4Ds_1 + 4s_1^2 + 6Dh_1 + 6h_1 s_1) + \\ + \xi \rho_{sc} \pi & \frac{D^2}{4} \left(\frac{2}{3} H + h_1 \right) \end{bmatrix} g$$

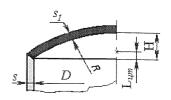

Расстояние от края элемента до центра тяжести:

$$L_{um} = \frac{1}{4} \frac{3H^2 + 8Hh_1 + 6h_1^2}{2H + 3h_1}$$

Полусферическое днище

Весовая нагрузка и расстояние до центра тяжести для полусферического днища определяются по формулам

эллиптического днища при $H = \frac{D}{2}$.

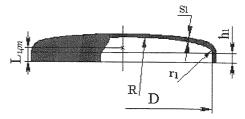


Сферическое неотбортованное днище

Весовая нагрузка:

$$G = \begin{bmatrix} \rho_{cm} \pi & s_1(2RH + Rs_1 + Hs_1 + \frac{2}{3}s_1^2) + \\ + \xi \rho_{xc} \pi & H^2\left(R - \frac{1}{3}H\right) \end{bmatrix} g',$$

где
$$H = R - \sqrt{R^2 - \left(\frac{D}{2}\right)^2}$$
 - высота днища.


Расстояние от края элемента до центра тяжести

$$L_{um} = \frac{1}{4}H\frac{4R-H}{3R-H}$$

Торосферическое днище

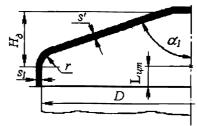
Весовая нагрузка и расстояние до центра тяжести без учета отбортовки определяются по формулам сферического неотбортованного днища при

$$H = R - \sqrt{(R - r_1)^2 - \left(\frac{D}{2} - r_1\right)^2}.$$

Весовая нагрузка с учетом отбортовки:

$$G = G_{\partial} + G_{1},$$

где
$$G_1 = \left[\rho_{cm} \pi h_1 s_1 (D + s_1) + \xi \rho_{sc} \pi h_1 \frac{D^2}{4} \right] g$$
 - весовая нагрузка


переходной части днища, а G_{δ} определяется по формуле сферического неотбортованного днища.

Расстояние от края элемента до центра тяжести:

$$L_{um} = \frac{G_{\partial}L_{\partial} + G_{1}\frac{h_{1}}{2}}{G},$$

где $\,L_{\delta}\,$ определяется по формуле сферического неотбортованного днища.

Коническое днише

Весовая нагрузка:

$$G = G_1 + G_{\nu}$$

где
$$G_1 = \left[\rho_{cm} \pi \, h_1 s_1(D + s_1) + \xi \, \rho_{\infty} \pi \, h_1 \, \frac{D^2}{4} \right] g$$
 - весовая

нагрузка переходной части днища;

$$G_k = \left[\rho_{cm} \pi \, s' \left(H_{\partial} (D - H_{\partial} t g \alpha_1 + s') + \frac{1}{4} (D - 2 H_{\partial} t g \alpha_1)^2 \right) + \right.$$

$$\left. + \xi \, \rho_{sc} \frac{1}{12} \pi \, H_{\partial} (3D^2 - 6D H_{\partial} t g \alpha_1 + 4 H_{\partial}^2 t g^2 \alpha_1) \right] g - \text{весовая}$$

нагрузка конической обечайки днища.

Расстояние от края элемента до центра тяжести:

$$L_{um} = \frac{G_k L_k + G_1 \frac{h_1}{2}}{G},$$
 find
$$L_k = h_1 + H_o \frac{\frac{1}{6} \rho_{cm} \pi s' H_o (3D - 4H_o tg \alpha_1 + 3s') g + \xi \rho_{sc} \pi \frac{1}{24} H_o \left(3D^2 - 8DH_o tg \alpha_1 + 6(H_o tg \alpha_1)^2\right) g}{G_k} + H_o \frac{\frac{1}{4} \rho_{cm} \pi s' (D - 2H_o tg \alpha_1)^2 g}{G_k}$$

- расстояние от края элемента до

центра тяжести конической обечайки.

ПРИЛОЖЕНИЕ 4. Поперечное усилие и изгибающий момент от распределенной нагрузки в обечайке

В качестве расчетной схемы для определения усилий, моментов и напряжений в i-ом элементе вне опор в общем случае рассматривается коническая обечайка, как балка переменного кольцевого сечения, находящаяся под действием распределенной нагрузки от веса жидкости и самого элемента (рис.1). В целях упрощения i-ые индексы при описании расчетной схемы элемента опущены. Цилиндрическая обечайка является частным случаем конической при условии $D=D_1=D_2$; $s=s_k$. Левый конец элемента нагружен перерезывающей силой и моментом от действия предыдущих элементов.

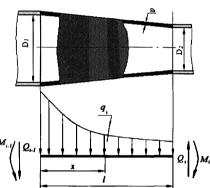


Рис.1 Расчетная схема элемента между опорами

Распределенная нагрузка по длине элемента:

$$q(x) = \rho_{cm} \pi \ s_k \bigg(D_1 + s_k + \frac{D_2 - D_1}{l} \, x \bigg) g + \xi \ \rho_{\infty} \, \frac{1}{4} \, \pi \bigg(D_1 + \frac{D_2 - D_1}{l} \, x \bigg)^2 \, g$$
 Поперечное усилие

Поперечное усилие для всех элементов, кроме первых после опор $(i=1,n1\;;\;i=n1+2,n2-1\;;\;i=n2+1,n)$ (рис.9.1):

$$Q(x) = Q_{i-1} + \int_{0}^{x} q(x)dx = Q_{i-1} + \rho_{cm}\pi s_{k}x \left(D_{1} + s_{k} + \frac{D_{2} - D_{1}}{2l}x\right)g + \frac{1}{2} + \xi \rho_{sc} \frac{1}{12}\pi x \left(3D_{1}^{2} + 3D_{1}\frac{D_{2} - D_{1}}{l}x + \left(\frac{D_{2} - D_{1}}{l}\right)^{2}x^{2}\right)g$$

для первого элемента после первой (i=n1+1) и второй (i=n2) опоры:

$$Q(x) = Q_{i-1} - F_{1(2)} + \rho_{cm} \pi \, s_k x \left(D_1 + s_k + \frac{D_2 - D_1}{2l} x \right) g +$$

$$+ \xi \, \rho_{sc} \, \frac{1}{12} \pi \, x \left(3D_1^2 + 3D_1 \, \frac{D_2 - D_1}{l} x + \left(\frac{D_2 - D_1}{l} \right)^2 x^2 \right) g$$

Изгибающий момент

Для всех элементов, кроме первых после опор (i=1,n1; i=n1+2,n2-1; i=n2+1,n):

$$M(x) = M_{i-1} + Q_{i-1}x + \int_{0}^{x} Q(x)dx = M_{i-1} + Q_{i-1}x +$$

$$+ \rho_{cm} \frac{1}{2} \pi s_{k} x^{2} \left(D_{1} + s_{k} + \frac{2(D_{2} - D_{1})}{3l} x \right) g +$$

$$+ \xi \rho_{m} \frac{1}{8} \pi x^{2} \left(D_{1}^{2} + \frac{4}{3} D_{1} \frac{D_{2} - D_{1}}{l} x + \frac{1}{2} \left(\frac{D_{2} - D_{1}}{l} \right)^{2} x^{2} \right) g$$

$$(1)$$

для первого элемента после первой (i=n1+1) и второй (i=n2) опоры:

$$M(x) = M_{i-1} + \left(Q_{i-1} - F_{1(2)}\right)x + \int_{0}^{x} Q(x)dx = M_{i-1} + \left(Q_{i-1} - F_{1}\right)x +$$

$$+ \rho_{cm} \frac{1}{2}\pi s_{k}x^{2} \left(D_{1} + s_{k} + \frac{2(D_{2} - D_{1})}{3l}x\right)g +$$

$$+ \xi \rho_{m} \frac{1}{8}\pi x^{2} \left(D_{1}^{2} + \frac{4}{3}D_{1}\frac{D_{2} - D_{1}}{l}x + \frac{1}{2}\left(\frac{D_{2} - D_{1}}{l}\right)^{2}x^{2}\right)g$$

$$(2)$$

Результирующая перерезывающая сила и момент после i-го элемента:

$$O_i = O(L); \qquad M_i = M(L) \tag{3}$$

ПРИЛОЖЕНИЕ 5. Свойства материалов болтов (шпилек) для расчета фланцевых соединений сосудов и аппаратов [11]

				Потривана		таолица	
					ое напряжение бо	•	іек)
				[<i>σ</i>]	$_{\delta}$, МПа для сталеі	і марок	
Расчет- ная	35, 40	12X18H10T	45X14H14B2M	08X15H24B4TP	35X, 40X, 38XA, 37X12H8Г8МФБ	30XM	хнз <i>5</i> вт
темпера	50, 10	10X17H13M2T			20XH3A	A	
-тура							
	130,0	110,0	160,0	231,0	230,0	230,0	208,0
100	126,0	105,0	150,0	226,0	230,0	230,0	196,0
200	120,0	98,0	150,0	221,0	225,0	200,0	186,0
250	107,0	95,0	144,0	219,0	222,0	182,0	186,0
300	97,0	90,0	139,0	217,0	222,0	174,0	186,0
350	86,0	86,0	128,0	215,0	185,0	166,0	186,0
375	80,0	85,0	128,0	214,0	175,0	166,0	186,0
400	75,0	83,0	128,0	213,0	160,0	166,0	186,0
425	68,0	82,0	125,0	213,0	153,0	161,0	186,0
450		80,0	123,0	213,0		156,0	186,0
475		79,0	120,0	213,0			186,0
500		78,0	118,0	208,0			186,0
510			117,0	205,0			185,0
520			116,0	202,0			184,0
530			115,0	199,0			183,0
540			114,0	196,0			181,0
550			113,0	195,0			180,0
560				183,0			165,0
570				171,0			150,0
580				169,0	-		135,0
590				157,0			110,0
600				147,0		_	110,0
610							110,0
620							105,0
630					_ ==		100,0
640			_				94,0
650						-	88,0
Расчет-					-		00,0
ная	20X						14X17
темпера	13	25Х1МФ	25Х2М1Ф	18Х12ВМБФР	20Х1МФ1БР	07X16H6	H2
-тура							
20	195,0	238,0	238,0	238,0	238,0	321,0	298,0
100	182,0	227,0	232,0	234,0	234,0	314,0	294,0
200	165,0	217,0	231,0	231,0	224,0	312,5	287,0
250	157,5	210,0	224,0	227,0	213,0	309,8	284,0
300	150,0	199,0	220,0	227,0	202,0	307,0	280,0
350	147,0	185,0	213,0	220,0	185,0	307,0	280,0
375	146,0	180,0	209,0	216,0	183,0		
400	145,0	175,0	206,0	213,0	182,0		
425	143.5	168,0	202,0	208,0	178.0		
		100,0	202,0	200,0	170,0		

CA 03-004-07 (CTII 10-04-02)

450	142,0	161,0	199,0	203,0	175,0	
475	100,0	152,0	195,0	196,0	171,0	
500		143,0	192,0	189,0	167,0	

Таблица 2

	Коэфо	рициент лине	ейного расши	рения α · 10 ⁶		мости от						
Марка стали	град температуры, ОС											
	20-100	200	300	400	500	600						
35	11,1	11,9		13,4	- 1	-						
40	11,3	12,0	13,3	13,3	-	-						
20X13	10,4	10,9	11,4	11,8	- 1	-						
14X17H2, 07X16H6	10,6	10,8	11,0	11,1	11,3							
35X,40X,38XA	13,4	13,3	-	14,8		-						
20XH3A	11,0	12,0	13,0	13,5	14,0	14,5						
30XMA	12,3	12,6	12,9	13,9	- 1	14,4						
25Х1МФ	11,3	12,7	-	13,9	- 1	14,6						
25X2M1Ф, 20X1MФ1БР	12,5	12,9	13,3	13,7	14,0	14,7						
18Х12ВМБФР	11,2	11,3	11,4	11,8	12,0	-						
37Х12Н8Г8МФБ	15,9	18,0	19,2	21,5	22,4	21,0						
12X18H10T 10X17H13M2T	16,6	17,0	18,0	18,0	18,0	-						
45X14H14B2M	16,6	17,0	18,0	18,0	18,0	18,0						
XH35BT	14,8	15,1	15,5	15,9	16,1	16,6						
08X15H24B4	14,5	15,5	16,3	16,8	17,2	17,4						

]	Моду:	ть прод	ольно	й упр	/гости	$10^5 E_e$, мпа ($0^{-6}E_{6}$	кгс/см	4²) пр	и
Марка стали	температуре, °С											
	20	100	150	200	250	300	350	400	450	500	550	600
35, 40	2,10	2,05	2,00	1,95	1,90	1,85	1,80	1,75	1,67	1,60	-	•
20X13, 14X17H2, 18X12BMБФР, 20XH3A	2,20	2,15	2,12	2,10	2,05	2,00	1,95	1,90	1,85	1,80	1,75	1,70
07X16H6, 35X, 40X, 38XA, 30XMA, 25X1MΦ, 25X2M1Φ	2,15	2,10	2,07	2,05	2,02	2,00	1,95	1,90	1,85	1,80	1,75	1,70
20Х1МФ1БР	2,10	2,05	2,02	2,00	1,97	1,95	1,90	1,85	1,80	1,75	1,70	1,65
12X18H10T,XH35BT 10X17H13M2T, 45X14H14B2M, 08X15H24B4TP, 37X12H8Г8МФБ	2,05	2,00	1,95	1,90	1,85	1,80	1,75	1,70	1,67	1,65	1,62	1,60

ПРИЛОЖЕНИЕ 6. Коэффициенты для расчета фланцевых соединений [40]

(1)
$$A = \frac{s_1 - c}{s_0 - c} - 1;$$
 (2) $C = 43,68 \left(\frac{l}{\sqrt{(D + 2c)(s_0 - c)}}\right)^4;$

(3)
$$C_1 = \frac{1}{3} + \frac{A}{12}$$
; (4) $C_2 = \frac{5}{42} + \frac{17A}{336}$;

(5)
$$C_3 = \frac{1}{210} + \frac{A}{360}$$
; (6) $C_4 = \frac{11}{360} + \frac{59A}{5040} + \frac{1+3A}{C}$;

(7)
$$C_5 = \frac{1}{90} + \frac{5A}{1008} - \frac{(1+A)^3}{C}$$
; (8) $C_6 = \frac{1}{120} + \frac{17A}{5040} + \frac{1}{C}$;

(9)
$$C_7 = \frac{215}{2772} + \frac{51A}{1232} + \frac{\frac{60}{7} + \frac{225A}{14} + \frac{75A^2}{7} + \frac{5A^3}{2}}{C}$$
;

(10)
$$C_8 = \frac{31}{6930} + \frac{128A}{45045} + \frac{\frac{6}{7} + \frac{15A}{7} + \frac{12A^2}{7} + \frac{5A^3}{11}}{C};$$

(11)
$$C_9 = \frac{533}{30240} + \frac{653A}{73920} + \frac{\frac{1}{2} + \frac{33A}{14} + \frac{39A^2}{28} + \frac{25A^3}{84}}{C};$$

(12)
$$C_{10} = \frac{29}{3780} + \frac{3A}{704} - \frac{\frac{1}{2} + \frac{33A}{14} + \frac{81A^2}{28} + \frac{13A^3}{12}}{C}$$
;

(13)
$$C_{11} = \frac{31}{6048} + \frac{1763A}{665280} + \frac{\frac{1}{2} + \frac{6A}{7} + \frac{15A^2}{28} + \frac{5A^3}{42}}{C};$$

(14)
$$C_{12} = \frac{1}{2925} + \frac{71A}{300300} + \frac{8}{35} + \frac{18A}{35} + \frac{156A^2}{385} + \frac{6A^3}{55}$$
;

(15)
$$C_{13} = \frac{761}{831600} + \frac{937A}{1663200} + \frac{\frac{1}{3} + \frac{6A}{35} + \frac{11A^2}{70} + \frac{3A^3}{70}}{C};$$

(16)
$$C_{14} = \frac{197}{415800} + \frac{103A}{332640} - \frac{\frac{1}{35} + \frac{6A}{35} + \frac{17A^2}{70} + \frac{A^3}{10}}{C}$$
;

(17)
$$C_{15} = \frac{233}{831600} + \frac{97A}{554400} + \frac{\frac{1}{35} + \frac{3A}{35} + \frac{A^2}{14} + \frac{2A^3}{105}}{C};$$

(18)
$$C_{16} = C_1 C_7 C_{12} + C_2 C_8 C_3 + C_3 C_8 C_2 - (C_3^2 C_7 + C_8^2 C_1 + C_2^2 C_{12});$$

$$(19) C_{17} = \frac{C_4 C_7 C_{12} + C_2 C_8 C_{13} + C_3 C_8 C_9 - \left(C_{13} C_7 C_3 + C_8^2 C_4 + C_{12} C_2 C_9\right)}{C_{16}};$$

$$(20) \ C_{18} = \frac{C_5 C_7 C_{12} + C_2 C_8 C_{14} + C_3 C_8 C_{10} - \left(C_{14} C_7 C_3 + C_8^2 C_5 + C_{12} C_2 C_{10}\right)}{C_{16}};$$

$$(21) C_{19} = \frac{C_6 C_7 C_{12} + C_2 C_8 C_{15} + C_3 C_8 C_{11} - \left(C_{15} C_7 C_3 + C_8^2 C_6 + C_{12} C_2 C_{11}\right)}{C_{16}};$$

$$(22) C_{20} = \frac{C_1 C_9 C_{12} + C_4 C_8 C_3 + C_3 C_{13} C_2 - \left(C_3^2 C_9 + C_{13} C_8 C_1 + C_{12} C_4 C_2\right)}{C_{16}};$$

$$(23) \ C_{21} = \frac{C_1 C_{10} C_{12} + C_5 C_8 C_3 + C_3 C_{14} C_2 - \left(C_3^2 C_{10} + C_{14} C_8 C_1 + C_{12} C_5 C_2\right)}{C_{16}};$$

$$(24) \ C_{22} = \frac{C_1 C_{11} C_{12} + C_6 C_8 C_3 + C_3 C_{15} C_2 - \left(C_3^2 C_{11} + C_{15} C_8 C_1 + C_{12} C_6 C_2\right)}{C_{16}};$$

$$(25) C_{23} = \frac{C_1 C_7 C_{13} + C_2 C_9 C_3 + C_4 C_8 C_2 - \left(C_3 C_7 C_4 + C_8 C_9 C_1 + C_2^2 C_{13}\right)}{C_{16}};$$

$$(26) C_{24} = \frac{C_1 C_7 C_{14} + C_2 C_{10} C_3 + C_5 C_8 C_2 - \left(C_3 C_7 C_5 + C_8 C_{10} C_1 + C_2^2 C_{14}\right)}{C_{16}};$$

$$(27) C_{25} = \frac{C_1 C_7 C_{15} + C_2 C_{11} C_3 + C_6 C_8 C_2 - \left(C_3 C_7 C_6 + C_8 C_{11} C_1 + C_2^2 C_{15}\right)}{C_{16}};$$

(28)
$$C_{26} = -\left(\frac{C}{4}\right)^{0.25};$$
 (29) $C_{27} = C_{20} - C_{17} - \frac{5}{12} + C_{17}C_{26};$

$$(30) C_{28} = C_{22} - C_{19} - \frac{1}{12} + C_{19} C_{26}; \quad (31) C_{29} = -\left(\frac{C}{4}\right)^{0.5};$$

(32)
$$C_{30} = -\left(\frac{C}{4}\right)^{0.75};$$
 (33) $C_{31} = \frac{3A}{2} - C_{17}C_{30};$

$$(34) C_{32} = \frac{1}{2} - C_{19}C_{30}; \qquad (35) C_{33} = 0.5C_{26}C_{32} + C_{28}C_{31}C_{29} - (0.5C_{30}C_{28} + C_{32}C_{27}C_{29});$$

(36)
$$C_{34} = \frac{1}{12} + C_{18} - C_{21} - C_{18}C_{26};$$
 (37) $C_{35} = -C_{18}\left(\frac{C}{4}\right)^{0.75};$

$$(38) C_{36} = \frac{C_{28}C_{35}C_{29} - C_{32}C_{34}C_{29}}{C_{33}}; \qquad (39) C_{37} = \frac{0.5C_{26}C_{35} + C_{34}C_{31}C_{29} - C_{37}C_{29}}{C_{33}};$$

$$(40) \ E_1 = C_{17}C_{36} + C_{18} + C_{19}C_{37}; \qquad (41) \ E_2 = C_{20}C_{36} + C_{21} + C_{22}C_{37};$$

(42)
$$E_3 = C_{23}C_{36} + C_{24} + C_{25}C_{37};$$
 (43)
$$E_4 = \frac{1}{4} + \frac{C_{37}}{12} + \frac{C_{36}}{4} - \frac{E_3}{5} - \frac{3E_2}{2} - E_1$$

(44)
$$E_5 = E_1 \left(\frac{1}{2} + \frac{A}{6} \right) + E_2 \left(\frac{1}{4} + \frac{11A}{84} \right) + E_3 \left(\frac{1}{70} + \frac{A}{105} \right);$$

$$\overline{(45) \ E_6 = E_5 - C_{36} \left(\frac{7}{120} + \frac{A}{36} + \frac{3A}{C} \right) - \frac{1}{40} - \frac{A}{72} - C_{37} \left(\frac{1}{60} + \frac{A}{120} + \frac{1}{C} \right)};$$

(46)
$$f = \max \left\{ \frac{C_{36}}{1+A}; \right.$$

$$(47,a) \ e = -\frac{E_6}{\left(\frac{C}{2,73}\right)^{0.25} \left(1+A\right)^3 \sqrt{(D+2c)(s_0-c)}} -$$
для фланцев по рис.12.1;

$$(47,6) \ e = -\frac{C_{18} \left(\frac{1}{2} + \frac{A}{6}\right) + C_{21} \left(\frac{1}{4} + \frac{11A}{84}\right) + C_{24} \left(\frac{1}{70} + \frac{A}{105}\right) - \left(\frac{1}{40} + \frac{A}{72}\right)}{\left(\frac{C}{2,73}\right)^{0.25} \frac{\left(1 + A\right)^3}{C} \sqrt{(D + 2c)(s_0 - c)}} \ .$$

для фланцев по рис.12.2, 12.3;

(48,a)
$$K = \frac{D_{\kappa}}{D+2c}$$
 для фланцев по (48,6) $K = \frac{D_{\kappa}}{D_{\phi}+2c}$ для фланцев

рис.12.1;

по рис.12.2;

(48,в)
$$K = \frac{D_{uk}}{D_k}$$
 для фланцев по

(49)
$$T = \frac{K^2(1+8,55246 \lg K) - 1}{(1,0472+1,9448K^2)(K-1)};$$

рис.12.3;

(50)
$$U = \frac{K^2(1+8,55246 \lg K) - 1}{1,36136(K^2 - 1)(K - 1)};$$

$$(51) Y = \frac{1}{K-1} \left(0,66845 + 5,7169 \frac{K^2 \lg K}{K^2 - 1} \right);$$

$$(52) Z = \frac{K^2 + 1}{K^2 - 1};$$

(53,a)
$$V = \frac{E_4}{\left(\frac{2,73}{C}\right)^{0.25} (1+A)^3}$$
 - для

фланцев по рис.12.1.1;

(53,6)
$$V = \frac{\frac{1}{4} - \frac{C_{24}}{5} - \frac{3C_{21}}{2} - C_{18}}{\left(\frac{2,73}{C}\right)^{0.25} (1+A)^3}$$
 - для фланцев по рис.12.1.2, 12.1.3;

(54)
$$d = \frac{U}{V} \sqrt{(D+2c)(s_0-c)}(s_0-c)^2;$$
 (55) $L = \frac{he+1}{T} + \frac{h^3}{d}.$

ПРИЛОЖЕНИЕ 7. Свойства материалов болтов (шпилек) для расчета фланцевых соединений арматуры и трубопроводов [10, 25]

Таблица 1

Расчетная		Расчетное зн	-	ела текучести	,	лек) <i>R</i> _e , МП	a
температура			д	ля сталей мар			
температура	35	40	45	09Г2С	20X13	30X13	35X
20	275	295	315	245	590	590	590
50	255	265	304	235	559	579	579
100	235	255	304	235	549	569	569
150	225	235	294	226	520	559	549
200	225	216	274	216	520	549	520
250	186	216	255	216	481	540	520
300	147	216	245	196	471	530	491
350	127	196	225	177	460		471
400				157	454		461
450				157	445		392
500							333
Расчетная температура	40X	30XMA	35XM	25Х1МФ	20X1M1 Ф1БР	18Х12В МБФР	31X19H9 MB6T
0	590	640	640	670	670	670	315
50	569	617	611	638	670	667	314
100	569	608	588	638	657	657	314
150	549	568	588	628	647	647	314
200	530	529	588	608	627	647	314
250	500	480	562	589	598	638	314
300	500	461	536	559	568	638	314
350	441	441	500	520	519	618	294
400	421	441	484	490	510	598	284
450	392	412	460	452	490	569	275
500	304	382	408	402	470	530	275
550							265
600				1	i -		196

			_			140	инца 2					
Расчетная	Расчетное значение временного сопротивления болтов (шпилек) R_m , МПа для сталей марок											
DOLLE OWNER WA												
температура	35	40	45	09Г2С	20X13	30X13	35X					
20	530	549	569	432	785	785	736					
50	530	520	569	432	755	755	726					
100	530	520	569	432	736	736	726					
150	520	510	569	432	716	716	706					
200	510	510	569	432	687	687	706					
250	500	510	549	432	667	667	706					
300	500	500	530	432	638	647	706					
350	500	471	510	432	625		628					
400				432	616		510					
450				392	604		510					
500							383					

CA 03-004-07 (CTII 10-04-02)

Расчетная	Расчетное значение предела текучести болгов (шпилек) R _m , МПа для сталей марок											
температура	40X	30XMA	35XM	25Х1МФ	20X1M1 Ф1БР	18Х12В МБФР	31X19H9 МВБТ					
20	736	785	784	785	785	785	589					
50	726	775	765	775	775	775	589					
100	726	755	749	775	765	755	569					
150	706	746	732	765	755	746	549					
200	697	706	732	765	746	726	530					
250	697	697	717	755	736	706	510					
300	697	687	701	725	726	687	491					
350	628	687	701	695	716	667	471					
400	540	669	651	645	697	628	441					
450	461	598	586	589	647	589	441					
500	461	530	505	529	598	549	412					
550							392					
600							392					

Таблица 3

Марка стали	Коэффициент линейного расширения $\frac{\alpha \cdot 10^6}{a \cdot 10^6} = \frac{1}{cpad}$ в зависимости от температуры, 0С												
	50	100	150	200	250	300	350	400	450	500	550	600	
35, 40, 45, 09Г2С, 35Х, 40Х, 30ХМА, 35ХМ, 25Х1МФ, 20Х1МФ1БР	11,5	11,9	12,2	12,5	12,8	13,1	13,4	13,6	13,8	14,0	14,2	14,4	
20X13,30X13, 18X12ВМБФР	10,0	10,3	10,6	10,8	11,0	11,2	11,4	11,5	11,7	11,8	11,9	12,0	
31Х19Н9МВБТ	16,4	16,6	16,8	17,0	17,2	17,4	17,6	17,8	18,0	18,2	18,4	18,5	

Марка стали		Мод	уль уп	ругост	и E ·10	0^{-5} , Ml	<i>Та</i> в за	висим	ости от	темпе	ратурь	ı, 0C	
Iviapaa ciasin	20	50	100	150	200	250	300	350	400	450	500	550	600
35,40,45,	2,10	2,07	2,05	2,00	1,95	1,90	1,85	1,80	1,75	1,70	1,65	1,60	
09Г2С, 20Х1МФ1БР	2,10	2,07	2,05	2,02	2,00	1,95	1,90	1,85	1,80	1,75	1,67	1,60	
35X,40X,30XMA, 35XM, 25X1MФ,	2,15	2,12	2,10	2,07	2,05	2,02	2,00	1,95	1,90	1,85	1,80	1,75	1,70
20X13,30X13, 18X12ВМБФР	2,20	2,17	2,15	2,12	2,10	2,05	2,00	1,95	1,90	1,85	1,80	1,75	1,70
31Х19Н9МВБТ	2,05	2,02	2,00	1,95	1,90	1,85	1,80	1,75	1,70	1,67	1,65	1,62	1,60

ПРИЛОЖЕНИЕ 8. Коэффициенты для расчета укрепления отверстий сосудов и аппаратов, работающих в коррозионно-активных сероводородсодержащих средах [16]

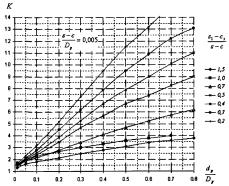


Рис.1. Коэффициент интенсификации напряжений в цилиндрической обечайке

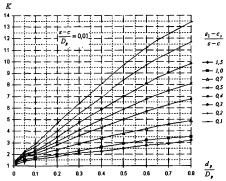


Рис. 2. Коэффициент интенсификации напряжений в цилиндрической обечайке

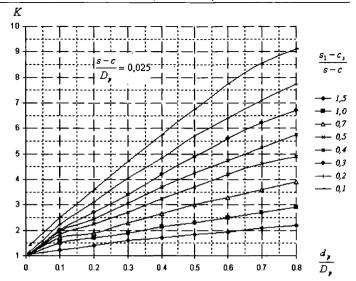


Рис.3. Коэффициент интенсификации напряжений в цилиндрической обечайке

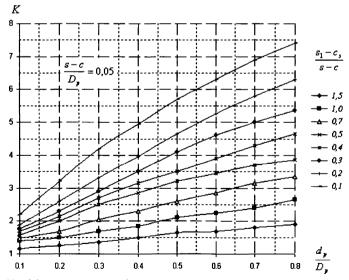


Рис.4. Коэффициент интенсификации напряжений в цилиндрической обечайке

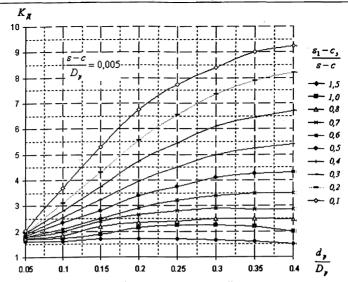


Рис. 5. Коэффициент интенсификации напряжений в выпуклом днище

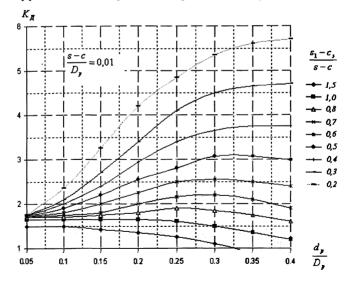


Рис.6. Коэффициент интенсификации напряжений в выпуклом днище

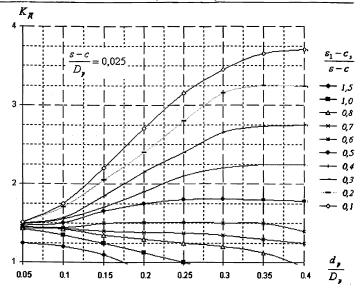


Рис. 7. Коэффициент интенсификации напряжений в выпуклом днище

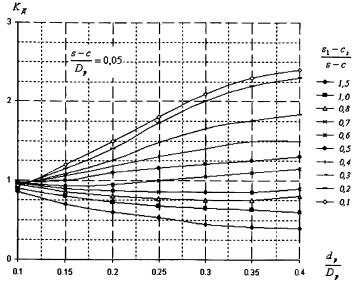


Рис. 8. Коэффициент интенсификации напряжений в выпуклом днище

ПРИЛОЖЕНИЕ 9. Перемещения в элементах колонного аппарата от весовых нагрузок

В качестве расчетной схемы для определения перемещений от распределенных нагрузок, в i-ом элементе в общем случае рассматривается цилиндрическая обечайка с изоляцией, внутренней футеровкой и рабочим продуктом (в случае их наличия) как балка кольцевого сечения (рис.1), где $q_i = \frac{G_i}{h_i}$ - расчетная распределенная

нагрузка.

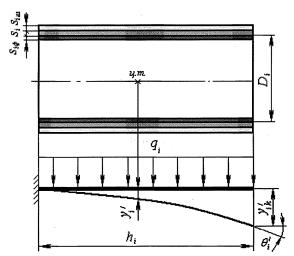


Рис.1 Цилиндрический элемент с распределенной нагрузкой

Общее усилие от распределенных весовых нагрузок, действующих на элемент:

$$\begin{split} G_i &= G_{ioo} + G_{iuu} + G_{i\phi} + G_{inn}\,, \\ \text{где } G_{ioo} &= \rho_{cm}\pi \; s_i \Big(D_i + s_i\Big) h_i g \; \text{- вес самой обечайки;} \\ G_{iuu} &= \rho_{iuu}\pi \; s_{iuu} \Big(D_i + 2s_i + s_{iuu}\Big) h_i g \; \text{- вес внешней изоляции;} \\ G_{i\phi} &= \rho_{i\phi}\pi \; s_{i\phi} \Big(D_i - s_{i\phi}\Big) h_i g \; \text{- вес футеровки;} \\ G_{inn} &= \xi \; \rho_{i\infty} \; \frac{\pi \Big(D_i - 2s_{i\phi}\Big)^2}{4} \; h_i g \; \text{- вес продукта.} \end{split}$$

Перемещения от действия распределенной нагрузки:

$$\begin{cases} y_i' = \frac{17G_i h_i^3}{48E\pi(D_i + s_i)^3 s_i} - \text{в центре тяжести элемента} \\ y_{ik}' = \frac{G_i h_i^3}{E\pi(D_i + s_i)^3 s_i} - \text{на конце элемента} \end{cases}$$

Угол поворота сечения в конце цилиндрической обечайки (i-го элемента) под действием распределенной нагрузки:

$$\theta_i' = \frac{4G_i h_i^2}{3E\pi (D_i + s_i)^3 s_i}$$

Перемещения 'цилиндрической обечайки под действием сосредоточенной нагрузки:

$$\begin{cases} y_i'' = \frac{5G_{ik}h_i^3}{6E\pi(D_i + s_i)^3s_i} - в \, \text{чентре тяжести элемента} \\ y_{ik}'' = \frac{8G_{ik}h_i^3}{3E\pi(D_i + s_i)^3s_i} - \text{на конце элемента} \end{cases}$$

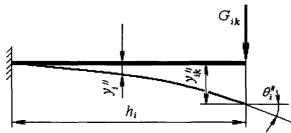


Рис.2 Цилиндрический элемент с сосредоточенной нагрузкой.

Угол поворота сечения в конце элемента под действием сосредоточенной нагрузки:

$$\theta_i'' = \frac{4G_{ik}h_i^2}{E\pi(D_i + s_i)^3 s_i}$$

Перемещения цилиндрической обечайки под действием изгибающего момента:

$$\begin{cases} y_i''' = \frac{M_{Gi}h_i^2}{E\pi(D_i + s_i)^3 s_i} - \epsilon \, \text{чентре тяжести элемента} \\ \\ y_{ik}''' = \frac{4M_{Gi}h_i^2}{E\pi(D_i + s_i)^3 s_i} - \text{на конце элемента} \end{cases}$$

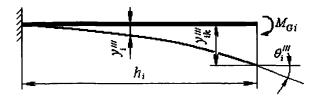


Рис.3 Цилиндрический элемент с изгибающим моментом.

Угол поворота сечения в конце элемента под действием изгибающего момента:

$$\theta_i^{\prime\prime\prime} = \frac{8M_{Gi}h_i}{E\pi(D_i + s_i)^3 s_i}$$

Угол поворота сечения в конце элемента под действием распределенной и сосредоточенной нагрузки с учетом перемещений предыдущих элементов:

$$\theta_i = \theta_{(i-1)} + \theta_i' + \theta_i'' + \theta_i'''$$

Перемещения в цилиндрической обечайке при одновременном действии распределенной и сосредоточенной нагрузки, а также изгибающего момента с учетом перемещений предыдущих элементов:

$$\begin{cases} y_i = y_{(i-1)k} + \theta_{i-1} \cdot \frac{h_i}{2} + y_i' + y_i'' + y_i''' - \textit{в центре тяжести элемента} \\ y_{ik} = y_{(i-1)k} + \theta_{i-1} \cdot h_i + y_{ik}' + y_{ik}'' + y_{ik}''' - \textit{на конце элемента} \end{cases}$$

Для упрощенного расчета перемещений в конической обечайке диаметр эквивалентного цилиндра принимается равным $D=0.5(D_1+D_2)$, а $s=s_k$.

ПРИЛОЖЕНИЕ 10. Геометрические характеристики поперечного сечения опорной обечайки, ослабленной отверстиями

На рис.1 представлено расчетное сечение опорной обечайки, ослабленное несколькими отверстиями. Укрепление отверстий патрубками и накладными кольцами не учитывается.

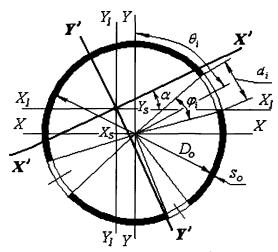


Рис.1 Расчетное сечение опорной обечайки, ослабленное отверстиями

Площадь расчетного сечения:

$$A = D_0(s_0 - c) \left(\pi - 0.5 \sum_{i=1}^n \varphi_i\right),$$
 где $\varphi_i = 2\arcsin\left(\frac{d_i}{D_0}\right);$

п - количество отверстий в расчетном сечении.
 Координаты центра центра тяжести сечения:

$$x_{s} = \frac{1}{A} \int_{A} x dA = \frac{1}{2\pi} (0.5D_{0} + s_{0} - c) \sum_{i=1}^{n} \left(\cos \left(\theta_{i} + \frac{\varphi_{i}}{2} \right) - \cos \left(\theta_{i} - \frac{\varphi_{i}}{2} \right) \right)$$
 (2)

$$y_{s} = \frac{1}{A} \int y dA = \frac{1}{2\pi} \left(0.5D_{0} + s_{0} - c \right) \sum_{i=1}^{n} \left(\sin \left(\theta_{i} - \frac{\varphi_{i}}{2} \right) - \sin \left(\theta_{i} + \frac{\varphi_{i}}{2} \right) \right)$$
(3)

Расстояние от центра тяжести наиболее ослабленного поперечного сечения до оси аппарата:

$$b_s = \sqrt{x_s^2 + y_s^2} \tag{4}$$

Моменты инерции расчетного сечения относительно осей X-X и Y-Y (рис.3.2):

$$I_{X} = \int_{A} y^{2} dA = \frac{1}{8} \pi D_{0}^{3} s_{0} \left(1 - \sum_{i=1}^{n} \left[\frac{1}{2} \varphi_{i} + \frac{1}{4} \left(\sin(2\theta_{i} + \varphi_{i}) - \sin(2\theta_{i} - \varphi_{i}) \right) \right] \right)$$
 (5)

$$I_{Y} = \int_{A} x^{2} dA = \frac{1}{8} \pi D_{0}^{3} s_{0} \left(1 - \sum_{i=1}^{n} \left[\frac{1}{2} \varphi_{i} - \frac{1}{4} \left(\sin(2\theta_{i} + \varphi_{i}) - \sin(2\theta_{i} - \varphi_{i}) \right) \right] \right)$$
(6)

Центробежный момент инерции относительно системы координат X-Y:

$$I_{XY} = \int_{A} xy dA = \frac{1}{8} \pi D_0^3 s_0 \left(1 - \sum_{i=1}^{n} \left[\frac{1}{4} (\cos(2\theta_i - \varphi_i) + \cos(2\theta_i + \varphi_i)) \right] \right)$$
 (7)

Для определения минимального момента сопротивления расчетного сечения изгибу W необходимо определить расположение главных осей X'-X' и Y'-Y', проходящих через центр тяжести.

Моменты инерции относительно осей $X_I - X_I$ и $Y_I - Y_I$, проходящих через центр тяжести и параллельных осям X-X и Y-Y (рис.3.2):

$$I_{X1} = I_X - y_s A \tag{8}$$

$$I_{v_1} = I_v - x_* A \tag{9}$$

Центробежный момент инерции относительно системы координат $X_1 - Y_1$:

$$I_{Y|Y|} = I_{YY} - x_s y_s A \tag{10}$$

Угол поворота главных осей относительно $X_1 - X_1$ и $Y_1 - Y_1$:

$$\alpha_0 = \frac{1}{2} \operatorname{arctg} \frac{2I_{X1Y1}}{I_{Y1} - I_{X1}} \tag{11}$$

Главные моменты инерции сечения:

$$I_{X}' = \frac{1}{2} (I_{X1} + I_{Y1}) - \frac{1}{2} (I_{Y1} - I_{X1}) \sqrt{1 + \frac{4I_{X1Y1}^{2}}{(I_{Y1} - I_{X1})^{2}}}$$
(12)

$$I_{Y}^{'} = \frac{1}{2} (I_{X1} + I_{Y1}) + \frac{1}{2} (I_{Y1} - I_{X1}) \sqrt{1 + \frac{4I_{X1Y1}^{2}}{(I_{Y1} - I_{Y1})^{2}}}$$
(13)

Относительно главных осей определяются моменты сопротивления $W_{\chi}^{'}$ и $W_{\gamma}^{'}$:

$$W_X' = \frac{I_X'}{0.5D_0 + \left| x_s \sin \alpha + y_s \cos \alpha \right|} \tag{14}$$

$$W_{\gamma}' = \frac{I_{\gamma}'}{0.5D_0 + \left| x_s \cos \alpha - y_s \sin \alpha \right|} \tag{15}$$

Наименьший момент сопротивления расчетного сечения:

$$W = \min \left\{ W_X'; W_Y' \right\} \tag{16}$$

109147 Москва, ул. Таганская, д. 34 Телефон: 912-39-11 Телетайп: 111633 "БРИДЕР"

Телефакс: (095) 912-40-41 E-mail: atomnadzor@gan.ru Президенту НО Ассоциация «Ростехэкспертиза»

Е.А. Малову

37.11.2066 No 1	K4-50 /1220
Ha Neor	

Уважаемый Евгений Арсентьевич!

Ростехнадзор рассмотрел представленный Вами стандарт Ассоциации «Ростехэкспертиза» «Расчет на прочность сосудов и аппаратов».

Считаем возможным использование указанного стандарта в качестве рекомендательного нормативного документа межотраслевого применения.

Статс-секретарь-заместитель руководителя Ростехнадзора

- Caline

К.Л. Чайка

Исп. Шаталов А.А. т. 911-64-94