ГОСУДАРСТВЕННЫЙ КОМИТЕТ СОВЕТА МИНИСТРОВ СССЯ, ПО ДЕЛАМ СТРОИТЕЛЬСТВА (ГОССТРОЯ СССР)

типовые конструкции и детали зданий и сооружений

Серия 1.424-2

СТАЛЬНЫЕ ҚОЛОННЫ ОДНОЭТАЖНЫХ ПРОИЗВОДСТВЕННЫХ ЗДАНИЙ, ОБОРУДОВАННЫХ МОСТОВЫМИ КРАНАМИ

выпуск 2

КОЛОННЫ ПРИ ШАГЕ СТРОПИЛЬНЫХ ФЕРМ 12 м ДЛЯ ЗДАНИЙ, ВОЗВОДИМЫХ В НЕСЕЙСМИЧЕСКИХ РАЙОНАХ С РАСЧЕТНЫМИ ТЕМПЕРАТУРАМИ ВЫШЕ МИНУС 40°С

чертежи км

Разработаны институтами **Цниипроектстальконструкция**УКРпроектстальконструк<u>и</u>ия

Утверждены и введены в действие с1апреля 1972г. Госстроем СССР постановление № 32 от 1 марта 1972г.

Содержание

Aucm		Стр.
_	Пояснительная записка	3-5
1	2абариты колонн при отсутствии профодов вдоль подкрановых путей	7
2	ербариты колонн при наличии просоодав вдаль падкрановых путей	8
3	Сжемы связей по ступенчатым капаннам	g
4	Схемы связей по колоннам постоянного сечения.	10
5	Сортамент сварных двутавров с высотой стенки до 710мм	H
6	Сортамент сварных- двутавров с высотой стенни 900 мм	12
7	Сартамент гнутых швеплерав.	13
8	Сартамент сварных извеллерав.	4
9	Пабілица несущей способности сварных двутавров для падкранавых	
	ветвей ступенчатых коланн	15
10	<i>П</i> паблица несущей спосабности гнутых ивепперав йля наружных	
	ветвей ступенчатых каланн крайнего ряда	16
H	<i>Шаблица несущей способности сварных швепперов для наружных</i>	
	ветвей ступенчатых каланн крайнега эпда	17
12	Παδουυία κεσλαίες συ άσουχκουμο υδηγιού της αρβίνουχος τη παρευυείτος	
	для ветвей ступенчитых капаны	.18
ß	<i>Маблица несущей способности сварных авутовров с высотай стенки</i>	
	да 710мм для надкрановой части ступенчатых коланн. Сталь 3.:	19
14	<i>П</i> паблица нèсущей способности сварных двутавров свысотой стенни	
	до 710 мм. для надкрановой части ступенчатых колонн. Сталь Э (продолжение) .	20
15	<i>Паблица несущей способности сварных двутоварв с высотой стенки</i>	
	до 710 мм. для надкрановой части ступенчатых колонн. Стапь низколегированная .	2/
fB	Паблы ца несущей спосабности сварных двутавров с высотой стенки до 710мм	
	для надкрановой чисти ступенчатьке колонн. Сталь низколегированная (продолж) .	22
17	Паблица несущей способности сворных авутавров свысотой стенни 900 мм	
	для надкрановый части ступенчатых калонн. Сталь 3	23
18	<u> Паблица несущей спасабнасти сварных авутаврав с высотой стенки 900 мм</u>	
	для надкрановой части ступенчатых каланн Стапь 3 (продолжение)	24
19	Маблица несущей способности сворных двутавров с высотой стенки 900 мм	
	для надкрановой части ступенчатых колонн. Сталь ниэколегированная	25

JIUCM		Lmp.
20	<i>Т</i> Паблица несущей способности сворных двутавров с высотой стенки	
	900 мм для надкранавой части ступенчатьсь кальнн Сталь ниэнолегированная(продольн) .	26
21	<i>П</i> Габлица несущей способности сварных двутавров с высотой стенки до 110 мм	
	для коронн постоянного сечения	27
22	<u> Маблица несущей способности сварных двутавров с высотой стенки эштя</u>	
,2 3	для колонн постаянного сечения. Цэлы 1÷6 решетки ступенчатых колойну сартамект и кэсущая слособность	23
	элементов решетки.	23
24	Уэлы 7÷9 боз ступенчаты≈ коланн	<i>31</i> 7
25	Уз лы 10÷13 боз ступенчатых колонн и узел 14 связи	<i>51</i>
26	<i>Паблица размеров детапей баз наружных ветвей ступенчатых колонн</i>	
	Крайнега ряда	32
27	<i>Маблица размеров деталей баз подкрановых ветвей ступенчатых колотн</i>	33
28	базы ступенчатых колонн у температурного шва	<i>3</i> 4
29	Узел 15 баз колонн постоянного сечения и таблица размеров деталей баз	<i>35</i>
<i>30</i>	<i>Паблица размеров детапей баз колонн постоянного сечения (прайопжение</i>) .	<i>35</i>
31	Сортамент анкерных плиток для баз колонн	37
3,E	Узлы 16÷19 подкрановых траверс ступенчатых коланн	38
<i>33</i>	Узяви 20;21 и сартамент падкрановых траверс ступенчатых копанн	39
<i>34</i>	Излы 22 и 23 подкрановых консолей и узел 24 проема в стенкох колонн	40
35	Уэлы 25 и 26 оголовков колокн	41
36	Сортамент и несущая спасабность связей по колоннам.	42
<i>3</i> 7	Узлы 27÷33 и 42 связей по копоннам	43
38	Уэлы 34÷37 связей по коланнам	44
39	Узлы 38°÷41 клеппения стеновых понелей	45
	Пример попозования выпуском	46÷50

TK

Садержание альбами

І.Общая часть

В настоящем выписке поиведены рабочие чертежи КМ стальных каланн, предназначенных для одноэтажных произвадственных зданий с однаярусным располажением мостовых кранов.

разрабатаны применительно к зданиям:

- адна- и многопролетным, с фонарными и бесфонарными поолетами;
- c Bbicamaŭ nm 8.4 da 22.8 m;

2.

- с шагом колонн по крайним и средним рядам 12м;
- мастовыми кранами легкага, среднега и и тяжелого режима рабаты грузоподъемнастью от 10 г. do 1257. no l'Oct 3332-54, l'Oct 6711-70 u l'Oct 7464-55. Пополнительно, для эданий с просодами вдоль подкранавых питей, предусматрены краны грузападъемнастью 150 г. по ГОСТ 67H-70 с размерам В₁ = 425 мм. (Вместа 500 MM TO POST)
- с обычным и тяжелым режимом дабаты;
- располагаемым в І-🛚 снеговых районах и в І-<u>І</u>Ў ветровых районах

no CHull II-A.H-62;

- Эксплиатириемым и монтируемым при расчетной температире выше минцс 40°с;
 - располагаемым в несейсмических пайанах.

Поинятое сочетание пролетов, высот зданий и грузоподъемкрано**в** приведено ниже в таблице (.

	Γ					Πį	поле	mbi		3 <i>0</i> Q	ния	В	M	emp	ax														
Bbicama		18					2	4							30	,				_	Г			38					
<i>វិបិព្អបអ</i>							e,	аузс	поо	den	HDC	mb	K	пана	В	В	ומות	HQQ	,					,		_		_	
(M)	10	15	20	30	10	15	20	śŊ	50	75	100	10	15	20	30	50	75	100	125	150°	10	15	20	30	50	75	100	125	ısi [‡]
8,4	+	+	+		+	+	+					Γ	Г	П										\vdash	Г		_	_	-
9,5	+	+	+		+	+	+	Ι.,				+	+	+					_					T					-
10,8	+	+	+	+	+	+	+	+	+			+	+	+	+	+			<u> </u>			1	-	H				_	-
t2,6	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+				+	+	+	+	一		_	H	_
14,4	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+				+	+	+	+	+	+	+	_	Т
16,2								+	+	+	+		Г	Π	+	+	+	+	+		-	-	-	+	+	+	+-	+	H
18,0	Γ		Γ			Γ.		+	+	+	+				+	+	+	+	+	+		1	<u> </u>	+	+	+	+	+	+
20,4			Г															+	+	+							+	+	+
22,8	1	1	-			Γ,		_	_		_	1	·	1			1	+	1	+	-	 	1	†	\vdash	-	+	+	-

Краны грузоподъемностью 150 г. предусмотриваются только для эданий с простадеми вдаль падкранавых путей.

> приведенная область применения коланн является исповной и мажет быть расширена по снеговым и ветровым районам при применении легких кровель и за счет других сочетаний капновых нагрузак и пралетов.

Коланны разработаны применительно к типовым стальным 3. разрезным и неразрезным подкрановым балкам серии КЭ-DI-57 и к типовым стальным канструкциям покрытий серии ПК-01-125, ПК-01-133 u 1.460-1.

II. Состав выпуска

4	В	выпуске	приведены:
---	---	---------	------------

- габаритные огремы колонн;
- сосемы связей по колоннам;
- сортаменты сечений колонн,
- сартаменты деталей колонн
- caomamenmbi cevenuu cbคงอน์,
- таблицы несищей способности эпементов колонн,
- таблицы несцицей способности связей;
- изпы Колонн;
- изпы связей по колонном; изпы креппения стеновых панелей;

— "пример" попьзования в	Выпуском.
--------------------------	-----------

<u>III. Конструктивные решения</u>

- Каланны разработаны для зданий с праходами и без проходов вдоль падкоанавых путей.
- Для здрний Высатой 8,4 и 9,6м. приняты колонные постоянной высатой сечения из сварных двитавров.
 - Для · эфаний высотой от 10,8м. до 22,8м. приняты ступенчатые колонны с пешетчатой подкорновой частью и надкорновой частью из сворного двитавра.

Для подкооновых ветвей решетчатой части колонн принято 2 типа сечений: паркатный и сворной двитавоы.

Для наружных ветвей колонн крайних рядов принято Этипа сечений: прокотный, енутый и сварной швеллеры.

Сварные швеллеры (состовного сечения из листа и двух уголков) предустотрены, как вариант, взамен енутых шверлеров из листа толщиной балее 12мм; выбар варианта паризводится по согласованию с заводом-изготовителем.

Высата сечения п наружной и подкрановой ветвей колонн крайних рядов принимается адинаковой.

- подкрановой части колонн принята движпласкостной и выполня-บล กอกหอกาหษาจะ บลอกหอชิ.
 - колонн Запроектированы с фрезерованными тарцами колонн, опиратицим ся на заранее поставленные и выверенные апарные плиты са строгонной вержней плоскостью.

Опорные плиты баз ступенчатых колонн, к каторым крепятоя подкрановые связи, привариваются к специальным швеплерам, заделанным в финдамент.

Коланны рекомендиется изготавливать на заводе целиком, аднай атпаавочной маркай. При необъевимости устройства монтожного стыка ступенчатой калонны его рекомендуется располагать в подкрановой (решетчатой) части. Стык выполнять сварным, по равнопрочности с сечениями ветвей.

Вертикальные связи по колоннам выше подкрановых путей (надкрановые связи) располагаются в крайних шагах каланн температурного отсека, а также в промежиточных шагох каранн, если это требуется системой связей по покоытию.

Вертикальные связи по калоннам ниже подкрановых путей (подкрановые связи) рекомендиетоя располагать ближе к середине температирного отсека. Число этих связей и их размещение по длине отсека принимается в соответствии с иказаниями тоблицы 42 СН и ПТ-в.3-62.

Для надкрановых связей принята два типа сфем: V-адразные и в виде фермочек с порадлельными поясоми. Поспедние применяются при малой высоте надкрановой части колонн.

Для подкрановых связей в качестве основной схемы поинята крестовая, для которой в выпуске представлены сортамент сечений и несущая спосодность связей. При необходимости обеспечения гобаритов приближения для прописка транспартных средств или для размещения техснологического оборудования, могит быть применены портальные соемы связей, которые в этих спичана **ព្ធជូវាជុស្ចីពួកាស់ស្វីជអាកាជអា ១៤០វ៉ាំ១**.

Подкрановые связи по стипенчатым коланнам располагаются в пласкасти подкрановых ветвей, спедовательна, по крайним рядам связи приняты радноплоскостными, а по средним рядам — двихопоскостными с соединительной решетной менеди ветвями связей.

Падкрановые связи по колоннам постоянного сечения приняты аднопаскастными для калонн с высотой сечения до 710 мм. и двисспласкостными при Высате CEVEHUR SOO MM.

наличии стоек фасверка по крайним рядам колонн, схемы и констдешения связей по колоннам постоянного сечения и надкрановых связей по стипенчатым колоннам принимаются по чеотежам КМ типовых стоен фахверка.

$\overline{\mathbf{W}}$. Порядок пользования выпуском

При помощи данных, представленных на гоборитных схемох колонн (листы 1и г), В зависимасти от заданных высот зданий, грузападъемности кранов, наличия или атоцтотвия просходов вдаль падкрановых питей, а также принятых в праекте типовых подкрановых балок, устанавливаются асновные размеры колонн: отметки верха колонн, отметки опор подкрановых дапок, привязки колонн к раздивочным осям зданий и предельные габаритные раэмеры сечений надкрановых частей колонн.

Сечения каланн для проектируемого конкретного объекта принимаются по таблицам несущей способности (писты 9÷22) в соответствии с исилиями, поличенными на основе статического расчета, выполняемого для данного объекта.

Для зданий с тяженым режимом работы, каланны даполнительно должны дыть праверены на горизонтальные деформации (смещения) в соответствии с иказаниями л. 93.СНиП ії-83-62.

- vi. Сечения элементов решетки ступёнчатых колонн принимаются по листу 23.
- 18. Размеры деталей баз колонн принимаются по листам 24÷31.
- 19 Размеры деталей оголовков колонн принимаются по листи 35
- 20 Розмеры подкрановых траверс и деталей в сопряжении надкрановой и подкрановой частей ступенчатых колонн принимаются по листам 32 и 33.
- 21. Размеры деталей подкрановых консолей колонн постоянного сечения принимаются по листу 34:
- 22. Детоли проемав в стенкож колонн для прожодов вдоль подкрановых путей принимаются по листу 34.
- 23 Схемы вертикольных связей по колоннам принимаются по листам ди 4-Сечения связей принимаются по таблицам на листе Эв. Узлы связей покозаны на листах 37 и 38.
- гч. Детали крепления стеновых панелей к колоннам крайних рядав причимаются по листу 39
- 25 При проектировании колонн для конкретнога адъекта неабхадимо стремиться к максимальной унификации сечений элементов колонн и связей по ним.

<u> 🔻 . Материал конструкций.</u>

- гв Основные сечения и подкрановые траверсы в ступенчатых колоннах представлены в двух вариантах по материалу:
 - из углерадистой стали 3 и из низколегированнай стали (последняя на чертежах обазначено буквами "НЛ").
 - Выбор стали для колонн проектируемого объекта определяется техника-экономическим расчетом.
- 27. Пля всех детапей колонн (исключая подкранавые троверсы), для асновных сечений колонн пастоянной высаты сечения и для связей принята сталь 3.
 - Применяемые марки стали д:

28

- a) для колонн, эксплуатируетых при расчетной температуре минус 30°с и выше, сталь углеродистая для сварных конструкций тарки вСг Экп2 по 1905 380-74;
- б) для каланн, эксплуатируемых при пасчетной температуре ниже минус 30°С до минус 40°С, сталь уелерадистая для сварных конструкций марки вСт. Э пс в по ГОСТ 380-74;
- в) для связей по копоннам, стапь уеперодистая для сварных конструкций марки вст. 3кп2 по ГОСТ 380-71.
- 29 Применяемые марки низколегированной стали: — при толицинах проката до 32мм,— марка 14Г2 (допускается 10Г2СІ);

— при топщинаю проката болге 32мм, — марка 10ГАС1.

Уславия поставни указанных морок, — сталь мортенавакая для сварных конструкций по ГОСТ-5058-65 с даполнительной гарантией ударной вязкости при температуре минус 40°с и после механического старения согласно п.278 ГОСТ-5058-65. Упя финдаментов под колонны принят Бетан марки 200

Расчет стальных конструкций выпалнен в соответствии с указаниями СНи П П-8 3-62*

Расчетные сопротивления стали приняты

для стали 3 — при топщинах проката до 40мм. Включительно—2100 ^{кг}/см²;

при топщинах проката болье 40мм — 1800 ^{кг}/см²;

для стали НЛ — 2900 ^{кг}/см²

31

Примечание: при подборе сечений опарных плит баз колонн из стали д расчетное сопротивление R = 2100 кг/см г принято для проектных талщин до двым (с ичетом приниска 4-мм на старожки одной плоскости плиты)

Значения коэффициентов расчетной длины надкрановой чости ступенчатых калонн в плоскости ромы определялись по укозаниям припожения $\overline{\mathbb{N}}$ Сни П<u>Т</u>-в.3-в.2, причем, для аднопролетных эдоний принималась расчетная схема копонн с верхним свободным концом, а для двух— и многопролетных эдоний, — с неподвижным шарнирновпертым верхним концом.

Расчетные длины надкрановой части каланн из плоскости рамы принимались от верха колонны до верха подкрановой балки при неразрезных балках и до низа подкрановой балки при разрезных балках (что обусловлено конструктивным креплением типовых подкрановых балок к копоннам).

Несущая способность подкрановой части ступенчотых колонн определена для кождой ветви, по расчетной длине ветви из пласкости рамы При этом, расчетная длина ветви принимается равной расстаянию от опорной плиты базы до низа подкрановой балки (как для подкрановой ветви, так и для наруженой ветви колонны крайнего рядо).

TK 1970 r.

Пояснительная записка

Серия 1 424 - 2 Эвинуск 2 — 35

36.

37.

- н. Расчетные длины колонн пастоянного сечения в плоскости рамы Принимались:
 - для аднапрапетных зданий с коэффициентом расчетной длины 1,5 ка всей длине колонны;
 - аля двух и многопролетных зааний с коэффициентом 0,7 но всей длине колонны.

Расчетные длины колонн постоянного сечения из плоскости рамы принимались равными расстоянию от опорной плиты базы колонн до низо подкрановых балок (длина надкрановый части этих колонн всееда короче подкрановый части).

При определении несущей сласабности сечений надкрановой части ступенчатью колонн по устойчивости из плоскости рамы , расчетный момент в средней трети длины рассматриваемого участка колонны принимался равным 0,85 М.с., где

Мж — расчетный максимальный момент в этой части колонны (в плоскости ромы).

При определении несущей способности колонн постоянной высоты сечения по устойчивасти из ппоскости рамы, расчетный момент принимался равным О.7 М ж., еде

Ма — максимальный момент в колонне (в плоскости рамы).

- в тех случаях, когда на несущую способность внецентренно сжатого свярного двутавро (надкрановая часть ступенчатой колонны или колонна постоянного сечения) влияет местная устойчивость его стенки, определялась два эночения несущей способности:
- a) рассматривалась условное сквазнае сечение без средней части стенки (в расчетнае сечение включалось два участна стенки высотой по 15бег., притыкающи**х** к полкат);
- д) расуматривалось двутавровосечение с палной высотой стенки, с соответствунощим снижением расчетного сипротивления.
 - Us двуж полученных значений несущей способности принималось наибольшее. Допустимое значение атносительной высоты стенки $\left(\frac{h_0}{6}\right)$ определялось по п. 6.12 СНи П <u>П</u> - 8.3-52.*

Значения Кз определянись при 🕳 = 0,15.

При определении несущей спосодности [N] основных сечений колонн по фармулам и таблицам СН и П <u>I</u>I-8.3-62.^{**} в ряде случаев (когда решающей является проверка местной устойчивости) энсчение несущей способности при меньшей расчетной длине рассматриваемой части колонны получалось меньше, чем при дапьшей длине в этих случаях принималось одинановое (дапьшее) эночение несущей способнасти для этих длин

18. При определении несущей спосадности наруженых ветвей колонн крайнего ряда учтен возмоченый местный изгиб ветви от ветровой нагрузки.

Подкрановые связи рассчитаны по растяжению одной диогонали (условно принято, что вторая диогональ выключается из работы). Сечения этих связей установлены из условия предельной гибкости 200.

Дапускаемое напряжение смятия бетона под опорными плитами баз колонн принятс равным '90 кг/см² (д фармуле Я.см. = 8. Rnp , придеденной в СНиП ў-8.1-62, п в И, принимаем 8-{3}

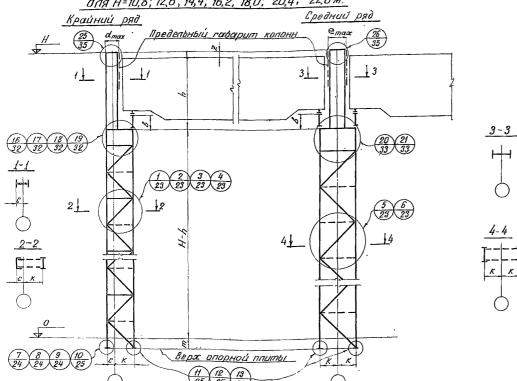
<u> VII Указания по изготовлению и монтажу</u> конструкций.

Uзгатавление и мантаок стапьных конструкций производится в соответствии с указаниями. СНи П № -0.5-62 "Металлические конструкции. Правила изгатовления , монтаока и приемки", а так же "Указаниями по изготовлению стальных конструкций промышленных зданий с повыщенной точностью и методу их монтажа (мена сося—).

Сварна овутоврав из трех листов — ————— для основных сечений колонн выполняется при помощи сворочных автоматав.

Сварку других элементов каланн рекомендуется выполнять, в основном , при памощи сварочных полуавтоматов.

- 43. При ручной сварке конструкций следует применять следующие типы электрадав:
 - для сварки элементов из "стали 3" тип 342;
 - для сварки элементов из "Стали 3"с элементоми из ниэколегированной стали тип 342.4;
 - для сварки элементов из низколегированной стали тип ЭБПА.


Снутые швеллеры олн надужных ветвей ступенчатых колонн крайних рядав изгатавливаются на гивочных прессах заводов метоплоконструкций.

Окраска стальных конструкций производится в саответствии с укозанияти СНи П № -8.6 -62 "Защита строительных конструкций от коррозии. Правила производства и приетки работ" и СН 282-67 "Укозания по проектированию антикоррозионной защиты строительных конструкций".

базы каланн должны дыть обетонированы.

44

AUTIUHHOL CITIYTIEHYOTIIDIE для H=10,8; 12,6; 14,4; 16,2; 18,0; 20,4; 22,8 м.

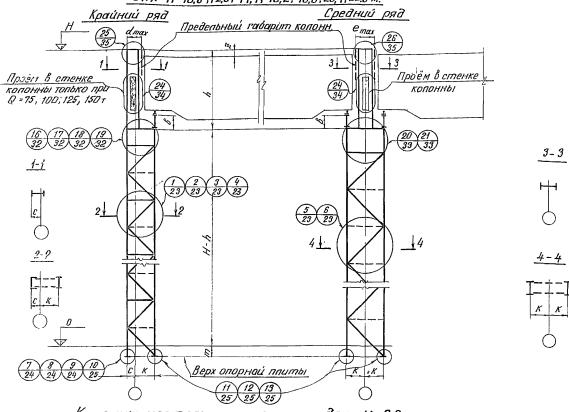
Грузо- падъем- насть крана	*) [K	d _{max}	e _{max}	m	B**)	ķ	Z
Q		L	<u> </u>	M	M	<u> </u>	l	
		l .	T			850	0000	715
10	250	750	680	860	400	1050	3600	315
					37.	1300	4200	665
15	0.50	7.50	680	860	6 6	1050	3600	110
15/3	250	750	000	200	óa361 < 400 óa961 ≤ 500	1300	4200	460
			200	250		1050	4200	610
20/5	250	750	680	860	cb,	1300	4240	360
					траверсы траверсы	1050	4200	280
30/5	250	750	640	780	Zat Zat	1300	4800	630
•					[]	1450	4000	480
					2 2	1300	4800	220
50/ ₁₀	250	750	640	780	000	1450	F/.00	670
110		1			выкате высоте	1650	5400	470
70 /	0.50	1000	775	1050	Ι.	1450	0000	700
75/ ₂₀	250	1000	1/5	1000	ndu-	1650	6000	200
100/	050	1000	775	1050	اثا	1650	6000	180
100/20	250	1000	113	1000	900	1850	6600	580
1051	0.50	1000	775	1050	. 0	1650	6000	180
125/20	250	1000	775	1050		1850	6600	580

*)Привязка наружной грани копонны. **)Выготы типовых подкрановых бапок на опоре.

Колонны постоянного сечения для Н=8,4 и 9,6 м.

Крайний ряд		Средний ряд
H dmax //	оедепьный гаварит коло	<i>нн</i> € тах 26 35
25		Ţ.
23		100
		34
<u> </u>	H-h	3 1 1 1 3
0		
15 c K	e:	K K (15)

Ταδπυμα 2 Сочетания высот зданий Н и гохзоподъемности кранов Q


u zpsse	JIIOUBENHUETTU KPUNGO Q
Н	(по главному крюку)
M	τ
8.4	10;15;20
9,6	10;15;20
10,8	10; 15; 20; 30; 50
12, 6	10;15;20;30;50;75
14,4	10; 15; 20; 30; 50; 75; 100
16.2	30; 50; 75; 100; 125
18.0	30; 50; 75; 100; 125
20,4	100;125
22,8	100; 125

Примечания:

1. При кранах разной грузопадъемности спева и справа от копонн среднего ряда размер "е_{тах"} принимается по крану большей грузоподъемности.

2 в ступенчатых копоннах крайнего ряда размер "т' принимать единым для οδευχ βεπβεύ (no βεπβυ c bonbweú βωςoтой траверсы).

ТК Гавариты колонн при отдутствии 1910г.

дпя Н=9,6 м. Колонны постоянного сечения

Средний ряд Крайний ряд <u>Предельный габарит колонн</u> Проём в стенке $\frac{25}{35}$ копонны 3 ↓

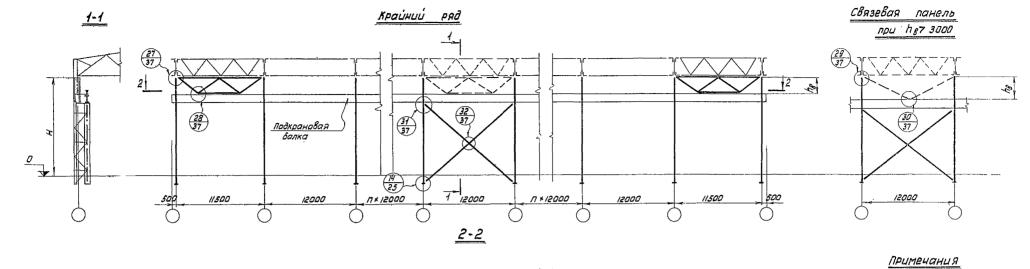
Сочетания высот зданий Н и грузопадъемности кранов Q

Ταδημμα 2

Н	Д (по главному крюку)
M	7
9.6	10; 15; 20;
10,8	10; 15; 20; 30; 50;
12,6	10; 15; 20; 30; 50; 75;
14.4	10; 15; 20; 30; 50; 75; 100;
16.2	30; 50; 75;100;125;
18,0	30; 50; 75;100;125;150
20,4	100;125;150
22,8	100;125;150

						100	nuya 1	
Грузо- подъем- ность крана О	c ^{*)}	К	d _{max}	e _{max}	m	b B	h	Z
7		·		M	M			
						850		1315
10	500	1000	740	1360		1050	4200	915
10		ŀ			0 -	1300		665
15					≥ 400 500	1050		710
15/3	500	1000	740	1360	٧١ ``	1300	4200	460
					32/	1050	(610
20/5	500	1000	740	1360	б а зы базы	1300	4200	360
						1050	4200	280
$\frac{30}{5}$	500	1000	700	1280	bc.	1300	4800	630
'			,	1	траверсы траверсы	1450	4800	480
					2012	1300	4800	220
50/10	500	1000	700	1280		1450	Chan	670
.,,				İ	me	1650	5400	470
75/	500	1000	1005	1000	Высоте Высоте	1450		700
⁷⁵ /20	<i>500</i>	1000	1025	1050	86. 80	1650	<i>6000</i>	200
100/	500	1000	1005	1050	ndu ndu	1650	6000	180
100/20	500	1000	1025	1030	14-	1850	6600	580
105/	500	1000	1025	1050	пди - 009 пди - 009	1650	6000	180
125/20	500	1000	14723	1030	7.9	1850	6600	580
150/30	500	1000	1000	1000		1650	7200	580
730	500	1000	ונונו	1000		1850	1200	380

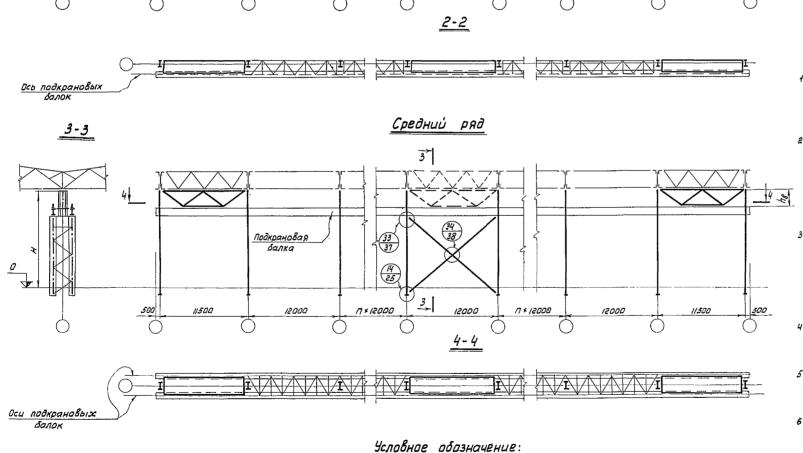
^{}Πρυβязκα нαρνπιήού грαни копонны *) Высаты типовых подкрановых бапок на опоре


Примечания:

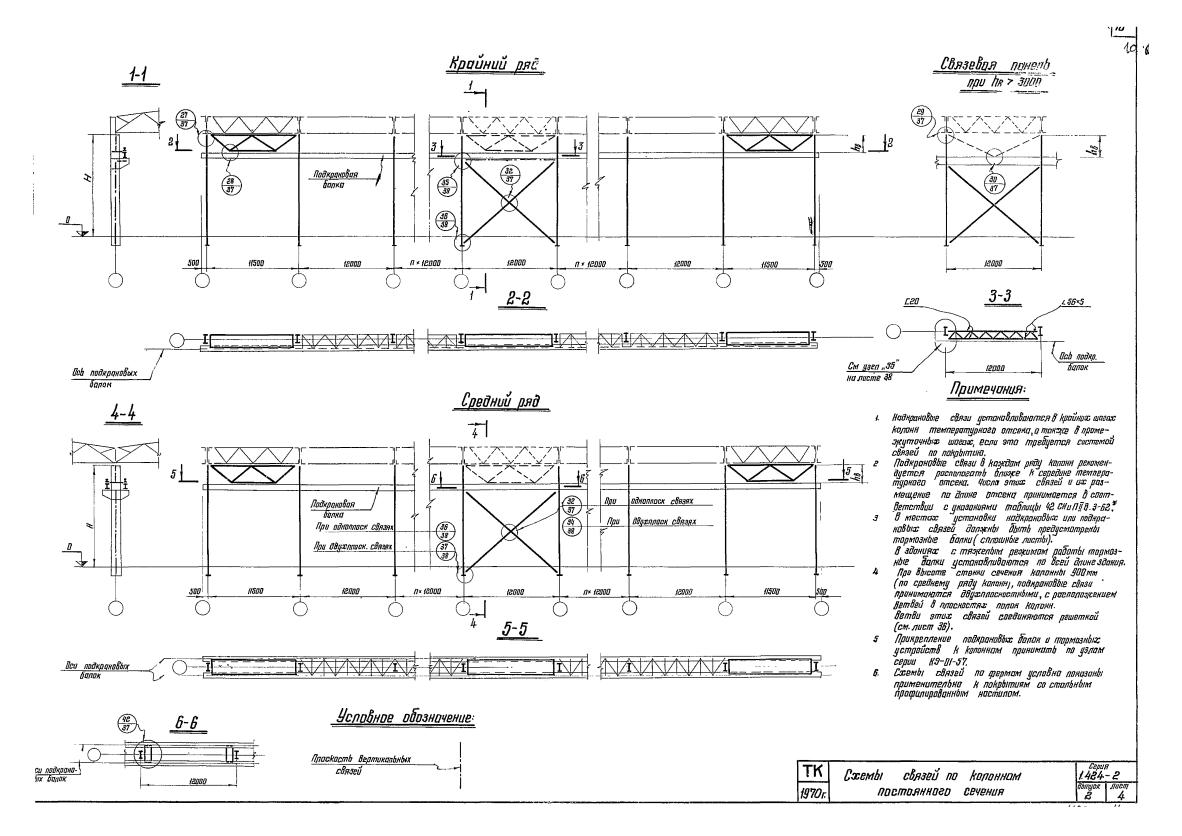
- 1 При напичии проёма встенке колонны для прохода вдопь падкранавых путей, сечение колонны принимаетоя из сварного двутавра с высотой стенки равной 900мм.
- 2 При кранах разной грузоподъемности спева и справа от колонн среднего ряда размер "е тах" принимается по крану вольшей грузоподъемности.
- 3. Для колонн постоянного сечения по крайнему ряду сечения принимать из сварных двутаврав c Bucomoù cmehry 630 unu 710 mm.
- 4. В ступенчатых копоннах крайнего ряда размер "т" принимать единым для обеих ветвей (no Bembu e donowed bucamad mpagepen)

серия 1.424-2

TK /a	бариты колонн при ноличии пражо-	T
19701. 20	в вдаль падкрановых путей	Z


- 1 Надкрановые связи устанавливаются в крайних шагах колонн температурного отсека, а также в промежиточных шагах, если это требуется системой связей по покрытино. г Подкрановые связи в каждом ряду колоны реко-
- мендуется располагать ближе к середине температирного отсека. Число этих связей и их размещение по длине отсека принимается в соответствии с указаниями таблицы 42 CHU / 1 1 - 8.3 - 62 *.
- 3 в местах установки надкрановых или подкрановых связей долины быть предуснотрены торнозные балки (сплашные листы). В зданиях с тяжелым режимом работы торнозные балки устанавливанотся по Всей длине здания.
- 4 ветви двухплоскостных подкрановых связей (по среднему раду колонн) соединяются решеткой (ст. лист 36).
- 5 Прикрепление падкрановых балок и торнозных устрайств к колоннам принимается no 43 nam cepuu K3 - 01 - 57.
- 6 Схемы связей по фермам условно показаны применительно к покрытиям со стальным профилированным настилом.

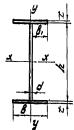
Условное обозначение:


Плоскость вертикальных связей

Схемы связей по ступенчатым колоннам.

Серия

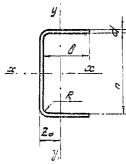
I LIHMI'IPUEKTETANG ME KOHETPUKUNG ME MOCKBA


y		14
æ	δ, α'	4
g		'n

	De:	- A B O A	I CEHE		_							<u>y</u> '		·········										<u> </u>			T
Nº		JAEPO	1 CEUE	HUR			2. 2	CAPO BO	PHHOLE	велич	।प्रमक्षा थ्रे	na oceû			Pas	MEPOI	<i>ce4e.</i>	HUR			ר מ	[ηραδί	очные	Величи	461 <i>छेज</i>	oceu	4
CEHEHUR	4		8.		h	B;	Глощадь Сечения		x-x		¥	-4	BEC.	Nº		,	٥	,	h	<i>B</i> ,	(1.70प्युवर्षः ८९५९मधः		x-x	:	<i>y-</i>	4	Bec
				t	Ø	$\frac{g_i}{t}$	F	$\mathcal{I}_{\hat{\mathbf{x}}}$	W_{x}	i,	\mathcal{I}_y	ly		сечения	h	a	В	t	$\frac{h}{d}$	t	F	<i>Y</i> _x	W_{x}	ix	Ty	Ĺy	
40-1		MI					CM Z	CM4	CN3	CM	CM4	CM	KT/M	1		Λ	IM				CMS	CM4	CN3	CM	CM4	EM	KI/M
40-2			220 250	10	50.0	10.6	75.0	22700	1080	17.3	1770	4.83	59,7	63-11		10	450	18	63,0	12,2	225	190000	5730	29,1	27300	11.0	175.6
40-3		В	250	8	50.0	15./	72.0	20900	1000	17.0	2080	5,38	55,5	63-12			500		53.0	13.5	243	209000	6300	29,3	37500	12,4	190,8
40-4		0	280	R	50.0 50.0	12./	82.0	25200	1200	17.5	2600	5.53	54.4	63-/3			250	10	39,4	//.7	151	84500	2600	23.6	2600	4.16	118.5
40-5	,		280		50.0	17.0	75.8 88.0	22900	1100	17,3	2930	5,17	60.3	63-14			250	12	39,4 39,4	9,8	161.	95100	2910	24.3	3/20	4.41	125.4
40-8	400		320	10	50.0	15.6	96.0	27800 31100	1320	17.7	3660 5460	6.44	75.4	53-15 63-16			280		39,4	9.4	168 ₁	102000	3130 3480	24,7 25,2	4390 5120	5,11 5,35	131.5
40-8			200	8	40.0	11.9	72.0	18500	895	16.1	1060	7.54 3.85	55,5	63-17			320	14	39.4	10.9	190	125000				6.33	149.2
40-9		10	200 220	10	40.0	9.5	80.0	22100	1050	16.6	1330	4.08	62.8	63-18			320		39.4	9.5	203	140000	3830 4230	25,7 25,2	754a 8730	6.56	159,4
40-10] ~	220	8	40.0	/3./	75.2	19900	960	15.3	1420	4.35	59.0	63-19	<i>630</i>	15	360	15	39,4	10.8	216	153000	4630	26,5	12400	7.58	189.6
40-11			250	10	40.0	10.5	84.0	23800	1130	15,8	1770	4.60	55.9	63-20			400		39,4	12,0	229	166000	5040	27,0	17000	8.53	173.8
50-1 50-2			250	8	40.0 62.5	12.0	90.0	26300	1250	17.1	2600	5.38	70.7	63-21			400	18	39,4	10,7	245	184000	5540	27.4	19200	8.86	192,3
50-3			250	10	62.5	15./	80.0 90.0	34100	1320	20.5	2080	5.10	62.8	63-22			450		39,4	12.1	263	203000		27.8	27300	10.2	200,5
50-4		8	280	8	62,5	17.0	84.8	40800 37200	1570	21.3	2600	5,38	70.5	63~23			450 500	20	39.4	10,9	281	223000	5670	28.2	30300	10.4	220.4
50-5		°	280	10	62.5	13.6	96.0	44700	1720	20.9 21.6	2930 3660	5,87 5,17	55.6 75.4	63-24 63-25			500		<i>39,4</i> <i>39,4</i>	9.7	30/	245000	7310	28,5	41700	11,8	236.3
50- B 50- 7			320 320	2	82.5	15.6	104	49900	1920	21.9	5460	7.24	81.6	63-25			500	25	31.5	9.6	351 376	301000 310000	8850		52/00	12,2	275,5
50-8	500		350	12	62.5	13.0	//7		2240	22,4	6550	7.49	91.7	63-27		20	500	32	31.5	7.5	445	<i>392000</i>	9/20	28.7 29.7	52/00	11.8	295,2 350./
50-9			200	10	62.5	14.6	126		2470	22.6	9330	8,59	98.9	71-1			320	12	88,7	13.0	134	123000	3370	30.4	5550	7.00	104.4
50-10		[220	8	41.7	9.4	100	38500	1480	19,6	1330	3.65	78.5	71-2			320	14	88.7	11.1	146	141000	3820		7540	7.22	114.5
50-11		12	220		41.7	13.0	95.2	35200	1350	19.2	1420	3.85	74.7	7/-3			3 <i>60</i>		88.7	12.5	158	155000	4220		10800	8.31	123.2
50-12 50-13		~	250	10	41.7	11.9	104	41100	1580	/9.8	17.70	4.13	81.5	71-4		0	360	16	88.7	11.0	172	175000	4730.		12400	8.50	135.0
50-14			250	12	41.7	9.9	120	45000 51800	1730 1970	20.2 20.7	2500 3120	4.87	85,4 94.2	71-5		8	350 400	18	88,7	9.7	185	195000	5240	32,4	14000	8.55	146.0
63-1			280 280		41.7	11.2	127	56500	2150	21.0	4390	5,10	99.7	71-7			400	14	88.7 88.7	14.0	169	170000	4620	3/.7	14900	9,40	132.7
63-2			250	14	41.7	9.6.	138		2430	21.5	5/20	5.08	108.3	71-8			400	18	88.7	12.2	185		5180	32,2	7000	9,51	145.2
63-3			280	10	78.7	12,1	100	57800	2080	25.9	2600	5,09	78.5	71-9	710		400	20	88.7	9.7	217		5750 5320	32,6	19200	9,77	157.8
63-4			280		78,7	13.6	106	74000	2270	25.3	3660	5,85	83.5	71-10	///		320		71.0	9.5	/73		4440		21300 8740	9,92	170.3
53-5	630	8	320	12	78.7	11.3	118	85900	2620	27,0	4390	6.1/	92.3	71-11			350	16	71.0	10.9	185		4890			7.10 8.17	135.8
53-5	-50		320	14	78.7	13.0	140	95800	2920	27.4	6550	7.17	99.7	11-12			400]	71,0	12,1	199		5350		17100	9.26	146.0
63-7 63-8			360	12	78.7	14.6	137		3330	27.9	7640	7.39	109.9	71-13		10	400	18	71,0	10.8		220000	59/0			9.45	156,2 168.8
63-8			360 360	14	78.7	12.5	151	105000 121000	3230 3680	27.7	9330	8.26	07,5	71-14		10	400	20	71.0	9.7	23/		6470		21300	3.40	181.3
53-10		10	400	16	78.7	11.0	166	135000	4130	28,7	10800 12400	8.48	118.5	7/-15			450 450	18	71,0	12,2			6550	32.3	27300	10.8	182.9
- 10		10	450	16	63.0	12,1	191	154000	4660	28.4	17000	8.66 9.45	149:9	71-15		j	500	18	71.0	13.6	25/	269000	7/90			11.0	197.0
					63.0	13.7	207	171000	5/60	28.7	24300	19.8	162,5	71-18	1	ı	500	20	71.0	12,2		268000 296000	7190 7900			12,2	197.0
													702,0	" '					TILAL		2//		עטפו	33.0	41600	12.4	212.7

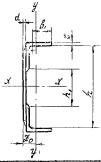
KOHET PYKLIMA HOUSE AND TO LONGORD

Примечания см. на листев


TK Copmanenm chaphbix dhymohoph 1.424-2
1970r chicomoù cmenku go 710 mm. Shinyek Nucm.

						y							
l l	ρ_{o}	ЗМЕРЫ	ce4e	HUR			0 0026	επρυδί	HHBIE .	велици	indi Bar	oceů	
Nº			i i				CEYEHUR		x - x		y.	. <u>y</u>	a
CEHEHUA	4	ď	8	£	<u>h</u>	B ₁						,	Bec
1 1						<i>ב</i> '	F	24	$W_{\mathcal{X}}$	ż _x	\mathcal{I}_{y}	Ly	
		MI	V				042	CM4	0143	CM	CH4	CH	Ke/M
90-1			280	,0	112.5	13,8	128	154000	3570	35.8	3660	5,34	100.5
90-2		8	320	10	112.5	15,6	136	181000	3930	36.4	5450	5,33	106.8
90-3			320	12	112,5	13.0	149	208000	4500	37.4	6550	0,53	117.0
90-4			360	, to	112.5	14.6	158	228000	4940	37.9	9330	7.57	124.0
90-5			280	10	90.0	/3.5	146	175000	3840	34.7	3660	5,01	114.6
90-6			320	,,,	90.0	15.5	154	193000	4200	35,4	5450	5,95	120.9
80-7			320	<i>l</i> ≳	90.0	12.9	167	220000	4770	56,3	6550	6.27	131.1
90-8			360	.~	90.0	14.5	176	240000	5200	36.9	9330	7.27	138.2
90-9		10	360	14	90.0	12.5	191	271000	5840	37.7	10800	7.55	149.9
90-10		10	400	' 7	90.0	13.9	202	294000	6350	38./	14900	8.50	158.6
90-11			400	15	90.0	12./	218	329000	7060	38,8	17000	8.84	171.7
90-12		•	400	18	90,0	10.8	234	354000	7780	39.4	19200	9.05	183,7
90-13	900		450	16	90.0	/3,7	234	362000	7780	<i>39,3</i>	24300	10.2	183.7
90-14	1		450	18	90.0	12.2	252	402000	8590	39.9	27300	10.4	197.8
90-15			450	20	90.0	11.0	270	441000	9390	40.4	30300	10.6	212.0
90-18	•		360	14	75:0	12.4	209	283000	6100	36,8	10800	7.22	164.1
90-17]		360	15	75,0	10.8	223	314000	6740	37.5	12400	7.45	175.1
90-18]		400	70	75.0	12.1	236	341000	7320	38.0	17000	8,50	185,3
90-19	1		400	18	75,0	10.7	252	375000	8040	38.6	19200	8.73	197.8
90-20	1	12	450		75.0	12.1	270	414000	8850	39.1	27300	10.0	2/2.0
90-21			450	20	75.0	10.9	288	453000	9650	39.6	30300	10,2	226,1
90-22	3		500	18	75.0	13.5	288	452000	9560	39.6	37500	11.4	225./
90-23	1		500	20	75,0	12.2	308	495000	10500	40.1	41600	11.6	241.8
90-24	1		500	25	75.0	9.8	358	508000	12800	41.2	52000	12,1	281.0
90-25			500	25	56.2	9.7		532000	13300	40.0	52100	11.5	309.3
90-26	1	16	500	28	56.2	8.5	424	700000	14500	40.5	58300	11.7	332.8
90-27	1		500	32	56.2	7.6	464	973000	20200	45.9	66500	12.0	364.2

Примечания:


1. Поясные швы выполняются овтоматической сваркой. Полцина швов принимается по тоблице 45° СНиПІ—В.З-62°,
но неменее вым. Исключением являются
участки, для которых толщины швов
оговорены на чертежеся с деталями колонн.
г. Необходимость установки ребер жесткости
и их размеры определяются в соответствии
с указаниями п. в. г.т. Снип І—В.З-62°.

KOHETPINING WAY CONCERPTOR SOATHSTOKEN POST AND SOCIOUS KONODOSO LANDERS SOURCESTORES SOURCES SOUR

	7	озмер	SI CEYEH	UA	<u> </u>				CAPOBOU	Hble Ben	U4UH6/ 1	ana ace	, 		
1 -1 -1					4	4 22	8 0	Площадь	**************************************	x-x		4-5			
८६५ <u>६</u> ५५५	17	n' .	ß	Ŗ	Ширина उपट्यानिकार	<u>h-28</u>	B-P	LENEHUS.	J _K	Wx	i _{st}	Ty.	ذي	Zo	Sec
		M	М					ON2	CN 4	CN3	CM	CM4	CM	CM	ZT/N
40-1			81		560	45.0	8,1	44.8	9500	451	146	254	2.37	1.69	35,2
40-2			101	_	600	460	10.6	48.0	10.900	525	15./	455	3.08	2.24	37.7
40-3		В	116	16	630	46.0	12.5	50.4	11900	574	15.4	659	3.6/	2.68	39.6
40-11	400		136		670	45.0	15.0	53.5	13300	638	15,7	1010	4.32	3,32	42.1
40-5	, ••		101		600	.38 U	8./	50.0	13700	653	15./	585	3,/2	2.38	47./
40-5		10	//5	20	530	38.0	9.6	630	15000	7/3	15,4	842	3.65	2.83	49.5
40-7			136	·	670	36.0	11 6	57.0	16700	793	15,8	1280	4.36	3,47	52,6
10-8			156		710	36,0	13.6	71.0	18300	873	18,1	1840	5,08	4.15	55,8
1.5-1	450	10	15/	20	750	41.0	13.0	75.0	23400	997	17.6	1740	4.81	3,75	58.Ġ
15-2	700	13	177	24	800	3.3.5	12.7	96.2	3/500	/330	13.1	3220	5,78	4.78	75,7
30-/		10	125	20	7.50	46.0	10.6	75.0	25700	1030	18.8	1110	3 84	2.79	58.9
50-2			151		800	45.0	13.1	80.0	29900	//.50	19.3	1790	4.73	3.54	52.8
50-3	~ a o	12.	127	24	750	37,7	<u>8.6</u>	30.2	32200	1230	18.9	/390	3.91	2.96	70,9
504	540		152		800	37.7	10.7	96.2	35200	1380	19.4	2220	4.80	3.7.2.	75,6
50-8		,	152		800	31.7	8.9	112	42400	1510	19.4	2640	4.90	3,90	87.9
50-7		14	/77	28	850	3/.7	10,7	119	47000	1780	19.9	3930	5,70	4.70	93.4
50-8	U-1-10-101-101-101-101-101-101-101-101-1	<u> </u>	202		<i>200</i>	3/.7	12.4	126	5/500	1960	20.2	5550	6.60	5.60	98.9
53-1	550	12	152	24	850	41.3	10.5	102	45100	1570	21.0	2280	4.72	3.54	80.3
55-3		14	177	28	900	<i>35,2</i>	10,5	126	58400	2020	2/.5	4030	5.65	4.47	98.9
50-2	600	14	152	28	900	38,8	8.8	126	54800	2050	22.6	2750	4.67	3.5/	98.9
50-3	- D	15 .	/77	32	950	<i>33.5</i>	9.0	152	81900	2590	23.2	4780	5,60	4.41	119.3
53-1		12	137	24	900	485	9.4	108	58500	17.90	23.3	1790	4.05	2.87	848
- 55-4		14	162	28	950	41,0	9.5	/33	75700	2300	23.9	3320	5.00	3,70	104.4
53-5			187		1000	41.0	11.4	140	83000	2520	24.3	4840	5,90	4.50	110.0
63-6	630		162		950	35,4	8.1	152	85900	2630	23.9	3870	5,00	3.90	119.3
53.7	UUU	15	187	32	1000	35,4	9.7	150	95200	2880	24.4	5630	5.90	4.60	125.6
53-8			217	1	1060	35,4	11.5	170	105000	3/80	24.9	8330	7.00	5.60	133.5
63-9		<u> </u>		76	1120	35,4	13.5	179	115000	3480	25,4	11700	8.10	5.60	140.5
53-10		18	248	36	1120	31,0	11.8	202	130000	39/0	25,4	13400	8.10	5.80	158.6
53-11		20	249	40	1120	27,5	10.5	224	146000	4350	25,5	15/00	8.20	7.00	175.8

TK Copmamenm enymbix wbennepab 1.424-2
19702 Binger nucr

		Сечен	UE		1	T	Спрово	UHBIE BE	SULUHB	1708	oceu	T,	
Nº						Плащадь		x - x		<i>y-</i>		1	
Сечения	h	אווכוחט	уголков	<u>h,</u>	1 1 t	сечения	\mathcal{Y}_{x}	W_x	i_{α}	Yy .	l.y	Zo	Bec
	MM	M.	M			CN 2	CM 4	L'M3	CM	CM4	CM	CM'	KT/H
50-1		-400×10	L 140x12	24,4	9,5	105	38900	1480	13.2	2090	4,45	3,22	82,4
50-2		-400×10	L 180:12	15,4	12,7	124	46300	4.770	19,3	3920	5,6/	4.16	97.7
<i>50-3</i>	500	-400×12	L180x12	13,7	12,7	132	47400	1310	18.9	4270	5,58	4,10	103,9
50_4		-400×12	L 160=16	17.7	8,0	146	56500	21:20	19,7	3760	5,07	4,06	114.8
55-/	55 0	-450×12	L/50×12	21.2	11.0	129	59/00	2:060	21.4	3380	5,10	3,50	101.4
50-1	500	-500 ×10	L 160 × 12	30.4	11.0	125	66000	2:120	23.0	3210	5,07	3,43	98,0
53-1		- 500×10	L 150×10	33.0	13,4	1/3	61900	1.910	23,4	2930	5, 09	3,17	<i>38.6</i>
53-2		- 50Q×10	L 2001/2	25,4	14,2	144	84400	2580	24,2	5580	6.22	4,33	113.2
<i>53-3</i>	530	-500 x 12	L2001/4	21,5	12,0	170	99200	3.0 20	24.2	6670	6.27	4,52	133./
<i>53-4</i>	030	-500×12	L 220 1/6	18.5	11.4	197	119000	3.5.10	24.6	9230	6.84	5,21	154.8
53-5		-500 * 15	L220116	13.9	11.4	217.	124000	3740	23,9	10600	6,98	5,11	170.5
53-6		-500 = 15	L 200120	16.9	8.1	233	141000	4.200	24.6	9520	6, 39	5,07	183.0
83-7		-500×16	L250x20	10,6	10,3	274	165000	4940	24.6	16700	7,80	6,26	215.1

Примечание:

Оварные швы выполнять сплошными по всей длине; толщину швов принимать по таблице 45° СНи $\Pi II - 13.3 - 62^{\circ}$, но не менее 6 мм.

ТК Сортомент сварных швеллеров выпусклист

у х « х у в в

Оδοзначения

[N]-допускаемое нормальное усипие;

 ℓ_x — расстояние от опорнай плиты базы до низа подкранавой балки;

[ly] - предельно дапускаемое расстояние между узлами решетки, связывающей ветви;

НЛ (Низколегированная сталь)

Примечания:

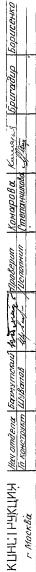
- 1 Марка стапи и человия ее поставки принимаются по чказаниям раздела \overline{Y} пояснительной записки
- 2 При промежсяточных значениях расчетных длин L_{χ} несущую способность сечений мажно определять по пинейной интерполяции приведенных в таблице значений несущей способности. При этом, из двух соответствующих величин L^2 следует принимать меньшую.

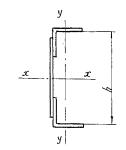
	Размеры	Сечения							P	αC4	em.	нαя	21	TUHO	l Lx	в ме	e m p	αχ						
N ₅ N ₅			Ппошадь		7			9			11			13			15			/7			19	
ርድዣድዝሀЯ	Стенка	Manka	сечения	CD 7						- 0 =	C 12		- 0 7	<i>C</i> Λ		cP 7	Cross G		FP 7	Crost 9		rD 7	Eran63	HA
	hxd	в×t		[ly]	Cranb3	НЛ	$[L_y]$	Стапь3	HI	$[\mathcal{L}_y]$	Стапьз	HJI	[[Cy]	Стапь3	НЛ	LLy	Стапья	HN	[ly]	Стапь Э	ПП	[ly]	LIUIIAU	,HII
	MM	,	CM2	M	17.	?	M	m		M	177	7	M	. 177		M	m		M.	m		M	//:	,
40-7	400 ×10	200 18	72,0	2,0	134	173	2,2	131	166	2,6	122	148	3,1	112	29.	3,6	102	110	4,0	84	88	4,0	70	71
40-9	400×10	220 ×8	75,2	2,0	142	179	2,4	137	174	2,9	128	156	3,5	118	137	4.0	108	117	4.0	89	94	4.0	75	76
40-8	400×10	200×10	80,0	2,0	150	196	2,2	147	187	2,7	138	168	3,2	127	148	3,7	116	128	4,0	98	103	4.0	82	85
40-10	400×10	220×10	84.0	2,0	160	212	2,5	155	197	3,0	145	178	3,6	135	157	4,0	123	136	4,0	104	110	4.0	88	90
40-11	400×10	250×10	90,0	2,2	175	231	2,8	167	213	3,5	157	193	4,0	145	171	4.0	133	149	4,0	114	121	4.0	97	100
50-9	500×12	220×8	95,2	2,0	177	229	2,0	177	229	2,2	172	217	2,6	162	197	3,0	152	177	3,4	140	153	3,8	122	129
50-8	500×12	200×10	100	2,0	184	235	2.0	184	235	2,1	182	230	2,4	172	210	2.8	161	189	3,2	149	165	3,5	132	141
50-10	500×12	220×10	104	2,0	196	256	2.0	196	256	2.3	190	241	2.7	180	220	3,1	169	199	3,6	156	174	4,0	139	148
50-11	500×12	250×10	110	2,0	212	278	2,2	211	276	2.6	202	257	3,1	192	236	3,6	180	213	4.0	167	189	4.0	151	162
50-12	500×12	250×12	120	2,0	232	303	2,2	231	303	2.7	222	283	3,2	211	261	3.7	199	238	4,0	186	213	4.0	170	183
50-13	500×12	280×12	127	2,0	250	319	2,5	246	323	3.1	236	302	3,6°	225	279	4.0	212	255	4.0	199	230	4.0	184	199
50-14	500×12	280×14	138	2.0	273	344	2.5	268	353	3.1	258	332	3,7	246	307	4.0	233	282	4.0	220	256	4.0	204	223
63 -13	630×16	250×10	151	20	284	372	2.0	284	372	2,0	284	372	2,3	276	351	2,6	264	326	3,0	253	304	3,4	237	274
63-14	630×16	250×12	161	2.0	306	403	2.0	305	403	2.0	308	401	2,4	297	378	2.7	284	353	3,/	274	332	3,4	257	301
63-15	630×16	280 *12	168	2.0	325	435	2,0	325	435	23	322	421	2,7	311	398	3,1	299	372	3,5	288	350	3,9	271	319
63-16	630×16	280×14	179	2.0	349	466	2,0	349	466	2,3	345	452	2.8	334	428	3,2	321	402	3,6	310	379	4.0	293	348
63 -17	630×16	320×14.	190	2.0	377	504	2,2	378	505	2.7	368	483	3,2	356	458	3,7	343	431	4.0	331	406	4.0	3/4	374
63-18	630×16	320×16	203	2.0	404	540	2,2	404	541	2.7	394	518	3,2	382	492	3.7	368	464	4,0	356	439	4.0	339	406
63 - 19	630×16	360×16	216	2.0	434	580	2,6	431	576	3.1	420	553	3.7	407	526	4.0	393	497	4,0	391	491	4.0	376	461
63-20	630×16	400×16	229	2.2	466	625	2,9	457	612	3.5	446	588	4,0	433	560	4.0	418	529	4.0	406	504	4.0	388	469
63-21	630×16	400×18	245	2.3	499	667	2,9	490	656	3.6	478	631	4.0	464 -	602	4,0	449	571	4,0	438	545	4.0	419	509
63-22	630×16	45D×18	263	2.6	536	715	3.3	526	706	4.0	514	680	4,0	500	650	4.0	484	616	4,0	472	589	4.0	452	550
63 - 23	630×16	450×20	281	2.6	573	747	3,3	563	756	4.0	550	728	4,0	536	697	40	519	662	4,0	507	634	4.0	486	594
63-24	630×16	500×20	301		607	762	3,7	598	799	4.0	584	781	4,0	571	752	4.0	558	719	4.0	544	683	4.0	523	640
		500×25		2,9	709	927	3.7	699	934	4.0	684	913	4,0	668	884	4.0	653	848	4,0	638	806	4.0	616	759
63 -25 63 -26	630×16		351	2,9	759	1022	3.7	747	999	4.0	730	976	4,0	714	942	4.0	697	901	4,0	681	856	40	655	803
	630×20	500 x25	376	2,9	-	1215	3.7	889	1189	4.0	870	1163	4,0	851	1127	4.0	832	1083	4.0	813	1030	4.0	787	973
63-27	630×20	- 500x32	446	2,9	902	1213	3.7	003	1100	1.7.0			<u> </u>											

<i>₹</i> €	63 -2	630×16	500×25	351	2,9	709	927	<i>3</i> ,7	699	934	4,0	084	310	4,0	000	004
台台	63-2	630×20	500 x25	376	2,9	759	1022	3,7	747	999	4.0	730	976	4,0	7/4	942
줃. - , 및 역				446		902	1215	3.7	889	1189	4.0	870	1163	4,0	851	1127
그는	63-2	030.20	500x32	440	2,9	302	1210	<u> </u>		77.00						
三三 二																
<u> </u>																
二二	<u> </u>															

ТК Маблица неочщей способности свар Серия - 1484-2 ных двутавров для подкрановых вых вых мотоны

x B x


Обознαчения:


 ℓ_x - расстояние от върха впорной плиты базы до низа подкрановой балки;

Стапь 3 На (низколегированная сталь)

	Размерысечен.					$y_{\alpha c 4}$	етна	(Я д	nuha .	lx BA	нетраз	r				
		Ппощадь	7		9		11		1.		15		17		19	
Νō	. م .				4	0740	KAEM	10 E	норма	NOHO	e yeur	IUE [I	V]			
сечения	hxbxd	сечения	Cmaint 3	НЛ	Emanb3	HII	Cmanb3	HII	Стапь3	HI	Стапь3	HJI	Стапь3	НЛ	Cmanb3	нЛ
	MM	CM2	m		m		///		m		m		/7.	7	m	
40-1	400 × 81 × 8	44,8	79	98	79	98	73	86	66	73	54	57	45	46		
40-2	400 x 101 x 8	48,0	90	107	86	107	19	94	72	81	61	64	51	53	-	_
40-3	400 × 116 × 8	50,4	96	112	90	112	84	100	77	87	65	70	55	57	_	
40-4	400×136×8	53,6	101	98	97	98	90	97	82	94	71	77	60	62	-	
40-5	400 ×101 ×10	60,0	113	148	107	134	99	118	90	101	76	81	63	65		_
40-6	400×116×10	63,0	120	157	113	142	105	126	96	108	82	88	68	71	_	
40-7	400×136×10	67,0	129	168	121	153	113	136	103	118	93	100	76	79	-	_
40-8	400×156×10	71,0	<i>†37</i>	158	129	158	121	146	111	128	101	109	83	87	69	70
45-1	450×151×10	75,0	147	194	140	180	132	164	123	146	114	128	99	106	84	88
50-1	500×126×10	75,0	145	167	142	167	135	167	127	153	118	136	109	118	94	99
50 -2	500 ×151×10	80,0	158	178	152	178	145	178	137	166	128	149	118	130	104	111
50-3	500 × /27 × 12	90,2	175	234	171	221	162	204	153	185	142	165	130	141	113	119
45-2	450 ×177 × 12	96,2	189	250	181	233	171	213	160	191	148	169	/32	142	113	119
50-4	500×152 × 12	96,2	190	253	183	238	175	220	165	201	154	180	142	156	125	133
55-1	550×152×12	102	201	259	195	259	189	244	182	227	172	207	159	184	147	159
63-1	630 ×137×12	108	204	219	204	219	204	219	198	219	190	219	180	215	168	193
50-6	500×152×14	112	219	293	212	279	205	260	194	237	180	212	166	182	145	155
<i>50-7</i>	500 ×177 × 14	119	234	312	226	298	218	279	208	256	194	230	179	201	160	171
<i>50-8</i>	500 ×20Ž×14	126	248	331	240	317	232	297	222	274	208	247	192	217	173	185
<i>55-3</i>	550×177×14	126	249	333	242	322	235	304	227	284	215	260	200	233	185	203
60-2	600 ×/52×14	126	250	334	244	325	237	309	230	290	219	269	206	244	192	217
<i>63-4</i>	630 x162×14	/33	265	355	259	346	252	332	245	314	236	293	224	270	210	245
63-5	630 ×/87×14	140	280	375	273	365	266	351	259	333	250	312	238	288	224	262
60°-3	600 x177 x 16	152	303	405	295	394	287	376	278	354	267	329	252	301	236	270
63-6	630×162×16	152	303	406	296	395	288	379	280	359	270	335	256	309	240	279
63-7	630 × 187 × 16	160	320	429	3/2	417	304	401	296	381	286	357	273	331	256	300
63-8	630 × 2/7 × 16	170	340	455	332	443	323	427	3/5	407	306	383	292	355	275	324
63-9	630×247×16	179	359	482	351	470	342	454	334	433	325	408	311	380	294	349
63-10	630 × 248 × 18	202	404	542	395	528	385	511	375	487	365	459	349	428	331	393
63-11	630×249×20	224	449	603	439	587	428	568	417	542	406	459 511	349	428	368	438

- 1. Марка стапи и чепавия ее поставки принимаются по чказаниям раздепа У пояснитепьной записки.
- 2. Расстояние между чэпами решетки, связывающей ветви (ly), принимать не бопее 1.5 м.
- 3. При промежуточных значениях расчетных даин ℓ_x несущую спосодность сечений можно определять по пинейной интерполяции приведенных в тадпице значений несущей спосодности.

Обозначения

 ℓ_x — расстояние от верха опорной плиты $\delta \alpha$ зы δο μυσα ποθκραμοβού δαπκιι;

Emant 3 НЛ (низколегированная сталь)

Материал ветви

		Сечен	ие				P	асче	тная	ฮิกน.	н α ℓ_x	B ME	πραχ					
N-o				Ппащадъ	7		5		11		13		15		17		19	
0011011110	h	1	1	1 '			Даг	YCKOL	MOE HO	DEMON	тьное ч	сипие	[N]					
сечен ия	//	AUCMA	угалков	сечения	Столпь 3	HÅ	Стопь3	HA	Cmoint 3	HA	Cmanb 3	-H1	Етапь 3	HA	Cmanb3	HA	Emount 3	HA
	MM.	MM	/	CM2	m		m	,	m		m		m		m		177	
50-1	500	- 400 ×10	L140×12	105	205	274	198	261	191	243	181	221	168	197	154	169	135	143
63-1	630	-500×10	L160×10	113	225	301	219	293	213	280	207	264	199	246	188	226	176	203
50 -2	500	-400×10	L. 180 ×12	124	243	325	235	309	227	288	2/5	263	199	234	183	201	160	170
60-1	600	-500×10	L160×12	125	249	332	242	323	235	308	228	290	219	269	206	246	192	219
55 - 1	550	-450×12	L 160×12	129	255	341	247	329	240	311	232	289	219	265	204	237	189	206
50-3	500	-400×12	L180×12	132	258	345	249	327	241	304	227	276	210	244	192	208	166	175
63-2	630	-500×10	L 200×12	144	288	386	281	376	274	361	266	342	257	320	245	296	230	268
50 -4	500	-400×12	∟ <i>160×16</i>	146	287	383	277	365	268	341	255	313.	237	280	218	242	193	206
63-3		-500 ×12	L200×14	170	339	454	331	442	322	424	313	402	303	377	288	348	270	316
63-4		-500×12	L220×16	197	395	529	385	515	375	496	365	471	354	442	337	410	318	373
63-5	630	-500×16	L220×16	217	434	581	423	565	411	541	400	512	386	479	366	441	343	399
63~6		-500×16	∟ <i>200×20</i>	233	466	625	455	608	443	585	431	556	418	522	398	484	375	440
63-7		-500×16	L 250×20	274	548	735	535	715	521	688	507	654	492	614	468	569	441	517

Примечания:

1 Марка стапи и усповия ее поставки принимаются по указаниям раздела № пояснительной записки. 2 Расстояние между узпами решетки, связывающей ветви (ly), принимать не более 1,5 м. 3 При промежуточных значениях расчетных длин ва несу-щую способность сечений можено определять по линейной интерполяции приведенных в таблице значений несущей способности.

_			
ΓK	Тавлица несущей способности сварных швелперов а́ля наружных ветвей ступен- чатых колонн крайнего ряда	Cept 1424	УЯ -2
Offic	швепперов для наружных ветвей ступен-	Bunyck	Яцст
9 /Ur	Υαποιχ κοπο <i>н</i> Η κρα <u>ύ</u> Ηετα ρядα	2	

<u>_Обозначения:</u>

[N]— допускаемое нормальное усилие; $\ell_{\mathbf{x}}$ — расстояние от опорной плиты базы до низа подкрановой балки; $[\ell_y]$ — предельно допускаемое расстояние между узпами решетки, связывающей ветви; C тапь 3 $H\Lambda$ (низколегированная сталь) $\{ M$

				-			Dac4	emho	A de	ΊΠΗΩ	lx B	мет	$\rho \alpha x$										
ACKU3	N₽	Ппощадь		7			9			ff			13			15			17			19	
продоция	กอองบกร	сечения		[N	7	ł	[/	/	1		V.7	ļ.,		V.7		[]	<i>VI</i>		LI	V.J		I/	VJ
, , , ,	, -,			Ernants3	НЛ	[l _y]	Столь3	HN	[[l _y]	Стапь3	HN	[ly]	Стапь3	НЛ	$[l_y]$	СтапьЗ	НЛ	$[l_y]$	Cmanb3	HA	$[l_y]$	СтопьЗ	нп
		CM2	M	n		M		7	M	п	7	M	17	7	M	TT.	,	M	/	77	M	17	7
	30	46,5	1.5 2.0	84 77	<u>106</u> 91	2,0	77	91	2,4	68	75	2.8	54	56	3,3	43			_	-			-
	33	53,8	1.5 2.0	99	127	2,0	90	109	2,3	84	96	2.7	72	76	3,1	58	60	-	_	٠	_		
¥	36	61,9	1,5	115	149	2,0	106	128	2,2	101	119	2,6	91	101	2,9	75	79	3.3	62	64	_	_ ·	_
$x = \begin{bmatrix} x \\ x \end{bmatrix}$	40	71.4	1.5	134	175	2,0	125	153	2,1	122	148	2,4	112	130	2.8	102	111	3,2	85	89	3,6	71	73
	45	83,0	1.5	156	194	1.5	156 146	194 181	2.0	146	181	2,2	138	166	2,6	128	146	2,9	115	123	3,3	98	103
4	50	97,8	1,5	185	221	1,5	185	221 219	2,0	175	219	2,1	171	211	2.4	160	190	2,8	147	165.	3,1	132	142
14	55	114	1.5	217	219 253	1,5	175 217	253	2.0	207	253	2.0	204	253	2.3	194	235	2.7	182	214	3,0	169	188
	60	132	1.5	206 253 242	285	2,0	207 253 242	285	1,7	241	285	2.0	242	285	2.3	232	285	2,6	221	266	2.9	207	241
y	30	40,5	1,5	73	93	2,0 1,5	242 66	78	1,5	58	63	1,5	45	47		202							
	33	46.5	1.5	86	109	1.5	79	95	1,5	71	80	1,5	59	63	15	100	100						
<u>x</u> -	36	53,4	1.5	100	129	1.5	93	115	1.5	85	100	1.5	77	84	1.5	48 62	<i>49</i>	1.5	51	-			
	40	61,5	L			<u> </u>			-											51			
У	1 40	01,0	1.5	118	154	1,5	111	140	1,5	103	124	1,5	95	108	1,5	83	88	1.5	69	72			-

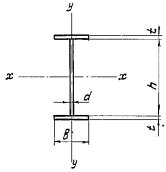
- 1 Прокатные профили приняты по ГОСТам:
 - а) бапки двутавровые по ГОСТ 8239-56*;
 - б) швепперы по ГОСТ 8240-56*
- 2 Марки стапи и условия ее поставки принимаются по указаниям раздела $\overline{\underline{V}}$ пояснительной записки
- 3.При промежуточных значениях расчетных длин ℓ_x , несящую способность сечений можно определять по пинейной интерполяции приведенных в таблице значений несящей способности При этом, из двух соответствующих величин [ly] спедует принимать меньшую

TK	Габлица несящей способности прохатных двутаврав и швеллеров для	142	ия 4-2
1970r B	ветвей ступенчатых колонн	861114CK 2	Лист 12

Оδозначения:

e - эксцентриситет, равный $\frac{Mx}{N}$;

 ℓ_{x^-} расчетная длина надкрановой части колонны в плоскости рамы;


 ℓ_y - расчетная длина надкрановой части

копонны цз ппоскасти рамы

Nº	Размерь	<i>I СЕЧЕНИЯ</i>	1				Допуск	aemble HOPMO	VNbHbIE YCUI	nua [N] B m	ΟΗΗΟΙΣ ΠΡ.().			
сечения	Стенка:	Папка	Площадь сечения		ć	0 = 10 CM.		8 = 20 cm		e = 30 cm.	e	= 40cm	e:	= 50 cm
	hxd:	Bxt		L _x (M)	<i>Ly</i> (M)	$\ell_{x}(M)$	ly (M)	$\ell_x(M)$	ly (M)	l _x (M)	ly (м)	$\ell_{x}(M)$	ly (m)
	M	M.	CM2	6 10 14 1	8 22	2 2,5 3,5 4,5 5,5 6,5 7,5	6 10 14 18 22	2,5 3,5 4,5 5,5 6,5 7,5	6 10 14 18 22	2,5 3,5 4,5 5,5 6,5 7,5				2,5 3,5 4,5 5,5 6,5 7,5
40 -2	400×8	250×8	72,0	87 85 74 6	32 -	93 88 77 64	65 64 56 48 -	72 68 59 49	51 51 46 40 -	 	43 43 39 35 -	48 47 41 33	} 	40 40 35 29
50 - 1	500×8	250×8	80,0	105 105 95 8	34 73	3 110 101 87 74	81 81 73 65 57	 	66 66 60 54 48		55 55 51 47 42			52 49 42 36
50-3	500×8	280×8	84,8	91 91 91 9	1 79	9 97 97 97 87 79 -		77 77 77 69 63 -			51 51 51 51 46		44 44 44 44 41	48 48 48 42 39 -
50-2	500×8	250×10	90,0	132 122 111 5	18 86	5 127 118 103 85	103 94 85 76 67			 	69 65 60 55 50		59 56 52 48 44	
50-4	500×8	280×10	96,0	142 131 120 10	77 93	3 139 132 120 105 91 -	111 102 92 83 73				 	77 75 69 60 52 -	64 61 57 52 48	
63-1	630×8	250×10	100	148 148 138 12	28 115	5 146 133 114 98	126 117 109 100 91		104 98 91 84 76		88 83 78 72 67		75 72 68 64 59	
63-2	630×8	280×10	106	158 158 149 1.	37 124	4 158 149 134 114 105 -		130 123 110 94 86 -		111 105 93 80 73 -	95 90 84 78 73		82 78 74 69 64	
63-3	630×8	280×12	118	171 171 168 1	56 142	2 172 168 152 133 117 -	1 1 1 1 1 "	148 140 127 111 97 -		126 119 108 95 82 -		108104 94 83 72 -	93 89 85 79 74	
63-4	630×8	320×12	127	184 184 184 1	70 156	6 184 184 176 160 143 12	1 1 (1			- 				
71-1	710×8	320×12	134			5/ 153 153 153 153 145 13								
71-2	710×8	320×14				2 169 166 166 166 166 150								
71 - 3	710×8	360×14	158			1 188 182 176 176 176 176								
71-4	710×8	360×16				75 211 205 198 191 189 18 <u>5</u>							1 1 1 1 1	155 155 153 145 134 122
71-5	710×8	360×18	186	1		75 234 227 220 212 202 20	1 1 1 1 1			1 1 1 1 1 1		1 1 1 1 1 1	171 167160 151 142	171 171 168 160 148 135
71-8	710×8	400×18	201			08 258 252 245 238 230 216	1 1 1 1	1 1 1 1 -1	9245237223210195	245 242 234 226 215 200	212 207 196 184 172	1 1 1 1 1		187 187 187 180 171 159
71-9	710×8	400×20	217	287 283 278 2	70 25	59 284 27 8 269 261 253 24	0 311 299 283 267 258	0 310 302 292 283 269 25	1 267258244229213	267264255247235219	229225 214 201189	225 229 227 219 209 19:	202200190 180170	202 202 202 197 188 175
71-15	710×10	450 ×18	233	347 347 347 3	47 327	27 344 344 344 339 328 31	331 316 299 282 26	3 33/ 324 315 305 296 28	0282272257241224	1 282 282 274 266 257 24	243237225 211 198	243 243 243 235 228 216	214 210 200 189 178 2	214 214 214 211 204 194
71-17	710×10	500×18	251	377 377 377 3	77 350	56 370 370 370 370 362 35	1 358343325306 286	5 358 355 346 337 328 312	8 306296279262245	306 306 302 294 286 27	265 258 245 230 216	265 265 265 261 254 241	231 229 218 206 194 2	231 231 231 231 228 221
71 - 18	710 ×10	500×20	271	410 410 410 4	10 38	37 3 9 2 3 92 392 392 392 38	1 390 373 354 334 312	2 390 385 376 367 357 3 4	7 333 322304 286 267	333333329320312303	288 282 267 251 236	288 288 288 284 277 26.	250 250 238 225 212	253 <u>253 253 253 249 242</u>

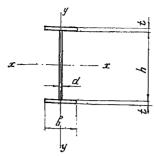
- 1 Марка стали и человия ее поставки принимаются по чказаниям раздела \overline{V} пояснительной записки
- 2 При промежуточных значениях эксцентриситетав "е" несчично способность сечений можно определять по пинейной интерполяции приведенных в таблице значений несчией спосовности (раздельно по $\ell_{\mathcal{L}}$ и па $\ell_{\mathcal{Y}}$) Аналогично может быть определена несчицая спосовность сечений при промежуточных значениях $\ell_{\mathcal{L}}$ и $\ell_{\mathcal{Y}}$.

717	Тαблица несчицей способности сварных двутовров с высотой стенки до 710мм для	Серия
M	20 more of a phicomore amount do 710 m dag	1.424-2
	DE THIO PLUE E DOICO. TICA CONCARD OU TO HAY OUR	BUNYCHAUCM
70r.	недхранавой чести ступенчатых капанн Сталь3	2 13

<u> </u>	6		<u> </u>																				-	.7 P										-			_				
₩ \$	Размеры	сечения	Площадь									4	опус	Kaer			יומסף	1anb	HOLE		ycui	ТИЯ	2 /	11 8	тон	нах	טקת:														
	Стенка	Полка	сечения				2 = 6	OCH							= 70	CM							2 = 8	POCH						e	= 90c	M					e = 100	7CM			
сечения	h×α	8×t	0040707		ℓ_x	(M)			ℓ_y	(M)			lx.	(M)			Py ((H)			ℓ_x	(M)			ly (m)		E	x (m	1)		$\mathcal{L}_{\mathcal{Y}}$	(11)			ℓ_x	(M)) y (M,)
L	M	'M	CM ²	6 10	7 14	18 2	2 2,	5 3.5	4.5 5,	5 6,5	7,5	6 10	14	18 20	2,5	3.5	4,5 5,	5 6,5	7.5	6 1	0 14	18 2	2 2	5 3,5	4,5 5,	5 6,5 7,	5 6	10	14 16	8 22	2,5 3,	5 4.5	s <i>इ</i> ड	6,5 7,5	5 6	10 14	1 18 2	2 2.	5 35	455.	5 6,5 7,5
40-2	400×8	250+8	12,0	31 3	1 29	27 -	- 34	1 34	31 E	-5	- 2	28 28	26	25 -	30	30	28 2	3 -	-	25 2	25 24	22	- 2	6 26	25 20	0	- 23	23	22 2	7 -	24 2	24 23	3 19		2/	2/ 20	0 19	- 2	2 22	21 17	7
50-1	500+8	250×8	80,0	41 4	1 39	36 3	4 44	1 43	37 3	2 -	-	36 36	35	33 3	1 40	39	33 Z	9 -	-	32 3	32 31	30 2	8 3	4 34	30 20	6	. 29	29	28 2	7 26	32 3	2 28	8 24		27	27 2	6 25	24 20	28	26 2	2
50-3	500+8	280+8	84,8	39 3	9 39	39 3	7 42	42	42 3	8 34	- 3	35 35	35	35 3	3 38	38	38 3	4 31	′ ~	32 3	32 32	32 3	0 3	4 34	34 31	1 28 .	- 30	30	30 3	0 28	3/ 3	1/ 3/	28	26 -	27	27 2	7 27 .	26 2	9 29	29 2	6 24 -
50-2	500×8	250+10	90,0	51 4	8 46	43 4	10 50	52	45 3	37 -	- 4	45 43	3 41	39 3	6 46	46	41 3	13 -	_	40 3	38 37	35	3 4	2 42	37 34	0 -	- 3e	35	34 3	2 30	38 3	38 34	4 28		<i>3</i> 3	32 3	1 30	28 3	4 34	3/ 2	6
50-4	500×8	280+10	96,0	56 5	3 50	47 4	13 50	9 58	53 4	7 40	- 4	49 47	45	42 3.	9 50	50	48 4	2 36	-	44 4	42 40	38	6 4	6 46	44 30	8 33 .	- 39	38	37 3	33	40 4	10 40	0 35	30 -	36	35 31	4 32	3/ 3	9 38	37 3	12 28 -
63-1	630×8	250+10	100	66 6	3 60	57 3	53 6	7 63	54 4	16 -	-	58 56	54	51 40	9 60	57	49 4	12 -	_	52 3	50 49	46	14 5	4 52	45 3	8 - -	- 47	46	44 4	12 41	48 4	18 41	35		43	42 4	1 39 .	38 4	4 44	38 3	3
63-2	63D×8	280*10	106	71 6	9 65	61 3	7.	72	64 5	55 50	- (63 6	1 58	55 5	2 63	63	58 5	0 45	<u>-</u>	57 2	55 53	50	18 5	8 58	53 4.	5 41 -	- 51	50	48 4	16 44	52 5	52 49	9 42	38 -	47	46 4	4 43	41 4	8 48	45 3	9 35 -
63-3	630×8	280+12	118	82 7	9 75	71 6	6 8.	3 82	75 6	56 57	- !	73 70	67	64 6	0 73	73	68 3	9 52	-	65 6	63 61	58	5 6	5 65	62 5	4 47 -	· 59	57	55 5	3 51	60 6	50 57	7 50	44 -	54	52 5	1 49	47 5	6 56	53 4	16 40 -
63-4	630×8	320×12	127	91 8	7 83	78 7	3 9.	1 91	89 8	31 72	63	81 78	74	7/ 6	7 81	81	80 7	3 65	57	72 7	10 67	64	31 7	3 73	73 6	7 60 3	2 63	64	62 5	9 56	67 6	7 67	7 62	55 48	8 60	58 50	54.	52 6	2 62	62 5	7 51 45
71-1	710 * 8	320×12	134	103 9	9 95	90 8	35 10	3 103	98 8	8 77	70	91 8	85	81 7	7 93	93	89 8	70	64	82 8	8 <i>0</i> 77	74	0 8	3 83	82 74	4 65 5	8 73	73	70 6	8 65	75 7	15 75	68	60 54	68	67 <i>6</i> .	5 63	60 6.	9 69	69 6.	3 56 50
71-2	7/0+8	320+14	146	114 1	11 106	101 9	5 11	4 114	110 1	01 90	78	103 10	96	91 8	7 103	103	101 5	2 82	7/	93 5	90 87	83	9 9	3 93	93 8	4 75 6	5 84	82	79 7	6 73	85 8	85 85	5 78	70 61	77	75 7.	3 7/	68 7	7 77	77 7.	3 65 56
71 - 3	710×8	<i>360</i> +/4	158	126 18	2 146	111 1	05 12	6 126	125 1	18 108	98	112 10.	105	100 9.	5 12	112	112 1	07 99	89	101 5	99 95	92 2	7 /4	21 101	101 9	9 91 8	2 93	90	87 8	14 80	93 9	93	3 92	84 76	85	83 8	0 78	75 8.	5 85	85 8.	5 78 7/
7/-4	710×8	360×16	172	138 13	35 130	123 1	16 13	8 138	138 1.	32 121	110	124 12.	2 //7	112 10	6 124	124	124 12	20 111	101	112 1	100 106	102 5	77 //	2 112	112 111	102 5	73 10.	3 101	97 9	90	103 1	03 10.	3 103	95 86	95	92 90	0 87	<i>83 9</i> .	5 95	95 9.	15 88 80
71-5	7/0×8	360+18	186	151 14	19 143	136 1	28 15	1 151	151 1	45 134	122	136 13	1 129	123 11	7 /36	136	136 1.	33 123	112	124 1	22 1/7	113 1	07 12	14 124	124 12	2 1/3 /	03 112	111	107 10	73 <i>99</i>	112 11	12 112	2 112	105 96	5 104	102 9.	9 95 .	92 10	4 104	104 10	04 98 89
71-8	710 * 8	400+18	201	165 16	3 156	148 1	40 16	5 165	165 16	64 155	144	147 14	7 141	135 12	8 147	147	147 1	47 142	132	134 1	33 128	123	/7 <u>/:</u>	34 134	134 13	4 131 12	2 128	122	118 11	13 108	122 1	22 12.	2 122	122 113	3 112	112 10	8 104	101 111	2 112	112 11	12 112 103
71-9	710×8	400×20	2/7	181 17	8 171	162 1.	53 18	1 181	181 1	79 170	159	161 16	154	147 14	0 161	161	161 1	61 156	146	147 /	146 146	135 /	29 1	17 147	147 14	7 144 1.	34 /3	133	129 12	24 119	134 13	34 /34	4 134	134 125	5 124	123 //5	9 115 .	110 12	4 124	124 12	24 <i>124 116</i>
71-15	710×10	450×18	233	190 18	87 179	170 1	60 19	0 190	190 1	90 185	175	17/ 16	161	154 14	6 171	171	17/ /	7/ 170	161	155 1	152 147	141	34 15	rs 155	155 15	<i>5 155</i> 14	18 14	139	134 12	29 124	142 14	42 14	2 142	142 13	1 130	128 12	4 119	115 13	0 130	130 13	30 130 128
71-17	710+10	500×18	251	206 20	04 <i>195</i>	185 17	15 20	6 206	206 2	206 206	200 1	185 18.	176	168 16	0 185	185	185 10	85 185	183	169 1	166 164	154 1	47 16	9 169	169 16	9 169 16	59 153	152	147 1	41 135	153 13	53 15.	3 153	153 153	3 142	140 13.	5 131 1	126 14	2 142	142 14	12 142 142
71-18	710+10	500+20	271	226 22	23 213	203 1	91 22	6 226	226 2	26 226	219	202 20	193	184 17	5 202	202	202 2	02 202	201	183 10	82 176	168 1	5/ 12	3 183	183 18.	3 183 11	83 16	166	161 13	55 148	167 16	57 16	7 167	167 16	7 155	153 14	8 143	138 15	5 155	155 15	55 155 155

Примечания и принятые обозначения см. на листе 13.

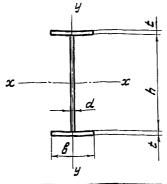
ТК Таблица несущей спосабности сварных двутав. Серия ров с высатой стенки до 710 мм для 1.424-2 надкрановой части ступенчатых колонн. Выпуск Лист Сталь 3. (продалжение) 2 14


	<i>y</i>	70 1
x	x	4
	<u>8</u>	414

	Размеры	сечения			Допускаемые нормальн	ые усилия [N] в тоннах пр	วบ:	She also
Ng	Стенка	Πολκα	Площадь	8 = 10 cm	e = 20cm	₽:30cm	e = 40cm	E = 50cm
сечения	h×d	8×t	сечения	$\ell_{x}(m)$ $\ell_{y}(m)$	lx (M) Ly (M)	lx (M) Ly (M)	l _x (M) l _y (M)	Lz (M) Ly (M).
	M	M	CM ²	6 10 14 18 22 25 3,5 4,5 5,5 6,5 7.	5 6 10 14 18 22 2,5 3,5 4,5 5,5 6,5 7,5	6 10 14 18 22 25 35 45 55 65 75	6 10 14 18 22 25 35 45 55 65 75	6 6 10 14 18 22 25 35 45 55 65 75
40-2	400×8	250×8	72,0	90 90 90 73 - 91 91 87 82	69 69 69 58 - 70 70 67 66	57 57 57 49 - 57 57 55 54	49 49 49 43 - 48 48 46 45	43 43 43 38 - 42 42 40 38
40-1	400+8	220+10	76,D	136 118 98 79 - 129 107 93 72	102 89 75 63 - 99 83 72 60	81 72 62 53 - 81 67 59 49	66 60 53 46 - 68 57 49 41	56 51 46 41 - 59 49 43 35
40-3	400+8	250×10	82,0	149 129 108 87 - 147 130 107 102 76 -	112 98 83 69 - 114 101 83 79 63 -	90 79 69 59 - 93 82 68 64 52 -	74 66 59 51 - 79 69 57 54 44 -	62 57 51 46 - 67 60 50 47 37 -
50-2	500×8	250+10	90,0	178 161 141 120 100 167 145 116 105	138 124 109 94 80 133 116 93 91		93 86 77 69 61 95 82 66 65	79 74 67 61 55 83 72 58 56
50-4	500+8	280 × 10	96,0	154 154 153 131 109 161 161 144 125 107 -	119 119 118 102 88 129 129 115 100 92 -	1 -3 -4 	84 84 84 75 66 92 92 82 72 66 -	73 73 73 66 60 81 81 72 63 57 -
63 -/	630×8	250×10	100	162 162 162 161 140 160 160 135 108	168 156 141 126 111 156 133 111 98	139 130 118 106 95 132 112 94 84	117 111 101 93 83 114 97 81 74	101 96 89 82 74 101 86 72 65
63-2	630×8	280+10	106	169 169 169 173 152 166 166 157 144 109 -	143 143 143 137 121 153 153 130 119 99 -	120 120 120 115 103 130 130 110 101 85 -	103 103 103 100 90 113 113 95 87 75 -	90 90 90 89 81 99 99 84 17 65 -
63-3	630+8	280+12	118	190 190 190 190 174 182 182 182 162 132 -	207 191 174 156 139 197 177 152 134 119 -	173 160 146 132 118 168 151 129 114 104 -	147 137 126 115 104 146 132 112 99 91	127 119 111 102 93 129 116 100 88 80 -
63-4	630×8	320×12	127 .	204 201 201 201 192 193 192 192 189 176 14	6 193 191 191 172 153 204 204 185 160 146 13.	2 162 161 161 145 130 174 174 158 136 125 113	5 139 139 139 127 115 152 152 138 119 1119 1119	1 123 123 123 113 103 135 135 122 106 97 89
63-5	630×8	320×14	140	230 225 218 218 216 220 210 209 209 195 1	0 252 234 214 194 173 246 231 209 183 162 15	4 213 198 181 164 147 211 198 179 156 139 13	5 182 171 157 144 130 184 173 157 137 122 118	8 158 149 138 127 116 161 154 140 122 108 104
63-7	630*8	360×14	151	253 247 238 236 236 245 237 225 223 223 2	11 254 249 234 212 189 260 260 242 220 194 17.	214 211 198 180 162 224 224 208 189 166 15	2 184 183 173 158 143 196 196 182 163 146 152	1 160 160 152 140 128 174 174 162 147 130 118
63-8	630×8	360×16	167	258 258 258 258 258 275 266 253 243 243 2	34 301 284 261 236 212 301 290 270 247 218 191	6 259 241 221 201 181 259 249 233 212 188 16	8 223 209 193 176 160 224 213 204 166 165 146	8 194 183 170 156 143 194 194 182 166 147 132
7/-/	710 +8	320 × 12	134	212 208 202 193 179 199 190 176 159 149 14	15 190 190 190 190 178 190 190 190 169 158 13	7 180 177 177 166 151 182 182 170 146 136 12	1 153 154 154 146 134 168 168 150 166 120 10	7 136 136 136 129 120 150 150 133 114 107 95
71-10	710×10	320×16	173 .	315 315 315 315 292 296 296 296 254 244 15	18 325 303 280 256 233 310 289 259 223 206 18.	3 275 258 238 218 193 268 250 224 192 118 16	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 207 196 183 170 157 210 196 176 151 139 139
7/-//	710 × 10	360 × 16	186	333 333 333 333 319 313 313 313 307 267 2	64 352 329 305 280 255 341 325 301 271 235 22	3 300 281 260 233 217 295 281 260 234 204 19	5 279 244 221 249 132 200 240 223 200 113 114	0 226 214 200 186 172 229 222 205 184 160 152
7/-/2	710 + 10	400 * 16				8 314 304 282 259 236 3/5 3/1 254 272 245 27	(a) 202 200 270 270 200 200 200 200 285 Pet 210 21	0 238 233 218 203 188 247 246 232 215 194 170
7/-/3	1 1	400 * 18	215	382 379 379 379 379 368 357 353 353 349 3	09 414 388 361 333 304 405 391 371 344 313 27	6 354 332 309 284 259 352 340 322 259 277 25	(1) 132 245 270 273 243 300 203 204 245 216	2 269 255 239 223 206 271 269 255 237 215 190
7/- /4	1	400 + 20	2.3/	413 412 412 412 412 403 391 380 380 380 3.	37 448 420 392 362 331 438 423 402 375 342 34	24 384 361 335 309 283 381 363 350 326 237 28	11) 250 313 CH 272 244 333 350 310 288 263 23	4 292 278 261 243 225 292 292 278 259 236 210
71-16	, ,	450 × 20		461 452 441 441 441 450 438 426 409 409 4	09 491 461 431 398 364 484 470 455 432 404 37	2 422 397 369 340 311 422 410 351 371 352 32	9 188 276 253 226 200 207 204 307 376 256 25	17 321 307 288 268 248 321 321 316 300 280 258
7/-/8	710 +10	500×20	27/	506 497 483 472 472 456 485 473 461 441 42	30 516 499 469 434 397 513 508 503 485 461 43	3 445 430 402 371 340 448 444 453 455 402 31	36 17 66 376 300 1766 1766 176 300 300 300 300 300 300	6 342 334 315 293 272 349 349 349 338 321 302

Примечания и принятые обозначения см. на листе 13.

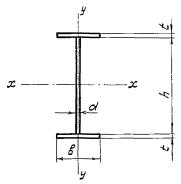
ТК Таблица несущей способности сварных двутав-1970 г. части ступенчатых калонн. Сталь низколегиоовачись выпуск Лист


KOHLTPYKUMA Hay ambena baxyamckus thay control of the control of t

	Размеры	сечения	<i>[]ताठाप्रायक</i>										,40	7740	κα	EM	ble	Н	ap)	MOU	7 <i>b</i> H	ые	4C	LIAL	19	[N.	7 <i>B</i>	1770	OHH	vax	/7,	pu:																
Νō	Стенка	Ποπκα						e= 0	60 CM	1 .							e	= 74	0 ce	M.			T			ć	= 6	Och	1.		•				e	= 91) ÇM	<u>,</u>					е.	= 10	ОСМ			
сечения	hxd	Bx.t			l,	c (M)			ly	(M.)			ℓ_{x}	(M)				ly .	(m)			-	Pxl	m)	Γ	(ly t	(M)			£.	x (1	w)		Ê	y (n	1)			lх	(M)	T		ly	(M)	
	MI	И.	cm2	6	10	14 1	8 22	2 2,5	3,5	4,5	5,5	5.5 7.	5 6	10	14	18	22 2	2,5	9,5	45 3	55 6	5 7.	5 6	10	14 1	8 22	2,5	3,5	4,5	5,5 6,.	5 7.5	6	10 1	4 18	3 22	25	3,5 4	5 5,5	5 6,5	7.5	6 11	0 14	18	22	25 3	Ť	$\overline{1}$	5,5 7.5
40-2	400 × 8	250 × 8	72.0	38	38 .	38 3	4 -	37	37	35	33			34			į	33 3		_	29 -	- -	$\overline{}$	31	31 2	8 -	+	30		27 -	- -	1	28 2		1	27				+	26 20						22	
40-1	400×8	220×10	76,0	48	45	41 3	7 -	52	43	38	31	- -	42	40	37	33	- 4	46 3	39	34 2	27 -			-	33 3	_	40	35	30 1	25 -	- -	34	32 3	1 20		36	_	_	-	+	31 31		↓ · · 		32 25		1	
40-3	400×8	250 ×10	82,0	54	50	45 4	1 -	59	53	44	42	33 -	47	44	41	37		50 4	77 :	39 3	37 2	8 -	- 42	40	37 3	4 -	44	43	35 3	34 26	5 -	38	36 3	4 31	/ -	40	39 3	2 31	24	+	35 3		-				27	21 -
50-2	500×8	250×10		+	64			_			49	- -		ļ							44 -	,	54	51	48 4	5 42	58	52	42 3	39 -	. -	49	47 4	4 41	39	52	48 3	8 35	; -	+	45 4	_	-	-	48 44	-+		<u> </u>
<i>50-4</i>	500×8	280×10	96.0	65	65	65 5	9 54	72	72	64	56 .	50 -	58	58	58	54	49	65 E	55 3	58 5	50 4	5 -	53	53	53	9 45	59	59	52 4	46 44	$\overline{}$					54				_	44 4		+	-	_		39	34 -
63-1	630×8	250×10	100	88	85	79 7	3 6	7 90	7.77	<i>64</i>	57		78	75	71	66	6/ .	81 E	59	58	52 -	- -	70	68	64 6	0 55	73	63	53	46 -	- -	<i>63</i>	62 5	9 55	52	67	58 4	9 43	3 -	_	57 50							
63-2		280×10	106	80	80	80 7	9 73	3 85	7 89	76	69	58 -	72	72	72	72	66 d	81 8	81 1	58 8	53 5	2 -	65	65	65	5 61	74	74	63	57 4	7 –	60	60 6	0 60	56	68	58 5	8 50	3 43		56 5		-					
63-3	·	280×12	118		195					1			+-	94		_			-	-										5 5						83				-	73 7	1 67	64	61	75 74	4 63	56	18 -
		320×12	127	+-	109			_					_	-		-+	-		_			1	1	89	89 8	78	101	101	92	79 72	2 64	82	82.8	72 77	7 72	93	93 8	74 75	3 67	59	75 7	75 75	71	67	85 R	5 78	68	62 54
		320x 14	140		132																		4 111	106	101 5	5 85	114	114	105	91 8	1 75	101	97 5	13 8:	7 82	103	103 5	97 84	4 75	69	92 8	39 85	81	76	95 9	5 90	78	70 65
63 - 7		36D×14	151	14,	142	136 12	26 110	5 15:	5 155	146	133	117 10	7 127	127	122	114	106	38 1	38	133 1	121 10	9:	7 115	115	111 1	04 9.	7 124	124	122 1	111 92	8 89	104	104 1	72 90	90	112	112 1	12 10	2 90	82	96 8	6 94	89	84	104 10	7410	4 95	84 76
63-8	630×8	360×16	167	17.	162	152 14	11 13	017	171	164	150	133 11	9 152	145	137	128	119	53 1	531	49 1	36 12	21 10	8 137	131	124	17 10.	9 138	138	137 1	25 11	11 99	124	119 1	14 10	8 101	126	125 12	26 11:	5 102	92	114 11	10 105	100	94	116 116	6 116	107	95 85
71 - 1	710×8	320×12	134	12	121	121 1	17 100	8 13.	5 135	120	103	96 8	5 105	109	109	106	99	1231	23	110 5	94 8	8 7	7 99	99	99	16 91	113	113	101	B6 8	1 70	91	91 5	11 8	9 84	104	104 5	93 80	0 75	64	84 8	34 84	82	78	97 9	7 87	74	69 59
	710×10		173	18.	3 174 1	64 13	53 14	2 18	7 /77	159	136	26 1	6 163	156	148	139	130	167 1	611	45	24 1	15 10	5 147	141	134 1	27 113	7 151	148	133 1	114 10	15 96	134	129 1	23 11	7 110	138	137 13	23 10	6 98	87	122 11	18 114	108	102	126 12	26 114	98	91 81
71-11	71Q×10	360×16	186	200	190	179 [68 15	6 20	2 200	185	167	45 13	7 179	171	162	152	142	181 1	181	169 1	152 1	32.12	5 161	155	147	39 13.	165	165	155 /	140 12	2 115	147	141 1	35 12	8 121	149	149 1	44 12	9 113	107	134 1:	30 12	5 119	112	138 13	38 13	4 120	105 99
71-12	710×10	400×16	199	21	207	195 16	83 17	0 22	0 220	210	194	76 15	4 188	186	176	166	155	196 1	96	192	77 1	50 14	1 170	169	161	52 14	3 177	/77	176 1	63 14	18 129	155	154 1	47 14	0 132	161	161 1	61 15	1 137	120	14214	H 13	5 130	123	149 14	9 14	141	127 112
	710×10		215	23	227	215 2	01 18	7 23.	9 239	231	214	195 17	2 214	205	194	183	170	216 2	216	211	96 1	78 15	7 193	185	177	67 <i>15</i>	7 194	194	194 1	180 16	4 145	176	170 1	52 15	4 145	177	177 1	77 16	7 152	2 134	161 1:	56 <i>15</i> 0	143	135	163 16	53 16:	3 156	142 125
71-14	710 x10	400×20	231	26	248	234 2	19 20	1426	7 261	252	235	214 15	0 23.	3 223	212	199	186	233 2	233	231 2	215 1.	96 17	4 210	203	193	82 17	1 212	212	212 1	198 18	160	192	185 1	77 18	8 158	192.	192 1	92 18	3 151	149	176 1	70 16	3 156	147	179 17	19 17:	7 171	156 138
	710×10				274		42 22	5 28	6 286	286	272	255 2.	34 25	247	234	220	205	257 2	257	257	249 2	33 21	4 23:	224	213 2								205 1	96 18	6 175	2/2	212 2	212 21	2 195	1183	195 1.	89 18	172	163	196 19	16 19	5 196	186 171
71-18	710×10	500×20	271	30	298	283 2	64 24	16 31	2 312	312	307.	2922	4 27	3 265	256	241	225	280 2	280.	280	280 2	672.	51 24	244	234	21 20	18 25	253	253 2	253 24	16 232	226	223	215 20	73 192	231	231 2	231 23	81 225	9215	207 2	106 19	8 189	179	214 21	14 21	1214	213 20

Примечания и принятые обозначения см. на писте 13

7	Ταδημια несущей способности сварных двутав-	Cept	19
IN	Таб дица: несущей способности сварных двутав- ров с высотой стенки до 110мм для надкрана- вы учети ступенчатыя каданн. Стапы	1.424	1-2
••••	вай части ступенчатых колонн. Стапь	Вылуск	Oucm
970 r.	низкопегированная (продолжение)	2	16
			72



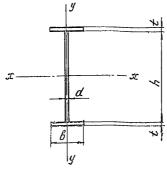
	Разнеры	сечения	Площадь								-		Д	nyci	Kaei	MDIE		нор	na.	ПЬН	51E	ус	นกน	я [N]	8	ואסתן	нах	np	ILI:																
Ν₽	Стенка		сечения					₽:	10c	M			Ť				9 = 2	Ocm	,			Ť				e:	300	M						e	= 40c				_				= 50c,			
сечения	h×d	6×t			ℓ_x	(M	1)		E	י אי נ	(M)		1	P	x (m)	T		e _y	(M)		1	£,	z (1	1)	T		_{Ey}	(M)			Px.	(M)			ℓ_y	(4)		ļ.,	$\frac{\mathcal{E}_{x}}{-}$	(M)	<u>'</u>	 	<u> </u>	, (M)	<i>)</i> T
	M	M	CM ²	6	0 14	18	22	2.5	3,5			.5 7.	5 6	10		8 22	2.5			5,5 6	5.5 7.	5 6	10		8 22	, 24	3.5	45	5.5 6.	5 7.5	6	10 14	18 2	22	2,5 3,5	4,5	5,5	5,5 7,5	6	10 1	4 18	22	25 3	15 42	5,5	6,5
90-1	900×8	280×10							7 114			_ -	+-		-	114 114	Τ.					110	110	un I	ום או	, ,,,	מנו כ	וום !	98 -	-	104	04 10	4 104 1	04	104 104	104	87		+-1				99 9		1	1 [
90-2	90018	320×10			- 1		l.		1			02 9	5 121				_			_	\neg	7 117	117	117 1	17 11:	, ,,,	7 117	//7	117 11	106	112	112 112	? 112 1	12	112 112	112	<i>III</i> .	94 94	106	106 11	<u> 26</u> 10.	6 106	106 11	06 101	6 100	84
90-5	900+10	280 + 10							161				1	1 1	1	75 16		1	1 1	1	1	1	1 1	1 1	1	1	3 148	1 1	1	- 1	149	145 130	9 131 1	23	143 134	7 ///	97	- -	130	127 18	21 116	; 110	128 11	17 95	86	-
90-6	900×10	320×10	l	l l	ı	1		1 "	5 165	-			+	1		180 17	_	+	-	 		1	1-1	-+		╫	9 169				135	135 13.	5 135 1	33	149 149	134	115	04 -	120	120 12	20 121	0 119	134 1.	34 121	0 103	93
90-7	900+10	320 × /2	167	182 1	82 18	דן סו	7 174	175	5 175	175	175 1	71 15	0 232	23/	220 2	209 19	8 22	216	198	174	149 14	12 201	6 199	189 1	19 16:	9 19	9 188	173	152 12	9 129	179	174 16	6 157 1	49	176 167	153	135	115 115	157	153 14	47 140	0 133	157 1	50 13	7 121	103
90-8	900+10	360+12		199	99 19	16 19.	3 189	9 190	0 183	181	181 1	18/ 17	6 242	236	236	224 21	2 24	3 236	224	204/	83 15	8 20	9 203	203 /	92 18	1 21	3 206	196	179 16	138	182	178 17	8 169 1	60	189 183	174	159	142 12.	3 161	159 1.	59 15	1 144	169 1	65 15	7 143	128
90-9	900+10	360×14	191	224	223 2.	21 21	7 2/	3 2/4	4 207	199	192 1	91 18	18 264	264	260	247 2	14 26	4. 260	249	229	206 17.	5 24.	3 235	224 2	13 20	7/ 23	8 228	218	201 12	8/ 153	212	206 19	7 188 1	178	212 20.	3 194	179	161 13	187	183 1	76 16.	8 160	187 1	83 17.	5 161	145
90-10	900+10	400 × 14	202	241	240 2.	38 23	22	9 23	4 228	22/	214 2	205 19	18 276	276	276	265 2.	51 27	6 276	272	259	239 21	17 25	9 252	240 2	28 2/	6 25	8 248	239	227 21	191	228	221 21	2 202 1	191	228 222	2/3	203	187 17	200	197 1	89 18	1 172	200 2	?00 <i>19</i> .	2 183	169
90-11	900 × 10	400 + 16	218	271	270 20	67 26	62 25	26	0 254	246	238	229 21	15 29.	293	293	289 2	15 29	5 295	295	284	264 24	11 28	4 215	263 2	50 23	37 22	272	262	25/ 2	33 2/3	249	243 23	3 222	2/0	249 24.	3 234	224	208 19.	220	2/7 2	108 19	9 189	220 2	20 21	2 203	3 188
90-12	900+10	400 + 18	234																														54 242 2													
90-14	900 * 10	450 × 18	252																														7 264													
90-20	900+12	450 + 18	270		- 1		- 1		- 1	1 1	- 1	- 1		1 1		- 1			_	 					-					-	1		20 277		ı			- 1						1	1.	[!
90-21	900×12	450×20	288																														3 299													
99-23	900 +12	500+20																													i i		19 324	-					٦.	1 1	- 1	1	3 1	1	1	1 1
90-24	300 × 12	500 × 25	3 <i>58</i>																														04 386 .													
90-25	900 + 16	500+25	394	674	574 60	50 64	10 61	7 62	4 612	595	579	562 5.	38 59	579	556 .	533 5	07 59	1 581	0 564	548	532 8	10 52	1 507	ו גפע ו	163 11	20 5	2 5/2	400	ד נכד וו גפע	7/ 150	עבע	יע פעע	31 411 .	390	458 45	8 448	435	422 40	5 407	401 3	186 36	39 35:	2 407	407 41	76 394	4 383
90-26	900 + 16	500 + 28	424	715	715 71	5 69	94 67	0 67	2 660	642	625	507 50	84 64	627	604.	579 5.	52 84	620	6/3	594	570 51	CG EA	2 652	F 20 4	יון נוח:	יש מי	2 550	בבר	F20 5	יסוו בני	יפטע	יע פעע	0 448	426	497 49	7 488	474	ענו 194	מטע פ	438 4	121 41	73 281	ו כטט ע	וע כעע	וגע בן	אנע מ
90-27	900+16	500×32	464	783	783 78	33 78	13 78	13 70	4 104	704	686	667 6	44 7/4	7/4	7/4	694 6				1 1	1	1		622 6	$\overline{}$	20 20	2 622	672	220 2	00 501	550	CCD C	50 550	630	550 55	TO SED	E E C	650 F2	עמו	191 4	זע ומו	יפע נק	יוסון	ינו נמע	ימע ומ	וויסור

Притечания и принятые обозначения ст. на листе 13.

TUHMMI IPUEKTETAAD HUDEWA KOHETPYKLIMS KEUDA KEUDA

Таблица несущей спасабности сварных двутаврав с высатой стенки 900 мм для Серия 1.424-2 Выписк Лист

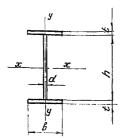
Nº	Размеры	, сечения												Дог	пуск	aemb	1E	H	מאקסו	алы	4618		ycu.	ภบя	[N]	8	moi	чназ	כ חב	iu:								-								
сечения	Стенка		Плащадь сечения					2:	600	:M						4	9 = 7	OCM								ه = و	80cm							ε	2 = 900	M						e =	100 c	~			İ
	h*d	8 * t			ℓ_x	(M))			ℓ_y	(M)				ℓ_x	(M)			ℓ_y	(M)		1	É	x	7)	T	E	y (1	~ <i>)</i>			ℓ_x	(M)			\mathcal{E}_{y}	(11)			l.	c (M))		e.	y (11))	
	M	М	CM ²	6	ו מו	4 1	8 22	2 2,	5 3,5	5 4.5	5,5	6,5 7	15	6 11	2 14	18 2	2 2	3,5	5 4,5	5,5	6,5 7,	5 6	10	14	18 22	2,2	5 3.5	4,5	5,5 6.	5 7.5	6	10 1	4 18	22	2,5 3,	5 4,5	5,5	6,5 7,	5 6	10	14 1	8 22	2,5	3,5	4,5 5,	5 6,5	5 7.5
90-1	900+8	280+10	128	94	94 9	4 9	94 90	0 5	94	85	7/		-	89 8	9 89	86 8	32 2	89 8	9 78	65	_ -	85	84	81	78 75	8.	5 83	72	60 -	_	79	76 ¦ 7	4 72	69	<i>19</i> 7	7 67	55	- -	7/	70	68 6	6 64	7/	7/	62 3	5/ -	
90-2	900+8	320×10	136	98	98 9	8 9	18 98	8 11	וסו ומ	101	91	77	77 .	90 9	0 90	90 9	0 :	95 9.	5 94	83	70 7	2 82	82	82	82 82	9/	91	87	76 6.	65	76	76 7	6 76	76	8.5 8	5 80	7/	60 6	0 10	70	70 :	70	79	79	75 6	6 54	5 56
90-5	900 × 10	280+10	146	116	112 /	08 11	04 99	9 11	16 10:	5 90	78	- -	-	104 11	01 97	93 9	90 1	104 91	6 82	7/	_ -	94	91	88	85 82	9	5 88	75	65 -		85	83 8	78	75	85 8	2 70	61	- -	78	76	74 7	2 70	19	76	65 5	56 -	
90-6	900*10	320×10	154	108	108	08 11	08 10	7 /2	21 121	109	94	84	-	97 9	77 97	97 9	97	<i>III</i>	99	85	77 -	89	89	89	89 8	9 10	102	91	79 7/	-	82	82 8	82 82	82	93 9	3 83	73	65 -	76	76	76	16 76	85	85	79 6	8 61	·
90-7	900+10	320 × 12	167	140	137 13	32 /2	26 120	0 14	10 136	5 125	110	94	34 1	126 12	3 119	114 1	09	126 12	4 114	100	86 86	5 114	111	108	104 100	2 //4	4 114	105	93 79	7 79	104	102 9	9 96	92	104 10	14 98	86	73 7	3 96	93	91 8	8 85	97	97	91 8	80 68	9 68
90-8	900+10	360 × 12	176	143	142 1	12 1	36 12	9 1	51 150	0 142	130	116	ן ססי	128 12	28 128	123 1	18	136 13	6 130	119	106 9	2 117	//7	//7	112 10	8 12	124	120	110 90	8 85	107	107 10	07 104	מסו	112 11	2 112	102	91 7	9 98	98	98 9	92	104	104	104 9	35 85	5 74
90-9	990+10	360 + 14	191	167	164 1.	58 13	51 14	14 16	57 16	7 159	147	132	112	151 14	18 143	137 1	32	151 15	1 146	135	121 10	3 138	134	130	126 12	/ /3	8 138	135	124 112	95	126	122 11	19 116	112	126 12	26 126	5 116	104 8	8 116	1/3	10 1	07 10	3 116	116	116 11	08 97	7 33
90-10	900+10	400 + 14	202	181	176	ו פר	63 15.	5 18	81 181	1 175	167	154	140 1	163 15	59 154	148 1	42 1	163 16	3 161	153	142 12	9 147	145	141	136 13	1 14	17 147	147	142 13	1 119	136	133 /4	29 125	121	136 13	136	5 132	122 11	1 126	122	119 1	16 112	126	126	126 1	23 //4	4 104
90-11	900+10	400 × 16	218	198	194 1	87 1	80 171	/ /5	98 192	8 193	185	172	157	179 1	15 170	164 1	57	179 17	9 178	170	158 14	4 163	160	155	150 14	4 16	3 163	163	157 14	6 134	149	147 1	43 138	133	149 14	19 149	9 146	136 12	24 132	135	132 1	28 124	1 138	138	138 1.	37 12	7 116
90-12	900+10	400 + 18	234	2/6	212 2	05 15	97 18	28 2	16 216	5 211	203	189	174 1	194 1	92 186	179	72 1	194 19	14 194	187	174 16	177	175	170	164 15	<u>8</u> 17	7 /77	177	173 16	1 148	163	161 12	56 151	146	163 16	3 16.	3 161	150 1	38 151	148	144 /	40 136	5 151	151	151 1.	57 14	1 129
90-14	900+10	450×18	252	233	232 Z	24 2	15 20	76 2.	33 23.	3 23:	3 228	219	206	212 ; 2	11 20	196 1	88	212 21	12 212	2/0	202 19	10 194	1 192	187	180 17.	3 15	74 194	194	194 18	7 /76	179	176 1	72 166	160	179 17	9 175	9 179	175 16	54 162	5 163	159 1	54 149	9 165	165	165 1	65 16	3 154
90-20	900×12	450×18	270	247	242 2	34 2	24 21	4 2	47 24	7 246	237	227	212	224 2	19 212	205 /	96	224 22	24 224	218	209 19	5 20	4 200	194	188 181	0 20	04 204	204	202 19	3 180	187	183 /	78 /73	167	187 18	P7 18	7 187	180 16	58 173	169	165 1	60 15	5 173	173	173 /	73 16	8 157
90-21	900+12	450×20	288	267	262 2	54 2	243 23	32 2	67 26	7 26	6 257	246	231	241 2	38 230	222 2	212	241 24	41 241	237	227 2	13 220	0 217	211	203 191	6 22	20 220	220	219 21	0 197	202	199 1	94 181	181	202 20	02 20	2 202	196 16	84 18	183	179 1	74 160	8 187	187	187 1	87 18	3 172
90-23	9004/2	500 × 20	308	286	285 2	76 2	64 25	53 2	86 28	26 280	6 285	276	265	261 2	59 250	241 2	23/ 2	261 26	51 261	261	255 2	45 23	7 236	229	221 21	3 2.	37 237	237	237 23	36 22	218	217 Z	20	197	218 21	18 216	8 2/8	218 2	11 20	2 199	195 1	39 18.	3 202	202	202 2	202 20)2 <i>198</i>
90-24	900 + 12	500+25	358	341	341 3	30 3	30	23 3	4/ 34	11 34	340	33/	320 .	310 3	10 300	289 2	76	3/0 3/	10 310	3/0	<i>305</i> 2	95 28.	2 282	274	265 25	6 2	82 282	282	282 28	32 274	1 261	260 2	253 246	237	261 26	51 26	1 261	26/ 2	56 24	1 240	235 2	28 22	0 241	241	241 2	241 24	11 240
90-25	900+16	500×25	<u> </u>	-	-+	+		+	\dashv		+	350	\dashv		+	+		+		+	-		1	+-+	-			-			+			+	278 2	_ -	+-1			_	-			1 1	-		_
90-26	900+16	500+28	_		\dashv	+	+	+	-		-	++		-+		+-+	+	+				+	+	+	-					_	╁╌┤	-		┼	304 30	-		-	+	-				+-		-	
	900×16				-	+	+	+	\dashv		+	442	\dashv	-	101 40		ומו	401 4	ומע ומ	401	401 4		+	+-	\dashv	╁			\vdash	+	-		-	+	337 33		+	-		+		+		1			


	y	75
x	d	x y
	$\left \begin{array}{c} \mathcal{E} \\ \mathbf{y} \end{array} \right $	12.

LIHMMPOEKTCTÁAb Wasa Kasa Konton Kasa Konton Kasa Konton Kasa Konton Kasa Konton Kasa Konton Kasa Konton Ko

	Размерь	н сечения	[<i>[поща</i> ав									Д	апу	ς κα ε	Mbi	e i	норі	MOIN	bHble	9 9	СИП	ЦЯ	[N]	7 B	mor	<i>ΉΟ</i> .	X M	и.														
Nº	Стенка	, _	улиндан				E	>=1 0	см.						ć	9= 2U	O CM	,						o= 30	CM		,				e =	40 c	M.						e = 50	'CM		
сечения	hxd	Ext	сечения		lх	(M)			ls	1 (M)			l.	x (m	,)		Ls	1 (M))		l.	x (7)		lу	(m))		lx	(m)			ly (м)			lx.	(m)	,	lу	(m)	
	M	М	CM2	6	10 14	18	22	2,5 3,	5 4.5	5,5 6	5 7,5	6	10 1	4 18	22	2,5 3,	5 4.5	5,5	5,5 7.	5 6	10 1	4 18	22	2,5 3,5	5 4,5	5,5 t	5,5 7.5	6	10 14	18	22 2,	5 3,5	4.5 5.5	5 6,5	7.5 6	10	14	18 2	2 2,5	3,5 4.	5 5,5	<i>6,5</i> 7,
90 - 1	900×8	280×10	128	154	153 14	9 144	136	160 14	9 133	114	- -	129	128 12	24 120	114	135 12	6 114	114		- 110	110 1	10 110	110	117 110	0 110	110		104 1	04 10	4 104 1	04 10	4 104	104 10	4 -	- 9	9 99	99	99 9	9 99	99 99	99	
90-2	900 × 8	320×10	136	182	182 18	2 182	175	77 17	2159	1421	23 102	151	151 13	51 151	146	152 14	15 134	121	121 11.	9 124	124 /	24 124	1119	132 125	5 117	117 1	17 109	112	112 112	2 112 1	12 11	5 112	112 11:	2 112	98 10	6 106	106	106 11	106	06 10	6 106	106 8.
90-3	900×8	320×12	149	213	212 20	8 201	193	209 19	9 185	167 1	45 12	177	1771	13 166	162	176 16	8 156	5 141 1	133 13	2 148	146 1	42/32	133	153 141	5/35	129 1	129 129	130	128 12	5 124 1	24 13	4 128	124 12	4 124	118 11	8 118	118	118 11	18 120	118 110	118	118 1G
90-4	900×8	360×12	158	242	242 2:	37 230	222	227 22	<i>25 213</i>	197/	79 158	202	201 19	7 191	185	196 19	10 180	167	151 14	0 168	166 1	62/58	152	170 164	155	1441	138 138	148	146 14	3 139 1	34 15	0 145	137 13.	3 /33	133 13	3 131	128	126 12	6 134	29 12	6 126	126 12.
90-7	900×10	320×12	167	249	2 <i>4924</i>	3 237	229	230 21	8 200	178 1	62 152	232	232 2	32232	232	2322:	3223.	2205	188 14	4 225	2252	25 22	5217	225 22	5 207	179 1	72 132	2/3	206 20	16 206 1	91 21	4213	18415.	9 155	119 18	7 184	184	184 17	12 199	91 16	5 142	14010
90-8	900×10	360×12	176	272	27026	4 258	250	254 24	15 230	211 1	89 16	241	238 2	38 238	3 <i>238</i>	24524	45 24.	5 242	218 20	7 <i>0208</i>	2032	03 20	3 203	216 21	6 216	2121	191 183	181	179 17	9 179 1	79 19	2192	19218	8 170	164 16	1 161	161	161 11	51 173	173 17	3 169	153 14
90-9	900×10	360×14	191	<i>306</i>	302 25	7 <i>9 290</i>	280	286 27	16 26O	2402	15 188	265	265 2	65 265	265	25421	64 26	4264	239 23	31 259	259 2	59 25	9 259	259 25	9 259	2402	210 210	248	248 24	82462	229 24	8248	24421	4 187	1872.	36 23:	232	2212	07236	236 22	Q193	168 16.
90-16	900×12	360×14	209	337	33432	28321	319	313 34	30:	3032	97 24	9389	373 3	71 348	323	385 3E	55 32	9284	258 2.	35 336	321 3	19 29	7 276	337 313	9 287	2482	226 215	292	281 27	9 2612	243 25	9283	25522	21 200	194 2	58 245	9249	234 2	19 269	254 22	9198	180 17
90 -17	900×12	360×16	223	370	368 3E	352	339	345 33	2316	316 3	12 28	7446	426 4	02 378	351	4223	97 36	1316	278 21	54 389	368 3	146 32	3 300	370 34	8 316	2772	244 243	339.	323 34	14 285	266 32	9 309	281 24	6 217	217 3	00 28	272	256 2	39 296	279 25	3 222	196 19
90-18	900×12	400×16	236	401	397 3	91 382	368	37736	5 349	3283	28 32.	465	451 4	3140:	5 377	4564:	<i>37 40</i>	7370	326 2	97 410	391 3	371 34	7 323	40038	4 357	325	286 261	359	343 32	7 307	286 35	7342	318 28	9 255	232 3	19 300	293	275 2	58 321	309 28	7 251	230 21.
90-19	900×12	400×18	252	439	43542	29 418	402	413 40	0 383	360	43 33.	9491	491 4	66 438	9409	4914	73 44	2404	359 3.	19 450	4274	102 37	7 351	43341	7 389	356	316 281	394	376 35	5 334	311 32	372	348 31	8 282	25134	19 330	53/8	300 2	81 349	336 31	4 287	255 22
90-20	900x12	450×18	270	481	475 4	70 458	440	458 4	45 433	3413	89 36	1 519	519 5	05 470	5 444	520 5	2049	7465	428 38	95 481	456 4	136 410	383	466 45	9 438	4// 3	378 340	423	403 38	37 363	33941	7 411	392 36	7 332	3043	77 36	1 346	326 3	06 377	371 33	5 332	306 27
90-21	900×12	450×20	288	<i>520</i>	516 50	18 495	476	499 48	35 47:	4514	25 39	5 548	548 5	43 5/2	2480	549 54	49 53	6 503	465 42	20 522	4984	7144	3414	510 49	4474	445	411 372	460	442 4	18 393.	3674.	57 443	42539	9 368	333 4	0939.	5 375	3533	32409	401 32	15 361	334 30.
90-23	900×12	500×20	308	570	565 5	55544	515	548 5.	3552	5064	184 45	9 584	5845	84 55	4 519	582 50	82 58	2 556.	5334	96 551	521	510 48	0449	537 53	7 525	501	473440	487	46345	3426	398 48	32 482	47145	0 42	395 4	35414	406	383 3	60 437	437 42	7 408	38536.
90-24	900×12	500×25	358				1 1		- 1	1 1	- 1		l I		1	1 1		1 "1			T			65663		1 1				1	- 1	- 1	1 !		1 1		1	l 1				f I
90-25	900×16	50D×25	394	856	8 <i>56</i> 8.	56 856	811	785 78	15 78:	758	714 66	3826	7847	46 70	5 660	7987	76 75	4719	6776.	28 718	685 6	548 6D	9 570	706 68	7667	636	599 556	632	607 5	75 541	505 G.	32 616	598 57	70 53	7498 5	52 54	3515	4864	57562	558 5	2 517	48645
90-26	900×16	500×28	424							1 1	- 1		ιι	l l	ı	ı ı	- 1	, ,	- 1	- 1	1 1	1		76774				1	- 1			- 1		4	1 1			1	1 1	1		! !
90-27	900×16	500×32	464	943	94394	43 943	943	8938	7185	855	855 80	0985	9859	6792	8 884	985 91	6894	2900	855 B	00858	8588	85781	7 775	85885	8856	821	777 72	759	759 73	59 734 ₄	595 7	59 759	759 74	19 705	6636	77 67	7677	669 6	33677	677 6	77677	651 60

Примечания и -принятые обозначения см на писте 13


TK	Тиблица: несущей способности сворных двугав- ров с высатой стенки 900мм для надкрановой части ступенчатых колонн Стапь ниэкопегированноя	L'epo 142	19 4-2
1970r	рав с выситья степка зовый онд наократова	выпуск	Nucri
	части ступенчатых колонн Сталь низколегираванная	2	19

**	Размер	ысечения	7, 3,										Д	חס	YCK	αer	1618	Н	opr	10/11	bHb	<i>ie</i>	ycu	пия	7 [N]	В	mai	HHO	Æ.	при	•			·													
No	Стенк	a Monke!	/Inoução				é	?=6L	7 cm	,							E	= 70	CM.							e=	80 ci	ч		_				e:	900	M						E	?=/(10 cr	1.			
	hral	Bxt	CEHEHHII	;	ℓ_{α}	c (M)			l	y (1	7)			E	se l	M)			ly	(m)			t	x l	M)		ť	y (M	e)			ℓ_{π}	c (rs)			ℓ_y	(M))			ℓ_x	(M)	,]		ly	(M)	*********	
		YM	CM2	5 1	10 14	18	22	2,5 3	,5 4,	5 5,	5 6,5	7.5	6	10	14 1	3 2	2 2,5	3,5	4.5	5,5 E	5 7.	5 6	10	14 /	8 22	25	3,5	4,5 5	5 6,	7.5	6 1	0 14	18	22 2	2,5 3,5	54.5	5,5	6.5	7.5	6 10	7 14	18	22	25 3	7,5 4.6	5 5,5	6.5	7.5
00-1	900 × 8	280×10	123	94 5	74 9	4 24	94	94 9	14 9	4 9	4 -	-	89	89	09 S	9 8.	9 88	89	39	89 -	- -	85	85	85 8	35 85	85	85	82 8	2 -	_	81 8	1 81	31	81 2	31 81	75	7.5	_	- 1	77 7	77	7 77	77	77 7	17 71	2 69	1-	_
50-2	900 x 8	320 ×10	136			96					-	81	88	88	88 8	8	8 95	95	95	85 5	5 73	81	81	81	91 81	87	87	87 8	7 87	68	75 7.	5 7.5	75	75	31 81	81	81	80	62	69 65	9 63	3 69	69	75	75 7:	5 75	74	57
~D-3	900×8	320×12	149	112 1	12 11	2 112	112	112 11	12 11	12 11	2 112	98	106	106 1	106 11	75 10	s val	106	105	10611	16 8	9 102	102	102 1	12 10	2 102	102	102 10	21 10	1 82	97 9	7 97	97	97 5	77 97	97	94	93	75	93 9.	3 9:	3 93	93	93 9	73 9.	3 88	87	70
30-4	900×8	360 112	1			0120	- 1	i		- 1	- 1	1	1 . 1				•	í	!!	- 1			1 1		- 1	i	1 1		- 1	1			1 1	- 1		1	1 1						1					
	900:10	320×12	167	166 1	68 16	6 166	155	181 17	13 13	50 12	29 127	99	1517	150	150 1.	50 11	2 150	157	137	118 1	6 8.	9 138	138	138	38 13	DV53	146	126 1	09/0	7 89	126 12	125	126	120	42 13	5 117	101	98	76 1	117 11	7 11	7 117	112	132 1.	26 10	19 94	91	70
30-3	900×10	360×12	176	1461	45 14	18146	146	157 1	57 13	57 13	54 <i>139</i>	135	193	133 1	1331	33/13	3 14	144	144	141 1	27 12	3.123	123	123 1	23 12	3 133	133	1331	111 08	1/13	113 11	3 113	3 113	113	73 12:	3 12,3	121	100 1	1041	105 10	25 10	15 105	105	115 1	15 11	5 113	102	9
	0	360 ×14	1		- 1	18 199				- 1		1		- 1		1				- 1	- 1		1			1	1 1	i i	1	1	1	_ i		-	1								+					_
917-16	900 x 12	360 × 14	1			23 211		1	- 1	- 1	1	1			- 1	- 1			!	1		1			_		1 1	- 1				_												_			7	_
10-17	SND: 12	360×16	1	, ,	- 1	(4 230			- 1		1		1 1	- 1	- 1	- 1			1 1					I	1		1 1	- 1			•	- 1	1 '														1	1
90-18	500×12	400×16	1			53 248			- 1		- 1		1 1						1 1								1 1		- 1	- 1	1 1	- 1		- 1			1								_			
90-19	900×12	400×18	252			36 270																																										
S. 30	000-12	150 18	270	337 3	323 31	12 298	279	3/1/3	39 3.	24 30	04 273	9 25	304	293	234 2	70 2	55 30	8308	298	279 2	572	31 27	267	2602	248 23	5 280	280	276 2	59 23	8 214	2532	4523	9 223	218	259 25	925	7241	221	195	233 22	25 2;	21 212	203	2372	237 2:	3722	520	1/8
97-21	900×12	450×20				39 321																													273 27	272	252	242	219	2512	1152	19231	221	2572	2572:	5724	5 227	120
32: 4 i	900×12	500×20				58 349																													202 30	2 302	2298	280	261	271 21	622	52 252	2241	2782	2782	1827	926	324
90-20	900412	500×25	358	4704	152 (11	41418	395	4704	704	674	48 42	398	127	420	402 3	8230	142	7427	0.27	414 3	92 38	7 390	383	368	52 33	4 390	390	<i>390</i> 3	8436	4341	358 3	53 34	0326	311 3	358 35	8 352	358	340 :	318	333 32	26 3.	15 30%	3290	3333	133 3:	33 <i>33</i> ;	3 3/5	29
<u> </u>	900 × 11	500×25	394	5054	8946	6 442	417	505 5	054.	964	72 445	5413	458	443	124	04 3	84 15	7.256	4.5%	i.		1		1		- 1	1 1	1 1.	- 1		3843				- 1	1	1 :	1 1					Y	1 +	354 32	5435.	2 331	30
4-25	900=10	500×28	424	550 5	535 57	0 484	457	550 5	50 5	415,	17 482	9 455	499	485	4654	424	15 49	9400	199				†	\vdash		+	1				4194			1			_	-			\rightarrow			,	3883£	98381	6 36:	534
90-27	900×10	500×32	464	610 6	610 61	0610	582	610 6	106	10 6.	10 602	2563	554	554	554 3	545	40 55	4554	554	554 5	54 52	24 507	507	507	507 50	1 50	507	507 5	07/50	7490	4664	66 46	6456	456	46644	 E 466	1466	1.66	460	431 4:	314:	91431	1431	4314	1314:	3/43	1 43:	143

Примечания и принятые абазначения см на писте 13

ТК Тобрица несущей спосовности сварных двугав, с высотой стенки 900 км для надкрановай чаи исто ступенистых колокн. Столь ниэколегиравани.	706 74	Cept 1.42	ия 4-2
1970г ступенчетых голону. Стеть ниэколегировант (продолжение)	1018	выпчек 2	//ucm 20

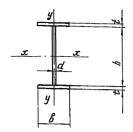
Оδознαчения:

[N] — допускаемое нормальное усилие;

 $p = \mathfrak{s}$ ксцентриситет, равный $rac{M \mathsf{x}}{N}$;

lx — расчетная дпина копонны в ппоскасти рамы ,

ly — расчетная длина колонны из плоскости рамы .


Сниго		Размеры	сечения				<u>-</u>		JONYCK	aemble r	прма	NbHble Y	сипия [N] в то	ннах при:		
opuc	Nºº	Стенка	Ποπκα	Ппощадь	Q	=10 cm	6	?=20cm.	e:	= 30cm.	6	2=40 cm.	e=50 cm.	E = 60 CM	e = 70 cm.	E= 80 cm
1/40	сечения	hxd	Bxt	сечения	Ex(M)	By (m)	Ex(M)	ly(M)	ex(m)	ly(m)	Ex(M)	ly (m)	Ex(m) Ey(m)	lx(m) ly(m)	ex(m) ey(m)	ex(m) ey(m)
onsa		MM	,	CM2	7.5 14 16	5,5 6,0 6,5 7,0	7,5 14 16	5,5 6.0 6.5 7.0	7,5 14 16	5,5 6,0 6,5 7,0	7.5 14 16	5,5 6,0 6,5 7.0	7.5 14 16 5,5 6,0 6,5 7,0	7,5 14 16 5,5 6,0 6,5 7,0	7.5 14 16 5,5 6,0 6,5 7.0	7.5 14 16 5,5 6,0 6,5 7.4
2 X 3	40-4	400×8	280×8	76,8	79 79 74	84 75 72 72	2 60 60 57	67 60 57 57	49 49 47	55 50 48 48	42 42 40	47 43 41 41	36 36 35 41 37 36 36	32 32 31 37 33 32 32	28 28 28 33 30 29 29	26 26 25 30 27 26 26
4	40-5	400×8	280×10	88,0	r1	1 1 1 1	1 1 1 1	1 1 1 1 1 1					 		38 34 33 40 37 34 34	34 31 30 36 34 31 31
	40-6	400×8	320×10	96.0	114 105 98	121 115 109 101	2 87 80 75	98 93 88 82	70 66 63	82 78 74 69	58 56 53	69 67 63 59	49 49 47 58 58 55 52	43 43 41 50 50 49 46	38 38 37 44 44 44 42	35 35 34 40 40 40 38
3	50-5	50848	320×10	104	132 132 125	132 125 118 10	7 102 102 97	111 105 99 90	85 85 81	94 89 84 77	72 72 69	82 78 73 67	63 63 61 73 69 65 59	55 55 54 63 62 58 53	50 50 48 56 56 53 48	45 45 44 50 50 48 44
Sola	<i>50-6</i>	500×8	320×12	T	1 1 1			1 1 1 1 '	1 1 1	lltt	1 1 1 -				62 58 56 63 63 62 58	
NOGO IHHEII	<i>50-7</i>	500×8	360×12	126	181 165 157	173 167 160 15	3 143 128 122	148 143 137 131	118 107 102	126 123 118 112	100 92 88	106 106 103 98	86 80 77 91 91 91 87	75 71 69 79 79 79 79	66 63 62 69 69 69 69	59 58 56 63 63 63 63
7557	63-6	630×8	360×12	137	196 196 193	186 178 170 16	2 <i>166 59 53</i>	168 161 154 147	139 135 130	147 141 134 128	120 117 113	130 125 119 113	104 103 99 112 112 107 102	91 91 89 99 99 97 92	82 82 80 89 89 89 85	74 74 72 79 79 79 78
88	63-7	630×8	360×14	151	215 215 215	207 199 191 18	2 199 179 172	189 182 174 166	168 152 146	165 159 152 145	145 132 127	146 142 135 129	126 116 112 126 126 122 116	111 103 100 112 112 111 101	6 99 93 90 101 101 101 97	89 84 82 91 91 91 85
DOS	71-6	710 × 8	400×14	169	210 205 202	190 187 184 18	3 234 214 207	226 220 213 205	201 183 177	199 194 188 181	174 160 155	175 174 168 162	153 142 138 153 153 152 147	135 127 124 136 136 136 134	121 114 112 122 122 122 122	110 104 102 110 110 110 110
loos Vene	71-7	710×8	400×16	185	236 230 227	214 210 207 20	1 259 237 230	250 244 236 228	222 203 197	221 216 209202	192 178 173	192 192 188 181	169 158 154 169 169 169 164	149 141 138 149 149 149 149	136 128 125 136 136 136 136	122 116 114 122 122 122 12:
11.	63-9	630×10	400×16	191	307 282 273	271 264 255 24	16 252 226 218	248 241 234 225	213 192 185	216 211 204 197	183 167 161	185 185 182 175	159 147 142 161 161 161 157	141 131 127 142 142 142 142	125 117 115 126 126 126 126	113 106 104 114 114 114 114
7 1	63-10	630×10	450×16	207	334 308 298	301 296 292 28	34 <i>276 248 23</i> 5	277273268261	233 211 203	237 237 235 229	201 183 177	202 202 202 202	176 161 156 177 177 177 177	155 144 140 155 155 155 155	138 129 126 140 140 140 140	125 117 115 126 126 126 126
2 3	71-9	710×8	400×20	217	287 279 275	261 257 253 24	7 308 283 275	298 292 284 275	266 244 236	265 260 252 244	229 214 208	229 229 227 220	202 190 185 202 202 202 200	181 171 167 181 181 181 181	161 154 151 161 161 161 161	147 140 138 147 147 147 14
3	63 -11	630×10	450×18	225	365 337 327	328 323 318 31	0 302 272 263	304 299 295 287	257 232 223	259 259 259 252	222 202 195	222 222 222 222	193 178 172 194 194 194 194	171 159 154 171 171 171 171	153 143 139 153 153 153 153	138 130 127 138 138 138 131
yren vrab	63 -12	630×10	500×18	243	3 <i>96 366</i> 355	361 356 351 34	7 328 296 286	335 331 327 323	<i>280 253</i> 244	282 282 282 282	241 220 213	241 241 241 241	210 194 188 210 210 210 210	187 174 169 187 187 187 18	167 156 153 167 167 167 167	151 142 139 151 151 151 15,
Usbc	71-17	710×10	500×18	251	377 377 377	370 367 362 35	7 354 325 316	355 351 346 341	305 279 271	306 306 306 302	265 245 238	265 265 265 265	231 218 212 231 231 231 231	206 195 190 206 206 206 206	185 176 173 185 185 185 185	169 160 157 169 169 169 165
200 L	71-18	710×10	500×20	271	400400400	397 397 392 38	°6385354344	386 381 376 371	332 304 295	333 333 333 329	288 267 259	288 288 288 288	253 238 232 253 253 253 253	3 226 213 208 226 226 226 226	5202193 189 202202 202 202	183 176 172 183 183 183 18:

Примечания:

| UHMMIPOEKT CTAALS | KOHCTPSKUMP | |

• Натериал колонн - с таль типа "Сталь 3". Марка стали и человия её поставки принимаются по чказаниям раздела $\frac{\nabla}{2}$ пояснительной записки. 2 При промежуточных значениях эксцентриситетов "Е" несущую спосовнасть сечений можно определять по линейной интерполяции приведенных в таблице значений несущей спосовности (раздельно по l_x и по l_y). Яналогично может быть определена несущая спосовность сечений при промежуточных значениях l_x и l_y .

TK	Табаица несчиви Вытавров с высот	способности с	варных	CEPU 1.424
1970r	для колонн посі	'UU L'ITIEHKY 00 TIOЯННОГО СЕЧЕ	HUMM HUA.	Bbinsek 2

Οδοзнαчение:

e – эксцентри**си**тет, равный $\frac{Mx}{N}$

	Размеры	СЕЧЕНЦЯ			Annual	2010 104 10	норма	abusia	<i>Unitaria</i>		
№ сечения	Стенка h×al	Полка в×t	Пяощадъ сечения			[w]	норма В тонна чениях	X	geanag		
	MI	и ———	CM2	10см	20 cm	30cm	40cm	50cm	60 см.	70см	80см.
90-1	900×8	280×10	128	92	114	106	95	86	79	72	87
90-2	900×8	320×10	136	112	121	117	110	100	92	83	75
90-3	900×8	320×12	149	131	133	129	124	118	109	100	93
90-4	900×8	360×12	158	152	140	138	133	126	120	114	104
90-7	900×10	320×12	167	173	167	148	133	121	110	102	94
90-8	900×10	360×12	176	179	204	181	163	148	136	126	114
90-9	900×10	360×14	191	189	229	204	184	168	154	142	132
90-10	900×10	400×14	202	210	262	234	212	193	178	162	147
90-11	900×10	400×16	218	234	288	258	234	214	197	179	163
90-13	900×10	450×16	234	265	308	294	267	239	214	194	177
90-14	900×10	450×18	252	293	327	321	291	261	233	212	194
90-15	900×10	450×20	270	321	345	347	3/5	282	253	229	210
90-22	900×12	500×18	288	344	413	371	333	296	265	241	220
90-23	900 ×12	500×20	308	376	445	401	358	319	286	261	237

- 1 Материал колонн- сталь типа "Сталь3", Марка стали и человия ее поставки принимаютея по чказаниям раздела ∑ пояснительной записки,
- 2. Расчетная длина колонны в плоскости рамы (вх) принята равной 7,5м, из плоскости рамы (ву)-6м.
- 3. При промежу точных значениях эксцентриситетов "е" несущую способность сечений можно определять по пинейной интерпопяции приведенных в таблице значений несущей способности.

Крайний ряд

а

1

Для узла (1)

Для узла (2)

ДЛЯ УЗЛА (3

Для узла (4)

15

I THINI IPDENTETAND TOUGH

Диатрагна

3

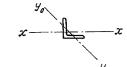
Детали фасадов показаны применительно к узлам

ДЛЯ УЗЛА 5

ДЛЯ УЗЛА (6)

Средний ряд

3-3


Таблица 1 Сортамент и несущая спосодность

решетки колонн

ραςκοςοβ

					a	(MM)	
Сечение	۶	Ċ,	L40	1000	1250	1500	2000
" <i>D"</i>	(CM²)	(CM)	(CM)	Допус на с	תונות מ מלוא א	e yeur	πυ ε[N] (m)
L 63×4	4.96	1.95	1.25	3.3	-	-	-
L 7014.5	6,20	2,16	1.39	4.9	3,5	-	
L 75 × 5	· 7.39	2,31	1.49	6,5	4.6	_	-
L 80×5,5	8,63	2,47	1.59	8,4	5,9	4.5	-
L 90 × 6	10,6	2,78	1.79	11.8	8,8	6,6	-
L 100 16.5	12.8	3,09	1.99	15.4	12,4	9.3	-
L 110*7	15,2	3,40	2,19	19,2	16.7	13,0	8,3
∟ <i>125+8</i>	19.7	3,87	2,49	26.2	23,4	20,0	13,0
∟ <i>140×9</i>	24,7	4,34	2,79	33,8	31,2	28,0	19,4
L 160×10	31.4	4.96	3,19	44.0	42,0	38,9	30,0
L 180+11	38,8	5,60	3,59	55,5	53,4	50,7	43.0
L 200+12	47.1	6.22	3,99	68,5	66,3	64.3	56,5
L 220×14	60,4	6.83	4.38	88,5	86.0	83.8	76.5

Обозначение осей поперечного сечения элементов "Д" и "С".

Ταδπυμα 2

Сортамент стоек решетки колонн

ı		1	ŀ			a		(nn)			
١	Сечение	F	<i>7</i>	100	00	123		150	20	200	20
١		l ′	Ly	Ma	тери	an B	em8u	коло	HHDI		
١	"C"	(CH2)	(CH)	Ст. 3	HN	Cm.3	НΛ	Cm.3		Cm.3	HA
				Make ceuel	UMANE HUR OL	אם מאל ממאל	onyem embu	UMAR KONOHI	1100LL 161 (CI	1986 49).	
1	∟ <i>56×4</i>	4,38	1.11	475	237	344	172	262	131	~	-
1	L. 63×4	4.96	1.25	500	292	469	234	352	176	-	-
١	L 70 × 4.5	6.20	1.39		390	500	337	500	261	336	168
ļ	L 75 ≠ 5	7.39	1.49		480		422		344	446	223
	L 80+5,5	8,63	1.59		500	1/	50.0		438	500	285
	L90×6	10,6	1.79		_n_				500		422
ı	L. 100+6,5	12,8	1.99	-			 -				500

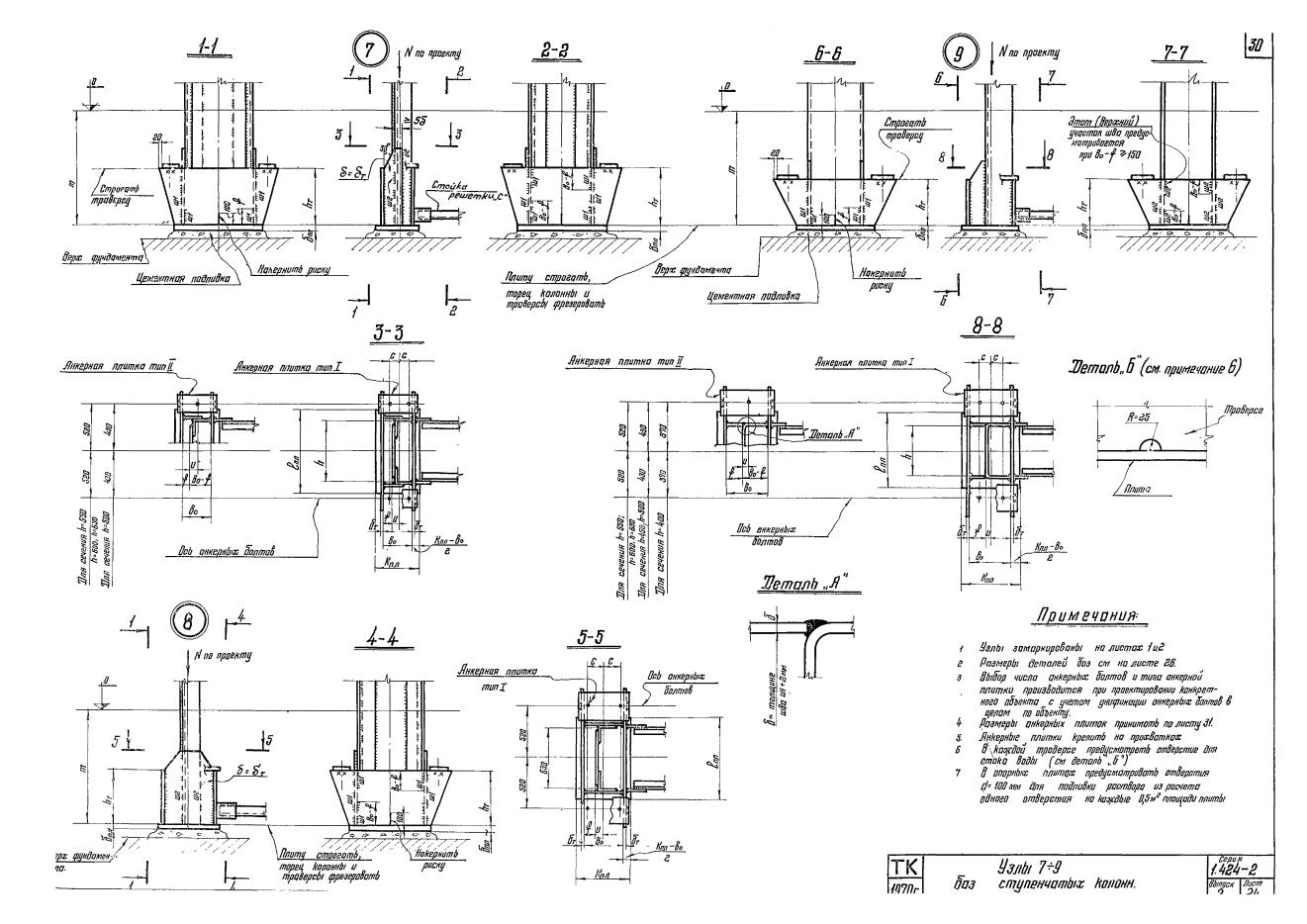
л_ Примечания:

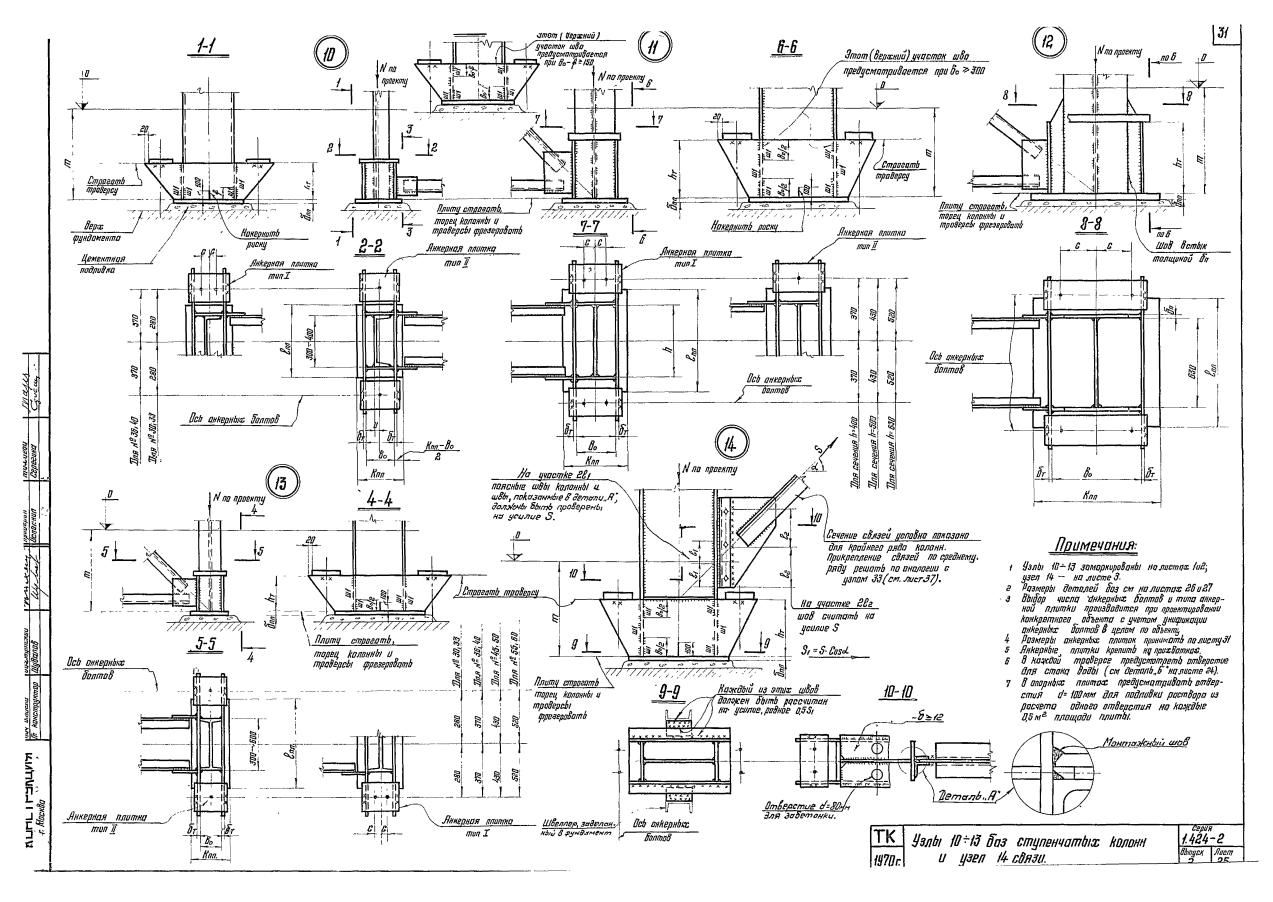
Bud A

Bua 6

- 1 Узлы запаркированы на листах 1 и 2.
- 2. в решетке колонн стойки не требуются, если 2 в < [еу]
 (значения [еу] см на листах 9 и 12). Для колонн крайнего ряда
 стойки, развязывающие наружные ветви, предустатри ваются во всех случаях.
- 3 Расстоянце пенду диафрагнани определяется в соответствии с указанияни п. 8.28 СН и П. Т. - В. 3-62*.
- ч При разработке чертеней КМД колонн с ветвяни из сварных и гнутых профилей нелательна прининать весфасоночное решение узлов решетки, если это позволяют ширины полок ветвей.
- 5 Размеры сварных швов, приваривающих элементы решетки, принимаются по расчету. Швы в диафрагмах принимаются толщиной бым.
- 6. Расчетное усилие в раскосах решетки устанавливается на

основе большего из двух значений поперечной силы в колонне, определяеной либо статическим расчетом раны, либо по формуле условной поперечной силы дусл. = KF. + KF2, где:


F, и Fz - площади сечения кандой ветви;


К=20 при ветвях из стали 3;

К=40 " " низколегированной стали.

- Материал элементав решетки колонн сталь типа "Сталь 3."
 Марка стали и условия ее поставки принимаются по указаниям раздела І подснительной записки.
- 8 Тип электродов для сварки принимается по указаниям раздела 🗓 пояснительной записки.

ΤK	Узлы 1÷ 6 ре	шетки ступенчатых ко и несущая способносі)ЛОНН; (1	ерия 424~2
1970r.	элементов	решетки.	77 6 8617	уск Лис 23

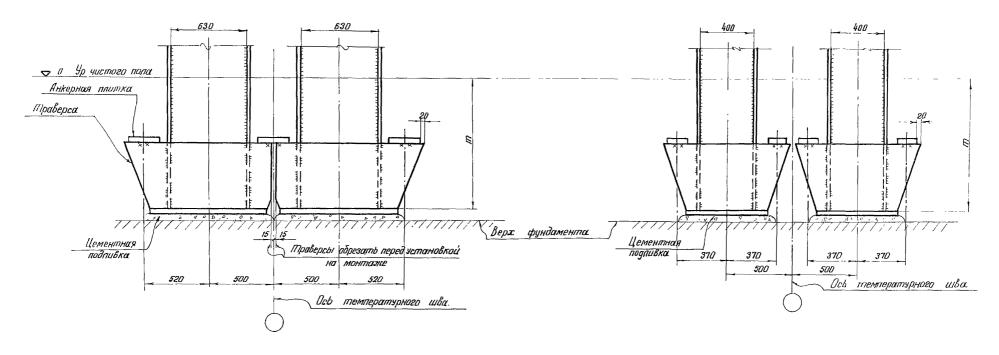
					ļ	Mai	периал	т ветве	ий коло	IHH- L	толь	J			Ма	териа	л бе	mbeŭ k	יאא מתם	- <i>cm</i> q	nb HJ	7		
Тип сечения бетви	NNº				NN		,	*)			Попщи		max da					*)			Попщ		max a	
пда	СЕЧЕНИЯ	в»**)	£**)	И	узлав	Enn.	Kna	ปิ๊กก.	hr	Ðτ	швав		ומשע שמן	ae Sanmob	NN แลภอชิ	lnn.	Kna	ปิ๊กก.	hr	ปี๊r	шва	<u> </u>	При чи онкеонь	ទេវា ខ្លាំង ស្វីពិភា
un ge	ветви		'		ganuo	1					Ш	шг	<i>f 003</i> :	ŗ	yanuu	GIIII.	11141	0	l"'	"	Ш	ШЕ	рнкернь тав в	
		<u> </u>	мм				L		MM	l	Ĺ	<u> </u>	2	4			l	l	MM	<u> </u>	L	L	2	4
	40-1	140	SI .	20		500	25[]	20/25	320	12	8	8	36	-		500	250	20 25	320	Æ	8	8	36	T =
] [40-2	180	7/	20		500	280	20/25	320	12	8	8	56	30		500	280	a0 25	320	12	8	8	56	30
1	40- 3	207	76	<i>30</i>	1	500	320	20/25	320	12	8	8	56	36		500	320	20/25	320	12	8	8	56	36
	40-4	220	76	30		500	320	20 25 20 25	320	12	8	8	56	36 30		500	320	20 25 20 25	320	12	8	8	56	36 30
!	40-5 40-6	180 200	59 74	2Q 30	1	500 500	280 320	20/25	320 320	12:	8	8	56 56	36	'	530 630	280 380	20 25	320 320	12 12	8	8	58 58	36
l t	40-7	220	74	40	1	500	J20	20/25	J20	12	8	8	56	36		630	320	20 25	320	18	8	8	56	36
	40-8	250	84	40		500	360	21 25	320	12	8	8	56	48		500	350	22/28	320	12	8	8	56	48
] [45-1	250	89	40		630	360	24 25	320	14	8	8	56	48]	630	360	22 28	320	14	8	8	56	48
1 [45-2	280	9/	<i>50</i>		630	400	24 28	320	14	8	8	56	58		630	450	28/32	320	14	///	8	58	56
1 1	50-/	220	84	30	1	630	320	20 25 PO /	400	12	8	8	55	36		630	320	20 25	400	12	8	8	56	36
	<i>50-2</i> 50~3	250 220	89 81	40 30	ł	63D	360 320	EU 25 20 25	400	12	8	8	56 56	48 36	}	630 710	360 400	21 25 29 36	400 400	12 12	8	8 10	56 56	48 36
1 H	<i>5</i> 0-4	250	86	40	ł	630	350	22 28	400	12 12	8	8	56	48		710	400	25 30	400	12	8	8	56	48
1 70	50-6	250	84	40	g	7/0	400	24 28	400	14	8	8	56	48	i i	סוק	500	44 50	400	14	8	8	56	48
швеллери	50~7	280	89	SD]	7/0	400	25 30	400	14	8	8	56	<i>56</i>	g	7/0 -	500	42 50	400	14	fD	10	56	56
bes	50-8	<i>320</i>	104	55		710	500	36 40	400	14	8	8	48	56		710	630	52 6D	400	14	10	10	48	56
§	55-1	250	86	40]	7/0	360	21 25	400	16	8	8	56	- 48		710	400	25 30	400	16	8	8	56	48
ا يو ا	55-3	280	89	45		900	500 .	36 40	400	16	8	8	56	56		900	500	42 .50	400	16	10	10	56	56
1011	60-2	280	114	35		900	360	25 32	500	15	. 8	8	56	56		900	500	42 50	500	16	10	10	56	56
2ну тые	60-3	320	127_	45	l	900 800	500	34 40	500	<i>16</i>	8	8	48	56		900	560	42 50 20 25	500	<i>16</i>	10	///	48	56
1 %	63-1 63-4	250 280	101	30 40	l	900	360 400	21 25	500 500	15	8	8	56 56	48 56		800 900	360 500	47 56	500 500	16	8 10	8	56 56	48 56
] <u> </u>	53-5	320	119	45	j	900	490	29 36	502	16	8	8	48	58		900	500	47 56	500	18	10	10	48	56
i t	63-G	280	102	40	1	900	500	34 40	500	15	10	10	56	58	1	900	560	47 56	500	18	10	10	55	56
[<i>63-7</i>	320	117	45]	900	500	34 40	500	16	10	10	48	56		900	56D	58 60	500	18	12	12	48	56
	63-8	360	1B7	60	1	900	500	47 56	500	18	10	10	48	56	l	900	. <i>630</i>	54 60	500	18	12	12	54	64
1 }	63- g	400	137	6E	ł	900	560	47 56	500	18 .	10	10	48	56		900	630	54 60	500	18	12	12	<i>6</i> 4	54
	63-10 63-11	400	134	68 70	1	900 900	630 630	35 40 40 50	400	20	12	12	<i>64</i>	64 64		900	630	45 50 47 56	400	<i>B</i> 4	15	16	64	64
┝╾╅	50-1	250	100	35		710	360	21 25	400	<i>20</i>	8	8	56 56	48	 	<i>900</i>	63D 50D	42 50	500 400	18	14 8	14	54 56	<i>54</i> 48
]	50-2	320	130	40	1	710	សារ	38 40	400	14/	8	8	48	56	1	710	630	47 56	400	14	8	8	48	56
[50- 3	320	128	40]	710	500	36 40	400	14	8	8	48	56	1	710	630	47 58	400	14	8	8	48	56
[<i>5</i> 0-4	280	108	40	1	710	500	36 40	400	14	8	8	56	56		7/8	630	65 70	500	14	14	14	55	56
(é.]	55-1	250	78	35		7/0	630	22 26	400	16	8	8	56	48	7	800	500	42 50	500	20	14	14	56	48
tay .	60-1	280	110	35	1 77	900	400	22 25	500	16	8	8	56	56		900	500	42 50	500	16	10	10	56	56
швеллеры	63-/	28D 320	110	30 45	7	900	400	21 25 36 40	500	16	8	8	56 48	56	ł	900	500	42 50	500	16	10	10	56	56
*	63-2 63-3	320 500	110 108 205	45	İ	900	500 500	34 40	500 500	16 16	8	8	48	56 56	 	900	50 <u>0</u>	42 50 58 60	500 500	18 18	12	12	48	<i>56</i>
ا ہو ا	63-4	350 500	128 200	5Ú `	l	900	500	34 40	500	18	10	10	48	54	ł	900	710	56 60	500	20	14	14		64
gua	63-5	35U 63D	124 265	50	1	900	710	58 60	500	18	12	12	48	64	8	900	800	60 70	500	20	14	14		64
Сварные		320 630	104 265	50	1	900	7/0	58 60	500	18	14	4	48	64] ~	900	800	62 10	500	20	16	15		64
1 1	63-7	400 630	134_250	65	<u> </u>	900	7/0	56 60	500	20	16	14	48	64	<u> </u>	900	900	55 60	500	20	16	16		64
. E	Ľ 30	200	80	20		400	32 <u>0</u>	20/25	250	12	8		56	36		400	320	20 25	250	12	8		56	36
epa eka-	<u>[33</u>	200	70	30	Jn.	450	320	20/25	250	12	8		56	36	10	450	320	20 25	250	12	8		56_	36
Лрокатные швеллера Гост 8е4а-56*	<u> [36</u>	200	70	30	10	500	320	20 25	250	14	8		56	36	10	500	320	20 25	250	14	8	_	56	36
<u>888</u>	E40	220	80	30	L	500	320	20 <u>25</u> 111111111111111111111111111111111111	320	12	8		56	36	L	500	360	23 28	320	12	8		<i>56</i>	36

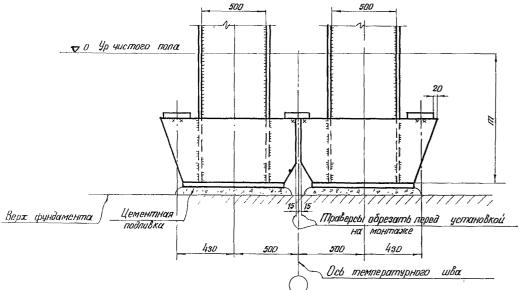
- 1 Узлы 7÷9 и обозначения размеров ст.на листе24; узвл 10— на листе 25.
- 2. Приведенные в таблице значения тах домн.
 показывают максимально допустимые диаметры анкерных балтов исходя из несущей
 способности принятых сечений троверс,
 сечений анкерных плиток и усповий размещения долтов между троверсами.

 Диаметры анкерных балтов для проектируемого
 объекта устанавливанатся по расчету с учетом
 унификации балтов для данного объекта.
- з Маітериал деталей баз— сталь типа "Стальд. Марка стали й уславия её поставки принимаются по указаниям раздела V паяснительной записки.
- 4. Материал анкерных болтав-сталь типа "Сталь 3.
- 5. ПТип эпектродов для сварки принимается па указаниям раздела 🞹 пояснительной затиски.
- 6. Базы для сечений Nº63-10,63-11 из низколегированной стали расьчитаны на максимальное усилие, равное 500т

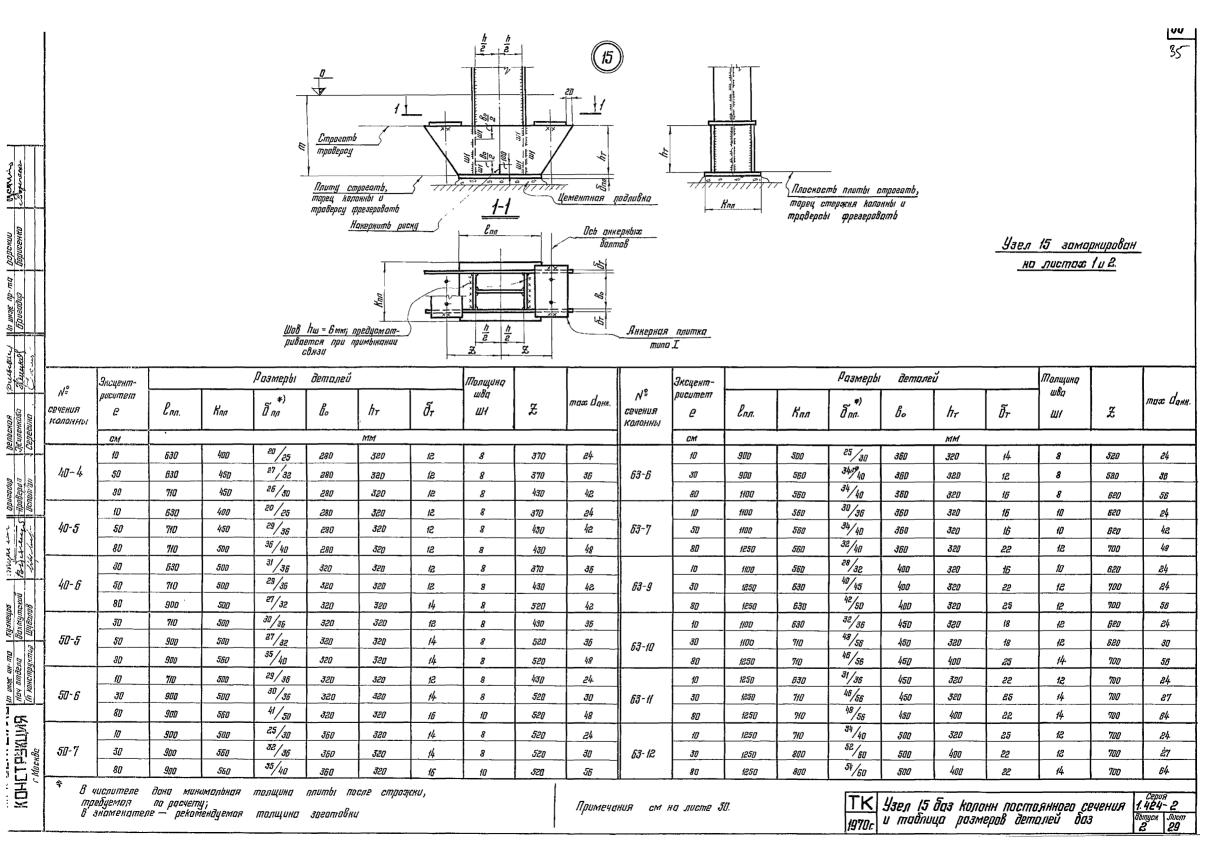
			('anu a
TK	Паблица размеров	สิยกายภายมั ฮัดร	Серия 1.424-2 Вапуск Лист
000	Падлица размеров наружных ветвей крайнего ряда	ступенчатых коранн	выпуск зінст
970r.	крайнего ряда	J	2 26

^{*)} в числителе дана минимальная толщина плиты пасле стродски, требуемая по расчету;


в знаменателе — рекомендуемая толщина заготовки. **) В числителе даны Величины во и в для базы по узлу 7, в знаменателе — для базы по узлу 8.


			Mo	териа	п ветве	ей коли	THH - CI	паль е	3			Mamep	uasi .	Ветвей	калані	ч — ст	anb h	II		
Бетви Ветви	ฟฟ ² เอ4ยหมя ชิ <i>ет</i> ชิบ	Епп мм	ฟฟ มูฮกอช็	Knn	*) ปักล	Bo	hr	$\widetilde{\mathscr{O}}_{ au}$	Папцино иво Ш	тах da При чис, анкернь болтав 2	ne Ix 8 базе 4	NN 43.008	Кпп	*) ปิ๊กภ	ви	hτ	Õr	Тапицино ФВа Ш	тах а При чи анкерн балтав 2	оле b/x в бизе 4
	40-7	†		320	20 25	200	320	<i>/2</i>	8	64	36	1	560	26 30	200	320	/E	8	54	36
	40-8	1		J20	20 25	200	320	12	в	64	36	1	360	28 32	200	320	12	10	54	36
	40-9	630			20 25				8	64		ĺ	360	22 28	220	320		8	64	38
	40-IV	DVII		320 320	20 25	220 220	320 320	12	8	<i>5</i> 4	36 36	-	400	30 36	. 220	380	12 12	10	64	35
	40-11	1		360	20 25	240	320	12	8	54	48	1	450	33 40	250	320	12	10	64	48
	50-8		1	320	20 as	 	ļ	12			 	·	400	34 40	200	 	 	10	64	38
	511-9			_	20 -25	220	400	1-	8	<u>.64</u>	36	1	400 _	29 38	220	400	12	8	64	36
	50-10			320 360	22 28	220	400	12 12	8	64	36 36	#	450	41 50	220	400	12	10	64	36
	50-11	710	}	360	20 25	25D	400	12	8	54	48	1"	450	34 40	250	400	12	10	64	48
	50-12	1 ''-		400	25 30	250	400	12	8	64	48	1	500	45 50	257	400	12	12	64	48
	50-15			450	27 32	280	400	12	8	64	56	1	500	41-50	280	400	12	10	- 64	58
	50-14			450	28_32	280	400	12	 	64	56	1	56D	52 60	280	400	14.	12	Gr	56
*	65-13		- #	400	25 30	250	500	14	10	64	48	1	500	46 56	250	500	14	12	64	48
ρφο	63-14			450	3c 35	850	500	14	10	64	48	1	560	57 60	850	500	14	14	64	48
рdдашñдр	63-15	İ	'	450	28 32	280	500	14	10	64	56		560	52 50	280	500	14	14	64	56
d.	63.16		ļ	500	36 .40	280	50J	14	10	64	58		630	35 40	450	500	14	10	48	64
	63-17			500	30 36	320	500	14	8	64	64		7/0	5/60	560	500	14	8	_	64
дıф	E3-18			560	50	320	500	14	10	64	64	1	710	41 50	500	500	16	10		54
гірні до З	63 19			J#!!	34 W	160	500	14	10	64	64	}	800	44 50	560	500	16	10		64
2.2	6J-80	900		6JJ	41 50	400	500	14	10	64	64]	800	45 50	560	500	18	10	-	64
	63-21			830	42 -50	400	500	14	10	64	54		900	49 56	630	500	18	10		64
	63 22		}	110	47 50	450	500	16	10	48	64	12	900	50 56	630	500	20	10	_	64
	63 23		74.000 14 1.007	710	48 50	450	500	16	10	48	64		1000	56 60	710	500	20	10		64
	£3-24		1	800	48 56	630	500	16_	10		64		1000	54 50	800	500	20	14		64
	63-85			900	48 56	710	500	16	18		.64		1100	58 65	900	500	20	16	-	64
	63-26		12.	luga	5/1 60	800	500	_20 _	_/4		_64		1100	58 65	900	500	20	16	<u> </u>	54
	6J - 27		<u>.</u>	Hau	UR FOU	900	500	20	16		64		HOO	58 65	900	580	20 .	16		<i>5</i> 4
	_ <u>I</u> 30	450	_	250	20 25	135	250	12	8	36			280	24 88	135	250	le	8	36	
à.	I 33	45D	ļ	250	80 85	140	250	12_	8	36			320	30 36	140	250	18	8_	36	
ុ នូវនា - ភូមិ - នូវនា - ភូមិ	J 36	630	1	250	20 25	145	250	_14	8	36	ļ <u>-</u>		280	22 28	/45	250	14	10	36	-
Sign of the sign o	140	<i>63<u>0</u></i>	13	280	20_75	155	320	12	8 .	36	=	177	320 _	28 3B	155	320	12	10	36	
,3 855 555	I 45	_7/ <u>0</u>	- 1	2817	20 <u>- 25</u>	.IFD _	320	14	8	56	24	13	320	26 30	160	320	14	10	56	24
umeb.e Filian	1 50	_ 7 <u>10</u>		320	24 25	/10	400	<u> 12</u>	8	56	24		<i>320</i>	25 30	170	400	12	8	56	24
Ilpretames. TECT	I 55	90.)	-	JEU -	22 28	1811	400 _	16	10	56	30	-	320	23/28	180	400	16	10	56	30
<u></u>	I 6U	900	<u></u>	360	27 32	190	500	16	8	56	30	<u> </u>	360 .	27 32	190	500	16	8	56	30

в числителе дана мининальния наполична плиты после строжки, требуеная по расчету,


- I Узлы II-13 с абазначением размеров см на листе 25
- 2. Базы для сечений к 63-25, 63-26; 63-27 из нияколегиро-Ванной стали рассчитаны на максимольное училие, равное 900-
- 3 Приведенные в таблице значения тах д анк показывают максимапоно допускаемые дииметры анкерных долтав, иоходя из неоущей способности принятых сечений траверс, сечений анкерных плиток и условий разтещения болтов между траверсоми Диаметры анкерных болтов для праектируемпеа абъекта устанавливаются по расчету с учетом унифинации болтов для данного объекта
- 4 Материал деталей баз— сталь типа "Сталь З' Марка стали и условия ее поставки приведены В разделе ў пояснительной зописки
- 5 Материал анкерных балтав-сталь типа "Сталь 3"
- в Мип электродов для сворки принимается по указаниям риздела Ж пояснительной записки

в знаменателе — рекомендуемая толщина заготовки

- 1. На чертенсе показаны базы для ветвей из сварных двутавров с высатай стенки 630, 500 и 400 мм Базы у температурного шва для ветвей из гнутых и сворных швепперав, а также из прокатных профилей решаются аналагично в зависимасти от высоты сечения ветви
- 2. Размеры детапей баз принимаются по базат рядовых колонн Для ветвей е высотой стенки 630 и 500 траверсы обрезаются на монтаже, как показано на чертеже При этом, размер савтещенной анкерной ппитки не отпичается от плиток для рядовых колонн.

тах ванк.

24.

Полщина

шва

ШІ

B

 \mathcal{Z}

 δ_r

.0	Эксцентри-		Разме	еры детал	ะยั			Палщина			
№ ¹ ения VIOННЫ	cumern E	lnn.	Кпп.	₹) Žn1	lo	h _T	$\bar{\mathcal{Q}_T}$	шва шн	Z	тах Аанк.	<i>№</i> сечения коложны
	CM		·			MM					<u> </u>
	10	900	560	²⁹ /35	400	400	16	8	520	24	1
'I-6	JII	1250	560	e7/3e	400	400	20	10	700	27	90-11
	817	1400	560	27/32	400	400	25	12	780	56	ļ
	10	1100	560	30/36	400	400	16	f0	620	24	<u> </u>
7/-7	30	1400	<i>560</i>	27/32	400	400	25	f2:	780	<i>24</i>	90-13
	80	1400	630	36/ _{4D}	400	400	25	12	780	56	<u> </u>
	10	1100	560	²⁸ /32	400	400	14.	10	620	<i>2</i> 4	
H~G	50	1400	630	⁴² /58	400	400	25	14	780	42	90-14
m	80	1400	7/0	52/6D	400	400	25	14	780	56	
	10	1100	710	35/40	500	400	16	10	620	24]]
7/-17	30	/250	800	54/60	500	400	20	12	700	27	90~15
	8[]	1250	800	56 /6D	500	400	20	12	700	7.2	
		//00	710	37/45	500	400	16	12	620	24	<u>[</u>]
71-18	30	1400	800	52/60	500	400	25	14	780	22	<i>90-22</i>
	80	1400	<i>800</i>	55/60	570	400	25	16	780	64	
	3D	1100	450	22/28	280	400	12	8	620	24	
90-1	<i>50</i>	1100	450	25/30	280	400	12	8	620	42	<i>90-2</i> 3
	80	1250	450	25/32	280	400	14	8	700	42	
	30	1100	450	23 / ₂₈	320	400	12	8	680	24	
90-2	50	100	450	25/30	32O	400	12	8	<i>620</i>	42	*) B
	80	1250	560	35/40	320	400	16	10	700	48	8
	<i>30</i>	1100	500	25/30	320	400	12	8	620	24	
90-3	50	1/00	500	28/32	320	400	12	8	620	42	
	80	1250	560	41/50	320	400	16	10	700	SE	
	30	HOD	5DÕ	25/30	360	400	12	8	620	22	
90-4	50	1100	500	28/32	360	400	14.	8	620	42	1
	80	1250	560	34/40	<i>360</i>	500	16	12	700	56	1
	30	1100	560	35/ ₄₀	320	400	12	8	620	24]
90-7	รข	1250	560	35/40	320	400	16	10	700	42	1
	80	1250	560	41/50	320	500	16	12	700	56	1
	30	1100	560	35/40	360	500	14	8	620	27	1
<i>90-8</i>	50	1250	560	³⁶ /40	360	500	15	10	700	42	
	80	1600	560	31/36	360	500	25	12	880	48	
	J/J	1250	550	34/40	360	500	18	12	700	24	1
9D-G	50	1250	560	36/40	367	500	18	12	700	42	1
	80	1600	560	31/35	360	\$00	25	12	880	48	1
	30	1400	630	36/40	400	500	18	10	780	20	1
90-10	50	1600	560	28/32	400	500	25	12	880	42	1
	80	1600	630	36/40	400	500	25	18	8817	56	1

*) В числителе дана минимальная талщина плиты после строчени, требуемая по расчету; В знаменателе — рекомендиемая толицина заготовки.

Размеры деталей

38/45

37/45

33/40

48/56

49/56

33/40

47/56

46/56

32/38

49/56

48/56

57/45

55/60

53/60

42/50

57/60

55/60

B.

ħτ

50D

5/1/1

50D

MM

Зисцентри-

lan

ffDD

Kun

F30

7/0

7//

7/0

7/0

7/0

7/0

7/0

cumem

Р

CM

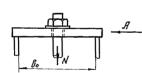
вD

ãΟ

- Чертенс баз с обозначением размеров съв на листе 29
- При пратежуточных эначениях "В размеры дая принимать по приведенныму в тайтице большему эначению "В размеры онкерных плитак принимать по листу 31. Анкерные плитки крепить на прихватках

- эппераміє принто прешини на просиднікаю в когісдой троверсе предусмотреть атверстие для стока воды (см. деталь "6" на листе 24). в опорных плитара предусматривать отверстия d=100мм. для подпивки растара из расчета одного отверстия на кожедые
- 0,5 м ? плащади плиты. 7. Материал детапей баз — сталь типа "Сталь 3. Марка стали и цоловия её постовки принимаются по указаниям раздела 🗹 пояснительной записки
- Mun электоодов для сварии получимается по иказаниям раздела $\widehat{\mathbb{V}}$ пояснительной записки.
- 3. Материал анкерных Болтов сталь типа "Сталь 3."

TK	Паблица	размеров	детал ей баз колонн	1.42
1970r	постоянн	1920 <i>C</i> E4EHL	ия (продолжение)	861119C


doms.

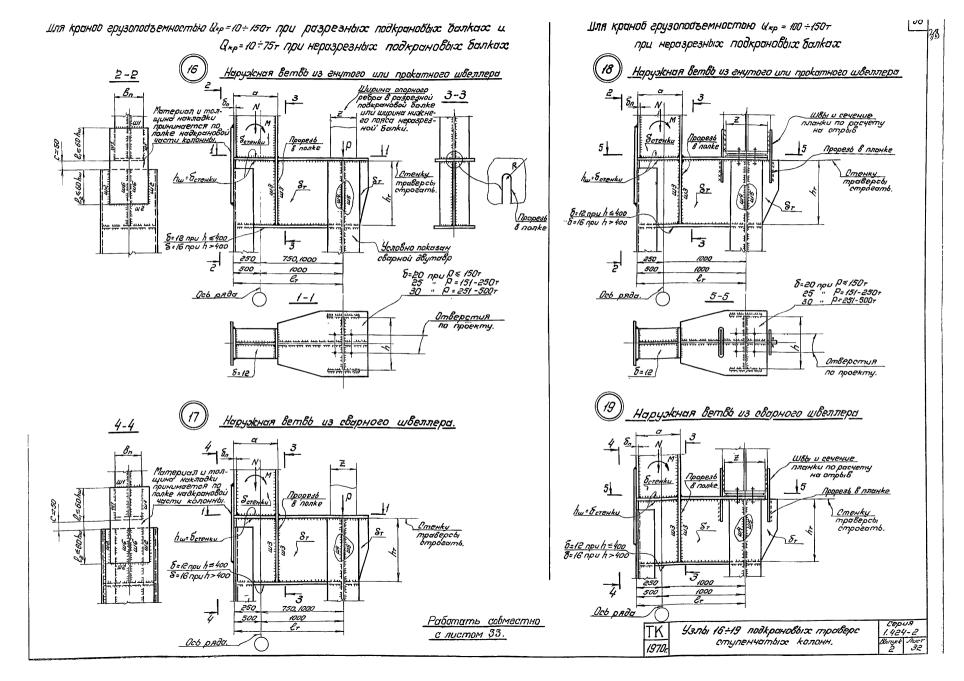
A domb

A Buð A

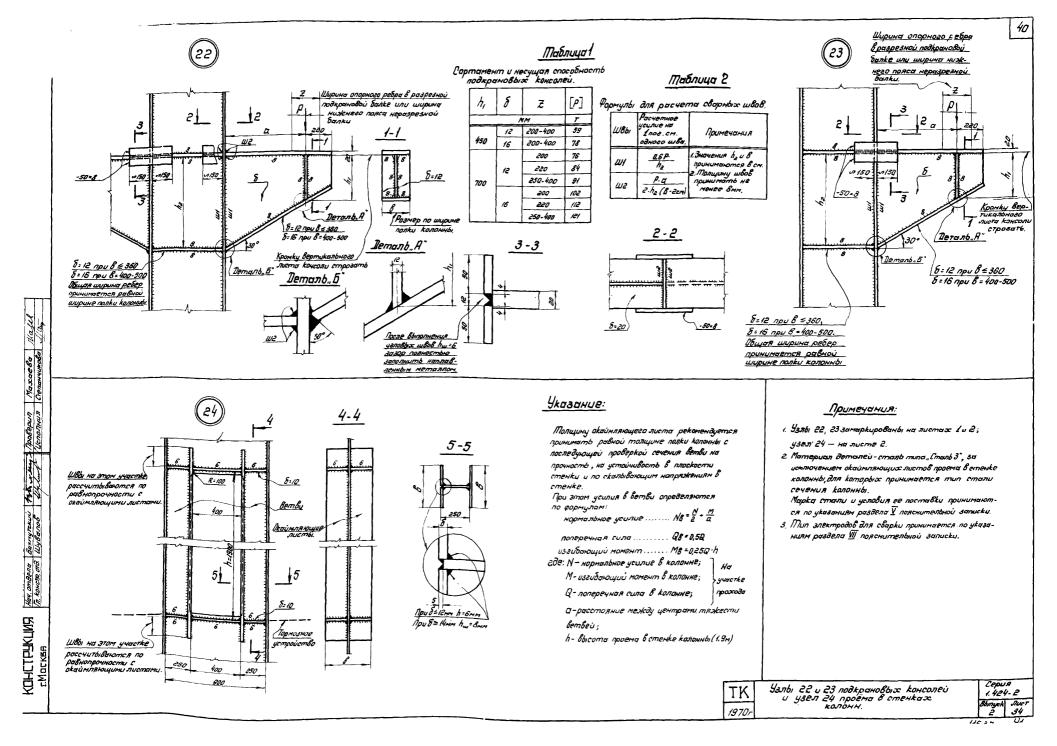
Янкерные плитки типа I

		4		ł	ļ	1	}						ρ_{a}	cemai	<i>AHN6</i>	межс	ly mp	аверс	ами "С	в" (мм	1)					_			_				
dank	Ν	Сеченив	FBz	Wnetto	R	[M]	dom8.	161	7	186	7	200	7	22.	0	250)	28	7	38	20	36	0	400	7	45	0	50	0	56	i0	≥ 6	30
		(K×ð)						q	C	Q	E	П	C	a	C	а	C	σ	E	q	E	Q	£	q	C	а	C	Q	С	Q	C	а	E
MM	T	MM	CM 2	CM3	T/CM ²	TCM	MM											M	М														
20	3,15	120×25	30	9,8	2,1	20,6	26	5D	30	50	40	<i>51</i> 7	<i>50</i>	<i>50</i>	60	45	80	50	.90	50	110	50	130	50	150	45	180	50	200	5 <u>0</u>	230	45	270
88	394	120×30	36	13,8	а	29,0	28	,	"	η	11	"	,	н	,	"	"	"	η	n	*	,	н	"	te	"	b	"	"	"	"	"	"
24	4,53	120×30	36	13,5	,	23,3	30	"	u	" ,	"	"	7	4	"	"	7	ч		"	"	"	"	,,	"	η	н	"	"	1	"	"	u
27	5,97	160×30	48	19,0	"	40,0	33	_	I	"	"	h	11	u	"	55	70	"	п	"	"	"	n	,	"	55	170	"	"	"		55	260
30	7,25	160×36	57,6	25,8	и	56,3	36			"	,	ч	9	4	,	"	я		"	"	٨	ų	"	"	"	"	и	4	n	"	и	н	"
1	10,6	200×36	72	34,1	•	71,6	42				_		"	,,	"	•		*	4	"	"	"	"	"	ų	7		.,,	"	н	4	"	"
42	14,6	200×50	100	63,4	1,8	#4	48					_	_	_		65	60	60	817	60	100	60	120	60	140	65	160	60	190	60	220	65	250
48	19,2	2511×511	125	81,6	g	147	54									n	μ	"	п	"	#	"	и	п	9	n	"	"	"	"	"	"	11
56	26,6	250×60	150	113	а	203	62										_	"	"	"	7	"	q	n	9	4	"	н	4	,	"	"	n
64	35,2	320×60	192	150	,	270	70											_	_	"	"	n	-	"	n	7	"	"	и	"	"	"	"
72	45,9	320×70	224	169	,	356	78															n	"	μ.	"	"	"	"	"	"	o	ıı .	"

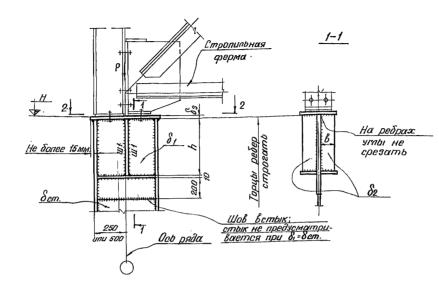
| UHMUNPOEKTETAAb | Business | KOHETPYKUMF | Business | Assertes

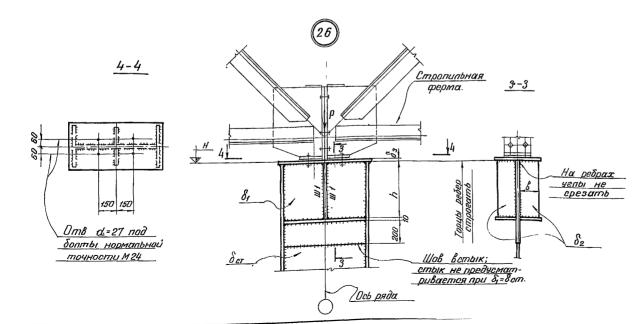

Анкерные плитки **т**ипа <u>П</u>


					~	Paccmas	7HUE	между	травера	гами "во"	(mm)				
<i>Данк</i>	N	K	10D	120	140	180	180	200	220	250	280	320	360	400	450
ММ	r	MM			Μοπι	цина	Онкерно	חשתת עו	ทหม "ปี "	(mm)					
20	3,15	120	20	20	20	25	25	25	25	30	30	30	30	36	36
<i>3</i> 8	3,94	120	20	20	25	25	25	30	30	30	30	38	36	36	50
24	4,53	120	20	25	25	25	30	30	30	36	₹6	38	50	5D	577
27	5,97	160	20	25	25	25	30	30	30	30	36	35	36	50	50
30	7,25	160	25	25	25	30	30	30	36	36	36	50	577	50	50
36	10,6	200	25	25	<i>31</i> 1	30	30	36	36	36	50	50	50	511	60
42	14,6	200			_	36	50	50	50	50	50	60	60	6D	7/0
48	19,2	250				36	5D	50	50	577	50	60	60	60	70
56	28,6	250				5D	50	577	60	60	60	700	770	70	
64	35,2	320				sv	50	577	60	60	80	70	70	70	
72	45,9	320				60	60	60	70	70	70				


Примечание

Материал плиток и анкерных болтов сталь типа "Сталь 3" Марка стали для плиток и условия её поставки принимиются по указаниям раздела ў пояснительной зописки.


				Серия
TK	Сортомент ак		Πρυποκ	1.424-2
1970r	ติก <i>ค</i> เป็น3 KL	олонн.		Bbinger Just



2-2

Размеры деталей в зависимости от Р

P	h	8,	δ_{2}^{\prime}	δ_3	В	Топщи- на шва Ш 1
T			MM			
08 06	500	8	20	20	120	8
81-100	500	8	20	20	140	8
101-125	500	10	25	20	140	8
126 - 160	500	14	25	20	160	8
161 - 200	500	16	30	25	160	10
201-300	750	16	36	30	200	12

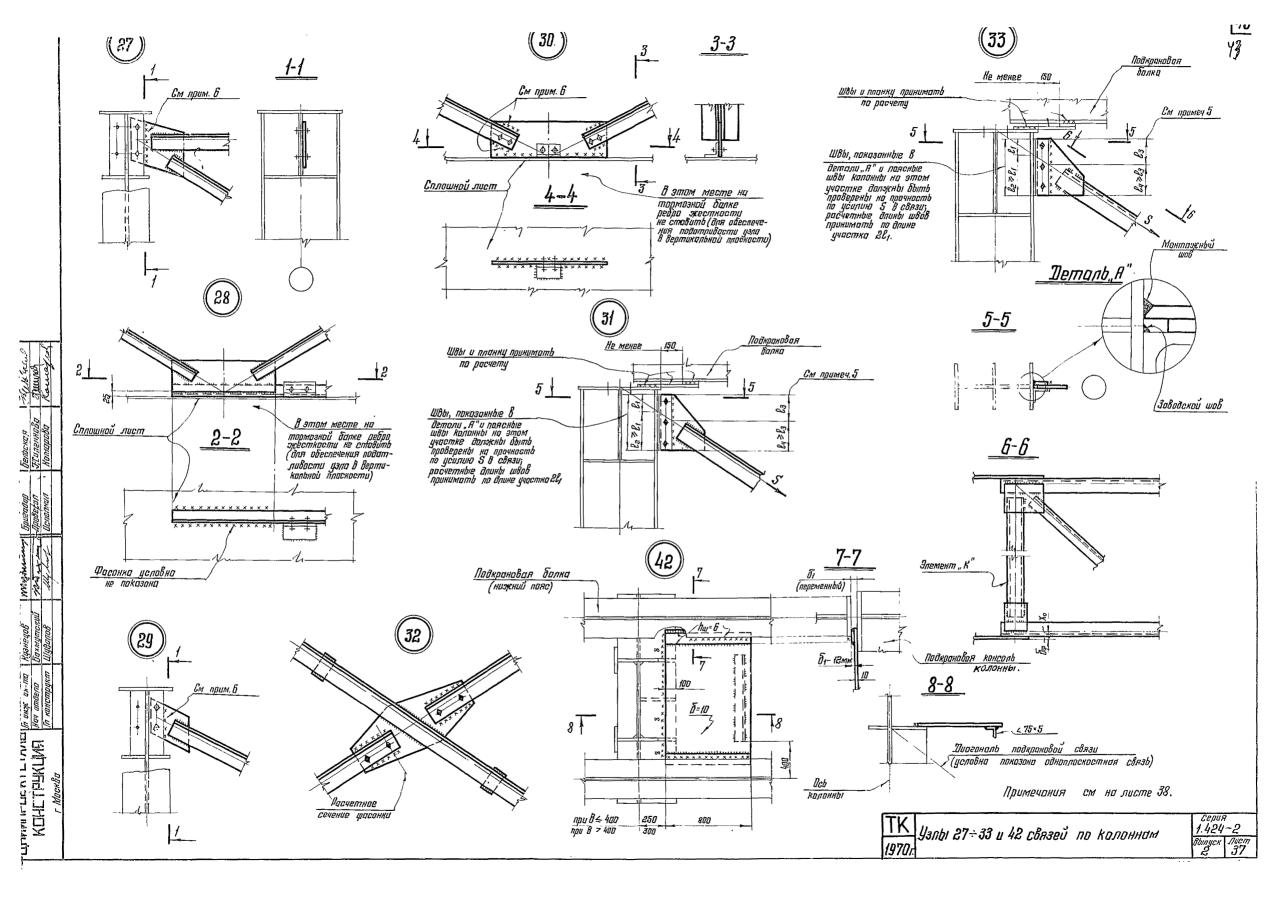
Примечания:

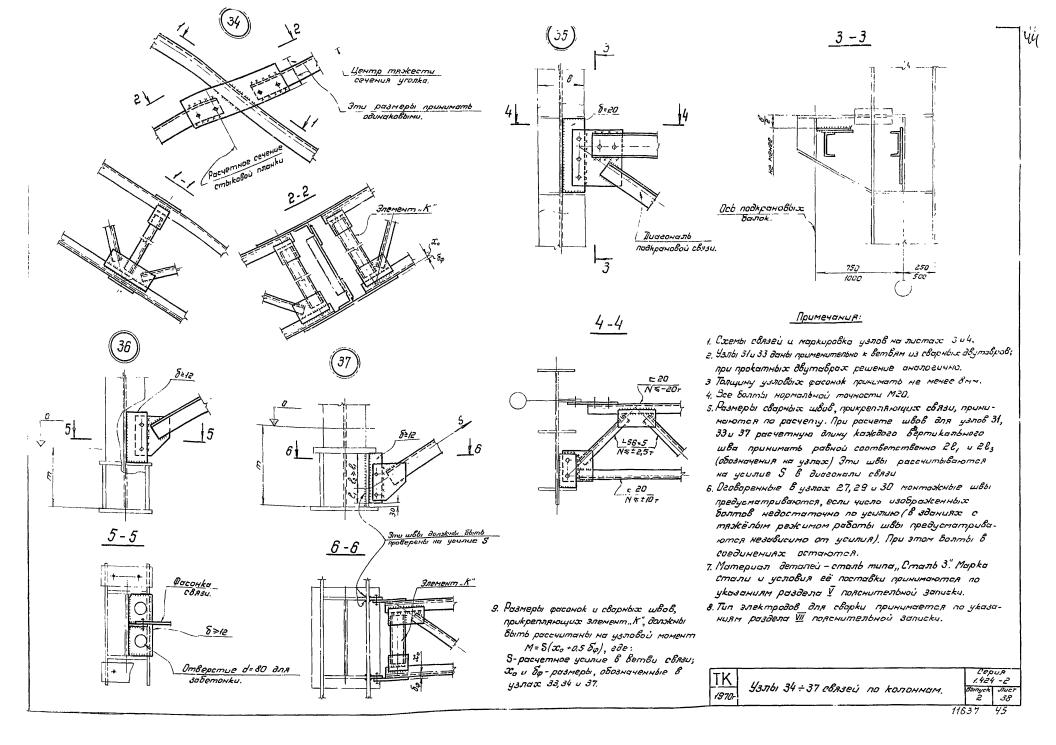
- ! Узлы 25 ц 26 замаркированы на листах 1 ц 2.
- г Топщины всех неоговоренных швов принимаются по таблице 45* СНиП. Е. 3-62*, но не менее 8мм
- 3 Материал детапей-сталь типа "Сталь 3." Марка стапи и чеповия ее поставки принимаются по чказаниям раздела ўпояснительной записки
- 4. Тип электродов для сварки принима е тся ло чказаниям раздела VII пояснительной записки.

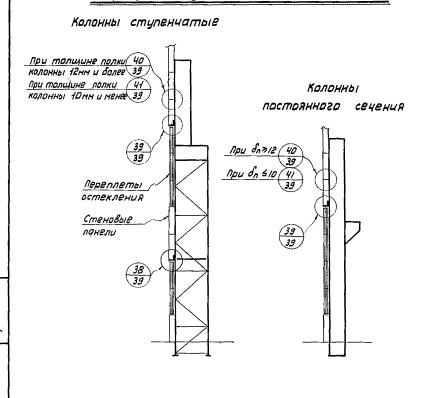
ТК Узлы 25и 26 аголовкав коланн.

Серия 1.424-2 Выпчак Лист 2 35

KUHCTPIKING Hayanderalozanyman Advan-

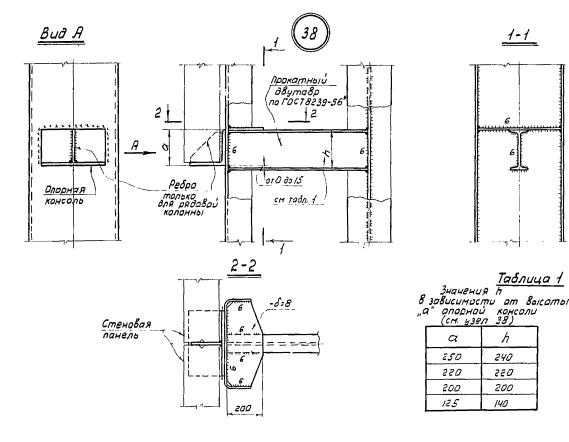

Эсниа

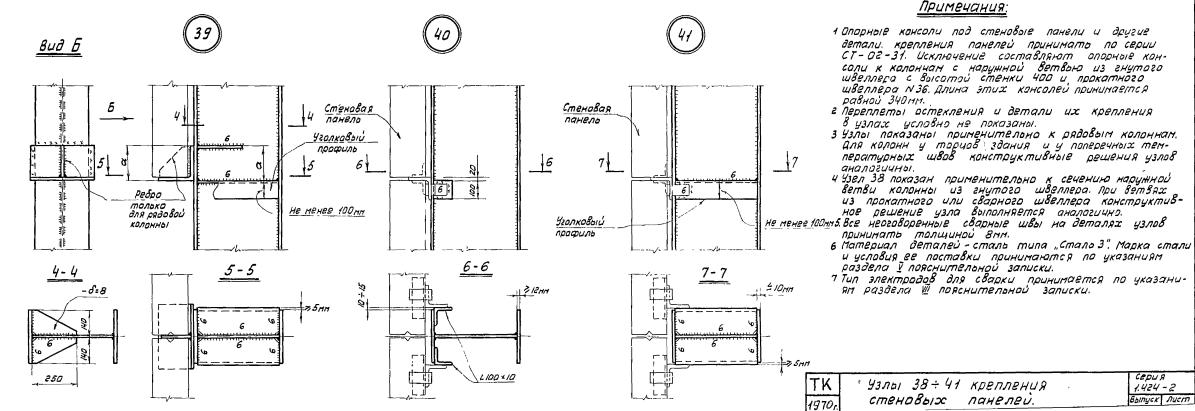

Эскиз


усилию в диагонали (см примечание г)

Сортомент и несущая способность связей по калоннам.

Серия 1.424-2





KUHCTPÜKUNG

Маркировка узлов на схемах колонн

Серия 1.424 -2

стропильных конструкций) 18 м;

1. Требчется запроектировать колонны для адноэтажного произвадст-

- Шаг колонн (по краи́ним и среднему рядам). 12 м;

— покрытие — плоское, бесфонарное, с рупоннай утепленной кровпей по стальному прафипираваннаму настипу;

-стены - навесные, панельные

Здание должно располагаться в 111 м снеговом и 17 м ветровам районах. Здание допясно было оборудовано мастовыми кранами гругопадоемностью 50 т, среднего режима работы по 3 крана в каждом пропете. Вдоль подкрановых путей должены быть предусмотрены проходы.

Падкранавые бапки приниманатся разрезными, высотой 1650 мм (по выписку I/67 серии КЭ-01-57).

По данным таблицы 1 на писте 2 настоящего выпуска четанавливанатся аснавные размеры колонн (обозначения размеров см. тоже на писте 2): H=18M; C=500 MM; K=1000 MM; d=650 MM; C=920 MM; h=5400 MM. Примечания:

> а) высоту сечения надкрановой части колонны в целях Уменьшения её веса рекомендуется принимать максималь. но возможной.Поэтому, исходя из табличного значения dmax = 100 мм, размер "d "устанавливается применительно к высоте стенки сварного двугавра h=630 мм (см. сортамент сварных двутавров на писте 5 *1); б) размер "в" принят в саответствии с примечанием 1

на писте 2:

в) размер "т" будет определен ниже, пасле установления размеров баз колонн.

Предварительно, для расчето рамы, ан принимается рав-НЫМ 900 мм (см. таблицу 1 на листе 2).

На основе принятых выше основных размеров колонн устанавливают ся необходимые размеры для расчетной схемы двухпропетной рамы (со стайками, защемленными внизу и щарнирно соединенными вверху с purenem рамен), задаются предварительные соотношения между моментами инерции стержней рамы и производится её статический расчет.

Допчетим, что в результате этого расчета, получены приведенные ниже в таблице данные необходимые для выбора основных сечений

колони:

Здесь и дапее чказаны номера пистовнастоящего выпчска.

					, .			
Ряд	4acmb	Расчет	HBIE YCLI	Расчетные даины				
KOROHH	KONOHHbi	N (T)	Mx (TM)	Qx (T)	B nnackaetu pormbi	Изпаскасти рамы		
Kangaruu	надкрановая	65	33	8,2	9,55	5.4		
крачнай	падкрановая	225 262	+83 **)	11.3		13,5		
средний	, надкранова,	80	82	16,5	10,9	5,4		
GDEOTIGG	падкрановая	241 401	142	16,5	— ***)	13,5		

*) Получены на основе возможных комбинаций расчетных нагрузок.

) Для калонн крацінего ряда паложительный момент вызывает сякатие наружной ветви колонны, отрицательный -подкрановой ветви. *) Расчетная длина подкрановой части ступенчатой колонны в плос-

касти рамы для подбара сечения ветвей не используется.

Подбираем сечение надкрановай части колонны крайнего ряда. а) Данные : $N=65\tau;\ e=\frac{Mt}{N}=\frac{32}{S}\simeq 0.5m=50\,cm;\ \ell_X=9.55m;\ \ell_Y=5.4~m.$ в) Для подбора сечения из стапи 3 пользуемся таблицей несущей способности сварных двутавров с высотой стенки до 710 мм. но писте 13.

B колонке таблицы для e=50 см, B графе $\ell x=10$ нахадим ближайшее большее усилие (72т) на строке с сечением 63-1 (см. графу таблицы "N° сечения").

В графе ву=5,5 этой же копонку находим ближайщее бопьшее усилие (73т) на атраке с сечением 63-3. Эта сечение при в 10 допускает усипие 89 г. спедовательно, оно ц является искомым.

Састав этого сечения: 1-630 × 8 2-280 × 12

Ппощадь этого сечения Г=118 см?

в) Для падбара сечения из низколегированной стали пользчемся таблицей на листе 15.

В результате подбора, приведенного в той же последовательности, как в приведенном выше подборе сечения из стапи 3. попучаем сечение 63-1.

L'ocmaß smoro ceuenus: 1~630×8

Площадъ этого сечения F=100cm².

Исходя из того, что применение стапи 14Г2 станавится экономически более цепесообразным по сравнению со сталью ВСт.Зкп2, если отношение плащади сечения сварного двутавра из ВСт. 3кп 2_(Fcт.3) к ппощади сечения сварного двутавра из 14Г2 (Fнл.) более 1,12, принимаем сечение 63-1 из стапи 14/2 ($\frac{F_{CT,3}}{F_{HA}} = \frac{118}{100} = 1,18 > 1,12$).

 $NB = \frac{N}{2} + \frac{Mx}{1.5} = \frac{262}{2} + \frac{115}{1.5} = 208\tau.$

Примечание: числа 1,5 в знаменателе показывает расстояние между ветвями колонны в метрах (емещением центра тяжести наружной ветви от её грани в данном примере пренебрегаем).

в) в качестве перваго варианта подбираем сечение ветви из прокатного двятавра, пользуясь таблицей несущей способнаети на листе 12.

В колонке таблицы для $l_x = 15$ (ближайшее большее таблич нае значение l_x к нашей фактической расчетной длине 13,5 м) находим ближайшее таблочное чеилие, больше нашего расчетного усилия $N_6 = 208\tau$:

при стапи 3 — на строке с сечением [60 ([N]= 232 т); " " НП — " " " - [55 ([N]= 235 т);

Примечание: Рассмотрение данных таблицы показывает, что интерполяция приведенных в таблице значений несущей способности для ℓ_x = 13 и ℓ_x = 15, разрешаетая примечанием з на листе 12, в данном случае не приводит к уменьшению полученных выше профилей.

Ппащадь сечения двутавра N60 равна 132 см²,
" " " N55 " 114 см².

Исходя из того, что применение стапи 1412 становится экономически более целесообразной по сравнению со стапью вСт. Экп 2, если отношение тощади сечения прокатного дву-тавра из ВСт. Экп 2 (Fer. 3) к площади сечения прокатного двутавра из 1412 (Fun) более 1,09, принимаем для первого варианта двутавр N 55 из стали 1412 ($\frac{Fer.3}{Fun} = \frac{132}{144} = 1,1671,09$)

г) в качестве второго варианта подбираем сечение ветви из еварного двутавра, попьзуясь таблицей несущей способности на листе 9.

В результате подбара, проведенного в той же поспедавательнасти, как в приведенном выше подбаре сечения ветви из прокатного двугавра, но используя интерпопяцию табличных значений несущей способности сечений при $\ell_x = 13 \cdot \mu \ \ell_x = 15$

для нашей расчетной длины l_x=13,5, получаем: при стали3 - сечение № 50-12[[N]=211- (211-139) [13,5-13] = 208т); при стали нл - сечение № 50-10[N]=220- (220-189](13,5-13) = 215т).

Состав сечения N=50-12: 1- 500×12 F=120 cm² $2-250\times12$

Состав сечения N^0 50-10: 1-500×12 $\left. \begin{array}{ccc} F = 104 \text{ cm}^2 \end{array} \right.$

Исхадя из указанного выше (см. л.4) критерия экономической цепесаобразности применения стали 1472 (по сравнению со сталью 80, 3 кл 2), принимаем для второго ворианта сечение N 50-10 из 1472, поскольку $\frac{for3}{109} = \frac{120}{119} > 1.12$.

д) Цсходя из того, что применение прохатных двятаврав становится экономически более цепесоабразным по сравнению са сварными двятаврами, выпопняемыми из топстопистовой стопи, если отношение площади сечения прохатного двятавра (Fnp) к площади сечения сварного двятавра(FrB) не превышает 1,30, из рассмотренных вариантов окончательно гринимаем прохатный двятавр N55 из стапи 14Г2, поскольку — превышает 1,10 < 1,30

Примечание: Если при проектировании копонны известно, что сворные двутовры могут быть изготовпены из широкопопосной (универсапьной)
стапи, то в качестве критерия для сопоставления прокатного и сварного двутавров спедует принимать предельное отношение $\frac{Foldship}{Foldship} \le 1,15$

6. Падбираем сечение наружной ветви падкрановой части копанны крайнего ряда.

а) По расчетным усипиям в подкрановой части копонны, представленным выше в таблице 1, определяем макоимальное сжимающее усипие в ветви:

$$N_{g} = \frac{N}{2} + \frac{M_{X}}{1.5} = \frac{225}{2} + \frac{83}{1.5} = 168\tau$$

б) Расчетныю даины ветви из плоскасти рамы принимаем такой же, как для падкранавай ветви, т.е. $L_{\rm x}$ =13,5 м.

в) Принятый для подкрановой ветви прокатный двугавр N 55 предапределяет соответствующую высоту сечения наружной ветви колонны (\$50 mm).

Цз представленных в выпуске для такой высоты двых типов сечений швелперов, гнутого и составного, экономически цепесаобразней принять гнутый швелпер, поэтому попычемся таблицей несущей способности гнутых швелперов на листе 10.

в результате подбора, проведенного аналогично подбору сечения подкрановой ветви, и имея в виду применение гнутого ивеппера высотой 550мм, принимаем сечение №55-1 из стапи в (поскопыку это наименьший профиль нужной нам

К 770г

Пример папьзавания выпускам

Серия 1.424-2 Выпуск 2

LHMMIPUEKICIAAD Estatoria Kisheyada 1994 Recommendo Personaliza Asservantanto 1994 KOHCIPUKUMA Recommendo 1994 высаты сечения, применение низколегираванной стапи становится нецепесоабразным).

Примечание: Применение швепперов составного сечения дапускается топька в там случае, если при проектировании известно, что на заводе - - из готовителе отсутствует необходимое для гнутья оборудавание (прессы соответствующей мощности).

т. Падбор сечений надкрановой части и ветвей подкрановой части колонны среднего ряда произвадится по анапатии с приведенным выше падбором сечений для калонны крайнего ряда.

Следчет топько иметь в видч, что в данном примере должны быть предчемотрены проходы вдоль подкрановых путей и, в соответствии с примечанием 1 на писте 2, для надкрановой части колонны среднего ряда спедчет подбирать сварной двутавр с высотой стенки 900 мм.

По акончании падбора основных сечений колоны крайнего и среднего
рядов необходимо сопаставить полученные саотношения между моментами
инерции сечений отдельных участков колонн (надкрановых и подкрановых)
с заданными для расчета рамы.

с зачатыны ың расчети раны. Расхомдения между предварительна заданными и окончательными соотношениями не далжны предышать 30% для пюбых двух участков копонн, как в пределах каждой колонны, так и между участками разных колонн.

д Схему решетки подкрановой части колонны крайнего ряда и сечения элементов решетки устанавливаем по данным писта 23. a) в соответствии с таблицей неечщей спосоднасти прокатных

а) В соответствиие таблицей неечией спосодности прохатных двятвров на писте 12 чстанавливаем, что расстояние меж-дя узлами решетки на подкрановой ветви не должно пре-вышть 2m/cm. В упомянятой таблице значение [Су] в капонке для ℓ_{χ} = 13 на строке сечения 155, а также при-мечание 3 на листе 12).

мента примечанию 2 на писте 10 расстояние между узпа ми решетки на наружной ветви копонны должно быть не

На основании этих данных принимаем показанняю на писте 23 треугольную схему решетки со стойкоми "С"и расстоянием между узлами решетки не балее 1,5 м.

б) В соответствии с примечанием 6 на листе 23, для опредепения расчетного чемпия в раскосах решетки, четанавпиваем расчетнае значение поперечной сипы в колонне:

'-по статическому расчету рамы Q = 11,3 т.; - усповная паперечная сипа Q_{уол} 20.102+40.114=6600кг≃6т;

— 901100 ная пиперечная сили Ч_{уст} 20-102+40-114=6000кг=61; спедавательно, расчетное значение поперечной силы равно± #.3т. Цсходя из чтла наклана раскосов решетки &=45° полч-

чаем, что чеипие в раскосе решетки N=±11,3-1,41 ≈± 16 т. Так как решетка двухппоскастная, то в одном чголке раскоса

Д" ченпие равно ±8т.

"м эсспые расто -01. По таблице 1 на листе 23, в колонке а =1500, нахадим влижайщее допустимае чение на один угалах [N]=9,3т на строке с сечением L 100×6,5, которае и является искамым сечением раскова решетки

в) Сечение уголка "с" стойки решетки определяем по таблице 2 на листе 23 в зависимости от марки стапи ветви колонны и плащади ее сечения.

в данном случае решающим для подбора сечения стойки является сечение подкрановой ветви колонны с плащадью сечения F = 1/4 см. 2 По таблице 2 , 2 колонке 2 = 1500, графе НЛ, находим далустимую плащадь 2 (>114 см. 2) на страке с сечением 2 55 х4.

Это сечение и спедует принять для стоек рещетки, г) Помимо расковов и стоек решетки необходимо предусмотреть диафрагмы (воединяющие ветви копонны), по-казанные на писте 28, приняв расстояние между ними, в соответствии с разбивкой чапов решетки в копонне крайнего ряда, не более 4,5 м.

Краме тага, пользуясь пистам 39, необходима предусмотреть бапочки, соединяющие ветви колонны на уравне столикав, несущих стенавые панели.

10. Попычясь пистами 24 и 26 устанавливаем размеры эпементов базы для наружной ветви копонны крайнего ряда из гнутого шветера м 35 - 1, выпопняемого из стапи 3 (обозначения размеров по писту 24 узел 9):

 $b_0 = 250$ $l_{nn} = 360$ $l_{\tau} = 400$ $lllbill1 u ll2 принимаютея <math>l_{\tau} = 86$ $l_{nn} = 360$ $l_{\tau} = 16$ $l_{t} = 16$ $l_{t} = 16$ $l_{t} = 16$ $l_{t} = 16$ $l_{t} = 16$

в соответствий с таблицей. 1 на писте 2 отметка верха опорнай писты базы мажет быть принята равной- 600 мм.

В качестве предварительных данных, необходимых в дапьнейшем преустановлении диаметров анкерных болтов, записываем из таблицы на писте 26 максимально дапустимые значения этих диаметров:

При $2^{\frac{1}{2}}$ анкерных болгах в базе $d_{max} = 56$ мм; при $4^{\frac{1}{2}}$ " " $d_{max} = 48$ мм.

4исла анкерных болтов, их диаметр и размеры анкерных ппиток определяем на основе данных статического расчета рамы и писта 31. Расчетная комбинация усилий в колонне для подбора анкерных болтов. N = 75т. M = - 87 т. м. (Знак момента показывает растяжение в наружение ветви колонны). Отскада отрывающее усилие в ветви

 $N_{arp} = \frac{87}{15} - \frac{75}{2} = 58 - 37 = 21 \text{ T.}$

Если исходить из $4^{\frac{N}{2}}$ анкерных балтав в базе, то пользялсь пистя 1, по таблице для онкерных плиток типа I, польчаем:

α) γευπμε κα 16αππ $N = \frac{2!}{!!} = 5,257;$ δ) β τραφε N παδπυμρι καλαθυμ δημικαύψε δώπουε γευπμε

д) в графе N таблицы на хадим длижайшее дольшее чейлие 5,91т на страке с диаметром анкерных болгов 27мм, катары: 4 является требчемым размером (21 < d_{так} = 48),

в) на этой строке таблицы находим сечение анкерной глитки—160×30 (длина её устанавливается конструктивно по увлу 9 на листе 24 и может быть принята равной 320мм).

KOHETPUKUNA KOHETPUKUNA г) по стопбиу таблицы для b_s = 250, на рассматриваемой нами строке, находим размеры, привязывающие анкерные болты (в плане) к траверсам базы и к оси ветьи: α = 55 мм и c = 10 мм.

Привязка болтов к поперечной разбивочной оси здания принимается по чэлэ 9 на писте 24 и равна 520мм.

Еспи исходить из $2^{\frac{1}{2}}$ анкерных болтов в базе, то, пользяясь тем же пистом 31, по таблице для анкерных титок типа II, полячаем:

a) Younue Hat 1 bonm $N = \frac{21}{2} = 10.5 \, m$;

δ) в графе N таблицы находим ближа́йшее бо́льшее чилие 10,6т. на строке с диаметрам анкерных болтов 36мм, который и является требченым размерам (36<α_{тех}= 56);

в) в графе "К" таблицы на рассматриваемой строке находим ишрину плитки (200 кm), а в графе $b_0 = 250$ ее толщину (36 кm). Длина этой плитки, также как и при 4^{\times} болтах в базе, может быть принята равной 320 кm.

Привязка анкерных баптов в плане принимается почэлу 9 на листе 24;

— расстояние от поперечной оси здания до оси болтов равна 520мм; — расстояние от спинки швелперного сечения ветви до оси болтов

– расстояние от спинки швепперного сечения ветой до оси допт. U=40 мм (см. таблицу на писте 26).

Окончательный выбор числа анкерных болтов в базе, а также окончательные размеры элементов базы, принимаются после подбора баз для подкрановых ветвей колонн крайних и средних рядов на основе чнирикации детолей баз и диаметров анкерных болтов для всех колонн проектирчемого объекта.

Требчемые размеры детопей баз и онкерных болтов для подкрановых ветвей колонн устанавливанотся по аналогии с приведенным выше устанавлением размеров одзы для наружной ветви колонны крайнего ряда, Пользуясь пистами32 четонавливаем размеры детопей подкрановой тра-

версы колонны крайнего ряда.

а) Цсхадные данные (абозначения по писту 32):

N = 65 T | A = 657 MM M = 33 TM | $L_T = 1500 \text{ MM}$ P = 178 T = 400 MM

б) Определяем значения изгибающего момента Мияг и поперечной сипы Д_{ср} в подкрановой траверсе, условно рассматривая её, как однопролетняю, шарнирно опертую балку пропетом 1,5м, с оосредоточенной сипой Р_Т, приложенной на расстоянии а = 0,65м от певой опоры.

$$\begin{array}{ll} P_{r} = \frac{N}{2} + \frac{M}{0.65} = \frac{65}{2} + \frac{33}{0.65} = 831 \\ M_{USI} = \frac{P_{r} \cdot \alpha (P_{r} \cdot \alpha)}{P_{r}} = \frac{83 \cdot 0.65 \cdot 0.85}{1.5} = 311 \\ Q_{Cp} = \frac{P_{r} \cdot \alpha}{1.5} + 0.6 \cdot P = \frac{83 \cdot 0.65}{1.5} + 0.6 \cdot 178 = 1431 \\ \frac{\Pi_{PUMeyanue}}{P_{r} \cdot P_{r}} = \frac{P_{r} \cdot \alpha}{1.5} + 0.6 \cdot P_{r} \cdot P$$

<u>Примечание:</u> Величина О,6 Р принята в соответствии со сноской к Тадлице 2 на листе 33, в) По таблиц: 2 на писте 33 устанавливает необходитое сечение стенки траверсы по значениям Миог. 4 Gcp.

При стати 3 требуется сечение 1000×20/для этого сечения по данным тублицы[Nusr] = 70 ти [Q_{cp}] = 1731, что больше расчетных N_{usr} = 131 $_m$ u Q_{cp} = 143 $_r$)

"При нияколегированной стапи требуется сечение 800×16 (по таблице [Musr] = 49 4 тм и [Qcp] = 1457]

г) По таблице 1 проверяен достаточность установленных выше толщин стенки траверсы по условию смятия под крановой нагрузкой

В графе 7:=400 находим, что при топщине стенки траверсы δ_r = 20, выполняемой из стапия. [P]=256 г., а при δ_r =16мм, выполняемой из низкопегированной стапи[P]=275 г., что значительно превышает значение P-178 г. Спедавательно, подабранные выше толицины стенки траверсы достаточны.

д) Учитывая, что подавранная стенка траверсы из стапи 3 тяжелее стенки из НП на 36%, а адна тонна топстопистовой стапи 14 гг. дороже стапи вСт.3кn 2 топько на 17%, экономически цепесоодрачно принять стенку траверсы из стапи 14 гг.

Т.о окончательно четанавливаем сечение стенки траверсы-800×16 из стапи 14 Г2.

e) Стыковчю накладку по наружной грани колонны, в соответствии с оговоркой на чертеже (пист 32), принимаем, как и для полки над-крановой части колонны, и з стали 14Г2 толициной 10мт. Ширина накладки по конструктивным соображениям (на чертеже она показана шире полки надкрановой части колонны) может быть принята равной 300 мм.

ж). В соответствии с примечанием 4 на писте. 33 и выноской на разрезе 1-1 того же писта, опорную ппиту, накрывающую под-крановую ветвы копонны, принимаем из стали 3 толициной 25 мм. Нижнии горизонтальный пист траверсы принимаем. В соответ-

ствии с вынаской на чертеже, толщинай 16 мм.

u) Размеры расчетных сварных швов пегко определяются по формялам, приведенным в таблице 3 на писте 33; размеры остальных швов принимунатся топщинай вмм (в соответствии с примечанием 4 на писте 33).

Размеры детапей подкрановай траверсы для копонны среднего ряда устанавливаются аналогично.

12. По писту 34 устансьвливаем размеры детапей проета в стенке надкрановой части колонны среднего ряда для прахада вдаль падкрановых путей.

По не приведенному здесь подбору, сечение надкранавой части копонны среднего ряда принято из сварного двугавра сечением н90-3, выполняемого из стапи 1412. Состов сечения: 1-900×8; 2-320×12. В соответствии с чказанием на писте Ј4, задаемся сечением окашияющих: пистов по папке аснобного сечения надкрановой части копонны: иирина в 320мм и тапицина 12мм.

Пример папьзавания выпускам

Рассматриваемый участок колонны является сквазным, состоящим из двух ветвей двутавравого сечения, состоящего из вертикального листа сечением -238×8 и двух полок сечением -320×12 каждая.

Геаметрические характеристики сечения такай ветви: F_8 =95,8 cm²; J_9 =12900 cm⁴: W_8 =985cm³: S_8 =537cm³; L_8 =11,6 cm.

Пользуясь чоловными обозначениями, приведенными на писте 34 и данными таблицы 1 (см выше), запишем значения чсипий в надкрановый части колонны и апределин расчетные чсилия в ветви сквочнаго сечения:

$$N=80\tau;$$
 $M=82\tau.M.;$ $Q=16,5\tau.$

Расстояние между асями ветвей а = 662 мм.

Directada:
$$N_{\mathcal{B}} = \frac{N}{2} + \frac{M}{\alpha} = \frac{80}{2} + \frac{82}{0.562} = 164 \text{ T}.$$

в соответствии с упомянятым указанием на листе 34 проверяем рассматриваемое сечение колонны на прочность, на устойчиваеть в пласкости стенки и по скапывающим напряжениям в стенке

a) Ha npoyhacmb npobepsem no dbyxynehhau popmyne:
$$6 = \frac{Nb}{FB} + \frac{Mb}{Wb} = \frac{164000}{95.8} + \frac{784000}{985} = 2510 \text{ M}/\text{cm}^2 < 2900 \text{ M/cm}^2$$

б) На устойчивость проверяем в соответствии с п.4.20 СНи П [т-в.3-62*, по формуле (24).

Проделав необходимые вычисления, получаем значение 9⁸Н 0,810 Тогда — 154000 0,810 года — 2120 года 2900 года.

в) Определяем максиматьные скалывающие напряжения в стенке Бетви:

$$\overline{U}_{max} = \frac{Q_B \cdot S_B}{J_B \cdot S_{or.}} = \frac{8300 \cdot 537}{12900 \cdot 0.8} = 430^{KF} / cm^{2L} 1700^{KF} / cm^{2}$$

Таким образом, проверка расчетом показала дастаточность приняттого нами сечения окоймпяющего листа.

Размеры остальных деталей праема и сварных швов принимаются по чертежу на листе 34.

13. Размеры детапей и швов оголовкав колонн устанавливаются по писту 35. Прастата падбара исключает необходимаеть его рассмо трения. 14. Падбар связей по колоннам.

- сольси по капантат. - α) Надкрановые связи по крайнему ряду копонн.

. Ucxada из высоты надкранавай части колонн 5400мм и высоты падкрановых балок на опоре 1650мм. устанавливаем высоту надкранавых связей:

В соответствии с укозанием на писте Зпринимаем V-образную схему связей (при h_o >3000); это соответствиет схеме связей типа 1 по писту 36,

Расчетная ветравая напрузка передаваемая с покрытия на крайний ряд копонн, равно 12,6т. Принимая по ряду копонн две надкранавые связи/в крайник шагах копонн), попучаем ветровую напрузку на одну связь N=0,5-12,6=6,3т

По таблице і на листе 36, в столбце hg-4,0м(ближайшая большая высота)ноходим ближайшэно допустимуна ветровуна нагрузку [w]=29,6 т на строке с сечением 2L12548, которое и принимаем для рассматривае мой евязи

Расчетное урилие в подкосе связиопределяем по графе Мтого же столоца тоголи-

цы 1, скорректировав табличное значение N=17,97. в соответствии с фактическим эначением нагрузки $W=6,3\tau$: N расчетное $=N\cdot\frac{W}{[W]}=\pm17,9\cdot\frac{6.3}{29,6}=\pm3,8\tau$.

б) Надкрановые связи по среднему ряда подбираются анапогично.

в) Подкрановые связи по крайнему ряду колонн.

Как показано на писте 3, для колонн крайнего ряда принимаются одноплос-кастные подкрановые связи.

Учитывая:

- отметку верха копонны H=18000мм;

- принятае ранее эаглубпение ваз колонн т= 600мм.
- высоту надкрановой части колонн h=5400мм;
- принятую ранее высату траверс баз ветвей копанн h_т =400 мм ;

—центрировку подкрановых связей, показанняю на чэпах 14и31(см. писты 25 и 37), попучаем высоту подкрановой связи: h_н=18000+600-5400-400=12800 мн.
По таблице 3 на писте 36,8 графе[[hu]находим влижайшее большее значение допус-каемой высоты (14,2 n) на строке с сечением 21.220×14, которое и принимаем для рассматриваемой связи.

Сумнарная расчетная нагрузка от ветра и продольного торможения кранов по крайнему ряду колонн равна 24т.

Принимаем по ряду копонн одну связь, спедаватепьно, вся эта нагрузка должна быть воспринята одной связын. На схеме связи, изображенной над таблицей 3 на листе 36, эта нагрузка абоэначена сипой Р, припоженной к аднаму чэпу связи.

Цсходя из того,что подкранавые связи рассчитаны пи растяжению одной диагонали (см. примечание 2 на писте 36) и, определив се длину, равную ~17550мм, получаем расчетное усилие в диаганогли: N = 24 · 17550 — 35т. z) Подкранавые связи по среднему ряду копонн .

Как паказано на писте 3, для колонн среднего ряда, приниманатся дыхалоскостные подкранавые связи.

Как и по крайнему ряду, высата связи h_m=12800мм. Нагрузка Р на одну ппоскость связей (см. схему связей, изображенную над таблицей 4 на писте 36) равна 24 г.

По таблице 4 на писте 36, в графе[[н] находим ближайшее большее значение допускаемай Высоты (16,7м) на строке с сечением Ветви 1 160×100×3.

В графе[N] этой таблицы для этого сечения нажадим дапусктемое усилие 48,0т. Фактическое усилие в ветви связи N=24 17550 = 35 т., что меньше допускае мага. Спедавательно, полученнае выше сечение ветви, может быть принята

По таблице 4 на писте 36для выбранного нами сечения ветви долдскаемое расстояние между узлами решетки, соединяющей ветви, [6]=4,4м.

В саответствии с этим цепесаобразно принять приведенняю над таблицей 5 листої 36 схему решетки типа А,

Расстояние между пласкостями связи(или расстояние между подкрановыми ветвями каланн) равна 2000мн. В соответствии с этим, пользуясь графай $\alpha=2.0$ таблицы β нахадим сечение элемента " β " решетки: $\alpha=2.0$

По той же таблице 5 устанавливаем для выбранного нами сечения ветви сечение эпемента "К": С14.

Все эпементы связей па капаннам выполнянотся из стапи ВСт 3 кл 2

ТК Пример папьзавания выпускам.

