ГОСУДАРСТВЕННЫЙ КОМИТЕТ СОВЕТА МИНИСТРОВ СССР ПО ЛЕЛАМ СТРОИТЕЛЬСТВА

ТИПОВЫЕ ДЕТАЛИ И КОНСТРУКЦИИ ЗДАНИЙ И СООРУЖЕНИЙ

СЕРИЯ ПК-01-76

СБОРНЫЕ ЖЕЛЕЗОБЕТОННЫЕ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННЫЕ СЕГМЕНТНЫЕ ФЕРМЫ

ДЛЯ ПОКРЫТИЙ ЗДАНИЙ ПРОЛЕТАМИ 18, 24 и 30 м С ШАГОМ ФЕРМ 6 м

выпуск з

РАБОЧИЕ ЧЕРТЕЖИ ФЕРМ ПРОЛЕТОМ 24 м ИЗ ЛИНЕЙНЫХ ЭЛЕМЕНТОВ С НАТЯЖЕНИЕМ АРМАТУРЫ НИЖНЕГО ПОЯСА НА БЕТОН

5859-01

ЦЕНТРАЛЬНЫЙ ИНСТИТУТ ТИПОВЫХ ПРОЕКТОВ ГЛАВСТРОЙПРОЕКТА ПРИ ГОССТРОЕ СССР

Москва, Б-66, Спартаковская ул. 2а, корпус В Сдано в печать 8.1. 63 г. Заказ № /5 Тираж 250 экз. Цена 3 р 78 гг.

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СОВЕТА МИНИСТРОВ СССР ПО ЛЕЛАМ СТРОИТЕЛЬСТВА

ТИПОВЫЕ ДЕТАЛИ И КОНСТРУКЦИИ ЗДАНИЙ И СООРУЖЕНИЙ

СЕРИЯ ПК-01-76

СБОРНЫЕ ЖЕЛЕЗОБЕТОННЫЕ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННЫЕ СЕГМЕНТНЫЕ ФЕРМЫ

для покрытий зданий пролетами 18, 24 и 30 м С Шагом Ферм 6 м

выпуск з

РАБОЧИЕ ЧЕРТЕЖИ ФЕРМ ПРОЛЕТОМ 24 м ИЗ ЛИНЕЙНЫХ ЭЛЕМЕНТОВ С НАТЯЖЕНИЕМ АРМАТУРЫ НИЖНЕГО ПОЯСА НА БЕТОН

РАЗРАБОТАНЫ
Проектным институтом №1
Министерства строительства РСФСР
при участии Научно-исследовательского
института по строительству
Министерства строительства РСФСР

УТВЕРНДЕНЫ Государственным Комитетом Совета Министров СССР по делам строительства 26 января 1961г Приказ №42

ЦЕНТРАЛЬНЫЙ ИНСТИТУТ ТИПОВЫХ ПРОЕКТОВ

MOCKBA 1961

Наименование	NN NUCMOB	НН страниц
Содержание		1,2
Паяснительна'я записка		3-8
Чертежи		
Фермы пролетам 24м. Гортамент и расход материа - лов, на фермы с напряваетой пучкабай артату- рой. Схеты строповки	1	9
Ферты пролетом 24 м Сортатент и раскод матери- алод на ферты с напрягаетой стержнедой артату- рой	2	10
Фермы пралетам 24м с напрягаемай лучкавай арма- турой. Общий вид и выбарка стали	3	11
Ферты пралетам 24 м с напрягаемай стержневой арта- турой из стали марки 30χ/22. Овщий вид и выборка ста- ли	4	12
Φερπόι προ λεποм 24 m ς καποπεσεμού с περο κ κεδού αρμαπυρού υ 3 ςπαλυ μαρκυ 25 <i>Γ28. Οδυμού δυθ υ</i> βρίδορκα с παλυ	5	13
Φερηθι προλεπο м 24 м из πο λυφερη с напрягаетоύ ηγικοβού αρησπηρού. Οδιμυύ δυδ υ βδιδορκα сπαλυ	6	14
Фермы пролетом 24м, собираемые из полуферм с на пря- евемой стержневой арматурой из стали марки 30х ггг Общий вид и выборка стали	7	15
Φερπαι προπετια π 24 m , ειδυρα e πότε υ υ πουφρερ π ε καπρ α. ειείπού επεροκτεδού αρπαπήρου με επίστυ παρκύ 25 r2c. Οδιμμύ βυθ υ βοιδορκα επίστυ	8	16
Палуфертві для фер т пролетот 24 м с на пря гае той пучковой артатурой. Общий вид полуферт, Расход материолог	9	17
Полуферты для ферм пролетом 24m с напрягаетой стер- ярневой артатурой. Общий вид полуферт. Расход материалоб	10	18
Фермаі пролетом 24м. Сворочная схема ферм Ф1-24-1, Ф1-24-14, Ф1-24-2, Ф1-24-24, Ф3-24-1, Ф3-24-14, Ф3-24-24, Расход материала в по элементам на 1 ферму	H	19
Ферты пралетам 24 м. Съорочная схета ферт Ф424-3, Ф4-24-3, Ф4-24-4, Ф4-24-44, Ф4-24-5, Ф4-24-54, Ф3-24-3, Ф3-24-3, Ф3-24-4, Ф3-24-4, Ф3-24-5, Ф3-24-54. Расхад тапериалоб па элетенпат на 1 ферту	12	20

Ноитеновоние	NN NUCMOB	NN страниц
Ферми пролетом 24м. Сворочная схема полуферм. 14:24-1, 114:24-11, 114-24-2, 114:24-21, 112-24-1, 112-24-14, 112-24-2, 112-24-21. Расход материалов по элементам на 1 полуферму	13	21
Фермы пролетом 24м. Съорочная схема полуферм 11-24-3, 11-24-34. 11-24-4, 11-24-44, 11-24-5, 11-24-54, 112-24-3, 112-24-34, 112-24-4, 11-2-24-44 112-24-5, 112-24-54. Расхой материалов по элементам на 1 полуферму	14	22
Фермы пролетом 24м. Узлы 1÷9	15	23
Ферты пролетот 24м Элементы Ферт 081-300, 081-400, 0814-300, 0814-400, 086 и 086 л	16	24
Фермы пролетом 24m. Элементы ферм 82, 82A, 84, 84A, 87, 87A	17	25
Фертві пролетом 24м. Элементві ферм 83,83A,83C, 83A-С	18	26
Ферты пролетом 24 м. Элементы ферм 85,854, 85-С, 85A С, 88, 88A, 88-С и 88A-С	19	27
Фермы пролетом 24м. Элементы ферм Н1-300, Н1-400, Н3, Н5, Р1, Р2, Р3, Р4, Р5, Р6, Р7, С1-300, С1-400, С2-300, С2-400	20	28
Фермы пролетом 24м. Элементы ферм H2-300, H2-400, H4-400, H4-500, H6-300, H6-400, H7-400 и H7-500	21	29
Ферты пролетом 24 м. Каркасы ПК-1÷ПК-7, ПК-10, ПК-11	22	30
Фермы пролетам 24м Каркасы ПК-14÷ПК-17, ПК-21, ПК-22 и К-1÷ К-3	23	3/
Фермы праметом 24 м. Каркасы ЛК-8, ЛК-9, ЛК-12, ЛК-13, ЛК-18, ЛК-19, ЛК-20, Сетки С-1÷С-8	24	32
Ферты пралетат 24 м. Закладные элетенты M-1÷ M-3, M-5÷ M-13 и M-16	25	33
Фермы пролетом 24 м. Закладные элементы м-14, М-15, М-17 и М-18. Крепедсные детали мн-1 ÷ мн-5 и A-1÷ A-6 . Шайбы	26	34
Ферми пролетом 24м. Спецификация стали на элементы ферм 081-300, 081-400, 0814-300, 0814-400, 086, 0864, 82, 824, 84, 844, 87 и 874	29	35

	NN	NN
Наименование	ภบตะกอช	траниц Страниц
Фермы пролетом 24м. Спецификация стали на элементы ферм В 3, 83A, 83-C, 83A-C, 85, 85A, 85-C, 85A-C	28	36
Ферты пролетот 24т. [пецификация столи на элетенты ферт 88, 88A, 88-C, 88A-C, H1-300, H1-400, H2-300, H2-400, H3, H4-400, H4500 и на	29	37
Фермы прометом 24 м. Спецификация Стали на элементы ферм H6-300, H6-400, H7-400, H7-500, P1+P7, C1-300, C1-400, C2-300, C2-400; на препедсные детали; Заказ деталей м	<i>30</i>	38
Фермы пролетом 24м Опорные столбики ОП1, ОП2, ОП3. Дополнительноя торкировко ферт	3/	39
Ферпы пролетом 24m для покрытий с фонарем. Схена располо- жения стыковых наклодах Расход мотериалов на ферму	32	40
Фермы пролетом 24m для попрытий с фонарет, собироетые из полуферм Ехема распаложения стыкавых накладок. Расход таптериалов на ферму	3,3	41
Фермы прометом 24m. Злементы ферм 01-300,01-400, 81-300, 814-300, 814-400, 818-4000, 818-4000, 818-4000, 818-4000, 818-4000, 818-4000, 818-4000, 818-4000, 818-4000, 818-4000, 818-4000, 818-4000, 818-4000, 818-4000, 818-4000, 818-4000, 818-4000, 818-4000, 818-4000, 818-400	34	42
Ферты пролетом 24т. Пучки арматурные П·1, П·2, П·3. Общие виды	35	43
Фермы пролетом 24т. Пучки арматурные П-4, П-5. Общие виды	36	44
Фермы пролетом 24м. Пучки арматурныг П-6, П-7, П-8. Общие виды	37	45
Фермы пролетом 24м. Пучки арматурные П-9, П-10. Общие виды	38	46
Фермы пролетом 24м. Пучки арматурные П-1 ÷ п-10 Детали	39	47
Фермы пролетом 24 м. Стерфни Г-1, Г-2. Овицие виды	40	48
Фермы пролетом 24м. Стер. teни Г-3, Г-4. Общие виды	41	49

Наименование	N N NUCMOB	N N страни
Фермы пролетом 24 м. Стержни Г-5, Г-6. Общие виды	42	50
Фермы пролетом 24м. Стер±ни Г-7, Г-8. Общие виды	43	51
Фермы пролетом 24 m. Стерэкни С-1, С-2, С-3. Общие виды	44	52
Рерты пралетот 24 m. Стержни С-4, С-5, С-6. Общие виды	45	53
Ферты пролетот 24т. Стержни С-7, С-8. Общие виды	46	54
Рермы пролетом 24м. Стержни С-9, С-10; Общие виды	47	55
Фермы пролетом 24м. Стержни C-1÷C-10; Г-1÷Г-8 Детсми.	48	56
Фермы пролетом 24 м. Стержни С-1÷С-10; Г-1÷Г-8 Детоми.	49	57
Фермы пролетом 24 м. Данные для армирования нижнего пояса пучками с анкерными колодками и пробками.	50	58
Фермы пролетом 24м. Пучки арматурные с анкерными колодками и пробками ЛН-1÷ПН-5	51	59
Фермы пралетом 24м. Пучки артатурные с анкерными коладками и пробками ЛН-6÷ЛН-10	52	60

Пояснительная записка

I. Общая часть

- 1. Настоящий выпуск содердкит рабочие чертежи типовых сборных эрелезоветанных предварительно напряженных стропильных срерн сегнентного очертания из линейных элементов с натяжением арматуры нижнего пояса на бетон для покрытий производственных зданий с пролетами 24 м и шагом ферм 6 м под крупнопомельные плиты размером 3,0м х 6,0м и 1,5 х 6,0м.
- 2. Фермы запраектированы для бесфанарных пролетов и пролетов с продальными фанарями метольическими (серия ПК-01-68) и железоветонными (серия ПК-01-69), для зданий с подвесным транспартам и без подвесныго тоанспарта.
- 3. Фермы запраектированы цельные и собираеные из двух полирерт со сварным стыком. Нижние пояса армируются предварительно напряженной пучковой или стержневой орматурой 4. Фермы могут применяться в условиях как неагрессивной, так и агрессивной среды и при относительной влажености более 60%. Зашитный слой бетока для рабочей арматуры ва всех элементох принят не менее 30 мм.
- 5. в условиях агрессивной среды и при относительной влажности более 60% рекотендуется приненение срерн со сперусневой напрягаетой орнатурой.
- 6. Рерпы для покрытий с плитони 1,5 \times 6.0 \times отличаются от оргры для покрытий с плитони 3,0 \times 6,0 \times наличием в верхенен поясе дополнительных эоклодных частей и опорных столбиков в первой панели для опирания плит.
- Все линейноге элементы ферм краме нижнего пояса пряноугольного сечения Элементы нижнего пояса в узлах сапряжения с другими элементами пряноугольного, а между узлани - лоткового сечения.
- 8. Аргатура в эменентах ферт принята из столи тарки гост 2014-55, сортатент по гост 2014-55, или 35гс (Умту 223-55, сортатент по ГОСТ 1314-55) и холоднотянутой проволоки (ГОСТ 6121-53). Выпуска арматуры из поясов, свариваетые с арматурый решетки, приняты из

круглой стали нарки Ст. 3. (ГОСТ 380-57, сартанент по ГОСТ 8590 - 57).

9. Предварительно напряженная арматура в нижених поясах ферм принята в виде пучков состаяцих из высокопрочной проволохи ф 5 мм (ГОСТ 1348-55) или стероженей из стали марок 30XГ2С, а также 25Г2С или 35ГС с упрочнением вытяженой до R # = 5500 кг/см², при удлинении не быее 3,5%

Ферты обозначаются марками состоящими из букв и уифр. Цельные фермы с пучковой орматурой обозначены индексом "Ф1"; фермы, собираемые из полиферм с лучковой арматурой - индексом "Ф-2"; уельные фермы со стерожневой орматурой-индексом Ф-3"; фермы собираемые из полуферм со стержневой арматирай - индексам "Ф-4". Остальные уифры в морках ферм показывают соответственно пролет и условное обозначение нагрузки. При покрытия с плитами 1.5 х 6.0 м вводится дополнительно индекс "А", при наличии фонарей - индекс "Ф" (например, Ф1-24-24, Ф3-24-34Ф). Полуферны маркируются также как ферма с заменой индекса "Ф2" на "П2" (например,П1-24-3). Фермы с различными столбиками для апирания плит дапалнительно моркируются в проекте здания - см. лист 31. И. Элементы ферм обозначаются марками, состаящими из букв и уифр. Приняты следующие буквенные обозначения: "В" - верхний паяс; "Н" - нижений паяс; "С"- стайка; "Р"- раскос; " О"- опарный блок; "Ов"- опорный блок совмещенный с первым элементом верхнего пояса Уифры обозначают парядковый намер элемента, нумерация ведется в ферме каждага промета от 1. При изготов мении одинаковых эметентов из бетонов разных марок в обозначение вводится марка бетона (например, "H2-300" "H2-400"). Элененты верхнего пояса, предназначенные для пакрытий с плитами 1.5 х 6,0 м, обозначены индексам "А" (например 844).

 $\prod_{i \in \mathcal{N}}$ Пояснительная

Элементы верхнего паяса полуферм, примыкающие к сварному

30NUCKO Pro-Bany стыку, дополнительно обозначены индексот "С" (например в5Я-С).
12. В выпуске 1 настаящей серии приведены нагрузки на фермы, усилия в эленентах, детали и другие донные для проектирования пакрытий.

из. В выпуске 7 разработаны ферты пролетам 24m с цельным низычни пологи, с натядыением орматуры на упоры.

<u>II</u>. Изготовление ферм

14. Изготовление ферм предустатривается в условиях заводов эрселезобетонных изделий в соответствии с требованиями " Мехнических условий на изготовление и приетку сборных э/селезобетонных и бетонных конструкций и детолей "(СНІ-57), "Руководства по изготовлению эфелезобетонных сборных предварительно напряженных сегментных ферм из линейных эленентов", разрабатанного Научно- исследовательским институтом по строительству (НИИ-200). Минстроя РСФСР, издание 1960г, "Временной инструкции по технологии изготовления предварительно напряженных железобетонных конструкций, разработанной НИИО/СБ АСИЯ СССР, издание 1959г и "Технических условий на производство и приемку строительных и мантаженых работ. Бетонные и офенлезобетонные работы" (СН 66-59). При изготовлении элементов и ферм, применяемых в условиях агрессивной среды и при относительной влажености болег 60%, следует также руководствоваться "Указаниями по защите арматуры железобе тонных конструкций от коррозии" НИИЖСБ АСИЯ СССР, издание 1960 г.

15. Элементы ферм дольфомы изготовляться в инвентарной стальной опалубка.

16. Ярматурные каркасы должны изготовляться при помощи точечной сварки в соответствии с "Пежническими условиями на сварную арматуру для железобетонных конструкций" (ТУ-13-56 МСПМОСТ) и "Указаниями по тежнологии электросварки арматуры для железобетонных конструкций",

(ВСН-38-57/ МСП МХП). ЭЛЕКТРОЙУГОВУЮ СВАРКУ ВЫПУСКОВ

пртотуры из стали нарки 25Г2С или 35ГС с выпускани
из стали нарки Ст. 3 производить электродани типа Э5ОА,
сварку прочих деталей из стали нарки Ст. 3 – электродани
типа Э42. Обратить особое внинание на качество выполнения и точность установки зокладных деталей нарки "М".

11. Все рабаты, связанные с приненением стали ЗОХГ2С, производить в соответствии с "Указаниями по применению горячекатоный артатуры периодического профили из стали марки ЭХХГ2С в предварительно
напряженных зуслезоветонных канстройкими.

18. Фермы собираются в горизантальнам полажении на слеуиальном кондукторе. Сборка ферм должна производиться в завадских уславиях, в отдельных случаях допускается сборка ферм на строительной площадке.

После ристовки элементов фермы и выпусков армотуры прива риваются стыковые накладки к закладным планкам по поясам фермы и свариваются выпуска арматуры. Правильнасть работ по сварке выпусков арматуры в узлах подтверусдается специ-

18. Швы медейу элементами поясов зачеканиваются быстротвердеющим цементно-песчаным раствором состова 1:1 по объему с дабавкой жлористога кальция до 5 % от веся цемента. Затем устанавливается метоллическая опалубка узлов и последние замоноличивоются быстротвердеющим бетоном состава

1: 1,5: l no obteny c добавжой холористово колюция до 2% om beca yenenma.

20. Пасле достижения прочности бетона в узлах и раствора в швах не тенее 150 кг/ст², в латок ниженего пояса зововатся арматурные пучки (стержии) и производится натяжение армотуры. Величины усилий натяжения пучков и стерженей, а также величины удлинений оргатуры указаны на чертежах общих видов ферм.

21. Для пучков предусмотрены гильзо-стерусневые анкера

IMEJIBHAA ZANUCKO RE-16 BOWYCK Z

При применении пучков, анкеруемых коладками и коническими пробками, следует пользоваться данными, приведенными на листе 52. При изготовлении орматурных пучков следует пользоваться "Руководством по изготовлению железобетонных сборных предварительно напряженных сегментных срерм из линейных элементав НИИ-200, издание 1960г. При изготовлении арматирных стержней из стали марки 30хг2С следует руководствоваться " Указаниями по применению горячекатанной арматуры периодического профиля из стали марки ЗОХГ2С в предварительно нопряженных железоветанных конструкциях", ниижь и цнииск аси а сседиздание 1960г и "Временными указаниями по технологии сварки высокопрочной арматуры стали периодического профиля марки ЗОХГРС для эфселезоветонных конструкций, "госстройиздат 1960 г. Натяфение арматуры производится гидравлическим домкратом с адного торца фермы. Усилия в арматуре при её натяжеопределяются по тарированному манаметру дамкрата. Все закрытые каналы через специальные отверстия заполняются уементным тестом с водоуементным отношением 0,40 -0,45 по весу Лотки заполняются бетоном состава 1:3:2. 24. Дополнительный контроль натяжения осуществляется по величине удлинения орматуры. 25. Все необетонированные поверхности стальных элементов, к котарым не будут привариваться другие элементы, должены быть очищены стальными щетками и окрашены масляной краской за два раза. В фермах, находящихся в агрессивной среде и при относительной влажности более 60%, эти детали должны быть оштукатурены цементным раствором.

26. Стольные детоли изготовляются согласно, Мехническим условиям на изготовление и тонтож стольных конструкций (СК 95-60).

27. Укрупнительная обдока ферм и полуферм производится после достифения бетоном эленентов 100% проектной прочности что дольјено быть подтверфедено паспартом, водаваемым завадам-изгатовителем 28. Молщина защитного бетонного слоя для продольной арматуры в каркасах далжена составлять 30 км, а для хомутов и поперечных стержней 25 км.

29, Отклонения размеров эленентов от устоновленных в робочих чертезюх не должны превышоть:

о) по размерам сечений элементов + 10 мм - 2 мм б) по длине элементов верхнего и + 5 мм нижнего поясов и опорных элементов -10 мм

вв) по длине стоек и раскасов ±10 мм г) по длине выпусков арнатуры +20 мм

ā) по распологрению тест выхода выпусков орнотуры на элементах поясов (во всех направлениях)

e) πο ρας πολουλοεμινο μα ποργαχ οπορμώνε διποκοβ ψεμπροβ κομαιποβ διπ ραδογεί οργιαπιγρό (βο βοεχ μαπραβινεμινώς) ± 2

равачей арматуры (во всех направлениях; ус) по располючению Канола и лотка в элементах ниуснего пояса

з) по толијине защитного бетонного слоя для арматуры

u) по расположению уентров отверстий для крепления связей в эленентах верхнего пояса (во

всеж направлениях) ± 10. 30. Отклонения от праектного расположения столоных плонок на верхнен и ниженен поясох и в опорных блокох ферты

не должны превышать в плоскости планок 5 мм и перпендикулярно плоскости планок – 2 мм.

31. Выпуски арматуры в элементох поясов запроектированы из стали марки Ст. 3; изготовление их из стали друго торки не допускается.

TA

Пояснитемьная записка

+10 MM

± 3

± 5

PAR-DI-TO BOINYCK CMD. 5 зг. Внешний вид элементов доложен удовлетворять следующим требованиям;

а) уелы между граняни должны быть пряныни; отклонение от перпендикуляра допускается не более 2 нм на высоту или ширину элемента;

б) на поверхности Каналовдля рабочей артотуры фертителицика в опорных блоках и элементах нижнего паяса, наплывы не допускаются;

в) поверхности граней элементов доложно быть пласкими; искривление ребер и поверхностей допускается не более: на внешних таруевых гранях опорных блоков на 1 мм и на прочих торуевых гранях 2 мм по высоте и ширине сечения; на боковых гранях 5 мм по всей длине элемента;

г) околы углов и ребер дапускаются на глубину не более Юнн;
д) роковины диачетран до 15 км и глубиной до 5 км допускоются не более двуж на 1 к длины одной грани элемента и не более
четыреж на 1 к длины одновременно на всеж гронях элемента;
е) на повержности элементав допускаются только волосные
трещины;

u) лиуевые повержности закладных частей из листовой сталу а также повержности выпусков арматуры, должены быть чистыми, без наплывов бетана.

Отклонение размеров полуферм от устоновленных в рабочих чертвувах не долусны превышать: пр высате 5 гм и по динеИнт 33. Резьба на конуах анкеров на нопрягаеной арматуре долубна быть исправный, а анкерные гайки при навинчивании долубны проходить по всей длине нарезки. Резьбабае саединение этих деталей долубна быть плотным.

34. Отклонение длину готовых рачков или стерующи нарогого.

34. Отклонение длины готовых пучков или стержней напрягаемой арматуры от установленной рабочими чертежами не далэкно превышать 10 мм. 35. При укрупнительной сбарке ферм саблюдается строительный подбем, который в готовой ферме должен составлять ~ 60 км. 36. Отклонение длины сабранной фермы от установленной по про-екту не должено превышать 20 км.

31. Взаимное смещение элементов поясов в собранной ферме по вакоте и в плане не должена превышать 5 мм.

38. Искривление вертикальных гроней поясов в собранной ферме не должно превышать по всей длине в верхнем поясе 20 мм и в нижнем поясе 30 мм.

39. При изготовлении злетентов ферм долучен осуществляться систематический контроль прочности бетона и арматуры в соответствии с указаниями стандарта», Детали эргелезоветонные сборные: методы испытаний и оценки прочности, эргесткости и трещиностойкости" (ГОСТ 8829-58). Долучен такуре осуществляться постоянный контроль технологии изготовления элементов и сторгого соответствия их рабочим чертежам.

<u>Т. Правила приемки, методы контроля</u> качества и испытания

40. Злетенты или полуферты приничаются котплектоги на ферму. Проверке внешнего вида и размеров подвергоются все извелия в кожодам комплекте.

41. Проверка внешнего вида и разнеров полуферм и ферм после укрупнительной сборки производится поштучно.

42. Прочность бетона в элементох и в узловых соединениях для каждедой фермы проверяется испытанием контральных кубиков на сжатие, соглосно ГОСТ 6901-54 "Методы определения удобоукладываемости бетонной смеси и прочности бетона". 48. Прочность цементного раствора в швах верх него и ниженего поясов проберяется для кождобой фермы путем испытания на сжатие контрольных кубиков размерам ТХТХСН. Образуы до испытания должены храниться в таких жее условиях, как и собираемая ферма.

44. Размеры элементов, швав, рабочей арматуры, выпусков арматуры, полуферм и ферм, а также расположение закладных частей и выпусков арматуры провержатся стальной мерной линейкой(метром) и стальной руметкой. Величины искривлений, неровностей и околов Определяются измерением стольной мерной линейкой (метром) зазара между ребром выверенной линейки или натянутого шнура (провалаки) и повержностью элемента или фермы. Правильность пряных углов проверяется с помощью угольника. 45. Отсутствие наплывов на повержности конолов, предназноченных для напрягаемой арматуры в элементох нижнего поясо и в опорных блоках устанавливается путем пропуска через каждодый канал контролоного челнока длиной 150мм. Диаметр контролоного челнока для проверки праходимасти коналов в опарных блоках должен быть на 4 мм менее виаметра канала, а контрольный челник для праверки пражадимасти каналав в элементах нижнего пояса далжен иметь размеры поперечного сечения на 15 мм менее проектных размеров поперечного сечения соответствующих каналов. Проверка размеров и расположения арматуры и закладных частей, а также надежености их крепления в опалубке произво-

41. Аркатурные пучки (стердени) приничаются по партиям. Кажедая партия включает не более 15 шт. 48. При освоении изготовления ферм на кожедам предприятии

дится до бетонирования элементов.

с уелью проверки их качества необходимо производить контраль прочности и трещиностойкости путем испытания ферм контральной нагрузкой. Испытание производится с соблюдением требований ГОСТ 8829-58 (см. также п.39) и по специальна разработонному проекту загружения фермы нагрузкой.

Т. Маркировка и паспортизация

49. Каждый элекент ферты должен инеть следующие поркировочные знаки: нарку элекента и ферты, порядковый номер ферты, дату и смену изготовления и штаня ОТК. 50. Каждая сабранная ферта или полуферта должена иметь на боковых гранях опорных блоков следующие таркировочные зноки: тарку ферты, нотер ферты по порядку изготовления, штат ОТК. 51. Маркировка эселезоветонных элементов и ферт должена производиться нестываемой краской.

52. На каждам пучке (стерукне) на адном из таруов долужен быть накернен намер, присвоенный ему по экурналу изготовления рабачей арматуры срерм.

53. Кажедую ферму, а также кажедый комплект линейных элементов на ферму завод-изготовитель снабуювет поспортом, в котором указывается:

а) наименование завода-изготовителя;

б) номер паспарта и дата его выдачи;

в) наименование и морка изделия (например, комплект элементов на ферму Ф1-24-3);

г) натер ферты и дата бетанирования элементов;

д) атпускная прочнасть бетона в элементах фермы; e) та усе, в узлавах соединениях фермы или полуфермы;

HC) ma Hce, pacmbopa b cmbitax.

Nacagom dougleer doumb nadrucor ynoshoriaterrbin na ama sruyan.

54. Кожедую партию арматурных пучков (стержней) завод-изготавитель снабжает паспортам, в котором указывается:

а) на именование завода - изготовителя; б) номер паспарта и дата его въздачи;

в) марка и длина пучков (стеројсней);

 ϵ) диаметр проволоки, нотер ГОСТ на проволоку в пучкаx, номера сечений, марка столи (номер ГОСТ) для стеруеней;

д) количество и ночера пучков (стержней), вхадящих в партию; e) наименьшее напряжение при упрачнении стержней

в кг/сн²; ф) остаточное удлинение стержнеб после вытяжски при упрачнении.

Ласпарт далэкен быть подписан упалнаноченным на эта лицан

TA 1

Пояснительная записка

ПК-01-70 былуск стр. <u>V</u>I. **Х**ранение и транспортирование 55. *Сатовые элегенты ферт хранятся компле*н

55. Сатовые элегіенты ферт эгранятся конплектами на каждую фергу. Элегіенты укладываются гаризантально на деревянные прокладки.

деревянные прокладки, 58. Фермы (полуфермы) эгранятся установленными вертикально на двух брусчатых подклодкох, улюфенных под

крайничи узлами и должены быть наделена предохранены от падения подпорками или растяжении.

от падения подпоркани или растядскани.
51. Во время кантования и подвена ферны (полуферны) стропятся в нестох, указанных на схенох строповки (лист).
58. готовые элементы перевозятся комплектами на ферну (полуферну). При перевозке элементы опиронотся на деревянные прокладки и надежно закрепляются (во избежа—

ние ударов друг о друга и о кузов автомашины). Полцина пракладак должена быть не тенее высаты выступающих тонтаженых петель и выпусков артатуры. 59. Фермы и полуфермы перевозятся в вертикальном поло-

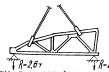
офении, опертыти в местаж, показанных на схене (лист.!). Средства транспорта долојсны быть оборудованы устройствани, предожраняющими фермы от падения на бок и от продольных и поперечных перепецений во время пере-

VII. Monmasta qoepri

BOSKU.

ба. Мантаж ферт должен осуществляться по технологическим правилам, разрабатанным в составе проекта организации работ. Проектные материалы по производству мантаженых работ должены быть разработаны в объеке, предусмотренном п.п. 36-38 "Указаний по применению сборных железобетонных конструкций и деталей в строительстве "(У-107-58). При разработке проекта организации работ и при мантаже ферм должены соблюдаться указания по монтажу сборных железобетонных конструкций, приведенные в упомянутых У-107-56.

61. При монтаже ферм необхадино установить по верхнему поясу инвентарные распорки которые сничаются по нере укладки плит покрытия. Приченение этих распарак должено быть предусмотрено в проекте организации работ.


Tun	Mapka	Mapka		Расчетная (в скобкаж нарчо тивная) нагрузка	- <i>Пучковая</i> арма <i>ту</i> ра	Majoka	Расосод м на ф	ia mejouauob bejoriy	Bec chepmi
фермы	фермы	полуфермы		ат подвесного пранепортат	HUACHERO NORCO	бетона	Cmanb Ke	Бетон М	T
	ФI-24-I	-					648		
	ФI-24-IA	_	350 (290)		410114578	300	666	4.36	10,9
	ФI-24-2				4 04-0	300	675	4	
α	ФI-24-2 A		450 (380)		4 no 13 p 5 7 8	/400	694	4.36	10,9
ОНО,	ФI-24-3	_	550 (450)				756		
000	<i>\$1-24-34</i>		350 (290)	4epy3a no3,9(30)	4100 15 45 78	400	775	4,36	10,9
2/5	Ф1-24-4		(/55 ()	// 206-1	/ /	,	784	/ **	100
	ФI-24-4A		450 (380)	4 epyso no 3.9(30)	4 10 114578	400	803	4, 36	10,9
	фI-24-5		550 (450)	4 epysa no 3.9(3.0)	4 no 18 ¢ 5 rs	400/ 1500	852	/20	
	\$\doldsymbol{\phi}\) 24-5 A		330 (430)	- , , , , , , , , , , , , , , , , , , ,		7000	871	4,36	10,5
	ф2-24-1	NI-24-1			4 4150		846		
nanypepm	cp2-24-1A	NI-24-1A	350 (290)		4 no 11 \$ 578	300	864	4,38	11.0
anya	ф2-24-2	11-24-2	/rm (200)		400 134576	300 / /400	874	4	
	\$2-24-2A	N1-24-2A	450 (380)			740	892	4,38	11.0
θβία	ф2-24-3	N-24-3	550 (450)			١.	980		
83	Ф2-24-3А	NI-24-3A	350 (290)	4 груза по 3,9(3.0)	400 15\$ 578	400	998	4.38	11.0
ная из	ф2-24-4	11-24-4	(()	/ 206-1	1100 1745 0	lina	/008	4.5-	
.'ocmaвноя	Ф2-24-4А	NI-24-4A	450 (380)	4 груза по 3,9(3.0)	7110114076	400	1026	4.38	11.0
000	фг-24-5	NI-24-5	550 (4 <i>5</i> 0)	4 epysa no 3,9(3.0)	4no 18 \$578	100/	1075	4.38	11.5
	\$2-24-5A	N-24-5A					1094		

Cxerra cmponobtu фероны при подъетв и теста возможеного опирания при перевозке

ATATA S

Схема строповки фермы при кантовании

 $\widehat{T}_R^{-2,6 au}$ $\widehat{T}_R^{-2,9 au}$ Cocera cmponolicu nonyapepribi u riecmo onyourugnpu nepelosice

Схета строповки полуферт при кантовании

Примечания

! Bce Φεριήδη ραιτουμπαϊκός μα μαθούβεν οτ φομαίρη ε Μαρίκυ φεριή ο δοπολημιπελομόνη υμθεκτοίν «Α΄ δαμόν δια φεριή ποικρόνηνού ο πλυπαίου 1,5 × 6,0 π.

3. Npu zpomenuu obepm nodkinodku onedyem yomandbu-Bomb nod onophbiruu ysinoruu.

4. В градое "Марка бетона" дробоно показаны: в числителе марка бетона верхичего пояса и решетки, в знаменателе – никонего пояса.

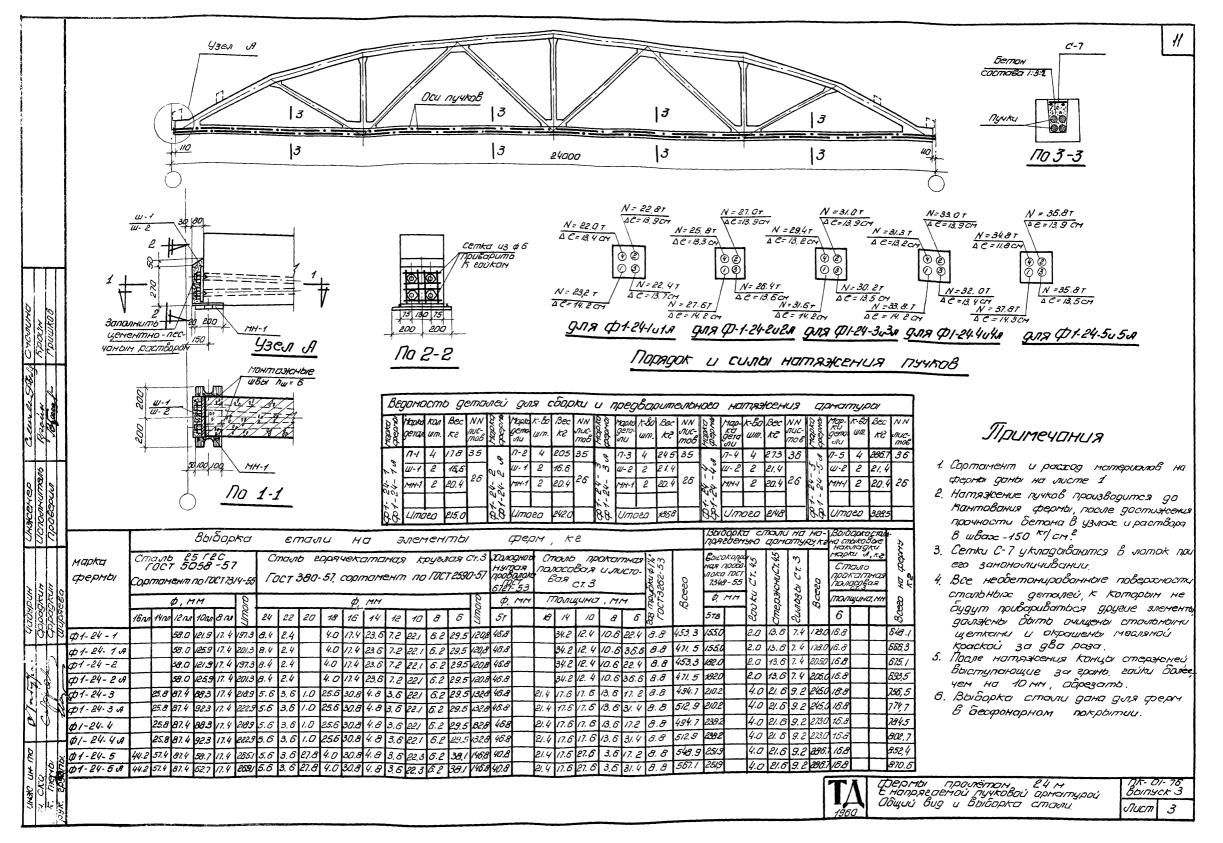
TA S

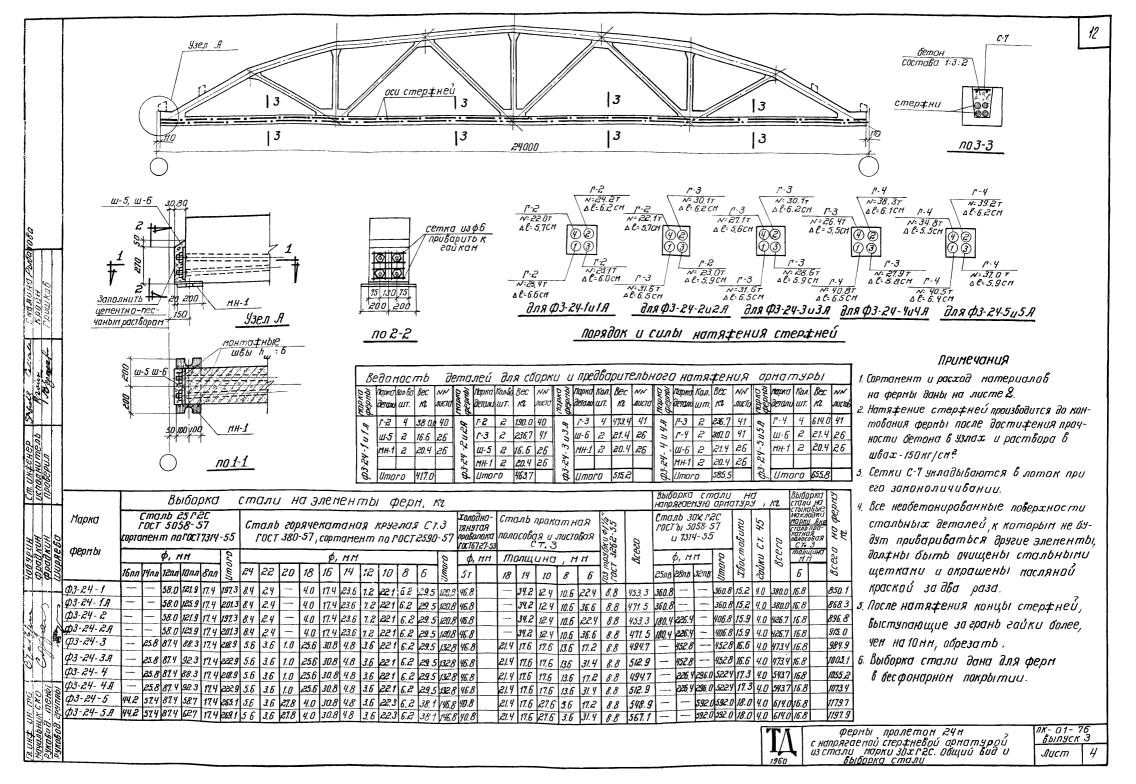
фермы прометом 24м Сартнент и расшой материалов нафеть выпуск с напряваемой пункавай орматурой, Сосемы отроповый Лист

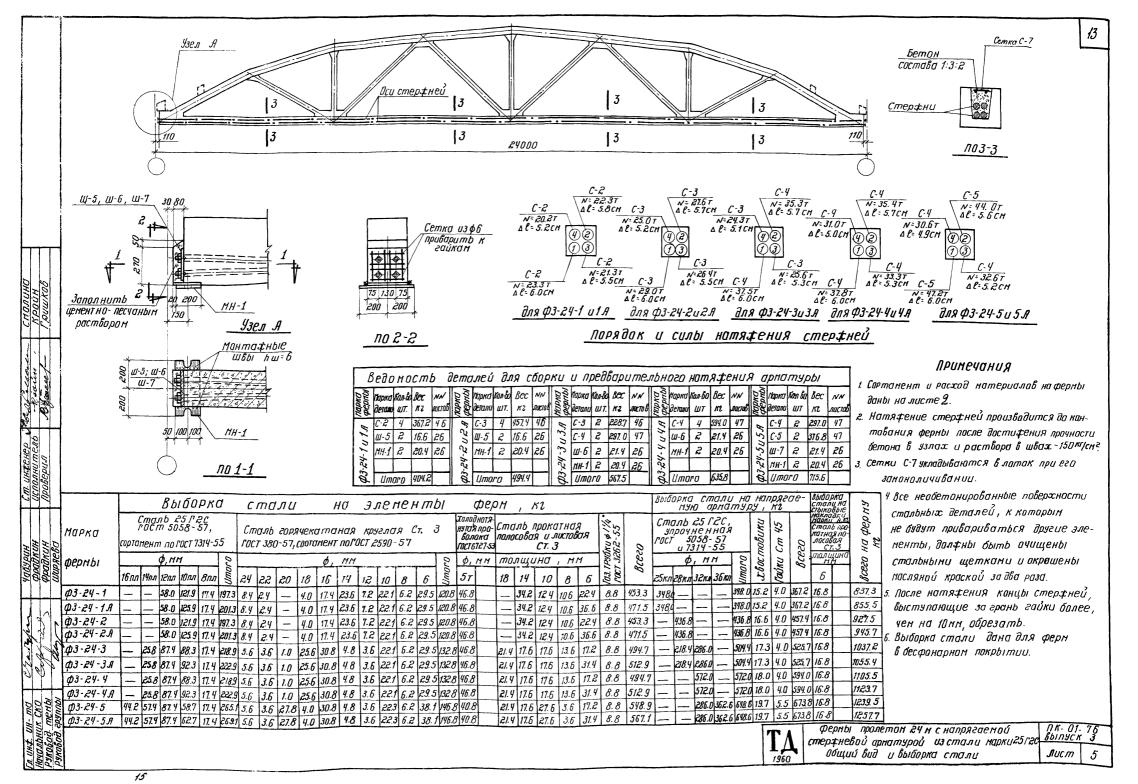
Mun	Mapka	Majoka	ОСНОВНОЯ расчетная	Росчетная (в скобког нор	Напряеветоя нижнево г	90M01Y900 109 CO	444	Pocacoli Ho	namep pepmy	<i>000.00</i>	Bec		
	doepmbi	natuchenahi	(вскобках нар	мативная)	Вариант I Стержни	BODUAHT II	Марка бетона	Cmast	, KS	Бетон М	<i>pepm</i>		
opepm61	урері ісі	// <i>cs.ig.42.</i> 0/2/10/	мативноя нагружи кг/т²	нагрузка от повес- ного транспорта	us crnasiu mapku 30×12C	CMEDOKHU V3 CMOJU MOPKY 2512C YNPOYHEHHOÙ	GETTIONO	Варионт I	Вариант <u>I</u>	Mª	7		
	\$ 3-24-1	_	200 (22-1		11.4 OF -8	4 \$ 25 KM		850	837	4.36	10,9		
	φ3-24-1A		350 (290)		4¢ 25 nb	4 4 23 RA	300	868	856	<i>"</i> .	ļ.,		
	φ3-24-2				2 4 25 18		300/	897	928	4, 36	10,9		
	\$3-24-2A		450 (380)		2 ¢ 28 nb	4 ¢ 28 KM	/400	915	946	4, 50	10,3		
	φ3-24-3		550 (450)		4 \$ 28 nb	2 ¢ 28 KM	400	985	1037	4.36	10,9		
8%	\$3-24-3A	_	350 (290)	4 epysa no 3,9 (3,0)		2432 KM	400	1003	/055	7,50	10,3		
Цельная	\$3-24-4		450 (380)	//an - 2060/	24 28 18	44.50	400	1055	1106	4,36	10,9		
	ф3-24-4A		430 (380)	4 <i>2</i> pysa <i>n</i> 03,9 <i>(</i> 9,0)	2432 18	4 \$ 32 KM		1073	1124				
	\$3-24-5				, -			2432 KM	400/	//80	1240	1.00	100
	\$3-24-5A		550 (450)	4 грува по 3,9(3,0)	4432 nb	2\$36 KI	/500	1198	1258	4.36	10,9		
	\$4-24-1	12-24-1						1035	1021	4,38	11.0		
200	\$4-24-1A	N2-24-1A	350 (2 9 0)		4 \$ 25 nb	4 \$ 25 KM	300	1053	1039	7,38	//.0		
палуфеюм	φ4-24-2	112-24-2	_		2\$25 nb		300/	1081	1113	(100			
	\$4-24-2A	12-24-2A	450 (380)		2 \$ 28 nb	2 \$ 28 NO 4 \$ 28KM		1100	//3/	438	11.0		
Solyx	\$4-24-3	112-24-3	550 (450)		2 \$ 28 Kg			1186	1239	, .			
U3 D	\$4-24-3A	12-24-3A	350 (290)	42 <i>033</i> 0 no 3,9(3.0)	4 \$ 28 nb	2 \$ 32 KM	400	1204	1257	4.38	11.0		
	\$4-24-4	12-24-4			2 ¢ 28 nb			1256	1307				
Састовноя	\$4-24-4#	12-24-44	450 (380)	4 epy30 no 3,9 (3,0)	2¢32 nb	4 \$ 38 120	400	1275	/325	4,38	11.0		
יכיחכ	\$4-24-5	Л2-24-5				2¢ 38 KM	400/	1390	1443	(11.0		
Co	\$4-24-5#	112-24-5A	550 (450)	429930 1103,9(3,0)	4432 nb	2 \$ 36 KM	500	1408	1461	4.38	11.0		

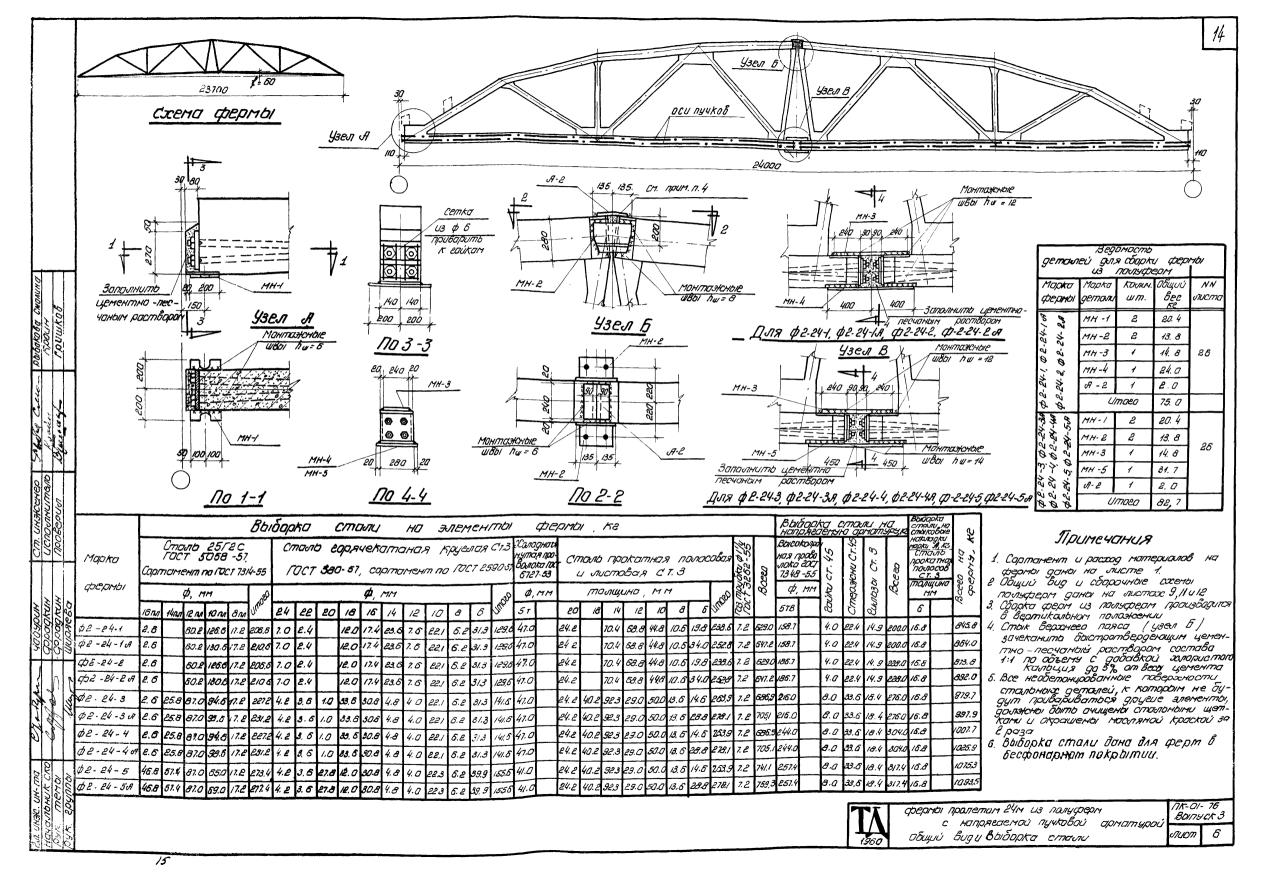
Примеч

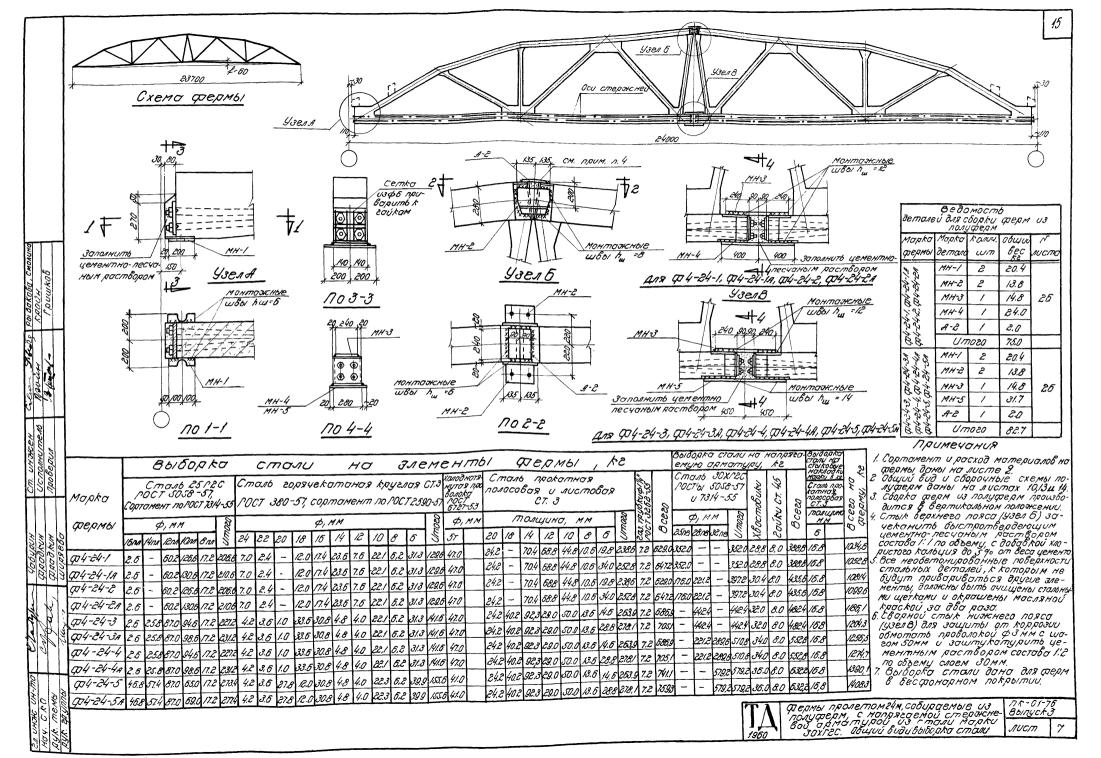
Hodowa Speech Powerfor

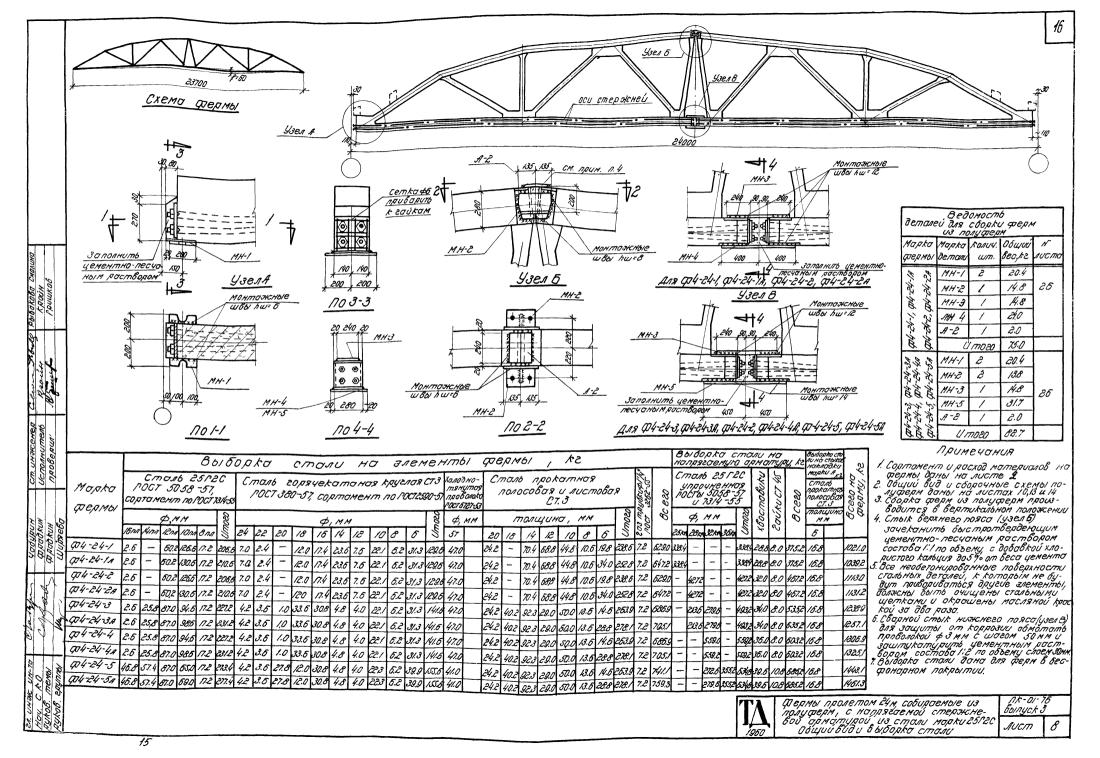

ферты пролетом 24 м. Сартамент и расход материалов на ферты с напрягаемой строиневый артопуры Лист

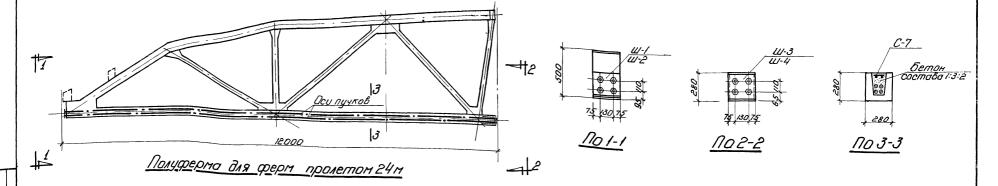

NK-01-76 Boinyck 3

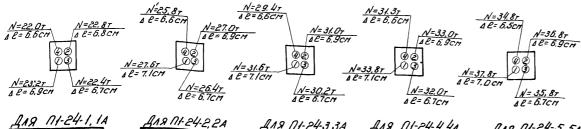

^{1.} Bee openible paces YYEMOM HOGOY30K ат сронаря


г. Морки ферм с допалнительным индексом, А" Darbi DAR notephimuú c naumamu 1.5×60 m 3. При спранении ферм подкладки следует устанавливать под опорными узлами.


установка подкладок под узлами нионенего пояса/ст. пист 1) 4. В графе "марка бетона" гробою показаны: в числителе марка бетона верхнего пояса и решетки, в знаменателе-нижнего пояса.







A18 N1-24-3,3A

Порядок и силы натяжения пучков

A19 11-24-4,4A

18=6.7CM	
<u> ANA NI-24-5,5A</u>	

Pacx	rod	MO	mer	DUQA	ов на 1	nony	mep.	MY	
Марка полуферны	Bec T	Марко Бетоно	Obtoen Gerond 17 3	Abcxad CTANU KE	Марка п о луферны	Bec 7	Марка Бетона	0δδεν δετοκα 14 ³	Pacxól CTONU KZ
11-24-1	5,5	300	2,19	385,4	NI-24-1A	5,5	300	2,19	3945
11-24-2	5,5	300/400	2,19	399,4	NI-24-2A	5,5	300 _{/400}	2,19	408.5
11-24-3					N1-24-3A	5.5	400	2,19	457,6
11-24-4	5.5	400	2,19	4625	NI-24-4A	5,5	400	2,19	471,6
11-24-5	5,5	400/500	2,19	496,3	N1-24-5A	5,5	400 ₅₀₀	2,19	5054

1008	B	едол	MOCI	שח	деn	пале	T an	A C	δορί	tu u	np	eab	σρυι	MEAL	SOH	a HC	באחום	юени	 уя ар	Man	ypbi	на 1	ומסח	ype,	ony
	Mapka nany- diepribi		KOJUY. LUM.	Вес	NN	Марка полу- ферны	Μαρκο	KOMIN	Bec	N N NUCTOB	Μορκο	Морска Дета	Колич. шт	Вес	NN JUCTOB	Μορπο	Марко Ветали	KOJUY.	Вес	NN	Μορκο	Парко дета- ли	KOAUY.	Bec	N N NUCTOO
when	1-h	П-6 Ш-1 Ш-3	1	100.0 8.3 7.4	37 26	11-24-24 11-24-24	П-7 Ш-1 Ш-3	4 1	114.0 8.3 7.4	37 26	7.7	N-8 W-2 W-4	1	138,0 10.7 9,4	26	11-24-4	П-9 Ш-2 Ш-4	1	152,0 10.7 9.4	38 26		N-10 W-2 W-4		158.7 10.7 9.4	
1		Un	0300	/15,7		L	Un	050	129.7			Un	7020	158.1			Um	030	172,1			Un	020	1788	

Припечания

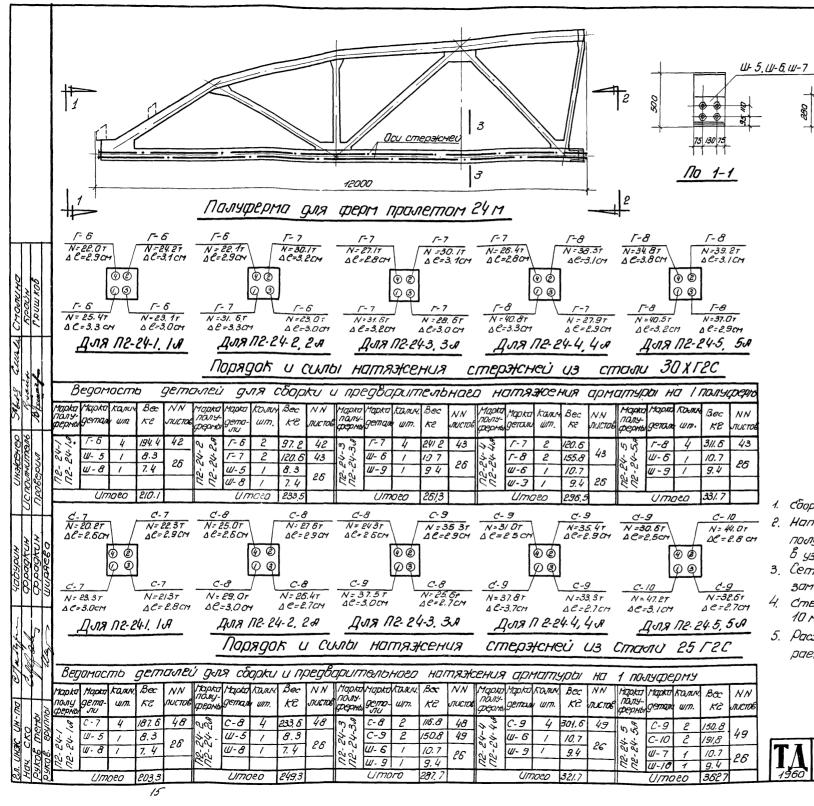
1. Сборочная схема полуферм дана на лусте 13 и 14.

2. Натяжение пучков производится до кантования полуфермы, после достионсения прочности бетона в узлах U pacmbopa & wbax - 150 Kr/CM2

3. Сетки С-17 укладываются в лоток при его замоноличи-

4. Стеројски, выступающие за грань гайки более 10 мм, отрезать после натяжения.

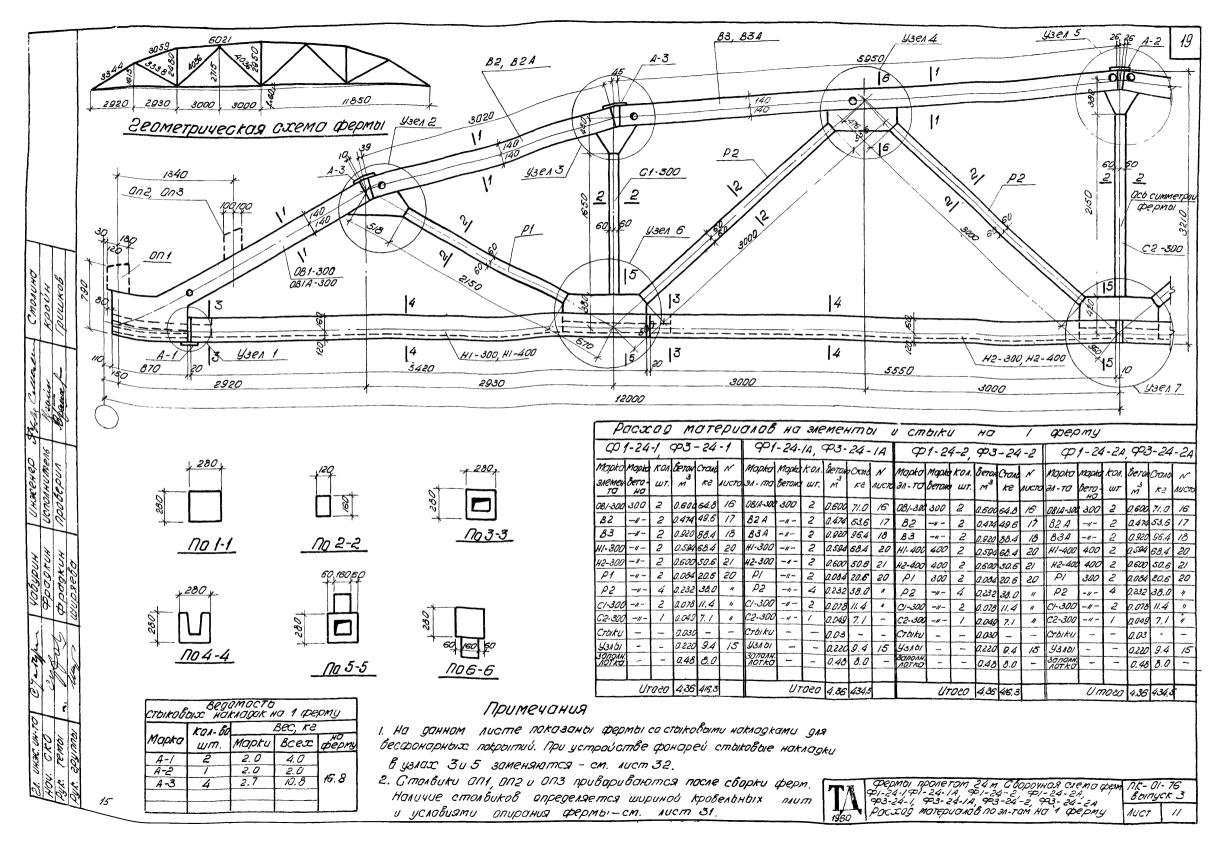
5. Расхад материалов дан для полуферм, собираемых в фермы для бесфонарного покрытия.

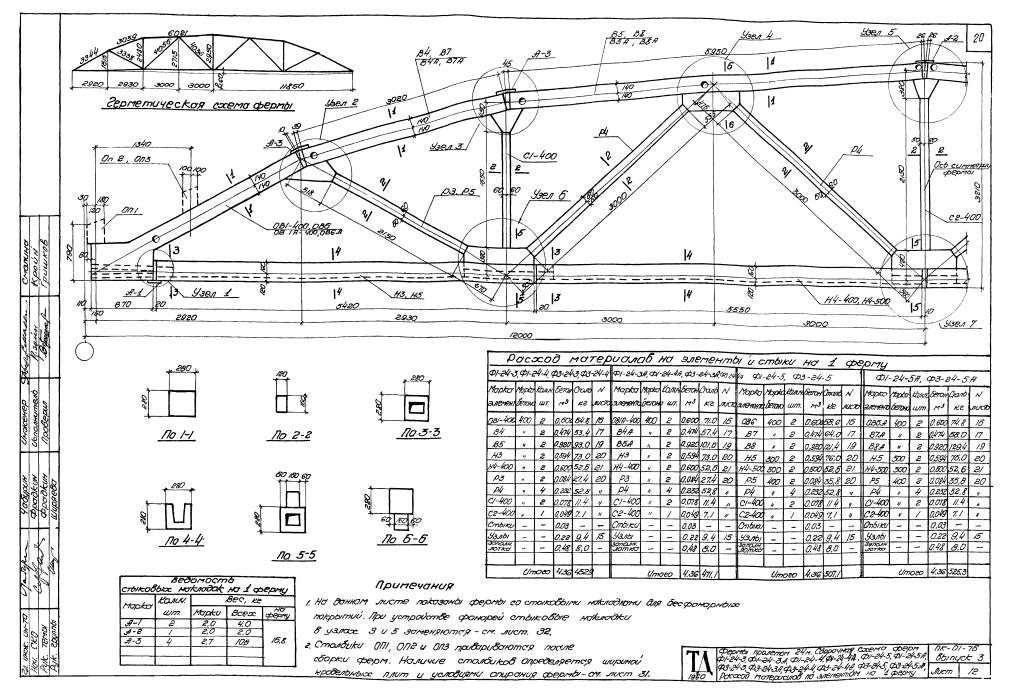

Ί	Παιγφερμόι διя Φεριτ προιετομ 24μ c μαπρяεσεμού πιγικοδού αρμαπιγρού. Ιδιγιύ δυθ ποιγφερμ. Ραςκοθ μαπερυοιοδ	NK-0 Boinyci	7-76 x 3
950	нопряесе нов пучковой артопурац. Общиб вид полуферм:Раскод материолов	<i>Πυ</i> ς τ	g

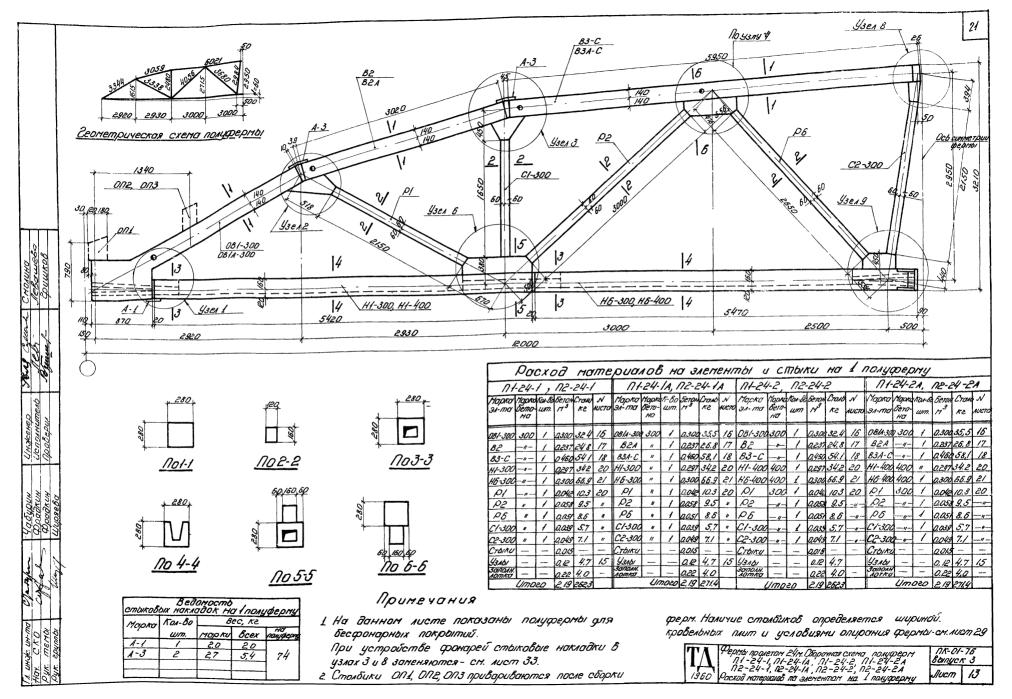
Cemka C-7

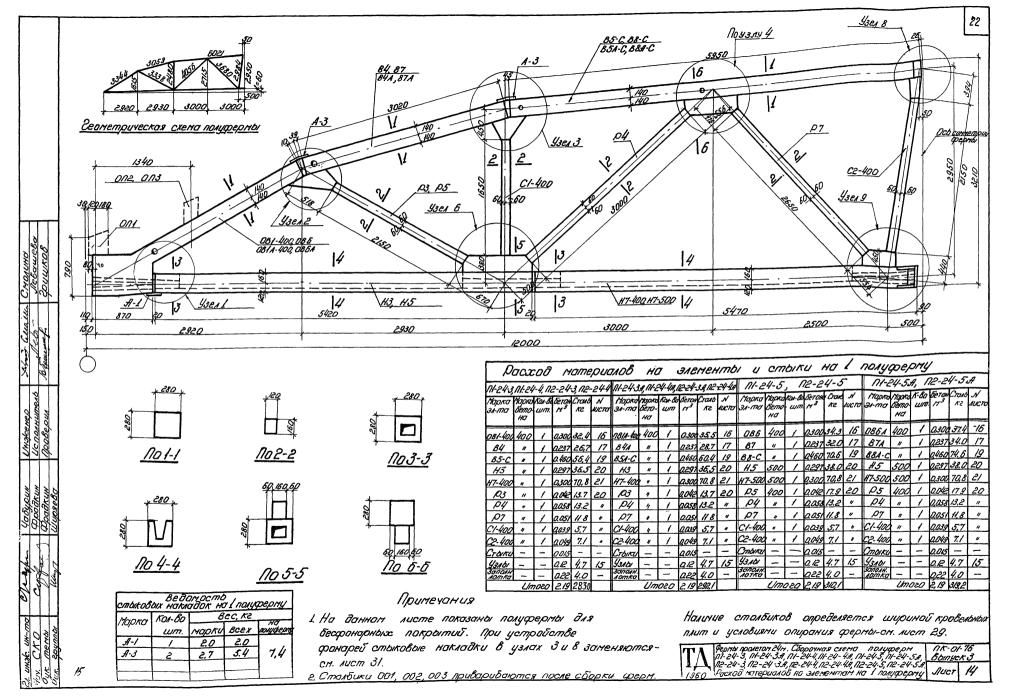
280

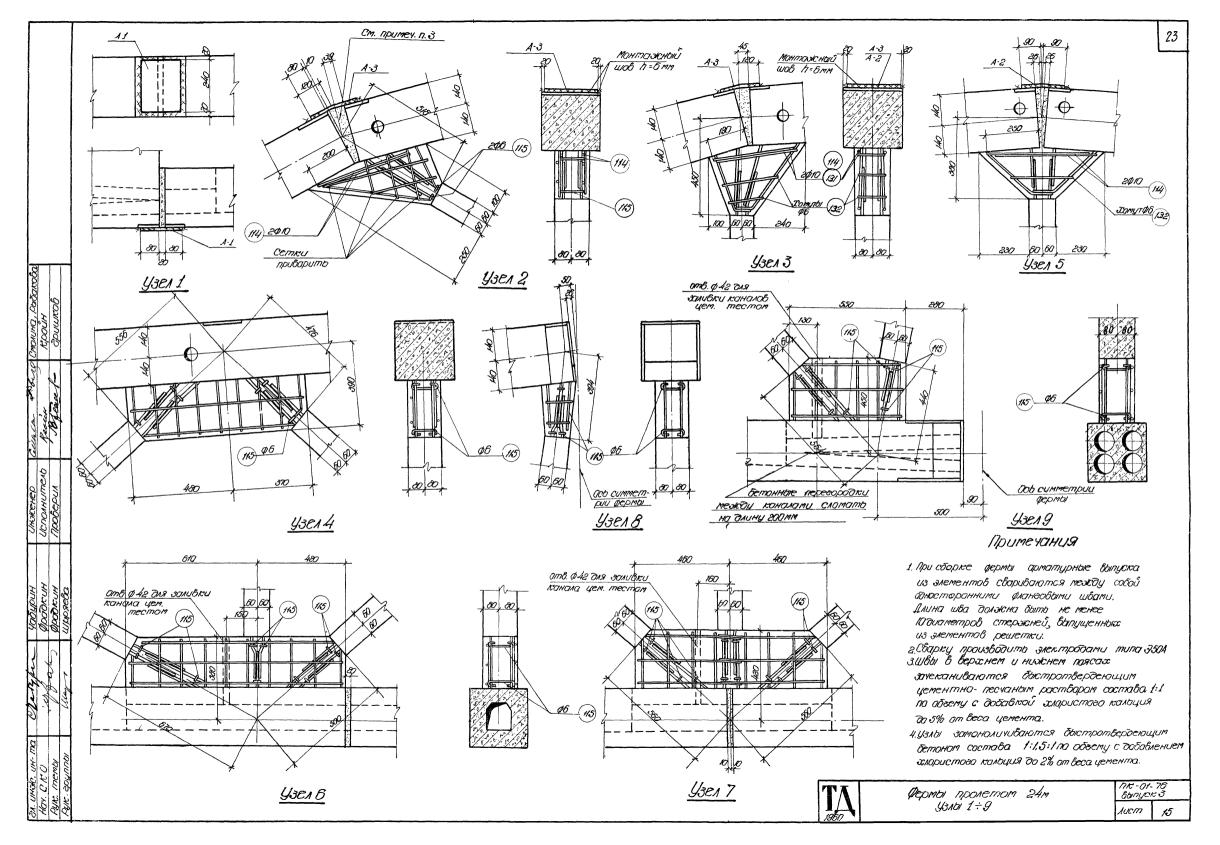
Бетон Состава 1:3:2

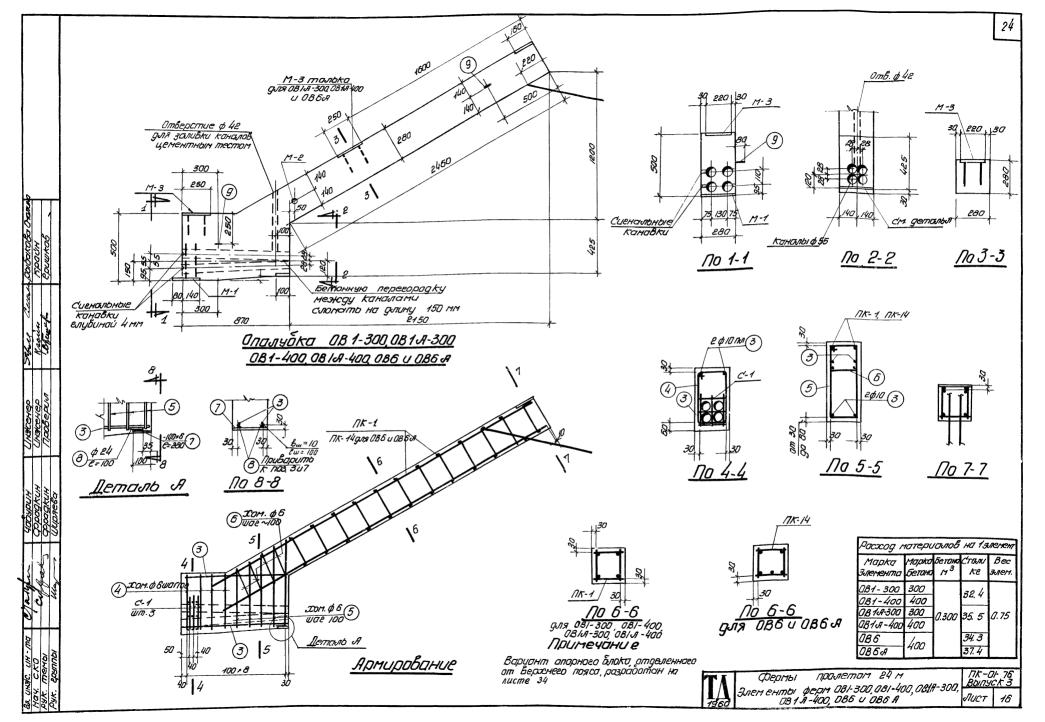


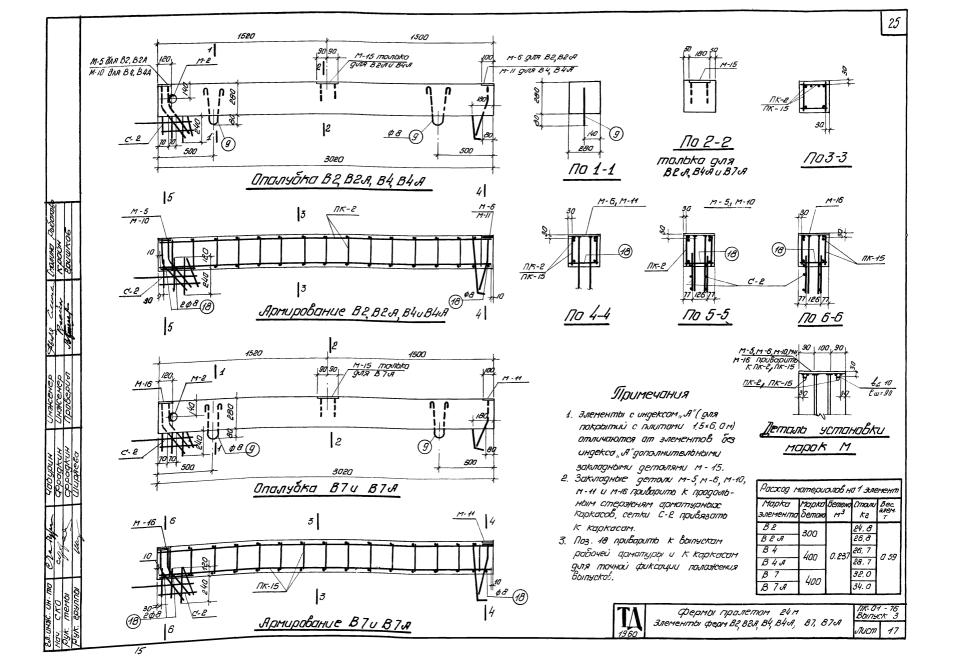

No 2-2 No3-3 Расход материалов на полуферму Расход стали Mapka MORKO . Дрм. ниженего поясо อ็อาดูรูต 70**.719¢Deo**Mbl бетана 30X12C 2512C 12-24-1 5. 5 479.8 300 2.19 473.0 N2-24-1A 489.9 300 2. 19 482.1 N2 -24 -2 300/400 5.5 2.19 503.2 5/9. D 300/400 5.5 П2-24-2 А 5/23 528./ 2.19 M2-24-3 .5. .5 400 2. 19 551.7 518.1 П2-24-ЗЯ 5.5 400 2.19 560.8 587.2 Π2-24-4 5.5 400 2.19 586.9 612.1 112-24-4A 5. 5 400 2. 19 596.0 621.2 400/500 649.2 п2-24-5 5. 5 2. 19 680.2 N2.24-54 5. 5 658.3 6893 2. 19

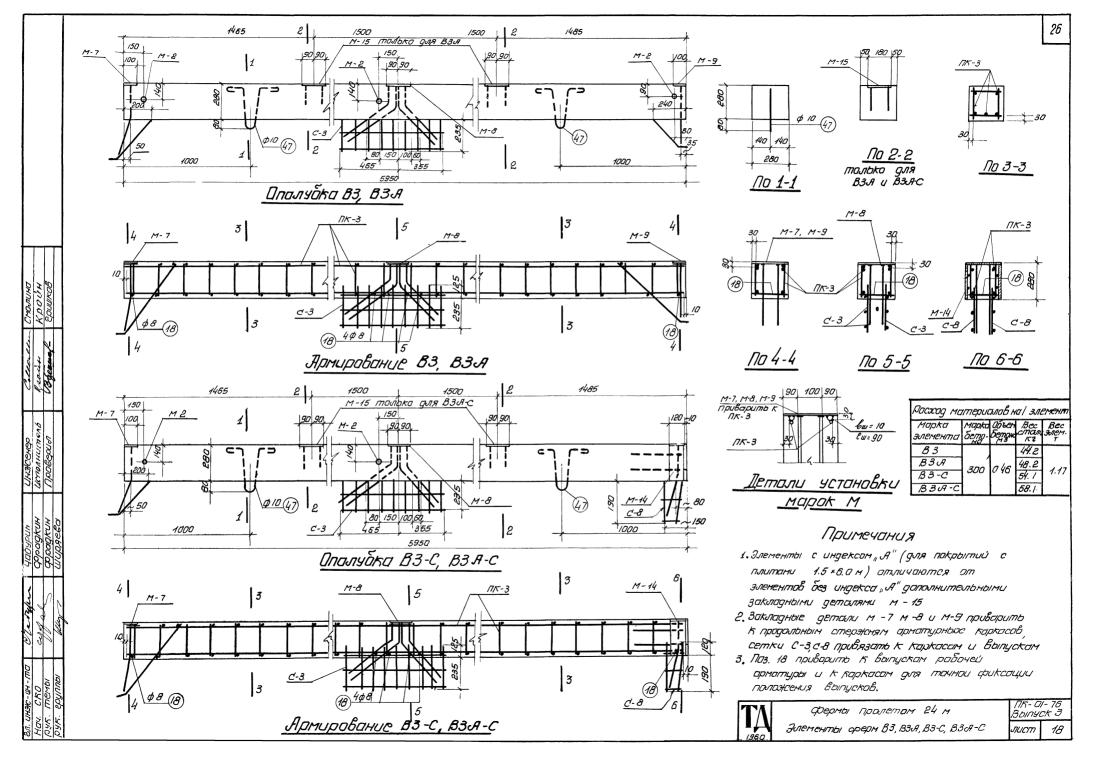

W-8 W-9 W-10

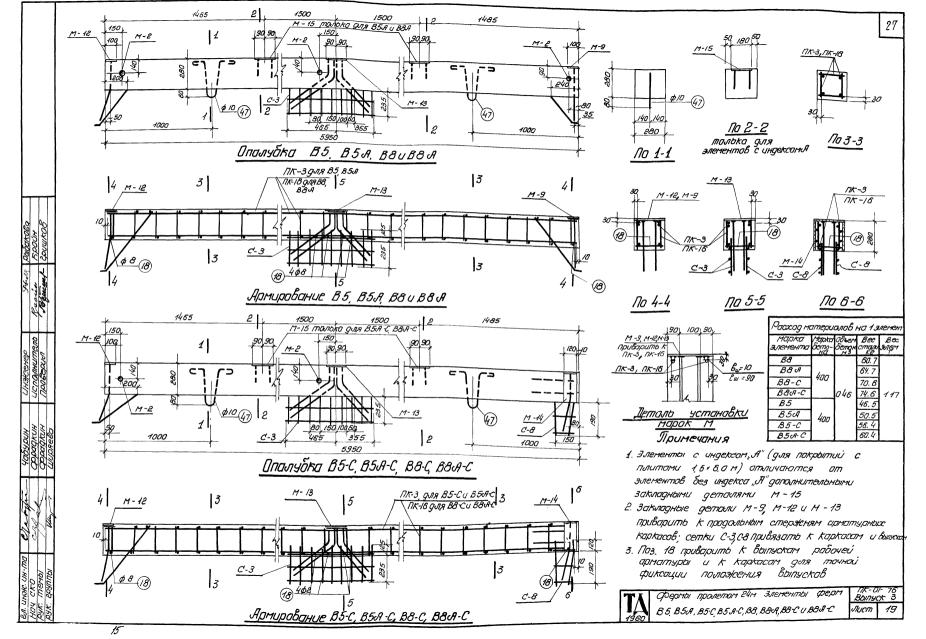

- Примечания Сборочные ссемы полиферм даны на листохизи 14.
- 2. Натяжение пучков производится до кантования полуфермы, после достижения прочности бетона в узлах и раствора в швах -/50 кг/см. ²
- 3. Сетки с-7 укладываются в лоток при его заманоличивании
- 4. Стерэкни, выступаницие за грано гайки более 10 мм, атрезать посме натяжения.
- 5. Расхад натериалов дан для полуферм, собираеных в фермы весфонарного покрытия.

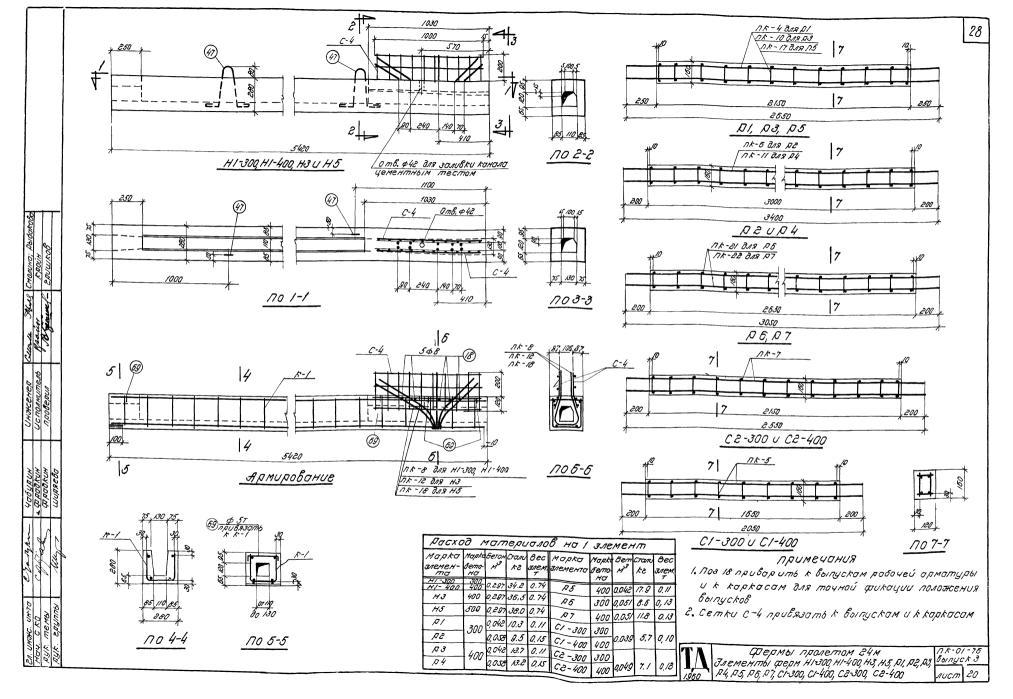

ТД с напряваеной стерясневой артатурай. 1960 година вид полуферт. Расход татериалав Лк-01-76 Выпуск 3 Лист 10

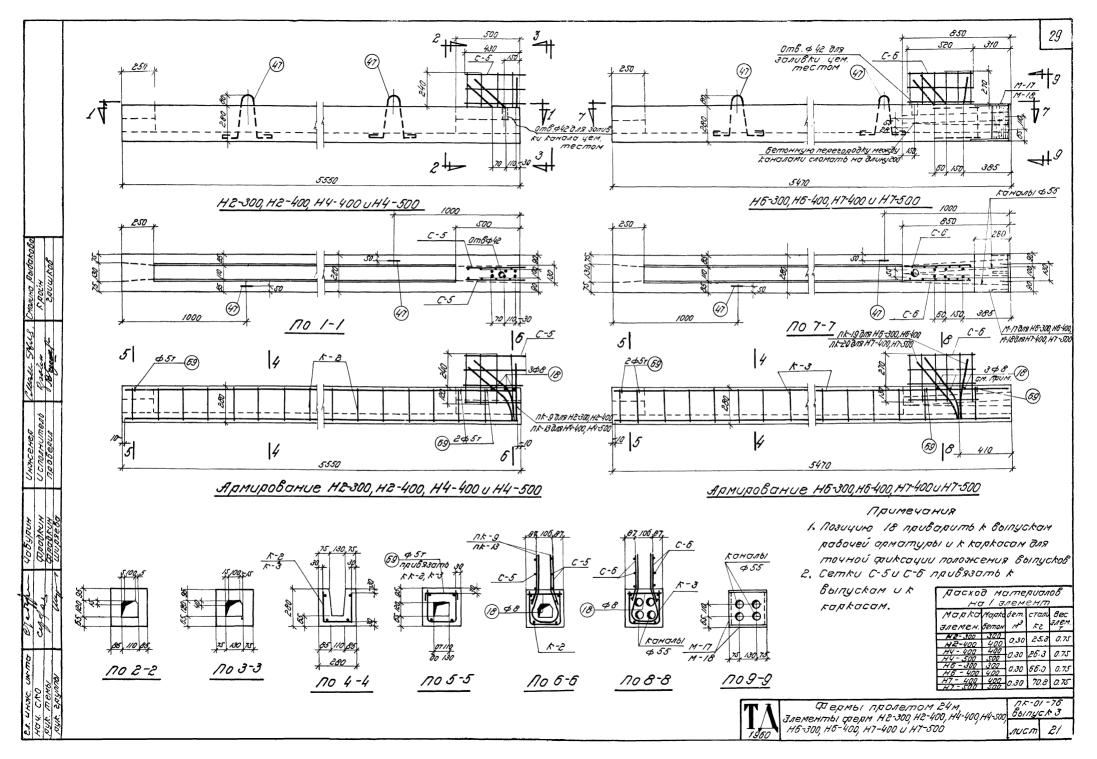


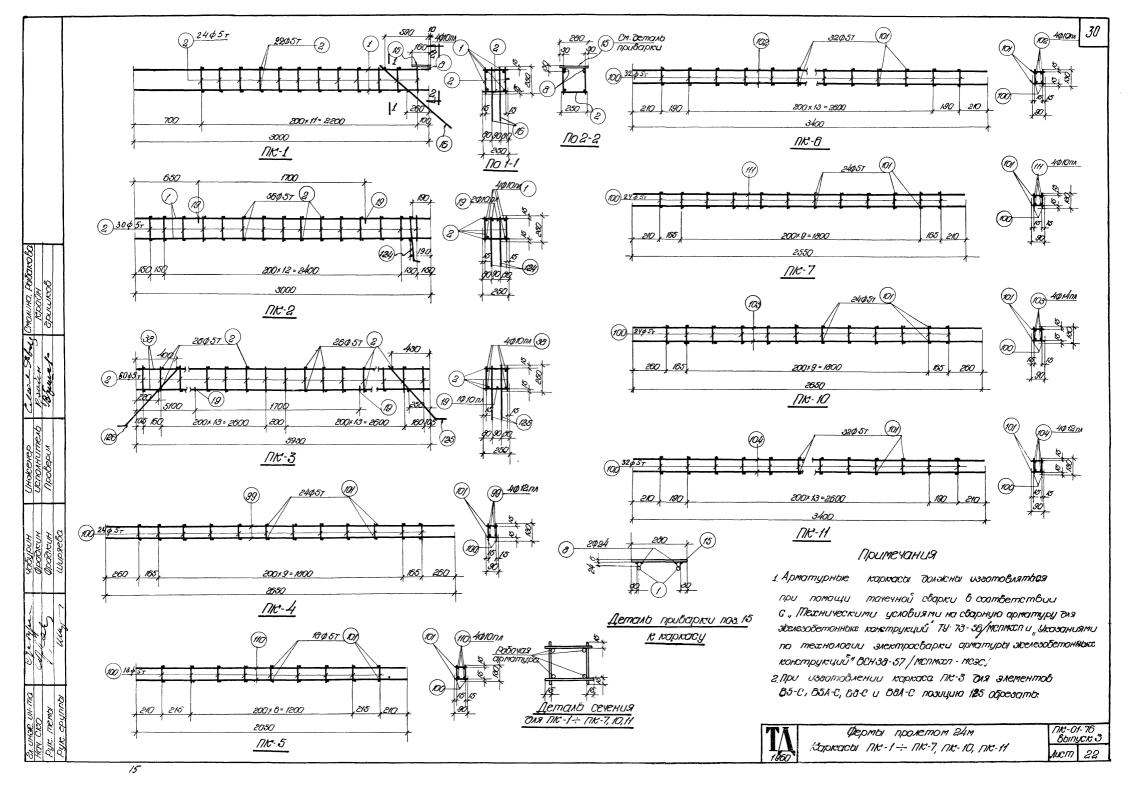


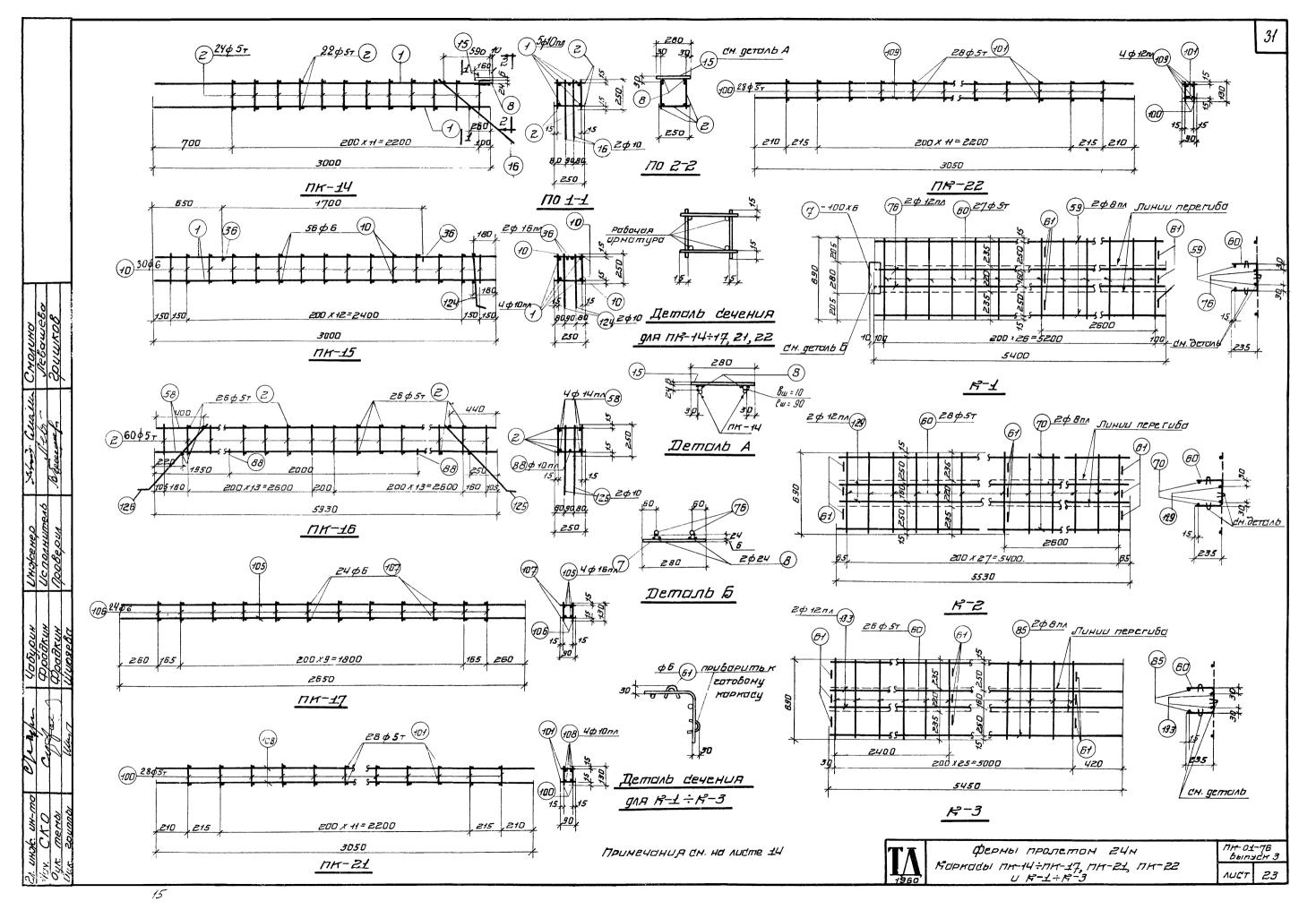


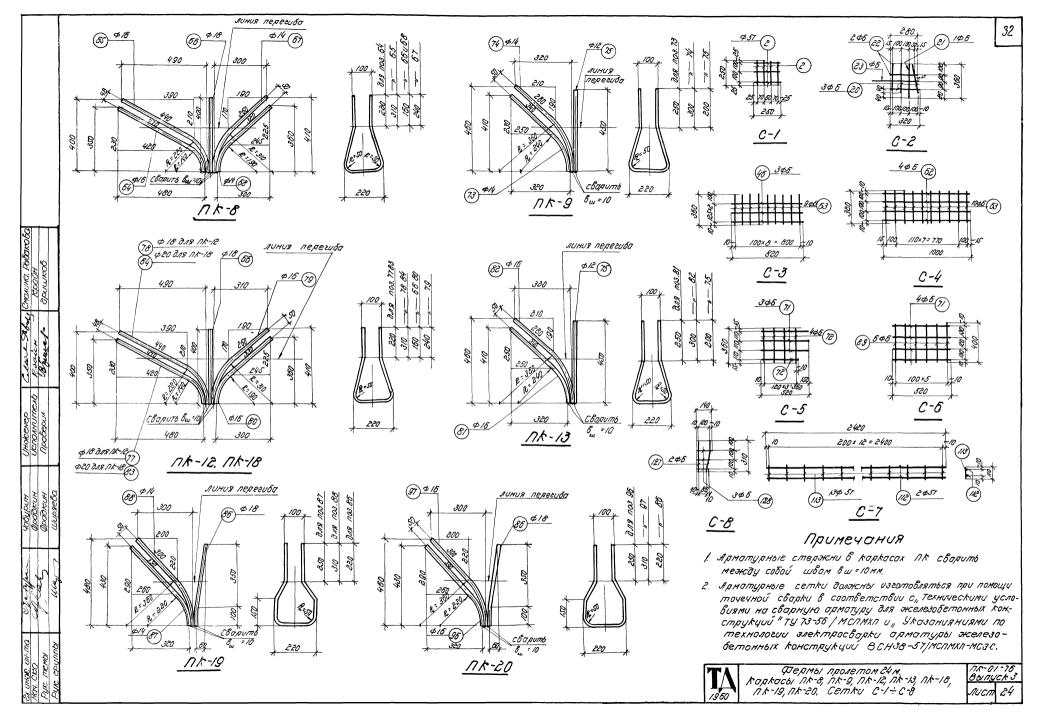


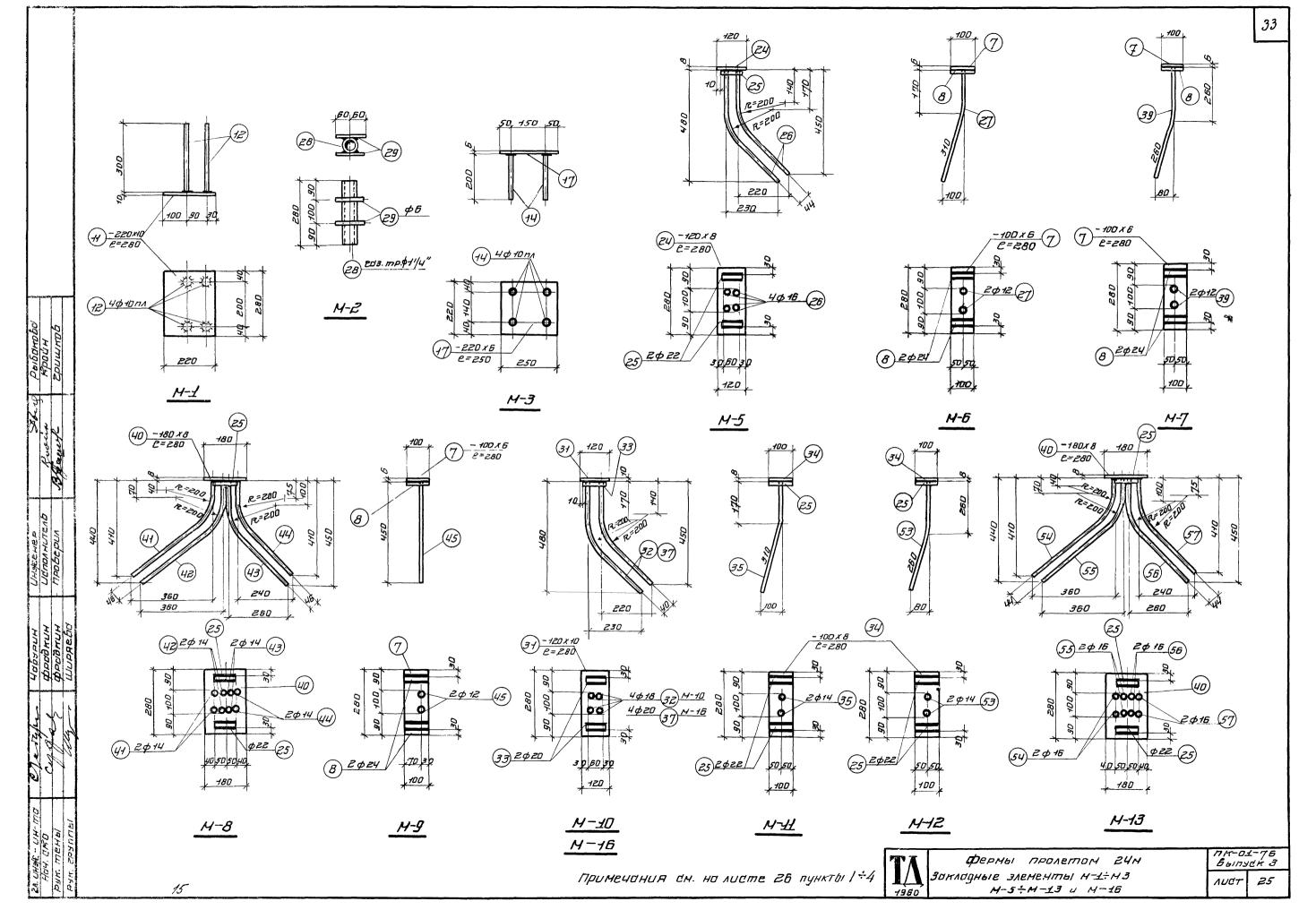


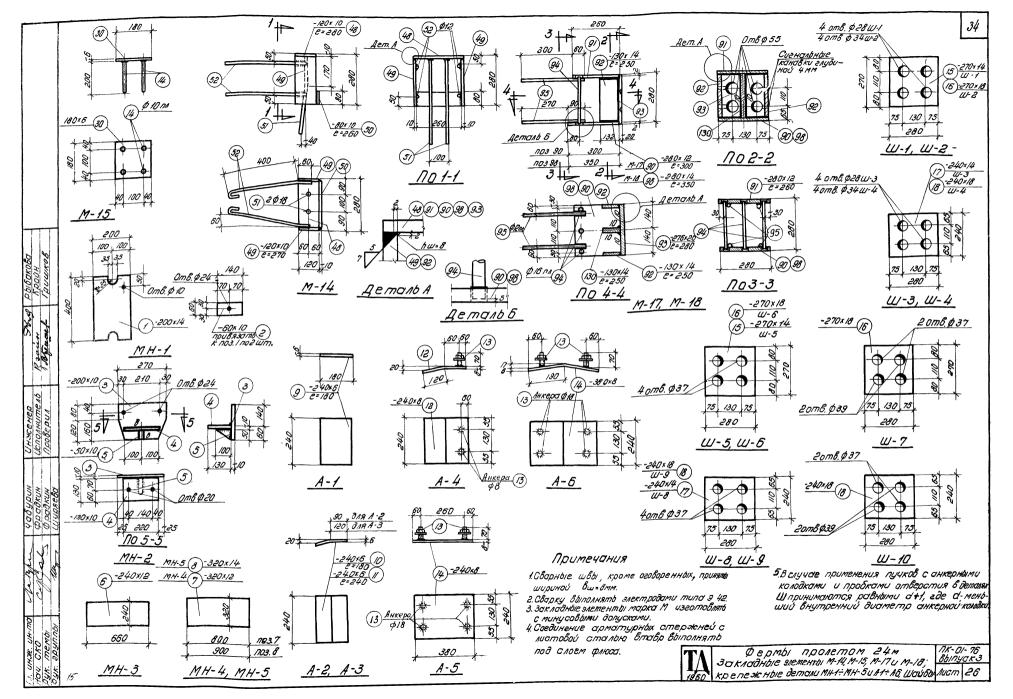












1	1		35
	Cne	уификоция стали на Гэлемент выборка стали на Гэлемент по Гэлемент Спецификация стали на Гэлемент на Г	Выбарка ста- и на 1 зл-нт
	HOUMEH. 3 NEMENTO	D B C Townworth C Bec Town Con Bec Town C Be	Bec KE
		2 057 250 46 46 1.5 8 024 1.4	MON 10.0 ME2 0.6 MED 0.5 MIB 4.6 MIH 1.2 MB 1.0
2	00	3 \$\text{bDm} 850 - 4 \ 3.4 \ 2.1 \ \begin{array}{c c c c c c c c c c c c c c c c c c c	\$6 1,1 \$57 2,2 \$=6 1.5 \$=8 1.8 \$=10 2.6
Psiðakoba Kpoún Epuwko	D 081-4	1	17/4° 0.9 10 0.7 17020 28.7 14000 7.4
Garin By	081-30	2 \$55 250 \$16 \$46 \$1.5 \$1.8 \$10 \$1.2 \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	616an 5,4 622 0.6 620 6.2 610 0.7
сенер линитель Яерил		17 17 18 18 19 19 19 19 19 19	014 1.E 08 1.0 05 4.2
UH CHO	200	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7=8 1,8 7=10 2.6 1roeo 32,0
yepodo ndhob ndhob	\$ 5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16m 5,4 16e 0.6 10e0 6.e 1514 1.e
Charles Called	08.4190	03x1110 110 001-300 0-0 0.0 M. 5 27 1000 200 1 1 100 001 0.0 100 00 00 00 00 00 00 00 00 00 00 00 00	68 1.0 66 4.2 610 0.7 6370 0.9 5-6 1.5
инж. ин-та ож. СКО ук. темби	av. cpsmin	(22) S 220 G G G G G G G G G G G G G G G G G G	7=8 1.8 7=10 2.6 1000 34.0 1-01-76 1140 K 3

	Cne	ецификация стали на 1зленент На 1 эленент	спец	цификация стали на 1эленент	Выборка стали на 1 эленент	али Спецификация стали на 1 элемент выборкастали на 1 элемент Спецификация стали на 1 элемент на 1 элемент на 1 элемент
	Наинен. Эленен-	DEN TO THE PROPERTY OF THE PRO	наинен. Эленен- та	DE CONTROL OF THE PROPERTY OF	6 10 10 10 10 10 10 10 10 10 10 10 10 10	READ TO THE PROPERTY OF THE PR
ALLY PHOUNDSO KROUH THUUNGS	83	NK-3	83-C	48 12010 280 1 1 0.28 2.6 149 12010 270 2 2 0.54 5.1 50 8010 260 1 1 0.26 1.6 51 \$\phi 18 \$450 2 2 0.9 1.8 52 \$\phi 12 550 4 4 2.2 2.0 0mde. bhbie позиции взять повез 0mde. bhbie позиции взять повез 127 \$\phi 6 310 2 4 1.2 0.56 1.8 128 \$\phi 6 140 3 6 0.8 128 \$\phi 6 120 4 8 10 0.2 129 \$\phi 6 120 4 8 10 0.2 120 0.2 0.50 0.2 121 0.2 0.56 1.8 122 0.56 1.8 123 0.56 0.2 0.56 0.2 124 0.56 0.2 0.56 0.2 125 0.56 0.2 0.56 0.2 126 0.56 0.2 0.56 0.2 127 0.56 0.2 0.56 0.2 128 0.56 0.2 0.56 0.2 129 0.56 0.2 0.2 120 0.2 0.56 0.2 120 0.2 0.56 0.2 120 0.2 0.56 0.2 120 0.2 0.56 0.2 120 0.2 0.2 120 0.2 0.2 0.2 120	φ22 0.6 φ18 1.8 φ19 5.5 φ12 2.9 φ10 3.2 φ8 0.6 φ6 3.2 φ57 4.3 φ57 4.3 σ57 4.3 σ57 4.3 σ58 3.2 σ59	H-12 34 M0x8 280 1 1 0.28 1.8 6 10 1.5 7 1.6 1.8 6 1.8 1
4069PUH UNIZEHEP PRODUKUH UCADHUTENS PRODUKUH PROBEPUST PRODUKUH	взя	WM.1 8 \$\psi24\$ 100 \$\mathbb{Z}\$ \$\mathbb{Z}\$ 0.2 0.7 \$\mathbb{Z}\$ \$\mathbb{Z}\$ 0.9 0.8 \$\mathbb{Z}\$	J-1	M-14 Fig. M-14 M-28 M-14 M-28 M-14 M-14 M-28 M-14 M-14 M-28 M-14	\$\frac{\psi (MNN)}{\psi 24} & 0.7 \$\psi 22 & 0.6 \$\psi 18 & 0.5 \$\psi 12 & 2.9 \$\psi 10 & 3.2 \$\psi 8 & 0.6 \$\psi 6 & 3.2 \$\psi 51 & 4.3 \$\psi 55 & 4.3 & 4.3 \$\psi	U OMDENDHDIE NO3UUUU - NO B5
Ta unstenep un-rd Olempe Hoyanahur CKO CAP A Paraban menbi Paraban epannisi	8	отдельные позиции 18 и 47 взять по в 3 ф 8 0.6 ф 6 2.8 ф 57 4.3 Таз.гр. 2.6 ф 7/1/4° 2.6 ф 6 5.6 б 8 3.2 Титого 48.2		\$60 97		ТА Фермы пролетом 24 м быпуск 3 Спецификация стали на элененты ферм ВЗ, ВЗЯ, ВЗ-С, ВЗЯ-С, В 5, В 5 Я, В 5-С, В 5Я-С

	上			L
100	50 F	250 69 50	50	

กห - 01 ชื่อเกษต	- 76 K 3
<i>Jucm</i>	29

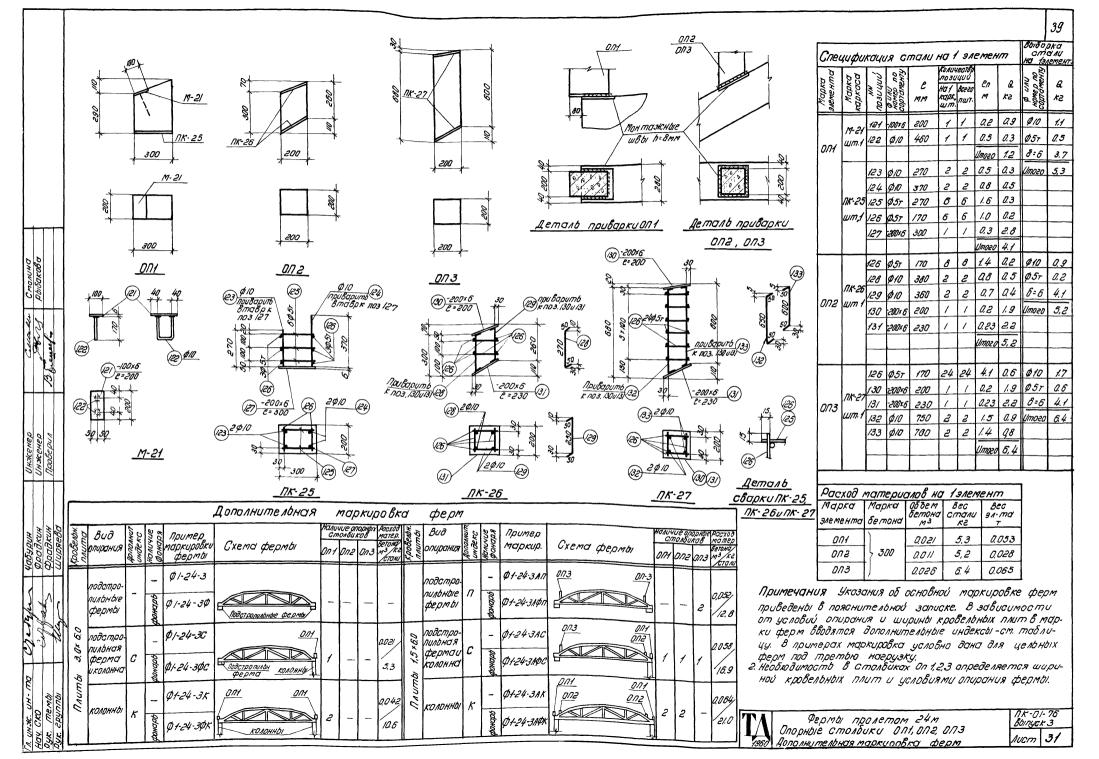
	Спец	ифик	аци	ія сп	ıdли	на 1	3116	мен	ım	Выбарі на 1 эле	KA CTOUN PHPHT	Спец	ифил	кац	נא בע	้องก	HQ 2	ใ อภ	ене	H <i>17</i> 77	Выборк на 13л	O CTONU PHEHT	
	наиленова- ние эле- нен та	ларка паркаса	กอริบนุบช้	ф или начер по артанентУ	l nn	110111	ество шт• всего	ln M	Вес Кг	ф или Нонер по Сартаменту	Вес кг	наипенав эленента	нар ка каркаса	กองบนุบน้	ф или намерла сиртаненту	l HH		ec rt o UT. Bcero	ln M	Bec Ke	киначалара начер по поп	Ber ne	901101111111111111111111111111111111111
and ROULH	ВВ	пк-16 шт. f С-3 шт. 2 М-9 шт. f	58 2 88 125 126 63 46 7 8 45 45 25 34 53	\$19nn \$57 \$10n1 \$10 \$6 \$6 \$6 \$24 \$12 \$22 \$22 \$22 \$23 \$414	\$930 250 2000 730 180 360 820 100 450 100 280 100 280 520	4 112 1 2 2 3 3 1 2 2 2 1 2	18 6 1 2 2 Un 2 1 2	237 280 20 1.4 1.6 070 6.5 4.9 0.2 0.9 0.2 0.2 0.2 0.2 0.2	28.7 4.3 1.1 0.9 1.0 36.0 2.5 1.3 0.7 0.8 2.8 0.6 1.8 1.2 3.6	\$14nn \$19nn \$24 \$22 \$16 \$14 \$12 \$10 \$8 \$6 \$57 \$73.79 \$17/4" \$-6 \$-8	28.7 1.1 0.7 1.2 7.1 1.2 0.8 3.3 0.6 2.8 4.3 2.6 1.3 5.0 60.7	88-C	нь. С· 8 шт. 2 н-2 шт.2	127 128 28 29	120410 100410 10	260 450 550 12, M 140 140 120	13, H-1	8 4 6 2 8 Umo	0.54 0.26 0.9 2.2 ro maes 8 1.2 0.56 1.0	1.8 0.2 2.0	φ19nn φ22 φ16 φ16 φ16 φ10 φ8 φ5 φ5 φ5 φ5 φ5 φ5 φ5		
UH UCROHHUTEND (P.S. U.H. NPOSE PU.A. 18 See.		т-13 шт. 1 т-2 шт. 3 птель позии.	Γ.	-180x8 \$ 16 \$ 16 \$ 16 \$ 16 \$ 22 \$ 60379 \$ 65 \$	280 590 620 540 500 100 280 120	1 2 2 2 2 2 2 1 4	1 2 2 2 2 2 Um 3 12	0.28 1.2 1.1 1.0 0.2 0r0 0.84 0.70 1.4 0.70 1.5 2.2	7.1 0.6 10.9 2.6 0.3 2.9 0.6 1.4			B8A-C	н-15 шт. 2	30	-180xS \$10nn	180 200	1 4	2 8	0.36 1.6 0.00		\$18 \$16 \$19 \$10 \$8 \$6 \$5 \$7 \$337 \$6 \$6 \$6 \$6 \$6 \$6 \$6 \$6 \$6 \$6 \$6 \$6 \$6	1.8 7.1 1.2 2.0 3.3 0.6 3.2 4.3 1.8 3.0 5.0 9.3	
Havanbuuk CKO CAAA ADOGKUH PAKO 600 me Hbi MAAA UUDAG KUH PAKO 600 me Hbi MAAAA UUDAG KUH	888	M-15 ШТ. 2 ПК-11	30 14	180×6 \$10 n.n	200 1-9,	1 4 M-12 BUUL	2 8 um	0.36 1.6 0ro	3.0 1.0 4.0	\$14nn \$29 \$22 \$16 \$19 \$12 \$10 \$8 \$57 \$631P \$134P \$150 \$58 Uroro	2.1 0.7 1.2 7.1 1.2 0.8 3.3 0.6 2.8 4.3 2.6 4.3 5.0	H1-300 , H1-400	к-1 шт. 1 С-Ч шт. 2	62 63	\$8nn \$57 \$6 -100x6 \$24 \$12nn \$6 \$6	690 150 280 100	2 27 6 1 2 2 4 /0	2 27 6 1 2 2 Um 8 20	10.8 18.6 0.9 0.28 0.2 10.8 0.7 7.9 6.4	2.9 0.2 1.3 0.7 9.6	ф12пл ФВПЛ Ф2Ч Ф18	9.6 9.3 0.7 2.0 9.9 3.0 1.4 0.5 3.4 3.1	

H1-YOO(Apodou

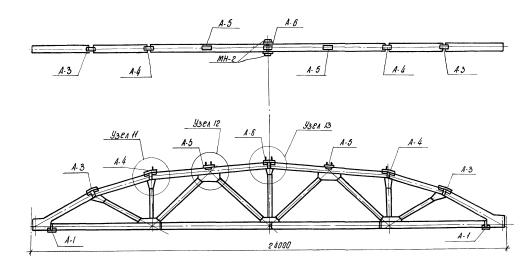
	Ноитено- Одние элетента	20 20	1					emei	,	19NEM	iu Ha EHM
	F 0 %	Mapka kapkaca	nosvauú	ф UAU Но тер по Сартот.	P MM	Konu Bo Ha I Kapk	vecr- wm. hceeo	вп м	Bec Ke	φ ανα Hamep no Copmam.	Вес
			60	φ5τ	690	26	26	17.9	2.8	\$16 NA	1.3
		K-3	61	\$6	150	g	g	1.4	0.3	\$12 NA	11.0
	1	шт.1	85	\$8 NA	5450	2	2	10.9	4.3	\$8NA	4.3
	1		133	\$12NA	5450	2	2	10.9	9.7	Ø18	2.2
			_				Um	020	17.1	ø /4	3.3
		l		<u> </u>					2.2	\$ 10	1.4
		l' .	-					 	3.3		0.3
		Will.	00	Ø /4	1380	\	<u> </u>				2.3
П	1			ļ		-	umo	20	3.5	-	3.0
	1	ļ				-		ļ	\vdash		15.0
		-	-		-	-	<u> </u>	40	\vdash	1	10.7
100	2		<u> </u>			<u> </u>	-		2.0		12.1
13	147	шт.2	89	Φô	400	5	12	4.8		Umozo	66.9
70/	110		-	ļ		_					
,	100	(Im Renk	18	68	250		.3	08	02		
1	3.	ные	49		1100	_		2.2	,		
3	¥	10344.				_		1/1			
3	1		03	P 0 1	000		-	1.4	0, 2	-	
	1										
	1		90	-280+12	300	1	1	0.30	7.9		
-		M- 19	9/	-280 × 12	260	1	1	0.26	7./		
00'	1	шт.1	92	-130×14	250	2	2	0.5	7.1		
000			д3	-276 + 20	280	1	1	0.28	12.1		
0	1		94	\$16N1	270	3	3	0.8	1.3		
\vdash	†		95	\$ 12 NA	360	4	4	1.4	1.3		
			130	-130×14	250	1	1	0.25	3.6	L	
7 2							Um	020	40.4		
3.0 KU			86	ø 18	1120	1	1	1.1	2.2	\$16NA	1.3
ba	25		98	\$16	1320	1	1	1.3	43	\$12nn	11.0
8	3	NK-20	97	\$16		-	1	1.4	,	H	4.3
$ \uparrow \rangle$	1	WM. 1	T			<u> </u>	Ilmi		6.5		2.2
M	1]				T	1		0.0		4.3
1	8		9/	-280×12	260	1	7	1.26	7./		1.4
	J 12	M-18		-130+ 14	250		2		7/	\$8	0.3
	147	WM. 1	93	-276+20	280	1	1	0.28	12.1	\$6	2.3
Ц	1.		94	\$ 16 NA	240	3	3	0.8	1.3	φ5τ	3.0
	jaat		95	\$12 NA	300	4	4	1.4	1.3	D=12	7./
1,1,	1 2		98	-280+14	350	1	1	0.35	10,8	S= 14	21,5
mo	*		130	-130×14	250	1	1	0.25	3.6	<i>6:20</i>	12.1
100	3						Um	120	43.3	Uroeo	70.8
13	اغ	K-3	, C- C	s u am	denbe	y bie			,,		
	M S POODKUH	Modeoun de greeneft. HG. 300.	ух. петов 18 5 фрадхин Проберия 18 метов 100	## C-6 71 Wm.2 89 C-6 71	PART 19 87 6/4 18 6/4 18 6/4 18 6/4 18 6/4 18 6/4 18 6/4 18 6/4 18 6/6 18 18 18 18 18 18 18 1						September Sept

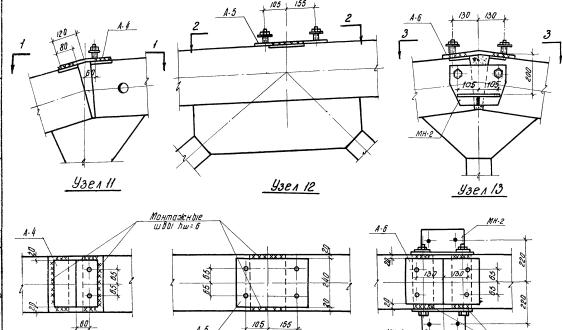
lney	(ифи	ka4i		TONU	НΩ	1 3	пем	ент		טא ט
Наутено- Бание Элемента	Μαρκα Καρκασα	กลาบหมาย	ф или натер по сартат.	l MM	KOAU Ha I Kapk	Yecr. um. Ireeo	En m	Bec ke	PANEM NO NO PORTE	e niii Bec Ke
		99	\$12.111	2650	4	4	10.6	9.5	\$ 12nn	9.5
	NK-4	100	\$5T	130	24	24	3./	0.5	\$ 51	0.8
Ó	шт.1	101	ø 5τ	90	24	24	2.2	0.3	Umoeo	10.3
						-	-			
		102	BIONA	3400	4	4	13.6	8.4	\$ IQNA	8.4
	11K-6	100	ø 5 r	130	32	32	42	0.9	\$ 5T	1.1
20	Wm.1	101	φ 5 _T	90	32	32	2.9	0.4	Unoza	9.5
٧										J. 5
		103	\$ 14.111	2650	4	4	10.6	12.9	\$14AA	12.9
_	NK-10	100	Ø57	130	24	24	3./	0.5	ø51	0.8
03	шт.1	101	ø 5τ	90	24	24	2.2	0.3	Umoeo	/3.7
**	NK-11	104	\$12NA	3400	4	4	13.6	12.1	BIZAA	12.1
p d	ייייין אייי	100	ø 5 _T	130	32	32	4.2	0.7	Ø51	1.1
		101	ф5т	90	32	32	2.9	0.4	Umaea	13.2
	NK-19	105	φ <i>16</i> ΠΛ	2650	4	4	10.6	16.7	\$16NA	15.7
50	шт.1	106	φ6	130	24	24	3./	0.7	<i>\$6</i>	1.2
		107	\$ 6	90	24	24	2.2	0.5	Umaeo	19.9
										لــــــــ

l I-										BAEM	ент	ı
Harimond	JOHNE BOHUE SAEMEHMO	Μαρκα Καρκασσ	กุกหกอบ บอจกสกกุ	ф или нотер по сортат.	l MM	- 4	48C1 M. BGE- 80	En M	Bec Ke	ф или Натер па сортатен	Bec Ke	
		NK-2/	108	ф1QПЛ ф5 т	3050 130	4	4 28	12.2	7.6	PIQNA	7.6	
	20	шт.1	101	ø57	90	28	28	3. Y 2.5	0.6 0.4	ф5T Итого	8.6	
L	Ì											
		NK-22	109 100	ф/2ПЛ Ф5т	3050 130	4 28	4 28	12.2 3.7	10.8 0.6	\$1211A \$51	10.8	
	02	шт./	101	φ5τ	90	28	28	2.5	0.4	Umaza	11.8	
		NK-5	//0	\$10AA	2050	4	4	8.2	5.1	\$10nn	5.1	
008	0.4-000 04-400	шт.1	100 101	φ5τ φ5τ	130 90	18	18 18	1.6	0.4 0.2	\$ 5 r Unoca	0.6 5.4	
3	07											
5	0.0	NK-9	///	φιαηη	2550	4	4	10.2	6.3	ΦΙ ΩΠΛ	6.3	
200	02-400	шт. 1	100	\$51	130	24	24	3./	0.5	ø57	0.8	
f	Сеп	rkø	101	\$5T \$5T	90	24	24 2	2.2 4.8	0.3	Umaza \$57	1.0	
L		7	//3	ø 5₹	110	13	13	1.4	1.0	707		
	431	b/	114	\$10	1060	-	6	6.4	6.0	\$ 10	6.3	
1		mbi	/15 /3/	\$ 10	200 920	-	<i>54</i>	10.8 3.4	2.4	\$6 Umaza	3.1	l
1			132	ø6	890	-	5	4.4	0.7			1
L			L	L	L	L	L		LJ			J


									,											38
Ene	44 9 0	uka	עטא נ	CMONU	HO	19/	eme.	нЛТ	BOIDO		CAE		90 UKA 10% 80 U	,	נוש בקשי	NOAU	HQ	14	umyky	
Наутена- Вание Элетента	Μαρκα Καρκασσ	ักพ กลอบนุมบ่	ф или номер по сортат.	,		///.			0 X 3		Majoko	NN		P	KOA.	Be	G, K			
Houn	Mac	NN JUBUL	done cop	l MM	Ha I Kapk	bce-	En M	Bec Ke	rawan Hawah AVA ¢	Bec Ke	7.10,010	-			ШM.	1WM		MODKL	Noume	40 HUE
7 6		108	619111	3050	4	4	12.2	7.6			MH-1	2	-200 × 14 - 50 × 10	140	2	8.8	1.4	10.2	[CMONO	
	NK-21	100	65T	130	28	28	3.7	0.6	\$19.01 \$57	1.0									10073	00-01
50	щт. Г	101	ø57	90	28	28	2.5	0.4	итого	8.6	MH-2	3	-200 × 10	290	1	2.3	1.3		\ Cm. 3	
\												5	-50×10	100	1	0.4	0.4	6.9	\$ 1007 3	80-54
-		109	ф/2ПЛ	3050	4	4	(0.0	10.0	//0.04	10.0		_	2/2 12		-					
	NK-22	100	φ5T	/30	28	28	12.2 3.7	0.6	\$12M	10.8	MH-3	6	-240+12	660		14.8	14.8	14.8	נ מות	nte
8	шт./	101	φ5τ	90	28	28	2.5	0.4	Итага	11.8	MH-4	9	·320×12	800	1	24.0	24.0	24.0	Mo al	re
`											MH-5	8	-320 × 14	900	1	31.7	31.9	31.7	Ma on	re
	05.5	//0	\$ 10NA	2050	4	4	8.2	5.1	\$1011	5.1	A-1	g	-240 × 6	180	1	2.0	2.0	2.0	Ma ok	'e
200	ЛК-5 Шт.1	100	φ5r φ5τ	90	18	18	1.5	0.4	ø51	0.6	1-2	10	-240+6	180	/	2.0	2.0	2.0	Ma a	
250		101	401	90	10	18	1.0	0.2	Umoza	5.4					<u> </u>				110 01	
1,0		\vdash			<u> </u>	-					A-5	//	240 × 6	240	1	2.7	2.7	2.7	Ma af	ce
00	NK-7	///	φιαπη	2550	4	4	10.2	6.3	\$10AA	6.3	A-4	/2	-240 × 8	240	1	3.6	3.6	, ,) Mo.	He
005-20	шт. 1	100	ø57	130	24	24	3./	0.5	ø5 _T	0.8		13	AHKED Ø 18	70	2	0.27	0,5	4.1	}	,
20		101	\$51	90	24	24	2.2	0.3	Umaza	7./	A-5	14	-240×8	380	1	5.7	5.7		I mo a	/a.a
1	nkø	112	<i>651</i>	2420	2	2	4.8		ø57	1.0	1"	13	AHKEP \$18	70	4	0.29	1.1	6.8	<i>} '''' 3</i>	n:e
C	-7	//3	\$5T	110	13	13	1.4	1.0				14	-240×8	380	1	5.7	5.7)	
43,	1/2	114	\$10	1060	Ĺ	6	6.4	4.0	\$ 10	6.3	A-6	/3	AHKED\$18	10	4	0.29	1./	5.8	\Mo ak	ce
1		115	po	200	-	54	10.8	2.4	66	3.1	Ш-1.5	15	-290× 14	280	1	8.3	8.3	8.3		
440	OMbi	/3/	\$10	920	-	4	3.4	2.3	Umaza	9.4	<u>Ш-2.6.7</u> Ш-3.8	16	-240×18	280	/	10.7 7.4	10.7 7.4	10.7)	
		132	ø6	890	<u> </u>	5	4.4	0.7			W-4.9.10		-240 + 18	280	7	9.4	9.4	9.4	\ Ma 34	CE.
1		ı	1	l	1		1	1 1	1		1	١.	1						,	

121-24-	1, 11.	24-2	P1-24	1-1A, P	1-2424	P1-24-3	,P12	4-4	P1-24-	3A, P	-29-44	00/	-24.	5		24- 6	
13-24	1,43	24-2	43-29-	IA, Ø3					P3-24-	84, P.S	-24-41	403-	24.	5		24-6	
Mapka	КОЛИЧ ШП	00U). 8e c k r	Марка	Kanu4 wm.	О <u>ф</u> щ. Вес К2	Mapka	Колич шт.	Офщ. Вес К 2	Марко	КОЛИЧ ШП.	ОВЩ. Вес К2	Марка	КОЛИЧ Шт.	Obus. Bec K2	Марка	Konus Lum.	DOUG Be C
M-1	2	11.0	M-/	2	11.0	M-/	2	11.0	M-1	2	11.0	M-1	2	11.0	M-/	2	11.0
M-2	10	10.0	M.2	10	10.0	M-2	10	10.0	N- 2	10	18.0	M-2	10	10.0	M-2	10	10.
M-3 N-5	2	6.2	M-3	1	12.4	M-3	2	6.2	M.3	4	12.4	N-3	2	6.2	M-3	4	12.
M-6	2	13.0		2	13.0	M-9	2	5.6	M-9	2	56	M-9	2	5.6	M-9	2	5.
M-7		5.8		2	5.8	M-10	2	15.4	M-10	2	15.4	M-//	2	72	M-11	2	7
M-8	2	5.8		2	5.8	M-11	2	7.2	M-11	2	7.2	H-12	2	7.2	M-12	2	7.
	2	18.6	M-8	2	18.0	M-12	2	7.2	M-12	2	7.2	H-13	2	21.8	M-13	2	2/.
M-9	2	5.6		2	5.6	M-13	2	21.8		2	21.8	N-16	2	17.6	M- 15	6	12.
			M-15	6	12.0		<u> </u>		M-15	6	12.0				M-16	2	17.
	-	L		<u> </u>		<u> </u>		\sqcup		L							L
47==	L	L_		L			<u> </u>	Ш									_
Uma	20	76.0	Umu	120	94.2	Umo	20	84.4	Umoe	2	VDR. 6	Umaa	0	86.6	Umo	20	104.


. ,	חו-2 , חנ-2	4-2 24-2	N1-24-11 N2-24-	4, NI-2. IA, N2	4-2A 24-2A	N1-24- N2-24-	3, N	24-4	112-24-6	3A, 112	-24-4A	111- 112-	24-5 24-6		11.24.5A 112.24.5A		
apka	Kanuy Wm	Овщ. вес Kr	Mapka	Калич. Шт.	ОфЩ. Вес кг	Mapka	Kaaug Wm.	ORUS. Bec Kr	Mapka	KOAUN. WM.	004. 6ec Ki	Марка	KO AU4. IU M.	abus. Bec K 2	Μαρκα	KONUR.	1 600
M-1	1	5.5	M-1	1	5.5	M-1	1	5.5	N-1	7	5.5	M-/	1	5.5	N-1	7	5.5
N-2	4	4.0	M-2	4	4.0	M-2	4	4.0	M-2	4	4.0	M-2	4	4.0	M-2	4	4.0
N-3	1	3.1	M-3	2	6.2	M-3	1	3./	M-3	2	6,2	M-3	1	3.1	N-3	2	6.2
M-5		6.5	M-5		6.5	M-10	/_	7.7	M-10	1	7.7	M-11	1	3.6	M-11	1	30
M-6	/	2.9	N-6		2.9	M-11	1	3.6	M-//	/	3.6	M-12	/	3.6	M-12	1	3.6
47	<u> </u>	2.9	M-9		2.9	M-12	/_	3.6	M-12	1	3.6	M-13	/	10.9	M-13	1	10.5
M-8		9.3	M-8	1	9.3	M-13	_	10.9	M-13	1	10.9	M-14	1	13.1	M-14	1	13.
M-14	1	13.1	M- 14		13.1	M-14	/	/3./	M- 14	1	13.1	M-15	1	8.8	M-15	3	6.0
M-19	<u>'</u>	39.3	N- 15	3	6.0	M-18	/	12.2	M-15	3	6.0	M-18	1	42.2	M-16	1	8.
	<u> </u>	<u> </u>	M-19		39.3	L			M-18	1	42.2		L		M-18	1	42.
			 	L	L				L				L				


TA CREUWOUKOUUR CMDNU HO 3AEMEHMBI ФЕРМ НБ-300, 1960 (C2-300) (C2-

nk-01-46 Boinyck 3 **NUCM**

No 2-2

No 1-1

Mapka	Элет-ты Ферт		Стыкав. наклад-		Mapka	3 NEM-THI DED M	apmai	mypy	Етыкавы накладки	000	
apepm bi	(cm.	1194811	КИ И Вет. мн-г	Oceeo	ферты	ICM. NU-	вариа нт 1 30 х Г2С		U BETANU MH-2	вариант І	ชื่อเกิดน โ
P1-24-1P	AUCT 3) 453.3	198,0	51.8	683.1	P3-24-1P	453.3	380.0	367.2	51.8	885.1	872,3
P1-24-1AP	471.5	178.0	51.8	701.3	P3-24-1AP	471.5	380.0	367.2	51.8	903.3	890.5
P1-24-2P	453.3	205.0	5/.8	7/0.1	P3-24-2P	453.3	425.7	457.4	51.8	931.8	962.5
P1-24-2AP	471.5	205.0	5/.8	728.3	P3-24-2AP	471.5	426.7	457.4	51.8	950.0	980.9
P1-24-34	494.7	245.0	5/.8	791.5	\$3-24-3\$	494.7	473.4	525.7	51.8	1019.9	1092.2
P1-24-3AP	5/2.9	245.0	51.8	809.7	P3-24-31D	512.9	473.4	525.7	5/.8	1038.1	1090.4
P1-24-40	494.7	293.0	51.8	8/9.5	\$3.24-4\$	494.7	543.7	594.0	51.8	1090.2	1140.5
QD 1- 24- 4AQD	512.9	273.0	51.8	837.7	Ø3-24-4AØ	5/2.9	543.7	594.0	5/.8	1108.4	1158.7
P1-24-5P	548.9	286.7	51.8	887.4	D3-24-5P	548.9	614.0	673.8	51.8	1214.7	1274. 3
P1-24-5AP	567.1	286.9	51.8	905.6	P3-24-5AP	557.1	614.0	573.8	5/.8	1232.9	1292

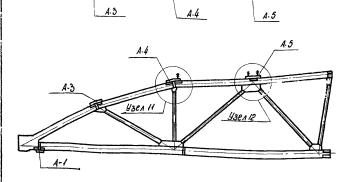
I		ρ_{α}	CXOD	nomep	บบทบช	HO 1 OPEPMY	,				
	Mapka	Bec	Mapka	Pac x mamepa	NORACE MORKO		Bec	Μαρκα	Ραςχαδ	матер	uanab
	ферты	T	бетана	Bemah M3	SMOND KE	ap e pmbi	T	ветана	бетпн	ста	ЛЬ, КЕ Вариант
	P1-24-100			4 - 0	683.1	P3-24-1P	10.0		4	885.1	872.3
-	P1-24- 1AP	10.9	300	4.36	101.3	P3-24-1AP	10.9	300	4.36	903.3	890.5
	P1-24-20	10.9	300 /	4.36	7/0.1	P3-24-2P	10.9	300/	4.36	931.8	962.5
۱	P1-24-2AP	10.9	/400	1.00	728.3	P3-24-2AP	74.0	/400	7.00	950.0	980.7
1	P1-24-300	<i>(7,0</i>	/22	4.00	791.5	Ф3-24-3Ф	10.9	400	120	1019.9	1072.2
-	P1-24-3AP	10.9	400	4.30	809.7	Ф3-24-3AФ		400	4.36	1038.1	10.90.4
	P1-24-40	(2.2	/	400	819.5	P3-24-4P		400	4	1090.2	1140.5
	Ø1-24-4AØ	10.9	4007	4.36	837.7	\$3-24-4AP	10.9	400	4.36	1108.4	1158,7
1	P1-24-5P	10.0		126	884.4	Ф3-24-5Ф	10.9	400 /	4.36	1214.7	1274.5
	PI- 24- 5AP			4.36	905.6	ФЗ-24-5АФ		500	4.00	1232.9	1292.7

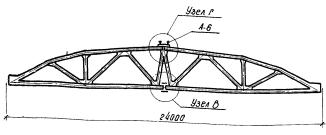
<u> </u>	. 8	edam	OCM	b	cmant Depmy	-
cmbil	rogoix	HUKĄ	g d 0 i	t U	стала	١-
наіх	demi	TAPÜ	HO	10	pepmy	

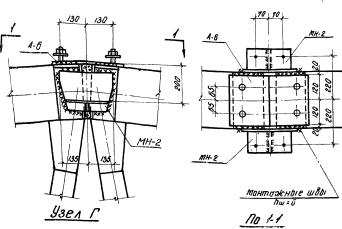
Mapka	KON-BO		ec, Ké	·
1110px0 312mehma	шт.	ни 1 марку	ace x mapok	на ферту
A-1	2	2.0	4.0	
A-3	2	2.7	5.4	
A-4	2	4.1	8.2	5/.8
A-5	2	5.8	13.6	
A-6	1	6.8	6.8	
MH-2	2	6.9	13.8	

на ста	bbiðapk bikallai bihaile di	e HO	ONU KNOOK HO TO	y v epmy
δ=10	0=8	0:6	ø 18	Umozo
13.8	24.3	9.4	4.3	51.8

Монтожные швы hш=6


170 3-3


Притечания


- 1 Pepma das nakobimuú c charapem amauraemos am chepmai для весфонарного покрытия только стыковыти накладкати тарки, А" в тестах опирания фонаря.
- 2. Для установки распорак к фермам крепятся CMONUKU MH-2.
- з. Выбарка стали на элетенты ферт и рабачую артатуру дана на листах 3.4 и б.

Фермы пролетом 24м для покрытий с фанарет. Схета расположения сты-ковых накладок. Расхад материа-лов на ферму

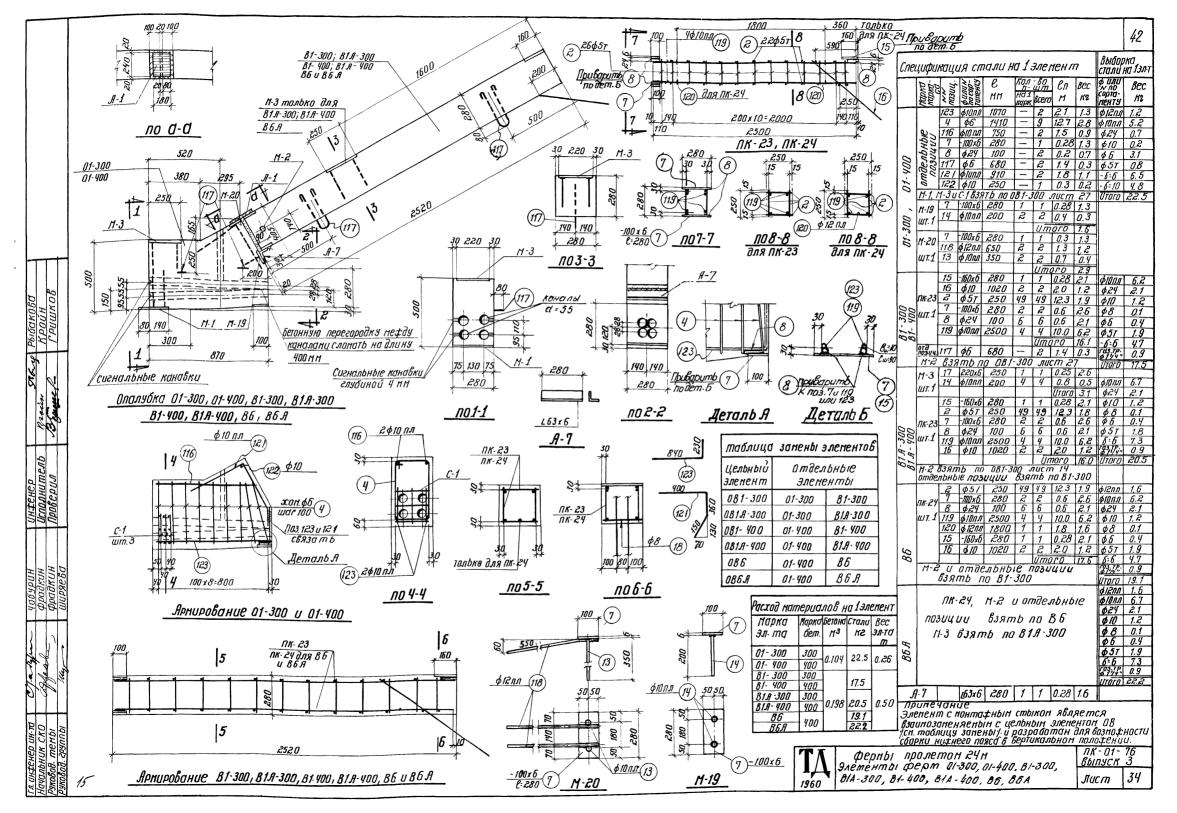
NK-01-76 Bbinyck 3 AUCM

								-	
Ведата	cma d	ieman	eú an	A CÕO	рки фер	m Us	non	ypep	m
mapka	MUDKU BEMO- NU	Кол- во шт	BEC KE	NN NUCTOB	Mapka	Марка детали			NN NUCMO
140 -240 -140 4-240	A-6	1	6.8		888888	A-6	1	6.8	
1 2 0 01	MH-1	2	20.4		24 2 6 4 4 C	MH-1	2	20.4	
0 0 0	NH-2	2	13.8	26	2-40 02-54 02-54 04-5	MH-2	2	13.8	26
4 4	MH-3	1	14.8		l	MH-3	1	14.8	Ī
24-10, -24-20, -24-10,	MH-4	1	24.0		5.6.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.	MH- 5	1	31.7	Ī
1.54					25566	l			
8888	Umo	ea:	80.3		844	Uma	PED:	88.0	

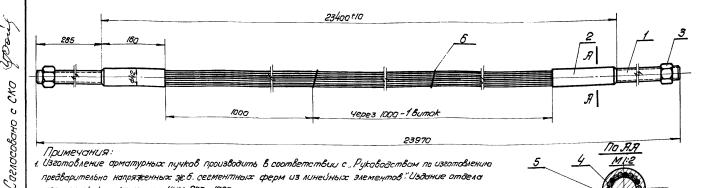
cmbik obb ix	Ведата наклада		полуфы	PPMY
Марка	KON- BO		Bec, Ke	
торки	Шm.	HO 1 MOPKY		на полу- Ферту
A-1	1	2.0	2.0	
A-3	1	2.7	2.7	
A-4	1	4.1	4.1	15.8
A-5	1	6.8	6.8	

HO CITI DI K	δύδορξα έπαλυ μα επόικοδο ε μα κλαθκυ μαρκύ Α μα Ι φερνικ εοδύραε μίγο υς πολύφερικ										
ø 18	6=8	đ: 6	Umoeo								
43	24.3	9.4	38.0								

Притечания


- Ферты для покрытий с фонарет, собираетые из полуферт, отличаются от ферт для бесфонарного покрытия толька стыковыми накладкати тарки "А" в тестах опирания фонаря.
- 2. Yandi H u 12 dandi na nucme 32, yaen 8 - na nucme 6.
- з. Вдібарка стали на элетента ферт и рабочую артатуру дана на листах б. Г и в.

,	Расход стали на Тферту, собираетую из полуферт, ке											
Марка ферты	31emenmbi pepmbi (cm. 10cm. 6)		Ha embika- Bbie Ha- KADAKU MAPKU A		Марка ферты	Элементо Фермы ст. листы	HOND. OPI BOPLOM	PEGENGA VOMYPO BOPYON		Вариам Т	220 Вариан	
P2-24-10	529.0	200.0	38.0	867.0	P4-24-10	629.0		375.2	38.0	1055.8	10 42.2	
P2-24-1AP	647.2	200.0	38.0	885.2	Ø4-24-1AØ	647.2	388.8	373.2	38.0	1094.0	1060.4	
P2-24-2P	629.0	228.0	38.0	895.0	P1-24-2P	629.0	435.6	457.2	38.0	1102 6	1134.2	
P2-24- 2AP	647.2	228.0	38.0	913.2	P4-24-2AP	647.2	435.6	457.2	38.0	1120.8	1152.4	
P2-24-3P	686.9	276.0	38.0	1000.9	\$4-24-30	585.9	482.4	535.2	38.0	1207.3		
P2-24-3AP	705./	296.0	38.0	1019.1	P4-24-3AP	105.1	482.4	535.2	38.0	1225.5	1288.3	
P2-24- 4 P	686.9	304.0	38.0	1028.0	P4-24-4P	686.9	552.8	603.2	38.0	1299 7	1328.1	
P2- 24- 4 AP	905.1	304.0	38.0	1047.1	P4-24- 4AP	705.1	552.8	603.2	38.0	1295.9	13 46.3	
P2-24-5P	741.1	317.4	38.0	1096.5	\$4-24-5¢	741.1	632.2	685.2	38.0	1411.3	14543	
Ф2-24-5AФ	759.3	319.4	38.0	1114.7	P4-24-5AP	159.3	632.2	685.2	38.0		1482.5	


Mapka	Mapka	Bec	Packad M	патериал.	Mapka	Mapka	Bec	Pacxaa	Mamer	UONO6
pepmbi	ветона	T	DEMON	CMO NO	(pepmbi	бетона	r	GEMBH N3		b, Ke
P2-24-1P	300		400	869	P4-24-10P			4	1056	1042
P2-24-1AGO	300	11.0	4.38	885	P4-24-1AP	300	#.1	4.38	1074	1060
P2-24-2P	300	11.0	4.38	895	P4-24-20	300		/40	1103	1134
P2-24-2 AP	400	17. 0	4.00	913	P4-24-2AP	1/100	11.0	4.38	1121	1152
P2-24-3P	400	44.0	4.00	1001	P4-24-340			!	1207	1250
P2-24-3 AP	400	11.0	4.38	1019	P4-24-3AP	400	11.0	4.38	1225	1278
P2-24-4P	400		/ 10	1029	P4-24-4P	t 1		 	1278	1328
P2-24-4AP	400	11.0	4.38	1047	P4-24-4AP	400	11.0	4.38	1298	1346
P2-24-5P	400		420	1096	P4-24-50	400 /		1	1411	1454
P2-24-5AP	500	11.0	4.38	1115	P4-24-5AP	500	11.0	4.38	1430	1482

Pa	CXOO I	mame,	OUUAOU	в на	1 полуфері	ny				
Mapka	Марка	Вес	Pac xaa n	патериа-	Mapka	Μαρκα	Вес	Pacxa	xað mamepuana	
nonyopepmbi	бетана	T	Бетон м ³	EMAND KE	полуферты	бетана	r	BETTOH M3	Стала Вариант	
N1-24-100	300	5.5	2.19	393.6	N2-24-10	200		0.40	488.0	481.2
M- 24- 200				402.7	112-24-1AD	300	5.5	2.19	497.1	490.3
N1-24-24D	300	5.5	2.19	407.6	N2-24-20	300	5.5	2.19	511.4	527.2
11-24- 240	/ 400		<u> </u>	416.7	N2-24-2AD	400	0.0	2.19	520.5	536.3
111-24-34D	400	5.5	219	456.7	N2- 24- 3D	400	5.5	2.19	<i>559.9</i>	586.3
M-24- 3AW				465.8	112-24- 3AP	440	0.0	2.79	569.0	595.4
N1-24-44P	400	5.5	2.19	470.7	172-24-4P	400		2.19	595.1	620.3
11-24-4AP				479.8	N2- 24- 4AD	400	5.5	2.19	604.2	529.4
111-24-5AP	400	5.5	2.19	504.5	N2-24-54D	400	5.5	2.19	657.4	688.4
111- 24- 3AP	/ 500			5/3.6	N2-24-5AQ	500	0.0	1 2.79	666.5	697.5

 Ферты пролетот 24m для покрытий с фондаровт, сабираетие из полуферт. Схета расположения стыклових накладок. Расход положения стыклових накладок. Расход лист 33

1798 - 4	9 6	Проволака ф1			_		0.07	
7348 - 5		Правалака ф.5; С=/35			12	0.02	0.24	
20cm 7348-5		Προδολοκα φ5; ε=23345	-		11	3.49	<i>38</i> , 35	,
Лист 3	9 3	2aúka 2M27×1.5	45		2	0.25	0.5	
Aucm 3	9 2	2UN630 \$ 42	Cm.3		2	0.93	/.86	
Nucm 3	9 1	Стержень 2м27×455	45		2	1.7	3.4	
Yepm. UXU	Nº		Марка	нармат.	Кол.	lum.	Овщ	Примечан.
нармата	BO NU	Tradmendagable delitara	Mame	pudi		Вес	6 ke	1,
1:5	17-1	Пучак арматурный Пф5	44,4	46		3	\perp	35
<i>M</i>	Nº0	Наименование узла	Bec 6	ke.	K 46	Ppm. n		lepm. Nº

			23400°10	-
285	160		6	$\begin{array}{c c} 2 & 1 & 3 \\ \hline & & & \end{array}$
		1000	Через 1000 - 1 виток	1,9
Примечан 1. Изготовлени	Ч УЯ: е арматурны	х пучков производить в соответ	23970 тствии с "Руководством _{по} изготовлению	5 4 <u>No AA</u> <u>M1</u> :2

20cm								
1798-4		Προβολοκα φ1	<u> </u>		L	_	0.07	
20cm 7348-5	5 5	Проволока ф5 8=135	-		8	0.02	0.16	
20cm 7348 - 5		Праволока ф5 С=23345	_		13	3.49	45.37	~~~
Aucm 3	9 3	20Úka 2M27×15	45		2	0.25	0.5	
Tucm3	9 2	2U1630 \$ 42	Cm 3		2	0.93	1.86	
Aucm 3	9 1	Стержень 2м27х455	45		2	1.7	3.4	
Чёрті. ИЛИ НОРМОТИ	Ns BO NY	Наименование бетоли		Л НОРМОТ. ЭРИОЛ	Кол.	lum. Bec	06щ. в кг.	Примечан
1:5		Пучок арматурный 13ф5	51,3	6	٠,	3	T	<i>3</i> 5
М	NCO Y310	Наименавание узла	Bec .	в кг.	N Ye,	pm.K.	• 4e	pm. Ke

285 /80	-	23400±10	2 1 3
	/000	Yepes 1000 - 1 Bumak	I.A.
Примечания:		23970	No AA

M1.2

1. Изготавление арматурных пучков производить в соответствии с., Руководством по <u>5</u> изготовлению предварительна напряженных эк.б. сегментных ферм из линейных элементов." Издание отдела технической информации НИИ-200 1960г.

3. Лля изеотовления стерженей кроме указанной на чертеже марки, дапускается применение

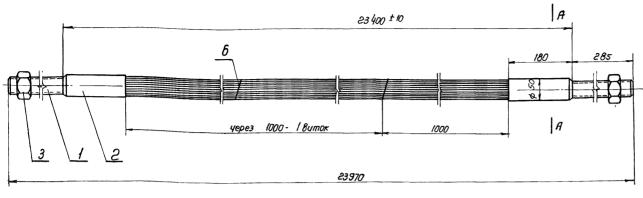
предварительна напряженных ж.б. сегментных ферм из линейных элементав. Издание отдела

3. Для изеотовления стержней, кроме указанной на чертеже марки, допускается применение стами марок 55C2;60c2; 55rc; 21cr; 45x

2. Длина канала для пучка в ферме - L = 23780 мм.

технической инфармации НИИ-200 1960г. 2. Длина канала для ггучка в ферме - 4 = 23780мм.

CMANU MAPOK 5502; 6002; 55 PC; 2707; 45 x.


технической информации НИИ-200 1960г. 2. Ллина канала для пучка в ферме – L = 23780мм.

3. Для изготовления стержней, кроме указанной на чертеже тарки, дапускается применение стали тарок 55 СС; 60 ССС; 55 ГС; 27 СГ; 45 ж.

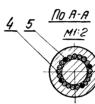
200177								
/798 - 49 200m	6	Προβολοκα φ1			1	,	0.07	,
7348-55 20077	5	Προβολοκα φ5 ε=150	_		12	0.02	0.24	
7348-55	4	Προδολοκα φ5 ε=23345	_		/5	3.49	-	† — —
Лист 3 9	3	Paúka 2M33×1.5	45		2	0.5	1.0	
/lucm 39	2	2U163a ¢50	Cm. 3		2	1.15	2.3	
Nucm 39	1	Стержень 2м 33×465	45		2	2.7	5.4	
чёрт. Илу норматив	ж. deтa- ли	Наименование детали	Mapka Mame	N HOPMAM. PUAN	_	lum.	_	
		Пучак арматурный 15ф5		36		3		<i>35</i>
My	N.º 3∧q	Наименование узла	Bec	B ke	K YE	pm. i	Y0 4	lepm. Nº
' 'X		PERMUI DEDMEMON	2/11		L		- 	Y-01-76

Фермы Пролетом 24м. Пучки арматурные П-1, П-2, П-3. Общие виды

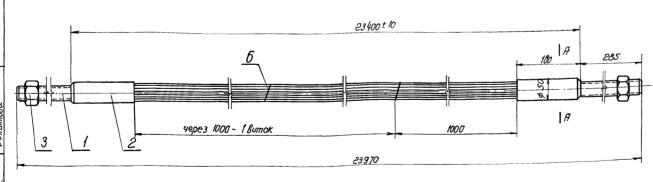
17K-01-76 Beinyck 3 Nucm 35

8

OKO


S

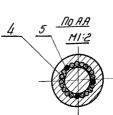
Согласовано


1. Изготовление арнатурных пучков производиль в соответствии с "Руководством по изготовлению Предварительно напряженных ж.б. сегнентных ферм из линейных элементов" Издание отдела технической информации НИИ-200 1960г.

г. Длина канала для лучка в ферме L=23780 мм.

3. Для изготовления стержней, кроме указанной на чертеже нарки допускается приненение стапи нарак 55С2; 60С2; 55ГС; 27ГГ; 45Х.

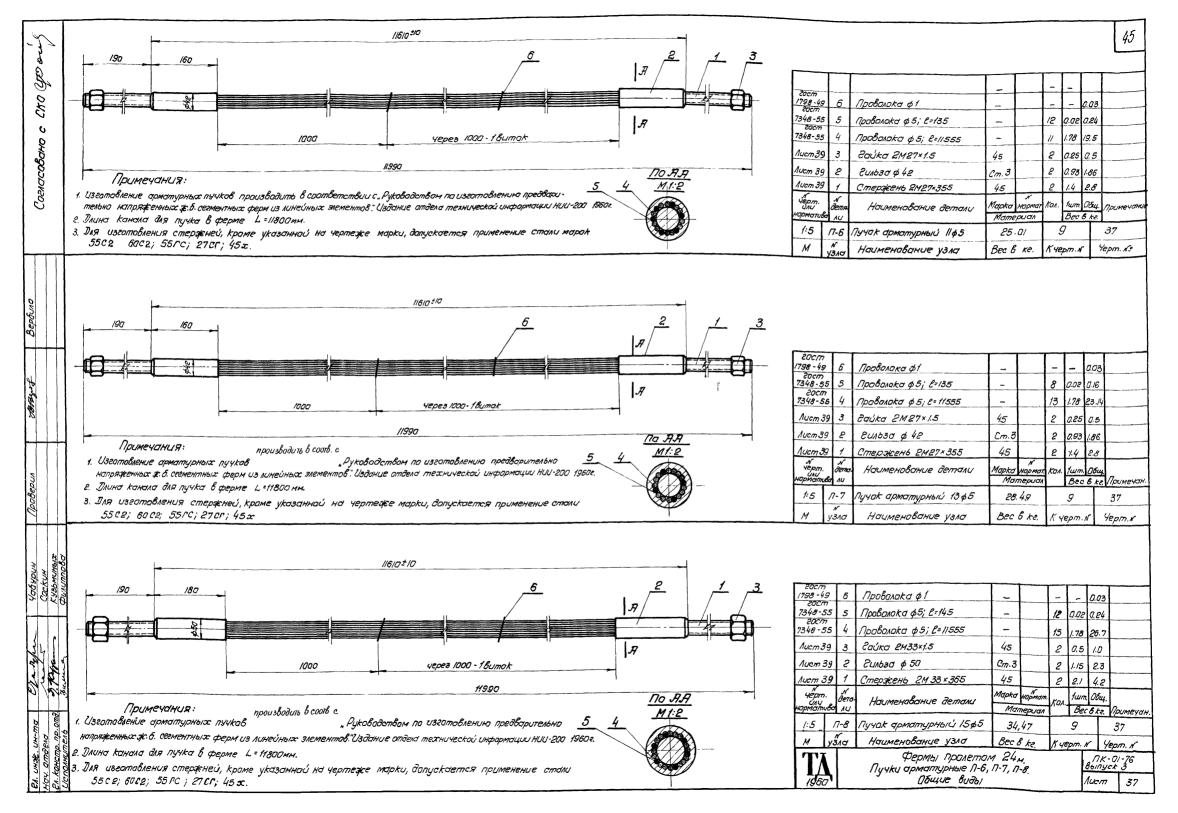
1798-49	6	Προβοποκα φ1			_	-	0,07	
T348-55	5	Проволока ф5 е=150			8	0,02	0,16	
7348-55	4	Проволока ф5 е=23345			17	3.49	59,33	
Jucr 39	3	Γαάκα ≥M33×1,5	45		5	0,5	1.0	
Лист 39	2	Гильза ф.50	Cm 3		2	1,15	23	
Лист 39	1	Стержень 2 МЗЗ*465	45		ع	47	5,4	
М черл или норнати	e nu	Наиченование детоли	Марко II Матер		кол.	1um Bec		Примеч.
1:5	n-4	Пучок армат урны й 17 ф5	68,26	5		3	T	3 6
М	y yand	Наименование узла	Bec 8	Ke	K ye	p/n:N	4	ерт. Из

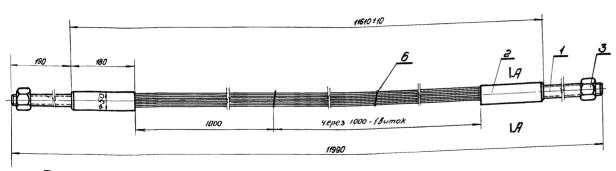


Примечания:

1. Uзготовление арнатурных пучков производить в соответствии с "Руководством по изготовлению предварительно напряженных ж.б. Сесментных ферм из линейных элементов" 4. Uздание отдела технической имформации НИИ-200 1960г.

2. Длина канала для пучка в ферме L = 23780 мм.

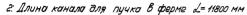

3. Для изготовления стержней кроне указанной на чертеже нарки, допускоется применение стали нарок 55С2; 60С2, 55ГС; 27СГ; 45x.



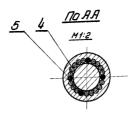
I Mer							
1798-49	6	Προδοποκα φι	-		-	-	0,07
1348-55	5	Проволока ф5 е=150	T -		6	20,0	0,12
1348-55	4	Проволока \$5 е=23345	-		18	3,49	62.82
Sucm 39	ŝ	Taúka 2M3341,5	45		2	0,5	1,0
Лцст 39	م	Гильза ф50	Cm.3		ع	1.15	2,3
Sucm 39	1	Стержень 2М33×465	45		2	2.7	5,4
м черт черт норматива	N ∂ema AU	THE TENDERAGE DEMAND		н Норнат е риа л		lum. Bec i	Общ. вкс Принеч.
	7-5	Пучак арнатурный 18 ф5	74.			3	36
Ny	И0 3 Ла	Наименование узла			Kvea	om. √	y Yepm. No
77	9	DEDMOI DOMERON SILM	<u></u>				1 9

Фермы пролетом г4м Пучки арнатурные 7.4, 17.5 Общие виды 114-01-16 Boinyck 3 114cm 36

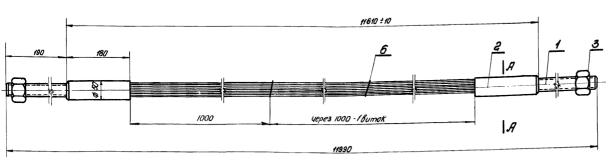
15



Good

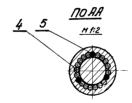

COKO

Совласовано


1. Uszamoвление арматурных пучков производить в соответствии с "Руководством по изготовлению предварительно напряженных ж. б. сеементных ферм из линейных элементов " издание отдела технической информации нии-гоо 1960 г.

3. Для изготовления стержней кроме указанной на чертеже марки допускается применение стали нарок 55С2; 60С2; 55ГС; 27СГ; 45Х.

1798-49	6	Προδοποκα Φ1	_		١	-	0.03	
10CT 7348-5.		Προδοποκα Φ5 ε=150	_		8	0.02	0.16	
70CT 7348-5	5 4	Проволока Ф5 С=11555	_		17	1.78	30,26	
Листз	9 3	Γούκα 2M33×1.5	45		2	0.5	1.0	
Лист 3	9 2	โบกธลต Ф50	<i>Cm 3</i>		2	1.15	2.3	
Листэз	1	Стержень 2M33×365	45		2	2.1	4.2	
у° черт или нормоти	Pemai Benai	MUUMEHUDUHUE DEMUNU		. М норнат гриал	ton.	tum. Bec	Общ. В К 2	Примеч.
1:5	1-9	Пучак арматурный 17 ф 5	379	5		9		38
М	N y3.na	Наименование узла	Bec E	8 re	Kue	pm. i	y	4epm. N

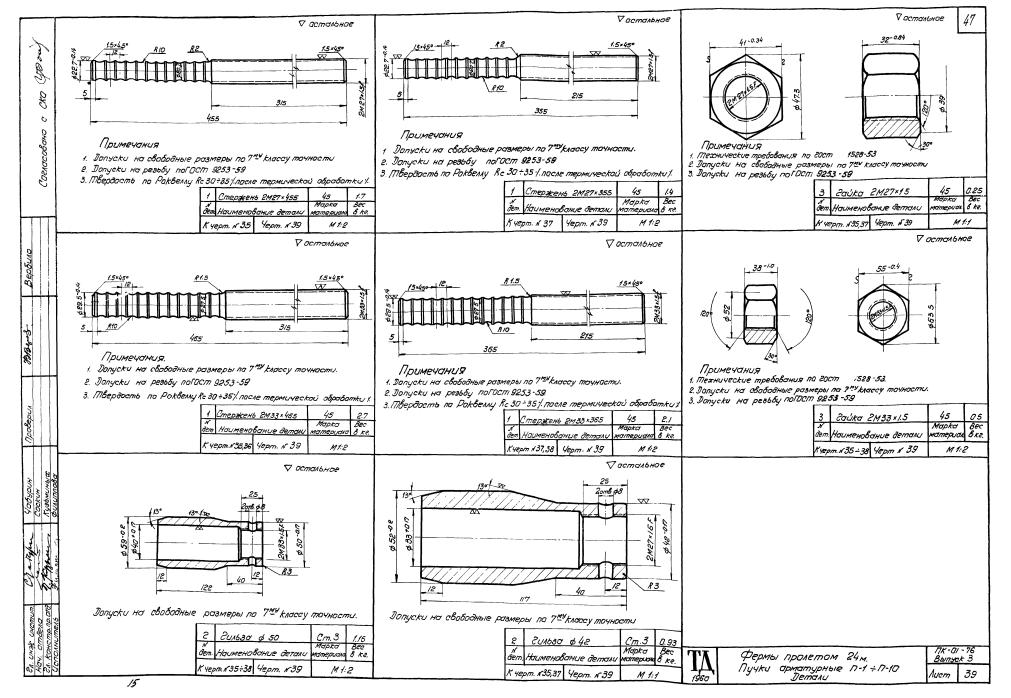

Примечания:

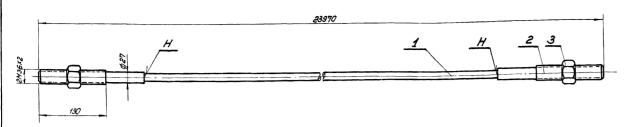
15

 Изготовление арматурных пучков производить в соответствии с "Руководством по изготовлению предварительно напряженных ук. б. Сегнентных фарм из линейных элементов" Издание отдела технической информации НИИ-200 1960 г.

2. Длина канала для пучка в ферме L=11800 мм.

3. Для изготовления стерусней, кроме указанной на чертеже нарки, допускается применение стали марок 5502; 6002;5500; 2701; 4500,

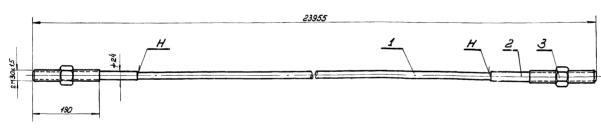

1798-4	9	6	Προδοποκα φ1			1	-	0.03	
100T 1348-5	5	5	Проволока ф5 е=150	-		6	0.02	0.12	
100T 1348-5	5	4	Προβολ κα φ5 ε=11555	-		18	1.78	32.04	
Лист з	9	3	Γαύκα 2Μ33×1.5	45		2	0.5	1.0	
Лист 3	9	2	Γυπь30 φ50	<i>Cm</i> 3		2	1.15	2.3	
Лист З	9	1	Стерусень 2М33х365	45		2	21	4.2	
үерт или нормат	us i	M Temar Su	Наименование детали	Марка Мате	М НОРМОТ. РИС	кол:	twm. Bec	Общ. В кг	Примечан.
1:5	/7-	10	Пучок арнатурный 18 Ф 5	39.5			9		38
М		חמי א	Наименование узла	8ec	re	Kue	pm.		Черт. М.
	1		Фермы пролетом 241	y				DK	-01-75 War 3


арматурные п-9; п-10

บิอันเบล อิบฮิษ

Sucm

Пучки



CKD O

Согласовано

- 1. Длина стерэкня цказана с цчетом оплавления и осадки при контактной электросворке стыков.
- 2. Длина канала для стержня в ферме d = 23780
- 3. Изготовление стержней производить в соответствии с "Указаниями по применению горячекатаной арматуры периодического профиля из стали марки 30×12С в яредварительно напряженных ж.б. конструкциях". Uзд. 1960г и "Руководством по изготовлению предварительно напряженных ж.б. сегментных ферм из линейных элементов." Издание отдела технической информации нии-гоо 1960г.
- 4. Допускается изготовление жвостовиков из стапи марок 45 27 СР и 35 ГС предварительно упрочненной вытржной до R " = 6000 K2/cm²

Aucm 48	3	20ÚKO 2M36×2	45		2	0.5	1.0	
Sucm 48	2	X80CM06UK 2M36×27×190	25xr20		2	1.9	3.8	
70CT 7314 - 53		Пруток ф 25; в загот = 23 420	30x12C		1	90.2	90.2	
черт или нарматив	end Dend	Наименование детали	Марка Л Матер	. М° Нормат. Шал	KON	1um. Bec	OÕU,	Примеч.
1:5	1-2	Стержень Ф25	95.0			4	T	40
М	No 43.10	Наименование узла	Bec 8	re	K4	ерт	N	Черт Nº

Примечания.

- 1. Длина стерусня указана с учетом оплавления и осадки при контактной электросварке стыков.
- 2. Длина канала для стержня в ферме 2 = 23 180
- з. Изготовление стерусней производить в соответствии с "Указаниями по применению горячекатаной арматиры периодического профиля из стали марки 30 х Р2С в предварительно напряженных эк.б. конструкциях " Цзд. 1960г. и "Руководстван по изготовлению предварительно напряженных ж.б. сегнентных форм из линейных элементов". Цздание отдела технической информации НИЦ-200 1960 г.
- 4. Допускается изготовление хвостовиков из стали марок 45,25 ГГС, 27СГ и 35 ГС пред-Варительно упрочненной вытяжной до RM = 6000 кг/мн2

									- 1
Nucm 4	8	3	20ÚKO 2M30 × 1.5	45		2	0.3	0.6	
Nucm 4	8	2	Хвостовик 2м30×24 ×190	30×1720		2	135	2.7	
1000 T 1314 - 5		1	Пруток Ф 22 езаг23 400	30x12C		1	69,7	59.7	
Yepri. Unu	- 1	λγο Θεται		Марки				Общ	
ЧОРНОТ И	60	אט	Наименование детали	Mame	ouan	KON.	Bec	5 K2	Примеч
1.5	1	7-1	Стержень ф 22	73.			4	T	40
M	93	N VO	Наименование узла	Bec	в кг.	K40,	om. 1	10 4	epm. Nº
T			Фермы пролетом 24				T	nk-	01-76 ICK 3

Sucm

CMEDICHU P-1: P-2. DÓWUE BUDGI

15

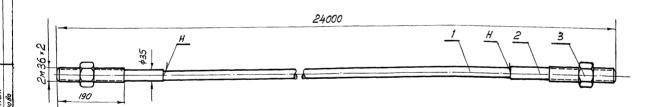
hach

CKO 0

Согласовано

23985

Примечания


1. Длина стержня указана с учетом оплавления и осадки при контактной электросварке стыков

2. Длина кана ла для стержня в ферме L=23780мм

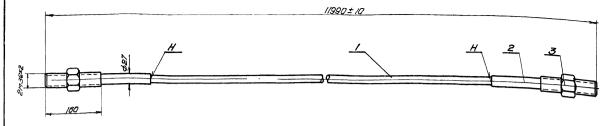
3. Изготовление стержней производить в соответствии с " Укозаниями по применению горячекатаной арматуры периодического профиля из стали тарки 30ХГ2С в предварительна напряженных ж б. конструкциях." Изд. 1960г. и "Руководством по изготовлению жб. сбарных предварительно напраженных сегментных ферм из линейных элементов." Издание отдела технической информации НИЦ-200 1960г.

4. Дапускоется изгатовление хвостовиков из стали марак 45, 270 ги 35 го предварительна упрочненай вытяжкой до R# = 6000 кг/см 2

лист 48	3	гайка 2м36×2	45		2	0,5	1,0	
Aucm 48	2	Xbocmobuk 2m36×31×190	25 <i>172</i> 0		2	2,08	4,16	
10cm 7314-55	1	Пруток ф28 взаг.=23440	30x72C		1	113,2	113,2	
N чертия нормал		Наименование детали	Mapka Mame,		Кол.	1cum	Общ	Примеч.
1:5	<i>[</i> '-3	Стержень Ф28	118,	4	_	4		41
M	у узла	Наименование узла	Becc	K2	K	epn	2. N	4epm.N

Примечания

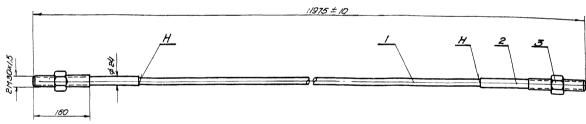
1. Длина стержня указана с учетом оплавления и осадки при контактной электро-


2. Длина канала для стержня в ферме 1=23780мм

3. Изготовление стержней производить в соответствии с " Указаниями по применению горячекотаной артатуры периодического профиля из стали марки 30ХГ2С впредварително напряженных эк б конструкциях." Изд. 1960г. и Рукавадстват па изгатавлению ж б сборных предворительно напряженных сегментных ферм из линейных элементов." Издание атдела технической информации НИИ-200 1960г.

4. Допускается изготовление хвостовиков из стали тарок 45, 2707, 3500 предварительна упрачненной вытяжкой до R# = 6000 кг/ст2

	_							
Nucm48	3	?аи́ка 2м36×2	45		2	0,5	10	
Листч	1 ~ 1	Хвостовик 2м36×35×190	25120		2	2,25	45	
70CM 7314-55		Пруток ф 32 взог=23465	30XT2C		1	148	148	
N Черт. илс	ðe-	Наименование детали	Марка	Норм.	Кол.	1wm	Обц	Примеч
нормал	тал.	тиштенована е ветила	Mam	ериал	,,,,,,,	Bec :	BKE	11,00,110 4.
1:5	<i>1</i> -4	Стержень Ф 32	/53,	5	4		T	41
М	узла	Наименование узла	Bect	K2	Кчер	m. n	1	lepmenk N
T\[\]		Фермы пралетам 24 м Стержни Г-3,Г-4	1			8	ыпу	
1960	1	Стержни 1-3,1-4	Эбщи.	е виде	5/	110	ICM+	41 41

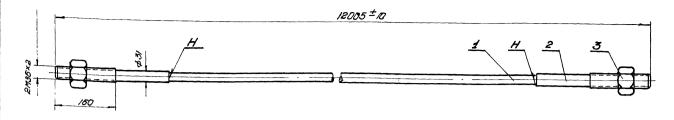


CHO O

Сеглосовано

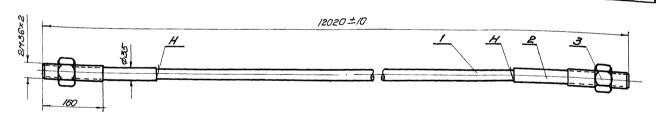
- 1. Длина стерэкня укизана с учетом оплавления и осадки при контактной электросварке стыков,
- 2. Длина канала для стерысня в ферте 4=11800.
- 3. Извотовление стерокней производить в соответствии с "Укозанирни по применению горячекстаной орматуры периодического профиля из стали марки 30x1°2C в предварительно напряженных ок. б. конструкциях «Изд. 1967г. и "Руксводствам по изготовлению предварительно напряженных эс. б. сегментных ферм из линейных з лементов". Издание отдела технической имформации НИИ-гоо 1960г.
- 4. Donyakaema ji useorobnerue zebocrobukob us cranu mapak 45, 27 Cr u 35 l'C npedbapumentiro ynpaynenroù bumraktaŭ da $R_{H}^{\mu}=6000$ kr/cr 2 .

8 3	Paúka 2M36×2	45		2	0,5	1,0	
9 8	CBOCTOBUK 2M36×27×160	25/20		2	1,8	36	
5 /				1	440	44.0	
Dera				ktu.	lum. Bec	06uj 8 K Z	Pormer
17-6	Стерэксень ф 25	48	6		10		42
N Y3.110	Ноименование узла	Bec 8 ke		K4	ерт.	M	Hepm.N
	19 2 5 1 0ero 7 0ero 7 10	19 8 OCOCRODIK EM36X27×160 5 1 Maymak \$25 Lyae=11440 The Haumendanie denoiru 17-6 Стержень \$25	2	(9) 2 Освостовик 21136x27x160 25.1ec 5 / Пруток ф25 Lyo= 11440 эсклас товария Наитенование детали Потериал 17-6 Стеръжень ф25 48,6	(9) 2 OCOCTOBUR 2M36x27x160 251eC 25 5 1 Noymok \$25 lane=14440 30x1eC 1 They have have deran Marena ton They have have deran Marena They have have deran 48,6	(9) 8 OCBOCTOBUL EMBORE 7×160 25.70°C 8 1.8 5 1 Mojumok #25 & Soc = 11440 30x100 1 440 6 4 Mojumok #25 & Soc = 11440 Mojumok Mojumok #20 Nojumok #20 1 440 7 4 Mojumok #25 Mojumok #25 Mojumok #25 Mojumok #25 10 7 6 Стерожень #25 48,6 10	(9) 2 OCOCTOBUR EM36X27X160 25 PEC 2 1.8 3.6 5 / MOUNTOK \$25 Case = 11440 35K7EC / WOHA TO THE MOUNT HOUSEAUX DETOUND MOTOR KAN NUM DBY TO COMPOSKENS \$25 48,6 10



Примечания

- I. Длина стерокня указана с учетом оплавления и осадки при контактной электросварке стыков.
- 2. Divina Kanana and ameroschia & spepme L=11800
- 3. Цагатовление стержней производить в соответствии с "Уколаниями по припенению горячекатаной арматуры периодического профиля из стали марки ЗОКГЕС в пред-варительно напряженных эс.б. конструкциях". Изд. 1960г. и "Руковдством по изготовлению преодарительно напряженных эк.б. сегментных ферм. Из линейных элементов. " Издоние отдела технической информации НИИ-200 1960г.
- 4. Danyckaercia υσεοτοβινείνε αθοκτοβυκοβ υσ κπαιν παρακ 45, 25 Γ 2C, 27 Γ C σ 35 Γ C πρεδβαρυτείστο γπρατιθέτιστα βομπαικτού δο R_{ij}^{μ} =6000 κ r/cr^{2} .


1:5	P-5	Стержень ф 22	37,2		10	42
YE'OM UJIU YOPMOM	Deru.	Наитенование детали	Mapku rapm Marepua		Jur. C	ise Noumer
20cm 73/4-55	5 /	Πρυτοκ φ20 lace=11425	30x120	1	3403	40
Nucm 45	9 2	X80cr08UK 2M30×24×180	30×/20	2	1.3 2	5
Avon 48	1 3	Cauka 2M30×15	45	2	0.3	7.6

		3	1 .000 0 200	1.00,000	1 /5/2/
A	Фермы	пролетом	24m		TK- OI- Bbinyck
0	Стержени	P-5; P-6. 0	රිගූවළ රිවේ	tr R	ימא

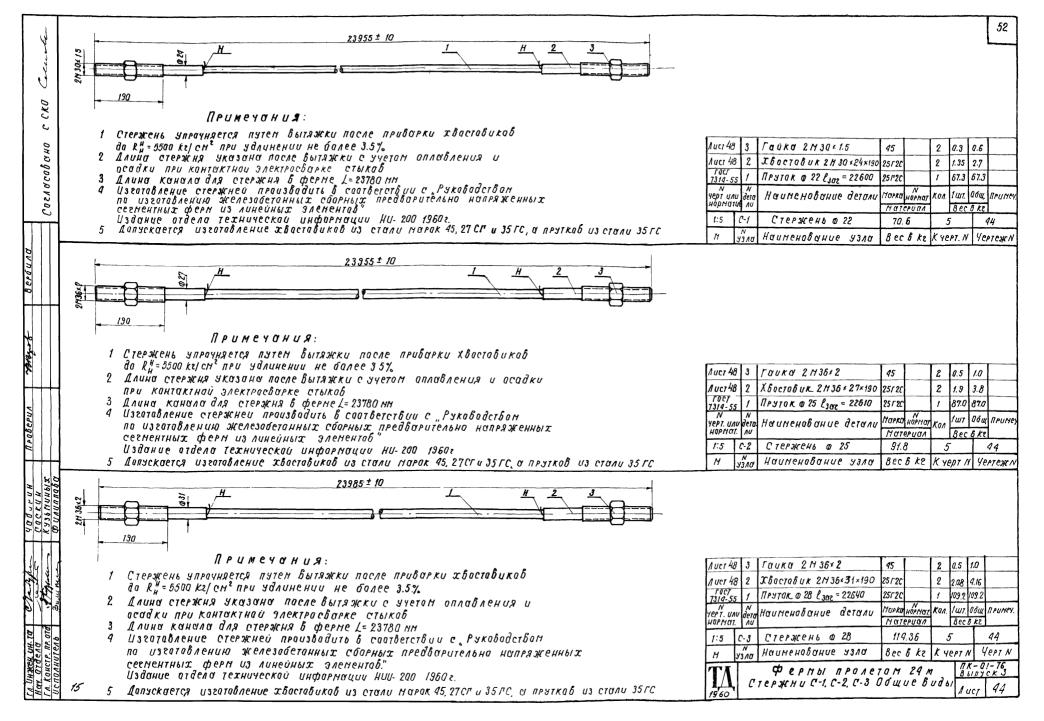
- I. Длина стержня указана с учетом оплавления и осадки при контактной электросварке ствиков.
- 2. Duuha Kahava dun emepachn 8 spepme L=11800
- 3. Изготовление стержней производить в соответствии с "Указаниями по применению гормекатаной арматуры перидинеского профиля из стали марки ЭОМГС в предварительно напряженных эк.б. конструкциях изд. 1960 г. и
- " Рукаводством по изготовлению предварительно напряженных эк.б. сеетентных ферм из линейных элементов." Издание отдела технической информации НИИ-200 1960г.
- 4. Donyckaemc g изготовление эсвостовиков из стали тарак 45,27 Cr и 35 ГС предварительно упрочненной вытроской до N_H^{μ} = 6000 кг/ст 2 .

			r					
AUCT 48	3	200ka 2M35×2	45		2	0,5	10	
Suct 45	2	XB0cm08UK 2M36×31×160	25 PW			2,0		
73/4-55			30×120		1	553	55,3	
yepm.	đero-	Наименавание детали	Mapta	µoprici.	Kon	lwr.	<u> </u>	
HODMOT.	NU	Tro stricting denies octmodia	More,	00/00/7		Bec 6 K		MOUMEY.
1:5	1-7	Стерожень ф 28	60,3			7		43
M	<i>y3.10</i>	Наименование узла	8ec	€ K3	K4	epm.	N	Yeom. N
M	~ Y3110	Наименование узла	Bec	€ ×3	K4	epm.	N	Yepm. N

Примечания:

- 1. Длина стерокня указана с учетом оллавления и осодни при контактной электросварые стыков.
- 2. Длина канала для стержня в ферме L=11800.
- 3. Цзеотовление стерокней производить в соответствии с "Указанияти
 ПО притенению горячекатоной ортотуры перирдического профиля из столи
 Марки ЭОКГЭС в предварительно напряженных экб. конструкциях" изд. 1960 г. и
 "Вуководством по извотовлению предварительно напряженных экб. сеетентных ферт
 из линейных элементов".
 Издания отдяла технической инфортоции НИИ-200 /960 г.
- 4. Danyckaemag uszaroßienue xbocrobukob us cmanu mapok 45, 27 C ru 35 rC предварительно упрочненной вытяжкой до $R_{H}^{H}=6000$ ке/ст 2 .

Sucm 4	8 3	Zaúka ZM36×2	45	2	0,5	10
Juan 4		X60c706UK 2M36 ×35×160	25/20	2	2.25	4.5
20CM 7814-5	5 1	Πριποκ φ 32 lave. = 11485	30x1/2C	1	72.47	
N Черт, ИЛИ НОРМАТ	N дета ли	Наименование детали	Марки нарта Материал	Kan	-	Поц. Прим.
1:5	<i>1</i> -8	Стержень ф 32	77.9	1	10	43
М	N Y 3.11 0	Наименование узла	Bec 8 Ke.	K48	pm.N	
ייר ו		Chenny management	1.		nk	-01-76


1960 5

Фермы пролетом 24 м. Стержни Г-7, Г-8. Обиче виды

Sucm 43

אטא

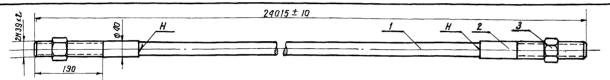
c cro

- 1 Стержень упрачияется путем вытяжки пасле приварки хваставиков да $R_{H}^{H}=5500$ kz/ cm² при удлинении не более 3.5%
- 2. Длина стержня чказана после вытяжки с ччетам оплавления и осадки при контактной электросварке стыков
- 3 Длина канала для стержия в ферме [= 23780 мм.

CKO

OHD

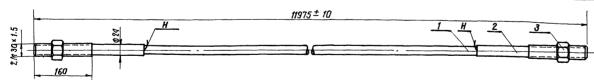
600


00

Ñ

20

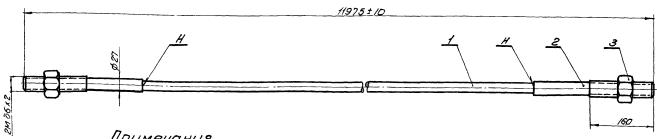
- А Изготовление стержней произбодить в соответствий с. Руководствой по изготовлению железобетонных сборных предварительно напряженных сегнентных фермиз линейных зленентов. Издание отдела технической информации НИ-200 1960г.
- 5 Допускиется изготовление жвостиков из стали нарок 45,27СГ и 35ГС, а прутков из стали 35ГС


Auc7 48	3	Γα ύκα 2 M 36 ± 2	45		2	0.5	1.0	
Auct 48	2	X 6 0 C 7 0 6 U K 2 M 36×35×190	25/2C		2	2.25	4.5	
Tact 7314-5	5 1	ΠΡΥΤΟΚ Φ 32 L302 = 22670	25 F 2E		1	143	143	
N черт. или нармат	N dera Nu	На и менование детали	Mapka	Нарнат Риал	KOA.	1шт. В ес		Taranci.
1:5	C-4	Стержень Ф 32	19	8. <i>5</i>	5	ī	\perp	45
М	N Y3/I	Н а и менавание эзла	Bec	B KZ	KY	ep 7.	<u>~</u>	4 ep

Примечания:

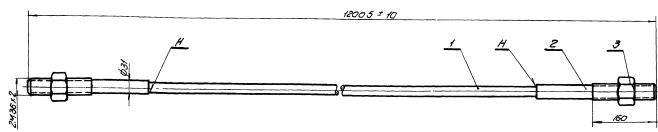
- 1 Стержень упрочинется путем вытяжки после прибарки жвостовиков do R_{μ}^{H} = 5500 kz/cm 2 при удлинении не более 3.5%
- 2 Длина стержня указана пасле вытяжки с учетом оплавления и осадки при кантактнай электросварке стыкав
- 3 Длина канала для стержня в ферме L= 23780 нн
- 4 Изготовление стержней производить в соответствии с Руководством по изготовлению желегобетонных сборных предварительно напряженных сегментных ферм из линейных элементов. Издание отдела технической информации НИИ-200 1960 г.
- 5 Допискается изготовление освостовиков из стали марок 45, 27 СГ и 35 ГС, а притков из стали 35 ГС

Aucī 48	3	Γαά·κα 2 M 39 × 2	45		2	0.88	1.76	
Auct 48		XBOCTOBUK 2 M 39×40×190	25/20		2	2.68	5.36	
10CT 7314-55	1		25 r 2 c		1	18 1,3	1813	
N YEPT UNU HOPMUT	derq Au	Наименавание детали	Наўка Мат	норнат Р Ц ФЛ	Kon	1шт Вес	Oбщ В Ke	WPUMEY
	C-5	Стержень Ф 36	186	3. <i>4</i>		5		9 5
М	N Y3NA	Наименавание УЗЛа	в ес	8 Ke	KYE	pr./	v 4	lept. N


Примечания:

- 1 Стержень Упрочилется путем бытяжки после прибарки хвостовиков do R_u^{μ} = 5500 kV/см 2 при удлинении не более 3.5%.
- 2 Αλυμα στερήτης Υκαβαμα ποσλε βωταήταν ο γγετομ οπλαδλεμυα υ ο σαθκυ πρυ κομτακτμού βλεκτροσβαρκε στωκοδ
- 3 Длина канала для стерженя в ферме L= 11800 мм.
- 4 Изготовление стержней производить в соответствии с Руководствон по изготовлению железобетонных сборных предварительно напряженных сестентных ферм из линейных элементав."

 Издание отдела технической информации НИИ- 200 1960 г.
- 5 Допускается изгатовление жвастовиков из стали марак 45,27 см и 35 мс, а пруткав из стали 35 мс

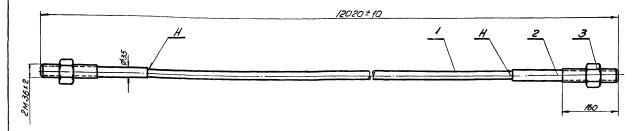

luct 48	3	Γαυκα 2 M 30 × 1.5	45		2	0.3	0.6	
		X8007084K 217 x 30 x 24 x 160	25/ 2C		2	1.3	2.6	
79C) 7314-55	1		25 F 2 C			32.8	328	
N H QP (Y CI I Y CP T C X C	N deta Au	Написнование детали	Marko Mari	н брнат. СР И И Л	Kan	1 шт В ес	a ou Bkz	Припеч.
1:5	C-6	Стержень Ф 22	36	.0	10		T	45
М	λ3να Ν	Напыснование язуа	в ес	8 Ke	KY	ерт Л	14	ert N

	Фермы пралетам 24 м. Стержни С-4, С-5, С-6 Общие виды	11K-1
۲	Стержни С-4, С-5, С-6 Ибщие виды	A uct

- 1. Стержень упрочняется путем вытяжки, после приварки XBOCMOBUKOB, DO RH = 5500 M/cm² NPU YANUHEHUU HE BONEE 3.5%
- 2. Длина стержня указана после вытяжки с учетам оплавления и осадки пои контактной электросварке стыков.
- 3. AMUHO KOHONO DAR CMEDDICHA BODEDME L = 11800MM
- 4. Изготовление стержней производить в соответствии с "Руководством по изготовлению железоветонных сборных предворительно напряженных CERMENTHHIX DEDM US NUMEUHHIX SIEMENTO δ^{st} USBONLOE OTIDENO TEXHUHECKOÙ UH Φ ODMOLUU HUU200-1900F 5.Допуска ется изгатовление явастовиков из стали марак 45,270Г, из5ГС, о прутков из стали 35ГС.

	NUCT 4	8 3	Γαύκα 2Μ36Χ2	45		2	0.5	1.0	
	NUCM'	49 2	ZBOCMOBLIK 2M36x 27x160	25120		2	1.8	3.6	
į	70CT 73/4-5	5 1	MOYIMOK \$25; Car = 110 25	2512C		1	42,3	42.3	
	N YEDITI HOIDMO		Наименование детоли	MOIDE	N HORM COUON	KON	kun. Bec	<u>Ови</u> в кг	חטטאו,
	1:5	C-7	Стеронсень ф 25	~ 46	9	,	10	I	46
	M	N Y310	Наименование узла	Bec	B Kr	K4	1607.	N 4	Yepm.N

PRUMEYOHUA.


UB CMONU 35/C

- 1. Стержень упрочняется путем вытяжки, после приварки Thocmoburol, DOR = 5500 K/cm nou youwhenur He Donee 3.5%
- 2. Длина стержня указана после выгляжки с учетом оплавления 4 OCADKU NDU KOHMAKMHOÙ SIEKMPOCBOPKE CIMBIKOB
- 3. ANUHO KOHONO DAS OTEDOKHS B DEPME L-11800MM
- 4 Изготовление стерэжней производить в соответствии с Руководством по Цзготовлению железоветонных сборных предварительно напряженных сегментных ферм из линейных элементов." Цздание отдела технической информации нии-200-1960г 5.Допускается изготовление жвостовиков из стали марок 45,270ги 35гС, а прутков

	_								
/UCM*	18	3	Talika 2M36×2	45		2	<i>0.5</i>	1.0	
Aucm 4	19	2	XBOCMOBUK 21136 × 31×160	25/20		2	20	4.0	
1314-5	55	1	Mpymar \$28; Car= 4055	25/20		1	534	53.4	
HODING HODING	?. 77.	N	Наименование детали	Mojoko	N MORM EDLICII	Kon.	tur. Bec	Coul B Kr	Moun.
1:5	Г	8	Стерэкень ф 28	58,	4	1			46
M	У.	№9 310	Наименование узла	8ec	B KZ	K40	P)7.1	1 4	70m, N
TA	TA Depmbi nponemom 24m NK.01.76								
1960	1950 Crneporchu C.T.C.& Obujue Budy Nucm 46								46

Coenacobar c CKO

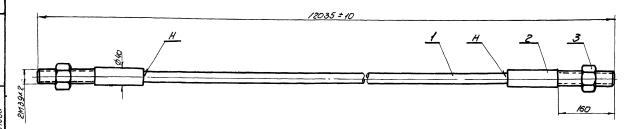
15

Coenaccbaho c CKO

1 Стержень упрочняется путем выпляжки, после приварки xвостовикав, до R $^{\mu}$ = 5500 кг/с $^{\alpha}$ при удлинении не Более 35%

2. Длина стержня указона после вытяжки с учетом оплавления и осодки при контактной электросварке стыков

3. ANUHA KUHONA ANA CITIEDIACHA BODEDME L= 11800MM

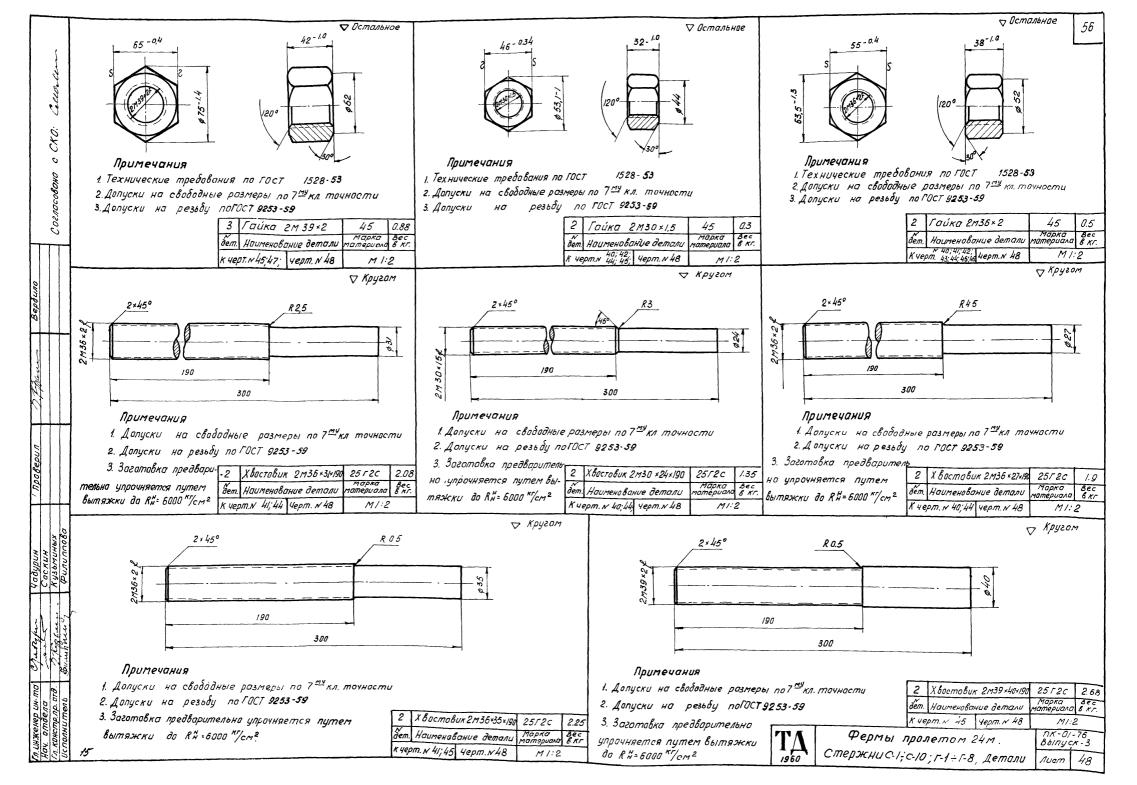

4 Цзготовление стерженей производить в соответствии с

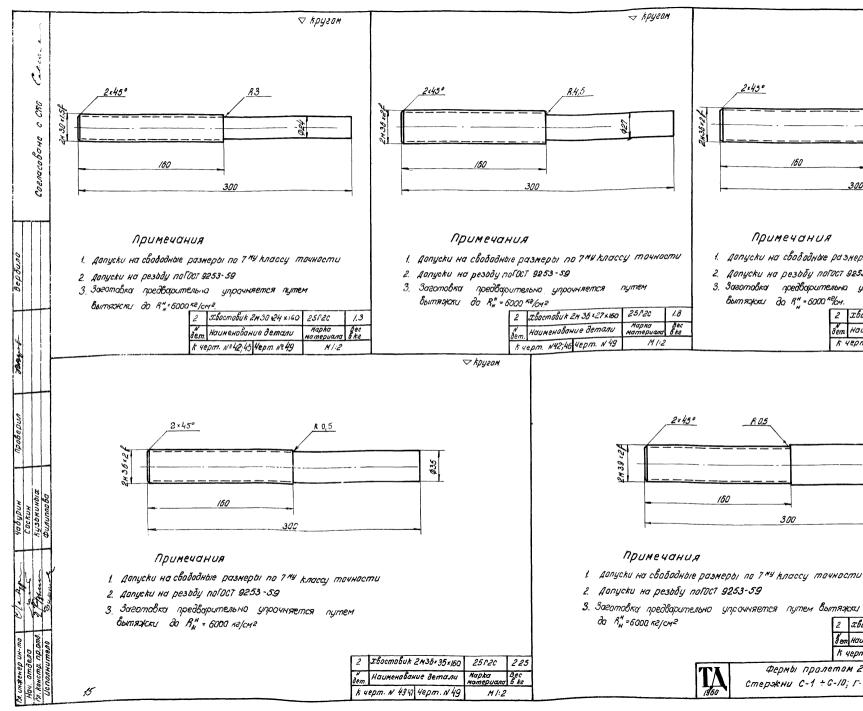
"Руководством по изготовлению железобетонных сборных предворительно нопряженных сеементных ферм из линейных элементов." Издание отдела технической

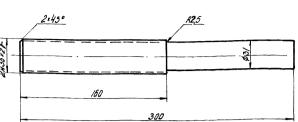
UHODOPMOLIUU HUU-200- 1960 e.

5. Допуска ется изготовление жвастовиков из стали марак 45, 27.СГ и 35.ГС, а прутков из стали 35.ГС.

Aucm:	8 3	ΓΟΌΚΟ 2M 36×2	45		2	0.5	1.0	
Nucm4	9 2	ZBOCMOBUK 2M 36×35×160	25120		2	2.25	4.5	
7001 73/4-5	5 1	Πρ у τηοκ φ32; ε3αι = 11080	25120		1	699		
HOD MO	n ∂en n ЛЦ	Наименование детоли	Majoko Marrie,	N HOIOMAI OWON	KON.	ил. Вес с	06M	Noumey
1:5	<i>C-9</i>	Стержень ф 32	75,	40	,	10		47
M	y310	Ноименование узла	8ec	b Ke	K40	201:1	v 46	POT. Nº

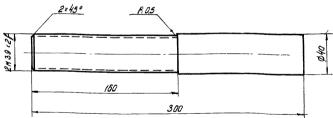

Примечания


1. Стержень упрачняется путем вытяжки, после приварки жвастовиков, до к т = 5500 к /см г при удлинении не более 35% 2. Длина стержня указана после вытяжки с учетом отавления и осадки при контактной электросварке стыков. 3. Длина канала для стержня в ферме L = 11800 мм 4. Изготовление стержней праизводить в соответствии с "Руководством по изготовлению экслезобетонных сборных предварительно напряженных сегментных ферм из линейных элементов! Издание отдела технической инфармации НИИ-200-1960 г 5. Допускается изготовление жвостовиков из стали марок 45, 27 сг и 35 г С, а прутков из стали 35 г С.


Aucm4	8 3	Γαύκα 2M39x2	45		2	0.88	1.70	
100m 4	9 2	Zbocmobuk 2M39×40×160	25120		2	2.7	5.4	
73/4-5	5 1	Пруток ф 36 С эаг = 11115	25120		1	88.8	88.8	
N 4epm. Un U HOPMOTU	N de. FONL	Наименование аетоли	Марка Магпе	N HODMOI DUCIA	Кол	KUT. Bec	06и, в кг	Лоцмец
1:5	C-10	Стерэкень \$36	93	5.9		10	T	47
M	N У310	Наименование узла	8ec	B KZ	K4	epr.	W 4	lgo⊺. №
TA	10	DEDMAI DODAETION				17	r.01	- 76

Фермы пролетом 24м Стержни С.9, С.10, Общие виды

11K-01-76 BUINYCK 3 NUCTO 47


- 1. Допуски на свободные размеры по 7 му классу точности
- 2. Допуски на резобу погост 9253-59
- 3. Заготовка предварительна упрачняется путем

2	Xbocmobuk 2n 36×31×160	251°20	20
ð em	наименование детали	Марка материала	Bec 6 ke
15	HEPM. N43-46 4EPM.N40	M1:2	

V KPYEOM

WOSPON A

57

- 3. Заготовку предварительно упрочиняется путем вытяжки

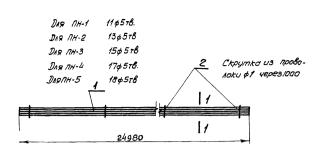
	X boc mobuk	2512C	2.7		
ð em	наименовал	Mapka Bec Mamepuano B ke			
15 4	tepm. N 47	4epm. N 49	M 1:2	?	

Фермы пролетом 24 м Стерэкни C-1 + C-10; Г-1 + Г-8; Детали

NK -01-76 Banyck 3

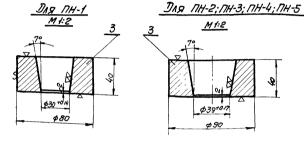
		Основная расчетная	Рас четна я /в скабкаж нарна	- Mapka	Рабочая арматура ниженего пояса		Расход материалов на ферм				15	
Mun	Mapka	/в скобках нар-		,	MYKUC OH-			CManb, kê				Bec
фермы	фермы	мотивная) нагрузка кт/м ²	ат падвесного пранспарта Т	<i>Б</i> етана	кернычи колод ками и проб- ками	и данные дуля натяжения	Элененты фермы	Стыковые на кладки марки в	Пучки	BCCEO	Бетон _М ³	90e,0146 7
	Ø 1- 24-1	350 (290)		3 <i>00</i>	400110578	17H-1 17H-1 N=22.0T @ N=22.8T AC=13.4CH	453. 3	15.8	182.0	652./	4.36	10.9
	Ø1-24-1A					11H-1 0 3 11H-1 N=232T AC=14.20H	471. 5			670.3		,0.3
	\$1-24-2	450 (380)		300 400	4 na 13 d 5 t 6	114-2 N=25.87 AC:B.3CH @ @ N=27.07 AC:B.3CH	453.3	16.8	215.8	<i>686.9</i>	4.36	10 9
80	Ø1-24-2A			400	,,,,,	ΠΗ-2 Ν=27.6τ Δε=14.2 Ωτ. ΠΗ-2 Ν=26. Ψτ Δε=6.8 στ	471. 5	7 0.0	270.0	705.1		/03
у ем рно	φ1-24-3	550 (450)		400	4 110 15\$578	N=29.47 () N=31.07 AC=13.204 () AC=13.904	494.7	16.8	247. 2	758.7	4.35	10.9
76	\$ 1-24-3A	350(290)	4epysa na 3,9r (s.a)	700		11H-3 0 3 17H-3 N=31,57 AC=14,201 AC=13,501	5/2.9	76.6	24%.2	776.9		70.9
	Ø1-24-4	450 (380)	4 epysa na 3.9 r (3.0)	400	400 17\$578	11.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	494.7	10.0	077 6	789.7	4.36	
	Ø1-24-4A	100 (000)	4-3-1			11.4 D 3 11.4 N=33.81 A E=14.201 N=13.41 CH	5/2. 9	16.8	277.6	807.3	7,30	10.9
	Ø1-24-5	550 (450)	4epysa no39r/s.a)	400 <u>500</u>	4101801578	11.5 11.34.87 AC=11.804 AC=13.904	548. 9	16.8	292.8	858.5	4.35	
	Ф1-24-5А	930 (430)	40934 1104,5175.4)		4/10/10/09/376	1H-5 N=37.8T AC=14.3CH 1H-5 N=35.8T AC=8.5CH	567./	1 70.0		876.7	4.30	10. 9
Ş.	φ2-24-1	350 (290)		300	400110578	N= 22.01 (2) N= 22.81	629.0			846. 5	,	
мазакиои	DE-24-1A				4110114570	AE: 5.8 CM AE: 5.	647. 2	- 15.8	200.8	864.8	4.38	11. 0
noens	Φ2-24-2	450 (380)		300	4na 1341 578	714-7 N=25.87 AC=5.504 (2) (2) N=27.07 AC=6.504 (4) (2) AC=6.904	629.0	-	240.8	886.6	,	
8	Ø2-24-2A	7,00 (101)		700	-1110 104 078	774-7 N=27.67 AC=1.107 AC=8.707 AC=8.707	647. 2	16.8	240.8	904.8	4.38	11.0
gesz	\$2-24-3	550 (450)		400	4110 15 \$516	10 2 N=3.07 AC=6.6 CM (2) N=3.07 AC=6.6 CM (2) N=3.07 AC=6.6 CM (3) AC=6.5 CM	686. 9		272.7	915. 7	4.38	
877	Ø2-24-3A	350 (290)	4 <i>epysa no3,9</i> r(3,0)		אנשונו טווד	1H+8 N ≈ 31.57 A ≈ 21.001 A ≈ 21.001 N ≈ 30.207 A ≈ 20.001	705./	15.8	272.0	993.9	7.50	11.0
<i>KD)</i>	φε- 24-4	450 (380)	4 epysa na3,9+ (3.a)	400	40017\$578	7/H-9 / N=33.07 AC = 6.6 CM (P) (P) N=33.07 AC = 6.6 CM (P) (P) AC = 6.90M	686.9			1006.1	/	
с'аставная	Ø 2 - 24 - 4 A			,,,,	1110114316	NH-9 (1) (3) NH-9 N=33.81 N=32.07 AC=5.707	705. 1	16.8	<i>302.</i> 4	1024.3	4.38	110
Cacr	Φ2-24-5	550 (450)	420430 no 3.9 r(30)	400 500	40018\$578	11. 10 N=34.87 AE=6.5 CM (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	741. 1			1076.3	420	
	Ø2-24-5A	1 200, 100,	1,31,49	- 000	1101040516	11. 10 (3) 11. 10 11. 10 (3) 11. 10 11. 10 (3) 11. 10 11. 10 (3) 11. 10 11. 10 (3) 11. 10	759.3	16,8	318 4	1094.5	4.38	71.0

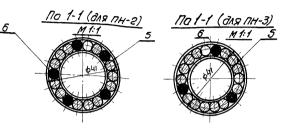
Примечания 1. 8 таблице прибедены данные по армированино ниженего пояса пучками с анкерными колодкоми

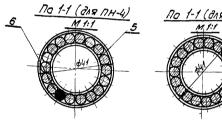

ирнирыванна низначев півясь тучкить є выкарнани коморкаму и пробкани. Пучки из высокопрочной праволоки па ГОСТ 7348—55 г. Порядок натяжения арматуры указан цифрати в крузюкаж з. Пучки марки ПН разработаны на листаю 51и52.

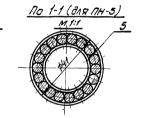
4, В графе "тарка бетона" драбью показаны: В числителе торка бетона верхнега пояса и решетки, в знаменателе-ниженего пояса.

Фермы пралетом 24м лк. от Јанные для армироватия ниженее пова пучкати с анкерными колодками и пробур Jucm 77K- 01- 76 BOINYCK 3

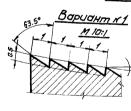

Ber B to

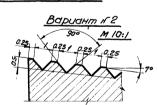



CHO


10 1-1 (BAR 17H-1) M1:1

Demanu nyyka





Профиль нарезки

IJ	ия <i>ПН-1</i>	_
-	M 1:2.5	5
^	WW.	850
L	50	

DAR 17H-2; 17H-3; 17H-4; 17H-5

/×45°

<u>М 1:1</u> См. прафиль Нарезки

DAS THEZ; TH	1-3;NH-4;NH-5
M 1:25	5
WW	658
50	

Mapka	N	0000	1/	Мате-	KOA.	Be	c 6 ke			
חשיאלם	na3.	20cm	Начменование	puan	шт.	Един.	Общий	Boeen Ny VRO	Примечан.	
S /	1	7348-55	Προβαλοκα φ5τδ		//	3.85	42.35			
	2	/798-49	Проволока 1; 1=273	_~~	24	0.0017	0.04			
	3		Янкерная каладка	45	2	1.29	2.58	1		
NH-1	4		Янкерная пробка	45	2	0.17	0.34	45.5	MBep doemb HRc = 52+55ed	
	5	1982-50	Праволака 1.8 С=314	~	24	0.006	0.144			
	6	73 48-55	Каратыш ф5; е=200		2	0.031	0.062			
	1	7348-55	Проволока ф5тв		/3	3.85	50.05			
	2	1798-49	Провалака 1; е=358		24	0.002	0.048			
ΠH-2	3		Анкерная калодка	45	2	1.54	3.08	54.2		
	4		Янкерная пробка	45	2	0.28	0.56		TBepaacmb HRc:52+55ea	
	5	1982-50	Правалака (.8 С=455		24	Q.008	0.192			
	6	7348-55	Каратыш ф5; l=200		10	0.031	0.310			
	1	7348-55	Πραβολοκα φ5τβ.		15	3.85	<i>57.75</i>	61.B		
	2	/798-49	Προβοποκα 1; ε:358		24	0.002	0.048			
NH-3	3		Анкерная колодка	45	2	1.54	3.08			
	4	_	Анкерная пробка	45	2	0.28	0.56		Tåepåocmb HRc=52+55 ed.	
	5	1982-50	Правалька 1.8; е=455		24	0.008	0.192			
	6	7348-55	Каратыш ф5; l=200	-	6	0.03/	0.186			
	1	7348-55	Προβαλοκα φ5τβ		17	3.85	65.45			
	2	1798-49	Праволожа 1; l=358	-	24	0.002	0.048			
NH-4	3	-	Анкерная колодка	45	2	1.54	3.08	69.4		
	4		Анкерная пробка	45	2	0.28	0.56		TBepdoemb HRc:52+55ed	
	5	1982-50	Провалока 1.8; 2=455		24	0.008	0.192			
	6	7348-55	Коратыш ф5; С=200	-	2	0.031	0.062			
ПН-5	1	7348-55	Προβοπακα φ 518	-	/8	3.85	69.30			
	2	1798-49	Праволока 1; С= 358	-	24	0.002	2048			
	3	_	Анкерная колодка	45	2	1.54	3.08	73. <i>2</i>		
	4	-	Анкерная пробка	45	2	0.28	0.56	13.2	T&epðacm6 HRc=52÷55eð.	
	5	1982-50	Προβαλοκα1.8; ε=455	-	24	0.008	0.192			

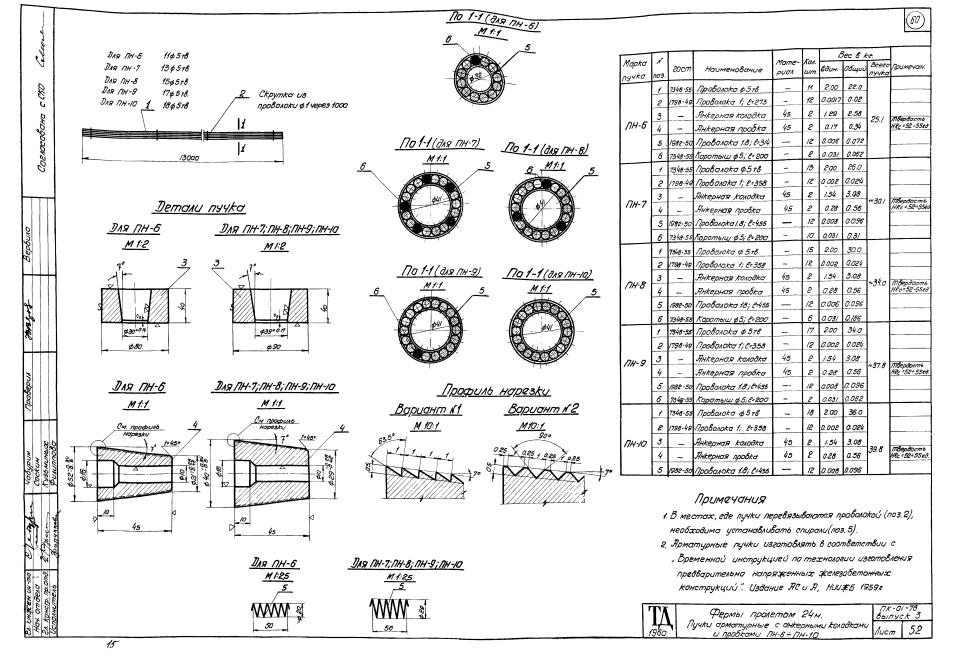
NDUMEYAHUA:

- 1. В местах, где пучки перевязываются проволокой (поз. 2), необходимо устанавливать спирали (поз. 5).
- 2. Ярматурные пучки изготовлять в соответствии с
- "Временной инструкцией по технологии изготовления предварительно напряженных железобетонных конструкций. [/Здание ЯСиЯ, НЦИЖБ 1959 г.

TA 1960	Пу
------------	----

Фермы пролетом 24м. ички фриатурные a анкерными колодкам и пробками ПН-1 ÷ ПН-5

nk-01-76 Bunyck 3 Nucm


15

DAG NH-1

M 1:1

См. профиль нарезки

432-0.34

