Типовой проект

407-3-452.87

ТРАНСФОРМАТОРНЫЕ ПОДСТАНЦИИ НАПРЯЖЕНИЕМ 35/0,4(0,69) кВ С ОДНИМ ТРАНСФОРМАТОРОМ МОЩНОСТЬЮ 400, 630, 1000 и 1600 кВА ДЛЯ ЭЛЕКТРОСНАБЖЕНИЯ НАСОСНЫХ СТАНЦИЙ НА ЗАКРЫТОЙ ОРОСИТЕЛЬНОЙ СЕТИ

Альбом III

Сметы

Типовой проект

407-3-452.87

ТРАНСФОРМАТОРНЫЕ ПОДСТАНЦИИ НАПРЯЖЕНИЕМ 35/0,4(0,69) кВ С ОЛНИМ ТРАНСФОРМАТОРОМ МОШНОСТЬЮ 400, 680, 1000 и 1600 кВА для электроснавжения насосных станции на закрытой оросительной сети

Альбом III

стоимость:

общая - 5,81/6,62/8,19/9,50 тис. руб.;

строительно-монтажных работ
— 2,15/2,17/2,65/2,64 тыс. руб.;

1 kBA - 14,52/10,51/8,19/5,94 py6.

Разработан проектным институтом Средволгогипроводхоз Минводхоза СССР

Утвержден и введен в действие Минводхозом СССР Протокол № 529 от 3 марта 1987 года

Гланный инженер института

A. E. MAEHKOB

Главный инженер проекта

A. H. BEASKOB

COZEPALEE'

n/n	ONGER	Нонионовия в	Cap.
ı.		Поисинтельная зациона	<u> </u>
. 2.	. I	Объективя омета на трекоформеторную подоженцию непримением 35/0.4 (0.69) кВ с одим трекоформетором мещностью 400 кВ.А	4
3. ,	I-I	Общеозрояхажные реботи	5
4.	1-2	Speniboletriaechru archy	10
5.	.2	Объективя смета на траноформаторную подстанцию напримением 35/0.4 (0.69) иВ с одним траноформатором ноциостаю 630 кВ.4	15
6.	2-I	Sheripotexendecked decip	16
7.	3	Объективя смета на трансформаторную подстанцию напряжением 35/0,4 (0,69) кВ с одним трансформатором мощностка 1000 кВ.А	21
8.	3 - 1	Общестроительные реботи	22
9.	3-2	Электрогедвическая часть	28
10.	4	Объективя смета не трансформаторную подстанцию наприженнем 35/0,4 (0,69) кВ с одним трансформатором мощностью 1600 кВ.Д	33 _
. yerrana sakan i	A-I	Sacripotexhaucorda uscis	34
IŽ.		Понезателя изменения сметной стоимости СМР, затрат труда и расхода основных строительных материалов	- ¹⁹⁴⁰ / ₁ 5 m ²

с трансформаторами мощностью 400, 630, 1000 и 1600 кв. А для электроснаожения насосных станций на закрытой оросительной сети составлена в соответствии с инструкцией по типовому проектированию СН 227-82, утвержденной постановлением Государственного комитета СССР по дедам строительства от 18 мая 1982 г. ж 141.

Сметная стоимость определена по:

- сборникам единых районных единичных расценок на строительные работы (EPEP-84), введенным в действие с 1.01.84 г. для базисного района (территориальный район 1, подрайон 1);
- сборнику сметных ден не местные строительные материалы, бетонные и железобетонные изделия для Московской области, утвержденному Мособлисполкомом от 7.31.1983 года № 22Р;
 - сборникам расценок на монтак оборудования, введенным в действие с I.0I.84 года;
- прейскуренту № 15-03 не оптовие цены не эппературу электрическую высоковольтную, утвержденную постановлением Госкомнен СССР от 4 ноября 1980 г. № 886:
- прейскурэнту № 15-05 на оптовые цены на трансформаторы, подстанции трансформаторные и реакторы, утвержденному постановлением Роскомием СССР от 9 октября 1980 г. № 813.

Расстояние перевозки оборудования принимается:

по безрельсовым дорогам на 15 км;

по железной дороге на 500 км.

Накладные расходы на общестроительные работы приняты 16,5% (величина нормативной условно-чистой продукции, содержащейся в накладных расходах - 20%):

Плановые накопления - 8% (величина нормативной условно-чистой продукции - 44%).

Стоимость подстанций определена для следующих вариантов:

I вариант - с одним трансформатором мощностью 400 кв.A;

2 вариант - с одним трансформатором мощностью 630 кв.А;

3 вериет - c одним тренсформетором мощностью 1000 кВ.A;

4 вариант - с одним трансформатором модностью 1600 кв.А.

В локальных сметах выделена нормативная трудоемкость и сметная заработная плата.

При применении типового проекта стоимость работ уточняется по каждому пункту сметы по еденичным расценкам, утвержденным для конкретной стройки или района строительства с внесением поправок, вытекающих из условий привнаки типового проекта.

Одновременно уточняются накледные расходы.

Составила руководитель группы

Danis-

Р.Т.Саклеева

CHETA & CYMME

THE . PYS.

THE . PYS ...

COTTACGBANA

MPARTAGE

yTBEPW&ENA

BARASHHK

19 F.

NA CTPONTENECTED TPANCOOPMATOPHOR MORCTANUM MARPHWENNEN 35/0,460,40) KB C DANN TPANCOOPMATOPON MOUN, 480KB.A ANN BAEKTPOCHABME HAR H.C. HA SAKPWION OPOCHTERNION CETH

CHETHAR CTONNOCTS MODMATHBHAR YCADBHO-MUCTAR MPDAYKLING HOPMATHBHAR TPYADEMKOCTH CHETHAR SAPABOTHAR MATA

19 F.

THE.PYS. THE . PYS . THE. WER. ... THE . PYS .

COCTABREMA B MEMAX 1884.

П.П: ; РА ;	N CHETOB		4 F A C		:TE/	PHMX	HWATE	₩X : / T : / 1	OBOPY- LOBAHUR LOBAHUR HEBENN HH- BENTAPR	**************************************	: 8	tero	1-44	TAR:	EMKOCIO THEO.	TWC.PV	
1 :	2	3			;	4	: 5	:	6	: 7	***** :	8		•	9	1 19	1 12

1 1-1		OBMECTPORTERSHME PAR	POÍM			1.75	•		•	-		1.79	• (0.47	0.29	9 0.z	0 4.38
2 1-2		SAEKTPOTEXHUUECKAS (TPAHCOOPMATOPHOS NO. KB.A	HACTЬ ACTANUMM	MGMH. 600)	0.01	О,	39	3,44	•	1	4.00	• 1	0.24	0.20		

#TOPO;

1.76 0.30

0.33

CAABHUR HHWEHEP DPOEKTA

HAVARDHUK DTAERA

BOHABP, OLG

A.H. SEMEKOB

RUBATEOS

проверия

-

TPANCADPHAT HOACTANUNG HATTEMENNEN SE/O:444.493KB

C DANUM TRANSPORMATOROM GOO M STOKER AND BREKTPOCHABNEMUS HACOCHMX CTAMUMB HA SAKPHTON DROCKTERNINDE

локальная смета и 1-1

OBMECTPONTERNHE PAROTM

		OBMECTPONTERSHUE PABOTM		•) .			
	OCHOBANNE;	BEAUMOCTS 36-2	•		CHETHAR	стоимость	1.75	THE, PYB.
	COCTABNEHA	8 UEHAX 1984 F.			HOPMATHE TRATONE	ВНАЯ УСЛОВНО» 1РОДУКЦИЯ	. 0.47	THE, PYB.
	MOKASATEAN	TO CHETE:	•		HOPMATHE	SHAR TPYAGENKOCTS	0,2,9	THC,4EA,-4,
	стоимость	1KBA 4.38 Py6.			CHETHAR	SAPABOTHAR MATA	0.20	THE, PYS.
•	: N : . WM • P			SCTOUMOCT	EA., PY6	SOMMOTS RANGO	b, Py6.	;: SATPATH TPYAA
	: N	· nantervagnes	1 450180	. BCEFO	· MAMMI		PACITA,	;: ЗАТРАТЫ ТРУАА -: РАБОЧИХ, ЧЕЛЧ, :НЕ ЗАНЯТ.ОБСЛ.МАШИН
n	: /n:hopmataba :	PABOT H SATPAT	S EVNHATA	OCHOBHOR CAPRIATH	B T.4.	I I SAPONATH	# : # T.W.	:OBCAYMUBARM, MAWNUM :
-	1 · 1 2					1 7 ; 8		
	SEMARHUE	PABOTM			,	·		
	1 1-230 T.4.n.1,1	CPESKA PACTUTE/SHOFO FPYHTA TO/L 1 30CM BY/SAO3EPOM AO 59 KBT C MEPEMENEHHEM AO 10M	0.041 1000M3		0 37.186 12,396	-		2 1 17,842 ₁
	2 1-237 T,4.n.1.1	AOBABARTO HA KAWAME ПОСЛЕАУЮШИЕ 1 10M ПРИ ПЕРЕМЕЩЕНИИ ГРУНТА БУЛЬДОЗЕРАМИ К РАСЦЕНКЕ И 250 ЦЕНА: ((30,47x3))	0 . 0 4 1 1 0 0 0 1	,	30,48	· .	*	43,891 2
,	3 1-184 T.V.N.1.1	РАЗРАВОТКА ГРУНТА В КАРЬЕРЕ АЛЯ 1 ВЕРТИКАЛЬНОЙ ПЛАНИРОВКИ ЭКСКАВАТОРАМИ С КОВШОМ ВМЕСТИМОСТЬЮ 0,25МЗ НА ГУСЕНИФНОР ХОЛУ С ПОГРУЗКОЙ НА АВТОМОВИЛИ-САМОСВАЛЫ ГРУНТ 2 ГРУППЫ	250.0 EMODO!	200.42		♥,		4 24.200 1 97.574 2
	4 1+184	РЕМОНТ И СОДЕРЖАНИЕ ДОРОГ ОТ ЗАБОЯ ДО ОТВАЛА ПРИ ТРАНСПОРТИРОВАНИИ ГРУНТА АВТОМОВИЯТИИ—САМОЕВЛАМИ ИЛИ ДУМПЕРАМИ НА КАМАЙЕ В, В КИ ДЛИНЫ ГРУНТ 2 ГРУППЫ ЦЕНА: ((5,1×2))	0.02 1000H	š to tilotoja	8.76	* '		3.773
	s ccunr n.1	TPANCHOPTUPOBKA PPYHTA HA PACCTORNUE AO 1 KM OB'EM: 20X1.75	3	\$ 0,2 ⁴	0.29		. 1	0 2 0.087 3

		**********				****				44
1	1-231	PASPAGOTKA PPYHTA ANR BEPTUKANAHOR TINAHUPOBKU BYNAGOSEPAMU MOWHOCTOD AO SP KBT(80 N.C.) C TEPEMEWEHUEM AO 10 M PPYHT 2 PPYTTNH UEHA: ((44.8X0.85))	0.021 1000MB	34.080	\$6.080 12.767	7 : ************************************		9 ;	18.384	11
7	'1-230 T.4.N.1.11 N.3,48	PASPABOTKA PRYNTA ANR BEPTHKANDHOR NOHANDON BYDAGOSEPAMN MOMEDON AC 59 KBT(80 A.C.) C DEPEMBEMBM AC 10 M PPYHT 1 PPYHIN LEHAI (37,188,085)	0.021 100013	39.403	31.403 10.532	•		1	15,165	
	3 1-237 T.4.M.1.11	AOBABARTS HA KAWAHE MOCAEAYMUHE 10m mph mepememehnin pyhtä Byasaosepami k pacuehke n 230 Uehai ((30,47x3))	0.021 8M0001	91.410	91.410 30.480	2		1	43.891	1
•	1-1128	ПЛАНИРОВКА ПЛОЩАДЕЯ, ВЕРХА И ОТКОСОВ ЗЕМЛЯНЫХ СООРУЖЕНИЯ МЕХАНИЗИРОВАНИЫМ СПОСОБОМ ГРУИТ 1 ГРУППЫ	1.350 100M2	0.300	0.300 0.090				0.130	
10	1-1205	MOCER MHOГОЛЕТНИХ ТРАВ	1.260 100M2	10,200	9.400 3.586	13	•	12 5	4.418	6
11	CCPCU 41 11.969 AOT	CTOUMOCTS CEMAN TPAB OB'EM: 2,7X1,28	3,45 6 KP	3.210		, 1 1				
1 2	1-1206	MONNE MOCESOS TPAS BOADS	9.280 2M001	13.900 0.730	13.170	18	1	17 2	1.670 2.651	3
13	1-461	БУРЕНИЕ ЯМ БУРИЛЬНО-КРАНОВЫМИ Машинами на автомобиле глубиноя До 2,5м в грунтах 2 группы	0.080 100 WY	223 18,400	204.400 50.800	1 à	9	16	42 73.152	3 6
14	1-441	BYPEHNE AM BYPANDHO-KPAHOBHMU MAWUHAMU HA ABTOMOBUNE CNYBHHOR AO 3.05M B CPYHTAX 2 CPYNTH LEHA: (223)X1.2	0.026 100 WT	267,600 22.080	245.520 60.960	\$		5 1	50.400 87.782	1
	TPOUNE PAS	O761								
15	33-230 C63CU M4-20 M4-74	YCT-KA CBOPHЫX W/B CTOEK BECOM 0.57 B MPOBYPEHHЫE AMЫ C ЗАПОЛНЕНИЕМ ПАЗУХ ЯМ ГРАВИЯНО-ПЕСЧАНОВ СМЕСЬЮ ЦЕНА: ((24.6+(8.65+7.79)XQ.8X 0.5))	0.950 M3	31,176 6,200	18.400 5.700	30	•	17 \$	10.900 7.353	10 7
16	33-229 C6.3CU N.4-20 N.4-74	TO WE BECOM 0.4TH LEHA: ((31.5+(8.65+7.79)x0.8x 0.5))	0.146 M3	38.076 7.920	23.560 7.360	5	1	3	13.900 9.669	. 1
47	33-232	TO ME BECOM O.STM	600	25.276	14.080	40	, P	23	8.050	13

. ,	,							npoac	AMEHNE
1: 2	3	4 1	5 :	6 :	7 :	8 ;	9 :	10 :	11
Ch.3Cu N.4-20 N.4-74	UEHA: ((18.7+(8.65+7.79)X0.8X 0.5))	нз	4.620	4.380		*************	7	5,650	9
18 C63CU MCCK.C6AA NPMA,1 NP-HT 06-08 N.2.82 TEX.4 CTP.11	CTOPMCCTS N/S CTOEK MAPKY YCO4A YCO5A YCO1A M3 RETOHA M-200 OB'EM: 0.95+0.14+1.6 UEHA: ((37.7x1,1-0.82x2+0.8+2.5x 5,25)X1.02)	2.690 M3	54.830	•	1 4 7				
19 6364 TABA,1 D,3	CTEPWHEBAR APMATYPA A-3, AT-6, ATY-6 Ob'em: 0.12+0.018+0.256	0.394	250		9,9				
20 0304 TABA.1 N,6	TPOSOMONHAR APMATYPA 8-1, 8P-1 06'EM: 0.01+0.002+0.015	0.027	321	,	9				
21 C3CU TABA.1 N.13	3AKAAAHWE AETAAN Obiem: 0,045+0.008+0.05	0.103	413		43	,			
22 C3Cu TABA.1 N.18	МЕТАЛЛИЗАЦИЯ ЗАКЛАДНЫХ И АНКЕРНЫХ ДЕТАЛЕВ И ВЫПУСКОВ АРМАТУРЫ ОБ'ЕМ: 0.045+0.008+0.05	0.103 T	178		18				_
23 8411	УСТРОРСТВО ШЕБЕНОЧНОЙ ПОАГОТОВКИ Для фундамента под трансформатор	0.740 M3	0.840 0.450	0.370 0.110	1			0.890 0,142	1
24 CR.3CU N4-45	CTOMMOCTS WEENE AND NOAPOTOBKM M600 OP 20-60MM DB'EM: 0,74x1,15	0.851 M3	9.700		8				•
25 33-249	УСТАНОВКА СТАЛЬНЫХ ОПОР ПОА ОБОРУАОВАНИЕ	0.327 T	38.200 9.420	27.730 8.620	12	3	9 3	16 11.120	5 4
26 CCPCU 4 PA3AEA N,2101	.2 CTOMMOCTP METANNOKOMCTPYKUMA 1	0.327 T	311		102				
27 33-82	OKPACKA CTAMBNЫХ OПOP KPACKOB BT=177	0.327 T	13.660		4	1		2,660	1
28 33-80	TO WE MAKOM ST-577	0.327 T	13,400		4	1		3,390	. 1 3
OFPAHAE	/							,	
29 1-241 NPU M-M¢	OFPANAEHUE TEPPUTOPUU M/CT M3 Mahenea metannyyeckux co cbapkoa Cetkor bucotor 1.9M	0.440 100M	221 32,900	19.400 7.540	97	14	9 3	55,930 9,727	25 4
30 1-241 ПРЦ М-Мф	МОНТАН МЕТАЛЛОКОИСТРУКЦИЯ	0.440 100M	531 72,400	1.400	234	32	1	0.606	54

A	1.11	407- 5-452.87	•	8		· · · · · · · · · · · · · · · · · · ·	· ·	- · •	C# 809	-02
	÷								ПРОД)VMEHNE
1 :	2	*	1 6	1 5 L	4 1	7 1	8 :	*	10,	11,
	1-290 ПРЦ М-МФ	YCTAHOBKA METANNINEEKHX BOPOT & KANKTKON		7 3.050	1.590	28 ()		2	5.185 0.787	
	1-290 ПРЦ М-Мф	MONTAN METANNOKONCTPYKUMA		1 157	0.420	157	21		36.380	30
	1-229 ПРШ М-МФ	YCTPORCTBO METANNINECKOM OPPAMЫ NS CETKN, HATRHYTOM HA CTEPHRN TI M/B CTONBAM	0.14	· · · · · · · · · · · · · · · · · · ·	38,300 13.800	106	- •	. 4	91.800 17.802	1:
3 4	1+229 NPU M-M4	MONTAK METAAAOKONCTPYKUNR	0.14		0.140	•	1		12.002	
-	1-280 ПРЦ М-МФ	METAMMHECKNE CETHATHE BOPOTA C Kammtkor no. W/6 Ctombam biscotor Zm		4 130.711 IT 13.800	5,440 1,440	131	16	. 6	26,860 2.399	2
36	1-280 ПРЦ М-ИФ	MONTAN METAAAOKONCTPYKUNA		4 58.500 19 7.970	0.150 6.050	5♥			13,549	1
			MIOLO L	TO PASAENY		1639	125	150		 1 5
	HAKAAAHHE	E РАСХОДЫ 16.5% СЗП С К≡0.180 ′ 1=24.27=29.31,33.35	CHYMU	20%) HT C Ka	10,092	1.48	26 40)	-		
	HAKAAAHHE		(MYUN 69,	.00%) HT C K	20.092	49 (.1622	9 31) 160 366)	150 42	-	29
	ПЛАНОВЫЕ ПО П.П. 1	НАКОПЛЕНИЯ 8.00% (НУЧП 44.00%	:>	-	•	.130	929)	·	,	
			SCELO I	TO PASAEAY	1	1752	140	150		29
	C B O A	RKA SATPAT:					,			•
	CTPONTEN	HHE PABOTH				1752	125 447)	150 42		29
,	B T.4. NA	АКЛАДНЫЕ РАСХОЛЫ				199	34	76		• •
	n/	RNHSKNOZAM SHBOHAF				130	121)			

AAII	407-3-	452.87				9					cd	809-08
				,,								"NPOAONWEHNE
1 2		3	1 4		5	:		7	8	9 ;	10	3 (1)
8cero r	O CHETE:	CMETHAN CTONMOCTS			,			1752	125	150		
	".	нормативная условно-нистая	- TPOAYKU	INA .	•			-	467	42		
		HOPMATHBHAR TPYADEMKOCTH CMETHAR SAPABOTHAR MAATA	,		•				201			29
	,	NCXOANHE			a-	M.H.CE/183H	FRA					
		***		R		E.M.WAPOHO						
		перфорация:		Cic	ire	M.H.COBOAE	* -					

MHOP

ТРАЙС-ОРМАТОРНАЙ ПОДСТАЙЦИЯ НАПРИЖЕНИЕМ 35/0-4CO.475КВ С БАНИЙ ТРАНС-ОРМАТОРО! МОЦНОСТЫВ 400КВА АЛЯ ЭЛЕКТРОСНАВИЕНИЯ Н.С. НА ЗАКРЫТОЯ ФРОСИТЕЛЬНОЙ СЕТИ

PREKTPOTEXHAMECKAR MACTO T.M. HOWHOCTOM GOOKBA

		•			,				~			,						4 44.			
	00		SEA. OSSEM. PA	607 N36-1					-	CM	RANES	TONNO	etb	-			4.06		. 770 .		÷
	E	<i>`</i> .	8 LEHAX 1984 F	, , , , , , , , , , , , , , , , , , ,	•						PHATHS!			0-		•	0.24	THE	"Рув.	· ·	· ;
٠,			NO CHETE:	*		,			,	#0	PHATHE	MAR TP	YACE	WKQ.C.	TÞ		0.20	THE	,4EA	4.	
′ . ·		COMMOCTS 1		10.14	Pys.						ETHAR :		THAR	ANN	TA		0.13	THE	,PyB,	,	4.
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , "														****	*****	-	
· N	:	WN◆P	•		•			:	OHMOETA								****	* 1	aqtae Npoga q	X. 4	€A.=4,
Ń	-	NUMBER N	HAHM	E H O B A H	W E	1	~~~		ecero		MNH	.				: M	K CMA.	-	****		
n,		НОРМАТИВА -	PABOT	и з А	TPAT				PRATH				FO.	•	naath :	: 8	T.4.			-;	BCELO' WYMNAP
1	:	2		3	*******		4	:	\$:	•	: 7	,	:	8	:	9	:	10	:	11
	1	8-1-2	TPAHCOOPMATOP Moun.KB.A:400		3548,	,	# 1	! !	29.800 12.900		8.430 3.040		.21	}	1	3		9	5 , 5	7	51
	_	NP-HT 15-05 N,1039	TPAHCOPMATOP ABYXOBMOTO4HH y1 Macca: 2.7 T			;5	. W 1		`2340)			234(-	, .	•		•	•
		ПР-НҮ. 15-03 П.4038	PA3PMAHNKN 8E Ty16-521,264- MACCA: 0.073	79	96-35		, , <u>,</u> ,	3	`\$4	,	م د د د د د د د د د د د د د د د د د د د		96	i	• •			. ′	-		, , ,
, A	•	ПР-ИТ 15-03 П.11040	PETHETPATOPU TX16-534.013- MACCA: 0,0017	74					9.900	• '			2	рн					·		
	5	8-15-1	РАЗРЯАНИК ВЕН Напряжение, и		AZW/,	-	комп	9	10.200		9.650		10			6	,	• • • • • • • • • • • • • • • • • • • •	4.36	0	10
	•	8-16-1	TPEADXPANNTE/	ib. Handaue	HHE 35K	• * ^		_	8.200	-	. 0 . 230			7 (3)		* 3		,1) 2:		2	.g. 7 a ≰ 1
		ПР-ИТ 15-03 П.11002	MATCHA A. OAS						1.30				20	•						· · · · · · · · · · · · · · · · · · ·	
•		B-17-8	HEOMRTOP ONG			-		5 <i>2</i> 7	0.941 0.941	0 `	0.720					•		2	*	8	
	-	15≈10=2 ∏,4060	THE	1000	KUMEM 32	R S	u	T	(, 1)	•		~	,	•		•				* .	

AA iji 4	107-3-452 87		1	4				D + 809	- 02
		,						продо	Элитии
1 4 - 2	* 3	6 ;	* }	# 1	7 :	& 2	• {	10 1	11
15-10-2	NIONNTOP WIDENCETEPHNEUGA. OHCY-40-1000XT1 MACCA: Q.D.B.A.T	J.	19,100		No. 170 September 1				
	ИЗОЛЯТОР ОПОРНЫЯ, НАПРЯЖЕНИЕ, КВ. АО 10 С КОЛУБЕСТВОМ ТОБЕК КОПЛЕНИЯ 20	W1	0.770	0.040			- 4	0.026	
12 NP-HT 19-10-2 11,4047	MSCANTOP ONOPHO-WTWPEBON ONW-10-50071 MACCA: 0.0041 T		2.450						
13_4=52-5	ИЗОЛЯТОР ПРОХОДНОЯ С ОВДЛЬНЫМ ИЛИ ВЗДРАТИЫМ ФЛИЦЕМ ИППРИМЕНИЕ КВ АО 10	WT.	0.450	0.020				0.013	As to
14 TP-HT 7 15-10-2 11,3021	ADMOXOGU GOTANOEN FRYQGE-CESSEL FR MACGE: 0.00355		4.700		196				
15 8-11-2	ТРЕХПОЛОСНЫЯ РАЗЬЕДИНИТЕЛЬ НАПРИВИВИТЕЛЬ НАПРИВИТЕЛЬ НАПРИВИТЕЛЬ НАПРИВИТЕЛЬ НАПРИВИТЕЛЬ НАПРИВИТЕЛЬ Напривини Наприви Напривини Наприв	KONUN	32 14.300	5.100	38	15	3	2.232	24
16 NP-HT 15+03 N.3101	PASAEANTEAS PHA3-2-35/100071 Ty14-520.102-79 Hacca: 0,104 T	3000m	•0		270		t. .a.	ŕ	
17 8-594-1	СВЕТИЛЬНИКИ ДЛЯ ЛАМП НАКАЛИВАМИЯ УСТАНАВЛИВАЕМЫЕ НА КРОИШТЕВМАХ ВНУТРЕННЕГО ИЛИ МАРУЖНОГО ОСВЕЩЕНИЯ	0.020 TW001	278 57.600	38.400		1	1	103 23.478	*
18 (19-HT 15-07 Na 160	CBETMALHUK CHO-200-1,2,371 UEHA: (1,9X1,082) MACCA: 0,0022 T	2 WT	2.056	, ,	*				
† ∳ ∧&u591#3	BUKNOWATERS WEEKNA NONYEEPMETNWEEKNA N-	0.0%\$ ` 100WT	38.400	0.000	t war an			48, 0.077	"9 ,
20 CCPCU 4. Pašážá 4 D,87	S. BMKNOMATENS LESMEINNECKNA,	4	0.940	· • •	,	, ,			
21 4-534-1	КОРОВКА КЛЕММНАЯ НА КОНСТРУКЦИИ НА СТЕНЕ ЯДИ КОЛОИНЕ ДЛЯ КАВЕЛЯ СЕЧЕНИЕМ ДОЗТОММЕ С КОЛИМЕЙСТВОМ ЗАШИМОВ ДО Й	**************************************	2.720 \$.720 2.6 2.5	0.070 0,070	•	t		8 6:38:13 1	4
22 DP-HT 24-65 D.1352	KOPOBKY KMEMMHWE KK-16 Y4,2 UEHA: (4.70K1.073) Magca: 0.00487 Y	**	1.043	í	10				
23 6-75-1	ШЙНА ÖTBETBHTEЛЬWAN, ÖAKA MÖЛÖCA В ФАЗЕ, МЕДНАЯ ИЛИ АЛЮМИНИЕВАЯ, СЕ4ЕНИЕ, ММ2, Д0:230	0.120 100#	***.700 29.700		10 -	•	•	1.148	•
	,5 шины алюминиевые прямоугольного 2 сечения ширинов во Толшинов в и б	0.00	1200	•	10	-			

AN III 40	17 - 3 - 452 . 87	•		de	<u> 2</u>				C 4 8 D	9-02
,	ate.									Danehhe
7 . 2	**************************************	**************************************	4 1	*****		**************************************		****	10 ~ :	11 -
25 8-368-4	TOABECKA TPOBOAA CTAMEAMMMHHHHOPO AC-70		0.040 KM	27.800 6.390	12.600 3.920	1 '		1	11 5.057	
26 15-09 CTP.9	CTOMMOCTS TPOSOAA ACHFO LEHA: (212X1:116)		0.040 KM	236.592		•			,	ŕ
27 8-169-5	ПРИСОЕДИНЕНИЕ ЖИЛ ПРОВОДОВ КАБЕЛЕР СЕЧЕНИЕ ДО:70ММ2	N	0.246 100#T	24.400 13.600		6	3,		22	5
.28 8-148-9	ПРОК ⁾ ЛАДКА КАБЕЛЯ СИЛОВОГО И Контрельного до 1кг по гото Конструкциям		0.650 100M	20.600 8,620	0.480	. 13	•		45 0.245	10
29 8-141-1	КАБЕЛЬ АО 33КВ, В ГОТОВЫХ Траншеях без покрытия, масс Кг, ао:3	CA 1M,	0.100 100M	12.500	0.23.0	1	1		10 1.148	1
30 8-153-5	ЗАДЕЛКА КАБЕЛЯ С ВУМАЖНОЯ И РЕЗИНОВОЯ ИЗОЛЯЦИЕЯ, НАПРЯИ КВ, ДО:1 СЕЧЕНИЕ ДО 16ММ2		10 WT	3.550 °		36	11		2	80
31 8-471-3	ЗАЗЕМЛИТЕЛЬ ВЕРТИКАЛЬНЫЯ ИЗ КРУГЛОВ СТАЛИ ДИАМЕТР 12MM	3	0.800 10WT	10 3.100	0.400	8			6 0,129	,
32 8-472-2	SASEMANTEAL CONSONTAALHHR Toaccoon Ctaan Cevenne 160		0.590 100M	27 6.800	0.900	16	4	1	12 0,129	7
33 1-960	РАЗРАБОТКА ГРУНТА ВРУЧНУЮ І Траншеях глубинов до 2м бе: Крепленив с откосами и коп Глубинов до1,5м грунт 2 гі	S Ahue am	0.090 100M3	74.500 74.500		7	7	į	154	14
34 1-968	ЗАСЫПКА ВРУ4НУЮ ТРАНШЕЯ ПА: Котлованов и ям грунт 2 гр:		0.090 100M3	46 46		4	4	-	99.300	9
/35:8+472-7	MPOKAAAKA DOAOCH EBBSH BOX	HMS NO	0.210 100M	64.200	1.800	7. 13. 14. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15	, , , , ,3 , ,	*	24 .0.258	5
36 ПР-НТ 15-03 П.11050	БЛСК-ЗАМОК МЕХАНИ4ЕСКИЯ МЕ ТУЗ4-1411-75 МАССА: 0.0004 Т	ьг	2 T W	1.600		3	,			
37 8-86-1	TO WE MONTAW	*	, ΨT _	1,570	0.010	3 , 3 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ,	2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
38, 45-17 111-116	TO WE CTOMMOCTS			10.000	0.590	10			0.764	304 90 %
40 CCPCU 4.5 PA3AEA(3: 0.284	ODSKOSST RNHABNARARH ADMAN		0.200 10#T	1.440	•					
41 CCPCU 4.5 PASAEN 1	ЖИЛАМИ С ПОЛИВИНИЛХЛОРИДНО:		0.030 1000M	195		6				

AA. W	407- 3- 452. 87			**************************************	***			C& BD9-02
A/I · @	401-5-402.61		•	13	- *s		*	th on. or
			****		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			продолжение
2		1 4 1	•			1	• •	
	CENENNEN MMS: 4X5.8		, , ,					
Z-€C#CU 4.5 Paraen 1 П.,1196	KARENDABBO GEH. 2X2.5MM2	0.048 KM	179	*	•		•	
BKERĄ YATA	GATHERN RUHGAWONOBUTOGN & RICHHONL	b .		,				
3 TP-HT 15-03 T1, 11037	WTANTA MSOMMPHOMAN WP-SS Macca: 0,002 T	1 # T	10	r-	10			-
4 NP064 N1266	BOTH APPAEKTPHHECKHE	3 NAPA	•	٠	27			
15 29-03-19 114-051	SASEMARHUE NEPEHOCHOE 35KB	S TW	14.400	'	2♦			,
6 05-18	MAKATH NO TEXHUKE BESONACHOCTU	K-T	2	ı	8			,
7 29-03-19 N4-050	SASEMMEHNE REPENOCHOE AO 1KB	2 T W	9.900		20			<
		NTOPO NO F	PASAENY	1	3615	102 135)	33 11	181
HAKNAAHHE		CHA44 502	K) HT C	K=0.092	Š	2)		, •
HAKAAAHHE		T C K=0.180 32,35,37+38 HTOFO	HT C	K=0.0 + 2	/∳ { 3444	14 40) 116	33	7 201
	НАКОПЛЕНИЯ 8.00% (НУЧП 44.00% 1,5-6,8,11,13,15,17-35,37-38,40-42	p		í	\$ 30 {	177) 5 9)	11	
		ecero no	PASAENY			176 176	33 11	MARKET TO SELECTION AND SECURITY OF
CBO	AKA SATPAT:	,						,
CTPONTER	SHUE PABOTH			_	14	15 16)	- · · · · · · · · · · · · · · · · · · ·	7 23
* a teu. H	AKAAAHME PACXOAM		-	- * *			 -	
The carried	Винэкпохан зивоиль	, ,	tage of the	1. L. 1. 9. 2. 1.	- 1,300		et i i god	
HONTANHA	IE PASOTH	1 1 1	Ne s	· · · · · · · · · · · · · · · · · · ·	1	A.	33	The Art of the Contract of
, 8 T.4. 1	NAKAANA PACKOAN	7	14	, , , , , ,		1		Berger of Company
r	ЗЛАНОВЫЕ НАКОПЛЕНИЯ	,		i n î	29	, ; (40)	•	•
050PYA01	BAHNE			•	3326	. 55)		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
NTOPO OF	BOPYAOBAHUR C TPANCMOPTHЫMU Mu satpatamu 9.9 %				3655			

AA.III 407 - 3 - 452. 87 C# 809-02 / **TPOADAMENHE** BCETO TO CHETE: CHETHAR CTOMMOCTS 102 33 · 40,55 HOPMATHBHAR YCHOSHO-HHCTAR ПРОДУКЦИЯ - 237 HOPMATHBHAR TPYROEMKOCTS 201 CHETHAR SAPABOTHAR TIMATA 127 P.H.CHAOPOBA NCXOAHNE P.T.CAKAEEBA T.S. SOPOHHHA **MEPOPALINA:**

AN IÑ 407-3	3 - 452, 87	1		-	15		•				i	C
	ı			•	<u>.</u>		-».		,		-	1
MĒTĀ Š~C ymm e	.	WC. PYS.	*			- I	,	CME	TA B CYMME,		J.	тыс.Руб.
OFAACOBAHA	i	-	•			,		YIN	PWAENA		•	•
ОАРЯАЧИК									ISHNK			
* 10	9 °,	•						•	•	19 F		
^	•		0 6 b E #		C M	E T A N	2			,,,,,	•	
A CTPONTEMBETBO 1 MEHNR H.C. HA 3A1	ТРАСФОРМАТОРНОЯ П КРЫТОЯ ОРОСИТЕЛЬН	IOACTANUNH H	IAMPAWEHNEM	3\$/0,4(6.	69) KB	MNHAG 3	TPAHCOOP	MA TOPO	MOWNOCTEN	430 KB	NG RNA A	IEKTPOCHA
CMETHAN CTOMMOC HODMATHBHAN YEA HOPMATHBHAN TPY CMETHAN SAPABOT	NOBHO-HNCTAR MPOA Vaoemkoctb	6,62 17*44# 0,71 0,49 0,33	THE.PYB.	-4 .	÷	,						
СОСТАВЛЕНА В ЦЕ	EHAX 1984.								•			
. N				: CME	THAR C	TONMOCTS.	THE. PY	b.	HI CAMPONE TE RANGNTE	OPMA- :	CHETHAR:	NOKA3A-
N : CMET .TI: # ! PACHETOB	: HAµME : PA60T	Е Н О В А Н И З А Т		ITENHHHX:	TAXHUX	1 050PY-1	MPO-:		:YCNOBHO:T :-WCTAR:E :TPOAYK-:T	PYAO+ :	RAHTOO Catann	:TEANHAY- :EANHAY- :HOR :CTONMO-
:	:			: :		: W WH- : :BEHTAP#:	PA7 :			EA4.:	1	CTN Pyb.
1: 2		3		: 4 :	5	1 6 :	7 :		1 9 1	10 ;	11	12
1 1-1	ОВЩЕСТРОИТЕЛЬНЫЕ	E PABOTH		1.75		•	•	1.75	0.47	0.29	0.20	2.78
2 2-1	9/1EKTPOTEXHM4ECI TPAHC⊕OPMATOPHOI KBA		и моми. 630	0,01	0.41	4,45	-	4,8	0.24	0.20	0.13	7.73
•	~	ntoro:	****	**************************************			- 			0.49	0.33	
					•••					•••	V.33	-
			HNN NHWEHEP				A.H.58/					
			INDUNE OTAEN	A	∕ 1.4	,	• . R , 48A		v			
			TARKS		CL		P, N, CHA		-	•	2	-
		n 701)epha		ad	T'ans	P.T.CAK	veedy.		-		,
				, ,	,						_	_
				, -			~		•		•	
						•						

#1.IT

设计中户

TPANCOPHATOPHAR MOACTANUM HAMPRWEHMEN 35/8-A-2-693-8 C DANNM TPANCOPMATOPOM MOUNOCTON 630-88 ANR SAEKTPOCHABHENNR N.C. HA BAKPNTON SPOCNTENONG CETY

TOKATOHAN CHETA NEWS

электротехническая часть т.п. Ноширстыю базоква

OCHOBANNE: BEADM. OBBEMOB PABOT N36-1

COCTABRENA B LIENAX 1984 F.

TOKABATERN TO CHETE:

KORNYECTBO -630 KBA

CTOUMOCTB 148A 7.73 Py8.

CHETHAR GTOMMOCTB 4.87 TMC,Py6.

CHETHAR GTOMMOCTB 4.87 TMC,Py6.

N	: ₩₩ ◆ ₽	:	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	:CTOMMOCTE	EA., PYB.:	RAMO	#TONMOCTS	. Py6.	;	SATPATH	
,	: N UOSNANN : N			. BCETO	: SKCNA. :		: OCHOBHOR	: 9KCDA	: HE	PABOHNX, BAHRT, 06	СЛ.МАШИН
	: :Hopmatuba :	PABOT N SAPPAT :		HOHEOMON HEAPTIAN HOMEOMON HOMON HOMEOMON HOMEOMON HOMEOMON HOMEOMON HOMEOMON HOMEOMON HOMEOM	: B T.4. 1 : 3APN/ATM :	BEELD	: UTANNGAE:	1-4	-:06 :	CUAMM BYOR	. MAMMHM
1		: 3	; 4	: 5	: 6 ;	7	1 8	· •		10 :	11
1	8-1-3	TPAHCOGPMATOP TPEXOASHNA 35KB, MOWH.KB.A:630	1 U ?			24	14	•	 0 3	23 4.360	23
5	ПР-НТ 15-05 П.1040	TPAHCOOPMATOP TPEXOA3HWA ABYXOGMOTO4HWAMAC/19HWA TM-630/35 Y1 MACCA: 3,5 T	؟ 7 س	3050		3050		·			
3	ПР-НТ 15-03 П.4038	РАЗРЯДНИКИ ВЕНТИЛЬНЫЕ РВС-35 Ту16-521,264-79 Масса: 0,073 Т	2 U 1	_	•	162					
	ΠΡ-HT 15-03 Π,11040	PECHCTPATOPH CPASATHBAHNS PP+Y1 Ty16=534,013+74 MACCA: 0,0017 T	2 1 1 1	9.500		⁷ 2 9	•	,	•	i t	, ,
5	8-15-1	РАЗРЯДНИК ВЕНТИЛЬНЫЯ/З ФАЗЫ/. Напряжение, когзя	KOMI			19	•		9	10	10 4
6	8-14-1	ПРЕДОХРАНИТЕЛЬ, НАПРЯЩЕНИЕ ВЗКВ	3 W1	2.200 - 1.300	0.070	. 7	,	•	1	2 0,0 7 0	•
7	<u>МР</u> #НТ 19#03 П,11002	MACCA: 0.005 T	; ************************************			201			, ^ ,	· 1	
*	8-17-8	ИЗОЛЯТОР ОПОРИМЫ НАПРЯЖЕНИЕ КВ 35	. d			1 4	• • •	•	4 2	2 0.348	- *12 2
	ПР-НТ 15-10-2 П.4060	ИЗОЛЯТОР ОПОРНЫЯ НАПРЯЖЕНИЕМ 3548 ТИПА ИОС-35-1000 МАССА: 0,0344 Т	: 1 1 1		•	54	•	,		,	•

AA III	407 - 3 - 452.87	,	1	7		ş 		C.P	609 - 0 2
, , , , , , , , , , , , , , , , , , ,		,	****	*				neoan	OAMEHAE
1 1 2	3	4 3	5 1	•	7 1	8 ;	9 ;	10 ;	11
10 // // // // // // // // // // // // //	MSOMBTOP OROPHO-CTEPHHESOS OHCY-40-1000YT1 MACCA: D.D39 T	- 3	19.100	,	-57			1	
11 8-52-4	ИЗОЛЯТОР ОПОРНЫЯ, НАПРЯЩЕНИЕ, КВ, ДО 10 С КОЛИЧЕСТВОМ ТОЧЕК КРЕПЛЕНИЯ 20	<u>.</u> ЩТ	0.770 0.450	0.060 0.020	3	2	·	0.026	4
12 ПР-НТ 15-10-2 П.4047	NSOMRTOP ONOPHO-WTWPESOR OMW-10-50071 Macca: 0.0041 T	#T	2.950		12				
13 8-52-5	ИЗОЛЯТОР ПРОХОДНОЯ С ОВДИБНИМ ИЛИ КВАДРАПИИ ФЛАНДЕМ НАПРЯЖЕНИЕ «В	4 # T	0.450 0.530	0.020	3	8 .		0.013	4
14 ПР-НТ 15-10-2 13022	ИЗОЛЯТОР ПРОХОДНОЯ ИП-10/1000-750УХЛ1 МАССА: 0,014 Т	4 W T	8.600	,	34				
15 8-11-2	ТРЕХПОЛЮСНЫЯ РАЗЬЕДИНИТЕЛЬ НАПРЯЖЕНИЕМ 35КВ НА ТОК 100GA С ОДНИМ ИЛИ ДВУМЯ ЗАЗЕМЛЯЮЩИМИ НОЖАМИ	4 ************************************	32 14.500	5.100 1.730	35	15	3	24 2.232	24 2
16 NP-HT 15-03 N.3101	PASAEAUTEAD PHA3-2-35/100091 Ty16-520,102-79 Hacca: 0,104 T	novec 2	•0		270				
17 8-594-1	СВЕТИЛЬНИКИ ДЛЯ ЛАМП НАКАЛИВАНИЯ УСТАНАВЛИВАЕМЫЕ НА КРОНШТЕЖНАХ ВНУТРЕННЕГО ИЛИ НАРУЖНОГО ОСВЕЩЕНИЯ	0.020 100UT	278 \$7,600	\$8.400 18.200	•	1	1	103 23.478	2
18 NP-HT 15-07 N,4004	СВЕТИЛЬНИК СПО-200-1.2,371 Цена: (1.9x1.082) Масса: 0,0022 т	2 WT	8.056		4	J			
19 8-591-3	BUKANYATEAD PEPMETHYECKUR K Roaypepmethyeckur	0.010 100#T	49.800 38,490	1.100	ŀ		÷ . •	68 6.077	.*, 1
20 CCPCU 4.5 PASAEA 4 N.87	BUKNOMATEND LEDMETNAECKNU	# WT	0.960		†				
21 8-534-1	КОРОБКА КЛЕММНАЯ НА КОНСТРУКЦИИ НА СТЕНЕ ИЛИ КОЛОННЕ АЛЯ КАБЕЛЯ СЕ4ЕНИЕМ АО:10ММ2 С КОЛИЧЕСТВОМ ЗАЖИМОВ АО З	\$ 7 W	2.720	6.676 6.610	\$			0.013	
22 NP-KT 24-05 N.1352	КОРОБКИ КИЕММНЫЕ КК-16 У4,2 . цена: (4.7011.073) масса: 0,70687 т	# T	\$.043		10	/		. "	
23 8-75-1	WHA OTBETBYTENDHAR, DANA MOMOCA B GAZE, MEAHAR MAN AMOMMHUEBAR, CE4EHNE, MM2, AD:250	0.830 1004	24.700 29.700	6,800 0,890	3	•	~	1,148	•
24 8-75-3	AJORON AHAD, RANGRETHETHE ATOM AHUM RAGENHUMMORA HAN RAHABM,	0.090 100M	152 42.800	12.300	14	•	1	69 2.258	•

-					********			npoan	DUKEHNE
1	: 2	3 1	4 :	\$	6 '1	7 1	\$ 1.	• 1 10 1	11
		CELENNE, HMZ. ADIPOD							- -
ŞS	CCPCU 4.5 PARAEA 2 N.560	шины Алюминиевые прямоугольного Сечения ширинов зо тольинов з и 4 мм	5.002 °	1200	,	\$.			
26	CCPCU 4.5 PASAEN 2 N.563	шины Алюминиевые прямоугольного Сечения толщиноя в и 10 мм	0.012 T	1150	-	14			
27	8-368-4	ПОАВЕСКА ПРОВОДА СТАЛЕАЛЮМИМЕВОГО АС-70	0.040 KM	27.800	12.400 3.920	1	ŧ	11 5.057	
28	15-09 CTP9	CTOMMOCTS NPOBOGA AC-TO LEHA: (212X1.114)	9.049 KM	236.592		9			
29	8-169-5	ПРИСОЕДИНЕНИЕ ЖИЛ ПРОВОДОВ И Кабелей сечение мо:70мм3	0.240 100#T	24.400		•	3	22	5
30	8-148-9	ПРОКЛАДКА КАБЕЛЯ СИЛОВОГО И Контрольного до 1кг по готовым Конструкциям	0.430 100M	20,400	0.480 0.190	13	•	15 0.245	10
31	8-141-1	КАБЕЛЬ АО 35КВ, В ГОТОВЫХ Траншеях без покрытия, массю 1м, кг, до:3	0.100 100m	12.300	2.230	1	1	10 1,148	. 1
32	8-153-5	ЗАЛЕЛКА КАБЕЛЯ С БУМАЖНОЯ ИЛИ Резиновой изоляцией, напряжением, кв. до:1 сечение до 16мм2	10 WT	3.550 1.080		3∳	11 -	2	\$0
33	8-471-3	3A3EMNYTENЬ ВЕРТИКАЛЬНЫЯ ИЗ Круглор стали диаметр 12мм	0.800 10mt	10 3.100	0.400	8	\$	6 0,129	5
34	8-472-2	3A3EMNYTENS COPH3OHTANSHWW M3 Nonocobom ctanh ce4ehme 160mm2	0.590 100M	27 4.800	0.900	14	4	1 12 0,129	7
35	1-960	РАЗРАБОТКА ГРУНТА ВРУЧНУЮ В ТРАНШЕЯХ ГЛУБИНОЯ АО 2M БЕЗ КРЕПЛЕНИЯ С ОТКОСАМИ И КОПАНИЕ ЯМ ГЛУБИНОЯ АО1.5M, ГРУНТ 2 ГРУППЫ	0.090 2000	74.500 74.500		7	**	154	14
36	1=968	ЗАСЫПКА ВРУАНУЮ ТРАНШЕЯ ПАЗУХ Котлованов и Ям грунт 2 группы	0.080 100Mg	66 66		6	6	99.300	8
37	8-472-7	ПРОКЛАДКА ПОЛОСЫ СВЯЗИ ЗОХ4ММ2 ПО Ж/Б КОНСТРУКЦИЯМ	0.210 100m	64.200 13.400	1.800	. 13	3	24 0.258	\$
-	ПР-ИТ 15-03 П.11030	БЛОК-ЗАМОК МЕХАНИЧЕСКИЯ МБГ ТУЗ4-1411-73 МАССА: 0.0004 Т	4 7	1.600		3			
39	8 -\$6-1 -	TORE MONTAN	\$. TW:	1.570	0.010	* · · · · · · · · · · · · · · · · · · ·	3. 3. 2		
40	8-571-3	YCTAHOBKA ЯЩИКА METAЛЛИЧЕСКОГО PABAPUTOM 750X900×2000MM MT1	0.900 N	10.600	1.520	1.0		1 8 ´1 0.761	7
41	15-17 N1-116	тоже стоимость	и т 4	85		85			

1	4A 2 -	107 - 3 - 452 87			-	19	•	t		C\$ 809 - 02	
,			-					, ,			
··							·			ПРОДОЛЖЕНИЕ	
1	·	; ,	***	* 4 4	.	* * * * 6		8 :		10 10% 11	
42	PASAEN 3 n.284	PHER HARACHER	r220X200	0.200 10.00	1:440						
- 43	PA3AEA 1 D,2280	KAEENY KONTPONENSE NUNUBUNCO S NMANUE PONOBO V EBUURNOEN NNW MONOU V PORBNA NEW MENUBURS 1,545,544	EXPANDONAL KOA, MAPKH	и 0.036 1000M	195		* . 6		•		
44	CCPCU 415 PASAEN 1	KAREND ABBT CEN 2X		0.04 5 Km	179		8		,		
	n,1196		t egt	1	• • • •						
	SKCHNYATAU	ионныя и противолож	АРНЫЯ ИНВЕНТАРЬ	b		ei e	. `		,		
45	ПР-НТ 15-03 П.11037	MACCA: 0,002 T	WP-35	. 4 ⊎₹	10		, 1 <u>0</u>	,	-		-
46	ПР064 П1266	BOTH ANDNEKTPHYECK	ME	3 MAPA	9		27	٠,	,		
47	29-03-19 74-051	ЗАЗЕМЛЕНИЕ ПЕРЕНОС	HOE 35KB	2 TW	14.600	· ·	29	÷		-	
48	05-18	MAKATH NO TEXHAKE	BESONACHOCTH .	4 K-T	5	-				-	
49	29-03-19 N4-050	SASEMMENUE MEPENOC	HOE AO 1KB	2 7 W	9.900		20			•	
				MTOLO UO	PASAENY	1	4355	104	34 11	183	
	HAKAAAHHE	РАСХОДЫ 16.5% C3	IN C K=0.180	(4747) 20	X) HT C	K=0.092	2			÷ ,	٠,
	. ПО∙П.П. 35 НаКЛАДНЫЕ ПС П.П. 1.	РАСХОДЫ НА МОНТАЖНЬ 5-6,8,11,13,15,17,1	IE PABOTH C31	N C K∗0.180	HT C	K=0.092	81 (4418	15 41) 119	3 4	7 203	
	ПЛАНОВЫЕ Н По П.П. 1,	НАКОПЛЕНИЯ 8.00% ,5-6,8,11,13,15,17-	(HY4N 44.00% 37,39-40,42-44			,	(11 (181)	11		
			,		PASAENY		4469	119	34	503	-
	*	KA SATPATI									
•	CTPONTERS	NHE PABOTH		n / 1 m m	2 000		16	11		5.2	-
	B T.y. HA	KAAAHHE PACXOAH			* * * * * * * * * * * * * * * * * * *					· · · · · · · · · · · · · · · · · · ·	
	· n/	AHOBHE HAKONMEHHR	- 1	•	-	-	· · · ·	2)	-		
	MONTANHUE					•	404	5) 93	34	181	

EMETA & CYMME YTOEPHAENA COPMACOSANA TIGAPRAVER 10 F. NA CTPONTENSCIBO TPANCOOPMATOPHOR TOACTANLINN NATIFREENNEM 35/0.4(0.44) KS COANN TPANCOOPMATOPON MOUNCEISO 1000KBA ARR BREKTPOCHA BRENDS M.C. MA BAKPHTOR, OPDERTERNOR CETH CHETHAR CTOMMOCTS . THE . PYS . HOPMATHEMAR YCADBHO-HICTAR MPDAYKUME THE.PYS. 0.59 0.39 HOPMATHSHAR TPYADEMKOCTH THE. YEA. - W. CHETHAR BAPABOTHAR MATA THE . PYS . COCTABRENA B LENAX 1984. CMETHAR CTONMOCTS, THE. PYS. :HOPMA- :HOPMA- :CMETHAR: TOKASA-Incommonweashane and a stank CMET : CTPON=: MOH- : 060Py-: NPO- : SYCHOBHOSTPYAGE IBOTHAR SEANHING N : ATMIT ATMITT OTO HE TOUR C THE TRUE OF THE n.n: PACHETOS : PABOT :PABOT :MEBEAM : 3ATT : INPOATE THE . ITHE . PYSICTONNO-ILINA IMEN.-4. : H MM- : PAT : :CTF : : . ITMC . PYS: :PY6. :BEHTAPR: : 4 : 5 : 4 : 7 : 4 2.17 1 3-1 OBMECTPORTERNHE PASOTH 2,17 0.24 2 3-2 6.02 BAEKTPOTEXHNHECKAR HACTL 0.13 TPAHCODPHATOPHOR MOGETANLING MOGH. 1000 KBA

2.19

0.44

PARHUR MHKEHEP MPOEKTA

начальник отаела

COSTABUA

HTOFO:

MPOBEPHA .

A.H.BEARKOB

SOMARN. T.

-

TRANCOPRATOPHER FIOACTANUME HAMPREEMEN 95/0.40.67748 C DANM TRANCOPMETOPON 1000 M 1600 KBA 4AAR DAEKTROCHARWENNE NACOCHUK CTANUME MA BAKPUTON OPOCHTENDON CETH

ABKAABHAA CHETA HE-1

PARECTPONTERBNUE PASOTH

					,						
	OCHOBANNE:	8840H0C16 34-3			ENETHAR :	CTGHMOCTS		2,17	THE	, Py6 ,	
	COCTABABNA	8 WEHAY 1984 F.			HOPMATHS!	ная условно- Ролукция		0,54	THE	.,>уъ.	
	MOKASATEAN KOANPECTBO	NO CHETE:			HOPMATHS	HAR TPYADENKOC	76 ,	0,35	THE	.4EA4.	
٠	CTONMOCTE	1 48 4 2.17 ₽y6.			CHETHAR!	SAPASOTHAR MAA	74	- 0,24	THE	. 276 .	
	: ###P	*	:	I CTOMMOCTA	EA., PYS.	I DEMAG OTO		, Py6.			TPYAA
-	IN TOSHUNN	T HAUME'NOBANE		1		•		: SKCDV.	: # 6	G, TRHAE	HNWAM, N3&
n/	M:HOPMATH S A	1	INSMEDENNA INSMEDENNA	IOENGBHOR IBAPRIATH I	: 8 T. 4.	: BCETO :	HTANN	: MAWPH : : 8 T.W. :BAPNATH	-:06	CAMMBAN	£. MAWAHH
1	: 2					; ;					11
	JEMARHUE F	Работы	•						~~~		~ ~ ~ ~ ~ ~ ~ ~ ~
	1 1-230 T.W.M1.11	CPESKA PACTUTENHOPO PPYHTA TONK 30CM GYNHAOSEPON SPKBT C NEPEMENEHUEM AO 10M	0.041 1000#3		37,180 12,390	2			2 1	17,842	1
•	2 1-237 T,4N1.11	AOBABARTO HA KAWANE MOCAEAYRUME 10m mph mepemenehnni mpyhta Byadaosepany k pachenke h 230 Leha: ((30.47x3))	0.041 1000M3	,	30,480	4.		,	4	43,891	2
, ve	1-184 T.4.m1.11	РАЎРАБОТКА ГРУНТА В КАРБЕРЕ АЛЯ ВЕРТИКАЛЬНОЯ ПЛАНИРОВКИ ЭКСКАВАТЭРАНИ С КОВШОМ ВМЕСТИМОСТЬЮ 0,25M3 НА ГУСЕНИЧНОМ ХОДУ С ПОГРУЗКОВ НА АВТОМОБИЛИ~САМОСВАЛЫ ГРУНТ 2 ГРУППЫ	0.020 EM000f	200.420 11.900	188.520 67.760				•	24.200 97.574	. 2
•	, 1-189	РЕМОНТ И СОДЕРШАНИЕ ДОРОГ ОТ ЗАБОЯ ДО ОТВАЛД МРИ ТРАНСПОРТИРОВАНИИ ГРУИТА АВТОМОБИЛЯМИ-САМОСВАЛАМИ, ПОЛУТРИВЕТАМИ-САМОСВАЛАМИ ИЛИ ДУМПЕРАМИ НА КАЖДИЕ О. В ЖИ ДЛИНЫ ГРУНТ 2 ГРУППЫ ЦЕНА: ((3.1x2))	0.020 1000H3	10.200	0.740 2.420					3.773	
2	s count n.1	TPANCHOPTHPOBKA PPYHTA HA PACCTORNUE AO 1 KM OB'EM: 20X1.75	35	0.290	0.290	10		•	2	6.087	3

							-	r r		OUKEHNE
	2	4	4 4	4 1	•	*	3	• · •	10 1	11 '
	13.48 13.48	PASPASOTEA TPPHTA ANA SEPTUKANNON TANNAPOSKA. SYMBAOSEPANA MOUNDCTON AO SP KST(SO M.C.) C TEPEMENENMEN AO SO M TPYHT 2 TPYHTH UEHA: ((44.8X0.85))	100043	38,040	54.060 12.767	- # - 1 - 1 - 1			18,384	/ · · · · · · · · · · · · · · · · · · ·
,	1-230 T.401.11 N.3.48	PASPABOTKA PPYNTA AAR BEPTHKANDHOD TAAHKPOBKH BYADAOGEPAMP MOWHOCTOD AO SP KBT(80 A,C.) C TEPEMEMENHEM AO 10 M PPYNT 1 PPYTTH WEHA: ((37,18x0,83))	0.021 10008	31.603	31.403 10.532	1		•	15,165	
8	1=237 T,4N1.11 -	ADBABARTS HA KAKASE ПОСЛЕАУЮШИЕ 10М ПРИ ПЕРЕМЕЩЕНИИ ГРУНТА БУЛЬАОЗЕРАМИ К РАСЦЕНКЕ Н 250 ЦЕНА: ({30.47x3})	0.021 EM0001	91,410	91.410 30,480	\$		1	43.891	1
•	1-1128	ПЛАНИРОВКА ПЛОЩАВЕЯ, ВЕРХА И ОТКОСОВ ЗЕНЛЯНЫХ СООРУЖЕНИЯ МЕХАНИЗИРОВАННЫМ СПОСОБОМ ГРУНТ 1 ГРУППЫ	1.350 100M2	0.300	0.300 0.090		•		` 0.130	
10	1-1205	HEXAMMSHEONETHUX TRAB	1.050 100M2	10.200	7.600 3.580	11	٠	10	4,418	5
11	CCPCU 41 N969 AON	CTOMMOCTS CEMAN OB'EM: 2,7K1.05	2.835 KP	3.210		•				
12	1-1206	HORNE HOCEBOB TPAB BOADA	1.050 100MZ	13.900	13.170 1.900	15	1	1 6 2	1.670 2.451	5
13	1-441	БУРЕНИЕ ЯМ БУРИЛЬНО-КРАНОВЫЙИ Машинами на автомобиле глубиноя До 2,5м в грунтах 2 группы	0.080 100 WT	223 18.400	204.600	18	1	16	42 73,152	3 6
14	1-641	БУРЕНИЕ ЯМ БУРИЛЬНО-КРАНОВЫМИ МАШИМАМИ НА АВТОМОБИЛЕ ГЛУБИНОЯ АО 2.75М В ГРУНТАХ 2 ГРУППЫ ЦЕНА: ((223X1.1))	950.0 Tw 001	245.300	225.069 55.880	\$		\$ 1	75.600 80.467	ž 2
	MPONNE PAI	50 ТЫ -	•							~
4!	33-230 66-364 74-20 74-74	YETAHOBKA CBOPHWX M/B CTOEK BECOM BUST B INPOSYPEHHWE, MMW C BANDAHEMAEM TRASYX MM PRABWANG-NECHANGA CMECSO	0.75¢ .M3.	\$1.176 6.200	18.400	30	• /	17	10,900 7,353	10
		MEHA: ((24.6+(8.65+7.79)X0.8X 0.57)	,	* 2- * 2 k				MA.		-
1	6 33-229 CB.\$64 N.4-20 N.4-74	TO WE BECOM 0.4TH LEHA: ({31.5+(8,45+7.79)x0.8X 0.5))	0.14g M3	38.076 7.920	23.580 7.340	5	. 1	3	13.900 9.469	2
1	7 33-232	TO WE BECOM O.STN	1.400	25.276	14.080	, 40	.4	53	8.050	13

M.m	407 - 3 - 462 - 67		, · · · · · · · · · · · · · · · · · · ·	4	. 19 6			# 809-02	
		- -			. ,		4 · · ·	ПРОД	OUMERNE.
1 2 2	\$ 	4 1	9	• 4		*****		10 :	19
N.4-24 C6.3CH	HEHA: X (18.70(8.6547.79) NO.68	13		4.380.33		***********************	. *	5.450	******* *****************************
18 CB.3CU ПРИИ1 ПР-НТ 04-08 П2-82 ТЕЖ.4CTP	CTOWNOCTS N/B CTOEK MAPKW YEGGA YCOSA YCOTA ME BETONA M200 Ob (EN: 0.93-0.14-1.0 UEHA: ((37.7%1.1-0.82%2+0.8+2.5% \$.29)%1.02) 11	2.470	\$4.830		147		,		
TABA.1	CTEPWHEBAN APHATYPA A-3, AT-6, ATY-6 Ob'em: 0,12-0,018-0,256	8.344	(). 250 "		99		,		
20 CSGU Taba.1 n.4	ПРОВОЛОЧНАЯ АРНАТУРА 8-1, 8P-1 06'EM: 0.01+0.002+0.015	0.027 T	32 1	,	•	·	*		4
21 6364 - Taba.1 n.13	SAKAAANNE AETAAN OB · EM : 0,045-0,088-0,05	0.103	413		43	. 5.			
22 C3CU TABA.1 N.18	META//NSAUNT SAK/AAHHE N AHKEPHHE AETA/ER N BHITYCKOB APMATYPH OB'EM: 0,045+0.008+0.05	0.103	178		18				٠,
23 8-11	УСТРОЯСТВО МЕБЕНОЧНЫХ ОСНОВАНИЯ ПОД ФУНДАМЕНТЫ	7.590 M3	0.840	0.370	. , •	3	3	0.890 0.142	7
24 CB.3CU MOCK OBA N4-45	CTOMMOCTS MESHA AAR ROAFOTOBKN M600 OP 20-60MM OB!EM: 7,59X1.15	8.729 M3	9.700		85			-	-
25 33-208	YKAAAKA CEOPHUX W/E MANT YEKS Becom 0.5T Ob'em: 0.020x20	9.580 M3	27.500 10.300	17,200 5,340	16	, 6 ,	~ 10 3	17.100 6.889	10
26 C5 3CU TPW/T T TP-HT 06-08 T2-96 TEX.4.CT	CTOMMOCTE TANT YEX-5 OB-EM: 0.020X20 LEHA: ((54.4%1.1-0.82X2+0.8+2.5X 2.92)X1.02)		49,870		41				
27 C3CU TABA,1 11.3	CTEPWHERAR APRATYPA A-3, AT-6, ATY-6: Op: EH: 1.982040.001	0.034	250		10				
28 C3CU TABA.1 n.6	THOSONOWHAR SPMATERS S-1. SP-1	0.504	121		*				
29 Cacu TABA.1 T.13	SAKMAAHHE AETAMA Objemi 1.5x20x0.001	o 680 o R	413		3£				
30 C3CH	МЕТАЛЛИЗАЦИЯ ЗАКЛАДНЫ » АНКЕРНЫХ	0.030	178		. 5				

ТАБЛ.1 ДЕТАЛЕВ И ВЫПУСКОВ АРМАТУРЫ Т П.78 ПВ ТЕМ: Т.	ourehre	AOGR	-			4				-	-	-		- ' ,
1.370 SETURA 1920 1.400 0.280 1.370 0.103 1.400 0.280 0.103	.11	10 t	;	; 4	>8 	· :	* *	. 4 :	5 - 3	4 - 3	######################################		·	`'4 . :
31 6-1		The state of the s	int =		1 12/2	\		. 7	a Series		34 1/4/ u			
NSC CROWN DETERMINED OBJECT 1, 1-77 OBJECT 1, 1-72020.08 2 33 0-86 ΑΡΜΑΡΟΒΑΝΡΕ ΑΝΑΜΑ 0.001 13,300 1,400 12,300 36 CCPCU W.2 CETKA /3 ΠΡΟΒΟΛΟΚΗ ΧΟΛΟΔΗΟΤΡΗΥΤΟΝ PAREN OF TO NO.001 392 392 27,730 13 3 9 16 7 0.420 PARREY AND POBOLOKH XCHOLORYYRUPR PAREN OF TO NO.000 0.336 38,200 27,730 13 3 9 16 7 0.420 BGDP/PACRAHUE 7 9,420 8,420 3 11,120 3 11,120 X6 CCPLU W.2 CTOMMOCTO METANOKONCTPYKUUR 0.336 331 704	. 2	1.370	-		,		•		0.700	M3	O BROKE HENTINE F3	70,00	6-1	31
T 6.760 0.420 0.542 3 CETRA #3 ΠΡΟΒΟΛΟΚΗ ΧΟΛΟΑΗΟΤΡΗΥΤΟΡ 0.001 392 PASAGE 4 Π23 35 33-240		,				s		_		0.082				
3° CCPCU W.2 СЕТКА ИЗ ПРОВОЛОКИ ХОЛОДНОТЯНУТОВ ТО 1000 13		-	-			ı					NE ANYWA	APMAP	6-86	•
36 ССРСЈ ч.2 СТОИМОСТЬ МЕТАЛЛОКОНСТРУКЦИЯ 0.336 311 504 73201 1 1.120 73 1 1			Y	•			ı		392		потунятондолох ихоловочл		PASAEA	
36 ССРСД М.2				3		13		-		-	. СТАЛЬНЫХ ОПОР ПОД Нуе	DECRY	ş	35
37 35-82 ОКРАСКА СТАЛЬНЫХ ОПОР КРАСКОВ 0.536 13.660 5 1 2.660 6T-177 T. 1.550 5 1 3.390 TO ME ЛАКОМ БТ-577 0.336 13.400 5 1 3.390 ОГРАЖДЕНИЕ ЗО 1 2.41 ОГРАЖДЕНИЕ ТЕРРИТОРИИ П/СТ ИЗ 0.440 221 19.400 97 14 9 55.930 ПРЦ ПАКЕЛЕ СО СВАРНОЯ СЕТКОР ВЫСОТОЯ 100M 32.900 7.540 3 9.727 1.9M 40 1-241 МОНТАЖ МЕТАЛЛОКОНСТРУКЦИР 0.440 531 1.400 234 32 1 123.080 ПРЦ ПАКЛУТКОЯ МОНТАЖ МЕТАЛЛИЧЕСКИХ ВОРОТ С. 3 28 1.590 26 3 2 5.785 1800 ПРЦ МОНТАЖ МЕТАЛЛИЧЕСКИХ ВОРОТ С. 3 28 1.590 26 3 2 5.785 1.780 0.410 0.160 0.161 0.787 0.420 0.157 21 36.380 ПРЦ ИТ 21.400 0.140 0.160 0.161		ı			•	104		_ `	311	· · · · · ·	. МЕТАЛЛОКОНСТРУКЦИ В	H.2 CTOUNT	CCPCJ 4	,
38 33-80 ТО WE ЛАКОМ 6Т-577 0.336 13.400 5 1 3.390 ОГРАЖДЕНИЕ 39 1-241 ОГРАЖДЕНИЕ ТЕРРИТОРИИ П/СТ ИЗ 0.440 221 19.400 97 14 9 35.930 П.000 1.000 32.900 7.540 2 1 123.080 1.000 39.727 40 1-241 МОНТАЖ МЕТАЛЛОКОНСТРУКЦИЯ 0.440 531 1.400 234 32 1 123.080 0.600 1.000 72.400 0.470 234 32 1 123.080 0.600 1.0000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.000000 1.00000000	· -	2.660	•	1		5				₹.	Тальных опор красков		33-85	
3° 1-241 ОГРАЖДЕНИЕ ТЕРРИТОРИИ П/СТ ИЗ 0.440 221 19.400 97 14 9 55.930 ПРЦ ПАКЕЛЕВ СО СВАРНОВ СЕТКОР ВЫСОТОВ 100М 32.900 7.540 3 9.727 1.9	or .	3.390		1		5					ÓM 6T-577	TO #E	33-80	38
ПРЦ ПАНЕЛЕВ СО СВАРНОВ СЕТКОР ВЫСОТОВ 100M 32.900 7.540 3 9.727 1.9M											•	EHME	OFPAWAE	
100M 72,400 0.470 41 1-290 УСТАНОВКА МЕТАЛЛИЧЕСКИХ ВОЛОТ С. Я 28 1,590° 26 3 2 5.785 ПРШ КАЛРТЖОЙ ШТ 3.050 0.410 1 0.787 42 1-290 МОНТАЖ МЕТАЛЛОКОНСТРУКЦИЯ П 157 0.420 157 21 36.380 ПРЦ ИТ 21.400 0.140 0.140 0.181 4371-229 УСТАНОВКА МЕТАЛЛИЧЕСКОЙ ОГРАЛЫ ИЗ 0.164 645.420 38.300 106 9 6 91.800 П.ИТ2 СЕТКИ НАТЯНУТОЙ НА СТЕРЖИЙ ПО М/Б 100M 54 13.800 2 17.802 ПРТ СТОЛЬВИ ЦЕНА: (1673-6X16-48-5.25)-19)3 44 1-220 МОНТАЙ МЕТАЛЛИЧЕСКИЕ СЕТЧАТЫЕ ВОРОТА С КАЛИТКОЙ ПО:Ж/Б СТОЛЬВИ ВЫСОТОЙ ЦЕТ 130.717 5.660 131 16 6 26.860 2 1399 2 2.399	•	_		4		97						MAHEA		3 0
ТЕНЬ КАЛРТКОЯ UT 3.050 0.610 1 0.787 42 1-200 МОНТАК МЕТАЛЛОКОНСТРУКЦИЯ 1 157 0.420 157 21 36.380 ПРЦ УСТАНОВКА МЕТАЛЛИЧЕСКОЯ ОГРАЯН ИЗ 0.164 645.420 38.300 106 9 6 91.800 Т.ИТ2 СЕТКИ НАТЯНУТОЯ НА СТЕРЖНИ ПО Ж/Б 1004 54 13.800 2 17.802 ПРТ СТОЛБАМ ЦЕНА: ((673-63-5,25)-19)) 0.164 51.860 0.740 8 1 12.002 64 1-229 МОНТАЙ МЕТАЛЛИЧЕСКИЕ СЕТЧАТЫЕ ВОРОТА С 130.747 3.660 131 16 6.26.860 245 1-280 МЕТАЛЛИЧЕСКИЕ СЕТЧАТЫЕ ВОРОТА С 4.130.747 3.660 131 16 6.26.860 245 1-280 МЕТАЛИТКОЯ ПО Ж/Б СТОЛБАН ВЫСОТОЯ 15.860 1.860 136 2.399	;		1	2		234			-	1	ETAAAOKONCTPYKUUP	а Т н О М		
## 21.400 0.140 0.140 0.181 ### 21.400 0.140 0.140 0.181 ##################################				3.		24					L METANNINECKAN_BOROT, C.			41
Т. NT2 СЕТКИ НАТЯНУТОЙ НА СТЕРЫНИ ПО Ж/Б 1004 54 13.800 2 17.802 ПРЯ СТОЯБАМ ЦЕНА: (673-6x6.68-5.25)-19)> 44 1-229 МОНТАЙ МЕТЙИЛОКОЙСТРУКЦИЙ 0.196 51.800 0.140 8 1 12.802 160% 7.040 0.050 245 1-280 МЕТАЛЛИЧЕСКИЕ СЕТЧАТЫЕ ВОРОТА С 4.130.741 5.660 131 16 6.26.860 КАЛИТКОЙ ПОЖ/Б СТОЯБАМ ВЫСОТОЙ ШТ 15.800 1.860 2 2.399 2M	:			'1		157					ETANNOKOHCTPYKUVA	MOHTA		42
44 1—220 МОНТАЖ МЕТЖИЛОКОЙСТРУКЦИЙ 0.104 51.500 0.140 8 1 12.802 0.065 100% 7.040 0.050 0.050 0.065 0			5	•		106			645.420 3,54		ГЯНУТОЯ НА СТЕРШНИ ПО Ж/Б	CETKU ETOMB	T. HT2	
245 1#280 - МЕЎАЛЛИЧВСКИЕ СЕТЧАТЫЕ ВОРОТА С (\$ 130,747 5.660 131 16 6. 26.860 калитков посядь стольам высотов шт 15/800 1.860 2 2.399 2M	1	1,2 . 002		1	-	• • · ·		0.050		0.104			1=229	44
UEHA: ((139-2.5X(6,68-5,25)+5))	. , "	26,860		i d		131	, `	5.660			TO WIS CTOREM BUCOTOR	SW FAUNT	1-280	245
46 1-229 MONTAN METANNOKONCTPYKLUR 1 58.500 0.150 59 8 13.540	,	13,540		8				į.	58.500	1	,		1-220	46

				,					ПРОДО	ОЛЖЕНИЕ
1	; , <u>,</u> <u>,</u> <u>,</u>		14 - 1		6 7	ī, ' - ફ		ν,	10 ;	11
	KOMOMEU	A STATE OF THE STA			The same of the sa	-4'				
47	1-948	PATRABOTKA PRVHTA 11 PRINTIN BES EPENAETHA NOA KONOSEU UEHA: ((120X0.8))	1.00#3	96.000 96.000		10	10	1	132,400	14
4.8	1=968	YCTPORTTEO OEPATHOR SACHIKE	0.060 100M3	66 4 66		3	3	, ,	99.300	6
49	7-352	УСТРОЯСТВО КОЛОАЦА ИЗ СБОРНЫХ W/Б колец	1.450 M3	7.970 1.580	6.220	12	. 5	9 3	2.920 2.786	4 4
_5 Q	U0-524	CLONHOCIP KOUER KHIS-6"	1.A02	33.300		6.0.				
51	U3-552	CTOMMOCTS MANT MOKPHTUR KUM1-15-1	0.270 M3	68.100	~	18				
	CACU TABN.1 N.1	СТОИМОСТЬ АР-РЫ КЛ. А-Т -	, 0.030 T	229		7	-	*		-
53	TABA,1	CTOPMOCTS AP-PH KA, A-II	0.00 5 T	229		1			· ·	t
5:4	С3СЦ Табл.1 П.6	TPOBOAOHHAR APMATYPA B-1, BP-1	0.001 T	321		- h	,		,	
5.5	C3CU TABA.1 N,13	SAKAAAHHE AETAAN	\$00.0 T	413	,	1				
56	C3CU TABA.1 N.18	МЕТАЛЛУ-ЗАЦИЯ ЗАКЛАДНЫХ И АНКЕРНЫХ АЕТАЛГР И ВЫПУСКОВ АРМАТУРЫ	0.002 T	178		•	-			
- 37	CF.3CU N9=225	СТОИМОСТЬ ПЛИТЫ ДНИЖА ИЗ БЕТОНА М200 кца15	0.380 M3	68,100		26	~			'
_. 58	C3CU TABA.1 N.1	СТОИМОСТЬ АР-РЫ КЛ. А-1	0.010	229		2				
5 9	C3CU TABA.1 N.3	CTEPWHEBAR APMATYPA A-3, AT-6, ATy-6	0.018 T	250		5				
60	Cacu Tabria	ПРОВОЛОЧНАЯ АРМАТУРА 8-1, 89-1	\$0.00	.321	-	1				
61	C3CU TABA.1 TABA.1	SAKAAAHHE AETAAN	\$00.0	413		•				
6 Ş	ESCU TABA.1	МЕТАЛЛИЗАЦИЯ ЗАКЛАДНЫХ И АНКЕРНЫХ Деталея и выпускот жэматуры	\$00.0 T	178					,	

HOPMATHBHAR TPYROEMKOCTL

CMETHAR SAPABOTHAR MATA

B T. W. HAKMARHME PACKORM

RAHDBHE HAKOMAEHAR

BCETO TO CHETE: CHETHAR CTONHOCTS

MEPOOPALUS:

HOPMATHONAR YCHOBHO-WHCTAR TPORYKUMR

246.

161

2172

44 79)

139)

150

335

242

167 48 23

352

E.M. MAPONOBA

A.D.TYAYDOBA

MAP

TPANCOPPHATOPHAR MODICTARLUR HAMPRHENNEN 35/0.600.697KB C OARUM TPANCOPPHATOPON MOMNOCTON 1000KBA ANR SHEKTPOCHABHENNEN N.C. SAKPMTON OPOCHTEROHOM CETH

POKARD HAR CHETA. W 3-2

SAEKTPOTEXHAVECKAS HACTO TOTO MOMNOCTOR 1000KBA

	OCHOBANNE:	BEADMOCTS OSSEM, PABOT N36-1			CHETHAR CT	TOHNOCTE	4.02	THE.	, PY5 .	
	COCTABRENA	В ЦЕНÀХ 1986 Г.			WETAR DP		0.26	THE,	, Р УБ .	
	HOKASATEAN KOANYECTBO	NO CMETE: +1000 Kg	•	_ *-9j		AR TPYROEMKOCTH		, -	4E74.	
	CTOMMOCTS 1					APAGOTHAR MARTA	0,15	THE.	, PY6 .	
	: : : : :			:CTOMMOCTS	EA., PYB.:	DOMAR CTOMMOC	b. Pyb.	;	SATPATH	TPYAA
N	: N :N TOSNUNN	: HAMMEHOBAHME:	: 4ECTBO	: BCETO	I DECTION :	: 0 C N O B N O /	. SKCMA.	: HE	30, TRHAE	CA. MAWNH
	MINOPHATUBA	:	INSMEPRHAT	HIBANATH	: # T.4. :	: SAPNAAT	H : B T.4.	:	СЛУЖИВАЮЩ ЕДИН. :	
1	: 2		1 4	: \$		7 : 8				
	1 8-1-4	TPANCOOPMATOP TPEXOASHMA 35KB. MOWH.KB.AI1000,1600	**************************************	48.200	13.200		32	15	57 6,295	57 6
•	2 ПР-ИТ 15-05 П.1045	TPANCOOPMATOP TPESOASHWA ABYXOGMOTOGHWA MACARHWA TM-1000/35 y1 MACCA: 6 T	#*		•	4000				
:	3 मिन्सर मञ्ज्ञ का-४०३८	PASPRAHUKY BENTHABHWE PBC-35 Ty16-521,264-79 MACCA: 0,078 T	; ##			162				
4	4 ПР-ИТ 15-03 П.11040	PERFECTPATOPH CPABATHBAHHR PP-Y1 Ty16-534,013-74 Hacca: 6,0017 T	w	3 9.300 7`		29				
,	5 8-15-1	РАЗРЯДНИК ВЕНТИЛЬНЫЯ/З ФАЗЫ/, НАПРЯШЕНИЕ, КВ:35	KOMA	1 10.200 1 5.730		1♥	6	• 3	10 4.386	10 4
•	6 8-16-1	ПРЕМОХРАНИТЕЛЬ, НАПРЯЖЕНИЕ 35КВ	#			7	4	1	s 0 • • • • •	6
•	7 ПР-ИТ 15-03 П.11002	TPERCEPANTTERS TOT+75-3,275 MACCR: 0,065 T	· ***	5 67 T	,	201			•	
	6 8-17-18	S SAMBURGINAR SAMPONO POTRACEN	• · · · ·	6 2.716 7 8.046		16	•	9	2 0,348	12.
	9 89447 15078-2 8.4060	HIGHTOP ORDPHUS NAMPRESHEN SEKTUME HOC-35-1200 MACCA: 0,0344 T	9 U	3 16 7	•	54				•

*****	**************************************		****		-				**
-		4 ;	5 4	******	* .\$	•	`	10 :	11
7#-47 7-10-2 7404, 11	PROPRIOR DROPHO-CTEFFEEDS DRCY-40-1000711 MACCA: 0.030 T	, 3	10.100		57		-	, , ,	r.
1 8-52-4	PSONATOR ONORHUE, HAMPSHENPE, ES, AG 10 C KONPRECTSON TOACK KREMMENTS 20	vi •••	0.770	0.000	3	2		0.020	•
2 NP-HT 15-10-2 N.4048	N3OARTOP ONOPHO-WTWPESOR OHU-10-2000Y1 Macca: 0,0127 T	u T	3.100		20				
3 8-58-5	ИЗОЧЯТОР ПРОХОДНОЯ С ОВАЛЬНЫМ ИЛИ КВАДРАТИРО МАНЦЕН НАПРЯЖЕНИЕ КВ ДО 10	4 UT	0.650 0.530	0.020	3			0,013	•
4 NP-HT 19-10-2 N.3023	NJOARTOP RPOXOGHOB NG-10/2000-1250XXA1 MACCA: 0,0113 T	# †	16.600	a.	66				
5 4-11-2	ТРЕХПОЛЮСНЫР РАЗЬЕАИНИТЕЛЬ НАПРЯЖЕНИЕМ ЗЯКВ НА ТОК 1009A С ОДНИМ ИЛИ ДВУМЯ ЗАЗЕМЛЯЮЩИМИ НОШАМИ	KOMIN	32 14.500	5.100 1.730	32	15	3	24 2.232	2
15-03 15-03 10-03	PASAENTERS PHAS-2-35/100071 TV16-520,102-79 Macca: 0,106 T	3 3000	••		8/0	-			
7 8-594-1	СВЕТИЛЬНИКИ ДЛЯ ЛАМП НАКАЛИВАНИЯ Устанавливаемые на кронштернак Внутрениего или наружного Освещенуя	0.020 100ut	278 37.600	\$8.400 18.200	•	.1	1	103 23,478	
B NP-HT 15-07 N.4004	CBETUNHUK CHO-200-1,2,371 Weha: (1.9x1.082) Macca: 0,0022 t	2 #7	2.056		•				ī
9 8-591-3	ВЫКЛЮЧАТЕЛЬ ГЕРМЕТИЧЕСКИЯ И Полугерметическия	0.016 100m7	49.800 38.400	1.100				68 0,077	
0 66PEÙ 4.5 Pasaen 4 n.87	BUX ADVATERS PEPHETHYSSERS	4 UT	0.960		* **			4 5	
1 8-534-1	КОРОВКА КЛЕММНАЯ НА КОНСТРУКЦИИ На стене или колоние для Кабеля Сечением дозтомме с количеством Ванимов до з	2 87	2.720	0.070	5	2	,	0.013	
24-05 71.1352	КОРОБКУ КЛЕМИНЫЕ КК-16 У4,2 Цена: (4.70К1.073) Масса: 0,00487 Т	2 47	5.043	- w	10	5	,	,	i,
3 8-75-3	шина алюминиевая сеч. 480мм2	0.0 3 0 1004	152	12,300	- •	1		2,256	-
4 8-75-4	ШИНА ОТВЕТВИТЕЛЬНАЯ, ОДНА ПОЛОСА В фазе, мёдная или алюминиевяя, Сечение, мм2, до:1000	0.000 M00f	169	14.700	15	•	<i>y</i>	79 3.032	i

					*****			*****	
: 2	3 ;	4 1	5 :	. 6 :	7 :	8 :	* :	10 ;	11
S CCPCU 4.5 PARAEA 2 TI.563	ШИНЫ АЛЮМИНИЕВЫЕ ПРЯМОУГОЛЬНОГО СЕЧЕНИЯ ТОЛЬИНОЯ В/И 10 ММ	0.004	11:50	t t	\$	- ,	,	<u>.</u>	
6 CCPCU 4.5 PAREN 2 N.567	ШИНЫ АЛЮМИНИЕВЫЕ ПРЯМОУГОЛЬНОГО Сечения шириноя 100 мм толькноя 8,10 и 12 мм	05020 T	11.40	· · · · · · · · · · · · · · · · · · ·	, s à				,
7 8-368-4	ПОАВЕСКА ПРОВОЛА Сталелюминиевого АС-70	0.040 Km	27.800 4.390	12.400 3.920	1		9	11 5,057	
8 1509 CTP#	CTOMMOCTS NPOSORA AC-70 Mehai' (212x1.146)	0.046 K#	234.392		•		,		
9 8-169-5	MPHÉDÉANNEHHE WHY NDOROGOS N Kasener Cesenne ao: Tonns	0.249 100#7	24.400 13.600	. 1 200 - 2	•	3	~ A,	5.5	. !
0 8-148-9	ПРОКЛАДКА КАВЕЛЯ СИЛОВОГО И КОНТРОЛЬНОГО АО 1 KT ПО ТОТОВЫМ КОНСТРУКЦИЯМ	920.0 400P	004.65 056.8	ó.480 6.196	13	•	•	15 0.245	10
1 8-161-1	KABEAB AO 35KB, B POTOBWK Trahwerk bes mokpwina, macca 9m, Kr. ao:3	0.100 100M	12.500 3.89 0	2.230	1	9		10	
\$ 8 ~153-5	ЗААЕЛКА КАБЕЛЯ С БУМАЖНОЙ ИЛИ Резиновой изоляцией, напряжением, кв, ad:1 сечение ао 16мм2	1 0 W 7	3.550 1.080		34	11		2	2
3 8-471-3	ЗАЗЕМЛИТЕЛЬ ВЕРТИКАЛЬНЫЯ ИЗ КРУГЛОЯ СТАЛИ ДИМЕТР 12ММ	0.200 1087	10 3.100	0.400	8	8		6 0,129	
4 8-472-2	ЗАЗЕМЛИТЕЛЬ ГОРИЗОНТАЛЬНЫМИ ИЗ Полосовою стали сечение 160ММ2	0.590 160M	27 4.800	0.900	16	4	1	12 0,129	
5 1-960	РАЗРАБОТКА ГРУНТА ВРУ 4НУЮ В Траншеях глубиноя ао 2m б 2s Крепления с откосами и к опание ям Глубиноя аоз,5m грунт 2 группы	0.076 100M3	74.500 74.500		,	7		154	•
÷ 1-968	ЗАСЫПКА ВРУ4НУЮ ТРАНШЕЙ ПАЗУХ Котлованов у Ям Грунт 2 г руппы	0.090 100M3	46 46		4	6		99.300	
7 8-472-7	ПРОКЛАДКА ПОЛОСЫ СВЯЗИ ЗОХАМИВ ПО И/Б КОНСТРУКЦИЯМ	0.210 MOOT	44.200 13.400	1.800	13	3		24 0,258	
8 ПР-ИТ 15-03 П.11050	БЛОК-ЗАМОК МЕХАНИЧЕСКИЯ МВГ ТУЗ4-1411-75 МАССА: 0,0004 Т	М.А. 8	1.600		3				
9-84-1	TOME MONTAN	.# 47.	1.570	0.010	3		e i		. *
0 8-571-3	YCTAHOBKA RWWKA METAMMWECKOPO Padaputom 750x400x2400mm wtt	0.900 M	10.600	052,1	- 10	4	1	0.761	
1 15-17 N1-116	TOWE CTOPHOCTS SWOT	1 WT	45		85			,	
2 CCPCU 4.5	OSSESS BRHEBNARA PROSE	0.200	1.440						

RPDAGAWEHRE 3 PASAEN 3 1087 ~ ~ · D. 284 AM CEPCU 4.3 KABERH KONTFORDHHE C ARMWHHEBWHH 0.036 PASAFA 1 - «ИЛАНИ С ПОЛИВИНИЛІЛОЙВАНОВ - 1000M NEGAMINER P OSCHOGE NAPEN - FF 2280 AKBBE, C MMCAOM MAA # CEHENNEN, MM2:4X2.5 44 CCPCU 4.5 KABEAB ABBT CE4.2X2.5MM2 0.045 179 PASSER 1 KM N.1106 SECTION ALLA SERVICE OF THE SERVICE 45 TP-HT BTANTA MSOMMPYNHAR WP-35 10 10 15-03 MACCA: 0.002 T mŤ A.11037 46 NP066 BOTH ANDMEKTPHYECKHE 27 11266 MAPA 47 24-03-19 SASEMMENNE MEPEHOCHOE SSKS 14.600 29 N6-051 ЩŦ 48 05-18 MAKATH MO TEXHUKE BESOMACHOCTH 5 8 K-T 49 29-03-19 SASEMMENNE MEPENOCHOE AO 1KB 9.900 20 2 N4-050 WT MTOTO NO PASAENY 1 5384 40 550 122 13 162) 15 HAKMAAHHE PACKOAH 16.5% CSM C Ke0.180 20%) HT C K=0.092 CHYUN 2 2) NO N.N. 35-36 HAKAAAHHE PACXOAH HA MONTAWHME PABOTM CAR C Km0.180 HT C K=0.092 97 17 9 NO N.N. 1,5-6,8,11,13,15,17,19,21,23-26,27,29-34,37,39-40 48) 5483 40 244 139 MTOPO 13 2127 MAROBHE HAKOMMENUR B.DOK (NY47 44-40%) 34 10 M.M. 1,5-4,8,11,13,15,17-37,39-40,42-44 79) 244 BCETO DO PASAENY 1 5518 930 40 283) 13 CBOAKA SATPATE 23 14 CTPONTENDAME PABOTH . 18) B T.4. HAKAAAHME PACKOAM 2) MUTHORNE HAKOULEHNA 221 465 111 MONTAKHNE PABOTH 2457 13 97 17 B T.W. HAKNAMHNE PACKOAN 48) 36 MUNICIPAL BRECHTER

A A III 407-3-452.87		32								c# 809-02				
												ПРОДОЛЖЕНИЕ		
: 2	2 1	3	1 .	4 ;	5		4	7 . 4	8 :	9	:	1.0	;	11
ОБОРУ	3NHABOAY		,				, ,	. 5041	66)					
И ДРУ	YENNU SATP	ANNS C TRANCHOPTHUMN PATAMU T. T K CMETHAS CTOUMOCTS	١			٧	*	5540 6017	122	¥	40 13			
		НОРМАТИВНАЯ УСЛОВНО-ЧИСТА: НОРМАТИВНАЯ ТРУДОЕМКОСТЬ СМЕТНАЯ ЗАРАБОТНАЯ ПЛАТА	я проду	KUMA			·		283 152		13			24
	•	исибаные	,	d	7 		. C #A0P08A	· * -,					١	
		переорация:	2	AB u_	Pas'	P.T A.N	, CAKMEEBA , Tymynoba							

.

CHETA B CYMME THE . BYB. " COTTACOBANA ПОДРЯДЧИК . 10 T. HA CTPONTENECTED TPANCOOPMATOPHOR HOGCTANLINN NATPRIERNEM 35/0.4(0.49) Km C DANUM TPANCOPMATOPON MOUNDCTON 1608 KBA ANT BACKTPOC HABBEHUR H.C. HA SAKPHTOR OPDENTERBROR CETH EMETHAR CTOWNOCTS . THE . PYS . HORMATHSHAR YEADSHO-HHETAR MPOAYKLING THE . PYS. HOPMATHEMAN TPYROEMKOCTL THE . WEA . - W . CHETHAR SAPABOTHAR TINATA THE . PYB . COCTABRENA & LENAX 1984. CMETHAR CTOUNGETS, THE. PYS. INOPMA- INOPMA- ICMETHARINOKASA-NETT -AGAE: RAHBUT: RAHBUT:-. CMET : CTPOM=: MON- : 050Py-: NPO- : -PHNHES RANTOGS -ORYGISOHBONDYS N : TEADHWX: TANHWX: AOBANAR: 44X : BCETO 1-4HCTAR; ENKOCTS; TIATA : HOR n.n: PACHETOS : PAGOT IPABOT IMEGEAM : JAT- : INPOATE THE . ITHE . PYSICTOHNO-1 M MM- : PAT : 14E/1.-4.1 : CTH :BENTAPS: ITHC.PYBI 10 : 11 2.17 2.17 0.54 0.35 OBMECTPORTERS HHE PABOTH 1 3-1 0.24 1.36 7.33 2 4-1 BAEKTPOTEXHUUECKAR MACTE 4,58 TPAHCOPHATOPHOR MORCTANUM MONN. 1600 KB.A PARHMA MHMENEP TPOEKTA A.H.BEARKOR 4.D. 48AH98 ANBATO NUMBERA .H.CHEGFOFA

COCTABAN NPOSEPAN 33

AA. iii 407-3-452.87

MACCA: 0.0344 T

n.4060

SHOP

TPANCOOPMATOPHAR MORCTANUMR HAMPRWEHNEM 35/0.4(0.60)KB C DANNM TPANCOOPMATOPOM NOWN, 1600KBA AMR DMEKTPOCHABWEHNE H.C. NA SAKPMTOR OPOCHTEMBNOR CETH

локаявная смета ма-т

SAEKTPOTEXHULECKAR HACTO T.M. HOMHOCTOD 1409KBA

				7	'					
DCHOB ANNE:	BEAOM, OSBEM. PASOT N36-1			CHETHAR	etommosts		7.33	THE	, Py6.	
COCTABREHA	B LEHAX 1984 C.			n RATONP	HAR YENDRI PORYKUNA HAR TPYADE				.,PYB. G.4EA4.	
CTOMMOCTS .	-1400 Kg4	-		CHETHAR	BAPAGOTHAR	MATA	0,15	THE	С.₽УБ.	
*		1	ICTOMMOCTH	EA PYB.	1 05mam	CTONNOTT.	DVL			
N : WM PP I M N : N TIOSPLLINN		: 45C1B0	# BCEFO	: ЭКСПЛ. : МАШИН	:	: 0CHOBHO# :	⇒KCDA. MAWNH	: HE	, XNPODAG 10, TRHAE	4E74, 6C7, MAWNH
N/N:HOPMATHBA		1. 好事制在日本科的祖	IOCHOBHOR IIBAPTIMATЫ I	; B 7.4.	1 .	: : Bapmaath :	B T.4.	-:0E	L P A V W 14 n	MANNAM .
1: 2		; 6	; \$: •	: 7	• • • • • • • • • • • • • • • • • • • •				
1 8-1-4	TPARCOOPMATOR TREXOASHUM 35K8, Mown as a 11000, 1600	9 1 1			48	-	1		57 6,295	57
2 ПР-НТ 15-05 П.1047	TPAHCOOPMATOP TPESOASHWA ABYXOBMOTO4HWA MACARHWA TM-1400/35 y1 Macca: 7,1 T	9 W 7			5200				,	
3 NP-HT 15-03 N.4038	РАЗРЯАНИКИ ВЕНТИЛЬНЫЕ РВС-35 ТУ16-521,264-79 МАССА: 0,073 Т	3 187			162					
4 ПР-НТ 15-03 П.11040	РЕГИСТРАТОРЫ СРАВАТЫВАНИЯ РР-У1 Ту14-534.013-74 Масса: 0.0017 т	9 #1			29	5				
\$ 8-15-1	РАЗРЯДНИК ВЕНТИЛЬНЫЯ/З ФАЗЫ/. Мапряжение, квіз5	4 KOMU/				6		• 3	10	10
6 8-16-1	предохранитель, напряжение 35кв	3 #1				•		1	- 10.090	•
7 NP-HT 15-03 N.11002	TPEADXPANNTEND MOT-35-3,871 MACCA: '0,965 T	. 9		Ţ.	201		,	í.		
8 4-17-8	изолятоя опорныя напряжение из 33 -	i Piu				•	* .	6	2 0.34 4	12
9 NP-HT 15-10-2	NEER MEMMEMBERGEND GOTTON TOTAL SEE	; ; #1		, , , , , , , , , , , , , , , , , , ,	54	•				•

A1.:	iii 407-3-452.8	35	<i>ር</i> ቀ 809- <i>0</i> 2

	· ·	~~~~	*****	***				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	OUMENNE
1: 2		4 - 1	5	: 6 :	7 :			.10, 1	11
10 TP-HT 15-10-2 0.4062	PEGRENATOR OCTORNO STREET PROCESS OF THE PROCESS OF THE PROCESS OF THE PEGRENATURE PROCESS OF THE PEGR	A Z	16.100		* \$ 7				
11 8-52-4	изолятор опорныя, напряжение, чв. до 10 с количеством точек крепления 20	# WT	0.778	0.020	· _ 3 ,	2 · · · · · · · · · · · · · · · · · · ·	,	0.026	•
12 ПР-ИТ 15-10-2 П.4048	PRIORATOR ONORNO-WTWRESOR ONW-10-2000y1 Macca: 0,0127 T	4 #7	5.100		20			r	
13 8-52-5	ИЗОЛЯТОР ПРОХОДНОВ С ОВАЛЬНИИ ИЛИ КВАДРАТИНИ ФЛАНЦЕН НАПРЯЖЕНИЕ 48	4 WT	0.650	0.020	3	8 .	i e	0.013	
14 ПР-НТ 15-18-2 П.3023	MACCA: 0,0113 T	å ₩ T	16.600	•					
15 8-11-2	ТРЕХПОЛЮСНЫЯ РАЗЬЕДИНИТЕЛЬ НАПРЯЖЕНИЕМ 35КВ НА ТОК 1000А С ОДНИМ ИЛИ АВУМЯ ЗАЗЕМЛЯЮЩИМИ НОЖАМИ	1 Комп <i>л</i>	32 14.500	3,100 1,730	32	15	\$	24 2,232	24 2
16 ПР-НТ 15-03 П.3101	PASAENYTENЬ PHAS-2-35/1000Y1 Ty16-520,102-70 Macca: 0,104 T	3 3000	•0		270				
17 8-594-1	СВЕТИЛЬНИКИ АЛЯ ЛАМП НАКАЛИВАНИЯ УСТАНАВЛИВАЕМЫЕ НА "КОРИШТЕЯНАХ ВНУТРЕННЕГО ИЛИ НАРУЖНОГО ОСВЕЩЕНИЯ	0.020 1000T	278 57.600	58.400 18.200		1		103 23,478	5
15-07 15-07 1,4004	CBETUNHUK CNO-200-1,2,379 Weha: (1.9x1.082) Macca: 0,0022 T	2 WT	2.056		4				•
9 8-591-3	BUKNOVATEND PEPMETHVECKUR U Nonypepmethveckur	0.010 100mt	49.800 38.400	1.100				68 0.077	1
PASAEN 4 n.87	ВЫКЛЮЧАТЕЛЬ ГЕРМЕТИЧЕСКИЯ	4 # 7	0.960	(1		,		
21 8-534-1	КОРОБКА КЛЕММНАЯ НА КОНСТРУКЦИИ На стене или колонне для кабеля Себением дозтомме с количеством Зажимов до з	2 8	1.120	0.070 0.010	5	8		0.013	4
22 ПР-НТ 24-05 П.1352	KOPOBKU KAEMMHWE KK-16 y4,2 Weha: {6.79x1.073} Macca: 0,00427 T	\$ # T	5.043		10		•		4
23 8-75-4	WHAN OTBETBYTENHAM, OAHA MONOCA B 4A3E, MEAHAM NAN AAMMHHEBAR, CEGEMBE, MMZ, ADIOCO	0.120 100M	149 49.300	16.700	- 20	6	5	79 3,032) 9
26 CCPCU 4.5 Pasaen 2	: ШИНЫ АЛЮМИНИЕВЫЕ ПРЯМОУГОЛЬНОГО Сечения шириной 100 мм чолциной	9.022 T	1140	3	25				

					~				n P O A	OUMEHNE
1	: 2	3		' '5 ;	6 :	7 :	3 . :	* :	10 :	11
	П.567	-6,10 H 12 MM	,			^)		•	
25	8-36g-4	MOABECKA MPOBDAA Ctareamomhyeboro ac=70	0.040 K#	27.600 6.390	12.400	1	•	1	11 5.057	1
26	1509 CTP9	CT-JA ADOSOGA AC-TO CHA: (2121:146)	8.049 MX	256.592		•	*		٠	
27	8-169-5	NPUCOEQUNENUE WUN NPOSOAOS U Kabener Ce4ehme Ro:Pomm?	0.240 19007	24.400 13.600		4	3		22	5
28	8-148-9	ПРОКЛАДКА КАБЕЛЯ СИЛОВОГО И «Контрольного до чкг по готовым конструкциям	0.45g	20.400 3.420	0.480 c:* #.190	13	•	÷ (0.245	10
29	8-141-1	KABEAB AD 35KB, 8 POTOBЫX TPANWERK BE3 ПОКРЫТИЯ, MACCA 1M, KP, AO;3	0.90 0 100M	12.500 5.890	2.230		9		10 1.148	1
30	8-153-5	ЗАДЕЛКА КАБЕЛЯ С ВУМАЖНОЯ ИЛИ РЕЗИНОВОЙ ИЗОЛЯЦИЕЙ, НАПРЯЖЕНИЕМ, КВ, ДО:1 СЕЧЕНИЕ ДО 16ММ2	10 UT	3.550 1.080		34	11		5	} 20
31	8-471-3	SASEMUNTEUP BEDINKAUPHPM NS KDALUOU CIAUN WAWELD ISHU	0.800 1087	10 3.100	0.400	8	8		6 0.129	5
32	8-472-2	ЗАЗЕМЛИТЕЛЬ ГОРИЗОНТАЛЬНЫЯ ИЗ ПОЛОСОВОВ СТАЛИ СЕЧЕНИЕ 140ММ2	0.390 100M	27 4.800	0.900 0.100	16	4	1	12 0,129	7
33	1-960	РАЗРАБОТКА ГРУНТА ВРУЧНУЮ В Траншеях глубиноя до 2M без Крепления с откосами и копание ям Глубиноя до1,5м грунт 2 группы	0 · 0 9 0 1 0 0 M 3	74.500 74.500		7	7		154	14
34	1-968	ЗАСЫПКА ВРУ4НУЮ ТРАНШЕВ ПАЗУХ Котлованов у Ям Грунт 2 группы	0.080 10043	46 46	,	4	4		99.300	8
35	8-472-7	ПРОКЛАДКА ПОЛОСЫ СВЯЗИ ЗОХАММЕ ПО	0.210 MOOT	66.200 13.400	1.800	13	3	•	24 0.258	5
36	8-86-1	ACLEOMCIBO PYOKNEOBOAHOE	2 47	1.570 1.220	0.010	3	2	1	2	4
37	15-03 n.11050	БЛОК-ЗДМОК МЕХАНИЧЕСКИЯ МБГ Тузч-1411-75 Масса: 0.0004 т	2 7 W	1,600		3	~			
38	1517 N1-116	СТОИМОСТЬ МЕТАЛЛИЧЕСКОГО ЯЩИКА	9 世 7	85		45				
39	8-571-3	YCTAHOBKA RWNKA METAMMUECKOPO Pabaputom 730x900x2000mm WT1	0.900 M	10.600	1.520	10	6 .	1	0.761	7
40) CCPCU 4.5 PA3AEA 3 N.284	COSKOSŞ'I RHHAGYNAXAH ANMAK	0.200 Two f	1.640					÷	()
41	CCPCU 4.5 PA3AEA 1 N.2280	КАБЕЛИ КОНТРОЛЬНЫЕ С АЛЮМИНИЕВЫМИ Жилами с поливинилхлориднов Изоляцией и оболочкой, марки	0.030 1000M	193		•				•

	AA. iii	407-3-452.8	7			<i>3</i> 7					СФ	809 : DE	-
						·					-	продо	AMENNE
, 1	: 2	;	3	4 2 1	3		; 7	:			: 1.0	****	11
,	· .	AKBBE.E 44C EEWEHKEM, MM	The state of the s										***
42	CCPCU 4.5 PASAEA 1 N.1196	KABEMS 4887	CE4.2x2.5MM2	0.04 5 Km	179			8	ı				
	ekchnyata u	РОЧП Ч БИННОМ	THEONOWAPHWA HHBEHTA	NP b									
	ПР-НТ 15-03 П.11037	MACCA: 0,002	PYNHAR WP-35 T	ų T	. 10			10					
	ПР064 П1266	BOTH AFBREKT	PHUECKHE	3 Пара	, ◆			27	l				
	29-03-19 N4-051	SASEMNEHVE N	EPEHOCHOE 35KB	₹ Ш	14.600	•		5.0					
46	05-18	плакаты по т	EXHAKE BESONACHOCTA	≜ K - T	s			8					
	29-03-19 N4-050	SASEMMENNE N	EPEHOCHOE AO 1KB	3 7 W	9.900			50					
			-	MIOLO UD B	ASAENY	1	6	 581	123		0		
	НАКЛАДНЫЕ :	РАСХОДЫ 16.	5% C3M C K=0.180	(4747) 20%	;) HT C I	(=0.092		(2	1633	1	3		
	ПО П.П. 33 [.] Накладные	-34 Расходы на мо		3ff C K=0.18g		50.0=2		97	2) 18 49)				
	110 11.11. 13	,-0,0,11,15,1	J, 17, 14, E1, E3, E3, E7	MTOFO			6	680	141	4	0	-	2
			.00% (HY47 46.00 5,17-36,37-42	*>				3 5	214) 72)		3	-	
		- 1		BCETO NO F	ASAEAY	1		715	141		o 3	***	
	CBOAK	A SATPAT:	-								•		
	CTPONTENH	ME PABOTH						14	11				
		MARHUE PACKOS	au .					₹	18	•			
	-	HOBME HAKONA						(\$:	•			
	MONTANHUE						-	460	5 112) - . 5 4	. 0		. 7
	`	JAAHNE PACKOI	w.				, ~	97	268	1	3		3
		NOBHE HAKOTIN					-	34	49				
•	ОБОРУДОВАН						,	241	67	Ó			
	NTOPO OBOR	YAOBAHNA C TI Satpatamu 9.					6	859					

Типовой проект №

ПОКАВАТЕЛИ ИЗМЕНЕНИЯ СИБТНОЙ СТОИМОСТИ СИР. ЗАТРАТ ТРУДА И РАСХОДА ОСНОВНЫХ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ

СОДЕРЖАНИЕ

эслицы омер	Наименование таблицы	Стр.
I .	Перечень сревнивеемых конструктивных элементов здания, сооружения и видов работ для расчета основных показателей	40
2	Объектная ведомость показателей изменения сметной стоимости строительно- монтажных работ и затрат труда	4 I
3	Ведомость расхода основных строительных материалов по проектируемому объекту	43
4	Объектная ведомость расхода основных строительных материалов по базисному и новому техническому уровню проектных решений	45
5	Сравнительная ведомость показателей изменения расхода основных строитель- ных материалов по проектируемому объекту	46
6	Относительные показатели изменения расхода основных строительных материа- лов по проектируемому объекту	`~ 47
7	Сводная ведомость показателей изменения сметной стоимости строительно- монтажных работ, затрат труда и расхода основных строительных материе- лов по строике	48
8	Объектный информационный сборник показателей сметной стоимости строитель- но-монтажных работ, затрат труда и расхода основных строительных материалов	49 -5 0

Іередовой опыт строительства Інповой проект №

	T	ABJH	HA I			
	ПЕРЕЧЕНЬ СРАВНИВАЕМЫХ К ОНС ТРУ РАБОТ ДЛЯ РАСЧЕТА				жения и видов	
	Стройка Типовой проект					
	The Roberts Book of Contract		Machiner .	10.4.(0.69)	- 12.0.01W	
	трансформатором мошнос				сне биения	
	несосной стении не за	KDNAOS OD	осительной	Ceth		
	ą			- 61		
16	Наименование конструктивных	Елиница	Объемы пр	оп виненеми	проектими решениям	
п/п	ния и видов работ	nsmede-	ири сазис	ном техни- овне (Ету)	при новом техничес- ком уровне (НТУ)	
		•	оодем	ж проекта	•	
I	2	3	4		· 6	•
Į.	Трэнсформаторные ПС напряжением 35/0,4 кВ с одним трансформатором мощностью 4001600 кВА с порталом ввода ВЛ 35 кВ	штук	80	407 -3- 24I		
2.	Трансформаторные ПС напряжением 35/0,4 кВ с одним трансформатором мощностью 400I600 кВА с прием- ным устройством ввода ВЛ 35 кВ	an Han			80	
n	Глевный инженер проекте (вечельник отдела)	(подпис		day in the control of		

Передовой опыт строительства Типовой проект й

ТАБИИЦА 2 ОББЕКТНАЯ ВЕДОИОСТЬ ПОКАЗАТЕЛЕЙ ИЗМЕНЕНИЯ СМЕТНОЙ СТОИМОСТИ СТРОИТЕЛЬНО-МОНТАБНЫХ РАБОТ И ЗАТРАТ ТРУДА

Производстве Общая сметна В том числе	рэнсформяторные ПС напряжением онная мощность, общая площадь, общая площадь, общая площадь, от стоимость С _о , тыс.руб строительно-монтажных работ С	си, тыс	съит.	д. П ₂		68900 599 194.3	ква							·
ведомость е (л.в.ы)	Наименование сравниваемых основных конструктивных заментов и видов работ по базисному (БТУ) и новому (НТУ) техническому уровню	Едини- ца из- мере- ния	объем		На един Сметная мость, р	CTOH-	затраті	л тру- -дн.	сметная мость. БТУ	CTON-	БТУ (графа	труда, -дн. НТУ (графа	Изменение применения нию с бази ческим уро жение (-) сметной стоимости (грефа II), руб.	увеличен Внем тех Внем сн
I	2	3	4		6	7	8	9	10	11	IS		<u>pyo.</u> I4	15
II 407-3-24I Cuera te I	Подстанция с трансформатором АОО ква	mtyk	10.		6580		98,2		65800		982		,	1
CM618 16 5	Подстанция с трансформатором 630 кВА	_"-	30		7430		102,6		222900		3078			
II 407-3-24I CMeta & 3	Подстанция с трансформатором 1000 кВА	#_	30		9730	,	131,9		291900		3957			
cuera le 4	Подстанция с трансформатором 1600 ква	/ and Males	- ÎO		11070	,	131,9		110700		1319			
TII Chero le I	Подстанция с трансформатором 400 кВА	-n-		10		58 50	•	77,I	*	5850	0	771	÷7300	+211-

Продолжение таблицы 2

			,			_						d		
Локальная	Наименование сравниваемых	Едини-		етный	На еди	ницу из	иерения	-	Ha pacu	етный об	ьем прим	енения	и енение и применения	из объем по сравне-
ведомость № (л.в.2)	основных конструктивных по базисному (БТУ) и но- вому (НТУ) техническому	ца из- мере- ния	edo Muqn NH	ене-	сметн стоимо руб.	CТЬ,	затра труда чел.	э,	cmethi cround pyo.	CTB,	зетре: труда чел	,	нию с базис ческим урог	ным техни-
	дровню)		ety	нту	ETY	нту	ETY	нту	FTY (rpağa 4xrpa- фy 6	HTY (rpağa 5xrpa- dy 7)	ETY (rpaфa 4xrpa- фy 8)	HTY (rpağa 5xrpa- ğy 9)	сметной стоимости (графа IO минус гра- фа II), руб.	затрат труда (гра- фа I2 ми- нус грефа I3), челдн.
I	, 2		4	5	6	7	8	9	10	II	I2	13	I4	I5
TII CMeta & 2	Подстанция с тран с форматором 630 ква	штук		30		6660		77,I		199800		23 I3	+23100	+765
cuera le 3	Подстанция с трансформатором 1000 кВА	_11_		30		8190		86,5	¥	245700		25 95	+46200	+1362
_ " _ CMETS No 4	Подстанция с трансформатором 1600 ква	~# -	,	10		9500		86,5		95000		865	+15700	+454
	Nìoro:												+92300	+2792

Главный инженер проекта	Acous	Составил ст.инженер (Мисселе)
(начальник отдела)		(должность и подпись)
	(подпись)	There are a second of the seco
	,	Проверия рук. группы Мих
n ,	TQ0 7 7	(должность и подпись)

Передовой опыт строительства Типовой проект &

ТАБЛИЦА З ВЕДОЛОСТЬ РАСХОДА ОСНОВНЫХ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ ПО ПРОЕКТИРУЕМОМУ ОБЪЕКТУ

Объект Трэнсформаторные подстанции напряжением 35/0,4 (0,69) кВ с одним трансформатором мощностью 400...1600 кВА

	, Homeonopouro	!*	Объем	C # 2	ль, т	F		вль, т		NX CTD		пел	ент, 1		лесо	Matedia	HE
k≀ n∕n	Наименование конструктивных элементов	мере-	-приме- -нения конст-	врмату	ра вилю олоку	48 A		опрокат		OI (OI	BI.	на едини-	марка цемен-	расход	на	0 N	pac
		Huñ ,	руктив- ных элемен- тов	нэ едини- цу из- иере- ния на объем	класс, марка стали коэффи циент приве- дения к ста- ли A-I	веде	на едини- цу из- ния на объем	класс, вид стали коэффи- циент приве- дения к стали С38/23	приведенный раскод	расход стали всего (графа 5-графа 8) го же,приведенний (графа 7-графа 10)	стальные трубы	цу из- мере- ния на объем	тэ коэффи- циент приве- дения к мэрке 400	приведенный ра	еди- ницу изме- рения не объем	коэффициент пере счетэ в кругиый лес	приведенний ра
	2						8	9	IO	II	12		<u>I4</u>	<u></u>	16		<u> 18</u>
I.	Подстанции с трансформа- торами 400 ква	штук	10	0,394 3,94	<u>A-3</u> 1,43	5,634	I.259	I,13	14,23	17.830 24,49	-	2.II5 2I.I5	400 I,0	21,150	-	- ,	-
•				0,027 0,27 0,103	<u>B-I</u> I,39 <u>A-I</u>	0,380											
	-	,	1 *	1,03	I	I,030											
2.	Подстанции с трансформа- торами 630 ква	n_	3 0	0,394 II,82	<u>A-3</u> I,43	I6 ,8 88	1,259 37,77	1,13	42,68	<u>52,95</u> 67,0	-	2.II5 63,45	400 I,0	63,45	-	-	-
	, '			0.027 0.81	B-I 1,39	1,126		ì		,		*	-				
-		ı	-	0.103 3,09	<u>1-I</u>	3,090	·) _										

Продолжение таблицы 3

Na.	Наименование	Едини	_Объем		Pacx					оителі	нн		териа			•	
₩ п/п	конструктивных элементов	Hede-	_приме- _приме-	армату	аль́, равключ	T 8 S		аль, лопрокат		9 ,	E4	цем	ент, т	<u> </u>		теризл	
	SNEWGULOR	ния	конст- руктив ных эле- ментов	про на едини- цу из- мере- ния на объем	стёли коэффи- циент приве- дения к стели A-I	приведен раскод	на едини- цу из- мере- ния на объем	класс.	приведенный раскод	pacxod cranu boero (rpadestrbade 8) ro me, npubenentum (rpade 7+rpade10)	стельные трубы,	на едини- на ния ния ере- ния ерем	марка цемента коэффи- циент приве- дения к марке 400	лриведенный рэс-	на едини- цу из- мере- ния на объем	коэффициент пере- счете в кругини лес	приведенный рас- ход, м3
<u> I</u>	2	_3_		_5	6	7	8	9	<u> 10</u>	<u>II</u>	I2		<u> 14</u>	<u> 15</u>	<u> 16</u>	17	18
3.	Подстанции с трансформа- торами 1000 кВА	штук	3 0	0, <u>177</u> 5,31	<u>A-T</u> I	5 ,3 I	<u>1,268</u> 38,04	1,13	42,98	57,93 72,316	-	2,538 76,14	400 I,0	76,14			
				0,45 I3,5 0,036 I,08	<u>A-II</u> I,43 <u>B-I</u> I,39	19,305 1,501	·			,							
4.	Подстанции с трансформа- торами I600 кВА	_"_	IO	0,177 1,77	A-I I	1,77	<u>I,268</u> I2,68	1,13	I4,33	19,31 26,22	-	2,538 75,38	400 I,0	25,38			
				0,45 4,5	A-II I,43	6,435											
				0,036 0,36	<u>B-I</u> I,39	0,50				•							
	утого:						·			<u>148,041</u> 164,32	,			186,1			
	Главный инженер проек (начальник отдела)	T8	A=	<u>∋67</u>	(подпись)	-	Coc	тавил <u>ст.иг</u> (дол:	нжене жност	р <i>Илок</i> ь, подписі	ie G				
	n n	· - · · · · · · · · · · · · · · · · · ·	_ I987 :	Г.					Про	верил рук	nvar.	Ni) Les		-		

Передовой опыт строительства Тиновой проект №

1987 г.

таблица 4

ОБЪЕКТНАЯ ВЕЛОМОСТЬ РАСХОДА ОСНОВНЫХ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ ПО БАВИСНОМУ И НОВОМУ ТЕХНИЧЕСКОМУ УРОВНЮ ПРОЕКТНЫХ РЕШЕНИМ

Объект Трансформаторные додетанции напряжением 35/0,4 (0,69) кВ с одним трансформатором мощностър 400...1600 кВА

ik n/n	Наименование сравниваемых конструктивных элементов по базисному (БТУ) и ново-му (НТУ) техническому уровню	Едини- цэ из- цере- ния	Расче объе приме по БТУ		Расход основных сталь, т расход стали всего то же,приве- денный	строительны сталь- ные трубы, т	их материалов на цемент, т на еди- ницу из- мерения на ооъем	расчетный ос приведен- ный рас- ход		териалы коэффи- циент пересче-	расход в круглом лесе: м3
I	2	3	4	5	6		8	9	10	II	IS
1. 2. 3. 4.	ПС с трансформатором 400 кВА ПС с трансформатором 630 кВА ПС с трансформатором 1000кВА ПС с трансформатором 1600кВА	ET • _''''''-	10 30 30 10		26,42/32,37 79,26/97,II 85,5 /97,29 28,5 /32,43		2,763/27,63 2,763/82,89 3,033/90,99 3,033/30,33	27,63 82,89 90,99 30,33			
5.	итого по БТУ				219,68/274,48		/231,84	231,84			
6. 7. 8.	ПС с трансформатором 400 кВА ПС с трансформатором 630 кВА ПС с трансформатором 1000кВА ПС с трансформатором 1600кВА	ШТ • _"- _"- _"-		10 30 30 10	18,33/25,37 54,99/76,II 58,08/64,35 19,36/2I,45		2,II5/2I,II5 2,II5/63,45 2,538/76,I4 2,538/25,38	21,15 63,45 76,14 25,38			
IO.	Итого по НТУ		. 		148,04/164,32		/186,12	186,12			
	Главный инженер проекта (начальник отдела)	-4-			_(подпись)		Bedur Dak-LDau	OZEHOCTE, HO	днись) 1		•

Передовой опыт строительства Типовой проект й

ТАБЛИЦА 5 СРАВНИТЕЛЬНАЯ ВЕДОМОСТЬ ПОНАВАТЕЛЕМ ИЗМЕНЕНИЯ РАСХОДА ОСНОВНЫХ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ ПО ПРОЕКТИРЈЕМОМУ ОБЪЕКТУ

и повиций по форме 5	Наименование конструктив-	Единица В В В В В В В В В В В В В В В В В В В	Расчетный объем				объем примен	RNAS	
no dobero >	му (БГУ) и новому (НТУ) техническому уровню	ния	примене- Вия	BCero, T	e-epyt)	СТАЛЬНЫЕ	пене	2, 2	лесоматериалы,
	Jeonal			в натураль- ном исчис- дении	в приведен- ном исчис- лении	zpyóu,	в нэтураль- ном исчис- дения	в приведен- ном исчис- жени к мар- же 400	приведенные к круглому лесу,м3
I	2				6	7	8	9	10
5 I0	В том числе увеличение В том числе увеличение			219,68 148,04	274,48 164,32	,	231,84 186,12	231,84 186,12	A.
	Всего (снижение "+", увеличение "-" Сез учета увеличения по СЭФ Всего увеличение по СЭФ			+71,64	+110,16	, ,	+45,72	+45,72	
	Главный инженер проекта (начальник отдела)	1		(подпись)	Соста	рил рук	(должность, п	Times	

Передовой опыт строительства Типовой проект №

TABINAA 6

ОТНОСИТЕЛЬНЫЕ ПОКАЗАТЕЛИ ИЗМЕНЕНИЯ РАСХОДА ОСНОВНЫХ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ ПО ПРОЕКТНОМУ ОБЪЕКТУ (СТРОЙКЕ, ОЧЕРЕДИ СТРОИТЕЛЬСТВА)

	vibini (ouprimi, output	to orleancompount, Triance		**************************************	кВ с одним трансформато	P. 7
	_		стью 400 I600 кВА			
		сть, общая площадь, емко		68900 кВА		
,	Сметная стоимость строг	тольно-монтажных работ	Ссм, тыс.руб.	I94.3		
	Расход материалов по об	бъекту (стройке, очереди	строительства) Мо:			A STATE OF THE PARTY OF THE PAR
	стали (кроме тр то же, приведен стальных труб	руб) всего <u>148,04</u> ной <u>164,32</u>	T T	цемента 186,12 цемента приведенног лесоматериалов, при к круглому лесу	o <u>186.12</u> T	,
/n	Наименование материалов в натураль-	Показатель расхода материалов;	Показатели удельного рас т, м3, на единицу мощнос емкости и т.д.	хода материалов, ти, общей площади,	Показатели расхода мате І млн.руб. сметной стои монтажных рабо	Mocth Ctpontendho—
	ном и приведенном ис- числениях	снижение "+", увели- чение "-", %	при базисном техничес-	при новом техничес-	при базисном техничес-	при новом техничес-
		$\left(\mathcal{G}_{M} = \frac{\sum_{\Delta} M \times 100}{M_{o} \pm \sum_{\Delta} M}\right)$	$\left(\mathcal{Y}_{M_1} = \frac{M_0 \pm \Sigma \Delta M}{\Pi_2}\right)$	$\left(g_{M_2} = \frac{M_0}{\eta_2}\right)$	(PHI = MO = EAM CON = ZOCON	(PME = Me)
I	2	3	4	5	6	7
I.	Сталь в натуральном исчислении	71,64x100 148,04+71,64 =+32,6	148,04+71,64 =0,00319 68900	148,04 = 0,00215 68900	148,04+71,64_790,78 0,1943+0,083	$\frac{148.04}{0.194} = 763.09$
2.	Сталь в приведенном исчислении	<u>IIO.16x100</u> 164,32+IIO,16 = +40,13	<u>164,32+110,16</u> 68900 =0,00376	164,32 68900 =0,00238	164,32+110,32 0,194+0,083 =935,74	$\frac{164,32}{0,194} = 847,01$
3.	Цемент в натуральном	$\frac{45,72\times100}{186,1245,72} = +19,7$	186,12+45,72 =0,00336 68900	186,12 68900 =0,00270	186,12+45,72 0,194+0,083	<u>186,12</u> =959,38
4.	ислистении Помень в правеченном	45,72x100 186,12+45,72 = +19,7	<u>186,12+45,72</u> = 0,00336	186,12 68900 = 0,00270	186,12+45,72 0,194+0,083	186,12 0,194 =959,38
•	пределений инженер Тто линакерен)	npoerts (eas)	(подпись)	Проверия рук. группы	OBRECCTS H DERINGS)	•

	итут <u>Средволгоги</u>	вицо союзводпроект. проводхоз. г. Куйбышев	r. MOCKES							
		,		· •	TABLUU	À ?				
4	,	СВОДНАЯ ВЕДОМОСТЬ И РАСХОДА	ПОКА ЗАТЕЛЕЙ ОСНОВНЫХ С	СМЕТНОЙ С ГРОИТЕЛЬНЫ	TONNOCTU CTF X MATEPUAJOE	ONTEALHO-MOI 1 NO CTPONKE	TAMHUX PAI (OUEPEZIN (OT, BATPAT CTPONTERISCTI	ТРУДА ВА)	
Стро	йка (очередь строительс	тва) Трансформаторные мощностью 400I		на пряжение	M 35/0.4 (0.	69) кВ с од	ник тренсф	орие торои		
Общ а	ЗВОДСТВЕННЭЯ МОЩНОСТЬ (Я СМЕТНЭЯ СТОИМОСТЬ СТРО И ЧИСЛЕ СТРОИТЕЛЬНО-МОН	ойки (очереди) Со, тыс.	pyo.		68900 KBA 599 194.3			<u> </u>	Marian Marian	
	звлена в ценах	1984		рриториаль	ний район	I				
₩ n/n	работчиков и их ве-	Наименование объектов	Снижени сметной стоимости	затрат труда,	увеличение стали (кром в натуральном исчис-	е труо).т -в приведен-	стальных труб, т	цемента,	-в приведен-	лесоматериа- лов, приведен-
	домственноя подчинен- ность		строитель- но-монтаж- ных работ, тыс.руб.	дн •	иинэц	лении		TEHNN	HMN	му лесу, из
I.	Средволгогипроводжов, Минводжов СССР	(0.69) кВ с одним	4		6	7	8	9		, II
		тренсформетором мон- ностью 4001600 ква	+83, 5	+2771,26	+71,64	+110,16		+45,72	+45,72	•
	Глевый мы (нечельни	женер проекта	(подпись)	. Googs	эвил ст.инже	sien <i>Ma</i>	ger (18		
	и п		c,	ar a balance a sar I		ерил рук .г ру	должность ппы 🏈	и подпись) и подпись)	-	

Передовой опыт строительства Типовой проект &

TABANGA 8-

Объектний информационный сберник ноказателей сметной стоимости строительно-монтажных работ, затрат труда и расхода основных строительных материалов

Объект: трансформаторные подстанции напряжением 35/0,4 (0,69) кВ с одним трансформатором мощностью 400 ••• 1600 кВ.А

Производственняя мощность объекте 400 кв.4, 630 кв.4, 1000 кв.А. 1600 кв.А. Составлена в ценах на 1984 год. Территориальный район I.

ke n.n.	Обозначение техническо- го уровня	Наименование конструктивных элементов здания, сооружения и видов работ	Единица измере- ния	сметная Стоимость	эвтрэты трудэ, челдн.	конструктивного эле сталь (кроме труб),			а <u>ра</u> бот цемент,	T	Условия строитель- ства, ха-
	(ETY, HTY)					в нату- ральном исчисле- нии	в приве- денном исчисле- нии	Ť	в нату- ральном исчисле- нии	в приве- денном исчисле- нии	Partepuctu- Re, spume- Vahna
<u>_I</u> _		3	4	5	6	7	8	9	10		IS
I	ety	Подстанции с трансформатором 400 кв.4 с порталом ввода ВЛ 35 кв		6580	98,2	2,642	3,237	_	2,763	2,763	
2	HTY	Подстанции с трансформатором 400 кв.А с приемный устройст- вом ввода ВЛ 35 кВ		5850	77 , I	1,833	2,537	-	2,115	2,115	
3	ETY	Подстанции с трансформатором 630 кв.А с порталом ввода ВЛ 35 кв		7430 ,	102.6	2,642	3,237	-	2,763	2,763	
4	hty	Подстанции с тремоформатором 630 кВ.А с приемним устройст- вом ввода ВЛ 35 кВ		6660	77,1	1,833	2,53?	-	2,115	2,115	
5	ety	Подствиции с треноформетором 1000 кВ.А с портелом вводе ВЛ 35 кВ		9730	131,9	2,850	3,243	-	3,033	3,033	

Продолжение таблицы 8

le n.n.	Обозначение техническо- го уровня (БТУ, НТУ)	Наименование конструктивных элементов здания, сооружения и видов работ	Единица измере- ния	сметноя	и <u>змерения</u> зэтрэты труда,	конструктивного влем сталь(кроме труб),		енте виде р стальные трубы,	Hement, T		Условия строитель- стве, хе- рактеристи-
(513, 113)		,			челдн.	в нату- ральном исчисле- нии	в приве- денном исуисле- нии	2	в нету- рельном исчисле- нии	в приве- денном испосле- нии	ки, приме- чэния
I	2	3	4	5	6	7	8	9	10	II	I2
6	HTY	Подстанции с тренеформатором 1000 кВ A с приемным устрой- ством ВЛ 35 кВ	,	8190	86,5	1,936	2,145	-	2,538	2,538	
7	ety	Подстанции с трансформатором 1600 кВ А с порталом ввода ВЛ 35 кВ		11070	131,9	2,850	3,243	-	3,033	3,033	
8	HTY	Подстанции с трансформатором 1600 кВ.А с приёмным устрой- ством ВЛ 35 кВ		9500	86,5	I,936	2,145	-	2,538	2,538	

Главный инженер проекта (подписъ)

п 15 п июнь 1987 г.

Foccepon CCCP ЦЕНТРАЛЬНИЙ ИНСТИТУТ ТИПОВОГО ПРОЕКТИРОВАНИЯ Свердловский филиал

620062, г.Сверцловск-62, ул.Чебышева,4 Заказ № 573 Инв. № СР 809-02 гираж 660 Сдано в печать 3012 1987 цена 1-98