

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ТРАНСФОРМАТОРЫ ТРЕХФАЗНЫЕ СИЛОВЫЕ МАСЛЯНЫЕ ОБЩЕГО НАЗНАЧЕНИЯ МОЩНОСТЬЮ от 25 до 630 кВ·А НА НАПРЯЖЕНИЕ до 35 кВ ВКЛЮЧИТЕЛЬНО

ТЕХНИЧЕСКИЕ УСЛОВИЯ

FOCT 12022-76

Издание официальное

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ТРАНСФОРМАТОРЫ ТРЕХФАЗНЫЕ СИЛОВЫЕ МАСЛЯНЫЕ ОБЩЕГО НАЗНАЧЕНИЯ МОЩНОСТЬЮ ОТ 25 до 630 кВ·А НА МАПРЯЖЕНИЕ ДО 35 КВ ВКЛЮЧИТЕЛЬНО

ΓΟCT 12022-76*

Технические условия

General-purpose three-phase oil-immersed power transformers from 25 kV·A to 630 kV·A power for voltage to 35 kV including. Specifications

Взамен ГОСТ 12022—66

Постановлением Государственного комитета стандартов Совета Министров СССР от 2 декабря 1976 г. № 2690 срок введения установлен

c 01.01.78

Проверен в 1980 г. Постановлением Госстандарта от 19 декабря 1984 г. № 4709 срок действия продлен

до 01.01.87

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на стационарные масляные понижающие силовые трехфазные двухобмоточные трансформаторы общего назначения мощностью от 25 до 630 кВ·А на напряжение до 35 кВ с плоской магнитной системой, включая трансформаторы мощностью от 160 до 630 кВ·А на напряжение до 10 кВ в исполнении для КТП, с переключением ответвлений без возбуждения (ПБВ) и под нагрузкой (РПН), в том числе предназначенные для экспорта.

Установленные настоящим стандартом показатели технического уровня предусмотрены для первой категории качества. (Измененная редакция, Изм. № 3).

1. ТИПЫ, ОСНОВНЫЕ ПАРАМЕТРЫ И РАЗМЕРЫ

1.1. Типы, номинальные мощности, сочетания напряжений, схемы и группы соединения обмоток, потери и токи холостого хода, потери и напряжения короткого замыкания, виды переключений ответвлений должны соответствовать указанным в табл. 1.

Издание официальное

Перепечатка воспрещена

^{*} Персиздание (сентябрь 1985 г.)с Изменениями № 1, 2, 3, утвержденными в февроле 1981 г., сентябре 1981 г., декабре 1984 г. (ИУС 4—31, 12—81, 4—85).

[©] Издательство стандартов, 1985-

Таблица 1

	_						lao	лиц	a ı
Ę,				8 X	Потерн,	Вт			
гение тиг по ГОСТ	щиость,	Сочета: напряже кВ	те ний,	сседниен	холостого хода	анкя	жого		K
Условное обозначение типа трансформатора по FOCF 11677—75	Номиплыная мошпость, кВ·Л	Bil	нн	Схема и группа ссединения обмоток	Уфовень А	коратього замыхания	Папряжение корсткого замыхания, %	тек колестого кола, %	Вид персключения ответвлений
TM	25	6 или 10	0,4	У/У _п -0 У/Z _п -11	130	690	4,5 4,7	3,2	пвв
TM	40	6 แมห 10	0,4	$\frac{y/y_n}{y/z_n}$ -11	175	880 1000	4,5 4,7	3,0	ПБВ
тм	63	6 แมน 10	0,4	У/У _н -0 У/Z _н -11	240	1280 1470	4,5 4,7	2,8	пбв
m14	100	6 или 10	0,4	<i>У/У</i> _п -0 <i>У/Z</i> _n -11	330	1970 2270	4,5 4,7	0.0	
TM 100	35	0,4	y/y _n -0 y/z _n -11	420	1970 2270	6,5 6,8	2,6	ПБВ	
тм; тмф	169	6 или 10	0,4 0,69 0,4	У/У _н -0 Д/У _н -11 У/Z _n -0	510	2650 3100 3100	4,5 4,5 4,7	2,4	ПБВ
ТМ	103	35	0,4 0,69 0,4	У/У _н -0 Д/У _н -11 У/Z _н -11	620	2650 3100 3100	6,5 6,5 6,8	2 , T	1100
ТМ, ТМФ	250	6 или 10	0,4 0,69 0,4	У/У _н -0 Д/У _н -11 У/Z _н -11	740	3700 4200 4200	4,5 4,5 4,7	2,3	ПБВ
тм	200	35	0,4 0,69 0,4	ン/ソ _н -0 月/ジ _п -11 ソ/Z _н -11	900	3700 4200 4200	6,5 6,5 6,8	2,0	1106
ТМ, ТМФ ТМН	400	6 нли 10	0,4 0,4 0,69	$\begin{array}{c} \mathcal{Y}/\mathcal{Y}_{n}\text{-}0\\ \mathcal{I}/\mathcal{Y}_{n}\text{-}11\\ \mathcal{I}/\mathcal{Y}_{n}\text{-}11 \end{array}$	950	5500 5900 5900	4,5	2,1	ПБВ
TM, TMH		35	0,4 0,69	У/У _н -0 Д/У _н -11	1200	5500 5900	6,5		РПН

Продолжение табл. 1

	Covers		K E	Потери,	Вт		1	
цность,			оединен	холостого хода	1188	TROFO		~
Номинальная мос кВ · А	BH	HH	Схема и группа обмотож	Уровень А	короткого замьжа	Напряжение корс замыкания, %	Ток холостого ходз. %	Вил персключения ответвлений
	6 или 10	0,4 0,4 0,69	ソ/ソ ₁₁ -0 Д/ソ ₁₁ -11 Д/ソ ₁₁ -11	1310	7600 8500 8500	5,5		ПБВ
630	35	0,4 0,69	У/У _и -0 Д/У _и -11	1600	7600 8500	6.5	2,0	РΠН
		6,3 11	У/Д-11 У/Д-11	3.3	7600 7600			РПН
		Ноимен ж В напряже к В напряж	ВН НН Били 10 0,4 0,69 630 35 0,4	ВН НН выражений, кв выпражений, кв выстичений, кв выпражений, кв	ВН НН ж жолостого хода В или 10 0,4 у/уп-0 д/уп-11 1310 0,4 0,69 Д/уп-11 1600	ВН НН в в в в в в в в в в в в в в в в в	Сочетание кв	Нединальная жодостого хода Вын не мод модостого хода выпитальная мод модостого модостого хода выпитальная мод мод модостого хода выпитальная мод мод модостого хода выпитальная мод

Примечания:

1. (Исключено, Изм. № 3).

- 2. Значения потерь и напряжения короткого замыкания указаны на основном ответвлении.
- 3. По заказу потребителя для действующих электросетей допускается изготовлять:

а) трансформаторы ПБВ мощностью от 25 до 400 кВ А напряжением НН

0.23 кВ со схемой и группой соединения обмоток Y/Y_0 -0;

б) трансформаторы ПБВ мощностью от 25 до 100 кВ·А с сочетанием напряжений 6,3/0,23 и 10,5/0,23 кВ, мощностью от 160 до 630 кВ·А с сочетанием напряжений 6,3/0,4 и 10,5/0,4 кВ со схемой и группой соединения обмоток У/У_и-О и мощностью 630 кВ·А с сочетанием напряжений 6/3,15 кВ со схемой и группой соединения обмоток У/У-О.

При этом допускается увеличение потерь короткого замыкания на 5 %.

- 4. По согласованию между потребителем и изготовителем допускается изготовлять:
- а) трансформаторы ПБВ мощностью от 100 до 630 кВ·А напряжением ВН 20 кВ;
- б) трансформаторы ПБВ мощностью 630 кВ · А с сочетанием напряжений 15,75/0,4 кВ со схемой и группой соединения обмоток У/У_п-0;
- в) разделительные трансформаторы ПБВ мощностью 400 и 630 кВ·А с сочетанием напряжений 6/6,3, 10/10,5 и 10/6,3 со схемой и группой соединения обмоток \mathcal{Y}/\mathcal{Z} -11.

При этом для трансформаторов, указанных в примечании 4 а, б, в, значения потерь холостого хода и короткого замыкания, напряжения короткого замыкания и тока холостого хода принимаются на уровне этих величин для трансформаторов класса 35 кВ соответствующей мощности, указанных в табл. 1:

г) трансформаторы мощностью 250, 400 и 630 кВ·А с сочетанием напряжений 6/0,23 и 10/0,23 кВ со схемой и группой соединения обмоток $\mathcal{Y}_{u}/Д$ -11 с двумя отпайками в обмотке ВН на $\pm 5\%$ (выполняются без переключателя).

- 5. Трансформаторы РПН мощностью 400 и 630 кВ-А напряжением НН 0,4 и 0.69 кВ изготавливаются с потерями корсткого замыкания на 10% большими, чем указано в табл. 1, при этом требования к устройствам РПН (независимо от напряжения НН), должны быть согласованы между потребителем и изгото-
- 6. Трансформаторы, предназначенные на экспорт, в соответствии с заказом нарядом внешнеторговых организаций допускается изготовлять с параметрами, отличными от указанных в табл. 1.

(Измененная редакция, Изм. № 1, 2, 3).

1.2. Габаритные размеры и масса трансформаторов соответствовать указанным в табл. 2. Таблица 2

	Верхипії	Габарити	1				
Номинальная мощность трансфор- катора. «В · А	предел но- минального			Выс	тота	Полиоя	
	папряжения обчотки ВП, кВ	Данка	Шярняв	полная крышки		насса, иг, не более	
25 40 63 100 160 250 400 630 (с госу- дарствен- ным Зна- ком каче- стба)	10	1120 1120 1120 1200 1220 1310(1550) 1400(1720) 1750		1225 1270 1400 1470 1600 1760 1900 2150	775 820 950 1020 1190 1290 1440 1635	380 485 600(620) 720(740) 1100(1150) 1425(1475) 1920 3000	
100 160 250 400 630	35	1330 1400 1500 1650 2100	900 1000 1250 1350 1450	2200 2260 2320 2500 2750	1400 1600 1670 1750 2000	1300 1700 2000 2700 3500	

Примечания:

1. Указанные в табл. 2 габаритные размеры и массы относятся к трансформаторам ПБВ; для трансформаторов РПН, а также трансформаторов с усиленными вводами (патегория В) по ГОСТ 9920-75 допускается увеличение габаритных размеров и массы.

2. Указанные в скобках габаритные размеры и массы относятся к трансфор-

маторам со схемой и группой соединения обмоток \mathcal{Y}/Z_{R} -11.

3. Указанный в знаменателе размер относится к трансформаторам в исполнении для КТП.

4. Для трансформаторов в исполнении для КТП указана длина между фланцами ВН и НН.

5. Для трансформаторов с установленным газовым реле допускается

увеличение габаритных размеров по длине и высоте на 200 мм.

6. Трансформаторы, предназначенные на экспорт, в соответствии с заказомнарядом внешисторговых организаций допускается изготовлять с габаритными размерами и массой, отличными от указанных в табл. 2.

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

2.1. Трансформаторы должны изготавливаться в соответствии с требованиями настоящего стандарта и ГОСТ 11677—75.

Примечание. Для трансформаторов, имеющих повышенный уровень потерь короткого замыкания, допускается напбольшее превышение температуры верхиих слоев масла 60°C.

- 2.2. Трансформаторы должны изготавливаться с алюминиевыми обмотками. Допускается трансформаторы мощностью 25 и 40 кВ·А, а также 100 кВ·А напряжением 35 кВ изготавливать с медными обмотками ВН.
- 2.3. Для трансформаторов, предназначенных на экспорт, дополнительные требования должны устанавливаться в технических условиях на них.
- 2.4. Трансформаторы должны изготавливаться едиными для категорий размещения 1, 2, 3 и 4 по ГОСТ 15150—69 и ГОСТ 15543—70.
- 2.5. Требования к электрической прочности изоляции трансформаторов по ГОСТ 1516.1—76.
- 2.6. Трансформаторы должны быть рассчитаны на работу при следующих превышениях напряжения, подводимого к любому ответвлению обмотки ВН, над поминальным напряжением данного ответвления:

продолжительно не более чем на 5% — при мощности не выше номинальной;

эпизодически (но не болес 6 ч в сутки) не более чем на 10% — при мощности не выше номинальной;

продолжительно не более чем на 10% — при мощности не выше $^{1}/_{4}$ номинальной.

2.7. Тірансформаторы должны выдерживать без повреждений внешние короткие замыкания на любом ответвлении при испытаниях по ГОСТ 20243—74 и значениях кратности установившегося тока короткого замыкания по ГОСТ 11677—75.

Нанбольшая длительность короткого замыкания t_{κ} в секундах определяется по формуле

$$t_{\rm K} = \frac{1500}{\left(\frac{I_{\rm K,0TB}}{I_{\rm H}}\right)^2}$$
, но не более 5 с,

где $I_{\text{и.отв}}$ — установившийся ток короткого замыкания ответвления, для которого имеют место наибольшие расчетные усилия, A;

 $I_{\rm H}$ — номинальный ток трансформатора, А.

2.8. Переключение ответвлений

2.8.1. В трансформаторах ПБВ со стороны ВН должна быть предусмотрена возможность изменения коэффициента трансформации относительно номинального на ±5% ступенями по 2,5%.

2.8.2. Номинальные напряжения ответвлений обмотки ВН дол-

жны соответствовать указанным в справочном приложении.

2.9. Переключающие устройства

2.9.1. Трансформаторы ПБВ должны снабжаться переключателем ответвлений с выведенным приводом.

2.9.2. Переключающие устройства— по ГОСТ 24126-80.

(Измененная редакция, Изм. № 3).

2.10. Трансформаторы должны снабжаться съемными вводами с изоляторами нормального исполнения (категория A) по ГОСТ 9920—75, а по заказу потребителя—с изоляторами усиленного исполнения (категория B) по ГОСТ 9920—75.

(Измененная редакция, Изм. № 1).

2.11. Расположение основных элементов тран-

сформаторов

2.11.1. Расположение основных элементов трансформаторов с вводами на крышку должно соотдетствовать указанному на черт. 1.

Вводы НН должны быть расположены в зонах 1 и 2. Вводы ВН должны быть расположены в зонах 3 и 4.

Расширитель должен быть расположен вдоль узкой стороны трансформатора.

По согласованию изготовителя с потребителем допускается расширитель располагать вдоль широкой стороны трансформатора со стороны вводов ВН.

Термосифонный фильтр, воздухоосущитель, термометр и пробка для слива масла должны быть расположены со стороны НН.

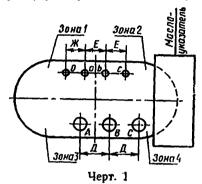
(Измененная редакция, Изм. № 1).

2.11.2. Расположение основных элементов трансформаторов в исполнении для КТП должно соответствовать указанному на черт. 2.

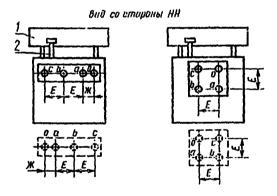
Вводы НН и ВН должны быть раоположены на противоположных торцевых стенках бака в последовательности, указанной на черт. 2.

Порядок расположения вводов НН и ВН, ограниченный на чертеже сплошной линией, является основным (левое исполнение).

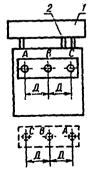
По согласованию с потребителем допускается порядок расположения вводов НН и ВН, ограниченный на чертеже пунктирной линией (правое исполнение).

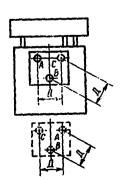

Расширитель должен быть расположен по поперечной осн

трансформатора.


Термометр, маслоуказатель и воздухоосушитель должны быть расположены слева, если смотреть со стороны вводов НН; по требованию потребителя они должны быть расположены справа.

Трансформаторы в исполнении для КТП допускается выполнять с вводами на крышку. При этом расположение арматуры не нормируется.


Трансформаторы с вводами на крышку



Трансформаторы в исполнении для КТП

Вид со стороны ВН

1 — маслоуказатель; 2 — термометруЧерт. 2

2.11.3. Расстояния между осями вводов НН и ВН должны быть не менее указанных в табл. 3.

Таблица 3

Номинальная мощность станорова-станорова-станорова-хв. кв. лест	Верхний предел но-	Расстояние между осями вводов, мм. не менее				
	напряжения -обмотки, ВП, кВ	Д	Е	ж		
25						
40	1		1			
63	}		90	90		
100	10	170				
160	1 " 1		<u> </u>			
250			110	100		
400			110			
630			120	120		
100			90	90		
160						
250	35	400	110	100		
400		.30	110	103		
630			120	120		

- 2.12. Приспособления для перемещения
- 2.12.1. Ко дну бака должны быть приварены: пластины для трансформаторов мощностью 25 и 40 кВ·А:

швеллеры — для всех остальных трансформаторов.

По заказу потребителя трансформаторы мощностью от 160 до 630 кВ·А с вводами на крышку должны снабжаться тележками с переставными гладкими катками для продольного и поперечного передвижения. При этом расстояния между средними линиями катков должны соответствовать указанным в табл. 4 расстояниям между осями отверстий.

- 2.12.2. В пластинах и швеллерах должны быть предусмотрены отверстия или вырезы для крепления трансформаторов к фундаменту.
- 2.12.3. Расстояния между осями отверстий в пластинах и швеллерах, приваренных ко дну бака, должны соответствовать указанным в табл. 4.

Таблица 4

	Верхний предел	Расстояние между осями отверстий, ма				
Номинальная мощ- ность трансфор- озтора. кВ · А	номинального напряження обмотки ВН, кВ	по длине трансформатора	по ширине трансформатора			
25		450				
40		500	400			
63		500	1			
100	10	550	450			
160	••	550				
250						
400	400		660			
630		820				
100		550 660 820				
169						
250	35					
400						
630						

2.13. Арматура

2.13.1. Трансформаторы должны быть снабжены термометром для измерения температуры верхних слоев масла. Для этого на крышке бака должно быть предусмотрено отверстие для установки стальной гильзы с термометром.

2.13.2. Для слива масла трансформаторы должны иметь пробку с отверстием диаметром:

не менее 12 мм — для трансформаторов мощностью до 100 кВ · А:

не менее 20 мм — для трансформаторов мощностью 160 кВ · А и более.

Эта пробка должна служить также и для отбора пробы масла с высоты не более 50 мм от дна бака, для чего у трансформаторов мощностью до $100~{\rm kB}\cdot A$ включительно пробка должна допускать присоединение к ней гибкой трубки.

- 2.13.3. Трансформаторы мощностью от 160 до 630 кВ·А должны быть снабжены пробкой на дне бака, предназначенной для слива осадков масла.
- 2.13.4. Қонструкция термосифонного фильтра должна обеспечивать замену сорбента без слива масла из бака трансформатора.
- 2.14. Трансформаторы должны заливаться трансформаторным маслом по ГОСТ 10121—76, а также по другой нормативнотехнической документации на масло качеством не хуже, чем по указанным стандартам.

(Измененная редакция, Изм. № 3).

2.15. Требования к технологичности конструкции деталей и сборочных единиц — по ГОСТ 14.203—73 и ГОСТ 14.204—73.

2.16. Требования к конструкции трансформаторов в части требований безопасности — по ГОСТ 12.2.007.2—75. (Измененная редакция, Изм. № 2).

2.17. Показатели надежности

- 2.17.1. Вероятность безотказной работы трансформатора доверительной вероятности 0,8 за наработку 8800 ч должна быть не менее 0.99.
- 2.17.2. Для трансформаторов, которым в установленном порядке присвоен государственный Знак качества, вероятность безотказной работы при доверительной вероятности 0,8 за наработку 8800 ч должна быть не менее 0.995.

2.17.3. Срок службы трансформатора — по ГОСТ 11677—75.

2.18. Допустимые уровни шума трансформаторов — по ГОСТ 12.2.024-76.

2.19. В комплект трансформатора должны входить:

газовое реле — для трансформаторов мощностью 400 и 630 кВ А. предназначенных для питания собственных нужд станций и подстанций или для установки внутон промышленных или общественных зданий (по заказу потребителя):

пробивной предохранитель — для трансформаторов с напряжением обмотки НН 0,23; 0,4 и 0,69 кВ (по заказу потребителя);

силикагель в упаковке:

запасные части — по ведомости ЗИП.

К комплекту должна прилагаться эксплуатационная документация по ГОСТ 2.601-68 в составе паспорта, технического описания, инструкции по эксплуатации и габаритного чертежа.

3. ПРАВИЛА ПРИЕМКИ

3.1. Правила приемки трансформаторов — по ГОСТ 11677-75.

4. МЕТОДЫ ИСПЫТАНИЙ

4.1. Методы испытаний трансформаторов — по ГОСТ 11677—75.

4.2. Испытание трансформаторов на плотность должно проводиться в течение 5 мин избыточным давлением 25+5 кПа под крышкой или давлением масляного столба высотой 3 м над расширителем при температуре масла в верхних слоях от плюс 10 до плюс 35°C.

5. МАРКИРОВКА, УПАКОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

5.1. Маркировка, упаковка, транспортирование и хранение трансформаторов — по ГОСТ 11677—75.

Буквенная часть условного обозначения типа трансформаторов в исполнении для КТП с боковым расположением вводов должна дополняться буквой Ф.

5.2. Условия транспортирования трансформаторов в части воздействия климатических факторов — по группе условий хранения

ОЖ3 ГОСТ 15150-69.

5.3. Условия хранения трансформаторов — по группе условий хранения ОЖЗ, комплекта запасных частей — по группс условий хранения С ГОСТ 15150—69.

6. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

6.1. Гарантии изготовителя — по ГОСТ 11677—75.

6.2. Для трансформаторов, которым в установленном порядке присвоен государственный Знак качества, гарантийный срок

эксплуатации 5 лет со дня ввода в эксплуатацию.

6.3. Гарантийный срок эксплуатации трансформаторов, предназначенных на экспорт, —один год со дня ввода в эксплуатацию, но не свыше двух лет со дня проследования через Государственную границу СССР.

(Измененная редакция, Изм. № 2).

ПРИЛОЖЕНИЕ Справочное

Номинальные напряжения ответвлений при холостом ходе трансформаторов ПБВ

Ступени регулирования			Напряжен	не ступене	й, к В	
+5%	6,30	6,61	10,50	11,02	21,00	36,75
+2,5%	6,15	6,46	10,25	10,76	20,50	35,87
Номинальная	6,00	6,30	10,00	10,50	20,00	35,00
—2,5%	5,85	6,14	9,75	10,24	19,50	34,13
—5%	5,70	5,98	9,50	9,97	19,00	33,25

Редактор М. В. Глушкова Технический редактор М. И. Максимова Корректор А. Г. Старостин

Сдано в наб. 17.07.85 4.0 усл. кр.-отт. Подя. в печ. 29.10.85 0.79 уч.-изд. л. Тир. 10000 1,0 усл. п. л. Цена 5 иоп.