ГОСУДАРСТВЕННЫЙ КОМИТЕТ СОВЕТЯ МИНИСТРОВ СССР ПО ДЕЛАМ СТРОИТЕЛЬСТВА (ГОССТРОЙ СССР)

ТИПОВЫЕ КОНСТРУКЦИИ И ДЕТАЛИ ЗДАНИЙ И СООРУЖЕНИЙ

Серия 1.460-3

СТАЛЬНЫЕ КОНСТРУКЦИИ ОДНОЭТАЖНЫХ ПРОИЗВОДСТВЕННЫХ ЗДАНИЙ ДЛЯ УСЛОВИЙ КОНВЕЙЕРНОЙ СБОРКИ И БЛОЧНОГО МОНТАЖА

выписк 1

ПОКРЫТИЯ ПРОЛЕТАМИ 24 и 30м ДЛЯ ЗДАНИЙ, ВОЗВОДИМЫХ В НЕСЕЙСМИЧЕСКИХ РАЙОНАХ С РАСЧЕТНЫМИ ТЕМПЕРАТУРАМИ МИНУС 40°С И ВЫШЕ

рабочие чертежи КМ

JE was

ЩЕНТРАЛЬНЫЙ ИНСТИТУТ ТИПОВОГО ПРОЕКТИРОВАНИЯ

LOCCTDON CCCD

Москва, А-445, Смольная ул., 22 Сдано в печать 197*9*; Заказ № 2*945* Твраж 200 жг.

Серия 1.460-3

СТАЛЬНЫЕ КОНСТРУКЦИИ ОДНОЭТАЖНЫХ ПРОИЗВОДСТВЕННЫХ ЗДАНИЙ лля условий конвейерной сборки и блочного **МОНТАЖА**

выпчск 1

ПОКРЫТИЯ ПРОЛЕТАМИ 24 и 30м ДЛЯ ЗДАНИЙ, ВОЗВОДИМЫХ В НЕСЕЙСМИЧЕСКИХ РАЙОНАХ С РАСЧЕТНЫМИ ТЕМПЕРАТУРАМИ МИНУС 40°С И ВЫШЕ

РАБОЧИЕ ЧЕРТЕЖИ КМ

Разработаны институтам ЦНИЙ проектстальконотрукция Ленинградское отделение

Утвержвены и введены в действие FOCCIMPOEM CCCP c 1 HORDON 1973. Nacmanobranue am Munary 1973. M 156.

LO		, [-] <u>т. Ст</u>	WAHUE	_
Пояснительная записка.	<u> </u>	3 <i>-6</i>	Сартамент связей и панели торца фонаря.	
Схена раскладки монтажных блоков покрытия в зданиях с пролетами L = 30 м.	,	7	Узел 1 опирания блоков покрытия на калонны по крайним рядам	
Схема раскладки монтажных блоков покрытия в зданиях с пролетами L=24м.	2	8	Узел 2 опирания блоков покрытия на колонны по средним рядам	•
Схена Блока 51-30	3	9	"	•
Схена блока 52-30	4	10		
Схема блока 53-30.	5	11	Узел 6 опирания стропильной фермы на подстропильн и ю.	
Схема блока Б 4-30,	6	12		
Схена блока 55-30.	7	13	Узел 8 апирания фанарной панели на стропильную ферму. Узлы 9,10, 19-21 крепления связей.	
Схема блока 51-24.	8	14		
Схема блока 52-24.	9	15	. Узлы фонаря 5 и 23.	
Схена блока Б3-24	10	16	Мантажные эзлы 11,12,14,15 стропильных ферм	
Схема блока 54-24.	11	17	- Ошто то страналоних ферм про налочео повоесных кранов.	
Схема блока 55-24.	12	18	Схемы <u>ш</u> и <u>V</u> расположения в пролетах подвесных электрических, однопралетных кранов общего назначения, их егометрические параметры и масса. Нормативные и расчетные крановые нагризки.	
Эжвивалентные равномерно-распределенные расчетные нагрязки от снегового покрова, фонаря и подвесных электрических кранов.	13	19	Схены <u>VII</u> и <u>VIII</u> расположения в пролетох электрических 2° и 3° пролетных кран общего назначения, их геометрические параметры и масса Нормативные и расчетные крановые нагрэзки.	
Схены стропильных и подстропильных ферм , фонаря и танели торца фонаря	14	20	Указания по расчеты монтажных стыков поясных чголков в чэлах ферм.	
Сартанент страпильных ферм пролетом 24 м.	15	21	Спецификация стали стропильных ферм пролетами 24 и 30м.	
Сортамент стропильных ферм пралетом 30 м	16	22	Спецификация стали подстропильных ферм, фонарных ферм, фонарных панелей и панелей торчов фонарм.	
Сортамент стропильных ферм пралетом 30м Сортамент стропильных ферм пралетами 24 и 30м при маличии подвесного транепорта. Шае ферм 6 м. Сортамент подстропильных ферм пралетом 12м. Сортамент фонорных ферм, прогонов и фонорных панелей	17	23	Расход стали на элементы блока.	
Сортанент подстропильных ферм пролетом 12м	18	24		
Сортамент фонарных ферм, прогонов и фонарных панелей	10	25	ТК 1972 Содержание альбама Ва	

<u>Пояснительная записка</u>

<u>I.Оъщая часть</u>

Настоящий выпуск содержит чертежи "КМ" стальных канструкций покрытий однозтажных многопролетных производственных зданий, пролетами 24 и 30м, для условий конвейерной сворки и блочного монтажа, возводимых в несейсмических районах, с расчетной температурой наружного воздуха выше минус 40°С. Конвейерная сворка и блочный монтаж конструкций покрытия позволяют существенно снизить трудоемкость строительно—монтажных работ, улучшить их качество и значительно сократить сроки строительства за счет повышения производительности труда.

В качестве рекомендченых принципиальных решений, применительно к настаящей работе, инстититами "Промстройпроект" (г. Москва) и "Промсталь-конструкция" (г. Москва) разработаны: Альбом I "Ярхитектирные детали кровли", "Альбом I "Технология и организация сборки и монтажа".

Указанные альбоны распространяются институтом "Пронстройпроект" под шифром 2491-Т-72 и институтом "Пронстальконструкция" под шифром 20978-М

При разработке чертежей блоков покрытия в максимально возможной степени использованы материалы типовых конструкций и деталей зданий и сооружений:

- a/ Серия 1.460-4 "Стальные конструкции покрытий праизводственных зданий с применением стальнаго профилированного ностила." Выпуск 1.
- б/Серия 1.464-2 "Стальные конструкции светов эроционных фонарей промыкиленных зданий"
- Выписк включает в себя:
- --- схены блоков пролетами 24,0м и 30,0м.
- ---- эквивалентные нагрузки от снегового покрова, фанарей и подвесного `транспорта.
- схемы стропильных и подстропильных ферм, фонарей и связей.
- --- сортамент стропильных и подстропильных ферм, фонарей, подфонарных ферм, сбязей и прогонов.
- -- Заводские и монтажные чэлы сопряжения элементов блока.
- спецификации стали на эпементы канструкций.

II Область применения

- 5. Конструкции блокав покрытия, разравотанные в настоящем выпуске, могут выть применены в одноэтажных многопролетных производственных зданиях без фонорей и с продольными светоизрационными фонаруми, возводимых:
 - в І № ветровых районах.

 - Блоки покрытия применяются при следующих параметрах зданий:
 - *пролеты 24,0 м и 30,0 м* .
 - ---- Здания мнагопролетные
 - шае колонн по средним и крайним рядам 12,0 м.
 - --- колонны стальные и железобетонные
 - -- высота пролетов до низа стропильной фермы не более 18,0м.
 - —— здания бескрановые, с подвесными кранами грэзоподъемностью до 5,0m. и с мостовыми краноми легкого и среднего режима работы грэзоподъемностью до 75,0m.

При наличии кранов среднего режина работы большей грэзоподъемности, вопрос целесообразности применения блочного монтажа решается в зависиности от конкретных эсловий с одновременным пересмотром сечений эленентов связей по нижним поясам ферм и эзлов крепления подстропильных ферм к колоннам

- фонари светавэрационные шириной 120м. и высотой в два переплета по
- --- пакрытие из оцинкованного профилированного настила.
- --- водартвад внутренний .
- та виды нагрэзок, на которые рассчитаны констрэкции блока приведены в разделе № пояснительной записки При наличии в здании нагрэзак, неоговоренных в эказанном разделе, производится индивидуальный расчет элементов блока и по полученным эсилиям подбирается соответствующая марка.
- Решение о применении конструкций покрытия для конвецерной сворки и блочного монтажа волжно праизводиться в зависимасти от площади цеха или суммарной площади гряппы одноэтажных цехов, расположенных в непосредственной влизасти на одной строительной площадке. При этом следует учитывать что при площади менее 50 тыс. кв. м. применение блочного монтажа может оказаться экономически неоправданным.

TK

Паяснигаельная записка

<u>Ш. Конструктивные решения.</u>

9:

LHMANDOEKTETAND

KDHCT PYKUNA C. Semmerman

Разработанные конструкции блоков предусматривают 100% строительную готовность их на конвейере в нижнем положении с одновременным монтажом всех технологических комминикаций в межферменном пространстве.

Я. Общая компановка блока-покрытия.

в настоящем выпуске разработаны конструкции блоков покрытий зданий лод рупонную кровлю с уклоном 1,5%, размерами в плане 30,0×12,0м и 24,0×12.0м. гяти основных типов:

- δποκ δεσφαναρνωύ (οςνοδνού и ποργεδού).
- блок с фонарем (оснавной).
- блок с торуевым фонарем.
- блок с торуевым фонарем у температурного шва.

Несущие конструкции блока состоят из двух стропильных ферм, смещенных с осей каланн на 3,0м, двух падстрапильных ферм элементав фонаря , прогонов и системы связей.

Блок опирается на колонны шарнурно через податропильные фермы, смешенные с осей колонн на 200 мм.

За несящий элемент кровли принят Стальной профилированный настил, укладываемый по прогонам и подстропильным фермам. Прогоны неразрезные, трехпролетные с шагом 3,0м, опираются на чэлы стропильных ферм и продольные балки

В целях предотвращения расстройства рупонного ковра кровли предусмотрено соединение между собой стоек фонарных панелей смежных блоков.

Пространственная неизменяемость блока во время его сборки на конвейере, транспортировки и установки в проектное положение обеспечивается системой еоризонтальных и вертикальных связей, которые одноврем**енно являются** и рабачими связями покрытия.

Опирание верхниж канцав стоек торуевого и продольного фохверка решаетая путем постановки дополнительных распорок по нижним поясам ферм *блока* .

Нижние пояса стропильных и подстропильных ферм располагаются в одном уравне.

Предельные размеры температурных отсеков зданий принимаются в соот $oldsymbol{b}$ етст $oldsymbol{b}$ и $oldsymbol{c}$ стальные конструкции. Нормы про $oldsymbol{e}$ ктирования "и СН и Лії - В. 1-62", Бетонные и железобетонные конструкции

Норны проектирования" Продольные температирные швы решаются посредством вставак шириной 1,0м. При этом в блаках, примыжающих к правальному температурному шву, профилированный настил выпускается за ось подстропильной фермы ~ на 680мм в сторони вставки.

В случае опирания блоков на железа-бетонных колонны, закладные дета ли в верхушках последних должны быть выполнены в соответствии с чэлами настаящего выпуска.

Б. Стальной профилированный настип.

20. Стальной оцинкованный профилированный настил (гофрированные профили) принимается в соответствии с техническими человиями "Сталь коловновнитая очинкованная. Профили гофрированные с трапециевидной формой гофра ТУЗ4-5831-11. Расчетный пролет настила, в соответствии с раскладкой прогонов, принят 3,0м. Марки настила принимать в зависимости от снеговой нагризки (см.

марка настила CHES MCC/H2 фонарамерь H60- 782- 08 70 140 200 H60 - 782 - 0.9 100

280

420

140

210

παδлиця).

Депискаемая расчетная нагризка в кгс/м², при шаве прогонов 3,0м.

H60 - 782-1.0

H79 - 680-1.0

Прафиль -	CxeMd Mocmund			
разн е р	пралегиная	Aparemion	пралетия	пролетна)
H79-680-1,0	502	575	716	670
H60-782-1.0	360	439	548	512
H60-782-0.9	310	375	469	438
H60 -782-0.8	260	317	397	371

Пояснительная записка

Крепление настила к прогонам, фонарной панели и подстропильной ферме асяществляется самонорезающимися болтами через валня, а соединение листов настила между собой-комбинированными заклепками. Профилированный настил и крепежные детали к нему заказывсяются в орхитектирностроительной части проекта.

В. Прогоны.

22.

25.

29

Ц НИИПРОЕКТСТАЛЬ-КОНСТРУКЦИЯ г Ленингоя Прогоны приняты нерозревными, трехпролетными (3+6+3m) сплошного сечения из холодногнымых швеллеров по ГОСТ8278-63 и как вариант, в сличае атситствия енытых профилей, из горячекатаных швеллеров по ГОСТ8240-72. Прогоны крепятся к фонарям и стропильным фермам - болтами.

Г. Фонари.

Фанари ширинай 12м и бысатай остекления 2×1250мм приняты по серии 1.464-2. Стальные конструкции светаврацианных фанарей промышленных зданий. Фонарные панели приняты однопролетными с консолями 3,0м по типу панелей серии 1.464-2.

Д.Стропильные и подстропильные фермы.

Стролильные фермы приняты с параллельными поясами, с эклоном поясов 1,5% и высатай на опоре по обящкам 3,150мм. по серии "Стальные канстрякции покрытий производственных званий с применением стального профилированного настила". 1.460-4. Выляск 1.

В подстропильных фермах пролетоми 12,0м и 11,5м, высотой по обзижам паясов 3350мм, стойки в нестах крепления стропильных ферм приняты сварными двятаврового профиля.

Е. Связи блока - покрытия

Система связей блока состоит из вертикальных и горизонтальных раско-

Сечение связей дано в вариантах:

- а/ из горячекатаных профилей по ГОСТ 8509-72.
- б/ из холодногнятых, замкнятых профилей по ГОСТ 8276-63 и ГОСТ 8278-63.
- в/ из электросварных трыб по ГОСТ10704-63.

Крепление связей по верхним поясам осуществляется волтами мармальной точности М20. Связи по нижним поясам ферм крепятся болтами нармальной точности М20 и на сварке в зависимости от величины усилий, действу-

ющих в этих элементах

*3*5.

Эк. Фонарные переплеты.

4. Фанарные переплеты высатой 1250 чм приняты по серии 1.464-3. Стальные переплеты световзрационных фанарей. Выписк 1 и 2.

<u>IV</u> Расчет конструкции и нагрузки

Росчет элементов конструкций влока произведен в саатветствии с главами СН и ПІІ-Я.10-71 "Страительные конструкции и аснования Основные положения проектирования", СН и ПІІ-Я.11-62 "Нагрузки и воздействия Нормы проектирования", СН и ПІІ-В.3-72 "Стальные конструкций . Нормы проектирования"

33. При расчете конструкций принимались следующие постоянные нармативные нагрузки:

— Прогоны — 10 мгс/м²
— Стальной профилированный настил — 15 мгс/м²
— Пароизаляция — 4 мгс/м²
— Эффективный итеплытель — 5 мгс/м²
— Руланный кавер — 16 мгс/м²
— Гравийная защита — 50 мгс/м²
Всего: —100 мгс/м²

Максимальная снеговая нагрэзка принята по $\overline{\mathbb{M}}$ снеговомы районы. Максимальная ветровая нагрызка принята по $\overline{\mathbb{M}}$ ветровамы районы. Стропильные и подстропильные фермы рассчитаны как разрезные свободно апертые констрыкции в предположении изловой передачи нагрызак.

Расчет стропильных ферм произведен на равнамерно-распределенным награзка расположенныю по всемы пролеть фермы. Расчетная награзка включает в себя собственный вес покрытия и эквивалентныю равномерно - распревеленныю награзка от снегового покрова, света эроционного фонаря и подвесного транспорта. Эквивалентные награзки приведены на листе 13.

Нижние пояса страпильных и подстрапильных ферм долоянительно рассчитаны на поперечные и продальные горудантальные силы, равные 10 т. каждая и приложенные в эровне верха колонн

ГК Пояснительная записка

12514

Выбар необходимой марки блака производится по расчетной нагрязке на стропильные фермы. При определении расчетной нагрязки снеговые отложения, вес фонарных констрыкций и подвесной транспорт следчет, учитывать в виде эквивалентных равномерно-распределенных нагрязок (см. лист 13). При определении нагрязок от веса покрытия, собственный вес ферм ччитывать не следчет. Фактическая расчетная нагрязка не должна превышать расчетную нагрязку на фермы, указанную в сортаменте.

. Монтажные швы крепления подстропильных ферм к колоннам рассчитаны на передачы горизонтальных исилий, в продольном направлении равных 20,0 m. в поперечном - 10,0 m.

При приныкании к элементам блока конструкций не предусмотренных данным выпуском (сантехнические короба, прампроводки и т.п) в конкретном проекте "Км" должны быть даны соответствующие узлы.

Uзготовление и монтаж стальных конструкций блока должно произбадиться в соответствии с главой СН и $\Pi \overline{\underline{M}}$ -8.5-62 * , Металлические кон - струкции. Правила изготовления, монтажа и приемки."

Проектом производства работ должна быть предчемотрена конвейерная сборка и блочный монтаж конструкций пакрытия, включая монтаж всех промразводок с обеспечением максимальной готовности блока на конвейере.

38.

цниипРОЕКТСТАЛЬ-КОНСТРУКЦИЯ г. Ленінград 41. Пояса стропильных ферм выполняется из низколегированной стали с расчетным сопротивлением R = 2900 ^{кгс}/см². Решетка ферм, узлавые фасонки и стыковые накладки при монтажных стыках, выполняемых на сварке, принимаются из углеродистой стали - "Сталь З" по ГОСТ 380-71. Пояса и раскосы подстропильных ферм выполняются из низколегированной стали; стойки, подкосы и узлавые фасонки - из углеродистой стали "Сталь З^{*}

В конкретном праекте сталь должна заказываться:

- 4. Низколегированная сталь сталь 14Г2 или 10Г2С1 для сварных конструкций по ГОСТ5058-65* с дополнительной гарантией ударной вязкасти при температуре минус 40°С и после механического старения согласно п. 2.76 ГОСТ5058-65*
- 2. Углеродистая сталь "Сталь 3":
 - a/ для стропильных и подстропильных ферм, фонарей, вертикальных связей, за исключением фасонак ферм и стыковых накладак сталь челеродистая для сварных конструкций марки В Ст. 3 пс 6 па ГОСТ 380-71.
 - б для фасонок стропильных и подстропильных ферм и стыковых накладоксталь эглеродистая для сварных конструкций марки ВСт.Зсп.5 ГОСТ380-71.

- в/ для элементов горизонтальных связей, распорак, растяжек и прогонов, а также элементов из колодногнятых профилей толициной 2 и 3 мм столь эглеродистая для сварных конструкций марки ВСт.3 кл2 по Гост 380-71.
- г/ материал профилированного настипа сталь по ТУЗ4-5831-71.

 При изотовлении и монтаже профилированного настила рыковод ствоваться техническими условиями <u>мсн 232-70</u> ммсс ссср
- Балты нормальной точности принимаются из стали марки в Ст. Эміг. Для сварки стальных конструкций приненять полуавтоматическую сварку, при ручной сварке применять электроды типа 342 или 342А. Соединения элементов из низколегированной стали с элементами из углеродистой стали, при ручной сварке, производить электродами 342А. Применяемые электроды должны удовлетворять требованиям ГОСТ 9467-60.

<u> Чсловные обозначения:</u>

Отверстие для балта.

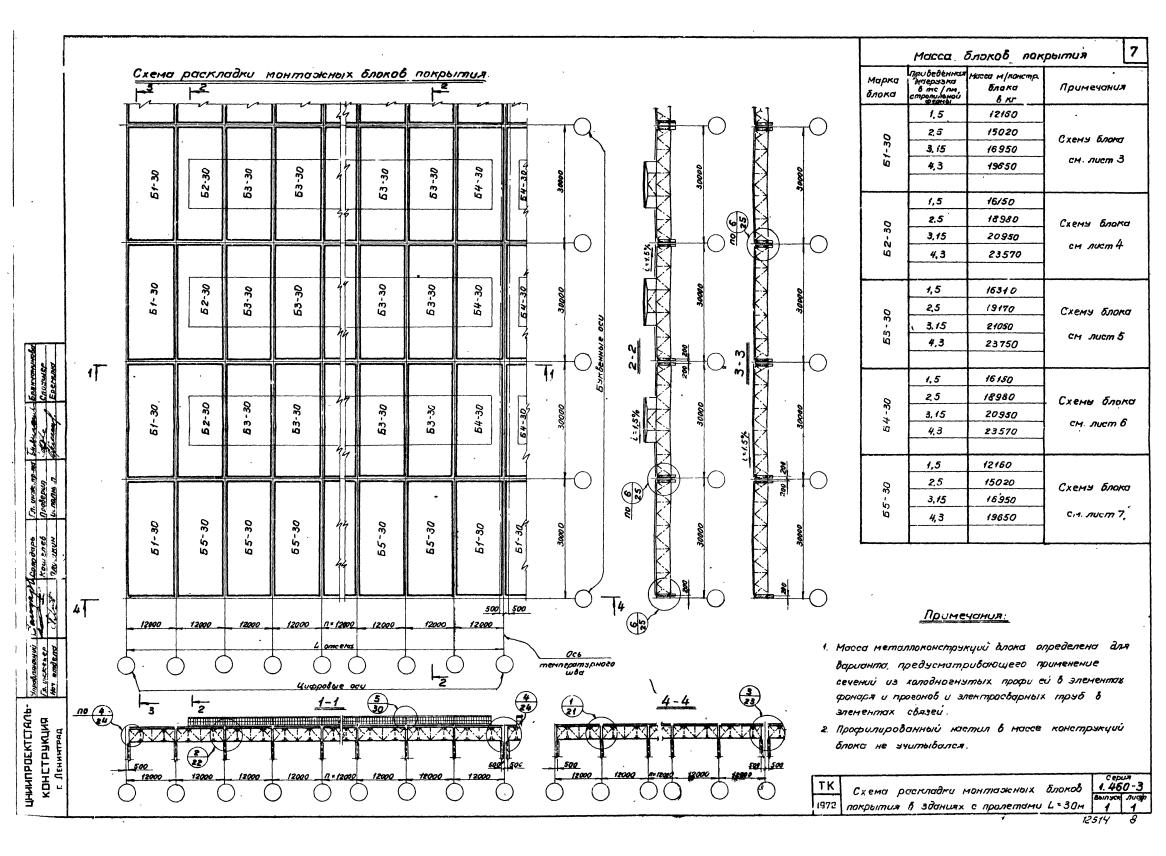
Болт постоянный, нармальной точности.

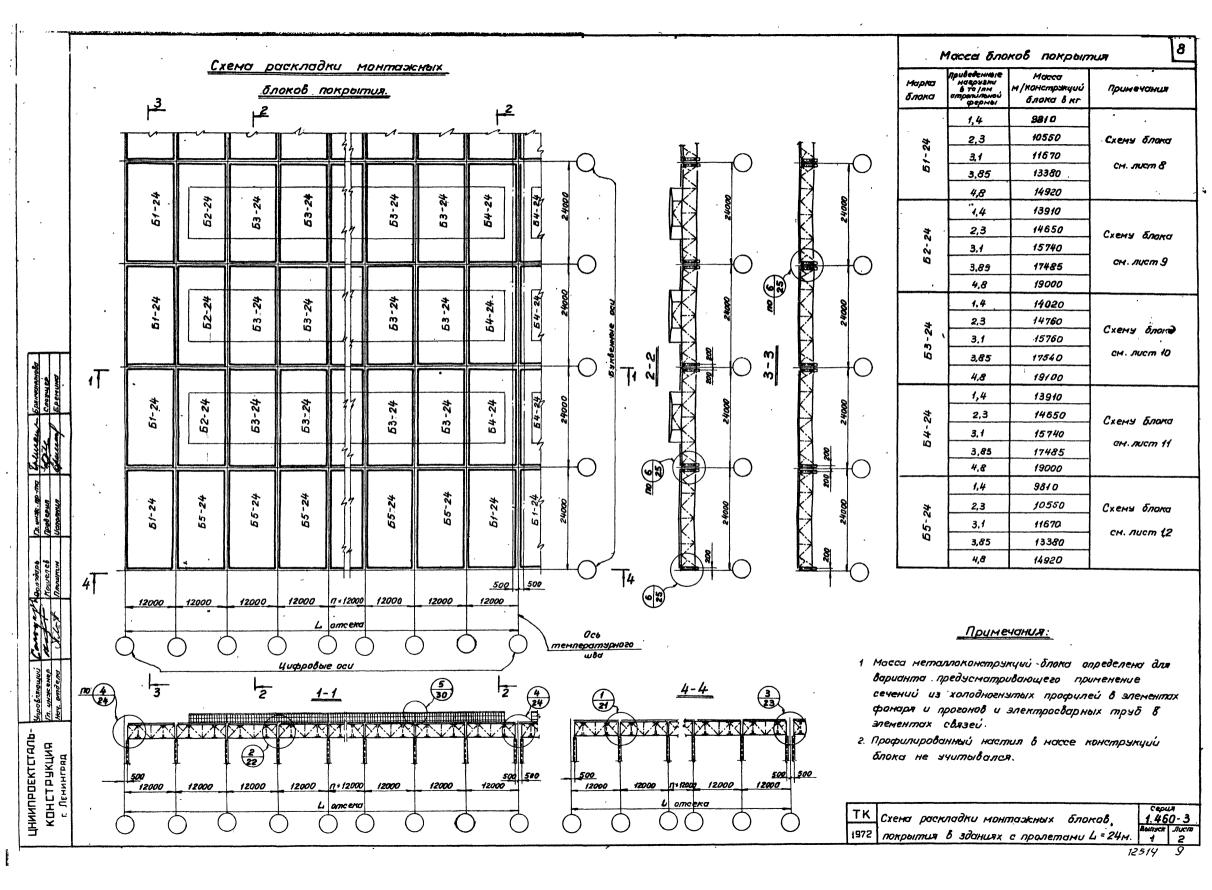
Балт временный, нармальной точности.

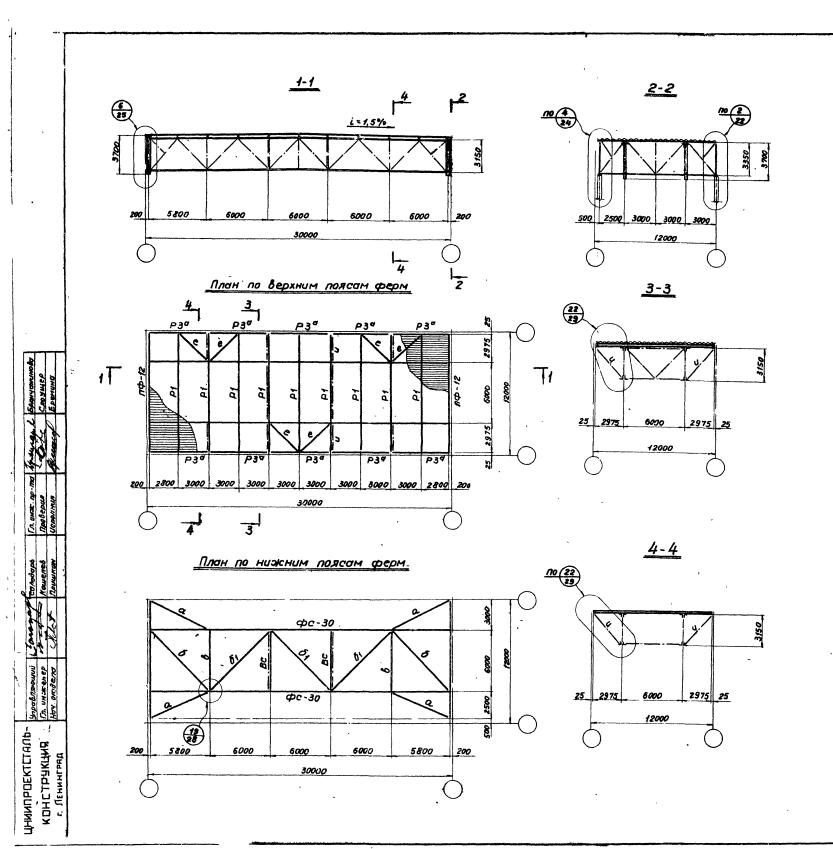
Сварной шов заводской

Сварной шов нонтажный.

Маркировка чэлов на схемах.

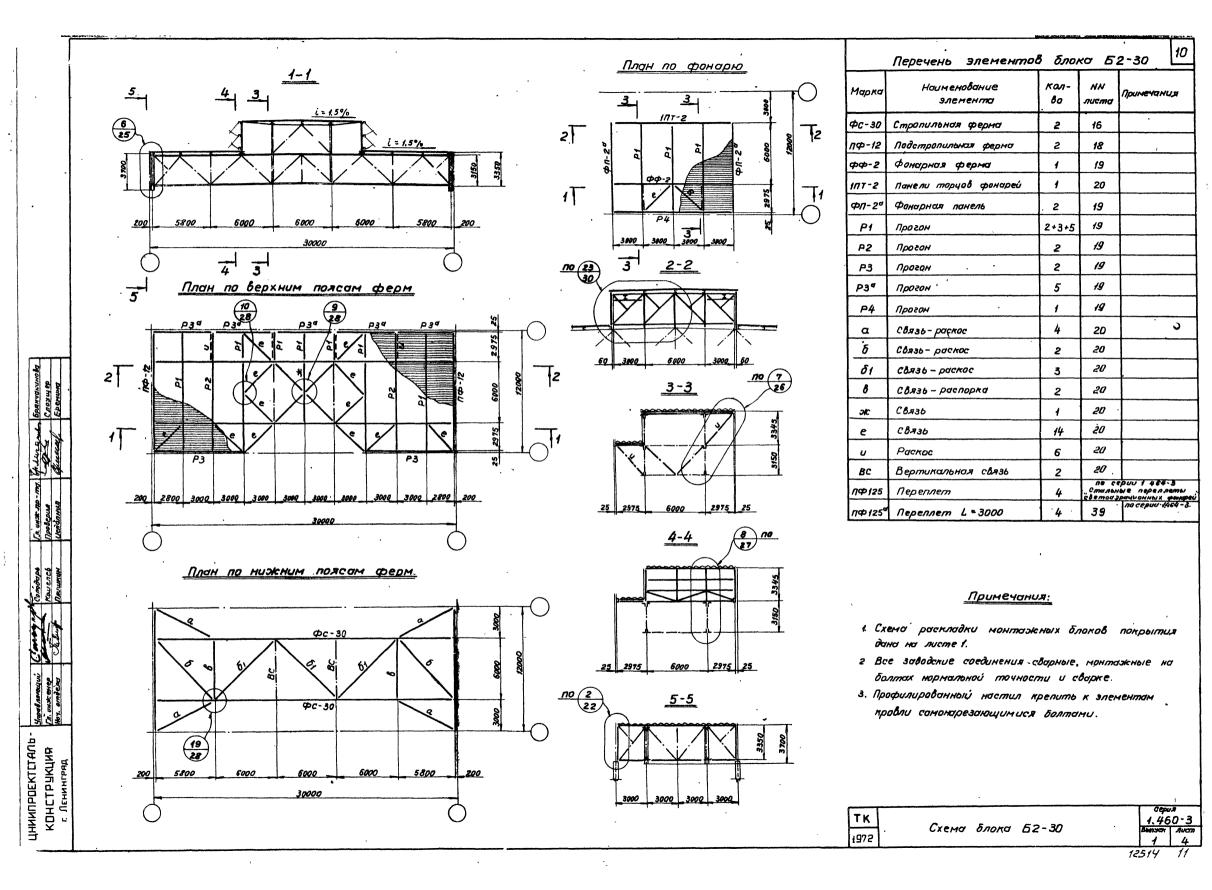

Намер <u>чэла</u>

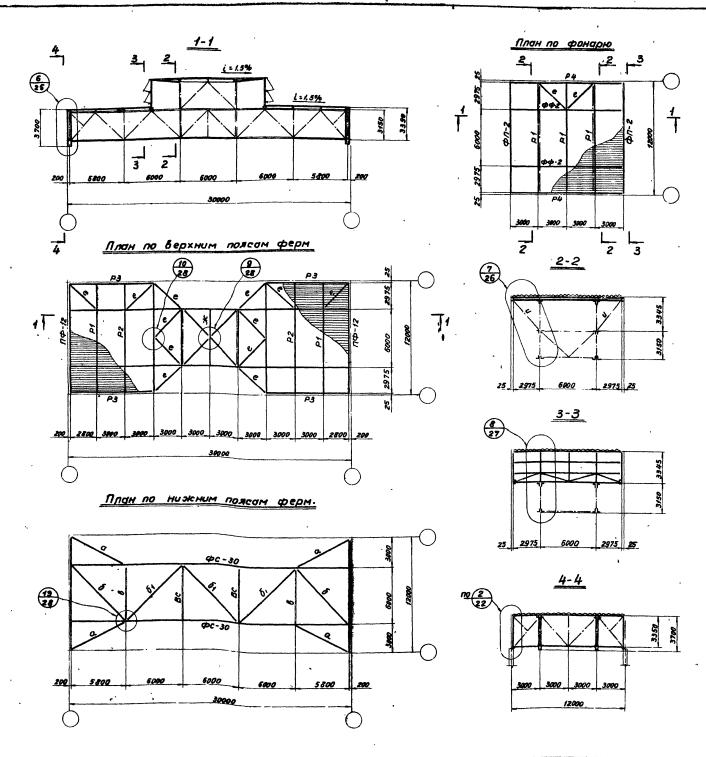

Намер листа где этот


чзел изображен

TK

Пояснительная, записка

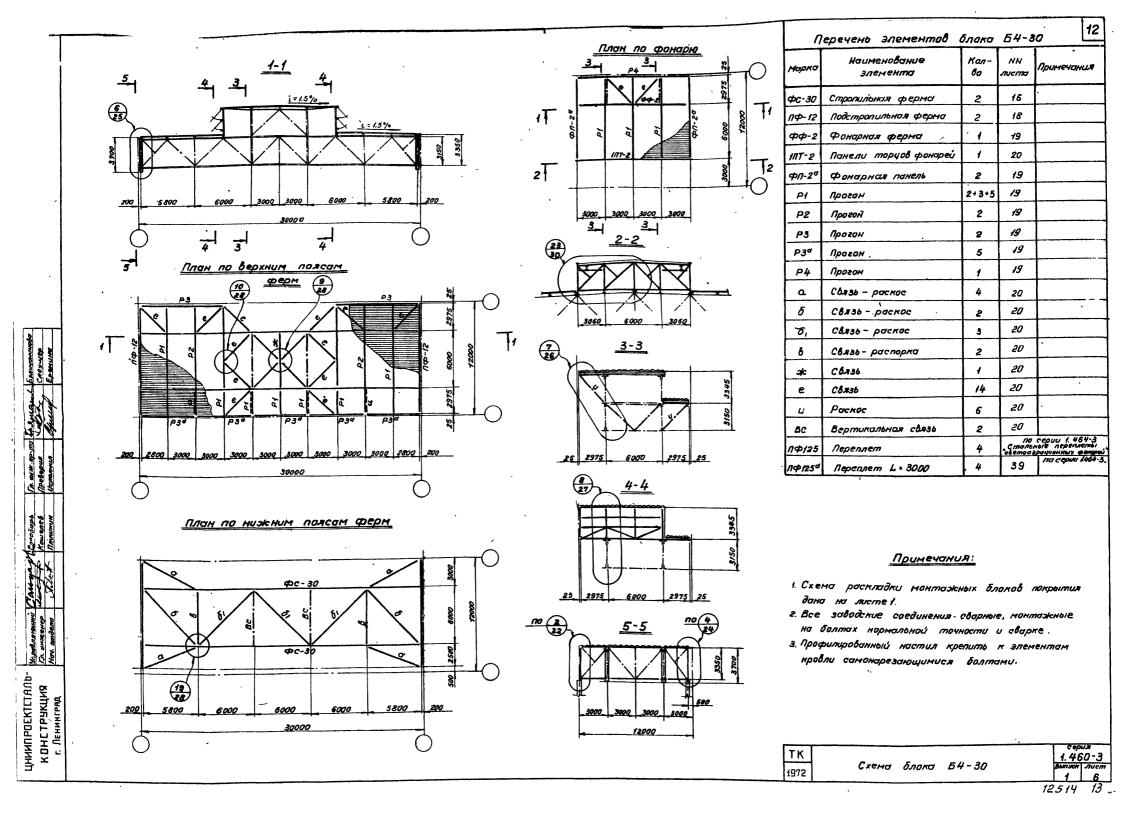


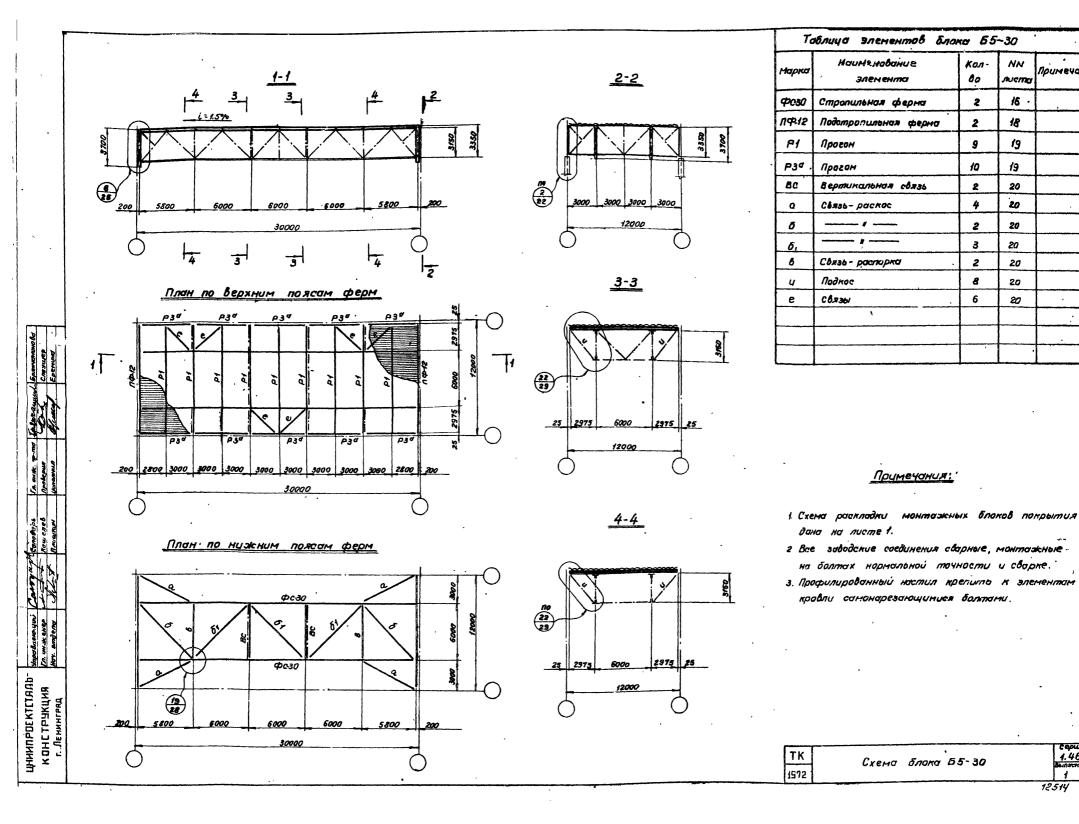


	Перечень элементов блака Б1-30					
Марка	Наименование элгмента	K01-	NN листа	Примечания		
ФС-30	Страпильная ферма	2	16			
ПФ-12	Подстропильная ферма	2	18			
P1	Прогон	g	19			
P3ª	Прогон	10	19			
BC	Вертикальная связь	2 _	20			
a	CBA36 - packoc	4	20			
δ	Сбязь-раское	2	20			
δι	Связь-раскос .	3	20	•		
6	Связь- распорка	2	20	,		
e	Связь - раскос	6	20			
u	Подкос	8	20	•		
		·		•		
				,		
				•		

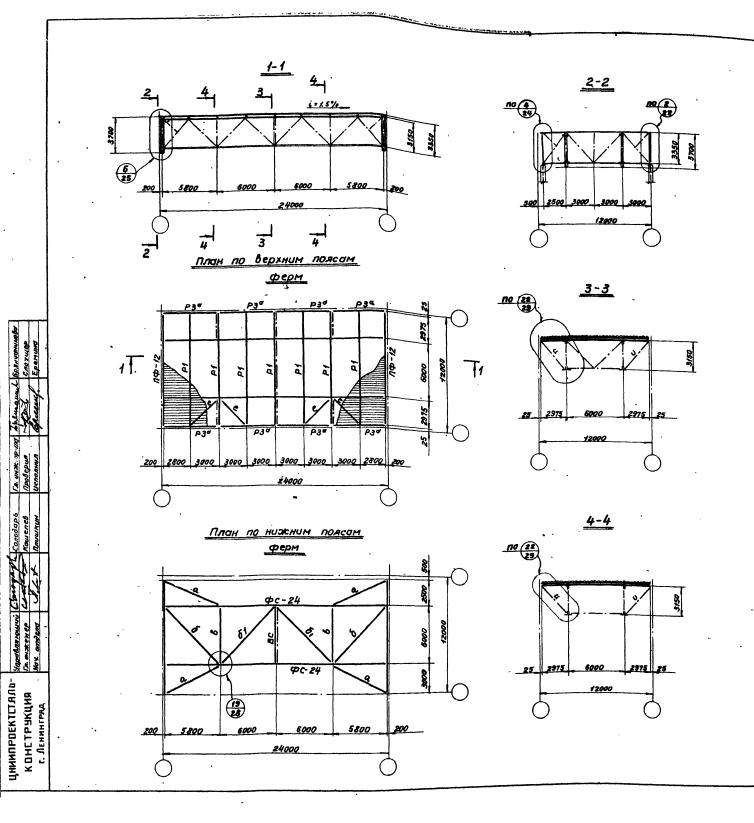
- 1. Схена раскладки нантажных блоков покрытия Вана на листе 1.
- 2. Все заводские соединения сварные, монтажные на болтах нормальной точнасти и сварке.
- 3. Профилированный настил крепить к элементам кровли самонарезающимся болтами.

TK			1.46	0-3
1972	Схема блока 51-30	*~.	Beaute 1	Aucra 3



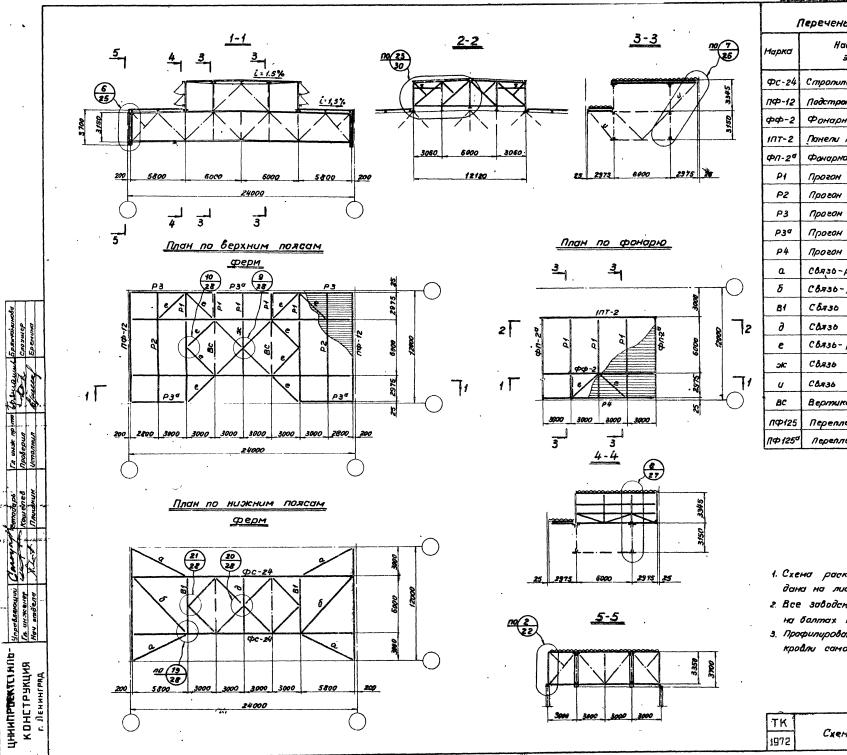

цниипРОЕКТСТЯЛЬ-КОНСТРЫКЦИЯ (, г. ЛенингРАД

n	еречень элементов	блока	63-30)	11
Марма	h∵им е нование Эл е мента	Kon- 80	NN JUCINO	Примечани	I.A
Фc-30	Страпильная ферна	2	16.		
ПФ∙12	Подстропильная ферна	2	18		
ФФ-2	Фонарная ферма	2	19		,
Фп-2	Фонарная панель	2	19		
PI	Прогон	5	19		¥
P2	Про гон	2	19		
P3	Прогон	4	19		
P4	Прогон	2	19	,	
вс	Вертикальная связь	2	20		
Ø	Связь — раское	4	20		
б	Связь — раскос	2	20		
δ,	CBA36'- pochoc	3	20	,	
8	Связь — распорка	2	20		
е	Связь— раснос	14	20		
эkс	Связь	1	20		
U	Подкос -	4	20		
пФ125	Переплет	8	" CMJQYOM	ерии 1. 484- ие переплаты инных фонара	coeuro-
ļ			_		
			ļ		·····
			<u> </u>		


- 1 Схена раскладки нонтажных блоков покрытия дана на листе 1.
- 2 Все заводские соединения сварные, монтажные на болтах нормальной точности и сварке.
- з Профилированный настил крепить к элементам кровли самонирезающимися болтами.

TK	Скемо блока БЗ-30	1.46	0-3 Jucm
1972	CXENO WINNO 23 34	1	5 5
	40	Edll	15

DOUMBYOHUR

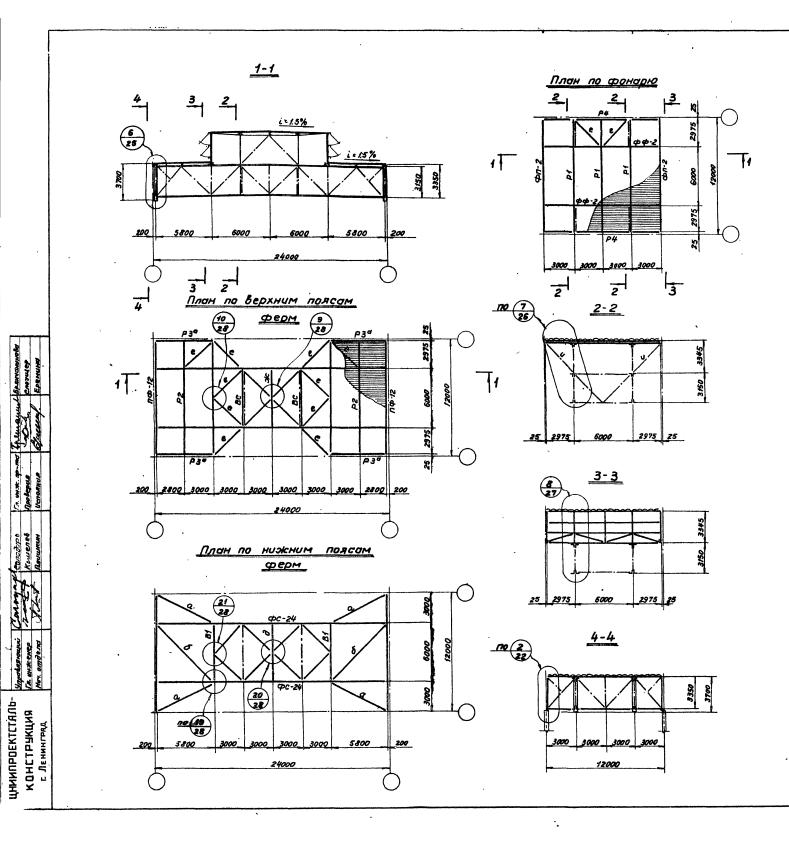


-	Перечень элементов	§n oka	51-2	4	14
Марка	наименовани е Элемента	Kan- 80	N N Juema	Примечан	IUR
ФC-24	Стропильная ферна	2	15		
ΠΦ-12	Подстропильная ферма	2	18		
P1	Прогон	7	19		
P34	Прогон	8	19	_	
a	Связь - раснае	4	20		
δ	Связь — раскае	2	20		
δ1	Связь — раское	2	20		
8	Связь- распорка .	2	20		
U	Nodrac .	6	20		
e	Связь	4	20 -		
BC	Вертикальная связь	1.	20		
		<u> </u>			

- 1. Схема раскладки монтажных блоков покрытия дана на листе 2.
- 2. Все заводские соединения сварные, монтожные ма волтах нормальной точности и сварке.
- з. Профилированный настил крепить к эленентом `
 кровли самонарезающимися больных.

ТК Схена блока Б1-24

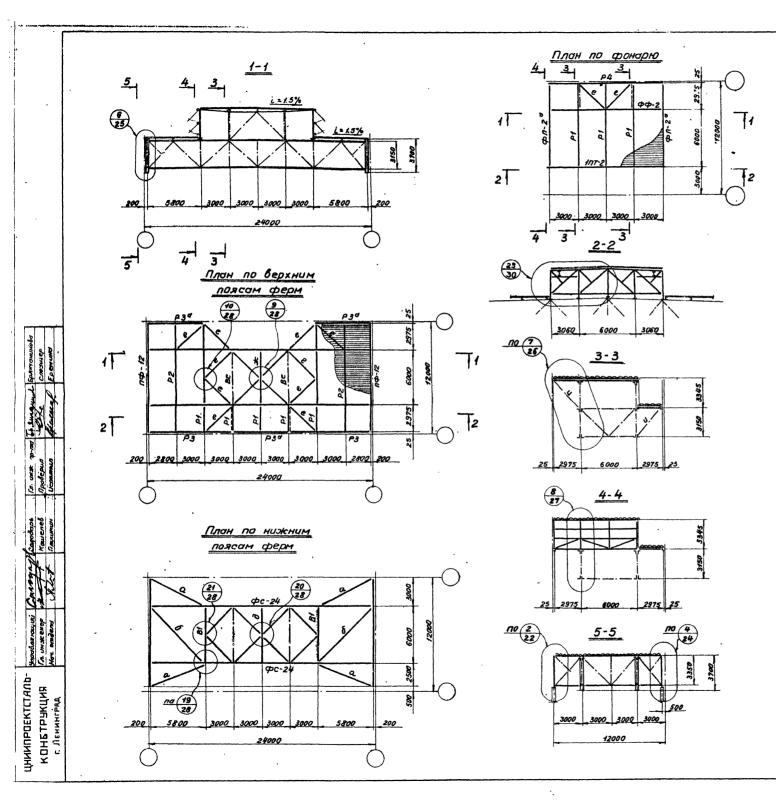
1.460-3 Bunyer Juen 1 8



ſ	еречень элементов бл	ока Б	2-24	. 13
Марка	Наименование элемента	кол- Во	NN Nuema	Примечания
ФС-24	Стропильная ферма	2	15	·
ПФ-12	Подстропильная ферма	2	18	
фф-2	Фонарная ферма	1	19	
<i>1</i> /17-2	Панели торчов фонарей	1	20	
ው ብ-2 ⁴	Фонарная панель	2	19	
P1	Прогон	3+5	19	
P2	Прогон	2	19	
P3	Прогон	2	19	
ρзα	Прогон	3	19	
ρ4	Прогон	1	19	
a	Связь - раскос	4	20	The state of the s
δ	CBR36 - POCKOC	2	20	
81	Связь	2	20	,
ð	Cârso	1	20	
е	Связь- раскас	12	20	
эkс	Связь .	1	20	
u	C8#36	4	20	
ВС	Вертикальная связь	2	20	
ПФ125	Переплет	4	L. Cmans	рии 1.464-3 ње переплеты оционных фанарей"
ΠΦ 125°	Лереплет L = 3000 °	4	39	no cepuu 1464-5

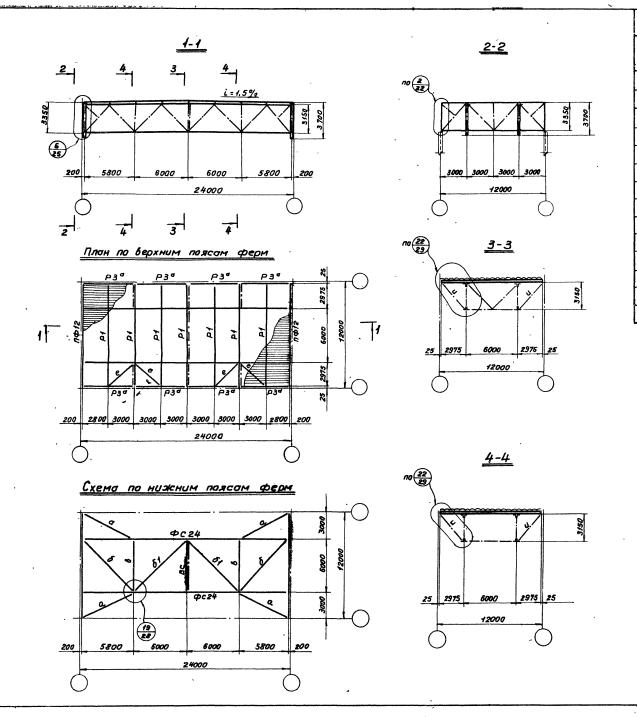
Примечония;

- 1. Схена раскладки мантажных блоков покрытия дана на листе 2.
- 2. Все заводские соединения сварные, монтажные на балтах нармальной точности и сварке:
- з. Профилированный настил крепить к элементам кровли самонарезающимися болтами.


TK1	Серия 1 460-3
1972 Схема блока 52-24	Bunsek Juen 1 9

Перечень элементов блока Б3-24					
Нарка	Наименование элемента	Kon- 80	N N Juema	Примечания	
Фс-24	Стропильная ферма	2	15	,	
ПФ-12	Подстропильная ферма	. '2	18		
ФФ-2	Фонарная ферма	2	19		
Фл-2	Фонарная ланель	2	19		
P1	Прогон	3	19	-	
P2	Прогон	2	19		
рза	Прогон	4	19	•	
Ρ4	Прогон	2	19		
BC	Вертинальная связь	2	20		
α.	Связь - раское	4	20		
ō	Связь- раскос	2	20		
81	Связь	2	<i>eo</i>		
д	Связь	1	20		
e	Связь- раское	12	20		
ж	Связь	1	20		
и	Связь	4	20		
пф 125	Переплет	8	.C maner edemons	рии (464-3 ыв переплеты очуджици фанарей	
		 	 		
		<u>.l</u>	1	<u> </u>	

- 1 Схема раскладки монтажных блоков покрытия дана на листе 2.
- 2. Все заводские соединения сварные, монтажные на бълтах нормальной точности и сварке;
- 3. Профилированный настил крепить к элементам кровли самонарезающимися болтами.


TK	
1972	Схема блока 53-24

	Перечень элементов	້ ວົກວ	ka 54	-24 17
Марка	Наименование элемента	Кол- во	NN Aucma	Примечания
ФС-24	Стропильная ферма	2	15	,
1147-12	Подстрапильная ферма	2	18	
ФФ-2	Фонарная ферма	1	19	
1NT-2	Панели торуов фанарей	1	20	
ФЛ-24	Фонарная панель	2	19	
Pf	Прогон	3+5	19	
P2	Прогон	2	19	
РЗ	Прогон .	2	19	
pga	Прогон.	3	19	
Ρ4	Прогон	1	19	
a	-Связь-раское	4	20	
5	Связь-раснос	2	20	
B1	Связь	2	20	
ð	C6936	1	20	
e	Связь – раскае	12	20	
ж	Связь	1	20	
u	Сбязь	4	20	
BC	Вертикальная связь	2	20	
ПФ125	Переплёт	4		ы 1.464-3 Чые переплеты Рационных фанарей
ΠΦ125°	Переплет L=300a .	4	39	no cepuu 1.464.3.

- 1. Схёна раскладки монта жных блоков покрытия дана на лиоте 2.
- г. Все заводские соединения сварные, монтажные на болтах нормальной точности и сварке.
- 3. Профилированный настил крепить к эленентам кравли самонарезающимися болтами

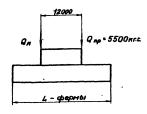
TK			0-3
1972	Схема <i>блока</i> 54-24	BUNYCK 1	Juem 11

ЦНИИПРОЕКТСТАЛЬ-КОНСТРЫКЦИЯ г. ЛенингРАД,

	Перечень элемен	тов	δлοκα	<i>55-24</i>	18
Марка	Наименование элементов	Kan- Bo	NN листа	Примеч	ОНИЯ
ФC24	Стропильная ферма	2	15		`
лФ-12	Подстропильная ферма	2	18		
PΙ	Прогон	7	19		
P3°	Прогон	8	19		
α	Связы - Роскос .	4	20		
δ		2	20		
δ,		2	20		
в	Связь - распорка	2	20		
U	Связь	6	20		
ВС	Вертикальная связь	. 1	20		
e	Связь	4	20		

- 1. Схена раскладки монтажных блаков попрытия дана на листе 2.
- 2. Все заводские соединения сварные, мантожные на болтах нармальной точности и сварке.
- з. Профилированный настил прелить к элементам кровли самонарезающимися болтами

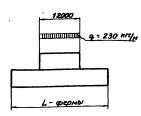
		``		
	TK		Cep 1.46	ky 0-3
	1972	Схема <i>блока Б5-24</i>	Beinsek 1	suem 12
•				7.0


Эквивалентные равномери- распределенные нагрязки на стропильную

а) от снегового покрова.

	рим фонарем риме ферим	c
Расчетный	Пролет ф	ерны в н
сне гобо й	24,0	30.0
покров (Ро ¥1,4) В кгс/м 2	Эмвивалентн нагрэзка в	дя раечетная 3`кгс/м²
70	70	. 70
100	100 .	100
· 140	140	140
210	210	210

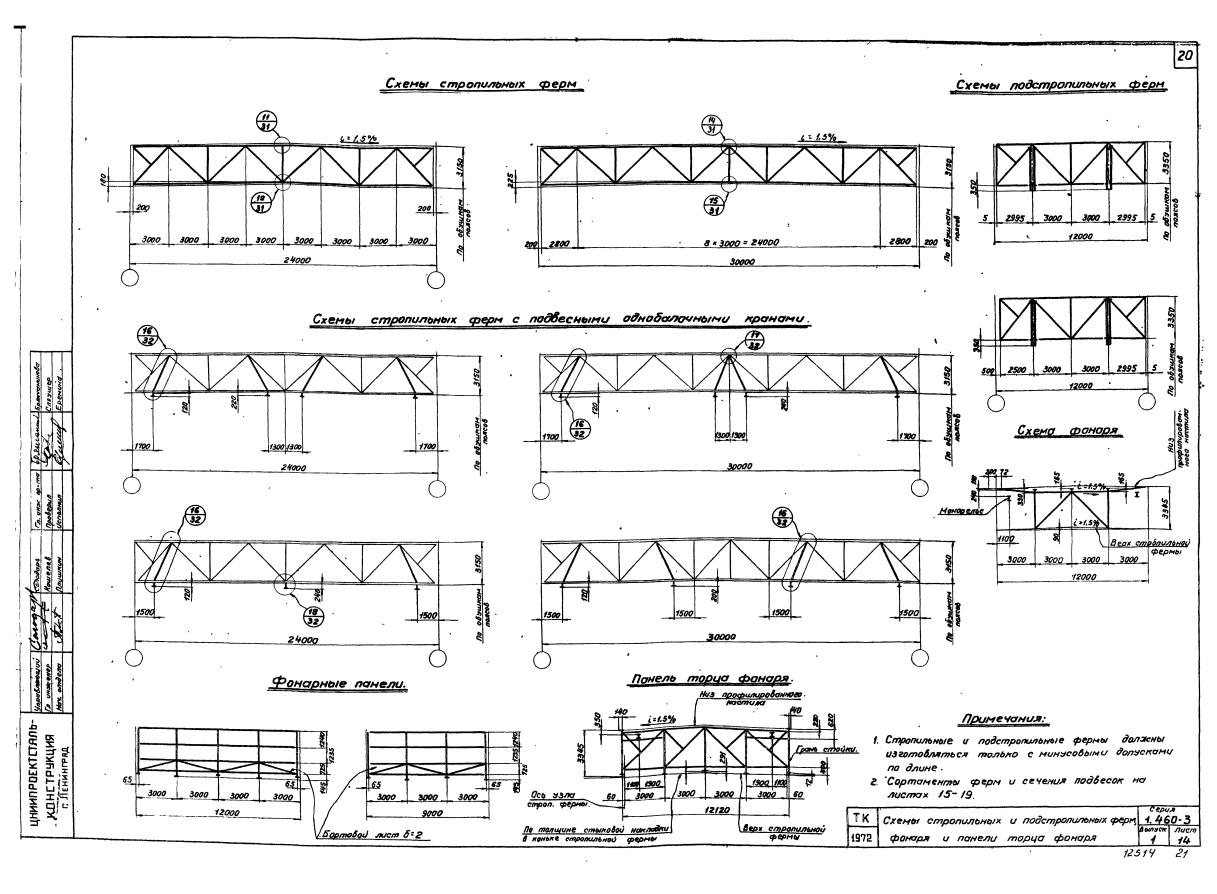
	мьные фернь цевого фонаря	, y
Расчетный	Пролет фер	1401 B M
снеговой	24.0	30,0
локров (Po=1,4) в кгс/м2	Эквивалентна В высецьвы	RFC/M²
70	103	93
100	144	131
140	206	187
210	310	281

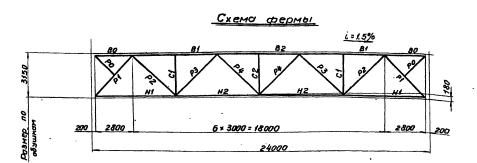

8/ om chonapa

Пролет стропил	оных ферм
. 24,0м	30.0m
Эквивалентная расчел от Q _P и Q _{PP} = 5500 кг воздействии) в кгс]	тная нагрэзка - Гари одновременном м²
104,5	88,0

цниипРОЕКТСТАЛЬ-

b/ om mopyeboú cmenku фонаря


Пролет стролил	льных ферм
24,0H	30,0м
Эквива лентная на еризна от 9 кг	
30,0	25,0


д/ от подвесных электрических кранов.

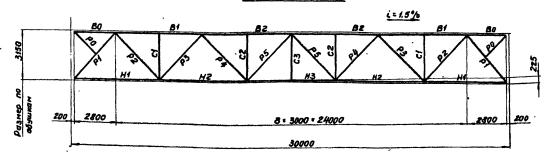
Пролелі ферны в м.	N* cxentr	Схена подвесных кранов	Груза - Прана Прана Груза -	Эквивален- глых расча- ная наеризна в кгс/м²
			10	128
	II.	1700 3000 2000 3000 1700	2.0	206
24,0		24000	3.2	316
24,0			20	129
	VI	150g 10500 10500 1500	3,2	190
		Mago	5,0	262
			1,0	128
	N		2.0	196
30,0		12000 2600 12000 1700 30000	3,2	292
30,0			2,0	115
	<u>VIII</u>	1500 9000 5000 5000 1500	32 .	110
		30000	5,0	234

- 1. При определении расчетной насризки на ферми, онеговой покров ичитываетоя в виде приведенных на даннам листе равномерно- распределенных росчетных нагрявок.
- 2. Эквивалентные нагрузки от фонаря определены от Q = 5,5 mc/вес переплетов, остенления, механизнов аткрывания, манорельса для протирки стекой, бартовых nnum) u g= 230 mrs/m (nou Bece mapyeboù cmeno 65 mrs/m²). При нагризнах атличных ат принятых - энвивалентные нагрязки определяются от фактических загряжений.
- 3. Эмвивалентные нагрязки от подвесных кранов апределены при максимально сближен. жых праних /двих - при одном прановом пити и четырех - при двих прановых NUMBER & NOONEME.)
- 4. Npu odnob pemennom Beuc mbuu chezobax u nodbechax upanobax Nazpisok skubaлентные мовризми от них инножаются на поэффициент 0,9, эчитвоващий допалнительное сочетание.
- 5. Геометрические параметры кранов стороты 33 и 34.

K	Энвивалентные осбионеско- остоеделенные	4 (16	0-3
	Энвивалентные равномерно-распределенные расчетные нагрэзни от анеговою покрова, фонаря и подвесных элентрических кранов	BWASON	Aure
1.15	фониря и подвесных электрических кранов		13

Рекомендуемые п	полщины	¥3.00	вых	фос	OHOK		2
Усилия в элементах р	ешетки в т.	<i>00 25</i>	26-40	41-60	61-100	101-140	-
Толијина фасонок в	мм	8	10	12	14	16	

							Допиское	MAR		очетная	Ha sp:		BTGM	, 	······································		
Элеченя	200	b .		1,40			2,30	1492	3,10			3,85			4,80		
	Coneparation	Sinda Sinda	Porvemuse scume 8 mc	Сечение	Hecyapas chocodivocant 6 mc	Poevenwee seunue 8 mc	Сечение	несущия способнасть в те	Porgermoe younue 8 mc	Сечение	Hecoupur cracobwaemb b me	Pocvemme scurue 8 mc	Cevenue	Hecsupers ineconnects 8 mc	Pocvenatoe scurve 6 mc	Сеченив	Hecsuran engeobracmb b me
κί	BQ	aneaspodominas (R=2900 m/cm²)		¬r 100 ×6,5")		Ĭ,	₩ 110 28			ר <i>125∗8</i>		-6.6	T 125:10		-9,6	7F 140×10	
B epaneuí nosc	81	200	-25,0	7 100 · 6,5 ")		-43,6	T 110×8	-54,8	-57,8	חר <i>125∗8</i>	-73,8	-72,1	T 125×10	-911	-90.4	7F 140=10	-113,5
B	82	62 = 28	-33,7	T 100 * 6,5"		-54,8	T 110=8	-54,8	-73,8°	ר 125×8	-73,8	- 91,1	₩ 125×10	-91,1	-113,5	7 140 - 10	-113,5
بورز اد	Hf	usvane ano (1	+ 14,1	1 100 = 6,5 m)		+22.9	JL 100 ×6.5	+ 74,2	+30,8	JL 100 × 6,5	+ 74,2	+ 38,1	JL 110×7	+88,1	*47,6	JL 125:8	+114,3
MICHAEN L	H2	Huska emane	+ 31,6	JL 100 × 6,5 **)		+51,3	.i. 100 ± 6,5	+ 74,2	+69,0	JL 100 × 6.5	+ 74.2	+85,1	JL 110 = 7	+88.1	+106.3	JL 125 *8	+114,3
	P1	3.	-20,8	JL 90 * 6		- 33,9	nr 90≥8	-34,1	-45,6	7 110 × 7	-45,5	-56,3	7F 125≥8	-64,0	-70,3	קר <i>וב5×10</i>	79.0
/900	P2	Cmanb	+16,0	¥ 70 = 4.5		+30,3	75 *5	+31,0	+398	7F 90×6	+44,5	+49,6	7 100 × 6,5	+53,8	+625	7 110 = 7	+63,8
POCHOCO	ρз	. C.	- 9,32	± 80×5,5	`	-17,5	T 90∗8	-19,4	-24,1	קר 110×7	-29,4	-29.0	TF /25×8	- 45,7	-35,1	7 Γ 125×10	-55,6
	ρ4	83	- 0,5 + 4,6	_L 75 × 5		- 6.1 + 12.8	קר 75×5	- 7,9 + 31,0	+ 17.9	קר 90 ×6	+ 44,5	+ 20,7	חר <i>90×,6</i>	+44,5 - 14,9	+ 24,6	7F 90×6	+ 44.5
256	C1	ncu	-7,0	7 70 = 4,5		-11,3	75 '5	-13.7	-15,3	7F 80 × 5,5	- 17,7	-17.6	7F 90×6	-25,0	-230	7F 90×6	-25,0
<i>Emo</i> iru	CZ	y enepaduemos	-4,43	T 70 = 4.5		- 7,2	لد 75°5	-18,0	-9,7	٦ ^L 80 × 5,5	-21,9	⁻ 12.0	± 90×6	- 28,8	-15,Ò	→ 90×6	-28,8
Подное	PQ	2°		L 70 = 4.5			L 75×5			L 80×5,5			L 90 = 6			L 90×6	1
Опорно	ne dabi	TEHUC		16,0 mc			25,0 me			34,0 mc			42,0 mc	******		52 mc	
Macca	DEOM	ibi Ø KT.		1800		111	0 + 1060 = 21	70	,	210 + 1240 = 2	450	14	60 + 15 20 = 25	980	175	10 + 1750 = 35	500
Марко				ФС 24-1,40			ФС 24- 2,36)		ФС24-3,10			ФС24-3,85	:		ФC 24-4,80)

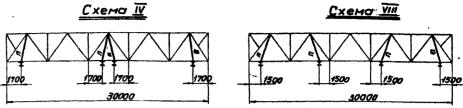

- t.При определении фактической расчетной нагрузки на ферму:
- а/ Масся ферны эчитывать не следчет, так как она эчтена сверх доляскаемой расчетной нагрязки. б/ Масся констракций фонаря, снеговой покров и подвесной транспорт прининать в виде эквивалентной равномерно-распределенной нагрязки по листя 13.
- 2. В графе "Масса фермы"-при двях слагаемых, первое представляет масся стержней из низколегированной стали, второе - из яглеродистой стали-Сталь 3"
- 3. В графе " опорное давление в читена масса фермол 4. В каждой ферме рекомендуется применять фосонки не более двях толщин.
- 5. Масса ферны подсчитана по веометрическим длинан стержней с ичетом констриктивного коэффициента 1.2.
- 6, Максинальное расчетное чешлие для прикрепления стержней 5 тс.
- 7. Условия паставки стали чказаны в разделе $\overline{\underline{y_l}}$ $^{\prime}$ пояснительной записки.

Примечания:

^{**)} Стержни выполняются из углеродистой стали "Сталь 3."

Рекомендуемые толщино узловых фасонок ¹ Усимия в элементах рещетки те до 25 26-40 41-60 61-100 101-140 Таминна фасонок в мм 8 10 12 14 18


Схема фермы



					Дo	חשפו	аеная рас	yemi	HO'A	нагрузка в	TC/M			
THU THU	HUE			1,50			2,50			3,15		4,30		
Элемент ферто	Обозначение Стерэкня	Mapus	o me Servina Poevemina	Сечение	Hecywydd cne cellwedd o mc	Partemmor Scunuc 8 mc	Сечение	Hecywydd cnocobnocmb 8 mc	Pacvennae scunue 8 mc	Сечение	Hersulas Cnecadivacine 8 mc	Pocvemuse seunu e	Сечение	Hecoupus finse o Bracint 8 mc
ΰ	Во	(242)		T 110 · 8			Tr 125 × 10		-5,2	7F 140=10		-7,2	٦٢ ₁₆₀ , 11	
Bepxmiri nosc	81	2900 mc/cH ²)	-37,6	7F 110 · 8	-54.8	628	7 125 ∗10 .	-911	-78.3	7F 140 × 10	-//3,5	-107,2	٦٢ _{160 * 11}	-154,0
89	B2	husranezyodannas emans (R=2900 ms	-54.8	7F 110×8	-54,8	-91,1	7F 125×10	-91,1	-/13,5	7F 140×10	-113,5	-154,0	7F 160=11	-154,0
	HI	2 4	+ 19,6	JL 100 • 6,5	+74,2	+326	JL 110 *8	+99,8	+40,6	JL /25 × 9	+127,6	+55,0	JL 125 × 12	+187,6
Huskonej nase	H2	Kraman Cmoine	+47,8	JL 100 • 6.5	+74,2	+79,6	_IL_ 110×8	+99,8	+99,2	JL 125×9	+127,6	+134,2	JL 125 = 12	+167,6
ku#	НЗ	₹ 5	+57,2	JL 100 = 6.5	+74,2	+95,0	JL 110 : 8	+99,8	+118,3	JL 125 +9	+127,6	+160.6	JL 125×12	+167,6
	PI		- 29,0	7⊩ 90 = 7	- 29,8	-48,1	TF 125×8	-64,0	-59.9	אר <i>ווע 100</i>	-65,2	-81.3	7F 140×9	-85,1
	PZ		+25,5	70 × 4.5	+26.8	+430	¬Г 90 × 7	+51.7	+53,8	קר 100 • 6.5	+53.8	+72,9	7 100 - 10	+80,6
Pacrach	P3	<i>8</i> €3	-17,8	7 90 - 7	-17.3	-29,9	٦ Γ 125×8	-45.7	-35,8	75 100-12	-37,2	-492	7F 125 • 9	-503
, 20	ρ4	"Cmanb	+11,9	70×4.5	÷26.0	- 3.0	75×5	- 1.9 +31,0	- 3.6 + 25,2	ר 80 × 5,5	- 10,2 +36,2	- 4.4 +32.5	7 80 . 5,5	- 102 +36,2
	P5	١.	-6,6	75×5	-7,9	- 15,4	7F 90×7	-11,3	-20,2	6.5ء 100	-21,5	-25,3	75 110.7	-29,4
inu	CI	20	-6.8	70 - 4.5	-10,4	-12,4	75 25	-/3,7	- 44,0	חר 80 × 5.5	-17.7	-22,3	7F 90°6	-25,0
Cmotinu	c2 ·	Углеродистая	-7,15	70×45	-10.4	-/1,9	75 • 5	-13.7	-14,8	۶ <i>۵۰5</i> ,5	-17.7	-20,1	7F 90.6	-25,0
Лодвеста	СЗ	de		- 70×4,5			5•57 اٍ ح			L 80 × 5.5		<u> </u>	1 80 . 5.5	
Подкос	PO	ું કરે કરે		L 70 × 4,5			L 75×5			L 80 · 5,5			L 80 × 5,5	
Опарна	г давлен	ue 8 TC.		22	<u> </u>		36		٧	45			61	•
Масса	фермь	1 8 KT.	1	400 + 1190 = 2590		15	30 + 1770 = 3700	7	23	00 + 2020 - 432	20	2	940 + 2360=5	300
Марка	ферм	ы		ФС 30-1,50	-		ФС 30 - 2,50			ФС 30-3,15			ФС 30 - 4,3	0

ЦНИИПРОЕКТСТЯЛЬ-КОНСТРУКЦИЯ г. Ленінгряд

- 1. При определении фактической расчетной наеризки на ферми:
- а мосся фермы ячитывать не следчет, так как она ячтена одерх допяскаемой расчетной нагрязки. Э б масся конструкций фонаря, снеговай пакрав и поддесной транспорт принимать в фиде эквидалентной радномерно – распределенной нагрязки по листя 13.
- 2. В графе "масса фермы" при 2[™] слагаемых, первое представляет массы стержней из низкалегированной стали, второе из ыглеродистой стали "Сталь 3."
- 3. В графе "Опорное давление" читена масса фермы.
- 4. В каждой ферме рекомендиется применять фасонки не более двих талщин.
- 5 Масса ферм подсчитана по геометрическим длинам стержней с эчетом канструктивного коэффиционта 1.2
- в. Минимальное расчетное усилие для прикрепления, стержней -5 mc.
- 7. 4словия поставки стали чказаны в разделе $\overline{y_1}$ пояснительной записки.

		L = 2	4 m						<u> </u>	30 m	······	
١		С	хема Ш					+	Č,	KEHA IV		
	Долускаема	и рас	етная, нагру	ara Toli	м		·A	опискаеная	расчет	ная нагрузм	10 8 FC	м
-	3,10		3,85	,	4,80	Элененты фермы	-	2,50		3,15		4,30
Расчетне эсиние в те	Сечение	Расчельное экилие в тс	Сечение	Pacyemine scunce b mc	CEYEHUE	-	Pacyenne yeunue 8 me	Сечение	Pacyemine Scunue 8 mc	Сечение	Accepture Sounce 6 mc	Сечение
Элемен	пы ферм пр	מאטאטח	6 NO NUCMY 15	5 данно	oso bonucka		Эленен	ты феры пр	оининал	6 NO AUCMY	16 данно	so bunucka
22,0	2012	22.0	. 2[12	22,0	2 [12	Подвески "Л"	22,0	2012	- 22,0	2 t 12	22,0	2512
10 6 KF 1210+1570=2780 1460 + 1850=3310 1750+2080=		+ 2080= 3830	Масса ферны вкг	1930	+ 2100 = 4030	2300	+ 2350 = 4650	2940 + 2590 = 563				
<u> </u>	C24-3,10	<u>.777</u> - Q	Pc 24 - 3,85	<u> </u>	ФC24-4.80	Марка ф омы	<u>IV</u> - 0	P.C30 - 2,50	<u>IV</u> - 9	DC 30+3,15	<u>I</u> V - Q	PC30-4,30
				•								
					c/			OAVEKA PMA S			ka A To	/4
<u> </u>		pocs		T		Элементы фермы			1	3,15	T	4,30
Рисчелни Эсилие	r	Puctomice segnue 8 mc	Сечение	Auctemuse seunue 6 mc	Сечение	<i>j-</i>	Расчетнае Уашли е 8 тс		Pacyemme acunue 8 mc	Сечение	Pocyemnoe Sounue 8 mc	Сечение
b mc	1								-,			
	ты ферн п	ринимал	א משטעת פח	5 данн	ozo boinycka		Элеме	нты ферм пр	ринимал	76 70 AUCMY	16 80A	ного выпус
	иты ферн п 2[12	22,0	6	5 данн 22,0	2 <u>[12</u>	Лодвески " Л "	Элеме 22,0	нты ферм пр 2 [12	220	2 C 12	16 80A 22,0	14020 Bылус 12 [.12
Эленен 22,0	2[12	22,0	2012	22,0		Подвески "П" Масса фермы в кг	22,0		22,0		22,0	
	8 та 3 лемени 22,0 1210+ 111 — Ф	3,10 Pacvement Scupue 6 ma Cevenue 9 3nemenmon pepra no 1220 25 12 1210+1570=2780 11 - \$\Phi\$ C24-310 Administrates and 3 3,10 Pucvement	Доляскаемая расч 3,10 Расчетие усилие в та 3лементы ферм принимата 22,0 25 12 22,0 1210+1570=2780 1460 11 — ФС 24-310 111-9 Доляскаемая расч 3,10 Расчетия усилие усилие	3,10 3,85 4,80 семение всилие всилие в то листя 15 данного в то по 2 12 210+1570=2780 1460+1850=3310 1750+208 1-фс24-310 11-фс24-3,85 11-фс24 24 м Схема VII Доляскаемая расчетная нагрязка тс/м 3,10 3,85 4,80 семение всемение всилие в по листя 15 данного в по		Схема Ш Доляскаемая расчетная нагрязка тс/м 3,10 3,85 4,80 Расчетна усилие в та Сечение усилие в та Расчетна усилие в та Сечение усилие в та Полита Полита	Схема Ш Доляскаемая расчетная нагрязка тс/м 4,80 Элементы фермы З,10 3,85 4,80 Элементы фермы Зсиме в та Сечение в та Расчетны усиме в та Сечение в та Сечение в та Злементы ферм прининать по листя 15 данного выпяска Выпяска Подвески "П" 1210+1570=2780 1460+1850=3310 1750+2080=3830 Масоа ферны в кг Щ - ФС24-310 Щ - ФС24-3,85 Щ - ФС24-4,80 Нарка ф эмы L = 24 м Схема VII Доляскаемая расчетная нагрязка тс/м 3,10 3,85 4,80 Элементы ферны Росчетны усилие сечение Сечение Росчетны усилие Сечение Сечение Сечение	Схема Ш Доляскаемая расчетная нагрязка те/м 3,10 3,85 4,80 Элементы фермы Расчетны усилие в то по	Схема Ш Доляскаемся расчетная нагрязка ТС/м Злененты фермы Доляскаемся усилие виде Доляскаемся усилие виде	Схема Ш Схема Ш Оляскаемая расчетная нагрязка те/м Злененты фермы Дементы фермы Дементы фермы Ушина Сечение Злененты фермы Ушина Сечение Зало Ш - ФС24-310 Ш - ФС24-3,85 Ш - ФС24-4,80 Марка ф оны Ш - ФС30-2,50 Ш - ФС30-2,50 Ш - ФС24-4,80 Марка ф оны Ш - ФС30-2,50 Ш - ФС30-2,50 Ш - ФС30-2,50 Ш - ФС24-4,80 Доляскаемая расчет Доляск	Долзскаемая расчетная нагрязка тс/м Злементы фермы Долзскаемая расчетная нагрязка тс/м Злементы фермы Долзскаемая расчетная нагрязка тс/м Злементы фермы Долзскаемая расчетная нагрязка тс/м Долзскаемая расчетная ра	Схема Ш Схема Ш Доляскаемая расчеткая кагрязка түм Злененты фермы 2,50 3,15 Асмения госиме в то досчеткая нагрязка в ту досчетка камие в то досчетка камие в то досчетка камие в то досчет в то досче

- 1. Стропильные фермы при наличии подвесного транепарта отличанател от странильных ферм без подвесного транспорта талька наличием подвесок с соответствующими фасонками и эзлами. Марки ферм в обозначениях имеют приставки III. VII - das ферм пролетам 24м и IV, VIII дая ферм пралетом 30м. Приставка обозначает номер схемы расположения кранов в пролете.
- 2. Масса ферм подсчитана по геометрическим длинан стерожней с зчетом конструктивного козффициента 1,2 (без массы опорных стоек).
- 3. Работать совнестно с листами 15 и 16 данного выпуска
- 4. Подвески "П" выполняются из Углеродистой сталу "Сталь З". Условия поставки стали чказаны в разделе 🗹 пояснительной записки.

TK	Сортанент стропильных ферм пролетоми	
1000	24 и 30 м. при наличии подвесного транспорта. Шаг ферм 6 м	
1972	подвесного пранспорта. Шаг ферм 6 м	

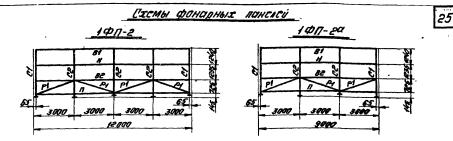
Усилия в элементах решетки в тс	<i>до 25</i>	26-40	41-60	61-100	101-140	Ī
Толщина фасонок	8	10	12	14	16	

							Долискаема	<i>A f</i>	00046	тная нагр	S S S K) HO	ферму "	0"6	mc.		
£ ,	3 8		· ·	25			36			45			52			61 .	
3menen Gebere	Chosneve	Mopra	Pocyeonoe Scuare 6 mc	Сечение	Hecyupas Grocobiacins 6 mc	Pocvennae seuare 6 mo	Сечёние	Hecsupan enecohocom	Pocvennoe seunie 6 mc	С ечение	Hecoupes mecohiacons 6 mc	Poeveaume	Cevenuc	Hecywas crocodvacms 6 mc	Pacvemme scurve s mc	Сечение	Hecsupar crocodrocat 6 mc
. 3	80	3 2	M=0,54	TF 125:8"		M=0.54m	Tr 125×8		M=Q547N	75 140-9		M =0,58m	T 140+9		M=0,547m	7F 140.9	
Beparen	81	Usrane expodomecs (R=2900m cfc+2)	-27,4 M=0,54m	Tr 125:8*)	-36.0 M= 0,54m	-87,5 M:0,54m	T 125 +8	- 38,6 M= 0,547	- 46,6 M• Q\$4 7M	7F 140+9	-63.0 H=0.58m	-55,3 M•454m	T 140=9	-830 M=Q547n	-62.6 M=0.54	7F 140×9	-63.4 M=454m
Huakhuú nome	H1 ·	2900	+36,4	7F 80 · 5,5 *)	+36,3	+47,0	7 80:5,5	+50,0	+55,8	7F 90×7	+713	+64,5	7 90 17	+80,0	+ 72,0	7 100 • 7	+80,0
à	P1	HU3K	-896	7F 110 × 7*)	-420	-55,0	TF 125×8	-68,0	-68,0	7F 125*8	-68,0	-81,0	T 125 × 10	-86,0	-92,1	7 140-9	-95,5
200	P2		-6.0 +3.6	7 80 - 5,5	-9,9 +36,2	-/1.5 +9,0	7F 90 = 6	-14,4 +44,5	-12.5 • 14,4	٦ Γ 90≠6	-14,4 +44.5	- 15,7 + 19,0	7F 90×7	-16,6 +51,4	-18,5 +20,6	7 100:7	-22,2 +5 8, 0
	C1	3.	-2,0	C 20		-2,0	C 20		-2.0	[20		-2,0	C 20		-2,0	C 20	
Cmaire	E 2	especial series	+25,0	- 100 : 10 - 140 : 8 - 250 : 10		+36,0	- 100 × 10 - 140 × 8 - 250 × 10		+45,0	- 100 · 10 - 140 · 8 - 250 · 14		+52,0	- 100 ± 10 - 40 ± 8 - 250 ± 14		+61,0	- 100: 10 - W0:8 - 250:16	
	C5	yene .c.	-1.9	₩ 56×4	-4,5	-1.9	7F 56 × 4	-4,5	-1,9	7F 56 × 4	-4,5	-1,9	T 56 × 4	-4,5	-1,9	7 56×4	-4,5
Поднос	PO			L 56 = 4			L 56×4			L 56 * 4			L 56:4	· ·		L 56:4	
Опарнов	давлен	ue 8 mc		32,0	L		43,0	L		53,5			63.0			71,5	
Macca	фермы	B Mr.		1620		7	85 +975 = 1760)		945 + 1060 = 2003	5	100	75 + 1115 = 2120		11	040 + 1150 = 2190)
Марк	a epepa	461		ПФ12-25			ПФ12-36			ПФ12-45	,		ПФ12-52		<u> </u>	ПФ12-61	

^{•)} Стеряси выполнянится из челеродистой стали "Сталь З

цииипроектстяль-Конструкция с ленинград

- 1 В графе "Опорное давление" чутен собственный вес подстропильной фермы.
- 2. В графе "Масса фермы" первое слагаемое представляет вес стержней из низкалегированной стали, второе из иглеродистой стали "Сталь 3".
- 3. Максинальное расчетное эсилие для крепления стержней 5т.
- 4 Условия поставни стали уназаны в разделе <u>VI</u>

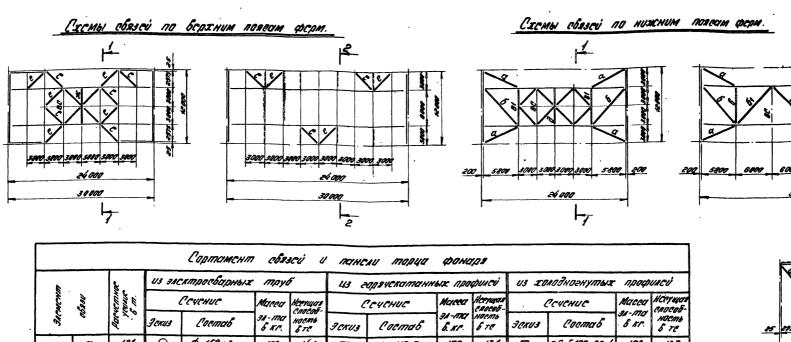

TK	Сортамент	подстропильных	ферм	Cepu 1.46	
1972		пролетом 12м.	· · · · · · · · · · · · · · · · · · ·	Buryek	sucm 18
			10	2514	25

жы) Стойки C2 смотри изел 6 на листе 25.

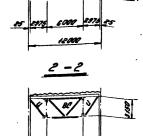
B	ξ,	1	1		V US XOADONOENYM	W Apopules	4 DHOL	THUIP 4	DEPMBI	as eadercroma	4611 11,000,000.00	
93/	3	1	Š		CEACHINE	Pacvemnoic	1888	1		CEVENUE	Pacycmnen	
8	£.	8	3	PCAU3	Coemal	yeonus	880	100	30rus	Coemab	yeunus	
		81		7	2174L 80x4	N==1.870		81	٦٢	2L75x5	N=±18re	
	0521	82	,	- Œ.	214 E 180×60×4	M=0,54 TCM N=-1,6 TC	053)	82	:30:	2 [10	M=0,547CM N=-1,67C	
	2.	PI			214L 80x4	N=-8,ere	2.1	PI	٦٢	2 L 80×5,5	N=-8,270	
	Mari	CI		7	214L 80x4	N=-9,570		01	٦٢	2 L 75x 5	N=-9,570	
ØC,	MOC	16			415		Mal			490		
_£	MON	ODA.	_		100-2	`	MO	DRO IODI	200-2			

Сартамент прогонов

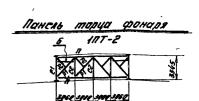
Μαρκα		Hapk	1dm	UBH	ar enceoba	18	HQ	epyska 6	57	y ë		
TROCOMO	L_,	50									150	
	7cmus	CCVCHUC	Magro KC	9CKU S	COVEHUE	Mogere	ICKUS	Сечение	Hogeo	30xus	CEVEHUE	Mart
			I	43	холодноен,	V 1776	/X	TE OPPUACU	;			
PI	С	THE 180 x 80 x 4	122,0	Г	TH [200 x 80 x 5	162.0	C	TH [200:80:5	162,0	С	TH C 200 x 100 x 6	2150
PB	C	CH [200×100×5	180,0	C	N C 200×100×6	2140	С	TH [200×120×7	2740	30	21'y [200x 100x 5	360,
P3	C	[H [250x80x6	165,0	С	I'N [250x80x6	165,5					PH [300x100x7	1
P4	С	THE 168280x4	120,0	E	TH [160×80×4	1200	C	IN [160x80x4	120,0	C	TH E 160x80x4	20,0
ρзα	C	IN E 200x80x5	85,0	C	TH [200x 80x5	850	C	TH [200×100×6	110,0	С	TH [2001 100 x 6	rag
pt ·	С	C /6	175,0		E 16	175,0		npaqbunc E18	1950	C	[18	200
PE	C	E 18	200,0	_		2010		2C 16	141,0	┼─	JE 18	400
P3	C	[<i>22</i>	1900	C	[<i>ee</i>	190,0	C	C 24	216,0	С	[<i>e7</i>	250,
P4	C	. [<i>16</i>	1750	C	[/6	175,0	۲	E 16	775,0	C	C 16	175
P3a	С	[16	86,0	C	E 16	860	C	E 18	98,0	С	[20	114
						Ļ						L



1 × 1	100		CACHUC	Расчетные	883	10		CEVENUE	POLVESTINA
0	OPES.	3 CKUS	Coemab	700409	385	3 8	3erus	Cocma6	YCUAUS
	81	مليع	C. <i>20</i>	Mx = 0.76 TCM My = 0.29 TCM		81	λ ⁻ ι ^μ νλ	[<i>20</i>	Mx = 0,767CM My = 0,29 Te
	82	1 120	ECHL 80x4	6 N=+3,5rc		82	7 40	2 L 80×5,5 L63 4 4	N=+3,576
	n	.][.	25H[160×80×	Mx = 0,9 TCM Wx = 0,78 TCM N = - 15,9 TC		11	11:40	e C 12	Mx = 0.9 TCM Mx = 0.78 TC N = -15.9 TC
x 1250	H	C	Apoquat NE (CM. GALGOM CCOUU 1.464-2		867	Н	C	Apagouns I (EM. 4.ns Form CCOUU 1.464	
6	CI	<u>[-</u>	PN [180×60×4	Mx = 0,3 TEM N = -4, 4 TE	2×	CI	<u> </u>	C 14	Mx = 0,3 TO
	ce	-H.	21 n	Mx = 0,5 Tem N = -6,5 Te		CE	≛JE*	e [14	Mx = 0,5 TCA N= -6,5 TC
	PÍ	[THE 120×60×4	N=17,6 TO		PI	Е	C 14	N= 17,670
								,	
	ORD .		185	905		CCA BIBKE		470	1130


PAUMEYAHUA:

- 1. Материал конструкций- Сталь 3.
- Марки етами указаны в разделе <u>V</u>I паленительной эаписки. 2. Саетовные сечения из ввух швемеров (стеркни Се)
- г. Саставные сечения из обух швемеров (стержни сг.) сварить сплашными швами.
- 3 Сечения фанарных ферм принаты по альбому есрии 1.464-2 былуек 1 и 2 "Стальные конструкции светоаэрацианных фонарси производетвенных зданий.
- 4. Úsaki sacucumos manajos u manajonkos noucaci cm. aukšem ecpuu 1.464-2 beinyes 1 v 2.
- 5. Мархировку прогонов см. на листая 3-12.


	взамен листа 19	Spekranun	57 197	9 2 10 HUNU	801
TK	Сартамскт	GO HOLDH BIT	docom,	1.46	
978 _c	•	•	caci.	BANTYCH	Auem 19 u

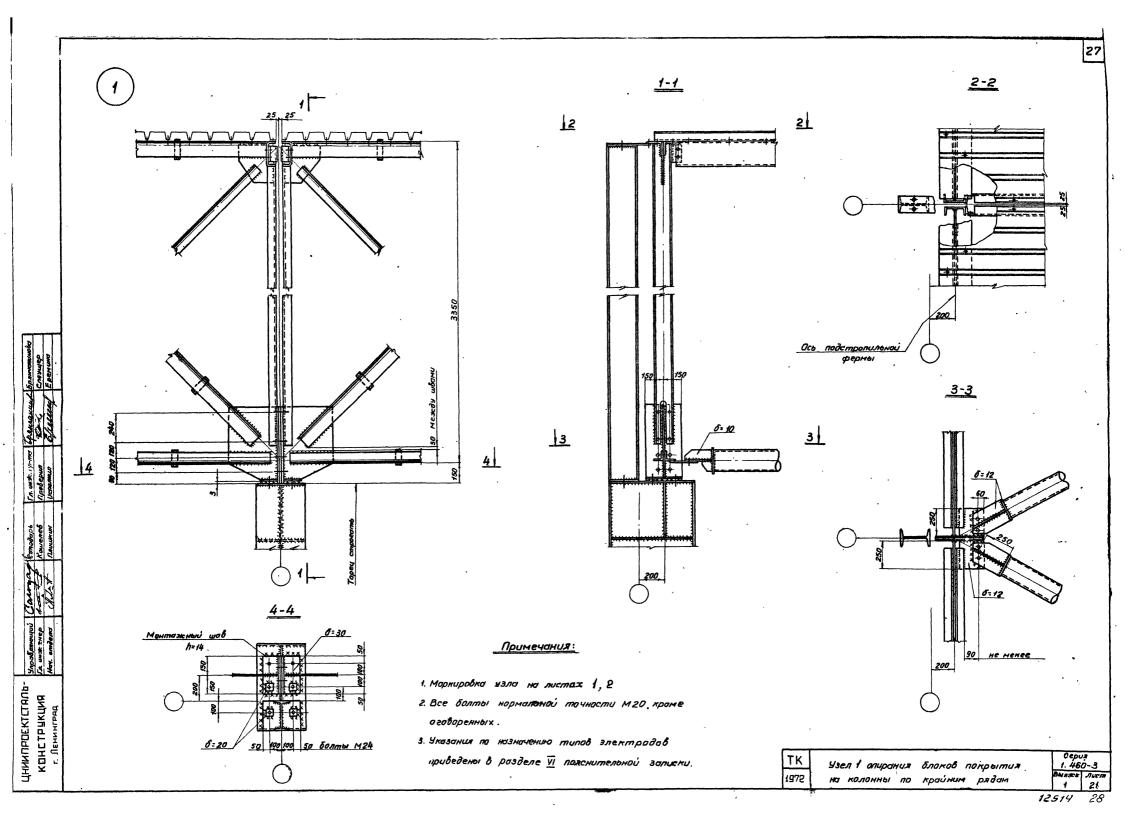
			& .	US PAC	<i>ктросбарных</i>	mpyl	5	43 é	POD SYCKAMONH	NIC APO	puici	U3 X0	и <i>одногнуты</i> х	npagh	vacil
FUCMEN!	neegu		. 6 m.		?cvcnuc	Marea	Harvuyas Cnacas-	-	CHCHUC	Marea	CAUCEO-		Cevenue	Macca su-ma	HCCY MA
3110	8		o . Jod	Эскиз	Coemab	31-MA 6 KP	HOEMB ETC	3 CKU3	Coemab	31-MG 6. KP.	HORMS 6 TO	30KU3	Coemab	8 AP.	S TO
		q	-12,1	0	Ø 159 x 3	108	-14.1	7	2 L 110x7	170	-13,1	0	21NE 120×60×4	108	-13.7
HUNTHUM GOCDM		6	-13.5	0	ø 168×4	191	-14.7	4-	2L 110×8	276	-14.4	-C-	2 [NE 160 × 80 × 3	185	-151
HUNG	L	5,	-8,8	0	ø 159 x3	139	-9.6	+	2110:7	235	-12.4	-C-	2 [NE 160×80×3	160	-14.8
£ 0.		6	-5,7	0	\$ 11423	56.	-69	+	2 L 80 x 5.5	85	-7.4	-0-	21×190×4	70	-8.0
isu ne nosecim		Aaraop		X	\$ 11423	128	-6,9	K	- = 90x56x55	190	-5,5	K	- 3-21H L90x4	150	-8.0
3 8	Ë	Paexae	-3,7	10	- \$ 83×25		-43	1/2	-75 70 x4.5		-5,1	1	+ 2/HL70x3	,55	-5.2
(1883U 110.	0	Parane	+5,7		p 635 25	127	+10,0	YY	T7014.5	159	+130	*	L/NL 70×3	114	+ 8,5
	<u> </u>	Распар	-3,7		- \$ 102×2,5		-4.8	18	- 110×70×6,5		-4,7		- \$ 21HL80x3		-4.1
	_	<u>e</u>	-2,0	0	\$ 635 125	22	-2,0	r	2L 70 14.5	45	-5.1	→	21H L 70 23	32	-5,2
COXMM COXMM COXMM	Jac	Раское			7 \$ 635 × 2,5	127	+10.0	Y	L70145	159	+130	Y	-LIHL 70x3	114	+8.5
20,00			-22		- \$ 102×2,5	7	-4.3		- F110 270 16,5		-4.7	18/2	-0-21HL80x3	114	-4.1
FOR		Icorn. nasc	-4,3		1 \$ 102 x 2,5		-4.3	_	1+ 75×5		-55		- 0 21 NL 8013		-4.1
Bizamakan El 134	BC	Porsot Maximo	-3,2	Z	- \$ 83 x 25	156	-41	经	70 20 45	228	-4.8	7	- 2/NL 7013	182	-50
3, 8	L	nese	-6,0	~~	\$ 114 x3		-6,8	•	90×56 ×5.5		-65		- 0-21HL90x4		-8.0
8	<u> </u>	u	-6,6	0	\$ 108 23	51.0	-8.1	7	2 L 9016	100	-120		21NL 90 x4	67	-13.0
2	-		Mx = 0,13TCM				-	τ̈́	E 12			ų,	THE 120 26024		
(C.16 <i>Coencitos</i> 7 - 2	-		My=0.227CM N=-0, 6 TC My=0.45 TCM					×-E×	E 12			.E.	THEROXBOX4		
	-	···	My=0.58TCM N=5.35TC					· , 	2 C 12	1248		· <u>ib</u> ·	2/H [120×60×4	960	
interior de la companya de la compan	-	02	Mx= Latrem					-	C 12.			r i a O	PNE 120 x60 x 4		ļ
'éu	-		My=0.35TCA						E 12			- -	THE 120 × 60 × 4		<u> </u>

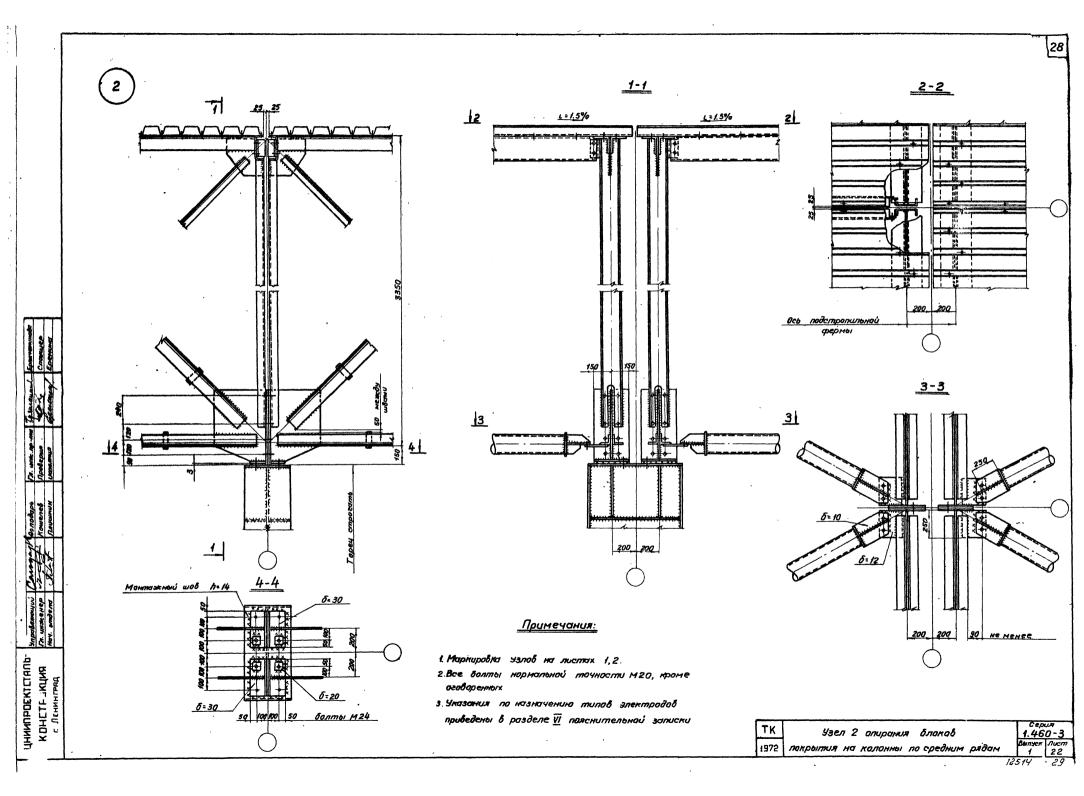
25 2975 6000 2975 25

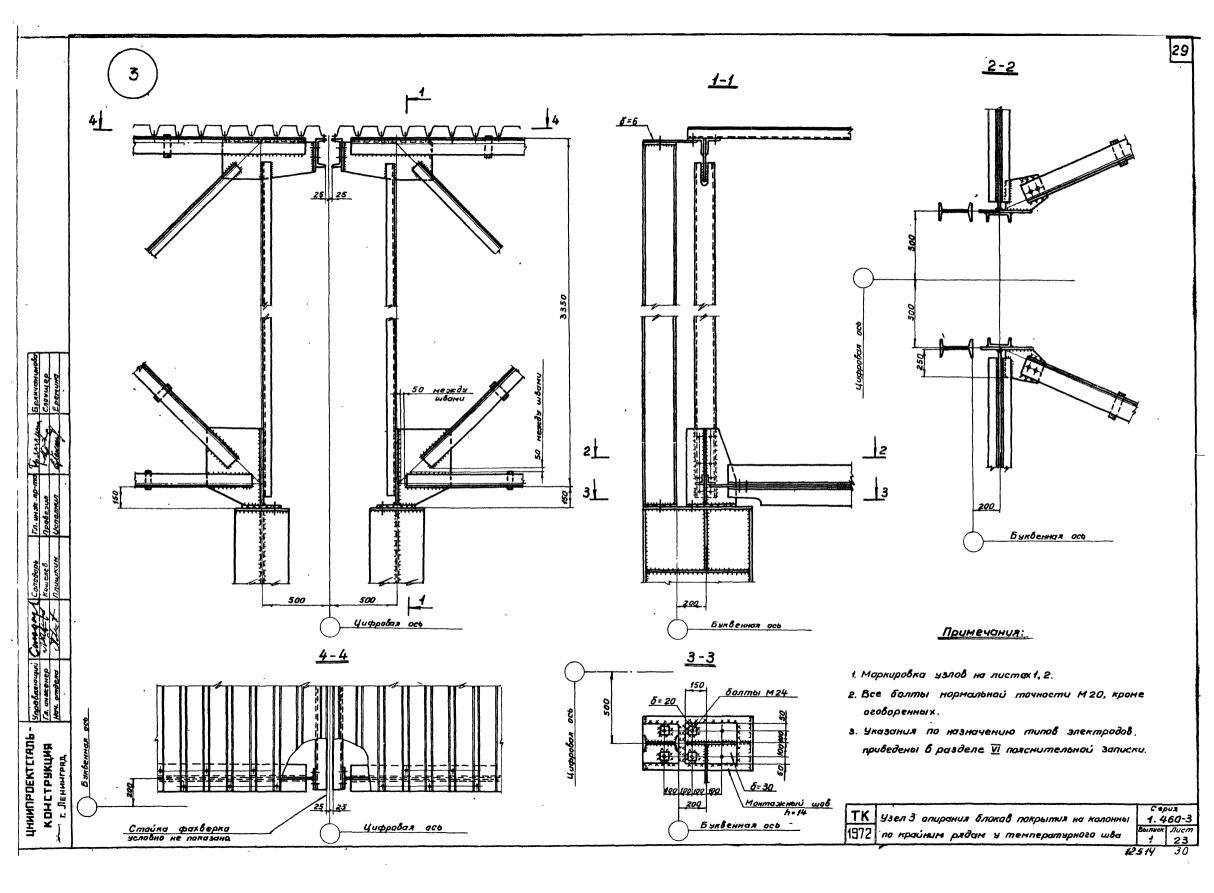
Примечания:

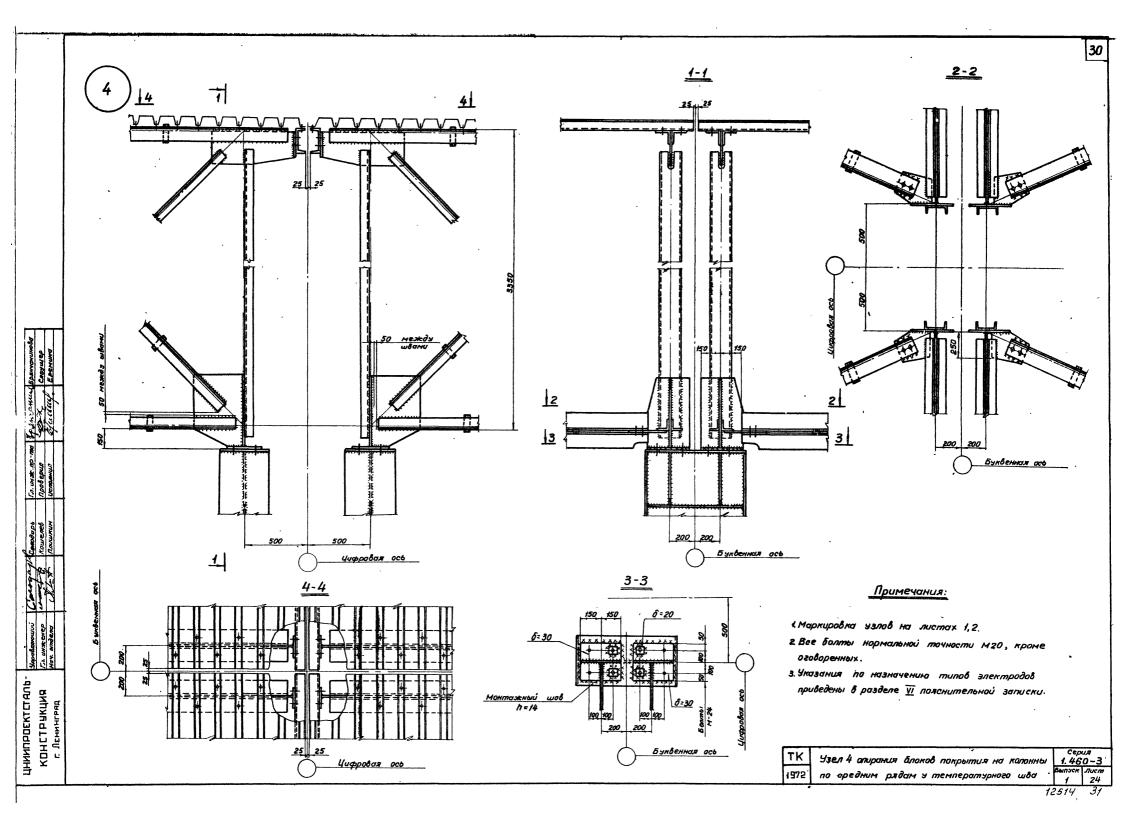
Взамен листа во 1997 дамания / Брянчанинова

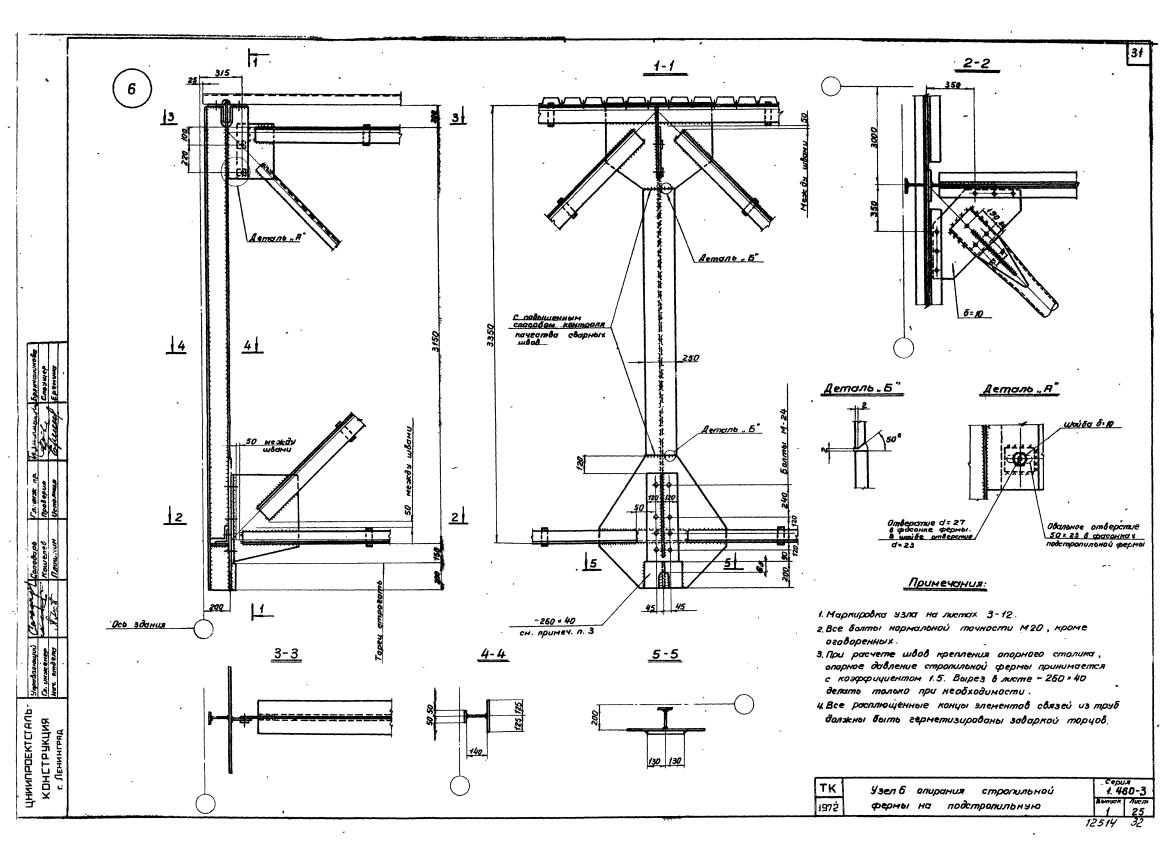
К. Сортамски связей и пански торца фонаря.

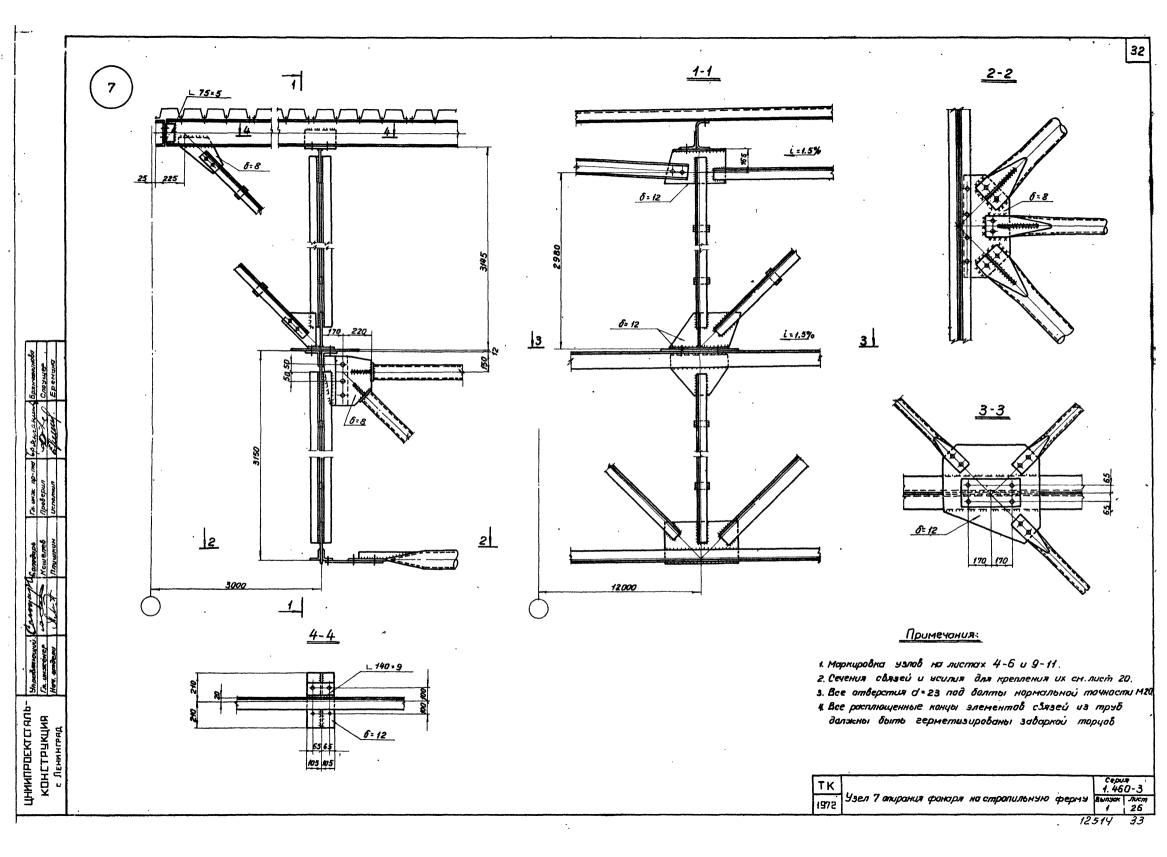

OS. Saure

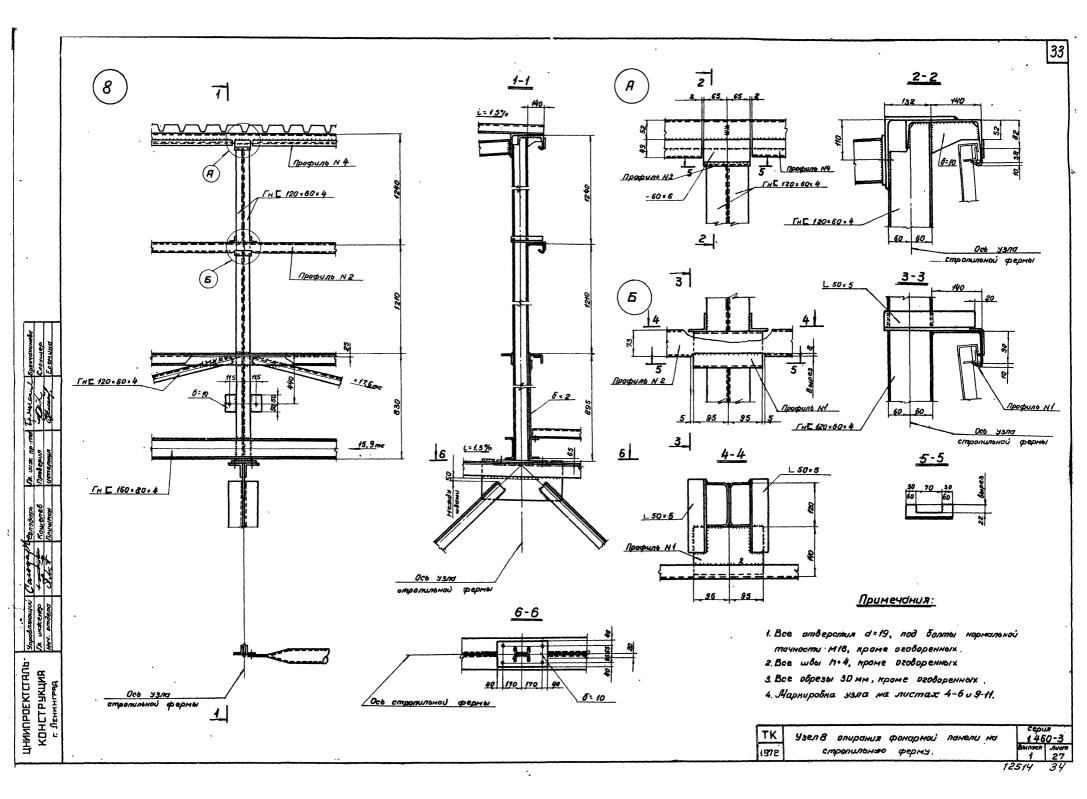

514 27

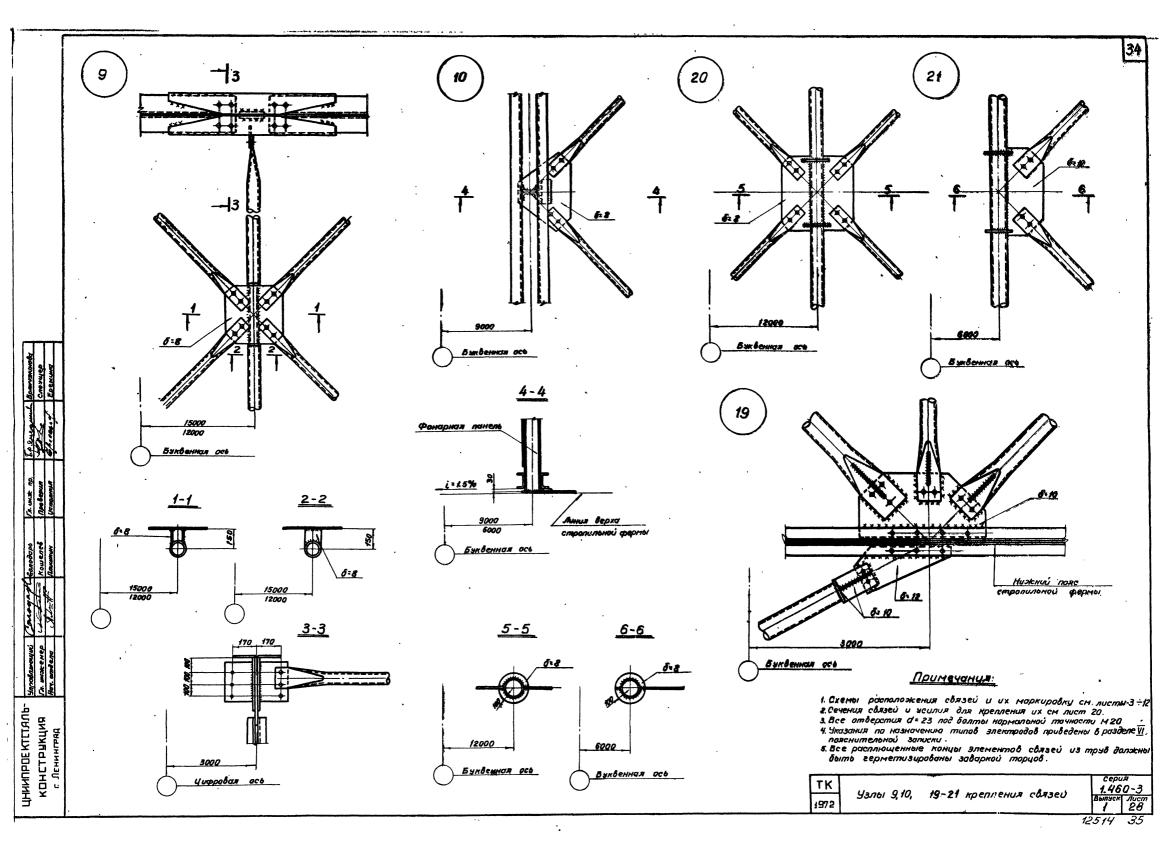

ЦНИИПРОЕКТСТ КОНСТРУКЦИ

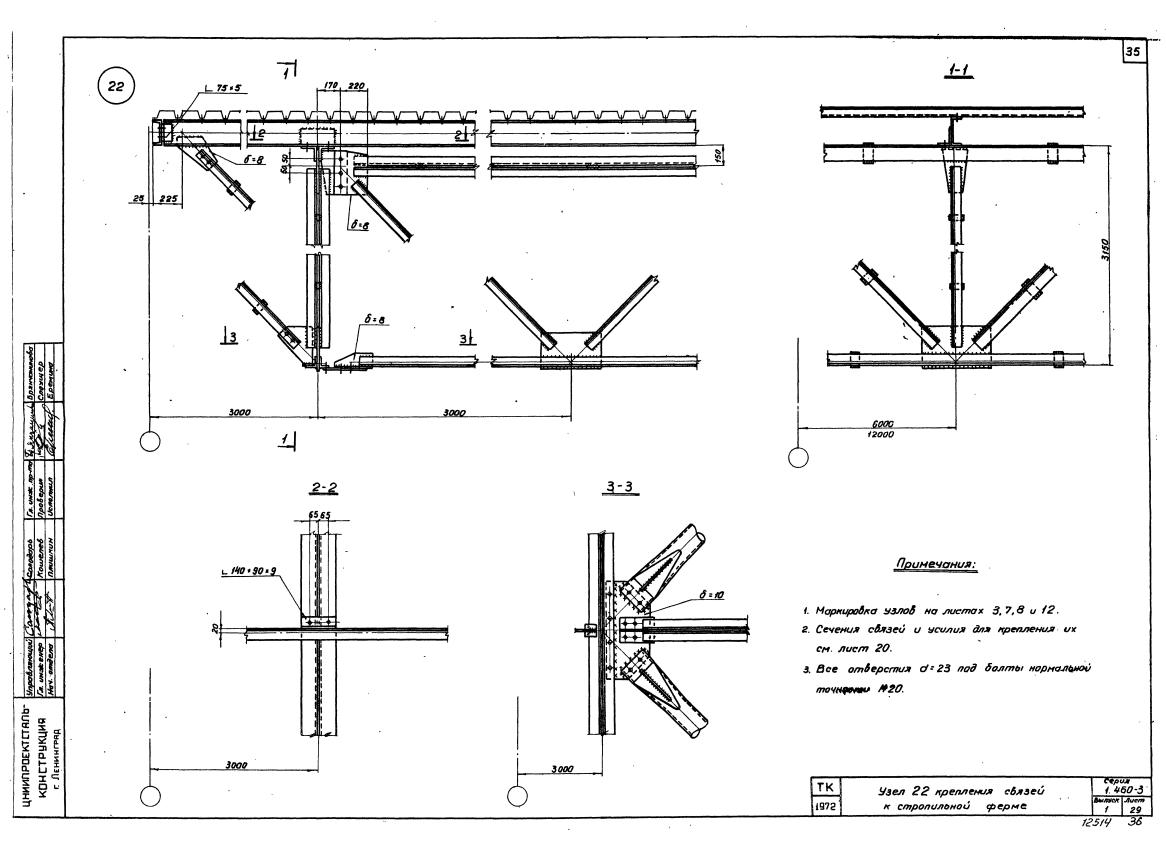

^{1.} Материал канетрукций - Сталь 3". Марки стали указаны 6 разделе 12 паденительной записки.

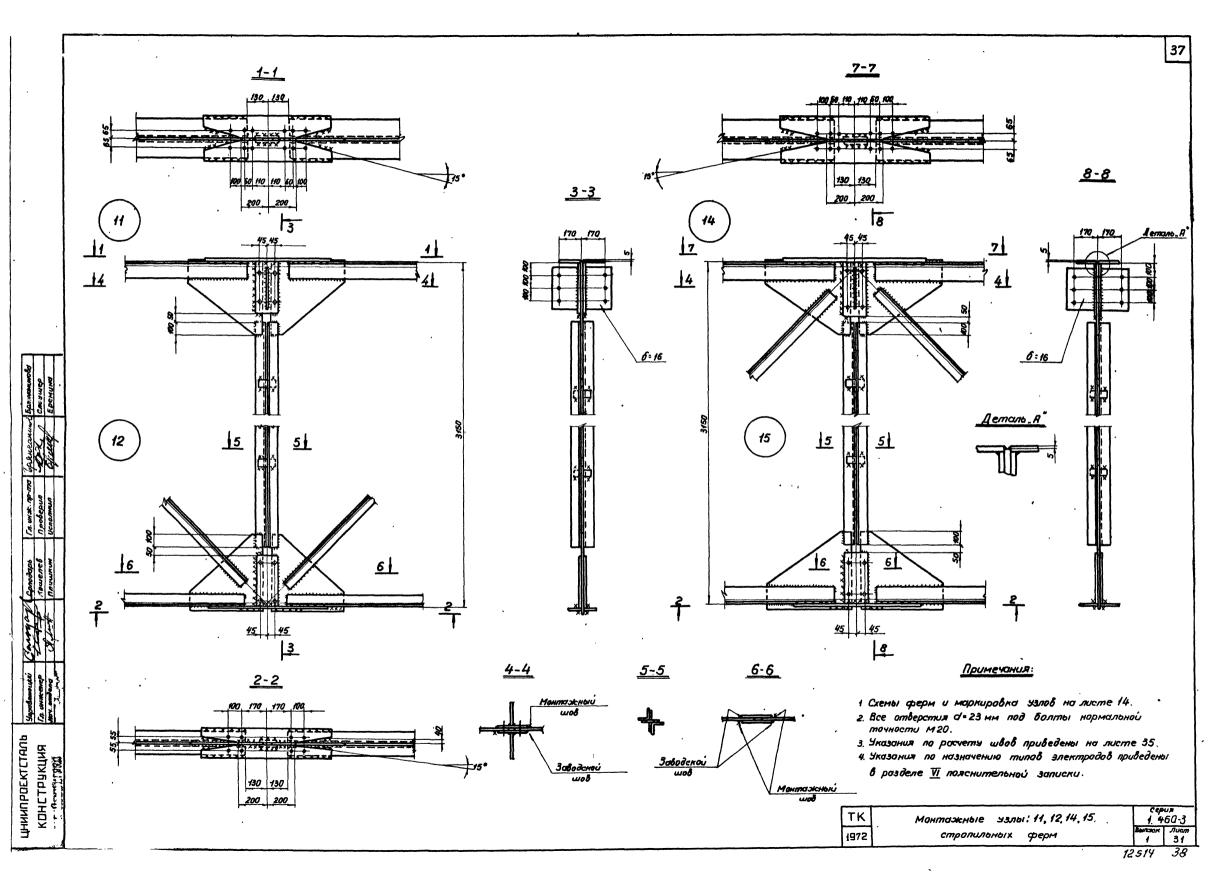

^{2.} Масса элементав связей дана с учетом фасонак

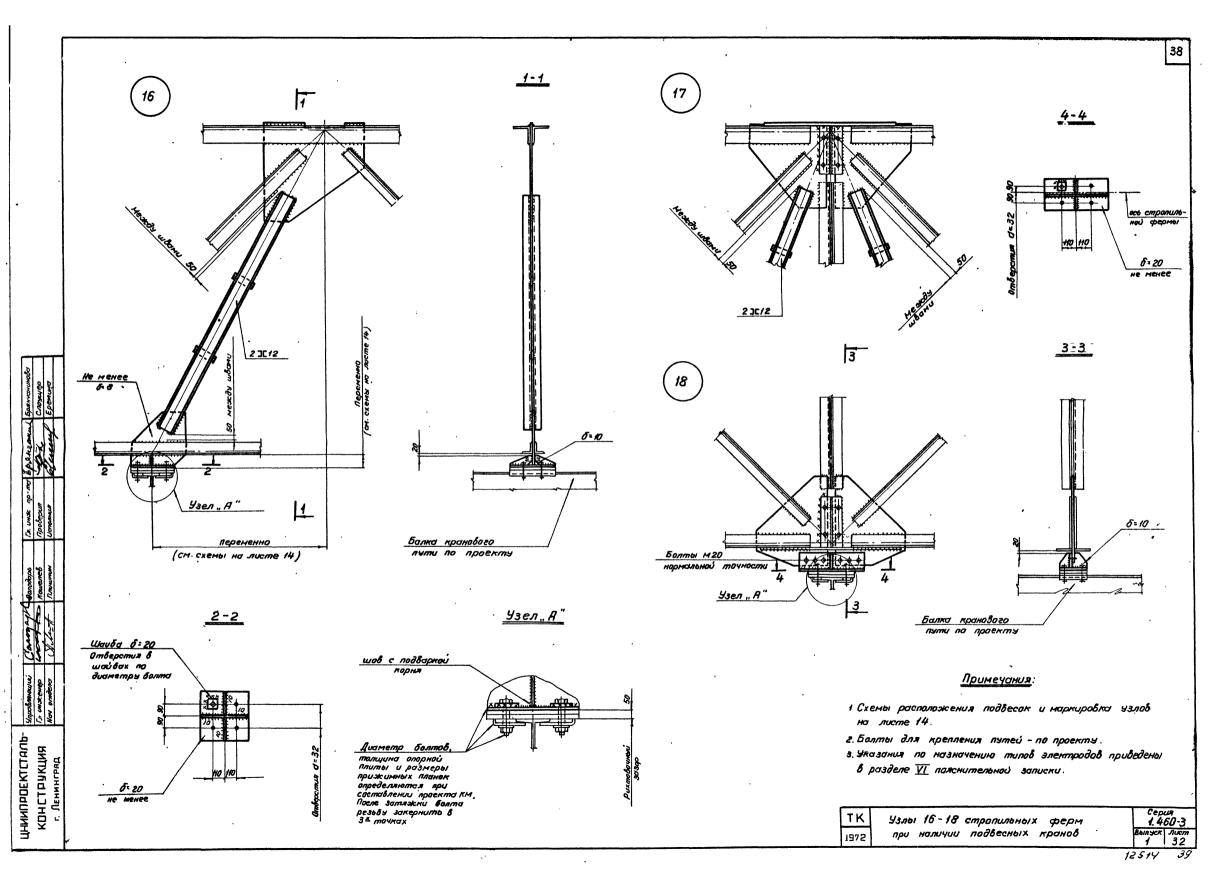


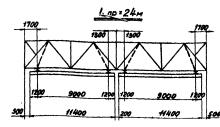


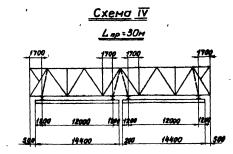












		Кран	ы па	д ве сне	bi e 3 /1	ектрич	ieckue	Одн	обало	чные	обще	ŧо но	rsha yea	IUĀ	•		,
Схема	onod a ex worms	Па лныя длина тана L	nponem npone La	ioncornamonos dinuna ancoru e,	Eu3a ripawa B	Wupuna Moana B1	Kpaúnee nonoskehue Kpama Es	82	Decremp	anvvecmbo merrescex	Нармат Давление на подкры пил	энобый		אסח קא אפני טינט אפני טינט	ески фермы кольной)	Bêans rome lose namu am maprio- acenus nacina	Secreta Vadera Unaber Vadera Valera Valera Valera Valera Valer
	25.0			*		<u> </u>			*	WT	P HORE	P MUH		Make.	MUH.		на эзел фарты
1 6 40 6		11,4	9,0	1,2	1800	2150		1045			965	70	1070	4,66	Q71	0, 23	0,15
niel hiel	1,0	14,4	12,0	1,2	2100	2450	660	1195	120	4	1050	150	1405	4,9	1;06	Q 25	0,15
		11,4	9.0	1,2	1800	2150		1035		4.	1620	110	1465	7,55	0,91	0,39	0,27
1	2,0	14,4	12,0	1,2	2100	2450	710	1185	150	4	1710	210	1845	7,71	1,55 .	0,41	0,27
		11,4	9,0	1,2	1800	2165		1045			2525	70	1995	11,65	0,84	0,61	0,43 ·
8. W	3,2	14,4	12,0	1,2	2100	2465	750	1195	175	*	2525	220	2285	11,3	1,45	0,61	0,42

- 1. Гавариты, масса, геометрические параметры и величины нармативных магризак приниты по ГОСТ 1890-67" "Краны подвесмые электрические одновалочные общего назначения".
- 2. Расчетные вертикальные и горизонтальные нагрязки на язел фермы определялись в соответствии с "Указаниями по определению нагрязок от подвесных кранов" (СН-355-66) и с эчетом нагрязки от массы лыти.
- 3. Длина консолей подвесных кранов эстановливается с эчетом габаритов колонн и расположения коммуникаций здания, по размерам соответствующим ГОСТ у 7890-67.

TK	Схемы 🔟 и 🔟 распаложения в пралетах подвесных Злектрических, однопралетных кранов общего	Сер 1,46	0-3
1972	назначения, их геометрические параметры и моска. Нармативные и расчетные крановые нагрузки.	Abinsic 1	70cm 33
	12.5	14	40

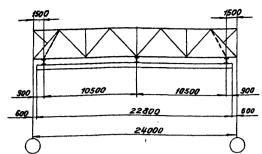
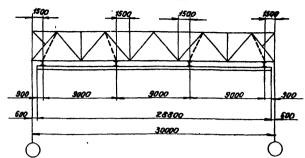
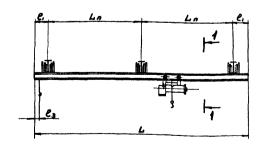
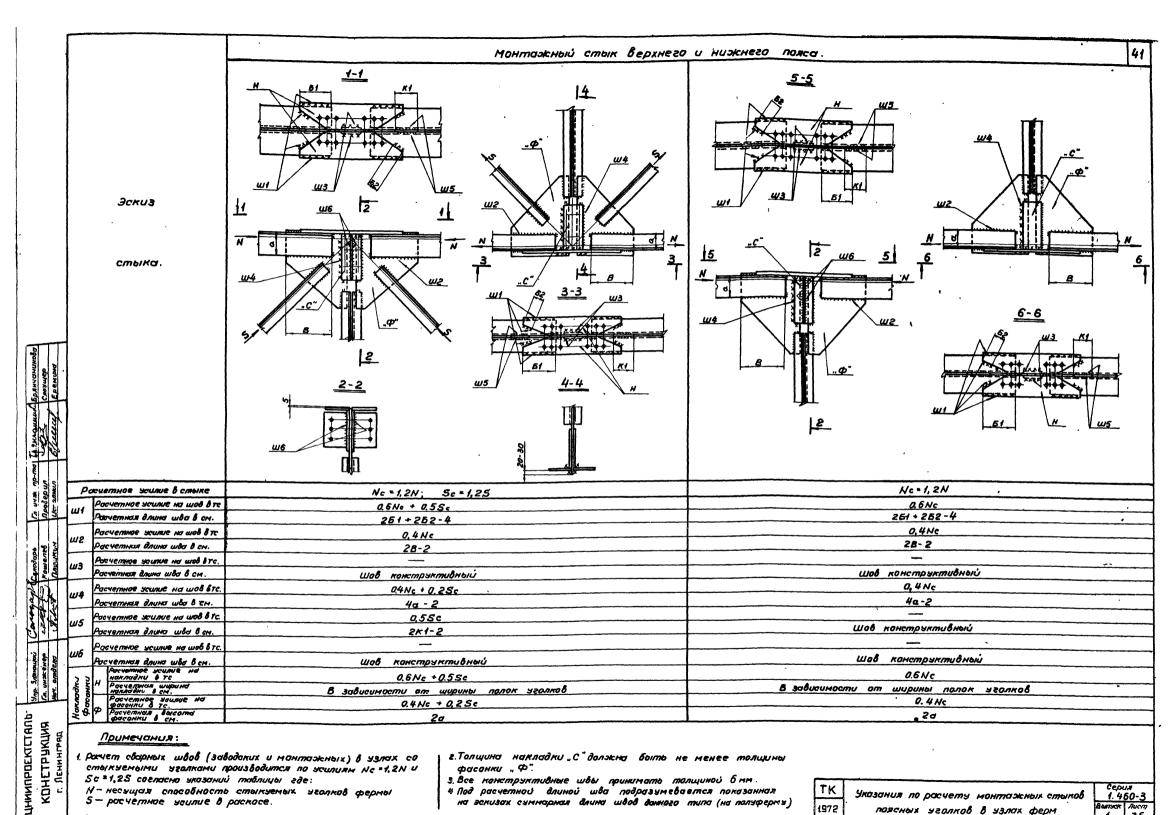




Схема VIII L np = 30M

Краны пой	Весно	ie ai	пектр	UYECKL	ie oð	ηοδαл	очные	общ	его н	103H0Y	ения.	Кран	ы <i>д</i> в.	ע אצ	mpex	ролеп	пные.			
	m b	Попная	Пролет	Длина	База	Ширина	Крайнее	Деонет	Кол-во	Нарма	тивные	наеруз		Общая	Pocye	mHOR (вертико	UNDHON	Pat yemna Sanmanan	on sopu-
	-	длина	прана L п	консоли е,	крана В	прана В,	паложе. ние	колес тележ	тележек	7		enesku 	HO	Macca	нагруз	אם אם	подвеску	עמע	13 dans 14 mars 10 mg 14 mg 10 mg	
Схема нагрэзок	3anodé	KPOHO L		Ξ,		-,	'крана	KU				ть в зав Сения гр		прана	usen d		' зависим жения з		торноже. ния мости надвесного	
	ھ						e_3			ΡI	P2	P.3	P4		PI	P2		P4	крана	Ha ५३८४ क् रिक
	TC		М				MM		шт			Kec					mc .			nc
	2,0				1800	2220	690	150		1570	320	320	190	2805	7,4	1,8	1,8	1,2	0,38	. 0.28
	3,2				1800	2240	670	175		2400	430	430	260	3840	11,1	2.4	2,4	1,7	9.58	0,43
9x 1P, 1P2 1P3 1P4	5,0				2100	2850	880	175		3670	460	460	270	4720	15,9	2,4	2,4	1,6	0,88	0,63
481-	2,0	28,8	9+9+9	0,9	1800	2220	690	150	8	230	1570	380	230	2805	1,4	7,4	2,1	1,4	0.38	0,28
<u> </u>	3,2				1800	2240	670	175		310	2400	510	310	3840	1,9	11,1	2,8	1,9	0,58	0.43
1P, 1Pa 1Pa 1P4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5,0				2100	2850	880	175		320	3670	550	320	4720	1.9	15,9	2,8	1,9	0,88	0,63
	2.0				1800	2220	690	150		1570	340	200		2210	7,4	1,9	1,3		0.38	0,28
<u> </u>	3,2				1800	2240	670	175		2400	460	270		3045	11,1	2,5	1,7		0,58	0,43
QK IP, IPa IPa	. 5,0				2100	2850	880	175		3670	460	270		3790	15,9	2.4	1,6		0,88	0,63
	2,0	228	10.5+10.5	0,9	1800	2220	690	150	δ	270	1570	270		2210	1,6	7,4	1,6		0,38	0,28
	3.2	1			1800	2240	670	175		360	2400	360		3045	2,1	11,1	2,1		0.58	0,43
1P. 1P2 1P3	5,0	1			2100	2850	880	175		360	3670	360		3790	2,0	15,9	2,0		0,88	0,63


Схема подбесного крана

цниипроектсталь-КОНСТРЫКЦИЯ г. ЛенингРАВ

- 1 Cxembi VII u VIII расположения подвесных кранов в чнифицированных пролетах зданий и грязоподъемность кранов приняты в соответствии с приказом ГОССТРОЯ СССР от 18 июля 1967 г. за Nº117. 2. Общие примечания см. лист 33.
- Схемы $\overline{\text{VII}}$ и $\overline{\text{VIII}}$ расположения в пролетах электри ческих 2° и $\overline{3}^{\circ}$ продлетных кранов общега мазмачения, их геонетрические параметры и масса наружки 1 34

12514 42

	ФС24-1,	40				30	230	2.3%				200	2.	1-3				3.85	1.35	1.3				4,80	2	4
W	Префиль	24-1.40	Сталь	NN N/n	Профиль	ØC24-8	TF-00224	WI-PC24	Сталь	NN Va	Профиль	-h23¢	मा कटड्य	W DCZ	Сталь	NN N/n	Профиль	-h23¢	II -Ф€24	班-ФС2	Сталь	NN Nn	Профиль	ФC24-		
/		B.		,		Mac	ca b	Kr.	•		•	Mac	co B	Kr.				Мас	ca 8	Kr				Mac	ca b	Kr.
71	L 100 × 65	953		1	L 110:8	637	637	637	5 3 %	1	L 125 18	732	732	732	2 3 3	1	L 125×10	902	902	902	× 25	1	L 140 = 10	1015	1015	1015
	L 90 = 6	125		2	L 100 : 6.5	477	1		1	2	L 100 = 6,5	477	477	477	000	2	L 110×7	562	562	562	3 3 6	2	L 125×8	731	731	731
-		/	87	-	Umgeg;		1114	1114	1 5 6 X		Umoep:	1209	1209	1209	1 8 8 F		Urnozo:			1464	R. S. S.		·Umozo:	1746	1746	1746
	L 80 = 5,5	105	5	-	L 90 -8	330	1	330	1 80	3	L 110=7		360	360	407	3	L /25×8	470	470		, e	3	L 125×10	579	579	579
		1	ξ	4	L 75.5	294	294	294	8	4	L 90=6	255	255	255	8	4	L 100×6,5	154	154	154	8	4	L 110=7	182	182	182
Г	L 75 - 5	89	i	5	C 12	-	248	127	1 5	5	L 80 + 5,5	136	136	136	5	5	L 90 × 6	294	294	294	S	5	L 90×6	294	294	294
- 			ğ	۱	Umozo:	824	872	751	1 8	6	□ 12	_	248	127	1	6	E 12	_	248	127 .	5	6	E 12	_	248	127
_+	Umeso:		Š	_	Листован сталь			450		Ť					8			 			200					l
5	Aucmobas cmass	411	8	-	//UCIDOOCA CHISIN	703	700	450	1 8		, Umozo:	751	999	878	8		Umozo:	918	1166	1045	g		Umoso:	1055	1303	1182
		 	Jene				 	 	125	-	Листовая сталь		548	518	8	-	Листовая сталь		649		, &	7	Листовал сталь	+	1	

8	12H																						
1											C mpor	<i>IU/Ibh</i>	ые ферм	o/ //	роле	том	L=3	Ом.					
30	(read		ФC30-1.5	5	1			25	0-25	20-25				3,15	0-3,15	30-3.15				-4.3	0-43	30-4.3	
3 2		NN.	Профиль .	Maced 8 Kr.	Сталь	אא מוח	Профиль	фс30-	N-4530	VIII- COC	Сталь	מ/ח	Профиль	фезо-	1V - 4C30	MIII - ФС	Сталь	NN N/n	Профиль	фс30·	<u>10</u> -æc30-	VIII - ФС30	Сталь
Co. enter.	research	7/11	Προφωπο	740 8		///			0 6 1	l		,			cca 8					Мас	ca b		As-
H	Ť	1	L 110.8	799	3 3	1	L 125×10	1131	1131	1131	2 5	1	L140 × 10	1273	1273	1273	2 2	/	L 160×11	1598	1598	1598	2 2 1
٠,١٩٥		2	L 100 + 65	598 ·	1 1 1 B	2	L 110×8	799	799	799	Huska Palam R=2900'	2	L 125 × 9	1024	1024	1024	Diene 2900	2	L 125× 12	1344	1344	1344	200
d'o	2		Umo zo:	1397	# 45 S		Umozo:	1930	1930	1930	385		Umoeo:	2297	2297	2297	Her.		<i>Umoz</i> 0:	2942	2942	2942	₹84
Govern Manadapt	200	3	L 90 - 7	147		3	L 125×8	473	473	473	[3	L 100 × 12	546	546	546		3	L 140×9	291	291	291	
M		4	L 75×5	90		4	L 90 +7	297	297	287		.4	L 100 * 6.5	311	3/1	311		4	L 125 × 9	268	268	268	
FH	3	5	L 70 -4.5	300	. %	5	L 75×5	270	270	270	8	5	L 80 * 5.5	315	315	3/5	, m	5	L 110=7	185	185	185	:
8	3				9//0	6	C 12		248	254	Callo	6	C 12		248	254	90	6	L 100×10.	231	231	231	76.3
			Umozo:	537	S				ļ		,	ļ					Cand	7	L 90×6	183	183	183	ğ
Sapolanous)e.ne	6	Aucmobàn cmans	630	1 1	<u> </u>	Umožo:	1040	1288	1294	5	<u> </u>	Umozo:	1172	1420	1426	7	8	L 80×5.5	166	166	166	Ö
dae	3	***************************************			3	7	Листован сталь	693	772	786	. 8	7	Листовая сталь	808	887	890	85	9	C 12	-	248	254	R
3	\$				\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\						родпс						Į į						ma.
في _					Уелеродист						U						sogne.		Umoeo:	1324	1572	1578	Углеродис
IPOEKTCTAAb- FTBUKINA	4				1 2						75V		·				Yenep		Листовая сталь	981	1060	1064	Jeps
¥ 5	Снингряд				1 "						}						Š						42
# 5	Ž		1		1																		
										-													_

- 1. Условия поставки стали чказаны в разделе 🗓 пояснительной Записки.
- 2. Масса поясов и решетки подсчитана по геонетрическим длинам, с учетом коэффициентов 1.0 и 0.9 соответственно.
- 3. Масса еварных швов принята равной 1% от всей нассы ферны.

серия 1.460-3 TK Спецификация стали стролильных ферм пролетани 24 и 30м

Спецификация стали подстропильных ферм $L = 12 \, \text{м}$.

	ЛФ÷25				ЛФ-36				пФ-45		***************************************		ЛФ-52				<i>ПФ-60</i>		
NN Nn	Профиль -	Macca 8 Kr.	Сталь	NN n/n	Профиль	Macca 8 Kr	Сталь	NN Nn	Профиль	Macca 8 Kr	Сталь	NN NJA	Профиль	Maaca 6 Kr	Сталь	NN P/n	Профиль	Macad & Kr	Сталь
1	L 125:8	371		1	L 125×8	622		1	L 140×9	466		1	L 140×9	466		1	L: 140×9	778	
2	L 110 · 7	192.		2	L 80 · 5,5	163	8 5	2	L 125×8	248	25	2	L 125×10	306	25.4	2	L 100 × 7	260	22.73
3	L 80 × 5,5	272	٠				3m0			231	Cma OF 2	3	L 9017	232	CM				1 5 P
4	L 56 ± 4	36	9		<i>Итого</i>	785			Umoeo:				Umezo:	1004			Umozo:	1038	<u> </u>
	Umozo:	871	Ω H	3	L 90×6	134		4	L 90×6	134		4	L 90×7	155	} .		L 100 = 7	173]
5	C 20	114	Ü	4	L 56 × 4	36	F 9	5	L 56 = 4	36	n	5	L 56×4	36	, E		L 56 × 4	36	n
6	Листовая сталь	615		5	□ 20	114	5	6	C 20	114	8	6	C 20	114] · §		C 20	114	1 8
					Umozo:	284] §		Umoeo; 2]		Umaea:	305	5		Umozo:	323	1 8
				6	Листовая сталь	673	1			755		7	Листовая сталь	790	<u> </u>		Листовая сталь	805	

Спецификация стали фонарных панелей в кг.

<i>(/</i> 3	холодноенчтых. пр	офилей	;	Us	, <i>гарячекатаны</i> х	прафиле	i	•
WW	Профиль	Фона) пане		NN	Профиль	Фонар	enu enu	Cmane
n/n	,50,50	1 ቀበ-2	1ФЛ-2°	1/11	профоль	2ФЛ-2	2ФП-2 ^d	2
1	C 20	219	165	1	C 20	219	165	
2	rh [160 × 80 × 4	230	172	2	C 14	492	370	
3	rh [120×60×4	282	200	3	[12	248	185	
4	THL 80 = 4	114	86	4	L 200 × 12	27	27	
5	THL 70 . 50 . 4	42	31	5	L 100×10	6	6	
6	Гн проф. N2 (б=3)	32	24	6	L 80×5,5	162	122	6
7	Гн проф. N4 (8=2)	11	9	7	L 63:4	47	35	Сталь
	Umozo:	930	687	8	L 50×5	6	5	S
8	L 200+12	27	27		Umoeo:	1207	915	1
9	L 100 × 10	6	6	9	Гн проф. N2 (б=3)	32	24	
10	L 50:5	6	5	10	Гн проф. N4 (8=2)	11	9	
	Umozo:	39	38	11	Листовая сталь	205	170	
11	Листовая стань	204	170					

Примечания:

ц⊦∵ипРОЕКТСТАЛЬ-КОНСТРЫКЦИЯ с ЛенингРАД

- 1. Условия поставки стали иказаны в разделе 👿 пояснит ельной записки.
- 2. Масса поясов и решетки подсчитана по теометрическим длинам с учетом коэффициентов 1 и Q9 соответственно.
- 3. Мааса сварных швов принята равнай 1% от всей массы фермы.

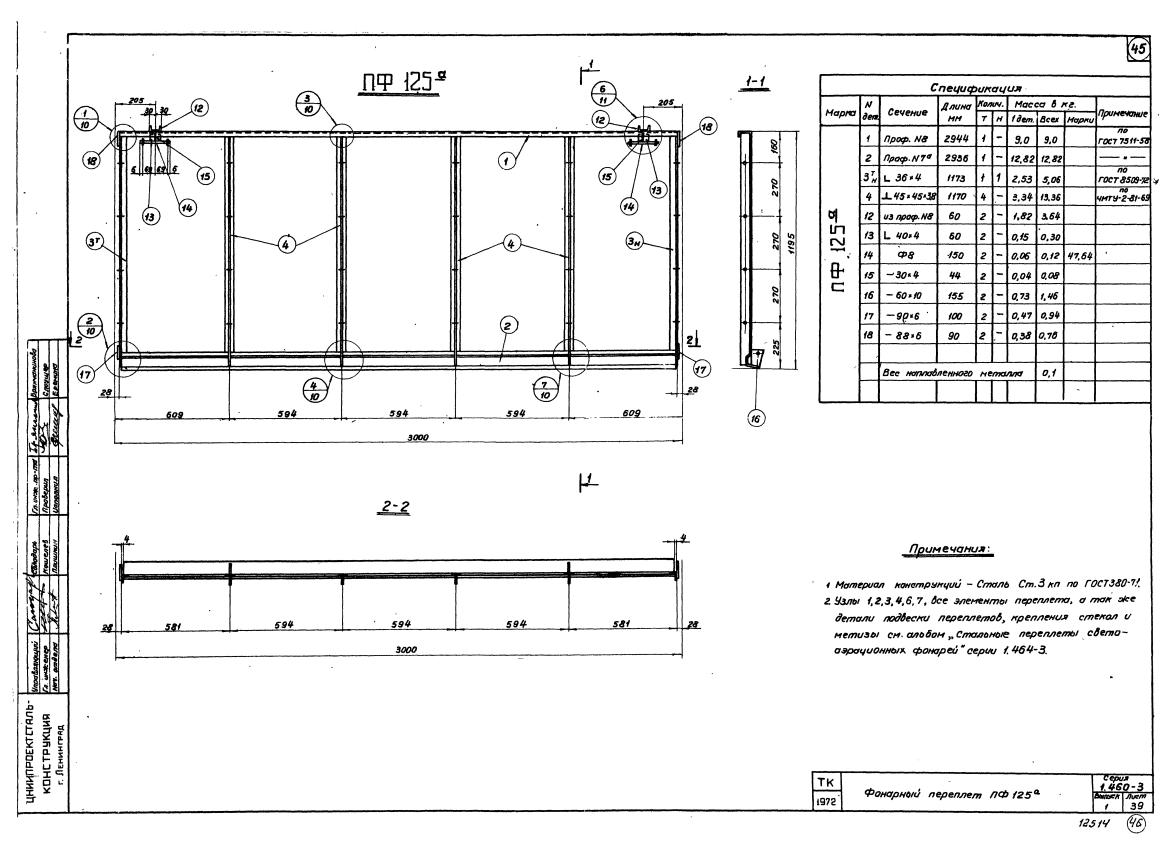
Спецификация стали фонарных ферм.

	144-2				2ФФ-2		
NN n/n	Профиль	Magea 8 Kr	Сталь	NN N/n	Профиль	Macea 8 Kr	Cmans
1	THE 120×60×4	81		1	E 10	98	
2	THL 80 = 4	184	m	2	L 80 = 5.5	102	_ m
	Umoro:	265	Cmanb	3	L 75 × 5	136	8
3	Листовая сталь	147] &		Umozo:	336] g
				4	Листовая сталь	147	3

Спицификация стали панелей таруов фонаря.

	INT-2		·		2ПТ-2		
NN ¶n	Профиль	Macca 8 KF	Сталь	NN N/n	Профиль	Macca 8 KF	Сталь
1	TH [120 × 60 × 4	541		1	E 12	824	
2	L 200 : 12	81		2	L 200:12	81	200
3	Листовая сталь	330	Cmoute	3	Листовая сталь	330	Сталь
	Umozo:	952	1	1	Umozo:	1235	7

ΤK	Спецификация стали подстропильных ферм,фонарных ферм, фонорных панелей и понелей торцав фонаря.	Cep 1. 41	44 60
1972	ферм, фанарных панелей и панелей торцав фонаря.	Bunsek 1	1


Расход стали на элементы блака. (основного).

				6	nok nj	oonemo	7M L =	24 m						Блок	проле	mom	L = 30 m	,	
NN	Наименование		бeз	фона	RQI			c q	онаре	м		d	јез ф	паря			с фо	нарем	
njn	<i>Элементов</i>		•			Дor	эскае.	мая ,	oac 4 e n	пная	нагрыз	ka Ho	ферм	9 8 79	Inm.			, 	
·7n		1.4	2.3	3.1	3.85	4.8	1.4	2.3	3.1°	3,85	4.8	1.5	2.5	3.15	4.3	1.5	2.5	3, 15	4.3
1	Страпильные фермы	3600	4340	4900	5960	7000	3600	4340	4900	5960	7000	5180	7400	8640	1060Q	5180	7400	8640	10600
2	Подстропильные фермы	3240	3240	3520	4010	4240	3240	3240	35 <i>20</i>	4010	4240	3240	3520	4010	4380	3240	3520	4010	4380
3	Связи	1630	1630	1630	1630	1630	2020	2020	2020	2020	2020	2040	2040	2040	2040	2220	2220	2220	2220
4	Прагоны	1340	1340	16 20	1780	2050	1210	1210	1370	1600	1890	1700	2060	2260	2630	1720	2080	2230	2600
5	Фенарь	_	-	1	_	_	830	.830	830	830	830	_				830 [°]	830	830	830
6	Фонарные панели	-	-	-	-	-	2370	2370	2370	2370	2370	-	-	_	_	2370	2370	2370	2370
7	Переплеты фонаря	_	-	_	_	1	750	75 <i>0</i>	750	750	750	-	-	-	_	750	750	750	750
Ŗ	Элементы для подвесного транспорта:	-		v.												-			
	по схенам <u>Т</u> и <u>TV</u>	T -	660	660	660	660		660	660	660	660	-	660	660	660		660	660	660
	no, cxemam <u>VII</u> u <u>VIII</u>	-	340	320	340	340	_	340	320	340	340	_		_	_		700	680	680
	Bcezo:	9810	10550	11670	13380	4920	14020	14760	15760	17540	19100	12160	15020	16950	19650	1631.0	19170	21050	23750
Par					51,80	48,68	51,25	54,72	6 <i>0,90</i>	66,31	33,77	41,72	47,08	54,58	45,30	53,25	58,47	65,97	

Примечания:

1. В общий раскод стали не включена масса элементов для подвесного транспорта. 2. Раскод стали на 1 м2 площадки блока определен для варианта с приненением сечений из колодногнятых профилей в элементах фанаря и прогонов и электросварных тряб в элементах связей.

Τĸ		1.46	и 10-3
1972	Расход стали на элементы блока	Bupyck 1	Лис т 38
		2 5 44	715

