ГОСУДАРСТВЕННЫЙ КОМИТЕТ СОВЕТА МИНИСТРОВ СССР ПО ДЕЛАМ СТРОИТЕЛЬСТВА ГОССТРОЙ СССР

типовые конструкции и делали зданий и сооружений ${
m cep}$ ия $3.015{ ext{-}}2/77$

УНИФИЦИРОВАННЫЕ ОДНОЯРУСНЫЕ ЭСТАКАДЫ ПОД ТЕХНОЛОГИЧЕСКИЕ ТРУБОПРОВОДЫ

ВЫПУСК **Т** материалы для проектирования

15130

центральный институт типового проектирования 9000 ROSTODOT

Москва, А.445, Смольная ул., 22

Сдано в печать 197**9** года Заказ № **10418** Тираж *1600* экз.

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СОВЕТА МИНИСТРОВ СССР ПО ДЕЛАМ СТРОИТЕЛЬСТВА ГОССТРОЙ СССР

типовые конструкции и детали зданий и сооружений серия 3.015-2/77

УНИФИЦИРОВАННЫЕ ОДНОЯРУСНЫЕ ЭСТАКАДЫ ПОД ТЕХНОЛОГИЧЕСКИЕ ТРУБОПРОВОДЫ

ВЫПУСК <u>Т</u> материалы для проектирования

РАЗ РАБОТАНЫ
ПРОЕКТНЫМ И НАУЧЕЭ НССАЕДОВАТЕЛЬСКИМ
ИНСТИТУТОМ ХАРЕКОВСКИЙ ПРОМСТРОИНИИПРОЕКТ
В УЧИСИЕМ НИМЖЬ, ЦНИИпроектотальконструкции,
ПИ № 1 госстроя ссор
и БПИ Минвуза БССР

УТВЕРЖДЕНЫ И ВВЕДЕНЫ В ДЕЙСТВИЕ С 1.07.79 г госстроем СССР постановление №50 от 2.04.1979 г

		cop.	_			***
		Garkar Tuna III k. War ongo 12m	SHET	50	Эстакады тыпов <u>Т</u> Гж ÷ <u>ТТТ</u> ж. Сечення 1-1; 2-2; 3-3	стр.
SINCT	33	TABIHUA UAA NOABOPA CTOEK NOOMENCYTOYHIIZ U KOHUEBAIC TEMNEJATYAHIIZ ENOKOB OAHOAPYCHAIZ	NHCT	5/	яля детяльй 7.8.9. Пример решения монтяхоной соемы теммерятур-	64
		GARRA TUNA IIK. WAT ONOP 18M 47			HOTO STORA OCHORPYCHON SCAPIKA AGI C PRINCATALI-	
SUCT	34	TABAHUA AAA NOAGOPA CTOEK APOMENCYTOYHIIX W			Надетройками	65
		KOHUEBGIOC TEMMEPATYPHGIOC GROOD ORHORPYSHGIOC	AUCT	50		
Suct	2=	GETAKAR THINOB IX ME; KINE. WAS anop 12m			TABAHUA HAFAYAOK MAQOYHIAMBHTAF KONOHH MAMOOFO ABHOTO CEYEHHA	. 66
THE	33	TABAHYA ARA NOQBO'DA CTOEK NPOMEKSTOVHKIZ H KOHYEBAK TEMNEPATYPHAK BAOKOB AAHOR PKCHAKZ	Mer	_	ТАБЛИЦА НАГРУЗОК НА ФУНДАМЕНТЫ КОЛОНИ	
SHET	36	9eTAKAQ TUNGO TYNC; FXC. WAT ONOP /2m	SHCT	54	прамочтомьного сечення Глатьща нагрузов на дундаменты колонн	
		KOHUEBAKE TEMPEDATYPHAKE ENOKOB OLHORDYCHAKE	SHET	55	TRANSTALLANDO OF YEARS	· 68
		SCTAKAR THAOB IN K; IK. WAT ONOP 12m 50		••	TAGNAYA HARPYSOK HA QOYARAREHTTI KONOHA NPAMOSTONGHOTO CEYEHNA	20
SHET	37	TABAHUA ATA NOABOPA CTOEK APOMEKKYTOYHBIX U	Mer	56	ТАБЛИЦА НАГРУЗОК НА ОРУНДАМЕНТЫ КОЛОНИ	.69
		KOHUEBGIJE TEMMEPATYPHGIX BRIOKOB ODHOAPVEHGIJE			NPAMOYFONGHOFO CEYEHIFF	70
2	20	BETAKAA THIOB TEK; EK. WAT OROP / EM	NHET	57	TABIHLA HATPYSOK NA APYHARMEHTISI KONOHH	, ,,,
MICT	28	TABAHUA AMA NOGEOPA CTOEK NYOMEXCYTOYHUX U			прямочгольного сечення	. 7/
		KOHUEBBIX TEMMERATYPHBIX BNOKOB OAMOARCHBIX	NHOT	58	Тиблици нигрузок на арундаменты колонн	••
	20	SCHARAR TUROS ILK, KK. WAT OROP 18M			TIPAMOSTONEHOTO CEYEHHA	12
SHET	99	TABAHUA AMA NOQBOPA CTOEK NOOMENCYTOYNGC H	NUCT	59	ТАВЛИЦА НАГРУЗОК НА ФУНДАМЕНТЫ КОЛОНИ	
		KOHUEBUT TEMMEDATISPHOLE BRIOKOB ONHOW PYCHOLE			TO TO THE TOTAL HORO CEVERAGE	73
NHET	40	PETAKAA THAOB II RE; III RE. WAT ONOP IRA	Nuer	60	ТАБЛИЦА ИПГРУЗОК НА ФУНДАМЕНТЫ КОЛОНИ	-
•••		KOHUEBUX TEM <u>N</u> EPATYPHUX 6110KOB ODHOAPYCHGIX	NHET	6/	ПРЯМОУГОЛЬНОГО СЕЧЕННЯ ТАБЛИЦА НАГРУЗОК НА ОРУНДАМЕНТЫ КОЛОНН	. 74
SHET	u	SCHAKAR TUNOB LINC, ILLING WAR ONOP 12m 54			пря тоугольного обчення	. 75
JIACI	"	TABUHUA AUR POABOAR CTOEK ARAMEKUTOYNGIZ H KOHU EBGIZ TENTOEMITYAHGIZ BAOKOB AAHARIYHGIX	NHCT	62	HALPYSEH HA ODYHARMEHTEL (LEHTPHOSICHPOORHHILDE ONOP PETREAR THIPOSIIC; IIK, WAC OOOP IZM.	
•		GETAKAD THINA TILLYC WAT ONOD 12M55	NHET	63	HATAYACH MA ADYKUAMENTSI YEKTANDOONHHISIZE	
SHET	42	THENHUM AND NOABOPH CTOEL NOOMERCYTOYHEIR H		•	OROD FCTALAR THROS I.K. IK. WAT OROD 12M	72
		концевых температурных влоков адноприных	SHET	64	HAIPYSEN HA OPHILAMENTO LENTONDYTHOOBAHHOOZ	,,
SHET	42	PETAKAR THAN THE MC. WAT ONOP 12M	_		ONDE SCHAKAR THYOS IK, IK. WAT ONCE 12m	. 18
VINO	19	Таблица для подборя орери, связен, траверс,	SHET	65	НАГРУЗКИ НА ФУНДАМЕНТЫ ЦЕНТРИФУГИРОВАННЫХ	
		BETHBOK OMHORPSCHWIZ GETAKAR THROBIK; IK WAT			ONOP BOTAKAN THIOS IK; IK. WAT ONOP ISM	79
		ONOP 12m HIX - EX (WAS ONOP 18m) H POHEOMEHOIR	NUCT	66	HAPPYSKH HA OPYHARMEHTEL LEHTPHOPYTHPOARHHEIZ	-
		GAROK NOG OPERAGI OGHORPYCHÚZ POTRERY TUROB I E; II K (WAT OROP (ZM)HI X-I K (WAT OROP (BA))			ONOP SETREAR THROB IK; IK. WAT ONOD 18m	80
SUCT	44	SCTALAGU TUNOS TUNC LETRAN (,2,3	NHET	67	HATPYSEN HA OPYMANMENTE! LENTPHOYTHPOENHIBLE	
SHET		GETALAGA TUNCO ILM: IM. CEVENHA 1:12:2:3-3			ONOP SCHAPAR THROS WE; WAR ONOP IZM	. 81
		AM AETANEU 1,2,3	Mer	68	HATPYSICH HA OPYHARMENTEL KENTFINDYTHPOBRAHESE	
SHET	46	GOTAKAAGI THAOB LIDIK + MILDIK. CEYEHHA - ; 2-2:3-3	Desar		ONOP SCHAKAR THINGS ILE; IN ME. WAT ONOP 12M	8 2
		AND RETAREN 1,2,3	SHET	69	HAPPYSKU HA GOVHAMMENTOL LENTPHONY HOSSAHHHOLZ	,
SHET		GETAKADA THAOB TOKE - YAK DETAJIH 4.5.6	SHET	20	ONOP SETAKALI THANOS III. III DIC. MAT ONOP 12M	
SHET	48	TOTALORDOL THROOF WARE THE CERTIFIED 1-1-2-0-3-3	JINET	10	HATPY 3KH MA GOVNIGAMENTOI YENTPHIPSTHPOBANNU Z	
SHET	40	DETERMINE THOO TO THE TOTAL TO SEE	-			
*15.01	73	Эстакады типов Пж÷ 1111 ж. Детали 7,8,9 63	TK		_	120
			11/		Coge prephhe	3.015
			1			44100101

1977

COREDMANNE) (OKOHYANNE) CTP.

		ONOP OCTAKAJI TUNA IDK. WAT ONOP 18m
SUCT	7/	HATDYSPH HA POYHAMEHTE! LETTUNGVINDOSAHAWAZ ONOD ЭСТАКАД THINA III'K WAY ONOD 18M
Nuer	72	HATPUSKH HA ADYHAMEHTEI YEHTPHADYTHPOBAHHEIX
		ONOP SCTAKAR THINOB ILK, INC., IK, INC. WAT ONOP IZM
Nucr		HATDISKU MA QINGAMENTU YEMTDUDIYMOOBAHAGIZ OROD SCTARAG TUROO [IK, [IK], [IK], [IK], [IK], [IR]
SHCT	74	HAI'TUSKU HAGOSKAARNEHTEL YEHTPHASKUPOBAHHASC ONOP SCHAKAA TUNOBÜK,ÜKE, EK, EKE WAY ONOPIZM
SHET	75	HATTYSEN HA ASYMANIENTE LENTHAUSTHAUSANHALZ CHOP FERHALT THROS II K. XX. WAY ONOP 18m 89
SIMET	76	НАГРУЗКИ НА ОРУНДАМЕНТЫ ЦЕ НТРИОРУГИРОВАННЫХ
SHET	77	НАГРУЗКИ НА ФУНЦАМЕНТЫ ЦЕНТРИФУГИРОВАННЫХ
Auer	78	GNOO ЭСТАКАЯ ТИЛОВ [[MC]][] DICILLAR DROP 12M
		ONCO SCIALAU TUNOS II NC. IIINC WAT ONDO 1211 92
AHET		HAIPUSKA HA QOSHAANIENTA LEHTPAGUJUDOBANAGIX ONOP SCTAKAA TANOB <u>V</u> ISKE, <u>VII</u> SKE WAT ONOP IRM
Auct	80	НАГРУЗКИ НА ОРУНДАМЕНТЫ ЦЕНТРИОРУГНРОВАННЫХ
SHET	81	олор эстакад типа <u>М</u> ык Шаг опор 12n
Smer	82	ONOP PETAKAY THINA <u>VIII</u> AC WAT ONOP 12m
SHET INCT	83	OTOP SCHLAR THAN TILLAC WAS OROP 12m
SHET		HHPSOH HA NOTOHHOLA METD GETAKAY THIOBIN'IM'II E
SHCT	<i>85</i>	THINGS III II, IP C. IP III
ЛИСТ	86	THOOR I K, I M
ЛИСТ	8 7	THING BUM; WITH HOLDHAUS HELP SCHOOL TO! TOWARDAM PACKORP MATE PHANCS HA OLIN' CTARGHYM GALLY, DEPMY, TARBEATY, ONLYY,
Янст	88	BETARLY, COASE IN GASY. SCHRINGER THIOS $Im + Im , Mm , VIII m , Montanews$ CREMO! TEMPERATYPHORE GIORDS (=27.0+75.0m)
AHET .	<i>89</i>	C WATOM ONOP IZM. WAT TPABE PC 3.0m

	CXEM61 TEMPEPATYPHOIX BROKOB 4=27.0 ÷ 75.0 m
	C WAROM OROP 12 M. WAI TPABERS 6.011
SHET 90	ЭСТАКАДЫ TUNOB. In: +I'm, VIIIm; VIIIm. MOHTAMHUE
	CLEMBI TEMINEPATYPHOID 5.10KT8 6-39.0-57.0M
	C WATOM OROD 18 m. WAI TOABEDC 3.0m
AHCT 91	ЭСТАКАДЫ ТИЛОБ І M: Im; VIIm; VIIIm. МОНТАКСНЫЕ ССЕМЫ ТЕМПЕРУТУРНЫСЕ БЛОКОВ L=39.0÷57.0 m
sucr 92	C WATOM ORGO (B. M. WAT TRASSEC 6 OM
SHET 93	WAFOM ONOP 18 M. WAR TORRESC 3.0m
Nucr 94	WATOM: ONOP 18 IN WAT TPASEDC 6.0m
NHET 95	TETATEPOTYPHIC ENOUGE L=86.0+72.0m c TETATON OND PEN. WAT PAPEPO 3.0m r. 6.0m. 199 TETATUR UTA TOGEOPP PEPON CEPASCH, TARREDC BCTREDE QUIORDSCHEIZ SCHENZ THIOD WE'LL',
SHET 96	IN ± 1 n ± 1 m, ± 1 m in in conconsum rand non apequia and persons extract through ± 1 m, ± 1 m in non ± 1 m, \pm
SHET 97	(ALL MAN AND PARSON OF MO HEAR CRIMORES THEIR STANDARD THE STANDARD TH
SHOT 98	12 M H 18 m)
ЛИСТ ЭЭ	MAROX ON 1 + ON 40 TABUHUR HATEYSOK HA QOYHUMMEKTEL ONOD MAROK ON 41 + ON 78

TK 1977

COREPACAHHE (OKOHYAHHE) 3.015-L BAINYAE NA

I. Общия чисть.

1. РЯБОЧИЕ ЧЕРТЕЖИ КОНСТРУКЦИЙ УНИФИЦИРОВАННЫХ ОДНОЯРУСНЫХ SCTHKAR ROD TEXHONOLUYECKUE TPSOIIPOBORM, CEPUN 3.015-2/77, PASPA-

БОТЯНЫ ВЗЯМЕН РЯБОЧИХ ЧЕРТЕЖЕЙ СЕРИИ 3.015-2

СЕРИЯ 3.015-2/77 СОСТОИТ ИЗ СЛЕДУЮЩИЖ ВЫПУСКОВ: Выпуск I - Материялы для проектирования.

BURYCK [-1-CEOPHBIE MENESOGSTONHBIE KONCHHBI DAR SCHRAD TUROB [K, [K. TPRBEPCH 4 BCIEBKU. PHOOYUE YEPTEMU.

Выпуск 11-2-Сборчые железобетонные колонны для эсгакад типов Тк; Тж. Рабочие чертежи.

BUTINCK II-3-C50PHUE MENEROBETONHUE KONONHU DIN PUTAKAD TUNOS WE; VK; NW; NW. PRECYME YEPTEMU.

BUTTURE THE COUPLINE WELESTIFFT KONOHHU DIN ACTAKAD THOOL VINE - VIII ME. PHEOTHE VEPTEMU.

Выпуск 11-5- РЕШЕТЧАТЫЕ БЯЛКИ.*

Выпуск \overline{u} -6—C60РНЫЕ ЖЕЛЕЭЛБЕТРИНЫЕ **ДВУГАВГОВЫЕ** Б**Я**ЛКИ. PREONUE YEPTEMU.

Выпуск 🗓 — Стальные конструкции. Чертежи КМ.

В СЕРИИ РИЗРАБОТАНЫ ОДНОЯРУСНЫЕ ЭСТАКАДЫ СЛЕДУЮЩИХ ТИЛОВ: IK-IK - KOMBUHUPOBRHHUE BRPURHTU GCTAKAD (NPORETHUE CTPOE-

HUR CTRABHBIE, DROPU - B SKENESOBETOHE); BETOHE ;

Im + Im; Шм и Йійм - вяриянты эст**якад, Решен**ыые полностью B METERANE.

ГАБЯРИТНЫЕ СХЕМЫ ПОПЕРЕЧНЫХ СЕЧЕНИЙ ОДНОЯРУСНЫХ ЭСТАКАД И ПОГОННЯЯ ВЕРТИКАЛЬНАЯ НЯГРУЗКА ПРИВЕДЕНЫ НА ЛИСТАХ 1:4; 83:86 ДЯННОГО ВЫПУСКЯ.

POBRAHUX CTOEK KONDUEBOTO CEYEHUR TIPEDHRAHAYEHU DAR AKCIE-FUMEHTAALHOFO CTPOUTEALCTBR.

3. В данном выпуске приведены материалы для проектирования, ВКЛЮЧЯЮЩИЕ ГЯБЯРИТНЫЕ И МОНТЯЖНЫЕ СЖЕМЫ, ТЯБЛИЦЫ ДЛЯ ПОДБОРА ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ КОЛОНН ПРЯМОУГОЛЬНОГО СЕЧЕНИЯ, ЦЕНТРИФУГИРОВЯННЫХ СТОЕК КОЛЬЦЕВОГО СЕЧЕНИЯ, ТРЯВЕРС,

ТАБЛИЦЫ ДЛЯ ПОДБОРЕ СТЕЛЬНЫХ КОНСТРУКЦИЙ:

PEPM, KOHCOALHLICK SANOK, TPABEPC U BCTABOK; ЧЕРТЕЖИ ДЕТАЛЕЙ УЗЛОВ СОПРЯЖЕНИЯ НЕСУЩИХ КОНСТРУКЦИЙ.

PEWETYRTHIX U DBYTHBPOBLIX ERADK U BCTHBOK;

В ПРИЛОЖЕНИИ К ДАННОМУ ВЫПУСКУ ПРИВЕДЕНЫ ГАБАРИТНЫЕ, МОНТАЖНЫЕ СОСЕМЫ И ТАБЛИЦЫ ПОДБОРА КОНСТРУКЦИЙ ОДНОЯРУС-

HUSC SCHRIFT, REPERHABHAYEHHUE DAS TRUPHODOCTYRHUSC RYHKTOB СТРОИТЕЛЬСТВЯ И РАЧОНОВ ТЕРРИТОРИИ СССР, В КОТОРЫХ ПРИМЕНЕ-HUE COOPHOTO MESTEROGETOHR, KAK TRABUTO, HE PEKOMEHTYETCH B

* Выпуск <u>П</u>-5 применен из серии 3.015-2 без изменений.

COUTRETCERMU C TPESOBRHURMH TOLON-76.

Пояснительная записка

3.015-2/77 BURYCK RUCT

16130

РАБОЧИЕ ЧЕРТЕЖИ ЖЕЛЕЗОБЕТОННЫХ ЦЕНТРИФУГИРОВАННЫХ CTOEK KONBLIEBOTO CEYEHUR PRUBEREHM B CEPUU !.400-14. 4. Мяркировка конструкций одноярусных эстакад ПРИНЯТЯ БУКВЯМИ И ЦИФРЯМИ (НЯПРИМЕР, Т1-1, К1-2, B-1AN-a, B1-1, C600 66-60 400, ON1, \$\phi 1). БУКВЫ ОБОЗНАЧАЮТ ОТДЕЛЬНЫЕ ЭЛЕМЕНТЫ ЭСТАКАДЫ-- ТРАВЕРСЫ, КОЛОННЫ, БАЛКИ, ОСТАВКИ, СТОЙКИ, ОПОРЫ, ФЕРМЫ. B MAPKUPOBKE железобетонных конструкций траверс, BCTABOK U KONOHH NPAMOYFONSHOTO CEYEHUA REPBAA ЦИФРА 0603НЯЧЯЕТ ПОРЯДКОВЫЙ НОМЕР ТИПОРАЗІЛЕРА. ВТОРЯЯ ЦИФРЯ - НЕСУЩУЮ СПОСОБНОСТЬ ЭЛЕМЕНТЯ. В МАРКИРОВКЕ ЖЕЛЕЗОБЕТОННЫХ ЦЕНТРИФУГИРОВАННЫХ CTOEK KONSLIEBOTO CEYEHUR ПЕРВАЯ ЦИФРА ОБОЗНАЧАЕТ НАРУЖНЫЙ ДИАМЕТР СТОЙКИ В ММ; В ЧИСЛИТЕЛЕ ДРОБИ *ЦИФРА 0603НЯЧЯЕТ* ДЛИНУ СТОЙКИ В М, ВТОРАЯ-- ТОЛЩИНУ СТЕНКИ B MM; LHOPPA B SHAMEHATERE APOSH D603HRYRET TUN RPMRTYPHORD KAPKACA, LUPPA 3A DPOSHO - MAPKY SETOHA. PEWETYRTHE ЖЕЛЕЗОБЕТОННЫЕ БЯЛКИ ЗЯПРОЕКТИРОВЯНЫ ONANYEKE , ABYTABPOBLIE *PREJESOBETOHHUE BRIKH* BATTPOEKTUPOBAHSI TAKAKE B OQHOU ONPAYEKE, DOSTOMY ЦИФРА, ОБОЗНАЧАЮЩАЯ ТИПОРАЗМЕР КОНСТРУКЦИИ,

БПЛОК

OTCYTCTBYFT

СПОСОБНОСТЬ, ПРОСТАВЛЕН ИНДЕКС, УКАЗЫВЯЮЩИЙ КЛАСС

БЯЛОК ПОСЛЕ ЦИФРЫ, ЖАРЯКТЕРИЗУЮЩЕЙ НЕСУЩУЮ

СТЯЛИ ПРЕДВАРИТЕЛЬНО-НЯПРЯЖЕННОЙ ЯРМАТУРЫ.

Различие конструкции балок по закладным деталам определяется конечными буквами в их маркировке (например $6-16\overline{N}$ - α , $6-2n-\delta$).

ДЛЯ СТЯЛЬНЫХ КОНСТРУКЦИЙ ПЕРВЯЯ ЦИФРЯ ОБОЗНАЧАЕТ ОДНОВРЕМЕННО ПОРЯДКОВЫЙ НОМЕР ТИПОРЯЗМЕРЯ И НЕСУЩИЮ СПОСОБНОСТЬ.

- 5. Рабочие чертежи конструкций одноярусных эстакад допускается применать для объектов, строящихся в районах с расчетной зимней температурой воздуха до -55° C при нормативном скоростном напоре ветра до 55 krc/m^2 .
- 6. Конструкции одноярусных эстякад рассчитаны на применение в районах с сейсмичностью до 8 баллов включительно.
- 7. Унифицированные одноярусные эстакады предназначены для применения в обычной, славо—и среднеягрессивной газовых средях. Защитные мероприятия должны разрабатываться в соответствии со СН и П—28-73 "Защита строительных конструкций от коррозии" в составе рабочих чертежей на конкретные объекты.

TK 1977

Пояснительная записка

3.015-2/77 Выпуск Лист

THEFT

<u>ІТ. КОНСТРУКТИВНЫЕ РЕШЕНИЯ.</u>

8. НЕСУЩПЯ СПОСОБНОСТЬ КОНСТРУКЦИЙ УНИФИЦИРОВЯННЫХ ОДНОЯРУСНЫХ ЭСТЯКАД, РАЗРАБОТАННЫХ В ДЯННОЙ СЕРИИ, ДОПУСКАЕТ ПРИМЕНЕНИЕ ИХ В ТЕМПЕРЯТУРНЫХ БЛОКАХ ДЛИНОЙ:

ДЛЯ ЭСІЙКНД ТИПОВ ĪК И ĪК — ОТ 24:0 м ДО 72:0 м
— "— ТК÷ VК } ОТ 36:0 м ПО 72:0 м

ДЛЯ ЭСТАКАД ТИПОК IM÷Vm; VIIm и VIIIm-от 27.0m до 135.0 m.

ЕСЛИ ПРИ РЯЗРЯБОТКЕ РЯБОЧИХ ЧЕРТЕЖЕЙ ДЛЯ КОНКРЕТНЫХ ОБЪЕКТОВ ДЛИНЯ ТЕМПЕРЯТУРНОГО БЛОКЯ ОТЛИЧЯЕТСЯ ОТ УКЯЗЯННОЙ НА МОНТЯЖНЫХ СХЕМЯХ ДЯННОЙ СЕРИН, ТО НЕОБХОДИМО ОПРЕДЕЛИТЬ НЯГРУЗКИ НЯ КОЛОННЫ И ПОДОБРЯТЬ МЯРКИ КОЛОНН С СООТВЕТСТВУЮЩЕЙ НЕСУЩЕЙ СПОСОБНОСТЬЮ ИЗ ИМЕЮЩЕЙСЯ НОМЕНКЛЯТУРЫ.

y. Температурные блоки эстакад типов $\mathbb{I} k + \overline{y} k$ и $\mathbb{I} m + v \mathbb{I} m$ (с железобетонными опорами) запроектированы без неподвижной "анкерной" опоры и горизонтальные нагруз-ки, действующие вдогь оси эстакады, передаются на эсе колонны температурного элока. Температурные блоки эстакад типов $\mathbb{I} m + \overline{y} m$, $\overline{y} m$ и $\overline{y} m$ (со стальными опорами и пролетным строением) выполняются с "анкерной" опорой, на которую

ECE FOPUBOHTANSHSIE

нягрузки.

HEPERHIOTCA

ДЕЙСТВУЮЩИЕ ВДОЛЬ ОСИ ТРЯССЫ.
РЯССТОЯНИЕ МЕЖДУ СМЕЖНЫМИ ТЕМПЕРЯТУРНЫМИ БЛОКЯМИ ДЛЯ ВСЕХ ТИПОВ ЭСТЯКЯД ПРИНЯТО 3.0 М И 6.0 М.
МОНТЯЖНЫЕ СХЕМЫ ТЕМПЕРЯТУРНЫХ БЛОКОВ ПРИВЕДЕНЫ
НЯ ЛИСТЯХ 12÷16; 88÷94.

10. When onop orhoppychus эстакай для типов $\underline{T}\kappa \div \underline{\underline{V}}\kappa$, $\underline{\underline{I}}m \div \underline{\underline{V}}m$, $\underline{\underline{VII}}m$ и $\underline{\underline{VIII}}m$ принят равным 12.0 м и 18.0 м, для типов $\underline{\underline{W}} \not \approx \div \underline{\underline{VII}} \not \approx -12.0 \text{ м}$.

II. ШЯГ ТРАВЕРС ДЛЯ ЭСТЯКАД СО СТАЛЬНЫМ ПРОЛЕТНЫМ СТРОЕНИЕМ $(I\kappa \div \overline{Y}\kappa ; Im \div \overline{Y}m ; \overline{Y}M u \overline{Y}M, принят 3.0 м и 6.0 м$

ЦЛЯ ЭСТЯКАД С ЖЕЛЕЗОБЕТОННЫМ ПРОЛЕТНЫМ СТРОЕ— НИЕМ ТИПОВ (ПОЭС÷VIII ЭК.) ШАГ ТРЯВЕРС — 3.0м: 4.0м и 6.0м

НИЕМ ТИПОВ (ТЖ ÷ VIII Ж) WAГ ТРАВЕРС — 3.0 М; 4.0 М И 6.0 М.

12 ПРИ ШЯГЕ ТРАВЕРС 3.0 М И 4.0 М И РАССТОЯНИИ

МЕЖДУ СМЕЯЖНЫМИ ТЕМПЕРАТУРНЫМИ БЛОКАМИ

6.0 М ПРОЛЕТ МЕЖДУ НИМИ ПЕРЕКРЫВАЕТСЯ 6 Ш

МЕТРОВОЙ ВСТАВКОЙ КРЕПЛЕНИЕ ВСТАВОК НА КОЛОННЯХ ПРИНЯТО НА СВЯРКЕ ТОЛЬКО С ОДНОЙ СТОРОНЫ. ПРИ ШАГЕ ТРАВЕРС 3.0 М, 4.0 М И 6.0 М И РАССТОЯНИИ МЕЖДУ СМЕЖНЫМИ

температурными блоками 3.0м вставка не уста-

1077

Пояскительная записка

3.015-2/77 Выпуск Лист НАВЛИВАЕТСЯ. КОНЦЕВНЯ КОЛОННА ТЕМПЕРАТУРНОГО НА ЛИСТЕ 97 ДАННОГО ВЫПУСКА, ПРИ ЭТОМ ДОЛЖНЯ БЫТЬ СБИТЯ НЯ 75 MM 15. В МЕСТЯХ *БЛОКА III 3*€ ÷ *VIII 3*€ . BO BHYTPL **ЭСТЯКЯ** ДЛЯ THNOB

- B. MAPKH ₩EJE306ETOHH61X КОЛОНН ПРЯМОУГОЛЬНОГО СЕЧЕНИЯ и железобетонных *ЦЕНТРИФУГИРОВ ЯННЫЖ* CTOEK КОЛЬЦЕВОГО СЕЧЕНИЯ ПОДБИРЯЮТСЯ В ЗАВИСИМОСТИ ОТ ГАБАРИТОВ И ДЕЙСТВУЮШИХ no таблицам на листах $18 \div 42$ HRTPY30K *НАСТОЯЩЕГО* выпуска.
- 14. СТЯЛЬНЫЕ ОПОРЫ ВЫПОЛНЕНЫ ПЛОСКИМИ H NPO-CTPRHCTBEHHUMU.

Плоские ОПОРЫ ПРЕДСТАВЛЯЮТ СОБОЙ PEWETYA-ТУЮ KOHCTPYKLIUHO, BETBU KOTOPOU BUIDONHE-ИЗ ДВУГАВРОВ , А РЕШЕТКА — ИЗ ОДИНОУ ных УГОЛКОВ.

PROCTERHCTBEHHAIE ("AHKEPHAIE") ONOPAI COCTAB-ЛЯЮТСЯ $\mathcal{L}\mathcal{B}\mathcal{Y}\mathcal{K}$ ИЗ плоских ONOP . COEQUHEH-HHIX СВЯЗЯМИ ВПОЛЬ ОСИ TPRCCM.

ВЕРЖНЯЯ **YACT** плоских И ПРОСТРАНСТВЕННЫХ 800 мм от вержя свободня ONOP HR BUCOTE OT PEWETKH В ПОПЕРЕЧНОМ НАПРАВЛЕНИИ ДЛЯ ПРОПУСКЯ ПОДВЕШИВЯЕМЫЖ ТРУБОПРОВОДОВ. МАРКИ СТАЛЬНЫЖ ОПОР RODSUPAINTCA NO TRENHURM

ОТВЕТВЛЕНИЙ ТРУБОПРОВОДОВ УСТАНАВ-ONOPH, DONONHUTENHO PACCYUTAH-ЛИВПЮТСЯ HЫE HR ГОРИЗОНТЯЛЬНУЮ СОСРЕДОТОЧЕННУЮ ПОПЕРЕЧНУЮ НАГРУЗКУ.

B OCTAKADAX TUNOB IK, IK, IM U IM CO CTANGными пролетными строениями ответвления ТРУБОПРОВОДОВ MOLAL PACNONALATICA, KAK HR OROPE, TAK U B AHOSOM УЗЛЕ СТЯЛЬНОЙ ФЕРМЫ ПРОЛЕТНОГО СТРОЕНИЯ.

В ЭСТЯКАЦЯХ С ЖЕЛЕЗОБЕТОННЫМИ ПРОЛЕТНЫ-CTPOEHUAMU DIBETBAEHUA MOLYT PACHOAA-TATECH TONEKO HA ONOPE.

16. RPONETH WE CTPOEHUR ЗЯПРОЕКТИРОВЯНЫ: ЭСТЯКАД ТИПОВ ПЖ÷VIIIЖ - ИЗ РЕШЕТЧАТЫХ ДЛЯ И ДВУТАВРОВЫХ ПРЕДВЯРИТЕЛЬНО - НЯПРЯЖЕННЫХ ЖЕЛЕЗОБЕТОННЫХ БЯЛОК ДЛИНОЙ 12.0 М. ДВУТАВ-POBLIE GANKU NPHHATHI B ONANYEKE CEPHU 1.462-1; ДЛЯ ЭСТАКАД ТИПОВ ĪK÷ VK И ĪM÷ VM; VIIM И VIIIM--из пространственных стальных конструкций,

Пояснительняя ЗЯПИСКА

3.015-2/77 BUNYCK JUCT СОСТОЯЩИХ ИЗ ДВУХ ВЕРТИКАЛЬНЫХ ФЕРМ ДЛИНОЙ 12.0 М И 18.0 М, СОЕДИНЕННЫХ МЕЖДУ СОБОЙ ПО ВЕРХНЕМУ ПОЯСУ СВЯЗЯМИ, Я ПО НИЖНЕМУ ПОЯСУ— РЯСПОРКЯМИ.

МАРКИ ЖЕЛЕЗОБЕТОННЫХ РЕШЕТЧЯТЫХ И ДВУТАВ-РОВЫХ БЯЛОК, СТЯЛЬНЫХ ФЕРМ, ГОРИЗОНТАЛЬНЫХ СВЯЗЕЙ И РЯСПОРОК ПОДБИРАЮТСЯ В ЗЯВИСИМОСТИ ОТ ГЯБАРИТОВ И ДЕЙСТВУЮЩИХ НЯГРУЗОК ПО ТАБ-ЛИЦЯМ НЯ ЛИСТЯХ /7; 43; 95; 96 ДЯННОГО ВЫПУСКЯ.

- 17. ДЛЯ ЭСТЯКАД ТИПОВ I k + V K. И I m + V M ПРИНЯТЫ ОДИНЯКОВЫЕ СТЯЛЬНЫЕ ФЕРМЫ, СВЯЗИ И РАСПОР-
- 18. СТАЛЬНЫЕ ФЕРМЫ И ГОРИЗОНТАЛЬНЫЕ СВЯЗИ ПРИ-НЯТЫ ИЗ ОДИНОЧНЫХ УГОЛКОВ.
- 19. По железобетонным балкам и стальным фермам располагаются соответственно железобетонные и стальные траверсы, на которые Укладываются трубопроводы.

ТРЯВЕРСЫ ПОДРАЗДЕЛЯЮТСЯ НА РЯДОВЫЕ, РЯС-ПОЛЯГЯЕМЫЕ В ПРОЛЕТЕ И НА ОПОРЕ, И УСИ-ЛЕННЫЕ- ТОЛЬКО НА ОПОРЕ. НЯ РЯДОВЫХ ТРЯВЕРСЯХ ПРЕДУСМЯТРИВЯЕТСЯ СВОБОД-НОЕ ОПИРЯНИЕ ТРУБОПРОВОДОВ, НЯ УСИЛЕННЫХ ТРЯВЕР-СЯХ ТРУБОПРОВОДЫ КРЕПЯТСЯ НЕПОДВИЖНО. УСИЛЕННЫЕ ТРЯВЕРСЫ МОГУТ БЫТЬ УСТЯНОВЛЕНЫ НЯ ЛЮБОЙ ПРОМЕЖУТОЧНОЙ ИЛИ "ЯНКЕРНОЙ" ОПО-РЯХ ЭСТЯКЯДЫ.

20. Для уменьшения количествя типорязмеров, усиленные железобетонные тряверсы отдельных типов эстякад предусмотрены из двух элементов, расположенных на опорных участках смежных балок. На каждом из двух элементов, составляющем усиленную тряверсу, расположение креплений труб принято равномерным по длине тряверсы с передачей на каждый элемент 50% суммарной нагрузки.

21. Железобетонные тряверсы зяпроектированы прямочгольного сечения, мярки их в зявисимости от длины и действующих нягрузок подбиряются по тяблице на листе 17 данного выпуска. 22. Стяльные тряверсы запроектированы из одиночных

TK

Пояснительная записка

3.015-2/77 BUNYCK JUCT

PROKATHUR WBEAREPOB, A TAKKE B BURE KOPOBYA-ТЫЖ СЕЧЕНИЙ ИЗ ДВУХ ПРОКЯТНЫЖ ШВЕЛЛЕРОВ. ПРЕДУ-CMOTPEH BRPURHT CTANGHOW TPABERC US THYTOCBAPHOLY КОРОБЧЯТЫХ СЕЧЕНИЙ. МАРКИ СТАЛЬНЫХ ТРАВЕРС ПОДБИРАЮТ-CS NO TABANLAM HA SUCTAX 43:95; 96. 23. YKNOH TPYGO MPOBOAOB HA SCTAKADE OCYMECT-BARETCA 3A CYET MAMEHEHMA OTTETKU BEPXHETO OFFESA TO SHELLAMENTA SIO OTHOWSHUPO K TURAHUPOBOYHOU OSMETKE JEM-IN N PASINYHEIX DINH KONOHH. 24. Для полного использования несущей способности кон-CTPYKLINN GCTAKAD THIOB VIX +VIIIX I YBEAUYEHIA KOAUYECT-BA TIPOKAAALIBAEMLIX TPYGOTIPOBOAOB, HA TPABEPCLI YCTAHABAU-BAHOTCA DOMOSTHUTENGH BIE KOHCTPYKLUU B BUDE PAMOK-HADDIPOEK. Пример РЕШЕНИЯ МОНТАЖНОЙ СХЕМЫ ТЕМПЕРАТУРНОГО БЛОКА ODHORPYCHOÙ SCHAKADU C PRMKAMU-HAQCTPONKAMU INPUBEGEH HA SHCTE 51 BAHHOTO BUTYCKA. 25. ВЕЛИЧИНА ЗАДЕЛКИ ПРЯМОУГОЛЬНЫХ КОЛОНН В СТАКАНЫ ФУНДАМЕНТОВ ПРИНЯТА 1000 ММ. ИСХОДЯ ИЗ УСЛОВИЯ НЕОБХО-DUMOÚ AHKEPOBKU PACTAHYTOÚ APMATYPЫ, A TAKOKE C YYETOM YHUPUKALUU PYHAAMEHTOB. 26. ВЕЛИЧИНЫ МИНИМАЛЬНОЙ ЗАДЕЛКИ ЦЕНТРИФУГИРОВАННЫХ CTOEK KOALLEBOTO CEYEHUA В СТАКАНЫ ФУНДАМЕНТОВ ПРИНЯТЫ: QAG CTOEK QUAMETPOM 400MM - 600MM

500 MM - 700 MM

ANA CTOEK QUAMETYOM 600 MM - 900 MM ______ 800 MM ___1100 MM <u>п</u>. Нагрузки и расчет конструкций 27. Нагрузки на конструкции одноярусных эстакад приняты в соответствии с "Рекомендациями по определению нагрузок НА ОТДЕЛЬНО СТОЯЩИЕ ОПОРЫ И ЭСТАКАДЫ ПОД ТРУБОПРОВОДЫ." РАЗРАБОТАННЫМИ ЦЕНТРАЛЬНЫМ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИМ ИНСТИТУТОМ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ ИМ.В.А.КУЧЕРЕНКО 28. ЗА ИСХОДНЫЕ НАГРУЗКИ ПРИ РАСЧЕТЕ КОНСТРУКЦИЙ ОДНОЯРУСНЫХ OCTAKAD SEPTUKAJEHLE HOPMATUBHLE HASPYSKU OT TEXHOSOCHYECKUX TPYGOTIPOBOSOB HA TOTOHHIIN METP 3CTAKASHI: ANA GETAKAH TUNOB IK; IM - 0,25 TC/M " — " — <u>I</u>ĴK; јјм — 0,5 тс/м -"--- "--- <u>M</u>DE; MK; MM-1,0 TC/M --"---" ---- <u>[V</u>94; <u>[V</u>K; <u>[V</u>M - 1,5 7c/M - "-- <u>У</u>эк; <u>У</u>к; <u>У</u>м] _ 2,0 те/м --- VIIж; VIIм- 3,0 тс/м, при этом 1,0 те/м ПЕРЕДАЕТСЯ НЕПОСРЕДСТВЕННО TO KONOHHAM, A OCTANBHBIE 2.0 TC/M - PABHOMEPHO 110

TK

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

3.015-2/77 BAITIYEK SUCT BCEH ANNHE SCTAKAAN.

ДЛЯ ЭСТАКАД ТИПОВ $V \overline{M} \infty$; $V \overline{M} M = 4,0$ T c / M, ПРИ ЭТОМ 2.0 T c / M

HAIPYSKU OT YODOBOTO MOCTIKA U CHETOBAG HAIPYSKA BXOLGIT B OFWYHO HOPMATUBHYHO BEPTIKRALHYHO HAIPYSKY.

19.В СЛУЧЯЕ УСТАНОВКИ НА ЖЕЛЕЗОБЕТОННЫЕ ТРАВЕРСЫ СТАЛЬНЫХ РАМОК — НАДСТРОЕК 60% НОРМАТИВНОЙ ВЕРТИКАЛЬНОЙ ПОГОННОЙ НАГРУЗКИ, ОПРЕДЕЛЯЕМОЙ ПО П. 2.8 "РЕКОМЕНДАЦИЙ ПО ОПРЕДЕЛЕНИЮ НАГРУЗОК..., ПЕРЕДАЕТСЯ НА
ЖЕЛЕЗОБЕТОННУЮ ТРАВЕРСУ, ОСТАЛЬНЫЕ 40% ПЕРЕДАНОТСЯ НА РИГЕЛЬ СТАЛЬНОЙ РАМКИ.

30. Горизонтальные технологические нагрузки, действующие вдоль трассы, состоят из усилий трения трубопроводов по рядовым траверсам, упругих реакции компенсаторов, давлений на заглушки и равны: для промежуточного температурного блока — "2q," для концевого блока — "4q," $r_{\text{ДЕ}}$ "q"— вертикальная нагрузка на погонный метр эста-

31. ВЕЛИЧИНА СОСРЕДОТОЧЕННОЙ ГОРИВОНТЯЛЬНОЙ СИЛЫ ОТ ОТВЕТВЛЕНИЙ ТРУБОПРОВОДОВ, ДЕЙСТВУЮЩАЯ ПЕРПЕНДИ-

КУЛЯРНО ОСИ ТРАССЫ, РАВНА "19".

32. ВЕТРОВАЯ НЯГРУЗКА ПРИ РАСЧЕТЕ ЖЕЛЕЗОВЕТОННЫХ КОНСТРУКЦИЙ ЭСТАКАДЫ ПРИНЯТА ИСХОДЯ ИЗ НОР-МАТИВНОГО СКОРОСТНОГО НЯПОРА ВЕТРА РАВНОГО $35 \, \mathrm{Krc/m^2}$ и $55 \, \mathrm{Krc/m^2}$, при расчете стальных конструкций — $55 \, \mathrm{Krc/m^2}$. Величина ветровой нагрузкий на погонный метр эстакады определена исходя из высоты продольной балки (или фермы) плюс $4.0 \, \mathrm{m}$ при отсутствии рамок—надстроек. При наличии рамок—надстроек величина ветровой нагрузки на погонный метр эстакады определена исходя из высоты продольной балки плюс $2.5 \, \mathrm{m}$.

33. Аэродинамический коэффициент для эстакад типов Iк: Vх; Iт: Vт: V: V

34. Температурные влияния на колонны эстакав приняты от нормативного перепада темпера-ТУР РЯВного 50° С.

35. Железобетонные конструкции одноярусных эстякад рассчитаны: Траверсы— на изгиб в 2^{\times} плоскос r ях и кручение от приложения технологической нагрузки по верхней грани конструкции;

TK

Пояснительная Записка

3.015-2/77 Выпуск Лист ПРОДОЛЬНЫЕ БАЛКИ — НА ИЗГИБ В 2^{\times} ПЛОСКОС — ТЯЖ И КОСОЕ ВНЕЦЕНТРЕННОЕ СЖАТИЕ ИЛИ РАСТЯЖЕНИЕ; ВСТАВКИ — НА ИЗГИБ В 2^{\times} ПЛОСКОСТЯЖ; КОЛОННЫ — НА КОСОЕ ВНЕЦЕНТРЕННОЕ СЖСАТИЕ ПО ПРОГРАММЕ АПК-12, РЯЗРАБОТАННОЙ ГИПРОТИС И УТВЕРЖДЕННОЙ ГОССТРОЕМ СССР.

Прогиб железобетонных тряверс принят не более $1/200\,\ell$, где $\ell-$ пролет тряверсы между опорями или двонняя длиня консоли, прогиб железобетонных продольных бялок — не более $1/200\,\ell$. Где $\ell-$ пролет бялки.

1/200 С, ГДЕ С — ПРОЛЕТ БЯЛКИ.

36. СТЯЛЬНЫЕ КОНСТРУКЦИИ ФЕРМ РАССЧИТАНЫ КАК СТЕРЖНЕВЫЕ КОНСТРУКЦИИ НА ВЕРТИКАЛЬНЫЕ И ГОРИЗОНТЯЛЬНЫЕ ТЕХНОЛОГИЧЕСКИЕ НАГРУЗКИ, ДЕЙСТВУЮЩИЕ ВДОЛЬ И ПОПЕРЕК ТРАССЫ.

Промежуточные опоры эстакад типов $Im \div Vm$, Vm и Vm рассчитаны как внецентренно софатые стержни шарнирно сопряженные с пролетным строением и фундаментом вдоль трассы и защемленными, как консоль, в фундамент в направлении поперек трассы.

"Анкерные" опоры эстакад типов $Im \div Vm$, Vm и Vm рассчитаны как внецентренно сжатые консольные стержни, работающие в двух направлениях.

СТЯЛЬНЫЕ КОНСТРУКЦИИ ТРАВЕРС РЯССЧИТАНЫ HR ИЗГИБ В $2^{\frac{X}{2}}$ ПЛОСКОСТЯЖ ОТ ВЕРТИКАЛЬНЫХ И ГОРИЗОНТАЛЬНЫХ ТЕЖНОЛОГИЧЕСКИХ НАГРУЗОК, ПРИ-ЛОЖЕННЫХ К ВЕРХНЕЙ ГРАНИ КОНСТРУКЦИИ.

<u>V. УКАЗАНИЯ ПО ПРИМЕНЕНИЮ</u>

ЭЛ.ПРИ РАЗРАБОТКЕ ПО МАТЕРИ'ЯЛАМ ДАННОЙ СЕРИИ

СТРОИТЕЛЬНОЙ ЧАСТИ КОНКРЕТНОГО ПРОЕКТА ОДНО
ЯРУСНЫХ ЭСТАКАД ПОД ТЕХНОЛОГИЧЕСКИЕ ТРУБО
ПРОВОДЫ РЕКОМЕНДУЕТСЯ СЛЕД'УЮЩИЙ ПОРЯДОК

РЯБОТЫ:

- a) определить по технологическому заданию ТИП ЭСТАКАДЫ В ЗАВИСИМОСТИ ОТ ГАБАРИТ-- НЫХ cxem и нормативной вертикальной на-грузки на погонный метр эстакады;
- δ) составить монтажные схемы одноярусных эстакац; δ) по таблицам, приведенным в данном выпуске на листах $17\div43$; $95\div97$, приизвести подбор элементов железобетонных мли стальных конструкций:
- г) РАССЧИТАТЬ И ЗАКОНСТРУИРОВНТЬ ФУНДАМЕНТЫ ПО НАГРУЗКАМ, ПРИВЕДЕННЫМ НА ЛИСТАХ $52 \div 82$; 38. 99 ДАННОГО ВЫПУСКА.

TK

Пояснительная записка

3.015-2/77 Выпуск Лис Т 38. Для одноярусных эстакай, отличных по габаритам и нагрузкам от разработанных в настоящей серии, возможность применения типовых конструкций серии 3.015-2/77 должна быть проверена расчетом.

<u>V</u>. Монтаж конструкций

39. Монтаж конструкций одноярусных эстакад производится после окончания работ нулевого цикла в соответствии с проектом организации строительных работ и сфемами монтажа отдельных конструкций, разраба тываемыми в конкретном проекте. Монтаж конструкций производить в соответствии с "Инструкций производить в соответствии и "Инструкцией по монтажу сборных железобетонных конструкций промышленных зданий и сооружений" СН δ 19- δ 5 и СНип M-18-75 "Строительные нормы и правила. Правила производства и приемки работ. Металлические конструкции".

ДОПУСКВЕТСЯ ПРИСТУПАТЬ ТОЛЬКО ПОСЛЕ ПОД-ГОТОВКИ ДНА СТАКАНА И ОБРАТНОЙ ЗАСЫП-КИ ПАЗУХ ФУНДАМЕНТА. ПОДГОТОВКА СТАКАНА ФУНДАМЕНТА ПРОИЗВОДИТСЯ ПУТЕМ ВЫРАВНИВА-НИЯ ДНА ЖЕСТКОЙ ГАСТВОРНОЙ ИЛИ БЕТОННОЙ СМЕСЬЮ КОНСИСТЕНЦИИ ВЛЯЖНОЙ ЗЕМЛИ.

41. При монтаже железобетонных прямоугольных колонн особое внимание следует обратить на их ориентировку. Ось колонны, нанесенняя на конструкции несмываемой краской при несимметричном армировании или несимметричном сечении, должна совпадать с осью трассы при одностобуных опорах или быть параллельной оси трассы при двухстобуных опорах.

42. Временное закрепление колонн или стоек В стакане рекомендуется производить с помощью кондукторов. После закрепления колонны или стойки необходимо произвести окончательную ее выверку и замоноличи— вание стыка колонны или стойки с фунда— ментом. Замоноличивание стыка колонны или стойки с фундаментом производится бетонной смесью марки не ниже м 200 с водоцемент-

43. ПРИГОТОВЛЕНИЕ БЕТОННОЙ СМЕСИ ДЛЯ ЗАМОНОЛИ-ЧИВАНИЯ КОЛОНН ИЛИ СТОЕК В СТАКАНЕ

TK

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

3.015-2/77 BUITYCK AMET

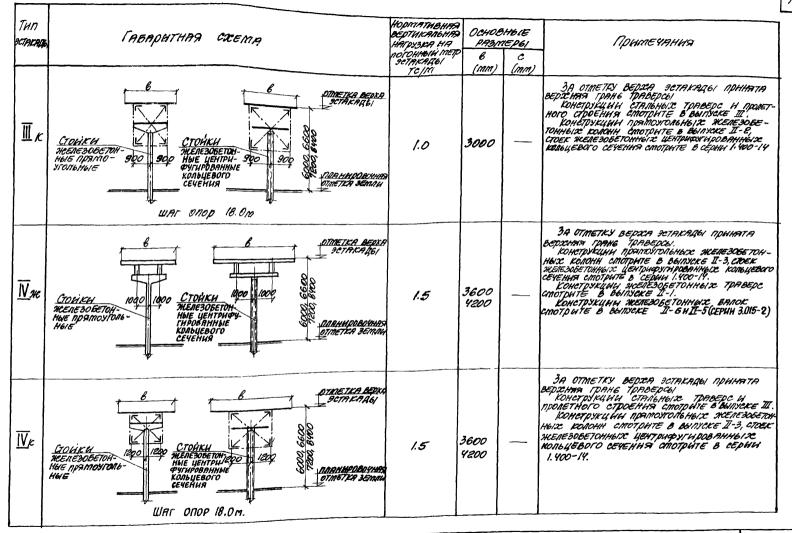
1/1

OCYMECTBAGETCA B COOTBETCTBUN C PEKOMEH-ДАЦИЯМИ СНИП II-15-76 "ПРАВИЛА ПРОИЗВОДСТЕЛ N NPHEMKU PROOT. BETONHINE W INCENESOBETONHINE KOHCTPYKUHH MOHONHTH61E" 44. KOHAYKTOPЫ MOSYT БЫТЬ СНЯТЫ ПОСЛЕ ЗАМОНОЛИЧИ-BAHNA KOJOHH NJU CTOEK B ФУНДАМЕНТЕ ПРИ ДОСТИЖЕНИИ БЕТОНОМ ПРОЕКТНОЙ ПРОЧНОСТИ. 45. ПРОДОЛЬНЫЕ БАЛКИ ПРИ МОНТАЖЕ НА ПРЯМОУГОЛЬ-HUE KOJOHHU YCTAHABJUBAHTCA C JAPAHEE ПРИВАРЕННОЙ ДЕТАЛЬЮ МН-17 ИЛИ МН-18. МАР-KA QETAJU JABUCUT OT BULA BAJOK - PEWETYA-THE UNU LBYTABPOBLIE. ПРИ МОНТАЖЕ БАЛОК НА ЦЕНТРИФУГИРОВАННЫЕ СТОЙ-KN 9TH DETANH K SANKAM HE TIPUBAPHBAHOTCS. MOCNE BUBEPKU SANOK OHU NPUBAPUBAHOTCA K KONOHHAM UNU CTOUKAM KAK NOKABAHO HA YBNAX B AAHHOM BUTYCKE. 46. Стальные фермы, траверсы, горизонтальные CB93N N ПОПЕРЕЧНЫЕ CB93EBWE PAMKN УКРУП-HANTCA HA MECTE MONTAREA B PROCTPANCIBEN-HUE BOOKU H JATEM YCTAHABDHBAHOTCA HA CTANGHUE UNU MENEROGETOHHUE ОПОРЫ. 47. PROMERLY TO YHIE U AHKEPHILE OROPHI WHPUной 3.6 м при невозможности их трянслою-

тировки изготовляются россыпью и укрупняются HA MECTE MOHTANCA.

48. Сварку конструкций из стали ВСтЗ производить BREKTPORAMU TURA 342 U 342A RO FOCT 9467-75 АЛЯ СВАРКИ КОНСТРУКЦИЙ ИЗ СТАЛИ МАРКИ 10 XHAN NEUMEHATE BREKTPOAGI TUNA 3 50 A MAP-

KH 03C-18 NO TY-14-4-804-77 49 KONUYECTBO U QUAMETP BONTOB, BUICOTU U ANU-HHI CBAPHLIX WBOB OFFERENGIOTCA THE PROPRECTIE ДЕТАЛИРОВОЧНЫХ ЧЕРТЕЖЕЙ СТАЛЬНЫХ КОНСТРУКЦИЙ B COOTBETCTBHU C AFTANAMU Y310B U PACYETHUMU YCHANAMU, ПРИВЕДЕННЫМИ В ВЫПУСКЕ III.


3015-2/77 BOINSEK NHET

TUN CTAKADU	TABAPUTHAS COSEMA	HOPMATHBHASI BEPTHKANGHASI HATPY3KA HA	OCHOBI PH3N		Davistania
		NOTOHHUU METP 9CTAKAGU TC/M	B (mm)	(mm)	Примечния
Īκ	CTONKU ACERESOGE TOHHUE THE TOTAL SECTION SEPTEM GOO GOO SE THE TEN BEPTH GOO GOO SE THE TEN BEPTH GOO GOO SE THE TEN BEPTH GOO S	0.25	1200 1800		ЗА ОТМЕТКУ ВЕРСЯ ЭСТАКАДЫ ПРИНАТА ВЕРСИМИ ГРАВЕРСЫ. КОНСТРУКЦИИ СТАЙНЫХ ТРАВЕРС И ПРОЛЕТ- НОГО СТОРЕНИЯ СПОТРИТЕ В ВЫПУСКЕ ТИ. КОНСТРУКЦИИ ПРАМОУГОЛЬНЫХ ЖЕЛЕЗОБЕТОННЫХ КОНОНН СПОТРИТЕ В ВЫПУСКЕ Т-1, СТОЕК ЖЕЛЕ- ЗОБЕТОННЫХ ЦЕНТРИЗУГНОВОЯННЫХ КОЛЬЦЕВОГО СЕЧЕНИЯ СМОТРИТЕ В СЕРИИ 1.400-14.
<u>I</u> k	Стойки железоветонные при центри- футированные кольцевого сечения	0.5	1200 1800 2400		ЗА ОТМЕТКУ ВЕРЖА ЗСТАКАДЫ ПРИНАТА ВЕРЖНЯЯ ГРАНЬ ТРАВЕРСЫ. КОМСТРУКЦИИ СТАЛЬНЫХ ТРАВЕРС И ПРОИК НОГО СТРОКНИЯ СМОГРИТЕ В ВЫМУЖЕ II. КОМСТРУКЦИИ ПРАВИСУЮНЫХ ЖЕКТЕЗОБЕТАН НОГО КОМСТРУКЦИИ ПРАВИСУЮНЫХ ТОГОКОВЕТАН НОГО КОЛОНИ СМОГРИТЕ В ВЫЛУЖЕ II. КОМСТРОКНЫХ ЦЕНТРИДУИ РОДАННЫХ КОМС- ЦЕВОГО СЕЧЕНИЯ СМОТРИТЕ В СЕРИИ 1.400-14
ĪĪĪ æ	CTOLIKU CTO	1.0	3000		3A OTMETKY BEDRA PETAKRAGI NAHHATA BEATHAR (PAHG TARBEDCS). (CONTROVKUMU ARRIMOVIOIBIBLE MERESOBETON- HILL KOICHA CMOTPHTE B BENINKE II-2 CTOEK MERESOBETOHHAIC BEHTIMOVIAPOSHHARIC KARG- WEBBITO CEYETHAR (MOTPHTE B CEPHH 1.400-14 KOHATOKUMU MERESOBETOHHAIC TARBEPC CMOTPHTE B BUNYEKE II-6 UII-5 (CEPHH 3.015-2) MOTPHTE B BUNYEKE II-6 UII-5 (CEPHH 3.015-2)

1977

ГАБАРИТНЫЕ СЖЕМЫ И НОРМАТИВНЫЕ ВЕРТИКАЛЬ-НЫЕ НАГРУЗКИ НА ПОГОННЫЙ МЕТР ЭСТАКАЦ ТИПОВ I К; II К; III ЖЕ. 16130

16

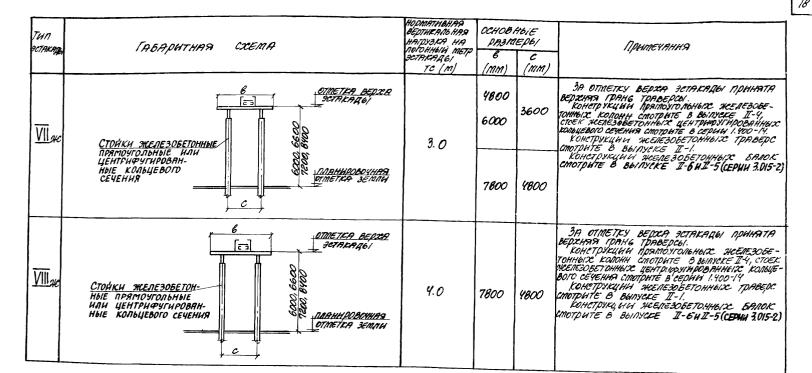
EQUARKED S

APDKOBEKNI METPONHYNTFDEKT TXAPDKOB

TK 1977

ГАБАРИТНЫЕ СОСЕМЫ И МОРМАТНІВНЫЕ ВЕРТИКАЛЬ-НЫЕ НАГРУЗКИ НА ЛОГОННЫЙ МЕТР ЭСТАКАД ТИПОВ ШК; ШЯС; ПОС

3.015-2/77


BOIDYCK MHET

Ты п эстанары	Габаритная схема	HOPMATHBHAA BETTUKATIGHAA HAIPYBKA HA TO- TOWHGH METP FCTA KAILGI TC/M	OCHOBA PA3ME B (MM)		Притечання
∑ж	GOHELI 1000 1000 CTOHKU 1000 1000 SS CARRAGE STANDED TO CEVEHUR STANDE STANDED	2.0	4800	-	ЗА ОТМЕТІСУ ВЕРХА ЗЕТАКАДЫ ПРИНЯТА ВЕРХНЯЯ ГРАНЬ ТРАВЕРСЫ. КОНСТРУКЦИИ ПРАМОУТЛІВНЫХ ЖЕЛЕЗОБЕТОН- НЫХ КОЛОНН СПОТРИТЕ В ВЫПУСКЕ ЛІЗОБЕТОН- ЖЕЛЕЗОВЕТОННЫХ ЦЕНТРИРУГИРОВАННЫХ КОЛЬ- ЦЕВОГО СЕЧЕННЯ ЕМІГРИТЕ В СЕРИЙ 1-400-14. КОНСТРУКЦИИ ЖЕЛЕЗОВЕТОННЫХ ТРАВЕРС СМОТРИТЕ В ВЫПУСКЕ ЛІ-1. КОНСТРУКЦИИ ЖЕЛЕЗОВЕТОННЫХ БАЛОК СМОТРИТЕ В ВЫПУСКЕ ЛІ-6 И П-5 (СЕРИИ 3.015-2)
$\overline{\underline{V}}_{\underline{\ell}}$	CTONKU CTONKU	2.0	4800		30 OTMETKY BEDDA 3CTADALO NOWHATA BEDDINAS TRANS TRADEDICH BEDDINAS TRADEDICH BEDDINAS TRADEDICH NOMETHORD CIPOEHHA CHIOTRUTE & BUNNEKE III. KOHCTPYKLUH NOMMOYFONOHUS IKENESOGETH HUX KONOHH CHIOTRUTE & BUNNEKE II-3, CIDEC IKENESOGETOHUSIX LEHTPUNDYHPORTHUS KONGGE- BOTO CEYEHHA CHIOTRUTE & CEPHH 1.400-14.
<u>V</u> [ue	CTOUKU MENE30-	2.0	6000	70-0	ЗА ОТМЕТКУ ВЕРГА ЭТАКАДЫ ПРИНАТА ВЕРЖНЯЯ ГРАНЕ ТРАВЕРСЫ. КОНСТРУКЦИИ ПРИМОУГОЛЬНЫЙ ЖЕЛЕЗОБЕТОН- НЫЙ КОМОН СМОТРИТЕ В ВИРУСКЕ II-4, СТОЕК ЖЕЛЕЗОБЕТОИНЫЙ ЦЕНТРИДРУГИРОВАННЫЙ КОЛЬ- ЦЕВОГО СЕЧЕННЯ СМОТРИТЕ В СЕРИИ 1.400-14. КОНСТРУКЦИИ ЖЕЛЕЗОБЕТОННЫЙ ТРАВЕРС
	УГОЛЬНЫЕ ИЛИ ЦЕНТРИФУНИРОВЯН- НЫЕ КОЛЬЦЕВОГО СЕЧЕНИЯ СЕЧЕНИЯ		7800	4800	CMOTPHIE & BEINYELE II-1. CONCTONEUM NOENE 305E TOMHEIC BANOK CMOTPHIE & BEINYELE II-6 U II-5 (CEPHU 3.015-2)

TK

ГАБАРИТНЫЕ ССЕМЫ И НОРМАТИВНЫЕ ВЕРТИКАЛЬ—
НЫЕ НАГРУЗКИ НА ПОГОННЫЙ МЕТР ЭСТАКАЯ
ТИПОВ \bar{I} ЖС, \bar{I} K, \bar{I} Ж

3.015-2/77 Выпуек пнет I 3

ECAHRHEESS SORHSHEESS

X A PUKCIBLIKAN IPUMET PONHANIPOEKT I XAPUKUB

MOUMEYAHHE $U_{\rm L}$ прометное строение эстакай типов $U_{\rm L}$ же и $V_{\rm L}$ эк передается нагрузка 2,0 гс/m.

1977

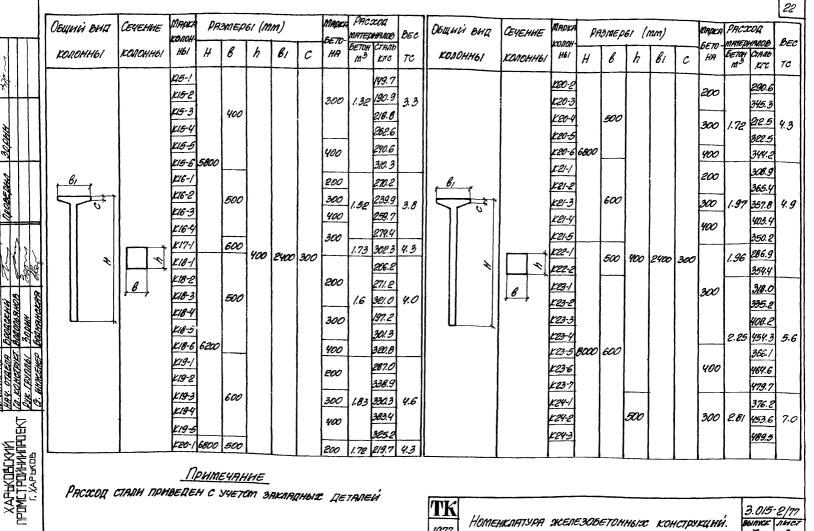
ГАБАРИТНЫЕ СХЕМЫ И НОРМАТИВНЫЕ ВЕРТИКАЛЬные нагрузки на погонный метр эстакая 3.015-2/77 BOINYCK NHET THROS VIL HE; VIII HE. 16130 19

Общий вид	Сечение	MADKA	Pasme	=p61 [1	nn)	MAPKA	PAC	TOA WANOB	BEC	Общий вид	Сечение	Мяркн	PASM	EP61 [mm I	Manus	PACS	204	19
колонны	КОЛОНН61	KONOH- H61	Н	в	h	Т		CTAND	7	КОЛОННЫ	KONOHHEI	KOROH- HGI	H	B		MAPKA BETO- HA	MATED BETOH Mª	CTRIG	BEC
		K!-1 K!-2	6200	300	300	300	0.56	121.6 90.3	1.4			K5-4				300	Mo	KFC 283.1	
		K2-1				200		156.7 116.6				K5-5	8400	400			1.35	186.6	3.4
4		K2-3	6000				0.96	95.9 173.3	2.4			K5-7				400		233.6 344.5	
		KE-5 K3-/				300		189.9		—		K6-2 K6-3		500		300	1.68	221.8 263.9	4.2
4		K3-2				200		103.1				K25-1			400			328.7 91.5	
1 M		£3-4 £3-5	6600	400	400	300 200 400	1.06	150.7 158.9 261.9	2.6	#		K 25-2 K 25-3 K 25-4				200		116 7 134.5	
HI WEYED BOHISHERS	16	£3-6 K4-/				300		219.3			8	K25-5	5700				0.91	172.7 20i.1	2.3
25 5000		K4-2 K4-3				200		128.9				KE5-6 K 25-7		400		300		114.9 131.2	
G. HI WENE		K4-4	7200			300 200	1.15	158.4 164.6	2.9			K25-8 K25-9						151.4 210.5	
45		K4-5				400 300		283.2 236.8				K26-1 K27-1			500		1.14	261.5 131.2	2.9
1. Pacxo		K5-1 K5-2	8400			200	1.35	202.2	3.4			K27.2 K27.3	6300		400	200	1.01	151.2	2.5

Номенклатура эселезоветонных конструкций

3.015-2/77 BENYEK NHET

^{1.} Расход стали приведен с учетом закладных деталей. 2. Номенелатуру и ПОКАЗАТЕЛИ РАСХОДА МАТЕРИАЛОВ на железобетонные центриругированные стойки кольцевого сечения смотрите серию 1.400-14 выпуск 1


	Овщий вид	CEYEHUE	MAPICA	Pasme	EP61 (1	am)	MAPICA	PAC MATED	XOA HANOB	ВЕС	Общий вид	СЕЧЕНИЕ	Марка	PR3M	EP61 [(mm)	MADER	PACA		BEC
	КОЛОНН61	KONOHH61	KOROH- HBI	H	8	h	6E TO- HA	БЕТОН M ³	CTAA6 KPC	τς	КОЛОННЫ	KONOH!461	KONOH- HGI	H	в	h	BETO- HA	BETOH M ³		rc
			K27-4		Ì		200		218.6				K30-10			400	400		204.4	2.6
+			K27-5				}		146.7				K3V-/						140.4	
			K27-6 K27-7			400	300	1.01	176.4	2.5				6900	400	500	300	1.38	192.7	3.5
			K27-8		400	ĺ			199.2				K31-3						233.1	
+			K27-9	6300	100		 -	}	242.5				K31-4			}	400		3/3.0	
			K27-10				400		153.3 189.5				K32-1 K33-1		500			1.72	260.0	4.3
			K28-1				·	 -	130.1				K33-2				300		176.8 223.8	
			K28-2			500	300	1.26	177.6	3.2			K33-3			400		1.3	266.1	
13/			K28-3						214.3				K33-4			100		1.9	224.9	<i>3.</i> ;
ME TO	1 1	- 1 \ \	K28-4			ł	400		289.6			*	K33-5			}	400		264.7	
86		8	129-1 130-1		500	ļ 		1.58	<i>239.5</i>	4.0		8	£33-6	8100	400	ļ			331.3	
JOHH GAHRHEKAS			130-2				200		141.4	.			K34-/				200		294.7	
Зорын Бойнянек ө\$			K30-3				200		166.8 203.8				K34-2 K34-3						175.6	
HED	1		K30-4					Ì	231.3				K34-4			500	300	1.62	240.7 288.2	,,
. Группы ННЯКЕНЕР			K30-5	6900	400	400		1.11	158.2	2.8			K34-5			Suc		7.02	362.4	4.1
PyK.			K30-6			}	300		189.8				K34-6			ļ			265.8	
2			K30-7 K30-8						215.6				K37-7				400		295.2	
			K30-9				400		263.1				K35-1		500			2.03	301.0	5.
글	······································		1 0		I	L	400	L	165.1.		L		K35-2			<u> </u>	L		4466	
I PUNIT INDEN	0n - n - n	Amm		Прите	SUAHU	1E														
į	PACIOA	CTAIN NPH	ВЕДЕН	C 44	ETOM	3AKA	PAH61	X AE	TANEÜ	•	TK Voc	NEHKNATYPA .							3.015	<u> </u>

 BOINVER THET

I

6

\dashv	Общий вид	CEYEHHE	ROPORA KOROH	PA	BMEF	061 [iam)		Мяра	PAC	XOA HANOB	BEC	Общий вид	CEYEHUE	MAPICA KONOH	PA.	3MEP	61 [iam)			MATEL	XOA OHANOO	
	KONOHH6/	DONOHH61	H6/	H	в	h	61	C	6E 10. HA	БЕ70H	CTANO KTC	TC	колонны	KOTIOHHOI	HGI	H	в	h	61	C	HA	BETOH M ³	CTRAB	1
			K7-1						400		208.2				KII-2								198.4	
			£7-3						200		126.9 121.3				K11-3 K11-4						200		330.4 267.9	
			K7-4	5800	400					1.29		3.2	}		K11-5		400		}				151.3	
+		İ	K7-6						300		123.2	1			K11-6	'					300	1.45	194.1	3
	1 6,		K7-7								137.6	7	. 61		KII-7 KII-8	6800							220.0 253.2	
	7		KB-1		500					1.5	+	3.8	500		KII-9						400		218.5	
'nĔ			K9-2						200		183.8	†			KII-10 KIZ-1								276.5	-
3/2	1 1		K9-3			400	2200	340	1		210.2	†			K12-1		500	400	2200	340		1.7	188.2 276.7	4
200		18	K9.5						-	1	142.6	1		8	K12-3						300		310.7	_
Эорин Бодня нес 198			K9-6	6200	400				300	1.36	-	4			K13-1 K13-2		400						204.8 275.8	_ ا
100	-		K9-7								206.	4	 		K/3-3							1.69	334.3	4.
HINE			Kg.g								239.8	7			K13-4 K14-1	8000	\vdash				400		3/8.0	
36			K10-1						400	-	257.0				K14 &	au					300	- 1	227.8 278.8	
			K10-2		500					1.58	256.5			1	K14-3		500				_/,		330./	4.
HI			K10-3 K11-1	seco	400				_	_	288.			ı	K14-4 K14-5					-	900 300	Г	336.8	
ΥΑΓ.								L	200	1.45	V66.9	3.6			K14-6					_ h	100	- 1	430.2	
L XAPIKIB	Расход с	CTMH NPC	170	HIYIE DEH	GAAAA CVU	HETOM	י אמ	-1011	46/20				TK	ЕНКЛЯТУРА				l					130.2	_

PACOCOLI CTANH PHOEREH C SUETOM BAKAARHOLO DETANEN

Бовнянссея

HOMEHKAATYPA OKENEBOBETONHOIDC KOHCTPYKUHÜ.

3.015-2/77

BOINYCK NEICT I

								· ·												23
+	Общий вид	CEYEHHE	1		5,061 [1			PAC. MATERI	HANOB	BEC	Общий вид	СЕЧЕНИЕ	MAPKA	PA3M	TEP61 ((mm)	Марка	PACS	TOH	BEC
	TPABEPC61	TPABEPCOI	<u> </u>	2	в	1	<i>БЕТОНА</i>	BETOH M ³	CTRAB	тс	TPABEPC61	ea nora,	ВСТЯВКИ, БРЛКИ	2	в	h	<i>БЕТОНА</i>	BETOH M3	CTPAIS KTC	TC
Ш			TI-/ T2-/	3000 3600		290	200	0.22	45.4 58.8	0.65	a d	8	B1-1 B1-2	6000	250	500	200	0.75	69.4	1.9
			72-2					0.20	72.7	0.65			6-18p[[-d						94.0 216.3	
			13-1 13-2	4200				0.3/	67.1 82.8	0.77			6-[8p][-8 6-[8p][-8						267.1 257.9	
\prod			74-1	4800			300	0.35	99.6	0.87			6-IN-a						294.1	
			75-1 75-2	6000			200	0.75	117.9 152.2	1.9			<u>Б-I∩-δ</u> Б-I∩-в						284.9 275.7	
			75-3 75-4				300		178.1 224.9				6-IA <u>II</u> I B-0. 6-IA <u>II</u> I B-8						330.9 321.7	
(Ko)		H	16-/ 16-2		250				150.5 191.0		0000000 z		GIAII88	11950	220	700	400	1.33	312.5	3.3
SHC CERS	,	 	76-3	53.0					222.8				Б- <u>I</u> Я <u>Ī</u> Ў-а Б-IЯ <u>Ī</u> Ў-8						306./ 296.9	
SORTIER			76-4 76-5	7800		500	200	0.98	201.0 204.5	2.45			6:I PIÌV-B 6:I PITV-0						287.7 283.7	
EHED			76-6 76-7				300		261.3 274. 8				6IAT¥-8 Б-IATЎ-в						274.5	
G. WHAK			77-/						95.3				6-2 B p <u>I</u> I-a						265.3 325.3	
			T7-2 T7-3	4800			200	0.6	143.4	1.5			6-28p <u>I</u> I-8 6-28pII-6				500		3/6./ 306.9	
, XAP BKUB			18 19	1900 2400	400			0.38	77.2 95.3	0.95			6-211-a 6-211-8						326.8	
5 1		<u> </u>	L	PHME	ИАНИЕ	<u> </u>	1	0.70	100.0	1.6	mre		- 2110	L	L		<u> </u>		317.6	<u></u>

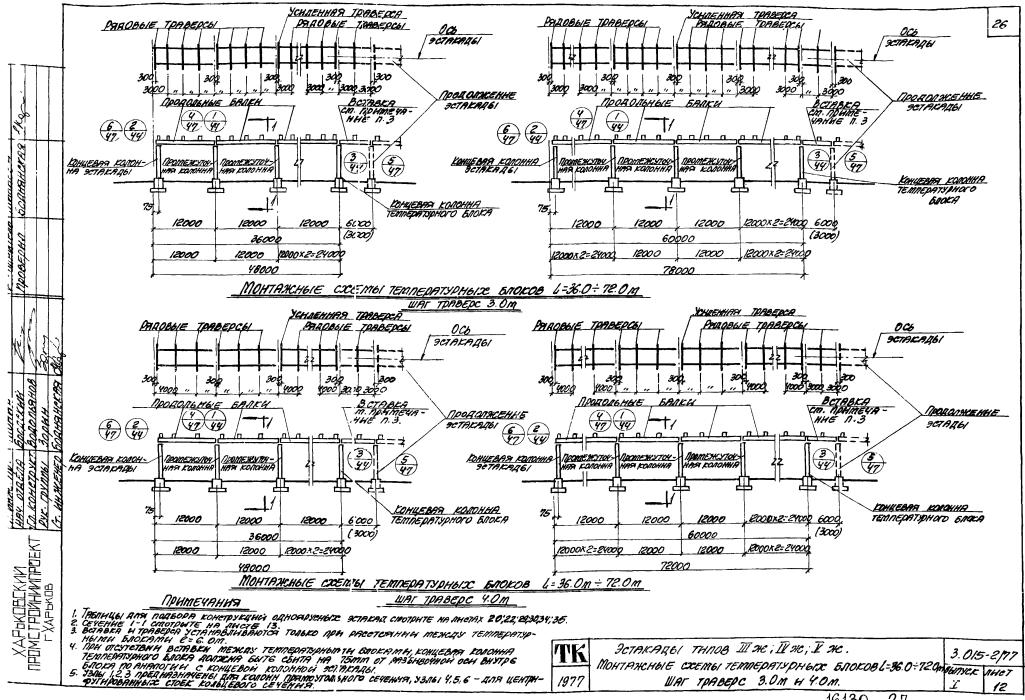
Расход стали приведен с учетом эакладных деталей.

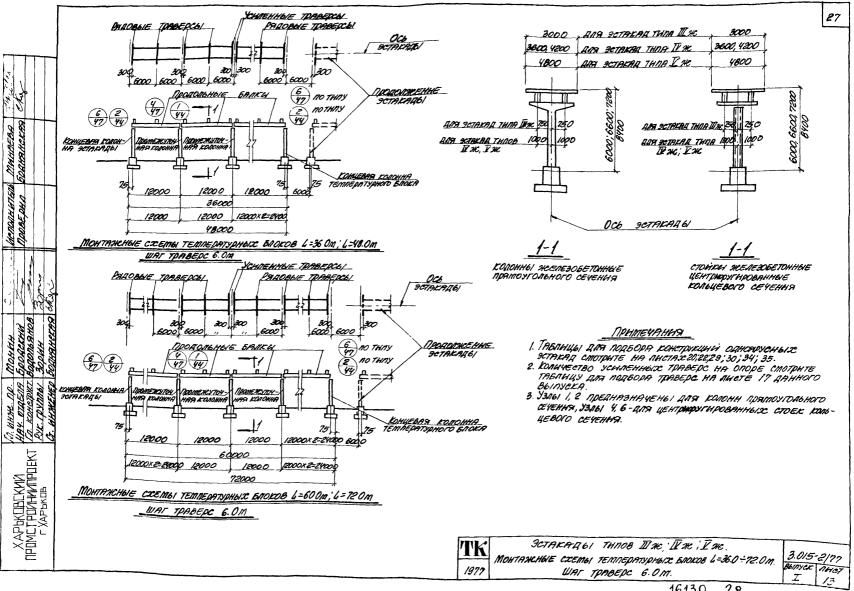
ТК
1977
Нотенклатура железобетонных конструкций

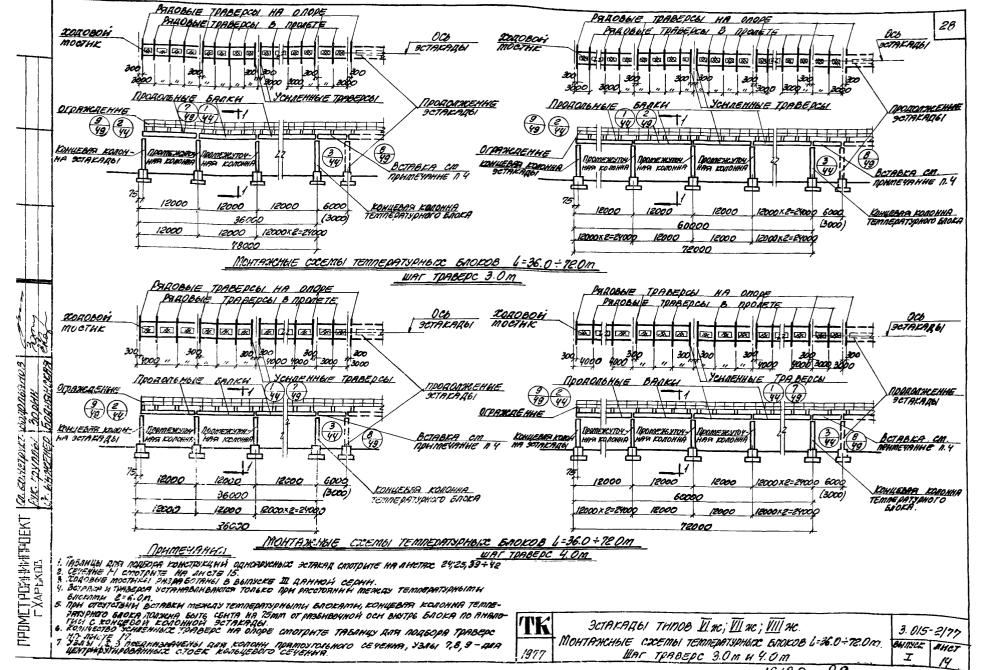
3.015-2/77 BUINYCK NEWEY

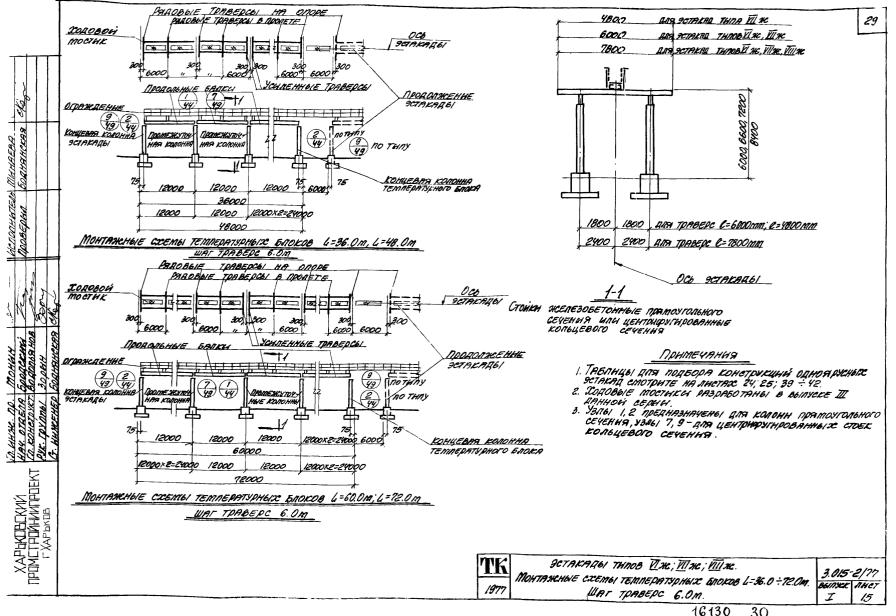
 '	ни вид	CEYEHHE		Pasme			MAPKA		HATOB	BEC	Общий вид	СЕЧЕНИЕ	Марка		nepei ((mm)	МАрка	PAC.	COA CHANOS	BEC
BA	9.N.CH	BANKH	6PAICH	Z	8	h	BETOHA	БЕТОН М ³	CTANЬ KIC	TC	БАЛКИ	BANKU	BRAICH	Z	в	h	BETTHA		CTRILL	TC
HHWEIROGOGIISHOLEGO CAGA	2	1 8 1 T	5-20-6 5-2016-5 5-201	11950	220	700	400	1.33	308. 4 386. 1 376. 9 367. 7 346. 9 327. 1 317. 9 308. 7 443. 9 443. 9 445. 5 362. 7 378. 5 360. 9 351. 7 342. 6	3.3	2.	1 0	63917-0 63917-0 63917-0 64917-0 64917-0 64917-0 64917-0 62917-0 63917-0 63917-0 63917-0 63917-0 63917-0 63917-0 63917-0 63917-0 63917-0 63917-0 63917-0 63917-0	11960	EW	890	uao	1.8	239.1 234.6 230.3 275.8 271.3 191.6 187.1 182.6 223.4 214.4 183.6 179.1 214.7 210.2 205.7 186.4	4.5
	2	8	6-19[V-0. 6-19[V-8 6-19[V-8 6-29[V-8 6-29[V-8 6-29[V-8	11960	280	<i>890</i>	400 300	1.8	182.4 177.9 173.4 239.1 234.6 230.1	4.5			6-28pII-8 6-28pII-8 6-38pII-a 6-38pII-8 6-38pII-8	:			400		181.9 177.4 208.4 203.9 199.4	

Mar	DK/I	330
318	МЕНППО	Kr
	5K1	99
	5KB	112
_	5K3	180
бапки	5K4	218
Z	5K5	300
	БКБ	373
	<i>4</i> 01	300
	<i>\$</i>	350
	476	520
	<i>Ф</i> 7	740
8	408	900
Peprila	409	1050
T)	4010	1328
		10,4
	<i>T1</i>	12.5
	T-0	17.18
	TZ	14.00
		20,8
	73	19.5
		24.5
193	74	22.3
gen		28.4
тра версы	<i>T5</i>	30,3
``		35.8
	T5	32.1
	77	42.0


Ma) Inel	0K8 MBHM Q	BBE KF
Tousever	78 79	48.0 55.4
100		720
	M6 1	320
	MBZ	379
₹	MB3	465
Бставки	MB 4	524
1/2	M85	724
2		
1	EXEMQ 1	206
1	EXEMQ5	338.0
28	CXEMA 6	436
Евязп	CXEMU7	708
1		
1		
1		
Ì		
1		


Примечания


- 1. Специрикацию стали на элементы стальных конструкций смотрите в выпуске т донной серии.
- 2. В таблице расхода материалов для траверс указан вес погоннаго метра элемента.
- 3. Для траверс марок T1÷T6 в знаменателе указан вес погонного метро траверс из холодногнутого замкнутого профиля


TK	Показатели расжада материалов стальную балку, ферму, траверсу . связь	หม นสิเน ชื่อเคอล์หม
1977	ՆՈՂԱՐԵՐԱՄԵՐ ԱՄԱՐԻ ԱՐԱՐԵՐ ԱՐԱՐԵՐ ԱՐԱՐԵՐ ԵՐ	be mading


3015-2/17 Emryex Averr I //

=	UMI/U/	rocitors	C JUITA	H IIIIO	O WINE	· VIIINE	_
7			MADKEN	PABEPC	BETAR	OF N 60	mar
9	ANHA	Mar	PHADRAG	PH ROBAR	WHITEUM	JE . Un	
	TABBOTE	TODOEs -	Massaga	Thearnen	VENIENTAY;	~1.	BANKU

н нагрузка	Дпиня	WAT	אמשטארין	TPABEPC, PA DOBAG	VCHITEHHADO	1	DANKU
ный МЕТР	!	TPABEPC	PABEPCA 8 NPONE -	ТРАВЕРСА НА ГЛОРЕ	тряверся	BETABLA	C EPHH 3.015-2/7.
	M	M	1€	Ĺ			BOINSEKII:
		3.0	11-1	7/-/	T/-/	211	6-1-a
THE STANDARY OF THE STANDARY O	3.0	4.0	I/-/	TI-/	7/-/	31-1	6-1-8
		6.0	11-1	T/-/	71-1		5-1-6
_	3.6	3.0 4.0	12-1	12-1	72-2	B1-2	5-1-a
IV HC	2.6	6.0	12-1	T2-/	12-2	01-2	5-1-8
a= 1.516/m		3.0	12-1	<i>12-1</i>	72-2		5-1-6
/	4.2	4.0	73-/	73-/	73-2	B1-2	B-1-a
		6.0	73-/	13-/	73-2	~	6-1-8
Trave		3.0	73-/	<i>T3-/</i>	13-2		5-1-6
	4.8	4.0	74-1 74-1	74-1	2(74-1)	B1-2	6-2-a
7-12 ///		6.0	74-1	T4-1	2(74-1)		6-2-5
		3.0	75-/		2(74-1)		5-2-6
VIN	6.0	4.0	75-1	75-1	T5-2	51-2	6-3-a
_		6.0	75-1	15-/ 15-/	75-2		6-3-8
9-2.07/11		3.0	76-1	16-1	15-2 16-2		5-3-6
l	7.6	4:0	76-1	76-1	16-2	81-2	5-3-a
		6.0	76-2	16-2	76-3		5-3-8 5-3-8
l		3.0	77-/	77-2	77-3		5-3-a.
}	4.8	4.0	77-1	77-2	77-3	81-2	6-3-8
-		5.0	17-/		2(77-2)		5-3-8
	6.0	20	75-/	15-3	15-4	81-2	B-3-a
9=3.07/10	0.5	40	75-1	75-3	75-4	מויצ	6-3-8
' F		60	75-1	15-4	2(15-3)		5-3-€
	7.8	3.0	76-1	75-4	2/16-21	Bi-D	5-3-a
		4.0	76-1	157	216-21	~	5-3-8
VIII HE		3.0	T6-8	16-5	(16-31		5-3-6
2=40T9m	7.6	4.0	T6-1	16-6	2/16-61	81-2	6-3-a
7-10 /10	İ	6.0	76-1 76-2	76-6 kg	2(76-6)		5-3-8

THN			МАРКИ	BAJOK	1CEPHA	3.015-2	177 8611	yer II -	6/							
ЭСТАКАДЫ И НАГОУУГА	War			XH,	PAKTER	БРИСТИКА СРЕДЫ										
нә погонны			CCHBHA	a cpen	TA .	CARBOATA	ECCHBHAS	CPEAR	COEDHER	TDEECHBH	IA СРЕДИ					
METP	′′		TYPA .	FARECA			TYPA KA			ATYDA K						
TC/M	M	A-W	AT-I	Bp-II	K-7	A-II	Bp-II	K-7	A-II	BO-II	K-7					
Шж	3.0	5-1-a	5-1-a			5-1-a			5-1-a							
g=1.079/M	4.0	5-1-5	5-1-8			5-1-8	_		5-1-8							
	6.0	6-1-6	B-1-B			5-1-8			6-1-8							
ĬГж;Гж	3.0	5-2-a	5-2-a	5-2-a	5-2-a	5-2-a	5-2-a	5-2-a	5-2-0	5-2-a	5-8-a					
g=1.5 TC/M	4.0	5-2-8	5-2-8	5-2-8	5-2-6	5-2-8	5-2-8	5-2-8	5-2-8	6-2-8	5-2-8					
2.0 TC/M	6.0	5-2-6	5-2-6	5-2-8	5-2-6	5-2-8	5-2-6	5-2-6	5-2-6	5-2-6	5-2-6					
УГж. Піж	3.0	5-3-a	5-2-a	5-3-a	5-3-a	5-4-a	6-3-a	5-3-a	5-4-a	5-3-a	6-3-a					
2.0 TC/M	4.0	5-3.8	5-2-8	5-3-8	5-3-8	5-4-8	5-3-8	5-3-8	5-4-8	5-3-8	6-3-8					
3.019h 4.019h	6.0	5-3-6	5.2-6	5-3-6	6-3-6	5-4-8	5-3-6	5-3-8	6-4-0	5-2-1	6-2-8					

ТАБЛИЦА ПОДВОРА НАКЛАДНЫХ ДЕТАЛЕН B MECTAX BOTABOK.

BANKU NPONET- HOLD PINDEHUG	ONOPH W3 4E HWS CTOEK KE	HTPUOPYEUROBAH MGYEBOTO CEYERHY
no BEINYCKAM	QUAMETP CTOWKH	МЯРКЯ НАКЛАДНО ДЕТЯЛИ (ВЫЛ ЇІ-І
	\$500	MH-5 MH-8
II-5	\$ 600	MH-6 MH-9
	<i>ф 700</i>	MH-7 MH-10
	\$ 500	MH-14
II-6	\$ 600	MH -12 MH - 15
	\$ 700	MH-13 MH-16

ТАБЛИЦА ПОДБОРА ТРАВЕРС ПОД EARKU MOONETHORO CTPOEHHA ONHO-AFYCHOIC JETAKAH THAOB MINC + V XC

Тып 9СТАКАД61	ANUHA TPA BEPC	MAPKA TPABEPC
III.XC		18
<u>Г</u> иж, Іж	2.4	79

NPHMEYAHHA

- 1. Монтижные схемы одноярусных эстя-KAI THOO ILLY -VIII THE CHOTPHIE HA MUCTAXIZ-18 2. YOUNG HHOLE TOABEDOOL AND DETAKAR THAN I'ME; VIIM WITH COCTOST H3 ABYX ORUHAKOBOIX ME-
- МЕНТОВ 2 (ТЧ-1). КОЛИЧЕСТВО ТРАВЕРС УКАЗАНО B TABNIHUE. 3. B MADEUPOBKE BAMOK UHAEKCOI, OSOBHAYAROUME
- ТИП Армирования условно опущены.
- 4. Конетрукции тряверс пропетного строения, тря-BEPC NOA BANKU NDONETHORD CTDOEHHA BETABOK CHOOPPUTE CEPHIO 3.015-2179 BOINYCE II-1

ПАБЛИЦЫ ДЛЯ ПОДБОРА ТРАВЕРС, БАЛОК И ВСТАВОК ОДНО-ЯРУСНЫХ ЭСТАКАЯ ТИПОВ ШЖС ÷ ШЖС, ТРАВЕРС ПОД БАЛКИ 3.015-2/77 пролетного строения эстакая типов Шж-Тж, BEINYCK AHET HALTHAHOLE RETAINEN B MEETAE BETABOK.

KA A 6/ H HA T PY 3KA HA 100 TOHHU	1 '	ет вер.с. ЭСТА КА Д ЫДС ШАНН РОЖУНЫ	_ 0//0/C L=	979DH&Ú 24m	TEMNEPA BAOK 4	- 36M	MAD TEMMEDA BAOK	TYPHWH 4 = 48 M	ONOHH TEMNEPH BNOK	TYPHWH 4 = 60M	TEMPEDAT	SPHE1.	VED EN SUIT	WE BROKE
METP TC/M		OTMETKU BENING (mm	TOYHAA	онцевня опора	Промежу - 104ння опоря	КОНДЕ 8 19 9 ОПОРА	Протежсу- 104нАЯ 0110рА	EOHYEBAA ONOPA	NPOME XCY- TOYHH F ONODA	KOHUEBAA ONO,?A		ביה פוצומים הקניתני	PROPERTY LANGUA ORCAP & MEMA POSEDE VINA A OFFICIAL	CALLERY CALLERY
	\$ B				BETPOE	AN H	PRPY3K	A 35K	rdm2		07/01/3	·	See Source	Discourse
	i rennepa- npoacuturas 3)	6000	K1-1	K1-2	K1-1	K1-2	K1-1	K1-2	K1-1	K1-2	4.			
	2000	6600	£3-1	K3-2	K3-2	K3.2	13-2	F3-2	K3-2	£3.2	K/-/	2/-2	121	EE-1
	7 200	7200	K4-1	K4-2	K4-2	K4-2	K4-2	K4-2	K4. E		<u>£3-2</u>	13-8	13.3	<u>ز- در بو</u>
IKHIK	18.	8400	K5-1	K5-2	K5-1	K5-2	K5-1	15-2	£5-1	K4.2	E4.2	E4.8	128-3	KY-
9=0.25;0.57%	STOYHO. SIOK Y3KA				BETPOE	AR HI	91PY3KA		rc/m?	¥5.2	K5-1	12-5	15-3	K5-3
luns ongo 12m	17, 8,	6000	K2.2	K2-3	K2-2	K2-3	K2-2							
	Промеж. ТУРНЫ Й НЯГР	6600	K3-4	K3-1	K3-4	K3-/	K3-4	K3-1	E2-2	K2.7	62.2	168-0	F2-1	K2.1
	8 %	7200	K4-4	K4-1	K4-4	K4-1	E4-4	K9-1	F3-4	£3.1	£3-9	12-1	13-3	K3-
		8400	K5-4	K5-5	K5-4	\$5.5	15-4	K5.5	27-4	129.1	E4-4	14-1	14-3	K4-3
	₹				BETPO.	BAS H	ALPY3K		K5-4	K.5-5	K5-4	K5-17	25.3	K5-3
	11) 12) 13)	6000	E1-1	K/-/	K1-1	11-2		-	Krc/m				· · · · · · · · · · · · · · · · · · ·	1.2.2
	200	6600	K3-1	K3-2	K3-/	K3-2	K/-/	KIO	E1-1	KI-E	K1-1	E1-3		
	remnepa (nasaan 43)	7800	K4-1	K4-2	K4-1	K4-2	E3-1	£3-2	K3-1	K3-2	ار.وسل	23.2	K2-1	K2-1
T The	<u> 1</u>	8400	K57	K5-1	K5-/	K5-1	K5-1	£4-5	29-1	K4.2	K4-1		£3-3	K3-3
IK H IK 9=025;0.5 TOM	EBOU I		-		BETPOE			K5-1	k5.1	K5-2	K5-1	24.2	K4-3	24-3
WAL COOP 12m)	14E8 14E8 14EP)	6000	K22	E2.3	KE:2	K2-3		55 KM	c/m2			K5-2	K5-3	K5.5
	KOHYEE TYJYEIM HRIP	6600	£3-3	K3-4	K3-3	£3-/	K2-2	to-3	K2-2	K2-2	K2-2			,
	A 5.	T200	K4 3	14.4	£4-3	K4-1	K3-3 K4-3	143-1	K3-4	K3-4	K3-4	K2-2	K2-1	22.1
i		BYCO	K5-4	K5.5	K5-4	K5-5		K47	14-4	K4-4	K4.4	K3-4	£3.3	23.3
	TI.	HME 477	WE				K5-4	K5-5	15-4	45.5	K5-4	14-4	K4-3	24.3
MOHTAIKHUL CMOTPUTE	E EXEMPS 3	CTAKAA	Those	7 P							7	K5-5	153	و-بوعر
CMOTPUTE	HA AUCI	E 16"	י מטווים י	LK, IK										

TREATURE AND DORSOPH EDANTS APPRIENCYTOMARICE A 3.015-2/77 CONTROL TEMPS IN THE STORE OF CHARTERING DUNCK WHEN DELIVER DELIVER OF THE DELIVER DELIVER DELIVER DELIVER WHEN

	HPUMEHORA-					MADKH	KONOH	4		-
E MATERALES	PATYOSOSO	OT BEPRA CHARAGO AO	DIOK S		TEMMEDA!	TYPH614	TEMNEDA; BROK	TYPHSICI	Ternneparyp 36 m	HWE BROKE
MA NOTUMHAM METP TC/M		unnapodota OTMETKU STATA (MM)	TOYMA	Концевня опоря	TOGHAA TOGHAA ONO PA	Konyeba 9 onopa	Протежеу- 104НА Я ОПОРА	Valuence	Apamerustovnis Phop A & Maeth, None Peytheix OT BOAO B IDY6 OR POBBAAO B	VALUERD
	1396	 	BETPO	BAR HE	VON3KA	35 Krc	/m ²			(Province a
	TEMNEGARIYOMMA HASA MANDIS -	6000	K2-2	K2-3	k2-2	K2-2	K2-2	K2-2	K2-5	K2-5
	200	6600	K3-3	K3-1	K3-3	K3-4	K3-3	K3-4	K3-5	×3-5
I	1 8 ~	7.200	K4-3	K4-1	F4-3	K4-4	K4-3	K4-4	K4-5	K4-5
		8400	K5-6	K5-5	K5-6	K5-5	K5-6	K5.5	K6-3	K6-3
	17.00		BETH	DOBAR !	HATPY3K	9 55 KM	ym2			
	POOMERKSTOWNOW! TEM GROK (1920; CORKHRIS) KR (2)	£000	K2-4	K2. E	162-4	K2-1	K2-4	1.2.1	K2-5	K2-5
	2 2	6600	K3-6	K3-3	K3-6	K3-3	K3-6	K3-3	K3-5	£3-5
	oome: 6nok	7200	K4-6	K4-3	K4-6	K4-3	K4-6	K4-3	K4-5	K4-5
	211	8400	K5-7	K5-4	K5-7	K5-4	K5-7	K5-4	K6-3	K6-3
	2 6	<u> </u>	BETPO	BAR HI	9ГРУЗКА	35 KMC1	lm^2			
	१९.४१.४५४४४४ ७.५०५४५४४४४ ४.९१४४ ४० ५९)	6000	K2-1	K2-3	12-2	K2-1	K2-2	K2-1	K2-5	K2-5
		6600	16.5-3	83-4	£3-3	K3-4	K3-3	13.4	K3-5	K3-5
	6 7 3	7200	K4-3	K4-4	K4-3	K4-4	K4-3	K4-4	K4-5	K4-5
INNIE	423	Brito	K.5-6	K5-5	K5-6	K5-5	K5-6	K5-5	K6-3	K6-3
9=0.25;0 474m (1007:370p:18m)	(भग्नाकार्य) (भग्नाकारमञ्जू (७५ ८५)		BETPO	BAR HI	PIPYSKA	55KGC	1 11 2			
7 7	40	5000	K2-4	K2-2	KZ-4	22-1	K2-4	K2-1	K2-5	K2-5
	Блек (?)	6600	163.6	£3-3	K3-6	E3-3	K3-6	K3-3	×3-5	K3-5
	SHYE	7200	24.6	£4-3	K46	24-3	K4-6	K.4-3	K4-5	K4-5
	٦	8100	K6-2	K5-1	K6-2	V6-1	K6-2	K6-1	K6-3	K6-3

RPWMEYAHHE

MANITONIA MANITO

MONTANCUSE CEEMS PETAKAN TUNOB IK WIK CHOTPUTE HA THETE 15.

3.015-2/77 KOHYEBBIX TEMMEDATYPHBIX BAOKOB OGHOAPYCHBIX BUNYEK AKET AKET TWOOD IS M. 16130

ТАБЛИЦА ДЛЯ ПОДБОРН КОЛОНН ПРОМЕЖЕУТОЧНЫГОС И

3.015-2/77

BUNYCK MHET I

20

KAA61	HHE TEMME-	PACETOAHHE OT BEPICA				MA	OKH KO	DAOHH				
HA NOTOHHA	PATYDHOTO	DETAKAABI AD	0-3010		FARE	MOK 40/11		TEMMEDATYPHEIH BAOK 60 M		TYPHOLLI 72M	TEMPEDATYPHSIE BROK 36m ÷ 72m	
MET P TO IM		OTMETKY SEMIN (MM)	TOYHAA TOYHAA OROPA	ONOPA	NDOMEKCY- TOYHA A ONODA	0044E8A9 000pA	NPOMEHEY- TOYHA SI ONOPA	KOHYEBAA ONOPA	NDOME HEY- TOYHA A ONODA	Концевня Опоря	DAMERESTONAD ORGA B MEETA OREDES SOLO B OTBORO B TENGORO BORO B	KOHUEDI DOOPA 8 M TAX NONEP HEIX OTBOL
	2 3	<u> </u>		BETPOB	AA HAI	PY3KA	35 Krc/m	2		L	YPYBORPOSOGOB	VPY60APOBO
}	TEMMEDATYY - 4PP HATXXXLA	6000	K7-2	K7-3	K7-2	K7-3	K7-2	K7-3	K7-2	K7-3	K7-1	K7-1
1	TEIMIN ,	7200	kg-3	K9-/	K9-3	K9-1	K9-2	K9-2	kg-2	K9-2	K10-2	K10-2
	1. 18-	8400	K11-3 K13-2	K11-1	K11-3	K11-1	K11-2	K11-2	K11-2	K11-2	K12-2	K12-2
IIK; II HE g=1.01c/m	OYMUNI (MORO)		F13-2	K13-1	K13-2	K13-1	K13-2	K13-1	K13-2	K13-1	K14-3	K14-3
WAR ONOP 12m	0 ~	6000	×4 -		BAS HALL	DY3KA	55 krc/m	. 2				<u> </u>
' '	716.YTO 6110K (1	6600	K9-4	K7-2	K7-7	K7-2	K7-4	K7-4	K7-4	K7-4	K7-1	K7-1
	411	7200	K11-4	K9-3	K9-4	K9-3	K9-4	K9-3	K9-4	K9-3	K10-2	K10-2
	ipom Hb/H	8400	K13-3	K11-3	K11-4	K11-3	K11-4	K11-3	E11-4	×11-3	K12-2	K12-2
	. 83			K13-2	K13-3	K13-2	K13-3	K13-2	K13-3	K13-2	K14-3	K14-3
	урный нягружэ	6000	K7-3		AN HA	PY3KA	35 Krc/	m^2			<u> </u>	
	ग्हाफाड्कमप्रश्नस्थानं १००६ममन् मम्भाजस्य १५)	6600	K9-7	K7-3 K9-5.	K7-3	K7-3	K7-2	K7-4	K7-2	K7-4	K7-1	K7-1
	16091	7200	K11-7	K11-5	K9.7	£9-5	K9-6	K9-6	K9-6	K9-6	K10-2	K10-2
TIK; II M	10 0 m	8400	K13-3	K13-2	K13-3	K11-5	K11-6	K11-6	K11-6	K11-6	K12-2	K12-2
9=1.0TC/M	15 10 1				AS HAT	K13-2	K13-2	x13-2	K13-2	K13-2	K14-4	K14-4
(WAT ONOP!Em)	Boú Temm (npogonst 19	6000	K7-7	K7-5			55 Krc/M	, 2				
	16.00	6600	K9-8	F9-7	K7-7	K7-5	K7-7	K7-7	K7-7	K7-7	K7-1	K7-1
1	Сонцевой Бпок (при	7200	K11-8	K11-7	K11-8	K9-7	K9-7	K9-7	K9-7	K9-7	K10-2	K10-2
]		8400	K14-2	K14-1	K14-2	K11-7	K11-7	K11-7	K11-7	K11-7	K12-2	K12-2
,	PHMEYAH				-16	K14-1	K141	K14-1	K14-1	K14-1	K14-4	K14-4

MOHTPHCHIE CREMIN SCIAKAR THROS WHE, III K стотрите на листах 12:13;16.

Тавлица ат подбора колонн промеженточных и. КОНЦЕВЫХ ТЕМПЕРАТУРНЫХ БЛОСОВ ОДНОАРУСНЫХ SCIAKAR THIOS WINC, TIK. WHE ONDO 12M.

ТИП ЭСТА - КАД61	HAHMEHO S A HHE TEMME-					MAPKH	KONOH	4		-
Н НЯГРУЗКА НЯ ПОГОННЫЙ	PATYPHORD	эстакады до	EMINEDI	97УРНЫН 36 M	TEMNEPH 6NOK	TYPH61H 54M	TEMMEDA		TEMNEPAT 36m	YPHUE BROKE
METP TC/M		MAHUPOBOANO OTME T.KU 3.ETMMU (Mm)	TOYHAA ONOPA	концевая Опора	NPOMEHCY- TOYHA SI ONOPA	концевня Опоря	Npameney- TOYKA A ONODA	Концевня Опоря	(IDOMEXESTOVAR OTOPA BMECTAX NOTEDE YHGIXE OTBOGOB	NONGENERA CORORA BINEAR COREPEYNON CORECTOR
	19 9	<u> </u>		BETPOB.	AR HAI	DYSKA	35 krc/m	2	upodiinisiikiis	TPYSON POBOAG
	236.	6000	K7-7	K7-5	K7-7	K7-6	E7-7	K7-6	KB-1	K8-/
	темперятурный Я нягрузься]	6600	K9-9	K9-6	K9-9	E9-6	K9-9	K9-6	K10-3	K10-3
1	1 0 T	7200 8400	K11-9	K11-6	K11-9	K11-6	K11-9	K11-6	K12-3	K12-3
IIK.	ponexeyrovy, 1. Snox (npopone nas (4)	0900	K13-4	K13-2	K13-4	K13-2	K13-4	K13-2	K14-5	K14-5
g=1.07c/m [war onopi8m]	HALL SOLE			BETPOBI	99 HATP	Y3KA S	5 Krc/m2		17.0	17-17 0
(and oneprove	Thomeskerrorneui Smok (продольня 24	6000	K7-1	K7-7	K7-1	K7-7	K7-1	E7-7	KB-/	K8-1
İ	nez ek (6600 7200	K9-10	K9-6	K9-10	K9-7	K9-10	K9-7	K10-3	K10-3
	00	8400	K11-10	F11-6	K11-10	K11-7	K11-10	K11-7	K12-3	K12-3
	9	7,00	1217-3	K14-1	K14-3	K14-1	K14-3	K14-1	K14-5	K14-5
	12 12	6000	K7.7	DE I POBI	AN HALD	Y3KA 3	TKrc/m ²			
}	тетперятурный Ольняя нягрузкя 49)	6600	K9-9	K7-6	K7-7	K7-7	K1-7	K7-7	K8-1	K8-1
	1 6	7200	K11-9	K9-7	K9-9	K9-7	K9-9	K9-7	K10-3	K10-3
	BOH TEMMEDH (MDOGONSHAR 44)	8400	K14-3	K14-2	K11-9 K14-2	K11-7	K11-9	K11-7	K12-3	K12-3
IIK g=1.07c/m	75/1			BETPO		K14-1	K14-2	K14-1	K14-6	K14-6
(war onopian)	7 6	6000	K7-1	K7-7	K7-1	PY3KA	55Krc/M	1 ²		
	ieo.	6600	K10-2	K10-1	K10-2	K7-7	K7-1	K7-7	KB-1	K8-1
	Концевой Блок (про	7200	K12-2	K12-1	K12-2	K10-1	K10-2	K10-1	K10-3	K10-3
		8400	K14-4	K14-3	K14-4	K12-1	K12-2	K12-1	K12-3	K12-3
NOUMEYA	HUE					K/4-2	K14-4	K14-2	K14-6	K14-6

MONTANCHOR CXEMOS OCTACAR THAN III K CMOTPHTE HA NHCTE 16

Таблица для подбора колонн протежуточных н KONGEBOUR TEMNEDATUPHUR BROKOB OGHOAPYCHUISE SCHWAG TUNA III K. WAT OROP 18 M.

3.015-2/77 BUNYER RHET ZI

TUN ЭСТА- KAA61	HAMM EH OBI HWE TE MNE -	PACCTORHUE				MAK	oku ro	лонн				
и нагрузка	PATYPHORO	FCTAKAAGG 20		36 M	TEMNEPH 6AOK	TYPHEIN 48M	TEMNEPA	TYPHOLLI	TEMMEDAT BNOK	YOHELH Zen	ТЕМПЕ РА БЛОКИ 36	TYPH61E m +72m
HA NOTOHHWY. MET P TC/M		NAMHUPCBOHMA OTMETICU 3EMNU (MM)	IIPOMEHCY- TOYHMA ONOPA	Концевня Опорн	Промежеу- ТОЧНАЯ ОпорЯ	КОНЦЕВАЯ ОПОРА	Noomeney- TOYHAA ONOPA	Концевая Опора	Npomency- TOUHAA ONOPA	Концевня Опорн	PROMEHOTOY- HAP OROAD B MECHAN RORE- PEYHAN OTBO- AOB TOY GONDO	£
	*			BETH	DOBAH H	ATPY3KA	35 KM	/m 2		ļ	BOHOB	UPSEUMPUBURU
	2 3	6000	K15-2	K15-1	K15-2	K15-1	K15-2	K15-2	K15-2	K15-2	K16-4	K16-4
	тептерятурыч 3 нярузка	6600	K18-2	K18-1	K18-2	K18-1	K18-2	K18-2	K18-2	K18-2	K19-5	K19-5
	11 11	7200	K20-2	K20-1	K20-2	K20-1	K 20-2	K20-2	K20-2	K20-2	K21-5	K21-5
Px; Vx;		8400	K22-2	K22-1	K22-2	K22-1	K22-2	K22-2	K22-2	K22-2	K23-7	K23-7
WK; IK 9=1.5;2.07/m	111814 2118111.			BET	POBAA	HATPY3K	A 55KI	c/m²				
lwar onop (2m)	Iponemytoynumi r snok (npodoubnes 24)	6000	K15-3	K15-2	K15-3	K15-2	K15-3	K15-2	K15-3	K15-2	K16-4	K16-4
	26	6600	K18-3	K18-2	K18-3	K18-2	K18-2	K18-2	K18-2	K18-2	K19-5	K19-5
	bone) Snok (7200	K20-3	K20-2	K20-3	K20-2	K20-2	K20-2	K20-2	£20-2	K21-5	K21-5
	10	8400	F22-2	K22-2	K22-2	K22-2	K22-2	K22-2	K22-2	K22-2	K23-7	K23-7
i	a ti			BET	POBAS I	<i>ИЯГРУЗКА</i>	7 35 KM	c/m^2				
	TEIRTEGATYPHOUM NOHAM HAIPYMA 49.)	6000	K15-4	K15-2	K15-4	K15-2	K15-4	K15-3	K15-4	K15-3	K16-4	K16-4
	15 0	6600	K18-5	K18-5	K18-5	K18-5	K18-5	K18-5	K18-5	K18-5	K19-5	K19-5
	80 11	7200	K20-5	K20-5	K20-5	K20-5	K20-5	K20-5	¥20-5	K20-5	K21-5	K21-5
Шж, Еж ПК: Гr	Eant; 1493 14)	8400	K23-3	K23-2	K23-3	K23-2	K23-2	K23-2	K23-2	K23-2	K23-7	K23-7
IVK, VK 1=1.5;2.0 TC/m	19/2			BET	008PA	нагрузк	A 55K	rc/m²				
WAT ONOP IZM	700	6000	K16-1	K16-1	K16-1	K16-1	K16-1	K16-1	K16-1	K16-1	K16-4	K16-4
1	100	6600	K19-2	K19-1	K19-2	K19-1	K19-1	K19-1	K19-1	K19-1	K19-5	K19-5
	Концевой те блок (продоль)	7200	K21-2	K21-1	K21-2	K21-1	K21-1	K21-1	K21-1	K21-1	K21-5	K21-5
_	2 3	8400	K23.5	K23-2	K23-5	K23-2	K23-2	K23-2	K23-2	K23-2	K23-7	K23-7

<u>ПРИМЕЧАНИЕ</u>

МОНТАЖНЫЕ ССЕМЫ ЭСТАГРЯ ТИПОВ ТЕМ;

ЕМ; ТЕК, ТЕК СМОТРИТЕ НА ЛИСТАК 12:13; 16.

TK

ТАВЛИЦА ДЛЯ ПОДВОРА КОЛОНН ПРОМЕЖУТУННЫЕ И концевых температурных блоков одноярусных эхакад типовIIж; IIж; IIх; IIх. War onop I2м.

3.015-2/77 BONYCK AHCT I 22

TUN 9CTALA- R61	i	1				MAPRH	KONOHH					
H HATPYSKA	NHE TEMME- PATYPHOTO	9CTHL19Q61 QO	BAOK 3		TEMNE PHI BAOK	YPHOIOT 54m	TEMNEPAT	YPH614 72m	Temnepmyp 36 m	HUE GROW		
HÀ NOTOMBH !NETP TC/M	БЛОКА	NUMHHPOBONIA OTMETKH SEMAH (NAM)	(IPOMEHCY- TOYHAA ONOJA	Гонц <i>евая</i> Опоря	ПРОМЕЖУ - 104H A A 0110PA	КОНЦЕВНЯ ОПОРА	Npomeney- TOYHA 9 ONOPA		NAMENCYTONIA ONOPA & MEETH ONEDE VINUX OT BOAGO TOXBONGO BOAGO			
	2 2			BETPE	BAR HA	PFPY3KA	35 Krc/m	2	* Proceedings	<u>TINSON PRESA</u>		
1	перятур- нясруэкя	6000	£15-5	K15-2	K15-9	K 15-3	K15-4	K15-3	F (2)	1		
		6600	K18-5	K18-4	K18-5	E18-4	K18-5	K18-4	E17-1 K19-4	K17-1		
		7200	r20-5	K20-4	K20-5	F20-4	120-5	F20-4		K19-4		
1VK, IK g=1.5;201/m	10 18 16	8400	K23-2	123-1	K23-1	K23-1	F23-/	K23-1	F21-4 F23-7	121-4		
WAR ONOD 18m	superales Inperposes			BETPOL	AR HAI	PY3KA.	55krc/m		F 23-7	K23-7		
	Q 1	6000	K15-6	K15-3	K15-6	K15-4						
	Ipomenesto Voui snor (6600	K18-6	K18-5	K18-5	K18-5	K15-6	K15-4	K17-1	K17-1		
	1.00	7200	F20-6	K20-5	K20-5	K 20.5	1	K18-5	K19-4	K19-4		
	Npon. Hbriti	8400	K23-3	K23-/	K23-2	E 23-1	K23-2	K20-5	K21-4	K21-4		
				BETPOL				K23-/	K23-7	re3-7		
	12 6	6000	K16-2	K16-2	K16-2		35 Krc/m2			·		
ļ	ग्टलाम्ड्र भागप्रश्रम् १५४)	nove.	AEYO.	6600	K19-3	K19-3		K16-2	K16-2	K16-2	K17-1	K17-1
	12.11	7200	K21-3		K19-3	£ 19-3	K19-3	K19-3	K19-4	K19-4		
		Runa	K23-6	K21-3	K21-3	K21-3	K21-3	K21-3	K21-4	K21-4		
WK, PK	100 6	0400	12256	1 23-4	K 23-4	K23-3	K23-4	K23-3	K24-3	K24-3		
LVK, LK g=1.5;2.0 ^{Te} /m war onop l8m)	1. 8		1 440 0			ALDASKA	55krdn	7-				
	ЕДОН ТЕМПЕР (продольняя 49)	6000	K16-3	K16-2	K16-3	K16-2	K16-3	K16-2	K17-1	K17-1		
		6600	K19-3	K19-3	K19-3	K19-3	K19-3	K19-3	K19-4	K19-4		
	Конц 600к	7200	K21-3	K21-3	K21-3	K21-3	K21-3	K21-3	K21-4	K21-4		
L	1 4	8400	K24-2	K24-1	K24-1	K24-1	K24-1	K24-1	K24-3	K24-3		

MOHTAKHOIE CREMOI SCIPKAD TUNOS IVK IK CHOTPUTE HA NUESE 16

XAPUKUBLKYIN IPUMLT POMHMIPOEKT

TK 7/ 100

ТАВЛИЦА ДЛЯ ПОДБОРА КОЛОНН ПРОМЕЖЕ УТОЧНЫХ И КОНЦЕОЫХ ТЕМПЕРАТУРНЫХ БЛОКОВ ОДНОЯРУСНЫХ ЭСТАКАД ТИПОВ $\overline{\mathbb{I}}$ К, $\overline{\mathbb{I}}$ К. ШАГ ОПОР $\overline{\mathbb{I}}$ ВМ.

3.015-2/77 BUNYEK NUET I 23

		TWN 9CTA- KARGI	HAWMEHOBA-	PACCTOAHHE OT BEDZEA				MAD	KW ro	TOHH				
		и нагрузка	PATHOHOLO	DETALAGOI GO		5 M	TEMNEON Y	TYDH6/H	TEMNEPHI BAOK 6	TY DHOIST	TEMNEANT BAOK 7	Y PHOIN	ТЕМПЕРИТУРНЕ 36 м :	VE BROKEN
		MA NOTOHHUWA METP TC/M	6NOKA	NAPHHPOBOMOH OTMETKU 3E/NAH (MM)	IIP OME HCY- TOYHAA ONOPA	CONYEBAR ONOPA	Npome nex- TOYHAA ONOPA	Конце вая опоря	POOMEHEY- TONHASI ONOON	KOHYEBAA ONOPA	ПРОТЕЖУ- ТОЧН РЯ	VALUERDO	TOURS OF THE STORY	LOHUEBAS
			HBILL			ВЕТРЕ	OBAA HA	PPSER	35krc/	m ²	onoph	L	<u>Texisonpoenans</u>	TO SOM DE BORDE
			28	6000	£25-2	K25-1	K25-2	K25-1	K25-1	F25-3				
			темперя 13.р. НЯГРУЗКЯ	6600	K27-4	K27-1	K27-4	127-1	K27-3	127-2	K25-1	£25-3	K25-9	K25-9
 				1200	K30-4	K 30-1	K30-4	I30-/	K30-3	K30-2	K27-3	K27-2	128-9	128-4
		VINC; VII OK		8400	K33-4	K33-/	K33-4	K33-/	K33-3	F33-/	K30-3	130-2	£31-4	K31-4
.		9=2:0; 3:0 TE/M (WAT OROP 12M)	11 (11) (1) (1) (1) (1) (1)			BETPE	DBAS H	ALDYSEA			K33-3	£33-1	£35-/	r35-/
		· 1	म्बर TOYHU पं Прадольняя 29,	6000	£25-4	£ 25-1	K25-4	T	T	1	 			
711			Se de	6600	K27-7	K27-5	K27-7	K25-/	K25-3	K 25-4	F25-3	K 25-4	K25-9	K 25-9
			1 41 -	7200	K30-7	£30-5	F30-7	K30-5	K27-6	K27-5	K27-6	x27-5	F28-4	K28-4
160			lipem 5nok	8400	K33-6	£33-3	K33-6		K30-6	K30-5	K30-6	¥30-5	F31-4	K31-4
10/2								K33-3	K33-6	K33-3	K33-6	K33-3	K35-1	K35-/
2 8			8 6	6000	K25-4	1	00819		4 35 K	c/m^2				_
SOPHH SOPHH SOPHHIEFF			०.९७४ प्रमण्डा १९९७ ४५६	6600	K27-6	K25-2	£25-4	K25-2	K25-3	K25-4	K25-3	K25-4	K25-9	K25-9
			12 1	7200	K30-6	K27-5	E27-6	F27-5	K27-5	K27-5	K27-5	K27-5	K28-4	K28-4
		ועדיועד		8400	K34-4	K30-5	K30-6	×30-5	K30-5	K30-5	K30-5	K30-5	K31-4	K31-4
HANCHED		Пж. Пж g=2.0:3.0 т/m	TEMME, VB / YB /		7 7		K34-4	K34-1	K34-3	K34-1	K34-3	K34-1	K35-/	K 35-1
		(war ongo izm)		6000	425 F			91PY3KA	55 Krc/	m?				
200			COHY, EBOW TEMME, BROK (APOJOAN 19) 49)	6600	K 25-5 K 27-10	K25-4	K25-5	K25-4	K25-4	K25-4	K25-4	K 25.4	K25-9	K25-9
			nt ()	7200	K30-10	K27-6	E27-10	K27-6	K27-9	K27-6	K27-9	K27-6	E28-4	K28-4
=			KOHU, SNOK			K30-6	K30-10	£30-6	K30-9	130-6	K30-9	K30-6	K31-4	£31-4
≣ ଜ				8400	K34-7	K34-4	K34-7	K34-4	K34-6	K34-3	K34-6	K34-3	K35-/	K35-1
IIPUMCT POMHNANPOEKT r Xapekob		_Mp.	MMEYAHH	E										
E ×	MOHTHA	SHALE CON	EMEL SOTAL	THE THOO	Пж: VII a	c								
	unorpu,	TE HA N	HCTAX 14	1,15.				E						
느								T	TABNA	ILA AMA NO	DABODA KO	MOHH NO	OMEXCYTOUR	16120 4

ТАБЛИЦА ДЛЯ ПОДБОРА КОЛОНН ПРОМЕЖСУТОЧНЫГОС И CONTRACT TEMPEDATYPHORE BUTCHES OFFICE OFFICE SETALAR THOSE THE TIME WAS ONO ISM.

1C120

3.015-2/77

BUNYEK MHCT

THIN GUTA-	MINITEHOBA	РАССТОЯ НИЕ	ļ			MAP	KU KON	POHH				
КАДЫ И НАГРУЗКА	HHE TEMME- PATYPHORO	OT BEPSER GETAKAJBI GO	TEMME PA	TYPHOLIT 36 M	TEMME PAT BAOK 40	YPHOIPT BM	TEMMEDAT BAOK 60			12m	TEMMEDMIYPH 36 M ÷	79~
HA NOTOHHWA MET P TC/M		MAHHPOBOSHOÀ OTMETKU 3EMMH (MM)	Промежеу- Точная онора	Концев а я опоря	Промежеч- ТОЧНАЯ ОПОРА	KOMUEBNA ONOPA	TOYHAA ONOPA	onopa onopa	NPOMEXCY TOYHA SI ONOPA	ONOPA ONOPA	Aporne ne yrong, onopa priecity, none pe 4 no pe ot about of tribon po 80 no 8	K
	3			3	ETPOBAR	HATPYS	KA 35K	rc/m²			en en en en en en en en en en en en en e	de montesone
	19 77.1914.64 3.5.19	6000	E25-4	K25-1	125-4	K25-1	K 25-3	K25-4	£25-3	F25-4	F26-1	K26-1
	10 kg	6600	127.6	K27-3	K27-6	K27-3	K27-5	K27-4	r 27-5	K27-4	K29-1	K29-1
	TEMME, HRIPS	1200	K 30-6	K30-3	K30-6	K30-3	¥30-5	K30-4	K30-5	K30-4	K 32-/	K32-1
<u> VIII</u> ж	10 18 66	8400	£33-6	K33-3	£33-5	K 33-2	£33-5	£33-3	K33-5	£33-3	K35-2	k35-2
g = 4.070/M	126		,		57p0BA9	HATPY.	3KA 55	Krc/m2				
(war onop!2m)	(६) ४.४५५१/वास्त्याः) २०५९ १.७५५/वास्त्राः	6000	K25-5	K25-3	K 25-5	K25-3	K 25-4	125-4	125-4	K25-4	K26-/	F26-1
	WEN.	6600	K27-8	K27-5	£27-8	K27-5	K27-7	K27-6	K27-7	K27-6	K29-1	K29-1
	Ipon Snok	7200	£30-8	K30-5	K30-8	K30-5	K30-7	130-6	K30-7	F30-6	t 32-1	E32-1
	1.0	8400	K34-5	K34-3	K34-5	x34-4	K34-5	K34-3	134-5	K34-3	K35-2	K35-2
	24.			Be	TPOBAR	HATPYS	KA 35	Krc/m2		17-07-5	~ UU A	KJ3 6
	ОВТУРНЫЙ Я НВГРУЗКЯ	6000	K25-5	K 25-4	K 25-5	K25-4	K25-4	£25-4	£25-4	K25-4,	K26-/	K 26-/
	201	6600	K27-8	K27-6	K27-8	K27-6	K27-7	K27-6	K27.7	F27-6		
	8 8	7200	K30-8	130-6	K30-8	K30-6	K30-7	K30-6	F30-7		K29-/	K29-1
VIII ж	TEMNE PH ON 6 HP 9 4g)	8400	K34-5	K34-3	K34-4	K34-2	K34-4	K34-3	K34-4	K30-6 K34-3	K32-1	K35-2
g=4.070/19	12 6				ETPOBAS	HATPS	ara 5	5krc/m2		RUI J	F 35 E	1.95 2
(war onop 12m)	Hodu)	6000	K25-8	K25-6	K25-8					1		r
	1000	6600	K28-3	K 28-1	K28-3	K25-6	K25-6	K 28-2	K25-6	K25-7	K 26-1	K 26-1
	Конце. Блок (.	7200	K31-3	K31-1	K31-3		K28-2		F28-2	K28-2	K29-/	K29-1
	20	8400	K34-7	K34-4	134-7	K31-1	K31-2 K34-7	K31-2	K31-2	K31-2	K32-1	K32-1

NOUMEYAHUE

Mohtancheie creme, getarag tuna VIII ac Cmotpute ha nuctare 14,15.

XAMBANIEL KAVI IPOMETPONHANIPOEKT FXAMBANDE

TK

TAGANYA AMA NOAGODA KONOHA NPOMERENTOHIBISE U KONYEBAISE TEMPEDATYPHISE BROKOB OMPORISEHBISE GETAKAN TUNA TITISE. WAT ONOO 12M. 3.015-2/77 Выпуск Лист <u>I</u> 25

TUN 3C-			Расстоя			Mapku L	moek		
такады инагруз-	TEMITE-	бая нагруз- ка	ние ат верха эс	Температурный	Í BAOK L=24M	Температурны	и блок L=36m	Температурны	Í δΛΟΚ L=48M
КИ НОТ ПОГОННЫЙ МЕТР	ратур- нрга блака		Τά Καθόι Βο Πλαμι Ροδοч μού	Промежуточ-		Промежуточ- ная	Концевая опора	Промежуточ- ная	Концевая опора
TC/M	o non a	111 -	CEMAU, M	ная апора	опора	опора		<i>опора</i>	·
	29)		6,0	2400 <u>6,0 -60</u> 400	C400 <u>6,0-60</u> 400	C400 <u>6,0 -50</u> 400	C400 6.0-50 400	C400 <u>6,D-60</u> 400	C400 <u>6,0-50</u> 400
	% .a. 2		6,6	C400 <u>6,6-60</u> 400	C400 6,6 - 50 400	C400 <u>6,6 - 60</u> 400	C400 <u>6,6-60</u> 400	C400 <u>6,6-60</u> 400	C400 <u>6,6-60</u> 400
IK, IK	эчный блок ный блок нагрузка	35	7,2	C500 7,2 - 60 400	C500 7,2 - 50,400	C500 7,2-60 400	Ľ500 <u>7,2 - 60</u> 400	C500 <u>7.2-60</u> 400	C500 7,2-60 K2 400
q=0,25	4H6/ 16/Ú HGE		8,4	C500 8,4 -60 K3 400	C500 <u>8,4-60</u> 400	C500 8,4 - 60 400	C500 8,4 -60 K 3 400	C500 8,4-60 400	c500 <u>8,4-60</u> 400
0,5 TC/M	Промежуто температуры (продольная		6,0	C500 6,0 -60 400	C500 <u>8,0 - 60</u> 400	C500 6,0 - 50 400	C500 6,0 - 60 400	C500 <u>6,0-60</u> 400	C500 6,0 -60400
	ears par	55	5,6	C500 6.6 - 60 400	C500 6.6 - 60 400	C500 6,6 - 60 400	C500 6,6 - 60 400	C500 6,6-60 400	C500 6,6 - 60 400
	muc mue		7,2	C500 7.2 - 60 400	C500 7.2 -60 400	C500 7,2 - 60 400	C590 7,2 - 50 K3 400	C500 7.2 - 60 400	C500 7,2-60400
			8,4	C500 <u>8,4 - 50</u> 400	C500 8.4 - 60 400	C500 8,4-50 400	C 500 8,4 - 60 400	C500 <u>8,4-60</u> 400	C500 8,4-60 400
	лературный sная нагруз-		6,0	C400 <u>6,0 -60</u> 400	C400 <u>6,0-60</u> 400	C400 8,0-60 400	c400 60 - 60 400	C400 6.0 -60 400	C400 6.0 - 60 400
	Q E	35	6,6	C400 6,6-60 400	C400 6.6 - 60 400	C400 5,6 - 60 400	C400 6,6 - 60 400	C400 <u>6,5 - 60</u> 400	C400 6.6-60 400
IK, IK	403			C500 1.2-60 400	C500 7,2 - 60 400	C500 1.2-60 400	C500 1,2-60 400	C500 7.2-60 400	C500 7.2 -60 400
9=0,25	92		8,4	C500 8,4-50	C500 8,4 - 60 400	C500 0,4-60 400	C500 8,4 - 60 400	C 500 8,4 - 60 400	C500 8,4-60400
0,5TC/M	200		6,0	C500 6.0 - 60 400	C500 5,0 -60 400	C500 B.U - 6U 400	£500 6,0 -00 400	C500 6.0 -60 400	C500 6.0 - 50 400
	90,0	55			C500 6,6 - 60 400				
	FOHUPE BAOK (Ka 49.			C500 1.2 -00 400	C500 7.2-50 K3 400	C500 1,2 -60 400	C500 1.2 - 60 40	0 C500 7.2 -60 400	C500 1,2 -60 400
L	425		8,4	C500 K5 400	C500 8,4-60 400	C500 0,4-60 400	C500°,4 - 60 400	0 C 500 8,4 - 60 400	C500 0,4 - 50 400

HCTUTYT MY

TK Таблица для подбора стоек промежуточных и 3.015-2/77 концевых температурных блоков одноярусных дошье дош

TUN 3CJOMO-	Haume- Haba-	Betro-	POCCTO- SHUE OT		Mapn	ru cmoek			
761 U HOFPSSWU HO ?OTO H-	MUE TEMNERO: TSPHORO	MOZPY 3 - MO	8619KQ 3619KQ-	Температурных	i Gran Z=60 m	Температурны	ιύ δποκ Z= 72m	Температурные	δлоки 24÷72m
	MANKE	KIC/M²	101 00 JINC HUPOBOHIO OTHETHU 38 MJ LI M	ПРВМЕЖСУТОЧ- НОЯ Опора	Канцевая спора	Прамежуточ ная апора	Концевая апара.	MPOMERISTORIUS (M INGRED & MECTUX & I INGREDE YN 61X DTGUTUS TPYNU 'NIF DPUSODOS.	HUCĞAR ANDPO MECTAX NATERE IX QITT BOĞAĞ PYĞANPO BOĞAĞ
	200.		6,0	C400 60-60 400	c4 00 <u>6,0-60</u> 400	C400 <u>6.0-60</u> 400	C400 <u>6.0-60</u> 400	c400 6.0-604 00 c4	00 <u>6.0-60</u> 400
	menne, xara 2	35	6,6	C400 <u>6.6-50</u> 400	C400 <u>6.6-60</u> 400	C400 <u>6,6-50</u> 400	C400 <u>6.6-60</u> 400	C400 <u>6.6-60</u> 400 C4	00 <u>6.6-604</u> 00
In In			7.2	C400 7.2-60 400	c400 <u>7,2-60</u> 400	0400 7.2-60400	c400 7.2-60400	C500 7.2-60400 C5	00 7.2-60 4 00
9=0,2505	ный тет и нагрээла		8,4	C500 <u>8.4-60</u> 400	C500 <u>8.4-604</u> 00	C500 <u>84-60</u> 400	C500 8.4-60 400	C500 8.4-60400 CS	500 <u>8,4-60</u> 400
7G/M	STOWN.		6,0	C400 6.0-60 400	C400 6.0-60400	C400 6.0-60400	c 400 <u>6.0-60</u> 400	C500 6.0-60400 C	500 <u>6.0-604</u> 00
		55	6,6	C400 6.6-60 400	c400 6,6-60 400	C400 6.6-60400	C400 8.6-60400	C500 6.6-60400 C	500 <u>6.6-60</u> 400
	mere orsid orsid	00	7.2	C500 7.2-60400	C500 7.2-60400	C500 7.2-60400	C500 7.2-60 400	C500 7.2-60 400 C.	500 <u>7.2-60</u> 400
	3 8 8	}	8,4	C500 8.4-60400	C500 8.4-60400	C500 8.4-60400	C500 <u>8,4-604</u> 00	C600 <u>8,4-60</u> 400 C	500 <u>8.4-60</u> 400
	3		6.0	C400 6.0-60400	C400 6.0-60 400	0400 6,0-60	0400 <u>6,0-60</u> 400	c400 6.0-60 400 c	400 6.0-60 400
	10,5	35	6.6	C400 6,6-50 400	C400 6.6-60400	C400 6,6-60400	C400 6.6-60 400	C400 6.6-60400 C	400 6,6-60 400
IN ,IN	SHO	00	7.2	C400 7.2-60400	C400 7.2-60 400	C400 7.2-60400	C400 72-60 400	0500 7.2-60 400 C	500 <u>7.2-50</u> 400
9=0.25;45	1 30.00 7	1	8.4	C500 8.4-60 400	C500 8,4-60 400	0500 8.4-60 400	0500 <u>8.4-60</u> 40	g csoo 8,4-60 400 c.	500 <u>8.4-604</u> 00
TC/M	000		6.0	C400 6.0-6040	0 C400 6.0-60 400	0 C400 6,0-60 400	0 C400 6.0-6040	C500 6.0-60400 C	500 <u>60- 60</u> 400
	303	55	6,6	chon 6.6-60/n	chan 6.6-60 to	c400 6,6-60400	0400 6.6-6040	7 C500 6 6-60 400 C	*500 <u>6,6-60</u> 400
	ruebau or (,	1	7.2	r snn 7.2-60 (m	2500 7.2-60 400	C500 7.2-6040	0 0500 7.2-6040	0500 12-60 400 C	500 72-60 400
	1000		8.4	C500 8.4-6040	C500 8.4-60 40	0 C500 8.4-60 40	0 c5 00 <u>8.4-60</u> 40	0 C600 <u>8.4-60</u> 400 C	600 8.4-60 400 K3

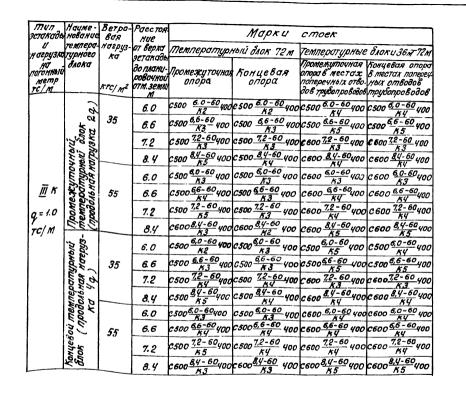
JAROBATHOW UHCTUTYTAT JANK EDSIMAS Gin UKARENCE Ленинград

Тоблица вля подбора стаех протежсьточных и г.013-2/17 концевых температурных блоков одноярусных эстокод типов I к; II к. War опор 12 м 1977

П	TE	7UN 3CTOKOÔ	Haume	Serro-	POCCTOR			Maph					
DHI	100	HOTPS3-	HOBONUE TEMNE-	<i>8वान</i> सवा <u>म्</u> ट्राञ्च∙	<i>१९०</i> ० । १९७७ १०० ।	Тетпературны	ú блок 36 m	Температурн	ы <i>й блок 54</i> m	Температурн	161Ú BNOK 72 M	Температурные	е блоки 36÷72m
Mon	1000	поточный метр тс/м		KTC/m2	90 ПЛОНИ РОВОЧНОИ ОТМЕТКИ ЗЕМЛИ М	Промеженточ- ноя опора	<i>οπόρα</i>	Промежуточ- ная опора	onopa	Пратежутач- ная опора	anapa	поперечных атводов	KOHUPĞAR ANODA & MECTAX NONEPEYHLIK OFEODOS TRUKUNDENDE
7) Jacob		6,0	csoo 6,0-60 400	C500 6.0-60 400	C500 60-60 400	C 500 <u>60-60</u> 400	C500 6.0-60 400	E500-6.0-60 400	C600 6.0-60 400	C 600 6:0-60 400
Jami	1		9870 99	35	6,6	C500 6.6-60 400	C500 6.6-60 400	C500 6.6-60400	C500 <u>6.6-60</u> 400	C500 6.6-60 400	C500 5,6-60 400	C800 66-60 400	0600 66-60 400
9//2			me	00	7,2	C500 1.2-00 400	C500 <u>XZ-60</u> 400	C500 <u>7.2-60</u> 400	c500 <u>7,2-60</u> 400	0500 7.2-60 400	c500 7.2-60 400	CECO 7.2-60400	C600 7.2-60 400
CAHO	100	In,In	2 20		8,4	C500 8,4-60 400	C500 84-60400	C600 8.4-60400	C600 8,4-60 400	C600 8.4-60 400	c600 8.4-60 400	C600 <u>8,4-60</u> 400	C600 <u>84-60</u> 400
nen	0011	<i>q=0,25</i> q=0,5	302		6,0	C500 6.0-60 400	C500 <u>6,0-60</u> 400	C500 6.0-60 400	C500 6.0-60 400	C500 6.0-60 400	C500 6.0-60 400	C600 6.0-60 400	C600 6.0-60400
200	DE LOS	TC/M	5HO	55	6,6	C500 66-60 400	csoo <u>6,6-60</u> 400	C500 <u>6.6-60</u> 400	C500 6.6-60 400	C500 6.6-60 400	C500 6.6-60 400	C800 6,6-60400	C600 6.6-60400
900 HDD	100C		200		7,2	0600 7.2-60 17.3 400	c 600 7,2-60 400	C500 7.2-70 400	C500 7.2-60 400	C500 7.2-60 400	C500 7.2-60 400	C600 7.2-60 400	c600 7.2-60400
300			8 8		8,4	C600 84-60400	0600 <u>8,4-604</u> 00	C600 8.4-60400	C600 8.4-60 400	C600 8.4-60400	C600 8.4-60 400	C600 8.4-60 600	C600 8.4-60400
12	\prod	}	£ 6		6,0	C500 6,0-60 400	C500 0.0-60400	C500 <u>6.0-60</u> 400	C500 6.0-60 4 00	C500 6.0-60400	C500 6.0-60 400	C600 60-60 400	C600 6.0-60400
341	43	1 1	10 21	35	6,6	C500 ^{6,6-60} 400	C500 ⁶ 6 - 60 400	C500 6,6-60 400	C500 6,6-60 400	C500 6.6-60 400	C500 6,6-60 400	C600 6.6-60 400	C600 6.6-60400
1	25.6	IN IIN	8 8		7,2	C500 7,2-60 400	C500 7,2-60 400	C500 7.2-60 400	C500 7,2-60 400	C500 7.2-60 400	C500 7.2-60 400	C600 7.2-60 400	C600 7,2-60400
Pend 7P		9=0.25	16 × 10		8,4	C500 8.4-60 400	0500 8.4-604 00	C600 8,4-60400	C600 8,4-60400	C600 8.4-60 400	c600 <u>8,4-60</u> 400	C600 8.4-60400	C600 84-60400
OHO.	HON	75/M	8 69		6,0	C500 6,0-60 400	C500 6.0-60 400	csoo ^{6,0-60} 400	C500 6,0-60 400	C500 6.0-60 400	C500 6,0-60 400	C600 6.0-60400	C600 6.0-60400
5/10	E L	10/11	200 H	55	6,6	0500 6.6-60 400	c 500 ^{6,6-60} 400	C500 6.6-60 400	C500 6.6-60 400	CS00 6.6-60400	C500 <u>6.6-60</u> 400	0600 6.6-60400	C600 6.6-60 400
1/2/			200	1	7,2	ceoo <u>7,2-60 4</u> 00	0600 <u>72-60</u> 400	C500 7.2-70 400	C500 7.2-60 400	C500 <u>7.2-60</u> 400	c500 <u>7.2-60</u> 400	C600 72-60400	C600 7.2-60400
rpoù CCCP	go		9 6		8,4	C600 <u>8.4-60</u> 400	C600 <u>8.4-60</u> 400	C800-8,4-60 400	C600 8.4-60400	C600 <u>8,4-60</u> 400	0600 <u>8,4-604</u> 00	C600 <u>8.4-60</u> 400	C600 8.4-60 400
30	JH2												
15	Š												

TUT 9CTONO-	HOUME-	BETFO-	POCETOR HUE OT		Мар	NU CMO	2K		
ÎGI U HOTPY3-	Temne- POTYP-	HORPY3 KO	<i>669X0 эс</i> 70 <i>00дыд</i> о	Температурны	ili δλακ 36 m	Температурна	riki δλοκ 48 m	Температурны	ιύ δλοκ GOM
NO HO NOTOHHUU MEMP TC/M	Mora BNOKO	NTC/M²	ПЛОНИРО ВОЧНОЙ ОТМЕТКИ ЗЕМЛИ	Прамеже утачная опора	() ୧୯୯୯ (୧୯୯୯)	Протежентиная опора	Концевая опора	Протежсяючю, опора	Канцевая апара
	-000		6,0	C 500 5.4-60 100	C500 <u>5,4-60</u> 400	C500 5.4-60 400	c500 <u>5.4-60</u> 400	C500 5.4-60 400	C500 5.4-60 400
İ		35	6,6	C500 <u>K3</u> 400	C500 <u>6.0-60</u> 400	C500 6.0-60 400	C500 6.0-60 400	c 500 6,0-60 400	C500 6.0-60 400
ì	ord menne HORPASA		7,2	C500 <u>6,6-60</u> 400	C500 <u>6.6-60</u> 400	C500 6.6-60 400	C500 6,6-60 400	C500 <u>6.6-60</u> 400	C 500 6,6-60 400
	3 7 2		8,4					C500 7.8-60 400	
9=10	ANNO FROM		6.0	C500 <u>5.4-60</u> 400	C500 <u>5,4-60</u> 400	c500 <u>5,4-60</u> 400	C500 <u>5,4-60</u> 400	C500 5.4-60 400	C500 5.4-60 400
TC/M	13/2/2	55	6,6	C500 <u>6.0-60</u> 400	C500 <u>6.0-60</u> 400	\$500 <u> 6,0-60</u> 400	C 500 6.0 -60 400	C 500 6.0-60400	0500 <u>6,0-60</u> 400
	OHO Odo	ļ	7.2					C500 6.6-60400	
	986		8,4	C600 7.8-60 400	C600 7.8-60 400	C 600 7, 8-60 400	C600 7.8-60 400	CG00 7.8-60 400	C600 7.8-60400
Ì	2 3		6,0	C500 5,4-60 400	C500 5.4-60 400	C500 5,4-60 400	C500 5.4-60 400	C500 5,4-60 400	C500 5,4-60 400
	ри рифи рифи	35	6,6	C500 6.0-60 400	C500 6.0-60 400	C500 6.0-60 400	C500 6.0-60 400	C500 6:0-60 400	C500 6.0-60 400
_	2000		7.2					C500 6.6-60 400	
	Surge	}	8,4	C500 7.8-60	C500 7.8-60 400	C500 7.8-60 400	C500 7.8-60 400	C500 7.8-60 400	C500 7.8-60 400
9=10	1 ga 1		6,0					C500 5.4-60 K3 400	
TC/M	382	55	6.6	C500 6.0-60 400	C500 60-60 400	C500 6.0-60 400	C500 6,0-60 400	C500 6.0-60 400	C500 6,0-60400
	10000 X		7.2	C500 6,6-60 400	C500 6.6-60 400	0 500 6,6-60 400	C500 6.6-60 400	C500 66-60 400	C500 6,6-60 400
	200	1	8,4	C600 7.8-60 400	C 600 7.8-60 400	C 600 7.8-60 400	C600 7.8-60 400	C600 7.8-60 400	C 600 7.8-60 400

Таблица для подбора стоек промежситачных 3.015-2/77 и монцевых температурных блоков однаярусных динем лист эстакад типа III ж., Шат опор 12м — 29


Tun	Haume-	BeTPO-	POCCTOR		Mapru	стоек	
ЭСТСІ KOOOKA U	HOTOHUE TEMNEJO	150 F HOEPS3-	or beaxa	Температура	HIBIÚ BAOK 72 M	Температурны	. 600KU 36m÷72m
HAZPSSKA HA NOPOHHINU METP TC/M	ТУРНОгО блака	KIC/M ²	GCTC NOOM GC TYTAHU- DOBOVHOÙ DTM: 38MW M	Промежсуточкая апора	Канцевая опора	NDOMERICSTO YHAR OTODO & MECTAX NONEDEYHUX OTOO OO TUYOON DOSO -	र्रेश्वमध्यक्रियम् ठाववयः १ местак папереу- ных от Войоб трубопровойоб
	(4)		6.0	C500 5.4-60400	C 500 = 54-60 400	C500 5,4-60400	C5CO <u>5,4-60</u> 400
	Sions Dispos	35	6.6	C500 <u>6.0-60</u> 400	C500 6.0-60.400	C500 6.0-60 400	C500 <u>6.0-60</u> 400
	16 0 837				C500 6.6-60400		
	7.40 7.60				C500 7.8-60 400		
	07.00		6.0	C500 <u>5,4-60</u> 400	C500 5,4-60 400	C600 5.4-60 400	C600 <u>5,4-60</u> 400
	34C3	55	6.6	C500 6.0-60400	C500 6.0-60 400	C 600 6.0-60400	C600 <u>6,0-60</u> 400
	7.me		7.2	C500 6.6-60 400	C500 6.6-60 400	C600 6.6-60400	C600 <u>6.6-60</u> 400
Q = 1.0	1 8 B		8.4	C600 78-69400	C600 7.8-60 400	C600 7.8-60 400	c600 <u>7.8-60</u> 400
TC/M	Sussign Sussig Sussig Sussig Sussig Sussig Sussig Sussig Sussig Sussig Sussig Sussig Sussig Sussig Sussig Sussig Sussig Sussign Sus Sussig Sus Sus Sus Sus Sus Sus Sus Sus Sus Sus		6,0	C500 5,4-60,400	C500 5.4-60400	C500 5,4-60 400	C500 <u>5.4-60</u> 400
	оха'гон Эхнай	35	6,6	C500 6,0-60400	C500 6.0-60 400	C500 6.0-60400	C500 6.0-60 400
	000		7.2	C500 6.6.60400	C 500 6.6-60 400	C600 6.6-60400	6600 6.6-60400
	5.54		8.4	C500 78-60 400	C500 7:8-60400	C600 7.8-60400	C600 7.8-60 400
	npodons no 4		6,0	C500 5,4-60400	C500 5.4-60400	C600 5.4-60400	C600 5,4-60400
	38	55	6,6	C500 5.0-60400	C500 6.0-60400	C600 6.0-60 400	C600 6.0-60 400
	37		7.2	C500 8.6-60 400	C500 6.6-60 400	C600 6,6-60400	C600 6.6-60400
	200		8,4	C 600 7.8-60 400	C600 7.8-60 400	C600 7.8-60 400	C600 7.8-60 400

Tocerpou' CCCP TODENTHAN' UNCTUTATA)

	Haume- Hobahue	809	Paccion Nue om		Mapi	ru cmoe			
нагруз-	pamyp-					Температурные	1 810K 48 M	Температурны	Ú 810K 60M
KO HO NOTOHHUM MEMP TC/M	HOFO	Krc/M²	NACHUPO- BOYHOÙ OTMET KU 3 EMAU M	Промежуточна опора	опора	Промежуточная олора	опора	Промежуточная опора	0110,00
	20		6.0	C 500 6.0-60	C500 6,0-60 K1 400	C500 6,0-60	C500 6.0-60 400	C 500 6,0 - 60	C 500 6,0 - 60
	темпера рузко 2	35	6.6	C 500 6,6-60	C500 6,6-60 K2 400	C 500 6,6-60 400	C500 6,6-60 400	C500 6,6-60 400	C500 6,5-60 400
	biti memne s Kaspyska	-		C500 7,2-60 400	C500 7,2-60 400	C500 7,2-60 400	C500 7,2-60 400	C 500 7,2-60 400	0500 7.2-60 400
Iκ	19/0/		8.4	C500 8,4-60 400	C500 8.4-60 400	C 500 8,4-60	C500 8,4-60 400	C 500 8,4-60 400	C500 8,4-60 400
g=1.0 TC/M	Проме Жуточный турный блок Продольния на		6.0	C 500 6.0-60	C500 6,0-60 400	C500 6.0-60 153 400	C500 6,0-60 K2	C500 6.0-60 400	C500 6,0-60 400
/ C / M	16 X 6X	55	6,5	C500 6,6 - 60 154 400	C500 46-60	C 500 6.0 - 6.0 400	C500 6,6-60	C500 6,6-60 400	C 500 6,6-60
	Промежуточ) турный бли (продольния		7,2	C 500 7,2-60	C500 7,2-60 40	C500 7.2-60	C500 7.2-60 KY	C500 7,2-60	C 500 7,2-60 53 400
<u> </u>	+		8.4	C 600 8,4-60 400	C 600 8,4-00 400	C600 8,4-60	C600 8,4-60,400	C600 8,4-60	C600 8,4-60,400
	repamypyelú 6yda Harpya-		6.0	C500 6,0-60	C500 6,0-60	C 500 6.0 - 60	C 500 6,0-60	0 C 500 6,0-60	C500 6,0-60 400
	HOL	35	6, 6	C500 6,6-60	C500 6,6-60	C 500 6,6-60	C500 6,6-60	C 500 66-60	C500 5,6-60 40
, m	100		7,2	C500 7,2.60	C500 7,2-60	C 500 7.2-60 40	C 500 7,2-60 40	C500 7,2-60 400	C 500 7.2-60
II A	17. P. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10		8,4	C500 4,4-60	C500 8.4-60 400	C 500 8,4-60	0 0500 8,4-60	0 C500 8,4-60 400	C500 8,4-60
9 = 1,0	Sou memnepam (npodonbyda ,		6.0	C500 6,0-50	C500 6.0-60 40	0 C500 6.0-60	0 0500 6.0 - 60 63 40	0 0500 6,0-60 40	C500 6.0-60 400
rc/m	80Ú)	55	6.6	C500 5,6-60	C 500 6.6- 60 40	0 0500 6,6-80	C 500 6,6-60	0 C 500 6,6-60 400	C500 6,6-60,400
	1 6		7,2	C 500 7.2-60 400	C500 7.2-60 40	0 C500 7,2-60 55 40	0 C500 7,2-60	0 C500 7.2-60 40	0 0500 -7,2-60 40
	FON4 DIOF		8.4	C500 KY 100	C800 8,4-60	0 C600 8,4-60	C50G 8.4-6040	00 C600 8,4-60 40	C600 84-60 400

Проективый инститУТ А.4.

ТК Таблица для подбора стоек промежуточных и концевых температурных блоков одноярусных эстакав типа тк - Шаг опор 12 м 16130 46

Паблица для подбора стоек промежуточных 3.045-2/79 и концевых температурных блоков однолрусных выпуск лист зстакад типа III к . War onop 12 м

ToccmpauCCCP Hay.ombe.ap Noekmibul uncruryTAN Ays. Equinol 1. Now 11990d Conumber

Ленинград

PUHKENEUTE

Janana

3

Ислоинитель

Гершанок Яршавский Финкельштей

	TUN	n. HnRN-	BETPO BOS	Paccion-			Марки	I CMOEK				77
3 ! [del U Harps	TEMAR	NCIP- DY3KG	BEPOXIX BETTIKOOB BO PNOMU-	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	DIÚ BADK 36M	Температурн	DILL BAOK 54 M	Температурна	HÚ BAOK 72 M	Температурные	8ADKU 36÷72M
	NAT HOLD POPULATE PROPERTY TO METER	DIOKO		OTMETKU	Пром е жьточ— ная апара	Концевая опора	Промежуточ- ная опора	Канцевая опора	Прамежуточ- кая апо ра		गिवलाट्सप्राच्यास्त्रत्रः विववादाः है लाट्टाच्यः विवादिक्षास्त्राः वार्वविवेषः गुष्पर्ववत्तावृत्तराविवेषः	Konyelian angaa 8 meerax nanepey Noix arliodoli Taylionpolodol
	7-			6.0	C500 <u>6.0-60</u> 400	C500 6.0-60 400	C500 6.0-60 400	C500 6.0-60 400	C500 6.0-60 400	C500 <u>6.0-60</u> 400	C600 <u>6.0-60</u> 400	C 600 6.0-60 400
	A. Jobby	200	35	6.6	C500 <u>6.6-60</u> 400	C500 6.6-60 400	C 500 6.6-60 400	C500 6.6-60 400	C500 6.6-60 400	C500 <u>6.6-60</u> 400	C600 <u>6.6-60</u> 400	C600 <u>6.6-60</u> 400
	#	pars	33	7.2	C600 <u>7.2-60</u> 400	C600 7.2-60 400	C600 7.2-60 400	C600 <u>7.2-60</u> 400	C600 7.2-60 400	C600 <u>7.2-60</u> 400	C600 7.2-60 400	C600 <u>7.2-60</u> 400
	Im	Ipomekstovnosi temnepotspovsi Grodovonos morposska 29)		8.4	C500 <u>8.4-60</u> 400	C600 <u>8,4-60</u> 400	C600 <u>8.4-60</u> 400	C600 <u>8,4-60</u> 400	C600 8.4-60 400	C600 8.4-60 400	C600 8.4-70 400	C 500 84-50 400
	200	SE SE SE SE SE SE SE SE SE SE SE SE SE S		6.0	C500 <u>6.0-60</u> 500	C500 6.0-60 500	C500 6.0-60 K5 400	C500 6.0-61 400	C500 6.0-60 400	C500 6.0-60 400	C600 6.0-60 500	C 500 6.0-60 400
		TOHOL	55	6.6	C500	C500 6.6-60 500	C500 6.6-10 400	C500 6.6-60 400	C500 6.6-70 400	C500 6.5-60 400	C600 6.6-60 400	C600 6.5-60 400
מעמק		neks nodo,		7.2	C600 <u>7.2-60</u> 500	C600 <u>7.2-60</u> 400	C600 1.2-60 400	C600 <u>7.2-60</u> 400	C600 <u>7.2-60</u> 400	C600 7.2-60 400	C600 7.2-70 400	C600
Sound Sound Simmen	III K			8.4	C 600 8.4-60 400	C600 <u>8,4-60</u> 400	G600 <u>8.4-60</u> 400	C600 <u>8.4-60</u> 400	C600 8.4-60 400	C600 8.4-60 400	C700 8.4-70 400	C600 8.4-60 400
100	9=1.0 TC/M			6.0	C500 <u>6.0-60</u> 400	C500 <u>6.0-60</u> 400	C500 <u>6.0-60</u> 400	C500 6.0-50 400	C500 6.0-60 400	C500 6.0-60 400	C600 6.0-60 400	C600 60-60 400
'h'.	17"	2 40	35	6.6	C500 -6.6-50 400	C500 6.6-60 400	C500 6.0-60 400	C500 6.6-60 400	C500 6.5-60 400	C500 6.6-60 400	C600 6.5-60 400	C600 6.6-60 400
		10/82	55	7.2	C600 7.2-60 400	C600 7.2-60 400	C600 7.2-60 400	C600 72-60 400	C600 7.2-60 400	C600 72-60 400	C600 7.2-60 400	CEOO 7.2-50 400
2 20	1	Temnegatsphaid Grak ias narpsska		8,4	C600 <u>8.4-60</u> 400	C600 <u>8.4-60</u> 400	C600 <u>8,4-60</u> 400	C600 8.4-60 400	C600 84-60 400	C600 84-60 400	C600 8.4-70 500	C600 8.4-60 400
insul MKC1		12 S		6.0	C 500 6.0-70 500	C500 6.0-60 500	C500 60-60 500	C500 6.0-60 500	C500 <u>6.0-50</u> 400	C500 <u>6.0-60</u> 400	C600 <u>6.0-60</u> 601	C600 <u>6,0-60</u> 400
On KOKETO O DYK TOSYAN OT, LINKEN		1 2	55	6,6	C500 <u>8.6-70</u> 500	C500 6.6-60 500	C500 6.6-10 400	C500 <u>8.6-60</u> 400	C500 6.6-70 400	C500 6.6-60 400	C600 6.6-60 400	C600 6.6-50 400
77.		Концевой (продоль	-	7.2	C500 1.2-60 500	C500 7.2-50 400	C800 1.2-00 400	C600 12-60 400	C500 1.2-60 400	C600 12-60 400	C600 1.2-10 400	C600 K5 400
, TET.		\$ 6		8.4	C690 <u>8.4-60</u> 400	C600 <u>8.4-50</u> 400	C500 0.4-00 400	C600 <u>8,4-60</u> 400	C600 84-60 500	C600 8.4-50 400	C700 8,4-70 400	C600 84-50 400
ный инсти. Леминград					Примечан	The same	777					
IPORKTHINÍ LIKCTUTITAL, R. Jenumpað		MOHT CMOT				7KQA TUNQ 16.	K	KOHL	UEODIX TEMMEN	Бора стоек п стурных блоков Шк. Шсп опи	OOKORPSCHOIX	3,015-2/77 Bunser Auct I 33
										16130	48	

SETRO-PROCESS MODE SETRO-PROCESS MODE SETRO-PROCESS MODE NOTOUS - PROCESS MODE NOTOUS -		
KO KO HOTO KO DETENDED TEMPLEDOTSPHOLI GUAK 36 M /	EMREPOTYPHBILI BIOK 48 M	Температурный блок 60м
PRETA BROKA COMPRESSION NOT CONTROL OF CONTR	विवास स्थापना । विवास स्थापना ।	Промежуточная Канцевая ano pa
ATGM2 SEMMU		
6.0 C600 5.4-60 400 C600 5.4-60 400 C		
6.0 C600 72 400 C600 54 400 C6		
7.2 C500 6.6-60 400 C600 6.6-60 400 C		
0.4 6000 - 1. 400 6600 - 13 400 6		
6.0 C600 54-60 400 C600 60-60 60-60 400 C600 60-60 60-60 400 C600 60-60 60-60 60-60 60 60-60 60 60-60 60 60-60 60 60-60 60 60-60 60 60-60 60 60-60 60 60-60 60 60 60 60 60 60 60 60 60 60 60 60 6		
55 6.6 C600 60-60 400 C600 60-60 400 C		1 C600 6.0-60 400 C600 6.0-60 400
7.2 C600 66-60 400 C600 66-60 400 C		
7.2 C500 \(\frac{\tilde{66}}{\tilde{67}}\) 400 \(\chi \chi \tilde{66}\) \(\frac{60}{\tilde{78}}\) 400 \(\chi \chi \tilde{78}\) 400 \(\chi \tilde{66}\) \(\frac{60}{\tilde{78}}\) 400 \(\chi \tilde{66}\) \(\frac{60}{\tilde{78}}\) 400 \(\chi \tilde{66}\) \(\frac{60}{\tilde{78}}\) \(\frac{78-60}{\tilde{78}}\) 400 \(\chi \tilde{66}\) \(\frac{78-60}{\tilde{78}}\) 400 \(\chi \tilde{78}\) \(\frac{78-60}{\tilde{78}}\) 400 \(\chi \tilde{78}\) \(\frac{78-60}{\tilde{78}}\) 400 \(\chi \tilde{78}\) \(\frac{78-60}{\tilde{78}}\) 400 \(\chi \tilde{78}\) 400		
7C/m 6.0 C600 5.4-60 400 C600 5.4-60 400 C		0 C500 <u>5.4-60</u> 400 C500 <u>5.4-60</u> 400
67-67.		
		00 C600 <u>K3</u> 400 C600 <u>K3</u> 400
		1 C600 7.8-60 400 C600 7.8-60 400
6.0 C600 5.4-50 400 C600 5.4-50 400 C		00 C 600 5.4-60 400 C 600 5.4-60 400
77 77 79 79		0 C500 6.6-60 400 C500 6.5-60 400
8.4 C600 78-50 400 C600 7.8-50 400 C	C600 - 1.8-60 400 C600 - 1.8-60 40	0 C600 18-60 400 C500 18-60 400
in the second se		
Примечание		
S CHOMPUME HO JUCHOK 12,13.	ТК Таблица для падбара концедых температу 1977 эстакая типаб Тх	а стоек промежутачных и з оных блохов аднаярусных ; Тж. Шаг опор 12 м

	TK	Ταδπιμα	ann nac	Пора сп	noek npo	межу тачны однаярусны опор 12 м	x 4
		KOHYEBBIX	темпера	TITISPHOIX	BAOKOB	аднаярускь.	a
i	1977	эстакад	munab	' ZVx; T×x	· Mar	ONOP 12M	

3.015-2/77 Boinsek Auem I 34

	Hayme- Hobanue	Bempa- Basi	PACCETON- HUE OT		Марки	стоек			
Abi U KAPPYSKA KA	MEMNE- DOMUP-	нагруз- ка	विद्युष्ट्रात्त्व अदुरस्यात्त्वत्तरः	Температурных	ύ δποκ 72 M	Температурные	<i>блоки 36÷72</i> м		
Ha Tarannoid Memp TC/M		KPC/M ²	OU INICIALI- OUBOYKOÚ OMMEMKU	ПООМЕЖИТОЧНОЯ	КОНЦЕВОЯ ОПОРО	ViaheneyHolx am-	Konyetan nopa Trecnax nopa mosbinpo- nogos nogos		
	OFE .		6.0	C 500 5.4-60 400	C 500 5.4-60 400	C600 5.4-60 400	C600 <u>5.4-60</u> 400		
	Termeporgu tonas 29)	35	6.6			C600 <u>5.0-60</u> 500			
	osnaví Terne Inpodononos Poyska 29)		7.2	C600 6.6-60 400	C600 <u>6.5-60</u> 400	C600 65-70 400	C600 <u>85-70</u> 400		
	's &		8.4	7.0		C700 <u>84-50</u> 400			
	ymosinai rk (apodi rarpyska		6,0			C600 5.4-50 400			
	EKYM Suok (HO!)	55	55	55	6,6			C600 <u>6.0-70</u> 400	
WF -7	200		7.2			C700 6.5-60 400			
Тж; Іж	1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		8.4	C600 7.8-68 400	C600 7.8-60 K4 400	C 700 7.8-70 400	C700 <u>7.8-70</u> 40		
q=1,5;q=2. TC/M			6.0	C500 5.4-60 400	C500 <u>5.4-60</u> 40	0 C600 <u>5.4-60</u> 400	C600 <u>5.4-60</u> 40		
,	marí HORDYS	35	6.6	C500 6.0-50 400	C500 6.0-60 400	C 600 6.0-60 500	C600 60-60 50		
	18 ~ ~		7.2			0 C600 6.5-70 400			
	SONO PACS PACS	<u> </u>	8,4			0 C 700 <u>8.4-70</u> 400	710		
	u remneporg npodonówies kg 4 g,		6.0			0 C609 <u>5.4-60</u> 400			
	2011	55	6.6			0 C600 6.0-78 400			
	nox ()		7.2			00 C700 <u>6.6-60</u> 400	1		
	En gr		8,4	C600 7.8-60 400	C 600 7.8-60 40	0 6700 7.8-78 400	C700 7.8-70 4		

Примечание

Монтажные смотрите

IPOCKTHOIÚ UIKCTUTSTNÍ

схемы эстакад типов IIж, Iж на листах 12,13. TK 1977

Таблица для подбора стоек промежуточных и концевых температурных блоков одногрусных эстакад типов II ж.; I.ж. . Шаг опор 12 м

3.015-2/77 BURYCH MUCH I 35

1	TUR 30Mak	a- Hayme	Bempu- Basi	Расстоя ние от		Map															
gocynaga.	рузка		HANDY3- KA	верха эстокоды	Температуры	WU BIOK 36M	Температурны	Ú biok 48 m	Температурны	Ú BIOK ÔO M											
1000	ñorakki метр TC/r.	SIOKO	KPC/M²	l M	Npamexstornes anopa	() १०४५ १९४५ १९४० १९४० १९४०	Промежуточная Опора	Концевая Опора	Примежитичная инира	Konyesias nnopa											
7005		dhe		6.0	C600 <u>6.0-60</u> 400	C 600 6.0-60 400	C 500 6.0-60 K 2 400	C600 6.0-60 400	C 500 6.0-60	C 500 6.0-60 40											
17.7		oden (8	35	6.6	C600 6.6-60 400	C600 6,6-60 400	C600 6.6-60 400	CEON 6.6-60 400	C 500 66-60 Lon	CERR 6.5-60 In											
pageous				7.2	C600 1.2-60 400	C600 7.2-60 400	C600 7.2-60 400	C600 7.2-60 400	C600 7.2-60 400	C600 7.2-60 40											
Second		Thoressmornau men How Suor (Apodonanos How Suor (Apodonanos		8.4	C600 0.4-00 400	C600 0,4-60 400	C600 8.4-60 400	C600 8.4-60 400	CEN 8.4-60 LING	CERR 8.4-60 /10											
1		11100	1	6.0	C600 0 K2 400	C600 60-60 400	C600 - 6.0-60 400	C600 6.0-60 400	C600 60-60 400	C600 6.0-60 40											
A REST		WS/W	55	6.6	C800 80 400	C600 0.0-00 400	CBDO 8.6-60 400	C600 <u>88-60</u> 400	C600 <u>6.6-61</u> 400	C600 <u>6,6-60</u> 40											
MCC10	$I\!\!V_{\kappa},I$	i and		7.2	C500 12 400	C600 1.2-00 400	C600 7.2-60 400	C600 7.2-60 400	C600 7.2-60 400	C600 72-60 400											
000	q=1,: q=2,	£ 10 5		8.4	CENT 5.75 400	C600 - K4 400	C 600 8.4-60 400	C600 84-60 400	C 600 8.4-60 400	C600 <u>84-60</u> 4											
	9=2,			6.0	C600 K3 400	C600 - K2 400	C600 60-60 400	C600 6 1-60 400	C500 6.0-60 400	C500 6.0-60 4											
	TC//	1 NOS:	35	6.6	0000 12-60 L	C600 - K3 400	C600 6.6-60 400	C600 400	C500 80-00 400	C500 05-60 40											
38		m00 tuon		7.2	0000 - Ky 400	8.4-60 has	C600 7.2-60 400	C600 12-00 400	C600 1.2-00 400	C600 1.2-60 40											
WC9/III		темперотурный таная нагрузка	-	6.0	0000 K5 400	COOU KY 400	C600 <u>8,4-60</u> 400 K5 400 C600 <u>6,0-60</u> 400	C600 - K4 400	C600 6,4 00 400	C600 6,4-00 4											
1 5 7 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5		and a		6.6	CBOO K3 400	CEOR 6.6-68 In	C600 - K3 400	C600 - K2 400	0.600 13 400	C 600 43 40											
21212		inge.	55	55	55	55	55	55	70 55 S	notion 55	Sanyellari Saox(11,009	35 55 55 55 55 55 55 55 55 55 55 55 55 5) 55 S) 55 S	7.2	CENT 7.2-60 400	CEDO 7.2-60 UN	C600 72-60 400	CENA 72-60 In	C600 K4 400	C600 40 40
1131		Konu		8.4	C600 8.4-60 400	C600 8.4-60 400	C600 <u>8,4-60</u> 400	CEAN 8.4-50/10	CEAR 8.4-50 400	CENT 84-60 1											
ни́ инститя Генинград	L			Ь	10 10	7.0	X3 400	10000 Ry 400	75 400	X4 40											

Монтажное схемы эстакод типов IIx, Ix стотрите на листе 16.

TK Tabuya In naddopa craex pamewsmovnou u konyelou memnepamsproux Inakol agnanpschou schakal mund Ik. Ik. Ilar anga 12 m

Примечание

PUNKENBUITTEÜN

CITI. UNKENCO

Монтажные схеты эстакад типов II_K , I_K стотрите на листе 16.

TK Tabnuya din nodtopa cmoek npameksmosnok u kuyetok memepamspokk tiakat adkapsicnok schakat adkapsicnok schakat mund \mathbb{I}_{K} ; \mathbb{I}_{K} . War onep 12m.

													52
	2	TUN	HOUME- HOBOHUE	82M-	Paceton-			Map	TKU CMO	rek			
	200	01 4 017943	TEMNE- DOTYD-	W/7/7	<i>छेरुवारव</i> उट्यवस्वरह	Температурн	DIL BAOK 36 M	Температурны	14 BAOK 54 M	Температурны	NÚ BAOK 72M	Температурные	BADKU 36 72.4
/anuna	Ž n		nořá Broka	KPC/nZ	do nnonu- pobovnoù ormetku semuu m	Промежуточ- ная опора	Канцевая апара	Промежуточ- ная опора		Прамежуточ- ная опора		Naameeestashaa angga 8 meerax nanegestash Tossanaabadab	Kanuehay anna
	1214))		6.0	C 600 6.0-60 600	C600 <u>6.0-60</u> 600	C600 <u>6.0-60</u> 500	C600 <u>6.0-60</u> 400	C600 6.0-60 400	C600 6.0-60 400	C700 6.0-60 500	C700 6.0-60 400
	500		39110 29)		6,6	C600 <u>6,6-60</u> 400	C600 <u>6.6-60</u> 400	C600 65-60 400	C600 6.6-60 400	5600 6.6-60 400	C600 6.6-60 400	C700 6.6-60 500	C700 6.6-60 400
8	F.		чперотярныю хэха 29)	35		/17		1	C600 72-60 400		,	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Кпанкстень	M								C 700 8,4-50 400				
1000	page		200%					<u> </u>	C600 <u>6.0-60</u> 400		/17	1 10	1
1 1 3			Apamenstrynaus 700 Anon (Apadasahon Hon,	55				7.0	CSUO <u>6.6-60</u> 400	7.0		710	1 //0 1
PUNGGAET Cepwonak Spwodenu	ZV	Tx, Tx	men.						C600 7.2-60 400			1	1
Sumo Power		7=1.5	B B						c700 <u>8,4-60</u> 400			1	1 '' 1
12		7=20 C/M	2						C600 6.0-60 400				
313	1 7	C/M	17/10	35					C600 <u>6.6-60</u> 400			1	1
3734	4		Amegatspholis Amok Harosska 4			., 0			C 600 7.2-60 400		,,,	1 117	1 "V !
2000		1	00 ¥ 00 00 00 00 00 00 00 00 00 00 00 00						C700 <u>8.4-50</u> 400			710	
OHCO			5 8 E						C500 <u>6.0-60</u> 400				
\$ 2000		ŀ	SO PA	55					C600 <u>6.6-60</u> 400				
7w1			Tarrega Tipogono				***		C600 7.2-60 400				
ú cccp UNETUTSTAL	2		\$ B		8.4	C600 47 500	C600 0.4-00 500	C700 0.4-01 500	C 700 8,4-60 500	C700 8.4-04 500	C700 8.4-60 400	C890 8.4-80 500	C800 8.4-60 400
racerpaú C.	Лежинграф		Мон	TOKK		NOUMEYANI CXEMBI ЭСТ	<u>IC</u> TAKAD TUND	B IIK. IK					
roccipo.	"			TPUT			16	·, ·	400	ix remnepatyp	OG CTOEK ITPOM THUK THUKOB OF K.T.K. WAL ONO,	CHORDYCHUX	80H 3.015-2/77 Bunyck/luct I 38
												6130 53	

		-									
D D		Mun Scrakado			Paccion-			Mapru	стоек		
04,6		NOTOY3KO HO	HUE TEMME-	нагруз-	верха эстакады до планч	<i>Пемпературі</i>	ybiý ánok 36 m	Пемпературн	614 810K 48M	Пемпературн	UNU BAOF 60M
CopyHoba	ł	логонный метр тс/м	paryp- horo Gnora	KIC/M ²	no Pouvai	Промежуточная опора		Промежуточная опорф	_	Промежуточная олора	Концевая опора
000	}		(1		6.0	C 500 6.0-60 400	C500 6,0-60 KI 400	C 500 6,0 - 60	C500 6.0-60	C500 6,0-60	C500 6,0-60 400
3			70	35	6,6	C500 6,6-60 400	C500 6,6-60 400	C 500 6,6-60	C 500 6,6-60	C500 6,6-60 400	0.500 6.6-60 VNO
+++	1		3000	~	7.2		C500 7,2-60 400	C500 7,2-60 400	C 500 7,2-60 400	C500 72-60 UND	c 500 72-60 unn
<i>(170)</i>			1 3 S		8.4	C 500 8,4-60 55 500	C500 8.4-60 400	C500 8.4-60 500	C500 8,4-60,400	C.500 8.4-60 von	C 500 8,4-80 400
Toolean			Проме жуточный температурный длак (продольная нагрузка 2		6.0		C500 6.0 - 60 400	C500 6.0-60 you	C500 6.0 - 60	0500 6.0-60 UOD	C500 6.0 - 60 1100
23.00	1		Pour Provi	55	8.6	C 500 6.6-60	C500 6.6-60 53	C 500 6.6-60 500	C500 6.6-60 400	C500 K3 400	C 500 K2 400
TBCK TBCK		VIX; VIIX	nome mne		7. 2	C 500 7.2-60 500	C 500 7.2-60 500	C 500 7.2-60 40C	C 500 7,2-60 500	C 500 7.2-60 500	C500 7,2-60 500
Гершанок Аршавский Финкельштейн		Q = 2.0	2/0/10		8.4	C 600 8,4-60	C600 8,4-60 400	C 600 8.4-60 400	C 600 8,4-60 400	C 600 8,4-60 400	C 600 8.4-60 400
4	1	9=3.0	2 6		6.0	C 500 K3 400	C 500 6,0-0 400	C500 6.0-60 400	C500 -60 400	C500 5.0 - 60 400	C500 5.5-60 400
1 3/6/2		TC/M	memmepamyphbiu Gnok vas narpyska49	35	6.6	C500 6,6-60	C500 6,6-60	C 500 6,6-60	C500 6.6-60 400	C500 6,6-60 400	C 500 6,6 - 60 400
* The	<u> </u>	}	Ser Se		7.2	C500 1,2-80 500	C 500 7,2-00 500	C 500 7.2-60 500	C500 7,2-60	C500 7,2-60	C5007,2-60 400
Л. КОНСТО Рук. группы Ст. инженер			10 × 0		8.4	C600 8,4-60	C 600 8.4-60	C600 8.4-60	C600 8.4-60 400	C500 84-60	C500 8.4-60 400
SPU CHANGE		1	Концевоύ темпер Влок (поодольная на		6.0	C 500 6.0 - 60	C500 6.0-60 400	C 500 6.0-60	C 500 6.0-60	C 500 6.0-60	C500 6.0-60 400
7 7 W			200,	55	6.6	C500 6,6-60	C500 66-60	C 500 6,6-60	C500 6,6-60	C500 6.6 - 60 40	C 500 5.6-60 400
			Конце воύ (продоль		7.2	C500 7,2-60 500	C500 1,2-00 500	C500 7.2-60 500	C500 7,2-60	0 C500 7.2-6050	0.500 7.2-60 500
uīg) ro		L	100	:	8.4	C600 8,4-60	C 600 8,4-60 400	C600 8.4-60400	C600 8.4-60 40	C690 8,4-60	C600 8,4-60 400
Проектный институт н. Н г. Сенинграб											1 79 1
eru. Jeru					pumey	anue					
erth P.C.		M	онта	XC H 618	cxem	o semakad	TUTOBYIM, VIIM	TK MODAUL	O DAR MODEO DE	TUDHUX AACKO	жуточных в одноярусных ппор 12 м
od/		C/A	טסקדת סוד	1118 1	O JU	emax 14, 15.		1977 3craka	वे गाणावर्षे 🎞 🔭,	Тж. Шаг С	DODO 12 M

3.015 - 2 77

MUT CTAKABU	Начме- нование	Bempo- Bas	Расстоя- ние		MOPKU	CMOEK				
U	темпера-	нагруз-	००० ६ ६ ५ ५ ५ ५ ५ ५ ६ ६ ६ ६ ६ ६ ६ ६ ६ ६	Пемпературн	614 810K 72 M	Петпературные с	\$10KU 36M÷72 M			
HARPYSKA HA NOTOHHBIŪ MEMIP TC/M	droka		go Thanu- pobovnoù prm. 3emiu M	олора	Понцевая опора	100	Понцевая опора в местах поперец			
	.,		6.0		C500 <u>6.0 - 60</u> 400		C500 5.0 - 60 400			
	29	35	6.6	C500 6,6-60 400	C500 <u>6,6 - 60</u> 400	C600 6.6-60 400	C600 6,6-60 400			
	5101		7.2	c500 <u>7,2-60</u> 400	C500 72-60 400	C600 7.2-60 400	C600 7,2-60 400			
	6/0's 5/0's		8.4	C500 <u>8,4-6</u> 0 400 K5	C500 8,4-60 400	C600 8,4-60400	C600 8,4-60 400			
	Промежуточный температурный блок (продальнаянагоузка :	<i>55</i>	6.0	C 500 6.0-60 400	C500 6,0-60 400	C600 6,0-60 400	C600 6,0 - 60 400			
<u>VI</u> *, <u>VI</u> *			55	55	55	6.6	C500 6,6-60 400	C500 6,6-60 400	C600 6,6-60 400	C 600 6,6-60 400
									7.2	
g=2,07c/M			8.4			C 600 8,4-70 400				
g=3,0 ic / _M	ногруз-		6.0			C 500 6,0-60 400				
	120H 119H 0	35	6.6			C6006,6-60 400				
	22.8	"	7,2	C500 72-60 400	C500 7,2-60 400	C60072-60 400	C600 7.2-60 400			
	й температу, Ородольная Ка 49)		8.4	C500 <u>8,4-60</u> 400	e500 8,4-60,400	C600 8,4-60 400	0600 84-60 400			
	emi ogo Ka		6.0	c500 6,0-60 400	C500 <mark>5,0-60</mark> 400	C600 6.0 - 60 400	C600 6,0-60400			
		55	6.6	C500 K5 400	C500 5,8-50 400	C600 <u>6,6-60</u> 400	c600 <u>6,6-60</u> 400			
	Konyeboú Ónok (A		7.2	C500 ^{7,2-60} 500		C600 72-60 400	,,,			
	Son		8.4	C 600 8.4-60 400	C600 8,4-60 400	C600 8,4-70 400	C 600 8.4-70 400			

Примечание

MONTOMHELE CXEMES SCIENCE TUROS VIX, VII WE CMOMPLUME HO AUCHOX 14, 15.

Троективій институт н Toccrpod CCCP

г. Овнинград

ТК Таблица для поддора стоек промежуточных и концевых температурных блоков одноярусных эстокад гипов Уж, Жж. Шаг опор 12м 3.015 - 2/77 Bunyes Auem

TTIS	TUN ƏCYAKADI	House.	Berpo-	Paccion. Hue om		M	OPKU CI	noek		
l ga	и нагруз-	нование	608	อ์ยองต อยากเทลิง	Температурн	WILL BAOK 36M	Темперотурны	NU BAOK 48M	Температурный блок ва	
	Memp	темпера Мурнага Влока		до прани- ровочной отметки Земли	Промежуточ- НСІЯ Впара	Канцевая апара	Промежу- почная попро	Концевая Опара	Прамежутач- ная апара	Концевая Опора
A. Top E 114 of	TC/M	-500-	///	6.0	C500 Kg 500	C500 <u>6.0-60</u> C500 <u>K2</u> 400	C500 6.0-60 K2 500	C500 6.0-60	C500 6,0-60 400	C500 <u>6.0-60</u> 400
A.50		15	35	6.6	C500 6.6-60 500	C500 5,6-60 500	C500 6,0-60 500	C500 6,6-60 500	C500 6,6-60 400	C500 E,6-60 400
popeoun	ļ	mem 43 Ki	33	7.2	7.2-60	2500 7.2-60 500	CERR 7.2:50 500	C.500 7.2-60 500	0500 400 400	C500 -12-00 400
lpub epun		Промежуточный темпера турный блак продольная нагрузка 2 g.		8.4	C600 8.4-60 500	C 600 8.4-60 500	C600 8,4-60 500	C600 8.4-60 500	C500 8.4 -00 500	C500 45 500
adj		1000		6,0	CSON 6.4-60 500	C500 6.0 -60 500	C500 6.0-60 500	C500 6.0-60 500	C500 5.4-00 500	C500 6.0-00 500
WIND WAR		1000	55	6.6	C500 6,6-61 500	C500 6.6-60 K4 500	C500 6.6-60 500	C500 6.6-60 X4 500	C500 85 500	C500 K5 50
a magn	7007	оомежу Стородой Ородой		7.2	C500 7.2-60 K5 500	C500 72-60 K4 500	C500 7.2-60 500	C500 7.2-60 84 500	C500 12-00 500	C500 12-60 50
000	WIII OKC	1		8,4	C600 <u>8.4-60</u>	C 600 8.4-60 400	C600 8.4-60	C600 K3 400	C 600 K4 400	C800 0.4-00 40
<u> </u>	9=4.0	1 69		6,0	C500 5.0-60 500	2500 6,0-60 500	C500 5.0-60 K4 500	C500 K3 500	2500 K3 400	7 C500 6.0-00 400
	TC/M	ж к навратурн навража	35	6.6	C500 6.6-60 K5 500	C500 6,6-60 500	2500 <u>8,6-60</u> 500	2500 E R4 500	22-60 - 12-60 .	2500 E 40
E 2 2		idea	33	7.2	C500 15 500	C500 K4 500	C500 72-60 K5 500	C500 12 500	C500 K5 400	C500 K5 40
HCLI BOALL		156	1	8.4	C600 8.4-60 400	C600 84 400	C600 8.4-60 40	C500 - K3 40	6.0-60	C600 K3 40
W. K.				6,0	C500 15 500	C500 K4 50	C500 6.0-60 K5 500	C500 K4 500	C500 K5 500	7 C500 K5 3L
Par		радаленая Бли Виска	55	6,6	C500 K5 500	7.2-60.	C 500 6.6-60 K5 500 C 600 7.2-60 K3 400	7.2-60 ,	1 2500 K5 SU	n CEAN 7.2-60 /
ный иметипуль енингроод	1	Канцевай (прадальн		<i>7.2 8,4</i>	C600 K4 480	C600 K3 40	0 C 600 K3 400 0 C 600 K3 40 0	C600 K3 400	C600 84-60 40	0 C600 84-60 4

<u>Примечание</u>

Мантоженые схемы эстакай типа <u>Т</u>Т ж сматрите на листах 14,15.

TK Таблица для падбора стоек промежсуточных 3.015-и концевых температурных блакав адноярусных выпуск 1977 Эстакод типа Таж. Шае опор 12м

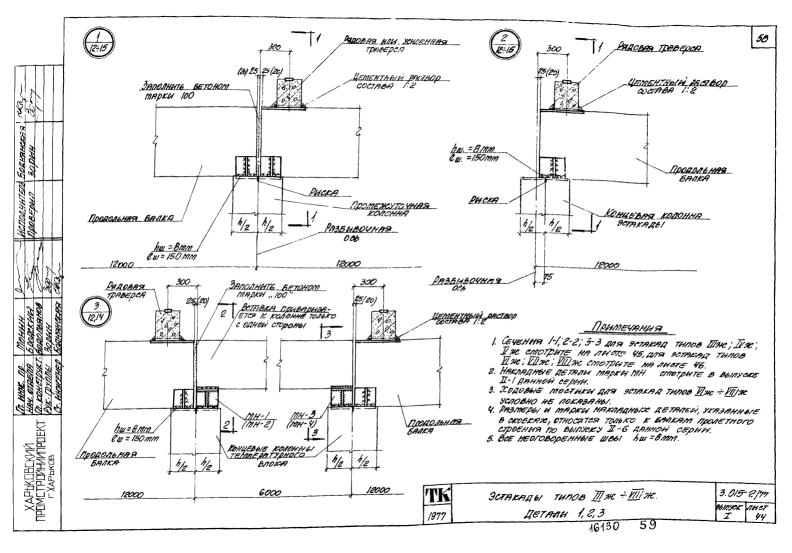
3.045-2/77

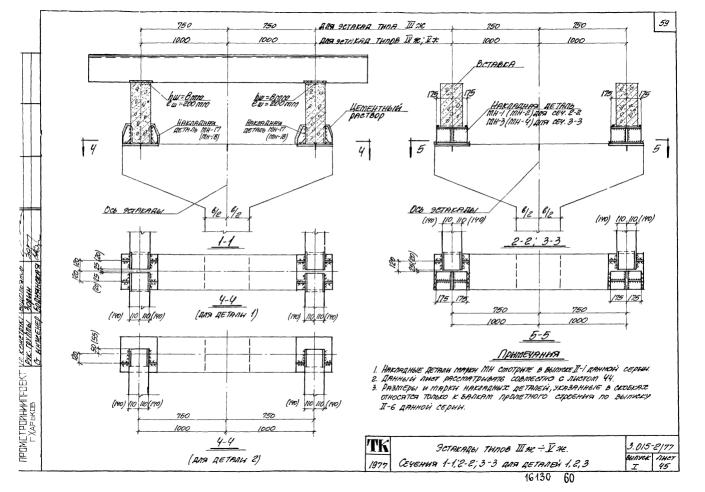
1									
		TUN	Наиме-	Betpo-	Paccion		Mapku	cmoek	
0 2	ſ	U	TEMPEPO	HOIZDY3	ar bepra	Температур	ный блох 72м	Температурные	610KU 36 72M
Лапино Таобянава		HOZPY 3KO HO DOZOHHUÚ MET P TC/M	турного Блока	XU	00 1210HU 10000HU			Tpamexyrauna anapa b mecrax nonepevnoux arba aab, tpybanpoba- aab	Концевая опоро В местах пппе-
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			(8)		6.0	C500 <u>6.0-60</u> 400	C500 6.0 -60 400	C600 6.0-60 400	C600 60-60 400
Jas Synit.			100	<i>3</i> 5	6,6	C500 <u>6.6-60</u> 400	C500 6.6-60 400	C600 5.6-60 400	C600 5.6-60 400
1 %			16.00		7.2	C500-7.2-60 K4 400	C500 7.2-60 K4 400	C600 7.2-60	C600 7.2-60 400
Vaim			почный эный блак нагрузка 2g)		8,4	C500 - \$,4-60 500	C500 8.4-60 500	C600 8.4-60 400	C600 8,4-60 400
Испанитель Проверил			distribution		6,0	C 500 6.0-6 0 500	C500 <u>6,0-60</u> 500	C600 6,0-60 400	C600 6.0-60 K4 400
		VIII ж	ымежуты булдыный бул Эмературный бул Эмериканы	55	6,6	C500 6,6-60 500	C500 6.6-60 500	C600 6.6-60 K5 400	C600 6.6-60 400
ses Cran	1	_	mon More	1	7.2	C500 7.2-60 K5 500	C500 7.2-60 500	C 600 7.2 - 70 400	C600 7.2-70 400
Зиновьев Першанок Яршовский Ринкепытей	دا	Q=4.0TC) M	1100		8,4	C600 8.4-60 400	C600 8.4-60 400	C700 <u>8,4-60</u> 400	C700 8.4-60 400
2000			U19 133-			C500 6.0-60400		CE00 6.0-60 400	C600 6.0-60400
F12	1		dea	35	6,6	C500 6.6-60 400	C500 6.6-60 400	C600 6.6-60400	C600 6,6-60 400
			100		7.2	C500 78-60 400	C500 7.2-60 400	C600 7.2-60	C600 7.2-60 400
1200			र्ववर्ग मल्माह्मवरागुरुम्भर्ग (मृठवर्वेव्यक्तमदङ्ग भवन्द्रपुउन- ४व ५ वू)		8.4	C800 8,4-60 400	C600 8.4-60 400	C600 8.4-60400	C600 8,4-60 400
щ отд. сансто пр с. группы ихженер			ogy XO		6,0	CSOD 6,0-60 500	C500 6,0-60 500 C500 6,6-60 500	C600 6.0 - 60 KS 400	C600 6,0-60 400
Hay omd A Kayctp of Oyk epymy m unween			lai) Mou	55	6.0	C500 6.6-60 500	C\$00 6,6 - 60 500	C600 6.6-69 400	C600 6.6-60 K5 400
HOY Pyr Om u) x	03	7.2	C600			
JW.			Ханцевай. Блак (пра		8,4	C600 8.4-60 400	C600 8.4-60 K5 400	C700 8,4-70 400	C700 8.4-70 400
роύ СССР НЫЙ ИНСТИЛУ Ленинград	L		لـــــا			L		!	
JHI CHA	_	NOUN	1840 H	ue					
1810	тантожные Монтожные	CXEME			וחטות ק	y <u>VIII</u> xc	T.	. 2	
Госстрой СССР Проектный инстити г Ленинград	11/0/1/100101111		DOX 1				TK ГОВЛИЦА 1977 русных	a ang nadbop ebbix memne, gemakad mu	од стоек прок оатурных бло па <u>VIII</u> ж, Щаг о
<u> </u>									16130

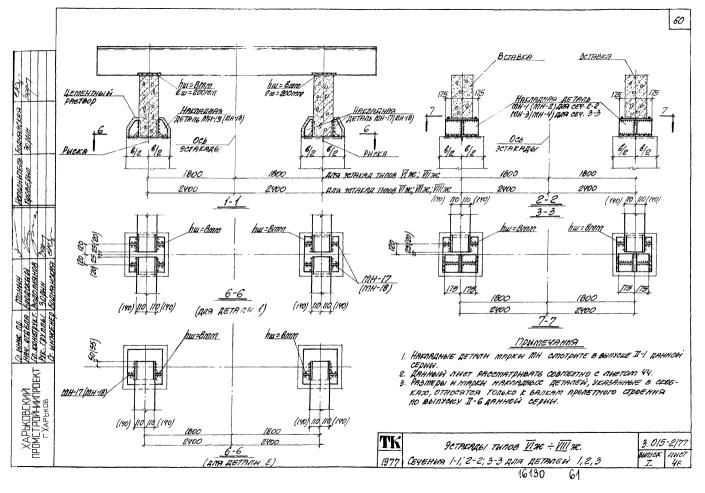
Примечание

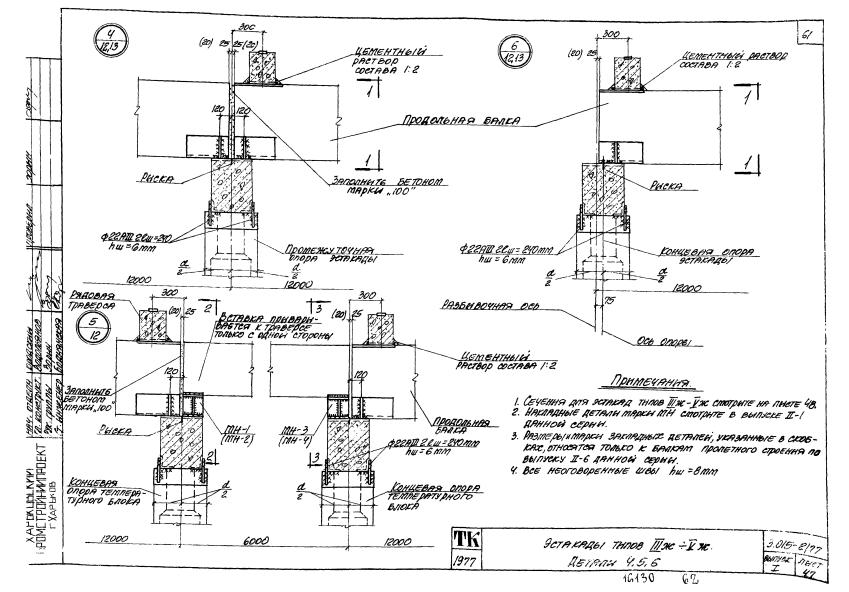
TK Таблица для подбора стоек промежуточных и концебых температурных дляхов одноя-русных эстаков типа тож. Шаг опор 12м	3.015-2/77 Sinuck Aucon I 42
16130 57	

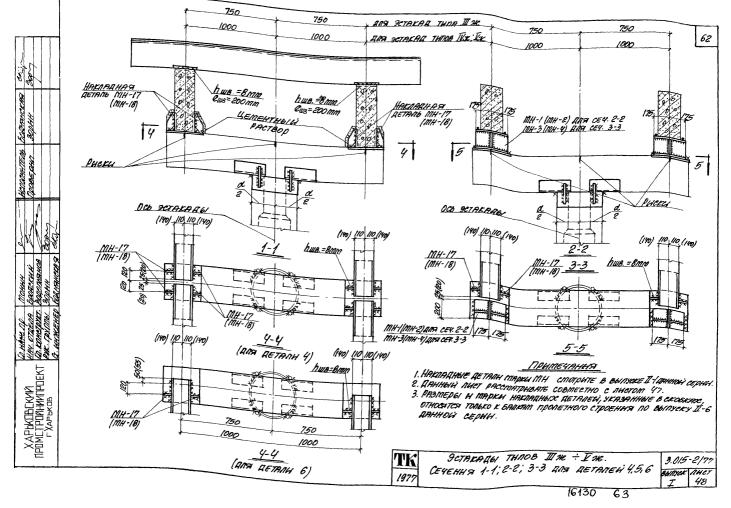
Тип эспакады инаг-	A พมหา เกตกก็ลดร	Was manhear	Марки	Марки траверс, ферм, вставак, гаризонтальных обязеи и консольных балок под Фермы								
рузка на поган - ный метр тс/м	MM	MM	Рядовая траверса в пролете	Рядовая травероа на опоре	Усиленная траверса	Ферма	Вставка	TODUSCHMUAG - HOLC DBR3U 1 ⁵² CXCM61	Консольные балки под Фермы			
IK; 1200	3000	T1	72	T 2	m.	1485	Ni	5K1				
9 = 0,25	1800	6000	T1	TZ	72	401	M81	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
<u> </u>	1200 1800	3000	T1	TZ	TE	Ø2	MBZ	N1	5K2			
<u>a</u> = 0,5	24DD	<i>6000</i>	TZ	72	73	<i>j- </i>	1					

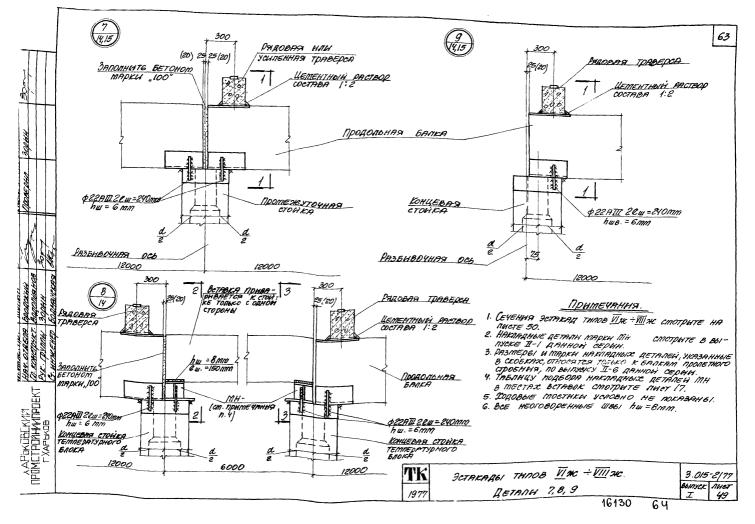

Таблица для подбара ферм гвязей параверс вставак одноярусных эстакад типов $I\kappa \div \overline{Y}\kappa$ и консольных балок под фермы однаярусных эстакад типов $I\kappa \div \overline{Y}\kappa$ (шаг опор 18 м)

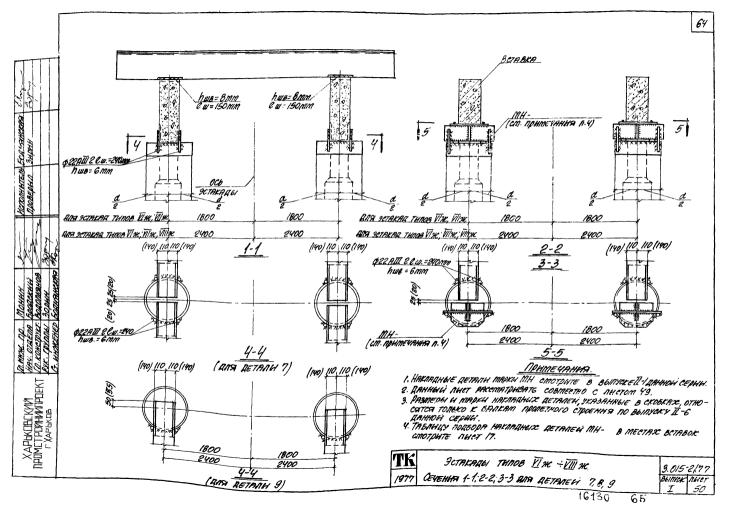

Тип эстакады Нагрузка на	Длина траверс	Шаг траверс	Марки /	កាព្ ធន៍ខ្ ពុច, ជា ស សសន៍	ерм, встава поных бала	ок гориз о но Ок по д Фер	MAINEHAISC C MAI		
пасрузка на Предниви метар То/м	MM	MM	PADOSUA MPOSEPEU B NPOSEME	PROUBUS MDUBEREA HU ONURE	Усиленная тр аверса	Ферма	Вєтавка	Горизонтав Ные связи	Консольные баяки под Фермы
Iκ;	1200 : 1800	3000	T1	TE	TB	Ph	MBI	N.5	6K1
q=0,25	7500: 7600	5000	Τį	TZ	r _Z	ΨΨ	1101	///	0/17
<u> </u>		3000	Τį	TZ	TZ	407	MBR	N5	5KZ
q. = 0,5	1200:1800; 2400	6000	Tβ	TZ	73	47	MOE	710	0/12
<u>∭</u> κ;	7000	3000	72	TZ	73	478	MB3	NB	БКЗ
Q=1.0	3000	500D	73	73	T4	400	7.00	113	5K5
		300D	TE	TR	<i>T3</i>		MB4		
<u> </u>	3 <i>600</i>	8000	T4	74	75	42.9		۸'7	5K4
Q = 1.5		3000	74	T4	75] +3	/1.57	1 '''	5K &
41	4 <i>200</i>	50DD	<i>T6</i>	75	77			<u> </u>	
<u>Ψ̃</u> κ,	1000	30DO	75	75	ТБ	4010	MB5	۸'7	5K4
q = 2.0	4800	6000	T8	78	79	7 "	ឬជ ថិវាភ កេ ចជិស្	1 "	5K 6

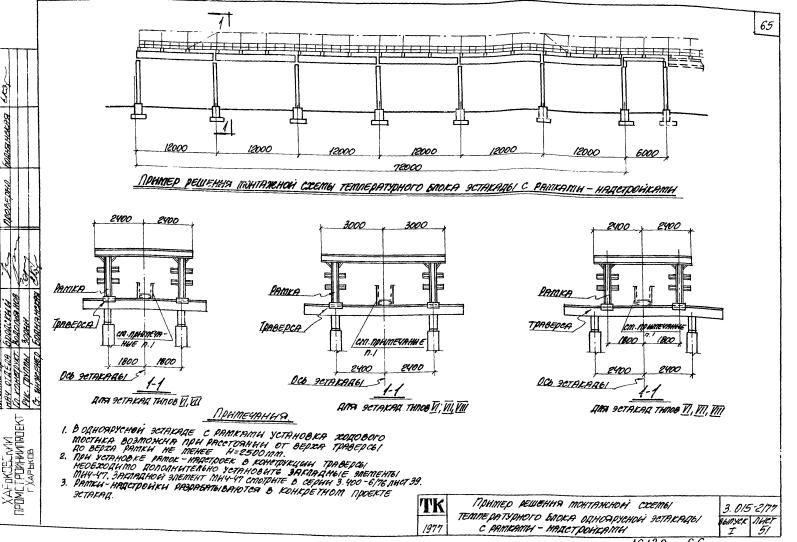

Примечания: ДЛЯ Т-ОБОДЗНЫХ ЭК В КОЛОНН Киндентрофизированных стоек кольцевого сечения


LIHANDPOEKTETANDARTPSKLUNG 7. Mackba


TK TOBNULLA DAR TOBROLLA DEPAN, TRASEL. MPABERE, BETTABOK 3015-2/77 DANDAUGHUN SETTAKRA TUNTOB IK: IK (WAR DADD 12 M) U 1977 IK-YK (WAR DADD 12 M) U 1977 SETTAKRA TUNTOB IK: IK (WAR DADD 13 M) U 18-YK (WAR DADD 18 M) U 1977 SETTAKRA TUNTOB IK: IK (WAR DADD 18 M) U 18-YK (WAR DADD 18 M) U 1977 SETTAKRA TUNTOB IK: IK (WAR DADD 18 M) U 18-YK (WAR DADD 18 M) U 1977 SETTAKRA TUNTOB IK: IK (WAR DADD 18 M) U 18-YK (WAR DADD 18 M) U 1977 SETTAKRA TUNTOB IK: IK (WAR DADD 18 M) U 1977 SETA







DOCESOND

МАРКА КОЛОННЫ	Hopm	ATHBH61	E HATA	DY3KU	HA BE,	DICHE M	06pe 3	е фун	RAMEHTI	9
	NAA. TC	Nup.	Mx ga.	Mx Kp. TCM	My An.	Му. кр. тем	Hx AA. Te	Hx xp.	Hy An. TC.	Hy KP TC
K1-1	8./		32		1.1	4.9	0.6			0.8
K1-2	6.3		2.6		0.8	4.3	0.5			0.7
F2-1	8.9		3.0		4.1	8.9	0.6		0.5	1.5
K2-2	8.9		3.0		1.1	8.9	0.6			1.5
F2-3	7./		2.5		0.8	5.9	0.5			1.0
F2-4	13.0		3.0		1.7	13.6	0.6			2.3
K2-5	13.0		3.0		4.6	13.6	0.6		0.5	2.3
K3-/	7.6		2.8		0.8	6,5	0.5			1.0
13-2	7.6		1.7	4.0	0.8	3.9	0.3	0.5		0,6
K3-3	13.5		3.3		4.9	9.8	0.6		0.5	1.5
K3-4	9.4		2.2		1.1	2.8	0.4			1.5
K3-5	13.5		3.4		4.9	15.0	0.6		0.5	2.3
K3-6	13.5		3.9		1.6	15.0	0.7			2.3
K9-1	7.6		3./		0.8	7.1	0.5			1.0
K4-2	7.6		1.9	4.0	0.8	4.3	0.3	0.5		0.6

HA DYHAAMEHTO!

X APIXCIBENING IPOMETPONHINGIPOEKT F XAPEKDE Примечание

В ТАБЛИЦЕ ПРИВЕДЕНЫ НОРМАТИВНЫЕ НАГРУЗКИ НА УРОВНЕ ВЕРЖНЕГО ОБРЕЗА ФУНДАМЕНТА ПОД ОДНУ КОЛОННУ ОПОРЫ, НАГРУЗКИ С ИНДЕКСОМ "Х" ДЕЙ СТВУЮТ ВДОЛЬ ОСИ ЭСТИ-КАДЫ, С ИНДЕКСОМ "У"- ПЕРПЕНДИКУМЯРНО ОСИ ЭСТИКАДЫ.

TK

ТАБЛИЦА НАГРУЗОК НА ОРУНДАМЕНТЫ ГОЛОНН ПРАМОУГОЛЬНОГО СЕЧЕНИЯ 3.015-2177 BUNNER AHET I

Марка колонны	Hopm	Нормативные нагрузки на вержнем обрезе фунцамента											
	N An. TC		Mx 41.			My Kp.							
K4-3	13.5		3.7		5./	10.6	0.6		0.5	1.5			
K4-4	9.4		2.5		1.1	10.6	0.4			1.5			
K4-5	13.5		3.7		5./	16.3	0.6	_	0.5	2.3			
K4-6	13.5		4.3		1.6	16.3	0.7			2.3			
K5-1	9.8		4.4		1.1	6.6	0.6			0.8			
K5-2	8.0		2.2	2.2	0.8	5.0	0.3	0.3		0.6			
K5-3	9.8		5.2		5.3	12.5	0.7	_	0.5	1.5			
K5-4	9.8		4,4		1.1	12.5	0.6			1.5			
K5-5	8.0		4.4		0.8	9.2	0.6			1./			
K5-6	13.9		2.2		1.6	12.5	0.3			1.5			
K5-7	13.9		2.2		1.6	19.1	0.3		_	2.3			
K6-1	11.0		3.0	3.0	1./	12.5	0.4	0.4	_	1.5			
K6-2	14.8		4.4		1.6	19.1	0.6		_	2.3			
K6-3	14.8		4.4		5.8	19.1	0.6		0.5	2.3			

Оттетка верснего обреза срундатента

Примечание

В ТАБЛИЦЕ ПРИВЕДЕНЫ НОРМАТНЕНЫЕ НАГРУЗКИ НА УРОВНЕ ВЕРСИЕГО ОБРЕЗА ФУНЦАМЕНТА ПОД ОДНУ КОЛСИНУ ОПОРЫ, НАГРУЗКИ С МИДЕКСОМ "Х"ДЕЙСТВУЮТ ВИОЛЬ ОСИ ЭСТАКАДЫ, С ИНДЕКСОМ "У"-ПЕРПЕНЦИЕМАЯРНО ОСИ ЭСТАКАДЫ.

Сжема нагрузок на орундаменты

TK

ТАБЛИЦА НАГРУЗОК НА ФУНДАМЕНТЫ КОЛОНН ПРЯМОУГОЛЬНОГО СЕЧЕННЯ 3.015-2177 BOINVER NHET I 53

	Марка колонны	Норматноные нагрузки на верхнем обрезе фунцамента										
		N An. TC	N KP.		Mx up.		T	Hx 21.			Hy KP	
	£7-1	23.9		6.7		2.7	/3,8	1.4		<u> </u>	 	
	K7-2	24.0		2.9		1.8	6.0	0.6			1.0	
	K7-3	19.4		4.8	_	1.3	4.8	1.0		-	0.8	
	K7-4	19.4		1.4	5.8	1.3	6.0	0.3	1.2		1.0	
	K7-5	19.4		4.8		1.3	7.2	1.0			1.2	
	K7-6	16.7		1.9	5.8	1.8	5.4	0.4	1.2		0.9	
	K7-7	16.7		3.8	5.8	1.8	9.0	0.8	1.2		1.5	
	K8-1	24.9		7.2		8.7	13.8	1.5		1.0	2.3	
	K9-/	19.8		2.6		1.3	5.7	0.5			0.9	
	K9-2	19.8		1.6	3./	1.3	4.5	0.3	0.6		0.7	
	K9-3	19.8	_=	1.6	3.2	1.3	6.4	0.3	0.6		1.0	
	K9-4	24.6		2.6		1.8	9.6	0.5			1.5	
	K9-5	19.8		5.2		1.3	5.1	1.0			0.8	
	K9-6	24.6		3./		1.8	6.4	0.6			1.0	
	K9-7	24.6		3./		1.8	9.6	0.6			1.5	
	K9-8	24.4		7.3		2.7	9.6	1.4			1.5	
	K9-9	24.4		3./		2.7	9.6	0.6			1.5	
	K9-10	24.4 N 1		7.3		€.7	14.7	1.4			2.3	
OTMETKA BEDOCHETO SPE3A APYHILAMEHTA	† **My	13 ± 1/x									Noun	

CXEMA HATPY 30K HA OPYHAAMEHTOL

XAPbkDBCK/IV IIPDMCTPDMH/MNPDEKT FXAPbkDB

В ТАВЛИЦЕ ПРИВЕДЕНЫ КОРМАТИВНЫЕ НАГРУЗКИ НА УРОВНЕ ВЕРЖНЕГО ОБРЕЗА ФУНДАМЕНТЕ ПОД ОДНУ КОЛОННУ ОПОРЫ, ИЗГРУЗКИ С ИНДЕКСОМ, 2" ДЕЙСТВУЮТ ВДОЛЬ ОСИ ЭСТАКАДЫ, С ИНДЕКСОМ "У"—ПЕРПЕНДИКУЛЯРНО ОСИ ЭСТАКАДЫ.

16130

ТАБЛИЦА НАГРУЗОК НА СРУМДАМЕНТЫ КОЛОНИ NPAMOYFONGHOFO CEYEHHA

3.015-2/77 BURYER AHET I SY

MAPKA KONUMM61	Норт	PTHBHE	HA	грэзкы	MA BE	PACHEM	05.PE 3	Е фунц		9
	N AA. TC	NKP. TC	Mx An. Tem	Mr. Kp. TCM	My An. Tem	My Kp. TCM	Hx AA. Te	Hx Kp.	HY AN.	Hy Kp.
K10-1	/7.7		5.2	3./	1.8	9.6	1.0	0.6	<u> </u>	1.5
K10-8	24.9	<u> </u>	7.3		2.7	14.7	1.4			2.3
K10-3	24.9		7.3		9.1	14.7	1.4		1.0	2.3
<u> </u>	19.8	<u> </u>	2.9		1.3	5.6	0.5	_=_	1.0	0.8
K11-2	19.8	L	8.1	L -	2.7	16./	1.4			2.3
K11-3	19.8	L	1.7	3.4	1.3	7.0	0.3	0.6		1.0
K11-4	24.6		2.9		1.8	10.5	0.5	1 20		1.5
K11-5	19.8	L	5.8		1.3	5.6	1.0	1		0.8
E11-6	24.6		4.1		1.8	7.0	0.7			1.0
K11-7	24.6	L	4.1		1.8	10.5	0.7			1.5
K11-8	24.4		8.1		2.7	10.5	1.4			1.5
K11-9	24.4		3.5		2.7	10.5	0.6			1.5
K11-10	24.4		8.1		2.7	16.1	1.9			2.3
K12-1	17.7	<u>_</u>	5.8	3.5	1.8	10.5	1.0	0.6		1.5
K12-2	24.9		8.1		2.7	16.1	1.4			2.3
K12-3	24.9		8./		9.7	16.1	1.4			2.3
K13-1	20.2		3.5		1.3	6.6	0.5	_		0.8
K13-8	24.8		4.2		1.8	8.2	0.6			1.0

HA QUYHA AMEHTEL

APDKDBCKAN ACTPONHANTPDEKT TXAP BKDB. В ТАБЛИЦЕ ПРИВЕДЕНЫ НОРМАТИВНЫЕ НАГРУЖИ НА УРОВНЕ ВЕРХНЕГО ОБРЕЗА ФУНДАМЕНТА ПИД ОДНУ КЛЮНИУ ОПОРЫ, НАГРУЗКИ С ИНДЕКСОМ, Х''ДЕЙСТВУЮТ ВДОЛЬ ОСН ЭСТАКАДЫ, С ИНДЕКСОМ "У"— ПЕРПЕНДИКУЛЯРНО ОСН ЭСТАКАДЫ.

TK

ТАБЛИЦА НАГРУЗОК НА ФУНЦАМЕНТЫ КОЛОНН ПРАМОУГОЛЬНОГО СЕЧЕННЯ 3.015-2/77 BUNYEK MHET I 55

MAPKA	Hopi	NATHBH	IGIE HA)	-ру зки	HA BE,	OCHEM	05 PE3E	фунд. 9 /1	MEHTA	
КОЛОННЫ	NAA.	NKP.	Mx An	Mx KP.	Ms an	My KP	Hx An.	Hx Kp	Hy 41.	Hy Kp
	TC	TC	TCM	Tem	Tem	TEM	70	TC	TC	TC
K13-3	24.8		3.5		1.8	14.0	0.5			1.7
K13-4	24.8		4.2		2.7	12.3	0.6			1.5
K14-1	18.4		7.0	2.8	1.8	8.2	1.0	0.4		1.0
K14-2	25.5		7.0		2.7	12.3	1.0			1.5
1014-3	25.5		4.2		2.7	18.8	0.6			2.3
K14-4	25.5		9.8		2.7	18.8	1.4			2.3
K14-5	25.5		4.9		10.9	18.8	0.7			2.3
K14-6	25.5		9.8		10.9	18.5	1.4			2.3
K 15-1	28.4		4.8		3.6	4.8	1.0			0.8
K15-2	28.3		2.4	5.8	3.6	6.0	0.5	1.2		1.0
K15-3	29.1		6.7		4.7	9.0	1.4			15
K15-4	42.6		4.8		7.4	9.0	1.0			1.5
K15-5	42.6		6.7		7.4	9.0	1.4	L		1.5
K15-6	42.6		6.7		7.4	138	1.4	L		2.3
K16-1	36.6		9.6		4.7	9.0	2.0			1.5
K16-2	29.6		7.7	7.2	4.7	9.0	1.6	1.5	L	1.5
K16-3	43.0		12.5		7.4	13.8	2.6			2.3
K16-9	36.6		96		16.7	9.0	20		2.0	1.5

OTMETCH DEFENER

OTMETCH DEFENERT

OTMETCH DEFENERT

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

\$100

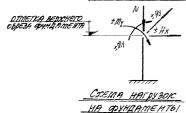
\$100

\$100

\$100

\$100

\$100


HA ODYHARMIEHTO!

(APDKOBCKAZ IMCTPOZHLZANPOEKT F XAPDADB В ТЯБИНЦЕ ПРИВЕДЕНЫ НОГИТИВНЫЕ НЯГРУЗКИ НА УРОВИЕ ВЕРХНЕГО ОБРЕЗА ФУНЦАТИЕНТА ПОД ОДНУ КОГОННУ ОПОРЫ, НЯГРУЗКИ С ИНДЕКСОМ "В ДЕЙСТВУЮТ ВДОЛЬ ОСИ ЭСТАКАДЫ С ИНДЕКСОМ "У"—ПЕРПЕНДИКУГАРНО ОСИ ЭСТАКАДЫ.

TK

ТАБЛИЦА НАГРУЗОК НА ФУНЦАМЕНТЫ КОЛОНН Притохгольного сечення 3.015-2/77 BUNYEK NU-T I 55

MAPKA	Норт	19THBH61	е нагр.	431 % 1 H1	9 86.02	CHEM	обреж	фунцат	EHTA	
колонны	N AA. TC	N Kp.	Mx An.	Mx Kp.	My BA. TCM	My KP. TCM	Hx AA. TC	Нх кр. ТС	Hy AN. TC-	Hy KP.
K17-1	44.2		14.4		19.4	13.8	3.0		2.0	2.3
K18-1	29.3		5.2		3.6	5.1	1.0	L		0.8
K18-2	37.0		5.2		4.7	6.4	1.0	ļ	<u> </u>	1.0
K18-3	37.0		5.2		4.7	9.6	1.0		<u> </u>	1.5
1018-4	30.2		4.2	4.2	4.7	5.8	0.8	0.0	L	0.9
K18-5	43.5		5.2		7.9	14.8	1.0	ļ		2.3
K18-6	43.5		6.8		7.4	14.8	1.3	L		2.3
K19-1	29.8		6.8	4.2	3.6	6,4	1.3	0.0	l =	1.0
K19-2	37.6		10.4		4.7	9.6	2.0		l	1.5
K19-3	44.2		13.5		7.9	19.8	2.6			2.3
K19.4	44.2		15.6		20.2	13.4	3.0		2.0	2.1
K19-5	37.5		10.4		19.4	9.0	2.0	L	2.3	1.4
K20-1	29.3	***	58		3.6	5.6	1.0			0.8
K20-E	37.0		5.8		4.7	7.0	1.0			1.0
r20-3	37.0		5.8		4.7	10.5	1.0			1.5
K20-4	30.2		4.6	4.6	4.7	6.3	0.8	0.8		0.9
F20-5	43.5		5.8		7.4	16.1	1.0			2.3

THOMET PONHAMIPOEKT IN XAPEKIB

NPHMEYAHHE

В ТАБЛИЦЕ ПРИВЕДЕНЫ НОРМАТНОНЫЕ НАГРУЗКИ НА УРОВНЕ ВЕРХНЕГО ОБРЕЗА ФУНДАМЕНТА ПОД ОДНУ КОЛОННУ ОПОРЫ, НАГРУЗКИ С ИНДЕКСОМ, Ж"ДЕЙСТВУЮТ ВДОЛЬ ОСИ ЭСТАКАДЫ, С ИНДЕКСОМ "У"-ПЕРПЕНДИКУЛЯРНО ОСИ ЭСТАКАДЫ.

T	1
197	7

ТАБЛИЦА НАГРУЗОК НА ОРУНДАМЕНТЫ КОЛОНИ
ПРАМОУГОЛЬНОГО СЕЧЕНИЯ

3.015-2/77 BUNYEK AHET I 57

	Нор	MATHER	HOIE HA				обрезе	<i>фунц А</i>		
Марка Колонны	N A.A.	NKP.	MX AN. TEM	Mx Ef. Tem	My AN. TOM	My KP TeM	Hx AA. TC	Hx Kp. TC	Hy Ad. TC	Hy Kgo. TC
K20-6	43.5		7.6		8.7	16.1	1.3	=		2.3
K21-1	29.8		7.6	4.6	3.6	7.0	1.3	0.8	-=-	1.0
K21-2	37.6		11.6		4.7	10.5	2.0	_=_	<u> </u>	1.5
K21-3	44.2		15./		7.4	16.1	2.6			2.3
K21-4	44.2		17.9		21.3	6.1	3.0		2.0	2.3
K 21-5	37.5		11.6		18.7	10.5	2.0		2.0	1.5
K22-1	29.9		3.5	2.8	3.6	8.2	0.5	0.4	L <u></u>	1.0
K22-2	37.5		7.0		4.7	12.3	10		=	1.5
E 23-1	44.9		7.0		7.4	12.3	1.0			1.5
x23-2	30.7		14.0		3.6	9.8	2.0			1.2
K23-3	3/.4		14.0	2.8	4.7	7.4	2.0	0.4		0.9
K23-4	44.8		14.0		7.4	123	2.0			1.5
K23-5	38.3		14.0		4.7	12.3	2.0			1.5
K 23-6	44.8		18.2		7.4	12.3	2.6			1.5
K23-7	44.8		10.5		23.8	18.8	1.5		2.0	2.3
K24-1	46.0		14.0		7.4	12.3	2.0			1.5
K24-2	46.0		18.2		7.4	12.3	2.6			1.5

Cometen Besigner + the The The

ADSANCES

XAPUKDBCKNÍ NPIMCTPDNHVNPDEKT r Xapukob

СХЕМА НАГРУЗОК НА ФУНДАМЕНТЫ <u> NOUMEYAHUE</u>

В ТАБЛИЦЕ ПРИВЕДЕНЫ НОРМАТНЕНЫЕ НАГРУЗКИ НА УРОВНЕ ВЕРХНЕГО ОБРЕЗА ФУНЦАМЕНТА ПОД ОДНУ КОЛОННУ ОПОРЫ, НАГРУЗКИ С ИНДЕКСОМ, О"ДЕНСТВУЮТ ВДОЛЬ ОСИ ЭСТАКЛЯЫ, С ИНДЕКСОМ, У"-ПЕРПЕНДИКУЛЯРНО ОСИ ЭСТАКЛЯЫ.

TK

ТАБЛИЦА НАГРУЗОК НА ФУНДАМЕНТЫ КОЛОНН ПРЯМОУГОЛЬНОГО СЕЧЕННЯ 3.015-2/77 BUNNEK NHET T 60

MAPKA	Hopm	PTHBH6	VE HAID	V3KH A	49 8 EP	CHEM OL	5.PE3E	<i>а</i> р УНДЯ Г	NEHTA	
KONOHH61	N An. TC	NEP. TC	Mx An. Tem			My KP TCM	Hx AA.	Hx KP. TC	Hy A.A. TC	HY NA TC
K24-3	44.8		21.0		23.7	18.9	3.0		2.0	2.3
K25-1	24.1	0.8	3.3			9.1	0.7	_		1.5
K25-2	24.1	0.5	7.0			4.9	1.5			0.8
K25-3	32.7	1.1	2.3			10.4	0.5			1.7
x25-4	24.1	0.7	4.2	6.1		7.3	0.9	1.3		1.2
K25-5	32.7	1.1	7.0		_	10,4	1.5			1.7
K25-6	29.1	0.6	9.4			7.9	2.0	Γ	<u></u>	1.3
K25-7	29.1	0.6	5.2	6.1		6.7	1.1	1.3	<u></u>	1.1
K25-8	39.2	0.8	9.4			10.4	2.0	Ι		1.7
r25-9	32.8	1.1	6.6		9,2	10.4	1.4		1.5	1.7
K26-1	40.2	0.8	11.3		12.2	10.4	2.4		2.0	1.7
K27-1	24.6	0,5	3.7			4.7	0.7		l	0.7
127-2	24.6	0.5	2.6	32		4.0	0.5	0.6		0.6
K27-3	33.2	0.7	2.6			6.7	0.5			1.0
K27-4	32.9	0.7	3.7			6.7	0.7			1.0
K27.5	29.7	0.6	5.3			8.0	1.0			1.2
K27-6	33.€	0.7	7.9			6.7	1.5	L	<u> </u>	1.0
K27-7	39.7	0.5	3.7			11,4	0.7			1.7

PHMEYAHHE OTMETER BEDOCHETO OBDEBA OPYHARINEHTA

B TAGANUE APHBELEHU HOPMATHBHGIE HAFPSSKH HA SPOBHE BEPICHETO OGJESA APKUAMENTA NOG OGHS KONOHUS ONOPUI, HAFPSSKH C HHLEKCOM, IC GENETBSFOT BYOM OCH STAKAYGI, C MAGEKCOM ., S"-NEPAEHQHESIAPHO OCH SCTAKAYGI.

COCEMA HARDYBOK HA PHARAMEHTEL

ТАБЛИЦА НАГРУЗОК НА ОРУНДАМЕНТВІ КОЛОНН MPAMONIONG HOTO CEYEHHA

16 130

3.015-2/77

BUNYEK NHET

KOTOHHOI	NAA. TC	NEP.	MX An.	Mx Kp.	My An.		Hx gn.	Hx Kp.	Hy An.	Hy Kp
K27-8	397	0.5	5.3		 	1777	1-12	Te	TE	TC
£27-9	33.2	1.1	5.3			11.4	1.0			1.7
F27-10	33.2	1.1	8.0			11.4	1.0			1.7
F28-1	30, 3	0.6				11.4	1.5			1.7
K28-2	40.3	0.8	10.6	-		8.0	2.0			1.2
K28-3	40.3	0.8	6.9			11.4	1.3			1.7
K28-4	33 8	1./	12.7	-=-		11.4	2.0			1.7
K29-1	40.6	0.8			10.0	11.4	2.4		1.5	1.7
K30-1	24.6	0.5	12.7		13.4	11.4	2.4	L	2.0	1.7
K30-2	24.6	0.5	4./			5.1	0.7	L		0.7
K30-3	33.2	0.7	3.0	3.5		4.4	0.5	0.6	<u> </u>	0.6
£30-4	32.9		3.0			7.3	0.5			1.0
K30-5	29.7	0.7	4.7			7.3	0.8	L		1.0
£30-6	33.2	0.5	5.9			8.8	1.0			1.2
£30-7	39.7		8.8			7.3	1.5	<u> </u>	<u> </u>	1.0
F30-8	39.7	0.5 0.5	4./			12.4	0.7			1.7
F30-9	33.2	1.1	5.9			12.4	1.0			1.7
K30-10	33.2	1.1	5.9			12.4	1.0			1.7
F31-1	30.3	0.6	8.8 11.8		_=_	12.4 8.8	1.5			1.7

OTMETKA BEDÆHETE CPEJA PYKJAMEKA

ninn

CXEMA HAIPY30K HA OPYHANIMEH761 **MPHMEYAHHE**

В ТАБЛИЦЕ ПРИВЕДЕНЫ НОРМЕТИВНЫЕ НЕГРУЗКИ НА УРОВНЕ-ВЕРЖНЕГО ОЕРЕЗА ФУНДАМЕНТА ПОД ОДНУ КОПОННУ ОПОРЫ, НАГРУЗКИ С ИНДЕКСОМ, 2° ДЕЙСТВУЮТ ВДОМ ОСИ ЭСТЯКАДЫ, С ИНДЕКСОМ, У''-ПЕРПЕНДИКУЛЯРНО ОСИ ЭСТЯКАДЫ.

TK

ТАБЛИЦА НАГРУЗОК НА ФУНДАМЕНТЫ КОЛОНН прамочтоменого сечения

3.015-2/77 BUNYEK NHET

16 130

MADKA	Hopm	пятивне	IE HAI	DY3KU	HA EST	O ZHETYT	05 резе	apy HIZA	MEHTA	
KONUHHGI	NAA.	NKP.	Mx An.	Mx KP. TCM	My An. Tom	My KP. TCM;	Hx QA. TC	Hx rp.	Hy An.	Hy Kp.
K31-2	40.3	0.8	7.7			12.4	1.3			1.7_
K31-3	40.3	0.8	//.8		<u> </u>	124	2.0			1.7
K31-4	33.8	1:1	14.2		11.0	12.4	2.4		1.5	1.7
K32-1	40.6	0.8	14.2		/4.6	12.4	2.4		2.0	1.7
K33-/	25./	0.5	5.7			6.8	0.8			0.8
K33-2	30.2	0.4	5.7			6.8	08			0.8
K33-3	33.8	0.7	3.6			8.5	0.5			1.0
K33-4	33.8	0.7	5.7			8.5	0.8			10
£33-5	40.3	0.5	5.7		L	8.5	0.8			1.0
K33-6	33.8	1:1	5.7			14.5	0.8			1.7
£34-1	25.8	0.5	10.7			6.8	1.5			0.8
K34-2	30.9	0.4	11.4		_	6.8	1.6	_		0.8
K34-3	30.9	0.6	7.2		T	10.2	1.0			1.2
K34-4	30.9	0.6	14.2			10.8	2.0			1.2
K34.5	40.8	0.8	7./			14.4	1.0			1.7
K34-6	34.4	1.1	7./			19.4	1.0			1.7
K34-7	40.7	0.8	14.2			14.4	2.0			1.7
£35-/	34.7	1.1	12.3		12.8	14.4	1.7		1.5	1.7
K35-2	41.6	0.8	16.8		17.0	14.4	2.4		2.0	1.7

ОТМЕТКА ВЕРХНЕГО. Обреза фунцамента

±thx XNI N

CXEMA HAIPY3OK HH 974H3AMEH161

MPUMEYAHHE

B TABNULE NOMBEREHU HORMATHBHEIE HAIDYSKU HA YDYSKE BEDYCHETO OBDESA ADYTHAMENTA NOD ODKY KONOWHY ONODU, MATDYSKU C UNDEKCOM, Z" DEÚCTBYFOT BYCNE OCH SCHAKAJU, C UNDEKCOM, Y"-NEDNEHDUKWADHO OCK SCHAKAJU.

TK

Таблица нагрузок на фунцатенты колонн пратоугольного сечения 3 0.15-2177 BUNDE 2007

																									76
		Тип эста кады и	Расстая ние от берха	Mpa-	Ветро- вая				<i>УРНЫ</i>		OK .	L=24	M				7	ЕМП	ерат	урны	Ú BA	OK L	= 36	M	
90	1	ΗΩΓΡΥ3- ΚΩ ΝΩ	07 GEPXA 387AKA- 8bi 8a	HUR	нагруз-	17p0 M	1ежу	דטאאנ	וס או	σρα	K	онце	вая	οπορ	Œ	Mpan	1ежу	TOYH	29 00	ορα	KO	нцев	8 ая	опор	α
OPENHOS	distribution of the second	TOTOH- HUU METP	ПЛОНИРО БОЧНОЙ ОТМЕТКИ	///	KE/M	N TC	Mx	Нх	My	Ну	N	Mx	Нх	My	Ну	N	Mx	Нх	My		N	Mx	Нх	My	Hy
2/	1	TC/M	3PMAU		75	7.5	TEM	TC	TEM	70	TC	TCM	TC	TEM	TC	TC	TEM	7.0	TEM	TC	7.2	TEM	TC	TCM	7.0
Syund				29	<i>35</i> <i>55</i>	7,9	2,0	0,4	<i>6,3 8,6</i>	1,3	6,2	2,0	0,4	4,9 6,6	0,7 1,0	7,9	1.5	0,3	6,3 8,6	1,3	6,2	1,5	0,3	4,9 6,6	1,0
UCMBAHUTEAN A. TOP SYAM	100		6,0	49	<i>35 55</i>	7,9	3,6	0,7	6,3 8,5	0,9 1,3	6,2	3,6	0,7	4,9 6.6	0,7 1,0	7,9	2,6	0,5	6,3 8.6	0,9 1,3	5,2	2,6	0,5	4,9 6,6	0,7 1,0
нальн	7//00	5		20	35	8.0	2,3	0,4	8,9	0,9	6.3	23	0.4	5,3	0,7	8.0	1.7	0.3	6,9	0,9	6.3	1.7	0.3	5,3	0,7
VOU:	900	I K, II K		29	55	0,0	2,3	<i>U,4</i>	9,4	1,3	0,0	2,5	0,1	7,2	1,0	0,5	""	0,0	9,4	1,3	0,0	"."	0,5	7,2	1,0
	, 10	q=0,25 Tg	8,6	49	<i>35</i>	8,0	4,0	0,7	6,9 9,4	0,9 1,3	Б,З	4,0	<i>D</i> ,7	5,3 7,2	0,7 1,0	8,0	2,9	0,5	9,4	1,3	6,3	2,9	0,5	5,3 7,2	1,0
Зиновъев Гершанок	ршабский Инкельштейн	g=Q5 ^{TC} /m		20	35	8,2	2,5	0.4	7.4	0,9	5.5	2,5	0.4	5,7	0,7	8.2	1,9	0.3	7,4	0,9	6,5	1.9	0.3	5,7	0,7
34	200	7 /	7.2	29	55	υ, ε	2,3	0,4	10,2	1,3	0,0	2,0	0,7	7,8	1,0	0, 2	1,,3	0,5	10,2	1,3	0,5	1,9	2,3	7,8	1,0
134			1,2	49	35	8,2	44	0,7	7,4	0,9	6,5	4,4	0,7	5,7	0,7	8,2	3,2	0,5	7,4	0,9	5,5	3,2	0,5	5,7	0,7
37	12				55				10,2	1,3				7,8	1.0				10,2	1,3	ļ			7,8	1,0
a c	792	1		29	<i>35</i>	8,4	3,0	0,4	8,5 11.8	1,3	6,6	3,0	0,4	9.0	0,7 1,0	8,4	2,3	0,3	11,8	0,9 1,3	6,5	2,3	Д,З	9,0	1,0
тде,	1116		8,4		35				8,5	0,9				<i>6,5</i>	0,7				8,5	0,9				6,5	0,7
Hay L	Рук. группы Ст. шкженер			49	55	8,4	5,3	0,7	11,8	1,3	6,5	5,3	0,7	9,0	1,0	8,4	3,8	0,5	11,8	1,3	6,6	3,8	0,5	9,0	1,0
Focerpoù CCCP	ичискль ыи ин ститутия г. Ленинград	Отметк него обт фундам	а верх- реза рента ч		1 ± H)	e ops	ндам	енты					[ypi uei Hai	обне Утриц ерузки ндекси Нагру	LLE TILLE TO THE SEPTEMBER THE	о и веде Ванну Вексы Тер	PHAL INDESA INDE	фунд Deuth Deuth KYNЯP PHMЫ	тивк Тамен Кдльц Пвуют НО ОС.	ពោជ ឬខេត្តិចាប់ ៣ ទិទ្ធស ១៤៧	TOB LEY. B OCU S TOBO TOBO TOBO TOBO TOBO TOBO TOBO TOB	TÜHY EHUЯ. GCTOKU ÜL. YHЫX	a dbi, 3.015- Bbinyck I	

16130

																								77
	Τυπ эс- τακαθώ	Расстоя- ние	17	Ветра-				пурн	614	δλΟΚ	L=4	8 <i>m</i>				7	емп	ерат	урны	ŭδA		L=6	0M	
100	такады инагруз ка на			вая нагруз-	Пром	ежу	ΟΥΗΩ	9 011	opa -	K	онце	вая	апор	Ø	Про	MEHES	YTOYK	ם אם	пора	Ko	нцев	ая	onop	Ø
dbayur	1101°0H- Hbiú	до Планиро- Вочной Отметки Земли	HOTPY3- KO	KC M2	N TC	M _X TCM	Hx TC	My TCM	Hy TC	N TC	Mx TCM	Hx TC	My TCM	Hy TC	N TC	Mx TCM	Hx TC	My TCM	Hy TC	N TG	Mx TCM	Hx TC	My TCM	Hy
+10	TEIM	JEMMU		35				6,3	0,9				4,9	0,7	, <u> </u>	1071		6,3	0,9				4,9	0,7
]].			29	55	7,9	1,0	0,2	8.6	1,3	6,2	1,0	0,2	8,6	1.0	7,9	1,0	0,2	8,8	1,3	6,2	2,6	0,5	5.6	1.0
12		6,0	1.	35	7.0	20	0/1	6,3	0,9	20		2.4	4,9	0,7	~ 0	20	- /-	6,3	0,9		20		4,9	0,7
++			49	55	7,9	2,0	0,4	8,6	1,3	6,2	2,0	0,4	6,6	1,0	7,9	2,0	0,4	8,6	1,3	5,2	3,6	0,7	6,6	1,0
Провения			29	35	8.0	1.1	0.2	6,9	0,9	6.3	1,1	0,2	5,3	0,7	8,0	1,1	0,2	6,9	0,9	6.3	4.0	0,7	5,3	0,7
QOOL	Ικ,Ικ	5.6	24	55	-,-	-,.	- ,-	9,4	1,3	0,0	"	0,2	7,2	1,0	0,0	,,,	-,~	9,4	1,3	0,0			7,2	1,0
44		,,,	49	35	8,0	2,3	0,4	6,9	0,9	6,3	2,3	0,4	5,3	0,7	8,0	2,3	0,4	6,9	0,9	5,3	5,1	0,9	5,3	0,7
WCT.	q=0.25 [™] / _M			55				9,4	1,3				7.2	1,0		-		9,4	1,3				7,2	1,0
я <i>ушиоскии</i> Финкельштейн	Q=0.5 TC/M		29	<i>35</i> <i>55</i>	8,2	1,3	0,2	7,4	0,9 1,3	6,5	1,3	0,2	5.7 7.8	0,7 1,0	8,2	1,3	0,2	7.4 10.2	0,9 1.3	6,5	3,8	0,6	5,7 7,8	1.0
		7,2		35				7,4	0,9				5,7	0,7				7,4	0,9				5,7	0,7
1 1			49	55	8,2	2,5	0,4	10,2	1,3	5,5	2,5	0,4	7,8	1,0	8,2	2,5	0,4	10,2	1,3	6,5	5,0	0,8	7,8	1,0
31.6			•	35	8.4	15	0.0	8,5	0,9		1.5		8,5	0,7	2.4			8,5	0,9		2.0	0.5	6,5	0,7
к. еруппа ИНЖЕНЕР		0/1	29	55	0,4	1,5	0,2	11,8	1,3	6,6	1,5	0,2	9,0	1,0	8,4	1,5	0,2	11,8	1,3	5,5	3,8	0,5	9,0	1,0
CHO.		8,4	4	35	0.4		24	8,5	0,9	6.6	20	0/1	6,5	0.7	8,4	20	0.4	8,5	0,9		<i>c</i> 2	0.7	6,5	0.7
30			49	55	8,4	3,0	0,4	11,8	1,3	6,6	3,0	0,4	9,0	1,0	0,4	3,0		11,8	1,3	6,6	5,3	и, г	9,0	1,0
N/S				.,									A		£	e	// P (IME	YOH	ue	e	<i></i>		ua
ciui Pad	Отметк	и верхни	± t Mx		/								ЦD	OBHE	Берхі	e IIII 1880 1080 u	oopes viin	inei 10. Øs	HGAN	12HM 12HM	אוטאינ מ חנם מאחיים	משטות משת לו	OY3KU GHY EHUF. GCTON	пц
गमण्टरामठाध धमराधा आ स ट. Ленधमत्रवतः	gyngan	BA TA	****	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u>Ix</u>								c d	aepys unger	COM "	UHĐE Y"- N	KCOM Sprek	אעקיי עאעקיי	DEUCH ARPHU	าธิบางกา	, 600) 3cm	nb Deu akagu	9CTQA X.	radbı,
. A. A.	_			m									TK										3.015-	
Ilbas	\underline{c}	XEMO	НШГР	430K /	YA P!	HOOL	MEHTL	<u> </u>					1977	017	0p 7	บทอช้า	TK;I	к.Ш	ar on	op 12	M.		Bbinsck I	AUCT 63

TK	Нагрузки н	на фундаменты центриф	угированных	3.015	-2/77
1977		uno8Ik;Ik . War onop	12 M.	Bbinsick I	AUCT 63

																									78
		Tun 3c-	Расстая	1700-	Ветро-		Tei	ипера	турн	siú δ	AOK A	= 72	73			8 M	Тем естах	TEPUT.	PHHE	DADKU X OT	L=36-	-72 M.	Ongr	906	
		TEKETO)	ние от верха эстакай	DOA6-	вая нагруз-	Пром			я опи					опори	7	NP0	пеж	TOYH	2 <i>9 01</i> 1	ΟΡα	Ko	нцев	ая (nopa	′
B2.76.54	C. L. HILLKON	KA HA NOTOH- HOIÚ METP	DO NACHUPO- BOYHOÙ OTMETKU	HITTOY3		N	Mx	Нх	My	Ну	N	Mx	Нх	My	Ну	N	Mx	Hx	My	Ну	N	Mx	Нх	My	Ну
100	100	TC/M	38MAU			re	TCM	TC	TCM	TC	TC	TCM	TC	TCM	70	TC	TEM	TC	TCM	TC	7C	TCM	TC.	TCM	7C
1,	Ш,	İ		29	35	7,9	1,0	0,2	<i>6,3</i> <i>8,6</i>	0,9 1,3	6,2	3,1	0,6	4,9 6,6	4.0	7,9	1,9	0,4	9,2	1,4	6,2	6,4	1,3	9,8	1,2
(,,	13	1	6,0		55									4,9	0,7				9,2	1,4				8,1	1,2
1.	44	4	İ	49	<i>35 55</i>	7,9	1,5	0,3	<i>6,3</i> 8,6	1,3	6,2	3,6	0,7	5,5	1,0	7,9	3,4	0,7	13,1	1.9	6,2	7,9	1,0	9,8	1,5
UTEAB	7//0				35				6,9	0,9				5,3	0,7				10,1	1,4				8,8	1,2
НОЛН	Modyvou			29	55	8,0	1,1	0,2	9,4	1,3	6,3	4,6	0,8	7,2	1,0	8,0	2,2	0,4	13,3	1,9	Б,З	5,8	1,1	10,7	1.5
20		IK, IK	5,6	/.	35	2.0		0.7	6,9	2,9	6,3	5,1	0,9	5,3	0,7	8.0	3,8	0.7	10,1	1,4	6.3	7,5	1,4	8,8	1.2
ток Т	TALLES SALLES	q=0,257%		49	55	8,0	1,7	0,3	9,4	1,3	0,5	3,7	4,3	7,2	1,0	0,0	0,0	0, 7	13,1	1,9	5,0		,,,	10,7	1.5
оты	<u> </u>	[29	35	8,2	1,3	0,2	7,4	0,9	6,5	4,4	0,7	5,7	0,7	8.2	2,4	0.4	10,9	1.4	6.5	5.3	0.9	9,5	1,2
60	46	q=0,5 7 5/M	7.2	29	55	0,2	7,0	0,2	10,2	1,3		-,,		7,8	1,0				14,4	1,9				11,6	1,5
N	7		1,2	49	3 5	8.2	1,9	0,3	7,4	0,9	6,5	5,0	0,8	5,7	0,7	8,2	4,2	0,7	10,9	1.4	6,5	7,1	1,2	9,5	1.2
3	300			' 3	55				10,2	1,3				7,8	1,0				14,4	1,9				11,6	1,5
13	\$ 8	1		20	35	8,4	1,5	0.2	8,5	0,9	6,6	4,5	0,6	δ,5	0,7	8,4	2,9	0,4	12,6	1,4	6,6	4,9	0,7	10,9	1,2
THET	3Ker	İ	8.4		55				11,8	1,3				9,0	1,0				16,6	1,9				13,4	1,5
7. K	DYK.			40	35	8,4	2,3	0,3	8,5	0,9	6,6	5,3	0,7	δ,5	0,7	8,4	5,0	0,7	12,6	1,4	5,6	7,1	1,0	10,9 13,4	1,2
		 		Ĺ	55	لسل		لــــــا	11,8	1,3				9,0	1,0		1	7011	16,6	1,9		1		13,4	1,5
dooo	иғиектыры институтму г Ленинград	Ormern	а верхна еза чента ч	e- ÷W		/ Hx									เกกกิผ	SAUUE E BEL SUBULL	בשועת באוצר	edeni non	N HO	אמן האשלו	TMPHT	מ ימכר	תמול	าสิมบ	
occrpoú	ופוחתו לפאמו	, , ,		**/	T	-							_	7. Z	иеруз инде	NOBYTE KU C KCOM	under	com , repire	X" Del HDUKY	uemby vaphu	INOT BOU	3C/TI	эстак акад	raðbi, bi.	
rocc	PUCKII.	<u></u>	, Хема		430K	на ф	унда	ментв	<u>v</u>				T 19		агруз ОПОД	אנע אנס דעות	7 <i>ФУН</i> 08 I K	damei ; I k .	urbi yi War	באדף ע מסחם	ругир 12 м.	ованн	6/X Z	3.015-1 Віпчек І	

16130

						~					/ - 7	-												79
	Тип эс- такады	Pacctosi HUE OT BEDXA OCTAKADDI	ПРО- ВОЛЬ-	Ветро- Вия	Ton			турны по по			L=3		опор		700			ерати			OK L			
X/a	ע אננדעט: אנד אנד חסר סאר	GETAKATIDI GO TATUUNN		нагруз- ка "					·						IIPUI	VI E HC S	TUYH	29 01		10	нцес	ОДЯ	опори	Z
COMUN	MPTP	до планиро вочной отметки	KŒ	KEC/M	N TC	Mx TCM	Hx TC	My	Hy	N	Mx	Hx	My	Hy	N	Mx	Нх	My	Hy	N	Mx	Hx	My	Hy
133	TC/M	ЗЕМЛИ		35	-/-	1271	\ <u>\</u>	8,9	7C	TCM	TC	TCM	76	TCM	TC	TCM	7C	TCM	7.0	TEM	TC	TCM	TE	TE
ķ			29	55	12,0	2,0	0,4	13,2	1,3 2,0	8,1	2,0	0,4	6,1 8,7	1,3	12,0	1,4	0,3	<i>8,9 13,2</i>	1,3 20	8,1	5,1	1,0	6,1	0,9
1 2		6,0	40	35	12,0	3,6	0,7	8,9	1,3	8,1	3.6	0,7	6,1	0,9	10.0	0.5	n E	8,9	1,3	0 /			8,7 6,1	1,3
1				55				13,2	2,0	0,,	0,0	υ, γ	8,7	1,3	12,0	2,6	0,5	13,2	2,0	8,1	6,3	1,2	8,7	1,3
Ipobepu	In,In		29	<i>35</i> <i>55</i>	12,0	2,3	0,4	9,7	1,3	8,3	2,3	0,4	6,6	0,9	12,0	1,5	2,3	<i>3,7 14,4</i>	1,3	8,3	4,7	0,8	6,6	0,9
44		6,6	//-	35	12,0	4,0	0,7	9,7	1,3				9,5 6,6	0,0				9.7	2,0 1,3			7,5	9,5	1,3
pmen	q=0,25 ⁷⁹ / _M		49	55	12,0	7,0	<i>u,1</i>	14,4	2,0	8,3	4,0	0,7	9,5	1,3	12,0	2,8	0,5	14,4	2,0	8,3	6,0	1,0	<i>6,6</i> <i>9,5</i>	1,3
<i>АРШООСКИИ</i> Финкельитеин	q=0,5 TC/ _M		29	<i>35</i> <i>55</i>	12,2	2,5	0,4	10,5	1.3	8,4	2.5	04	7,1	0,9	12,2	1.7	0,3	105	1,3	8,4	4.6	0.7	7,1	0,9
13	, w	7,2		35				15,8	2,0		<u> </u>	<u> </u>	10,3	1,3				15,6	2,0			0,,	10,3	1,3
			49	5 5	12,2	4,4	0.7	15,6	2,0	8,4	4,4	0,7	10.3	1.3	12,2	3,1	0,5	10.5 15.6	1,3 2,0	8,4	6.0	0,9	7,1 10,3	0,9
#			2q	35	12,4	3,0	0,4	12,0		100		 	8,2	0,9		 		12,0	1,3				8,2	0,9
CEHE		8.4	~ <i>y</i>	55	,.	0,0	0,7	18,0	2,0	8,9	3,0	0,4	11,9	1,3	12,4	2,0	0,3	18,0	2,0	8,9	4,1	0,5	119	13
7. UK3			49	35 55	12,4	5,3	0,7	12,0	1,3	8,9	5,3	0.7	8,2	0,9	12,4	3,7	05	12,0	1,3	8,9	5,8	0,8	8,2	0,9
N.	!			00				1811	2,0		',-	,,	119	!3	/~,	U, /	0,0	18,0	2,0	0,5	0,0	υ,ο	11,9	1,3
ПРД:КТНЫШИНСТИТЬТИМ РУК-группы г Ленинград	OTMETH HEED OU THE GOING	(A SEDI- PRS T MENTS S	th,	1	/ Hx								4	CHMDL CEDUS	TUUE I BEPI KU C UI TCOM "	DOĞAH	PREHIO DOP PRIHO	cmoul Teac	rang Ny Ro Canhui	SHBIE MEHT DABUEL DABUEL	TOPO PONE O	CEYER	IUA. DKAAh	,
MPORTH B	<u> </u>	<u>re</u> co	.1	.30K	нα	ФУНС	7amp	H-W						Нагр	y3KU I	u pu	удама		EHTPL	i ip yeuj	рован	HЫX	3.015-	2/77 Tucin

ТК Нагрузки на фундатенты центрифчеированных 3.015-2/77.

	70	ו עמלטא	Pacetosi Nye ot Bepxa	17pa- 2016-	Ветро- вая				урны			L = 72									= 38 ÷ 1				_
	31	I HOT	<i>actalkaan</i> n	ная	иия нагруз- ка	Пром	ежута	YHQЯ	опор	DQ .	<i>h</i>	Онце	бая	опора	Z	//po	меж.	YTOYK	as o	πορα	Ko	нце	бая	опор	a
	OMC N	TOH- HU METP	TACHUPO- BOYHOÙ BTMETKU 3EMAU	нагруз- ка	KTC/M ²	N TC	Mx TCM	Hx TC	My	Hy	N TCM	M _X	Hx TCM	My	Hy	N TC	Mx TCM	Hx TC	My TCM	Hy TC	N TCM	Mx TC	Hx TCM	My TC	1
+	9	TC/M	SLIVING		35				8,9	1,3			1	6,1	0,9				12,1	1,8				9.1	1
	3	l		29	55	12,0	0,9	0,2	13,2	2,0	8,1	6,0	1,2	8,7	1.3	12,2	1,8	0,4	16,5	2,6	8,4	10,2	2,0	11,9	1
	3		6,0	/,	35	100		04	8,9	1,3	a .		,,	5,1	0,9	10.0	2.5	0.7	12,1	1,8	9 //	11/1	00	9,1	-
+	H			49	55	12,0	2,1	0,4	13,2	2,0	8,1	7,2	1,4	8,7	1,3	12,2	3,5	0,7	16,5	2,6	8,4	11,4	2,2	11,9	
	Праверия			29	35	12.1	1.0	0.2	9,7	1,3	8.3	5,2	0,9	6,6	0,9	12,3	2,1	0.4	13,2	1,8	8.5	8,3	1,5	9,9	L
	1100	Ì	6.6	-4	55		7,0	0,2	14,4	2,0	0,0	0,2	0,3	9,5	1,3	,,,,		٠,,	18,1	2,6	0,0	0,0		13,0	L
100	\Box_{I}	r, II K	0,0	40	35	12,1	2,3	0,4	9,7	1,3	8,3	5,5	1,1	6,6	0,9	12,3	3,9	0,7	13,2	1,8	8,5	9,6	1,7	9,9	-
NO.					<i>55</i>				14,4	<i>2,0</i> <i>1,3</i>				9,5	1,3 1,9				18,1	2,6 1,8				13,0	ŀ
Аршабский Финкельштеин	8=	0,25 79		29	55	12,2	1,1	0,2	12,0	1.5	8,4	4,6	0,7	10,3	1,3	12,5	2,3	0,4	19,7	2,6	8,6	7,4	1,2	14,1	ŀ
\prod	2=	0,5 ^{TC} /M	7,2		35			- /	10,5	1,3	- 1			7,1	0,9		, .		14,3	1,8				10,8	t
3 3				49	55	12,2	2,6	0,4	12,0	1,5	8,4	6,0	0,9	10,3	1,3	12,5	4,3	0,7	19,7	2,6	8,6	8,9	1,4	14,1	1
300	Ц				35	10.1		0.2	12,0	1,3	0.0	4.1	٥٠	8,2	0,9	12,7	0.7	Q/ı	16,5	1,8	8,9	5,5	0.7	12,4	Γ
EHE				29	55	12,4	1,4	<i>U,2</i>	13,8	1,5	8,6	4,1	0,5	11,9	1,3	12,1	2,7	0,4	22,7	2,6	0,3	9,5	4,7	16,3	1
(H.)			8,4	//-	35	10/1	3,1	0,4	12,0	1,3	8,6	5,8	20	8,2	0,9	12,7	5,/	0.7	16,5	1,8	8.9	7,2	0,9	12,4	Į.
36	Ц			49	55	12,4	0,1	<i>U,</i> 4	13,8	1,5	0,0	3,0	0,8	11,9	1,3	12,1	3,,	0,,	22,7	2,6	0,9	1,2	0,5	16,3	1
IIPUEKTHDIU UHCIUIST MI	расынна на	OTMETA HEFO (ид верх Фреза Мента	*, t	No.	±Hx								9	PODKE LEHMP LARDUS	SAUUE BEPA NOVELU NOVEL	TPUL REZO POBA UNDEK	Beden Obpe HHYHO COM "	30. P CMO X" DE	PARTI YHRA UKY M UCMB	MEHN (OAbUE UHM	ng m Bara Baan	00 L CEYE 6 DCU 3	TAHY YUR. PCTAKAL	∂b.
EKTHBIÚ UR	э. Ленин.		Схем	<i>ኢ</i> ՝	рузак	, HA 1	จรหลิเ	TMPH	Thi				[UHge	KU C . KCOM " ISKU HL	y"-1	перпе	HOUK	улярн	O OCI	4 900	ησκαί	BOL.	

			Paccion- Hue	Про-	Ветра-	7	емп	ерат	у <i>РНЫ</i>	II EN	nk l	= 36 A	M				7	PMI	ерату	IDHAI	i FA	OK	L = 40	8 10	81
7-1	П.		отверха эстакады	DOAB- HOR	вая нагруз ка			_						апор	α	Прог			ם אם					ппора	·
823	Поручнова	погон-	OTMETKU	нагруз- ка	Krc/Mª	1	Mx	Hx	My	Ну	N	Mx	Нх	My	Hy	N	Mx	Нх	My	Ну	N	Mx	Нх	My	Ну
2	700/	TC/M	3emau		35	TC	TCM	TC	TEM	7.0	TC	TCM	TC	TCM	70	TC	TCM	TC	TCM	TC	7C	TEM	TC	TCM	7C
	55.H111			29	55	21,8	2,4	0,5	9,7	1,3	16,5	2,4	0,5	5,1 6,9	0,6	21,8	1,9	0,4	7,4 9,7	1,3	16,5	1,9	0,4	5,1 6,9	0,6
25	4.605		6,0	49	35	21,8	4,8	1,0	7.4	0,9	16,5	4.8	1.0	5,1	0,6	21,8	3.8	0,8	7,4	0,9	16,5	3,8	0,8	5,1	0,5
P	Η.	1		7	55				9,7	1,3		,,,	.,,-	5,9	0,9	2,,5	0,0	4,0	9,7	1,3	,0,0	3,0	0,0	6,9	0,9
1.8.00	ин адобрами	<i>Шк ,Шж</i>		29	<i>35</i> <i>55</i>	21,9	2,7	0,5	10.5	0,9 1,3	16,6	2,7	0,5	5,4 7.3	0,6	21,9	2,1	0,4	8,0 10.5	0,9 1,3	16,6	2,1	0,4	5,4 7,3	0,6
7.79.71		шк ,шл	6,6	1.	35	212	- /		8,0	0,9				5,4	0,5				8,0	0,9				5,4	0,5
Гершанак Арша бский	пеп	Q=10TC/M		49	55	21,9	5,4	1,0	10,5	1,3	16,6	5,4	1,0	7,3	0,9	21,9	4,3	0,8	10,5	1,3	16,6	4,3	0,8	7,3	0,9
uan	7973	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0	35	00 /	20	0.5	8,5	0,9			25	5,8	0,6		- /-	-4	8,5	0,9				5,8	0,6
Apull P]	70	29	55	22,4	3,0	0,5	11,3	1,3	17,1	3,0	0,5	7,9	0,9	22,4	2,4	0,4	11,3	1,3	17,1	2,4	0,4	7,9	0,9
14			7,2	4q	35	22,4	6,0	1.0	8,5	0,9	17.1	6.0	1.0	5,8	0,5	00/1	40	0.0	8,5	0,9	<i>(77.)</i>	4.0		5,8	0,6
9/3	, 5			79,	55	22,7	0,0	1,0	11,3	1,3	17,1	6,0	1,0	7,9	0,9	22,4	4,8	0,8	11,3	1,3	17,1	4,8	0,8	7,9	0,9
	12			2q	35	22,6	3,6	0,5	9,6	0,9	17/1	2.0	2.5	6,5	0,6	00.5	0.0	94	9,6	0,9	17.1		- /:	6,5	0,6
dil	460		8,4	24	55	22,0	3,0	ט,ט	12,8	1,3	17,4	3,6	0,5	9,0	0,9	22,6	2,9	0,4	12,8	1,3	17,4	2,9	0,4	9,0	0,9
POSIC	(3KC)		0,7	/,_	35	22,6	7.2	10	9,6	0,9	100/	20		6,5	0,6				9,5	0,9				6,5	0,6
Тл. КОНСТР. ПР РУК. еруппы	C7. UI			49	55	22,0	1,2	1,0	12,8	1,3	17,4	7,2	1,0	9,0	0,9	22,6	5,7	0,8	12,8	1,3	17,4	5,7	0,8	9,0	0,9
CCCPT	e		_	•		./	۸ ⁷⁷								B ma	าชิงูบน	P 770	uhene	ME4	HADM	amil	RHDIE	нагр)43 <u>K</u> U	
327	oag	ļ	OTM	etka bej	exhe-	±Mx	* 5								на ур	OBHE	Берху	ieeo	обрез	a py	HÔOM	ента	под	ODHY	

Отметка верхнета обреза дундамента

Схема нагрузок на фундаменты

В таблице приведены нармативные нагрузки на уровне верхнего обреза фундамента под одну цинприфугированную стойка кольцевого сечения нагрузки с индексот "к действуют валь оси эстакады, и индексом "у" – перпендикулярно оси эстакады.

ТК Нагрузки на фундаменты центрифугированных 3.015-2/77 опор эстакад типов Шк;Шж., Шаг опор 12 м. Выпыск Лист 1 57

	Такадв И Нагря		ПРО- ВОЛЬ- НОЯ	BETP O- BAR HOTP43-		Темпе, пежу							поро	,	Root			10074) 1008 01				L = 7	
SKSUMD!	KO HO NOTOH HBIÙ MET P TC/M	TAGHU- POBOHOL TIMETKU SEMJIU	Ma	KA Krc/ _M ²	N	M _X	Hx	My	Hy	N rc	Mx	Hx	My	Ну	N	Mx	Нх	My	H4	N	Mx	ия с Нх	ппор Му
-	10/11	<u> </u>	-	35		70		7,4		76	TCM	70	TCM	TC	70	TCM	TC	TCM	70	7/2	TGM	70	TOM
١.			29	55	21,8	1,9	0,4	9.7	0,9 1,3	16,5	6,7	1,4	5,1	0,6	21,8	1.4	0,3	7,4	0,9	16,5	7,2	1,5	5,1
14.	1	6,0	<u> </u>	35	-			7,4	0,9				6,9	0,9				9,7	1,3				6,9
1,2			49	55	21,8	3,3	0,7	9.7	1,3	16,5	8,1	1,7	5,1 6.9	0,6	21.8	2.9	0,6	7,4 9,7	1.3	18,5	8,5	1.8	5,1
1118				35				8,0	0,9				5,4	0,9				8,0	0,9				6,9
200	IIv, II.,	4	29	55	21,9	2,1	0,4	10,5	1.3	16,6	7,0	1,1	7,3	0,8	21,9	1,6	0,3	10,5	1,3	16,6	7.7	1.2	5,4 7,3
2	'	0,6	,	35	010	7.0	0.7	8,0	0,9				5,4	96				8,0	0,9				5,4
	Q=1,0 Th		49	55	21,9	3,8	0,7	10,5	1,3	16,6	9,0	1,4	7,3	0,9	21,9	3,2	0,6	10,5	1.3	16,6	9,6	1,5	7.3
			2	35	00/	0/	0/1	8,5	0,9				5,8	0,6				8,5	0,9				5,8
1	ļ		29	55	22,4	2,4	0,4	11.3	1,3	17.1	6,3	4,9	7.9	0,9	22,4	1,8	0,3	11,3	1,3	17,1	6,3	0,9	7.9
		7.2	1.	35	22/1	4,2	0.7	8,5	0,9	457.4	0/		5,8	0,6	00/	~ .*	0.0	8,5	0,9	2000			
			49	55	22,4	4, 2	0,7	11,3	1.3	17,1	8,4	1,2	7.9	0,0	22,4	3,6	0,8	123		/	. c**		
H	ł		20	35	22,6	2,9	0,4	9,6	0,9	17,4	5.7	0.7	6,5	46	22.6	2,1	0,3	3,6	6.9	17.4	5.7	27	6,5
		84	29	55	22,0	-,5	5,7	12,8	1.3	///4	0, 1	<i>U, 1</i>	9,0	9	22,6	2,1	0,0	12,8	1.3	147	<i>U, 7</i>	<i>U, 1</i>	90
	}	4,7	/	35	000	5.0	0.7	9.6	0,9	17,4	8,2	1,0	6,5	0,6	200	4,3	ء د.	9.5	0,9	17.4	8,2	1.0	6,5
Ц			49.	55	22,6	0,0	<i>U, 1</i>	12,8	1,3	14.4	0,2	,,0	9,0	0,9	22,6		0,6	12,8	1.3	11,7	0,2	. 40	9,0
Г енинград		ка верхно за ментсь ч			H×								B ypi ye Had	παδλι 18 με Η πρυ 19 μ3 η	uye Bepxi Joyru W c ii	NDUBO YEZO YDOBO YBEKI	POBHO O DO HIYK POM J	HOHUS HOP Pact of Control	MOITI SYHAO SUNY I	UBHBI MEHN TONGU	9 HO 10 NO 8605	2 043N 0 000 0000 0000 3	U HA YY YUЯ. YCTOM YCTOM

Схема нагрузок на фундаменты.

Нагрузки на д. эндаменты центриригиробач-ных опор эстамад типов Т.к., Т.ж. | War onop 12 м.

16130

83

Expert 1005

		रियाग अटाव- KGÖBI U HGIPX3KA	HUE OT BEOXO	ная	Ветро- вая нагряз-		Te meoro Apomes	x 17011		IX OTO	विवेविष्ठ १	÷12 м грубопр гнцева	06000		
прознова		на погон- ный тетр тс/т	a course	MIZ	KIC/M2	N TC	M _X TCM	Hx	My	Hy	N TC	M _X	Hx	My	Hy TC
				29	35	21,8	2,4	0,5	13,2	1,9	16,5	13,0	2,7	11.5	1.6
111			6,0	P	55				16.1	2,4				19,0	2,9
70p 8yn16			5,5	49	<i>35</i>	21,8	4.8	1.0	13,2	1.9	16,5	15,4	3,2	11,5	1,6
7				~~	55		,,,,	,,,,	16,1	2.4	70,0	1.5,,	0,2	19,0	2,9
W				29	35	21.9	2,7	0,5	14,3	1,9	16,6	11.3	2,1	12,4	1,6
nammura IPOBEPUA			6,6	- <i>Y</i>	55	24,5	<i>L, 1</i>	0,0	17,5	2,4	70,0	/ ///		20,7	2,9
IIDO		<u>Ш</u> к, <u>Ш</u> ж	0,0	49	35	21,9	5,4	1,0	14.3	1.9	16,6	14,0	20	12,4	1,6
NUMBER OF THE STREET		9=1,07%		74	55	21,9	0,4	7,0	17,5	2.4	10,0	14,0	2,6	20,7	2,9
HIVEN WEEN		ľ		29	35	22,4	3,0	0,5	15,5	1,9	17.1	10,2	17	13,4	1,6
3000			7,2	-7	55	<i></i>	0,0	U,U	19,0	2,4	14.7	10,2	1.7	22,5	2,9
1				49	<i>3</i> 5	22,4	6,0	1,0	15,5	1,9	17.	12.0	0.0	13,4	1.6
				14	55	22,1		7,0	19.0	2,4	17,1	13,2	2,2	22,5	2,9
2 78				20	35	22,6	3,6	0.5	17,8	1.9	19/	00	10	15,3	1,6
HETP IN			8,4	29	55	22,0	<i>V</i> , 0	0,5	21,9	2,4	17,4	8,6	1.2	26,0	2,9
M KOH				49	35	22,6	7.0	1.0	17,8	1.9	17,4	12,2	17	15,3	1.6
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				14	55	<i>a</i> . <i>c</i> . <i>c</i> . <i>c</i> . <i>c</i> . <i>c</i> . <i>c</i> . <i>c</i> . <i>c</i>	7.0	<i>1. (</i>	21,9	2,4			1.7	26,0	2,9
CCP TUISTAI POI		mmemra b	epx-	V *H'					B 11.	TO SAUGE	P NPUB PRHET TUPOBOI	TPUME POEHSI O OOPES	YOHUE HOPMO HOVINY MOVINY	ากบริหรา	ie Ho

Omnemna bepx-HEEO OTPESSO Apshaamenma ± ± Hx

Схема наерызон на финдаменты.

В тоблице приведены но ртотивные нагрязки на уробне верхнего обреза фындатента под одну центрифугированняю стойку кольцевого сечения. Нагрузки с индексот, Х. действуют вдоль оси эстакады, с индексот "У"— перпендикулярно оси эстакады.

TK	Нагрузки на фундатенты центрифугирован- ных опор эстакай типов III к; III ж .	3,015	
1977	Har onop 12 m.	Bunson I	

		Γ																								84
		Z	17 3C-		17	Зетро-				рный		7K	L	= 36 /	ч					POTS	рныц	6 51	OK	<i>ا</i> =	54 M	,
8	Т	80	१४.५१ तथा । १४.५१ मुझ	BEJOKA GOTOKO-	NOP-	<i>विदा</i> ष ११०१७०५३	Mor	ежут	מאומי	9 0110	ρα	/	Konye	BAR	anapa	2	11por	1EKY7	OYHQ.	9 01	пора	Ko	riyeb	308	апара	a
DESKENKO		3 11	DPOH- NÚ Vezo	dbi da ananupo- bonnau armerku semu _m	pyska	NICO /m²		M TCM	H _X	My	Hy	N rc	M _X	Hx rc	My	Hy	N rc	Mx TCM	H _X	My TCM	Hy TC	N TC	M _X TCM	Hx TC	My	Hy
	+	7	914		2	35	00.0	7/	0.5	10,4	1.3	// =	2/	07	7.1	0,9	22.0	0/		10.4	1.3	14.7	6.8	1.4	7.1	0,9
736					29	55	22.0	3,4	0,7	14.7	2,0	14,7	3.4	0,7	9.7	1.3	22.0	2.4	0,5	14.7	2.0	14,1	0,0	.4	9.7	1.3
100	_	The		6,0	49	<i>35</i>	22,0	6,7	1.4	14.7	1.3 2.0	14.7	6.7	1.4	9.7	0.9 1.3	22,0	4.8	1.0	10.4	1.3 2.0	14,7	9,2	1.9	9.7	1.3
Кполнитель		gebar			29	35 55	22,0	3.8	0.7	11,2	1.3	14.8	3.8	0.7	7,6 10,5	0,9 1,3	22,0	2.7	2,5	11,2	1.3	14,8	6.1	1.1	7.6 10.5	0,9 1,3
gung	, iii	000	· ·	6,6	40	35	22.0	7.6	14	15,9 11,2	1.3	14.8	7.6	14	7.6	49	22,0	5.4	1.0	15.9 11.2	13	14.8	8.8	1.6	7.6	0.9
Doed	POKUL		ℤĸ		-	<i>55</i>	22,0	,,0	,	15,9	20	/ "0	,,,		10,5	1.3		5,7		15,9	20		-		10,5	1.3
Зина	PUHK	2	=1,0 ^{TC} /M		29	55	22,1	4,2	0.7	12.0	1.3	149	4.2	47	8,1 11,3	0,9 1.3	22,1	3.0	0,5	12.0	1.3	14.9	5,7	1.0	8.1 11.3	1.3
3/2	a))			7.2	40	35	22.1	84	1.4	12.0	1.3	14,9	8.4	1.4	8.1	0,9	22.1	6.0	1.0	12,0	1.3	14,9	8.7	15	8,1	1.9
3	100					55	22.7	0.7	.,	17.1	20	11,3	0.7	7.7	11.3	1.3	,,			17.1	2.0				11.3	1,3
P. AP.	eneo	П		۵/	29	<i>35</i> <i>55</i>	22,7	5,0	0.7	13,5 19,5	1,3 20	15,5	5,0	0.7	10,2 13.9	1,3	22,7	3.6	0,5	13.5 19.5	2.0	15,5	6.9	0,9	10,2 13,9	1.3
Ноч. отс Лу. конс	CT UNK			8,4	49	35 55	22.7	10,0	1.4	13,5 19,5	1.3	15,5	10,0	1.4	10,2 13.9	13	22,7	7.2	1.0	13.5 19.5	1.3	15,5	10,5	1.4	10,2 13,9	13
י מרינשות המשנים י	A Terrimond	or nenumber		a beox- repesu vena ~	2 Luž	N	the Here the	индим	PATA!						L. Si	Table Dabne Strypos Arpssk Ngekco Mara	TUYE BEDX BEHNYE W C U W "Y" Y3KU N	npubli inera indekcu - nepi	egensi oopes viky nendui nendui	40 NU NOON NON6 YE GEVEN YARRA	TE PATUB PATUB BORD BYPOT VI OCC	NTQ 1 CEYENG BGOAD Y 3CT SYLUPOO	100 00 118. 1204 1204	ONY 40 SCTONO !	287,04- 9361, C	5-2/17
8	Š	L													1977						2420	06			I	70

																								85
	Tun ac-	Poecron - HUE	TPO-	Berro-	7	Temne	DOTSP	ный	810	v /	, = 72	2 M			Ţę.	мпера	ТУРНЫ	e GION	ru Z=	-36÷2	72 M.	anar	261	1 -
		07	0016- HUG	<i>रैतात्र</i> भवागुधःः					opa				onapo	7	11001	MECME!	ו <u>ומת אמו</u> ודחעה	e GIOR Peperk 109 0	nana	reogo:	HUEBO	19 00	16000 1000	8
	NO HO NO POH-	MOHU-	HOTPSG KO	M	4/		T		<i>,,</i>			,,		·	41	4.		44		/			-/-	<u> </u>
1180	METP	POBOHIO 07MENU 3EMUU	,,,,	MC/M2	TC	Mx TCM	Hx	My	Hy	<i>N</i>	MX	HX	My	Hy	//	Mx	Hx	My	Hy	N	Mx	Нх	My	Hy
111	TC/N	M		35	/-	7614	76			7C	1011	<i>10</i>	TCM	70	70	TCM	TC	TCM	TC	70	TCM	rc	TCM	70
111.			29	55	21,9	2,0	0,4	10,4	1,3	14.7	7,6	1.6	7.1	0,9 1.3	22,1	3,3	0,7	16,4	2,3	14,9	12,4	2,6	12,9	1.9
		6,0	<u> </u>	35				14.7	2.0				9,7	0,9	-			20,8	3,5				15,7	2,3
1]	0,0	49	55	21,9	3,9	0,8	10,4 14,7	1,3 2,0	14.7	9,6	2,6	9.7	1.3	22,1	6,5	1.4	16,4 20,8	2,3 3,5	14,9	14.4	3,0	12,9 15,7	1.9
100			0	35				11,2	1.3				7,6	0.9				17,1	2.2	-	-		13,5	1,8
Mongoon			2g	55	22,0	2,2	0,4	15,9	2.0	14.8	6.6	1,2	10.5	1.3	22,2	3,7	0,7	21.8	2,9	15.1	10,5	1,9	17.1	2,3
Section 1		6,6	49,	35	-	.,		11.2	1.3	14.8	00	1,5	7,6	0,9	00.0	~/		17,1	2.2	45.	12.0	0/	13.5	1.8
iscn insum	, ,,,		14	55	22,0	4,4	0,8	15,9	2.0	14.0	8,8	1,6	10,5	1.3	22,2	7.4	1.4	21.8	2,9	15,1	12,8	2,4	17.1	2,3
DULC	<u> </u>		20	35	201	0.5	0/	12.0	1.3			1.0	8,1	0,9		,		18,4	2.2				14.5	1,8
48	9=1.0 10/m		24	55	22,1	2,5	0,4	17.1	2.0	150	6,3	7.0	11,3	1.3	22,4	4,1	0,7	23,5	2,9	15,2	9,0	1,5	18,5	2,3
	I /M	7,2	10	<i>35</i>	, 20	40		12,0	1.3	15.0	0 97	1,5	8.1	0,9	20/	0.0	.,	18,4	2.2	150	99 E	, 0	14,5	1,8
1			49	55	22,1	4,9	0,8	17.1	2,0	15,0	8.7	1,0	11.3	1.3	22,4	8.2	1.4	23,5	2,9	15,2	11,5	1.9	18,5	2,3
20			20	35			- 4	13,5	1.3	15.5	7,5	1.0	10,2	0,9		10		21,9	2,3				15.0	1,8
CHECK		8,4	24	55	22,7	2,9	0.4	19,5	2,0	15,5	1,0	7.0	13,9	1.3	22,7	4,9	0,7	28,2	3,1	15,5	7,5	1.0	20,5	2,3
7. CA		"	/.	35				13,5	1,3	45.5	10.5	1.5	10,2	0,9	227	00	1.	21,9	2,3	15.5	10.5	41.	15,0	1,8
প্র			49	55	22,7	5,9	0,8	19,5	2,0	15,5	10,5	1.5	13,9	1,3	22,7	9,8	1,4	28.2	3,1	15,5	10,5	1,4	20,5	2,3

IPORATHOLU UHGTUTSTALI

Схема нагрузок на фундаменты

В таблице прибедены нармативные нагрязки на в таблице прибедены нармативные нагрязки на уровне верхнего обреза срундатента под обну центрифучированную стойту кальцеваго сечения. Нагрузки с'индексти, х'действуют вдаль оси эспанады, с индексом, х'- перпендикулярно оси эстанады.

TK Haspysku na фундатенткі центрифугированнкіх апар эктакад типа <u>т</u>ік. 1977 War anap 18 м.

86

	Tun ac.	PaccTOA- HUE	MPO-	BETPO-		TEMI	TEPQ;	TYPHE	עני ס	ADK I	L= 36	m				T	· M // E	Pats	PHA	i 50	OF I	1. = 1.5	204	80
П	אם אם אם אם אם אם אם אם אם אם אם אם אם א	OT BEPXA OCTAKADI			ПРОМ	ежут	מאצם.	9 00	DPØ	K	онце	ВПЯ	DNOP	Q	POM			חם את			ye 8		000P	
	ON TOLM	MATHUPO BOYHOÙ OTMETKU BEMAU	НО ГРУЗ КО	KO KIC/M²	N TC	Mx TCM	Hx TC	М у тсм	Hy TC	N TC	M x TCM	Hx TC	My TCM	Hy TC	N TC	Mx TCM	Hx TC	My TCM	Hy TC	N TC	Mx TCM	Hx TC	My TCM	H
+			0	35	35.3	4.8	1.D	11.0	0.9	29.3	40	1.D	7.8	0.6	767			11.0	0.9				7.8	0
	<u>.</u>		29	55	00.0	7.0	1.0	13.3	1.3	25.5	4.8	1.0	9.5	0.9	35.3	3.8	0.8	13.3	1.3	29.3	3.8	0.8	9.5	0.
	3	6.0	49	35	353	9.6	2.0	11.0	0.9	29.3	9.6	2.0	7.8	0.6	35,3	7.6	1.6	11.0	0.9	202	7.6	1.5	7.8	0
П	s			55				13.3	1.3		0.0	2.0	9.5	0.9	00.0	7.0	1.0	13.3	1.3	29.3	7.6	1.6	9.5	0
	nde		29	<i>35 55</i>	35.5	5.4	f.D	11.6	0.9	29.5	5.4	1.0	8.1	0.6	35.5	4.3	0.8	11.6	0.9	29.5	4.3	0.8	8.1	Ø
	B IVK, IVK	6,6		35				14.1 11.6	1.3 D.9				10.0	0.9				14.1	1.3	20.0			10.D	0
32	V_{K}, V_{K}		49	55	35.5	10.8	2.0	14.1	1.3	29.5	10.8	2.0	8.1 10.0	0.6 0.9	35.5	8.6	1.6	11.6	0.9 1.3	29.5	8.5	1.6	8.1	0
ENGU	q= 1.5		2 <i>q</i> 35 55	35				12.1	0.9				8.5	0.5 0.5				12.1	0.9				10.0 8.5	0
QUHK CABUTEUR	q= 2.D		29		35.6	<i>6.0</i>	1.0	14.9	1.3	29.6	6.0	1.0	12.6	0.9	35.6	4.8	0.8	14.9	1.3	29.6	4.8	0.8	10.6	0
	^{τc} /m	7.2	,	35				12.1	0.9			l	8.5	0.6				12.1	0.9				8.5	0
2			49	55	35.6	12.0	2.0	14.9	1.3	29.5	12.0	2.0	10.5	0.9	35.6	9.6	1.6	14.9	1.3	29.6	9.6	1.6	10.6	0
71			•	35	750	7.0	10	13.2	0.9	22-			9.2	0.5				13.2	0.9				9.2	4
СТ. ИНЖЕНЕР			29	55	35.9	7.2	1.0	16.4	1.3	29.9	7.2	1.0	11.7	0.9	35.9	5.8	0.8	16.4	1.3	29.9	5.8	0.8	11.7	1
HAC		8.4	,	35	<i>35.9</i>	14.4	2.0	13.2	0.9	200	,,,	0	9.2	0.6	7			13.2	0.9	00.0	"	1.0	9.2	1
22.0			49	55	33.9	14.4	2.0	16.4	1.3	29.9	14.4	2.0	11.7	0.9	35.9	11.6	1.6	16.4	1.3	29.9	11.6	1.6	11.7	l

DIMETRI BEPX- + Mx
HETO ODPESO

\$\text{\$\exititt{\$\texi{\$\texi{\$\text{\$\texititin}\$\text{\$\text{\$\text{\$\exititt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\texi{\$

Схема нагрузок на фундаменты

В ТОБЛИЦЕ ПРИВЕДЕНЫ НОРМОТИВНЫЕ НОГРУЗКИ НО УРОВНЕ ВЕРХНЕГО ОБРЕЗО ФУНДОМЕНТО ПОД ОДНУ ЦЕНТРИФУПИРОВОННУЮ СТОЙКУ КОЛЬЦЕВОГО СЕЧЕНИЯ. НОГРУЗКИ С ИНДЕКСОМ, Х" ДЕЙСТВУЮТ ВДОЛЬ ОСИ ЭСТОКОДЫ С ИНДЕКСОМ, У"— ПЕРПЕНДИКУЛЯРНО ОСИ ЭСТОКОДЫ.

ТК Нагрузки на фундатенты центрифугированных 3.015-2/7. пор эстакад типов <u>Г</u>Кк; <u>Г</u>Уж; <u>Г</u>Хж; <u>Г</u>Уж. Выпуск лист 1977 Шаг апар 12 м.

7	Тип эс- Такады	Расстая ние от верха	<i>001</i> 6-	ветро- вая				TYPHE								7	EMI	PEPQ7	TYPHI	blú d	SJOK	4 = 72	? M	87
(g),	KO HO	ЭСТОКАЙЬ 20 ПЛ О НИ -	Ная на г Руз	Нагруз Ка	//PDM	<i>E3KYTU</i>	74499	סחם	PO	Ko	ТНЦЕ	ទី៨Я	ONDP	Par -	POM	1EHY	TOYH	79 DI	TOPO		нце			00
3	ПОГОН- НЫЙ МЕТР Т ^С /М	РОВОЧНОЙ ОТМЕТКИ ЗЕМЛИ М		Krc/m2	N TC	Mx TCM	Hx TC	My TCM	Ну тс	N TC	Mx TCM	Hx TC	My TCM	Hy TC	N TC	Mx TCM	Hx TC	My TCM	Ну тс	N TC	Mx TCM	Hx TC	My TCM	<i>F</i>
			29	35 55	35.3	3.4	0.7	11.0 13.3	0.9 1.3	29.3	8.2	1.7	7. 8 9.5	0.6 0.9	35.3	2.9	0.6	11.0 13.3	0.9 1.3	29.3		1.8	7.8 9.5	0
10		6.0	49	35 55	35.3	6.8	1.4	11.D 13.3	0.9 1.3	29.3	11.5	2.4	7.8 9.5	0.6	35,3	5.8	1.2	11.0 13.3	0.9	<i>29.</i> 3	11.5	2.4	7.8 9.5	0.
ndago			29	3 <i>5</i> 5 <i>5</i>	35.5	3.8	<i>D.</i> 7	11.6	D.9 1.3	29.5	10.8	2.0	8.1 10.0	0.6 0.9	35.5	3.2	D. 6	11.6	D.9 1.3	295	11.9	2.2	8.1	0
301	ĪŸĸ,ĪŸ₩	6.6	49	35 55	35,5	7.6	1.4	11.5	1.9	29.5	14.6	2.7	8.1 10.0	0.6 0.9	35.5	<i>6.4</i>	1.2	14.1	D. 9	29.5	15.1	2.8	10.0 8.1	D.
	<u>V</u> K; <u>V</u> * q= 1.5		2 q	35 55	35.6	4.2	<i>0</i> .7	12.1 14.9	0.9 1.3	29.6	9.6	1.6	8.5	0.6	35.6	3.6	<i>Q.6</i>	12.1	1.3 D.9	29.6	10.2	1.7	10.0 8.5	9.
_	9 = 2.0 TC/M	7.2	49	35	35.6	8.4	1.4	12.1	0.9	29.6	13.8	2.3	10.6 8.5	0.9 0.6	35,6	7.2	1.2	14.9	1.3 0.9	29.6	12.0	2.0	10.6 8.5	<i>D</i> .
	,		29	<i>55 35</i>	75.0	6.0		14.9	1.3 0.9				<i>10.6</i> <i>9.</i> 2	0.9 0.6			1.2.	14.9	1.3 D.9				10.6 9.2	0
		84	- 4	<i>55</i>	35.9	5.0	0.7	15.4	1.3	299	8.6	1.2	11,7	0.9	35.9	4.3	0.6	16.4	1.3	29.9	8.6	1.2	11.7	0.
			49,	55	<i>35.9</i>	10.0	1.4	13.2 16.4	0.9 1.3	29.9	13.7	1.9	9.2 11.7	0.6 0.9	35.9	8.6	1.2	13.2	<i>D.9 1.3</i>	29.9	13.D	1.8	9.2 11.7	0.
	Отметі го обі фунда	ка верхі Реза Імента	YE-+ MX	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u>,</u> Įx								YP YE Ha	OBHE HTPU TPY31	ULE TO BEPTONE	TPU BE X HE PO POBOH Y HOEK	POPHO PHYHO COM.X	esa 9 croui. " devi	MOTT SHOO KY K CT BYN	TMEHT OAbYE OT BÖ	a no. Boro Disto	T OTI CEYE CU FCI	HY CHUSI. TOKOĐ	161,
יי אוריוומוווי דעט	•	хема	HOLE.	77777 430K	אם ש	ามหัวตา	менті	b/				一	TK .	rpysk IHDEK Harp Onop	TUCU	:ндек 9"- на ф кад Т	COM,X ПЕРП УНДО ИПОВ	MEHTE <u>IV</u> K; <u>IV</u>	CT BYN KYNAP H (LEH)	OT ET HO OU PUBSI	10.716 0 10 301 	7	W 3C	U ЭСТАКОЙ ФКОДЫ.

Mopeyenkoba				Magayuikoga
170061				Tray -
//сполнитель				TPOBEDUS
Зиновьев	Гершонок	Apwaßeruú	Финкельштейн	
ASI	77.7.	June	The state of	
Нач. отдела	M. KOHCTP,	PYK. PPYTINI	СТ. ИНЖКЕНЕР	
, CCCP	1/4 TUTUTOUN	ווור/וו/אוא	משש	

Тип эста- кады и нагрузка на погон-	Paccion- HUE OT BEPXA JCTAKADW DO TMAHUPA-	ная	8etpo- 809 Harpys-		ol b M	ectax	PH618 NDNEPL	CYH 6/X	07600	DO TPY	DONPO	50008 -	
ный метр ТС/м	BOYHOÙ DTMETKU 3EMJU M		Kr/m2	N TC	Mx TCM	Hx TC	My TCM	Hy 70	N TC	Mx TCM	Hx TC	My TCM	Hy TC
		2 9,	35	35.3	4.8	1.0	22.1	2.8	26.5	15.4	3.2	20.3	2.5
	6.D	ļ	55		,,,,	7.0	24.9	3,3	20.0	13.4	0,2	22.6	2.9
		49	35	35.3	9.6	2.0	22.1	2.8	26.6	20.2	4.2	20.3	2.5
<u>і</u> ўк; <u>і</u> ўж;		ļ	55	00.0	0.5	2.0	24.9	3.3	20.0	20.2	7.2	22.6	2.9
$\overline{Y}_{K};\overline{Y}_{K}$		29,	35	35.5	5.4	1.0	23.7	2.8	25.0	11:0	26	21.8	2.5
q = 1.5TC/M	6.6		55	00.0	0.4	1.0	26.9	3.3	26.8	14.0	20	24.4	2.9
9= 2.0 Tey		49,	35	35.5	10.8	2.0	237	2.8	200	10 %	7.0	21.8	2.5
7-2.5 /M			55	00.0	10.6	2.0	26.9	3.3	26,8	19.4	3.6	24.4	2.9
		29.	35	<i>35.6</i>	6.D	4.5	25.4	2.8	20.0			23.3	2.5
	70	24	55	00.0	0.0	1.0	28.9	3.3	26.9	13.2	2.2	26.1	2.9
	7.2	49	35	75.0			25.4	2.8				23.3	2.5
		74	55	<i>35.6</i>	12.0	2.0	28.9	3.3	26.9	23.D	<i>3</i> .2	26.1	2.9
		29	35	76.0			28.8	2.8				26.3	2.5
	8.4	-4	55	35.9	7.2	1.0	2 9.6	3.3	27.2	20.2	2.8	29.6	2.9
	0.4	49	35	<i>35.9</i>	14.4	•	28.8	2.8				26.3	2.5
		74	55	33.9	14.4	2.0	29.6	3.3	27.2	27.4	3.8	29.6	2.9

DIMETKU BEPX- + MX NY HY
HERO OFFEST + MX + HX

PSHOUMENTU + HX

ттүтт Схема нагрузок на фундаменты ПРИМЕЧАНИЕ
В ТОБЛИЧЕ ПРИБЕДЕНЫ НОРМАТИВНЫЕ НАГРУЗКИ НО
УРОВНЕ ВЕРХНЕГО ОБРЕЗА ФУНДАМЕНТА ПОД ОДНУ
ЦЕНТРИ ФУЧИРОВАННУЮ СТОЙКУ КОЛЬЦЕВОГО СЕЧЕНИЯ.
НАГРУЗКИ С ИНДЕКСОМ, Х" ДЕЙСТВУЮТ ВДМЬ ОСИ ЭСТАКАДЫ,
С ИНДЕКСОМ, У"-ПЕРПЕНДИКУЛЯРНО ОСИ ЭСТАКАДЫ.

ΤK	Нагрузки на фундаменты центрифугированных	3.0.
1977	οπορ эςτακαθ τυποβίν κ;ν πκ;ν πκ;ν πκ. War οπορ 12 m	выпь Т

	Tun ac-	MUE OT	Продоль	Ветро-		TEMAL	pary	PHOIL	<u> </u>	OK	L = 0	36 M				7	EMNO	ерату	PHOL	§ 51	OK	Z= .	54 M	
10	NI MOI!	Bepra əc Tangığır	भवार भवारमुख	вая нагруз-	Пром	ежут	OYHOS	0110	ρα	1	Онце	809	опоро	z	Прог	чежу	704H	מ ממי	пора	Ko	Hyet	वत्र	onop	a
DBASIIIKBA	QY3KQ KQ NQPO KOW METQ TC/M	OO JAAHUDO BOYHOÚ STMETKU BENYJU	KA	KIC/M²		Mx TCM	H _X TC	My TCM	Hy TC	N TC	M _X TCM	Hx TC	My TCM	fly TC	N TC	Mx TCM	H _X TC	My TCM	Hy	N TC	M _X TCM	Hx TC	My TCM	
,			29	35 55	40,8	6.7	1.4	15,4 19.6	1.3 2.0	27,3	6,7	1.4	10,4 13,1	0,9 1,3	40,8	1.8	1.0	15,4 19,6	1.3 2.0	27,3	12,6	2.6	10.4 13.1	-
1		6,0	49	35 55	40,8	13,0	2.7	15,4 19.6	1.3 2.0	27,3	13.0	2,7	10,4 13,1	0,9 1.3	40,8	9.6	2.0	15.4 19.6	1.3 2.0	27,3	17.4	3,6	10.4 13.1	
noegoon	W 77	6.0	2q	35 55	41.0	7.6	1.4	16.1 20.8	1,3 2,0	27.4	7.6	1.4	10,9 13,9	0.9 1.3	41.0	5,4	1.0	16.1 208	1.3 2.0	27.4	11,8	2.2	10,9 13,9	
menin	$IV_{\kappa_i}V_{\kappa}$	6,6	49	35 55	41,0	14.6	2.7	16.1 20,8	1.3 2.0	27,4	14.6	2,7	10,9 13,9	1.3	41.0	10,8	2.0	16,1 20,8	1.3 2.0	27.4	11.8	2.2	10,9 13,9	١
DUHKEND	9=1,5 9=2,0		29	35 55	41.1	8.4	1.4	16.9 22.0	1.3 2.0	27,6	8.4	1.4	11.5 14.7	0.9 1.3	41.1	6.0	1.0	16,9 22,0	1.3 2.0	27,6	10,9	1.8	11.5 14,7	4
, 4	TC/M	7,2	49	35 55	41.1	16.2	2.7	16.9 22.0	1.3 2.0	27,6	16,2	2.7	11.5 14.7	ц9 1.3	41.1	12.0	2,0	16,9 22,0	1.3 20	27,6	16,9	2.8	11.5 14.7	١
001		,	29	<i>35</i>	41.4	10,0	1.4	18.4 24.5	1,3	27.8	10,0	1.4	12.5 16,3	0,9 1,3	41.4	7.2	1.0	18,4 24,5	1.3 2.0	27.8	10,5	1.4	12,5 16,3	T
CT. UNIWE.		8,4	49	35 55	41.4	19.4	2.7	18,4	1,3	27.8	19.4	2,7	12.5 16.3	<i>Q9</i>	41,4	14.4	2.0	18,4 24,5	1.3	27,8	17.7	24	12,5 16,3	,

Briefica Bops + Ms 1 + Ms 2 +

PORKTHOW UNCTUTE

Схема нагрузак на фундаменты

В таблице приведены нормативные напружи на уровне възмета обдази контромента над одну центрифунированную стоику коньцевата сезения. Напружи с индексом "Х" действуют вдом оси эстакады, с индексом "у"— перпендикумярна оси эстакады

TK Harpysku na фундатенты центрифугированных 3,015-2/17
1917 опор эстакад типов IIx; Ix. War опор 18 м. 3,015-2/17

1115	Tun эс- Такады и наты	7G/LINUUD		Ветро- вия нагро			epars ouna				= 72		ппора		O MO	CIUX	HONE	ie 6 10 D e 4H6 IOS 01	IX OTE	0008	72 m TPY 001 HY 080		.ते <i>0</i> ह	
родинова	NA HA NOTOH- HbiÚ METP TG/m	ÕÕ INCHUPO BONHOÚ OTMETKU JEMNU IN	HOITDSG	MÍ MTC/M ^Z		Mx TCM			Hy	N rc	M _X IGM	Hx TC	My TGM	Hy	N 1C	Mx TCM	Hx rc	My TCM	Hy TC	N rc	Mx TCM	H _X	My	Hy 10
Pour			29	<i>35</i>	40,8	3,9	0,8	15,4 19,6	1.3 2.0	27,3	14,4	3.0	10,4 13,1	0,9	41,0	6,5	1,4	27.1 31.6	3.2	27,5	28,8	6,0		2,8 3,3
7		6,0	49	35 55	40,8	7.8	1,6	15,4	1.3	27,3	18,3	3.8	10,4	0.9	41,0	13,1	2,7	27,1 31.6	3.2	27,5	32,7	6.8	21,9	2,8 3,3
Moberul	TYN, Yn		29	<i>35</i>	41,0	4,4	0,8	16,1 20,8	1.3	27,4	12,8	2,4	10,9	0,9	41.2	7.4	1.4	29,1 34,0	3,2	27,7	24.0	4,5	23,7	2,8 3.3
HON CHUK!		6,6	49	<i>35</i>	41,0	8,8	1,6	16,1 20,8	1.3	27,4	17.2	3.2	10,9	0,9	41,2	14,7	2.7	29,1 34,0	3,2 4,0	27.7	28.5	5,3	23,7	2,8 3.5
Apurcia Apurcia Apurcia	9=1,5 9=2,0		29	<i>35</i>	411	4.9	0,8	16,9	1,3	27,6	11,5	1.9	11.5	0,9	41,4	8.2	1,4	31.0 36,0	3,2 4.0	27.8	20,7	3,5	25,4	2,8 3.3
1	TG/M	7,2	49	35 55	41,1	9,8	1.6	16,9 22,0	1.3 2.0	27,6	15,4	2.7	11.5	0,9	41.4	16,4	2.7	31,0 36.0	3,2 4,0	27,8	25,6	4.3	25,4	2,8 3.3
moi de			29	<i>35</i>	41,4	5,9	0,8	18,4 24,5	1,3	27,8	10,5	1.5	12,5	0,9	41.7	9,8	1.4	34,9 41,2	3,3 4,0	28,2	17,0	2,4	28,7	2,0
i. Koham. Iyr. 2psi. 7. UK P Ce		8,4	40	35	47,4	11,8	1,6	18,4	1.3	27,8	16,4	2,3	12,5	0,9	41.7	19,6	2.7	34.9	3,3	28,2	22,9	3,2	28,7	2,8
HETUTSTAN			דוום לפ	55		\ <u>\</u>		24.5	2.0				16,3	1.3 5 mc	าอีกบุบ	ie ni	าบซ็อบ	41,2 EYOH PEHU PEJO	HODA	namuit		нага	U3KU)	3,5 HCI

Отметка берх- +М нега дореза архидатента

Схема нагрузок на фундаменты

дроине верхнего чирого суднательного сечения. Наерузки с инде**ксот, х** дейст**буют** вдоль оси этохады, с индексот, у "- перпендикулярно оси **эстохады**.

Нагрузки на фундаменты центрифугированных 3.015-2/77 апар эстакад типовШк; Ук. War anap 18 м. Bunsch Auc m I 76 91

																									9/
		ТИЛ ЭС ТАКА ды	Paceros	Про-	Ветро-	17	lemne	рату	ОНЫЦ	810	K L=3	6 M					//,	7емп	ерату	рныц	1 81	OK	L	= 48	M
TT	1	LU HOLDUZ	3c7anno	8016- Hd8	Вая нагруз	Пром	exym	OYHAA	опор	DQ*	ħ	онцев	'an	апора		17,001	пежу	точн	an a	пора	Ko.	M488	aЯ	опор	a
	ognamicogo		do NAQHUPO BOYNOÙ OTMETKU 3EMAU	тигруз	KTC/M ²	Ŋ	M x	Hx 7C	My TCM	H y TC	N TC	M x	Hx TC	My TCM	Hy tc	N TC	M x	H _X	Му	Hy TC	N rc	M x TCM	Hx TC	My	Hy TC
1	1				35				5,2	0,9	20.0			3,4	9,6				5,2	0,9				3,4	0,6
] [2			29	55	30,3	3,2	0,7	8,7	1,5	22,2	3,2	0,7	5,8	1,0	30,3	2,8	0,6	8,7	1,5	22,2	2,8	0,6	58	1,0
	3		6,0		35	22.0		1.5	5,2	0,9	22.2	6.0	1,5	3,4	0,6			10	5,2	0,9		5.0	1,2	3.4	0,6
1				49	55	30,3	6,9	1,3	8,7	1,5	22,2	5,9	1,0	5,8	1,0	30,3	5,8	1,2	8,7	1,5	22.2	5,8	7, 2	5,8	1,0
	epu.	<u>VI </u>		29	35	304	3,6	0,7	5,7	0,9	22,3	3,6	0.7	3,8	0,6	20.11	3,1	0,6	5,7	0,9	22,3	3.1	0,6	3,8	0,6
111	1000	<u> </u>	6,6	24	55	30,9	3,0	0,7	9,6	1,5	22,3	3,0	0,7	6,4	1,0	30,4	3,1	0,0	9,6	1,5	22,3	0, 7	0,0	6,4	1,0
400	f	q= 2.0	0,0	49,	35	30,4	7,8	1,5	5,7	0,9	22,3	7,8	1,5	3,8	Q6	30.4	6.2	1,2	5,7	0,9	22,3	6,2	1,2	3,8	0,6
BCA		0=3.0		77	55	30,7	1,0	,,,,	9,6	1,5	22,0	-,,0	", "	6,4	1,0				9,6	1,5	22,5	0,2	7,2	6,4	1,0
Powdeckud Powdeckud Outressurelin		TC/M		29	35	30,9	4.1	0.7	6,3	0,9	22,7	4.1	0,7	4,2	0,6	20.0	3,4	0,6	6,3	0,9	22.7	34	0.6	4,2	0,6
100	Н	/"		-4	55	30,9	9,7	0,7	10,5	1,5	22,7	7,7	0, /	7,0	1.0	30, 9	3, 9	0,0	10,5	1,5	22,7	3,4	4,0	7,0	1,0
			7,2	1/0	35		8,7	1,5	6,3	0,9	00 7	8,7	1,5	4,2	0,6	30,9	6,9	1,2	6,3	0,9	22,7	6,9	1,2	4,2	9,6
1 3				49	55	30,9	0,/	7,5	10,5	1,5	22,7	0,7	7,5	7,0	1,0	34,3	0,3	7.	10,5	1,5	22,7	0, 9	1/2	7,0	1,0
20	H				35	31,1	4,9	0,7	7,3	0,9				4.9	0,6				7,3	0,9		""	7.5	4.9	0,6
FUK TOUTHON			8,4	29	55	31, 1	",9	5,7	12,3	1,5	23.0	4,9	0.7	8,2	1,0	31,1	4,2	0,6	12,3	1,5	23,0	4,2	0,6	8,2	1.0
0 7 7			5,7		35	2,,	10.5	,,	7,3	0,9	20 -			4,9	0,6				7,3	0,9		24	/0	4.9	0,6
1/9/2	Ц			49	55	31,1	10,5	1,5	12,3	1,5	23,0	10,5	1,5	8,2	1,0	31,1	8,4	1,2	12,3	1,5	23,0	8,4	1,2	8,2	1,0
74.4																	17	nume	YOHU	,					

Отметка верхне. + М.

Схема нагрузок на фундаменты

В таблице приведены нормативные наерузки на уровне верхнего обреза фундамента под одну центрифугированную стойку кольцевого сечения. Нагрузки с индексом, х «действуют вдом оси эстакады, с индексом, у "... перпендикумярно оси эстакады.

ТК Магрузки на фундаменты центрифугированных опор 3.015-2/17 эстакад типову ж, VII ж . War опор 12 м. BOITYCK SUCT

																									92
		Тип эс- такады	Расстоя ние отверха	Про-	Ветро-	17	Пемпе,	ратур	OHBIÚ	ð 10	K	L =	60 M				1	Пемпе	pamy	рный	i En	OF	L =	72 M	$\overline{}$
iTT	080	NA HA	от верха Эстакавы	HQR	вая нагруз.	Пром	exym	ዕዛዘፈጻ	0/10	o a	K	онце	BOR	опора		Пром	1e myn	70440	'A 0	пора	ĥo	нцево	19	опорс	7
Jyey Cillion	овлушкое	TOTOH -	OO STAGHUPO BOYHOÙ OTMETKU JEMAU	norpys.	Krc/M ²	Ι.	M x	H _X	1	Hy	N rc	M x	H x	My	Hy TC	Ŋ	M x	Hx TC	M y	Hy	N TC	Mx TCM	Hx TC	My	Hy
+++	1		-//		35				5,2	0,9				3,4	0,6	70		70	5,2	Q9				3,4	46
1	5			29	55	30,3	2,3	0,5	8,7	1,5	22,2	6,4	1,4	5,8	1,0	30,3	1,8	0,4	8,7	1,5	22,2	12,9	2,8	5,8	1.0
1	They		6,0	//-	35	20.2	4.6	1,0	5,2	0,9	22,2	9,2	20	3,4	0,6	200	,,,	0.9	5,2	0,9	00.0	16,6	3,6	3,4	0,6
1	H			49	55	30,3	4,0	,,0	8,7	1,5	22,2	3, 2	2,0	5,8	1,0	30,3	4,1	0,9	8,7	1,5	22,2	70,0	3,0	5,8	1,0
	Uno			29	35	30,4	2.6	0,5	5,7	0,9	22,3	6,2	1,2	3,8	0,6	2011	01	0.4	5,7	0,9	22,3	114	2,2	3,8	0,6
3	Toolepun		6,6	-7	55	30,4		-,-	9,6	1,5		5/2	1/2	6,4	1,0	30,4	2,1	4,4	9,6	1,5	20,0	.,,,	-,-	6,4	1,0
, c		<i>₩</i> ₩		49	35	30,4	5,2	1,0	5,7	0,9	22,3	8.8	1.7	3,8	0,6	30,4	4,7	0,9	5,7	0,9	22,3	15,6	3,0	3,8	0,6
HOK SCALL				/	55				9,6	1,5	22,0	5,5	"1	6,4	1,0	30,4	7, /	0,3	9,6	1,5	22,0	70,0		6,4	1,0
Гершанок Аршавекий Финкамителя		9=2,0		29	35	30,9	2,6	0,5	6,3	0,9	22,7	7,3	1,4	4,2	0,6	30,9	2,3	04	6,3	0,9	22,7	9,4	1,8	4,2	0,6
2000	Н	9=3,0	7,2	-7	65				10,5	1,5		-,,,	"	7,0	1,0	30,9	2,0	0,7	10,5	1,5		٠,,		7,0	1,0
		TC/M		40	35	30,9	5,8	1.0	6,3	0,9	22,7	9,9	1,9	4,2	0,6	20.0	5,2	0,9	6,3	0,9	22,7	13,5	26	4,2	0,6
				*4	55				10,5	1,5	2.7/	3,3	7,3	7,0	1,0	30,9	3,2	0,3	10,5	1.5	22,1	70,5	2,0	7,0	1.0
130	Н			29	35	31,1	3,5	0.5	7,3	0,9	23,0	7,0	1,0	4,9	0,6	a		211	7,3	0,9	230	16,1	2.3	4,9	0,6
om?			8.4	- 4	55	51,1	5,5		12,3	1,5	23,0	7,0	7,0	8,2	1,0	31,1	2,8	0,4	12,3	1,5	230	70,7	2,3	8,2	1.0
Гл. Констр Рук. Гоуппоу Ститенер			0,7	″.	35	31,1	7,0	1,0	7,3	0,9				4,9	0,6				7,3	0,9	200	20.4		4,9	0,6
	Ц			49	55	37,7	,,,,		12,3	1,5	23,0	10,5	1,5	8,2	40	31.1	6.3	0,9	12,3	1,5	23,0	22,4	3,2	8.2	1,0
741	Ī				.,												70	UMPY			L	L			

Отметка верх ± Мх х ± Нх фундаменты

UHCTUTY

Примечание
В таблице приведены нормативные нагрузки на уровне верхнего обреза фундамента под обну центрифугированную стойку коньцевого сечения. Нагрузки с индексот, х" действуют вдоль оси устакады, с индексот, у"— перпендикулярна оси эстакады.

	C UNDERCOMING - MED			
ΤK	Нагрузки на фундаменты	центрифугир	оованных отор	3.015 - 2 /77
1977	эстакад типов \overline{Y} ж; \overline{W} ж.	Шаг опор	12 m.	Выпуск Лист

Hy TC 2,1 2,5 2,1 2,5 2,1 2,5 2,1

2,5 2,1 2,5 2,1

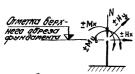
2,1

Tun sera- kadbi u	Расстоя- нув от верха	Прадаль- ная	Ветро- Вая	Опара	H B ME	EMTEP CTAX /	074PHW 10112PE4	e <i>Daok</i> Hux o	យ	16÷72 _M 10py6	រ ព្រាប្រពន្ធិត	дав
нагрузка	er berku erakadbi do	нагруз-	нагруз-		Проме	XCYTO4	אם אם א	ΌΡα	K	тицева	9 011	ορα
НО ПОГОН- НЫЙ МЕТР ТС/М	TARHUDO- BOYHOÙ OTMETKU 3EMAU	, KØ	KE Krc/m²	N TC	Mx TCM	H _X	My TCM	Hy TC	N TC	M _X TCM	Hx TC	My TCM
		29	35	30,3	3.6		13,9	2,4				12,2
	6,0	29	55	30,3	0,0	0,7	17,4	3,0	22,2	12,0	2,6	14,5
	0,0	40	35	30,3	6,9	1.5	13,9	2,4	22,2	16,1	3,5	12,2
		1.4	55	00,0	0,3	1,3	17,4	3,0	22,2	10,1	3,3	145
<i>УІж,УІж</i>		29	35	30,4	3,6	0,7	15,4	2,4	22,3	11,4	2,2	13,4
q=2,0tc/m	5,5		55	00,7	0,0	0,7	19,2	3,0	22,0	11,4	2,2	16,0
•	}	49	35	30,4	7,8	1,5	15,4	2,4	22,3	15,1	2,9	13,4
q =3,0rc/m		7	55	00,4	",0	1,5	19,2	3,0	22,5	13,1	2,9	16,0
		29	35	30,9	4,1	0,7	16,8	2.4	22,7	9,9	17	14.7
	7,2		55	00,5		0,7	21,0	3,0	22,1	9,9	1.7	17,5
	/,~	49	35	30,9	8,7	15	16,8	2,4	22,7	14,5	0.5	14.7
		7	55	30,3	0,7	1,5	21,0	3,0	22,1	14,3	2,5	17,5
		2q	35	31,1	4,9	0.7	19,7	2,4	02.0	11.5		17.2
	8,4	~9	55	01,1	7,3	0,7	24,5	3,0	23,0	14.7	2,1	20,5
	0,,	49	35	31,1	10,5		19,7	2,4				17,2
		79	55	37,1	10,3	1,5	24,5	3,0	23,0	20,3	2,9	20,5
							0	s	e_ a		1240Н	
тметка ве го обрез ундамен	PX- + MX	±Hx					D TAU UNSUPA UNSUPA	илице В верхн Ванную	TOUBED L TOUR TOUR TOUR TOUR	CHOL HU CEBU PY Y KONBU	грмати Надмені Гевого С	TO HOLE TO TOLE PROPERTOR

APOEKTHЫÚ UHCTUTYT NÍ DYK PYNINA OT DHAWEHE

Схема нагрузок на фундаменты

g -2 ... C----


е наерузки на 1д одну центри-я. "Нагрузки с индексот "х" бействуют вболь оси эстакады, с индексот "у"-перпендикулярно оси эстакады.

Наерузки на фэндаменты центрифэгированных опор эстакад типов XIж; XIIж Шаг опор 12м.

1=36-70 ...

Bunsex Auem I 79

	Tan ३० १पारपरि	- निपटणाज महार वा केल्लाव वा केल्लाव	TIPO- TON6-	Berro- BOR			POTYP		<i>B</i> 101		=36				-			POTS					18M	gı
	KO HOTA KO HO	. 10	HOTP43	HOTRIG- Ma	IIPOI	nexcs	TOYHL	19 011	OPO	//	ОНЦЕТ	709 (<i>ппора</i>		//POM	<i>ежу</i>	MOYHO	191 ONG	IPQ	707	уцева	טווע אנ	<i> pa</i>	T
	HOIÚ NETP TC/M	PO GOVINOU OTMETKU	Na	KTC/M ²	N TC	Mx TCM	Hx TC	My TCM	Hy TC	N 1C	Mx TOM	Hx TC	My TCM	Hy TC	N TG	Mx TOM	Hx TC	My TCM	Hy TC	N rc	Mx TGM	H _X TC	My TCM	Hy
	The state of the s		29	35	36,7	4,6	1.0	5.2	0,9	26,9	4,6	1,0	3,4	4.6	36.7	3.6	0,8	5,2	<i>a9</i>	26.9	3,6	0.8	3,4	0,0
+	ŠĮ.		29	55	DU, 7	7,0	1,0	8.7	1,5	20,5	7,0	,,,	5.8	1.0	00,7	0,0	0,0	8,7	1.5	20,3	0,0	U , O	5,8	1.0
		60	40	35	36,7	9.2	2,0	5,2	0,9	26,9	9,2	2,0	3,4	0,6	36.7	7,3	1,6	5,2	0,9	26,9	7.3	1.6	3,4	0,
		ļ	14	55	00,,	0,2	2,0	8,7	1.5	20,5	3,2		5,8	1,0	00,7	,,0	7,0	8,7	1.5	20,0	,,,,	,,,,	5,8	1.
\coprod	-		29	35	36,8	5.2	1,0	5,7	0,9	27,0	5,2	1,0	3,8	0.6	36,8	4.1	0.8	5.7	0,9	27,0	4.1	0.8	3,8	0,
	\$	6,6	24	55	00,0	0,2	,,,	9,6	1.5	2 7,0	0,2	/,0	6,4	1.0	00,0	7.7	0,0	9,6	1.5				6,4	1
no koon	VIII.	1	40	35	36,8	10,4	2,0	5,7	0,9	27.0	10,4	2,0	3.8	0,6	36,8	8,3	2.6	5,7	0,9	27.0	8,3	1,6	3,8	0
\perp	1 <u>1111</u> 2	C 	.4	55	-	,.		9,6	1,5				6,4	1.0	00,0	حرن		9,6	1,5				6,4	1
инкельитейн	9=4,0		20	35	37,2	5.8	1.0	6,3	0,9	27,4	5,8	1,0	4.2	0,6	37,2	46	0.8	6,3	0,9	27,4	4,6	0.8	4,2	0
NEMA	TC/M	7,2	24	55	0 ,,2	0,0		10,5	1.5		0,0		7,0	1.0	01,2	450	0,0	10,5	1,5	2,,,	7,0	0,0	7,0	1
à	1		49	35	37,2	11.6	2,0	6,3	0,9	27,4	11,6	2,0	4,2	0,6	37.2	3,2	1.6	6,3	0,9	27,4	9,2	1,6	4,2	0
			79	55	0 1,2	///		10,5	1.5	- ","	///,0	2,0	7,0	1.0	04,2	J, Z	",0	10,5	1.5	2 ", "	0,2	,,,	7,0	14
61				<i>3</i> 5	277.5	7.0	1.0	7,3	0,9	27.7	7.0	10	4,9	0,6	77.5		00	7,3	0.9	27.7	5.6	ne	4,9	0
12		8.4	29	55	37.5	7,0	20	12,3	1.5	241	1.0	1,0	8,2	1.0	37.5	5,6	0,8	12,3	1,5	21,1	5,6	17,8	8,2	12
9	1	0,7	1.	35	37 E	1/10	20	7,3	0,9	22 -	2/ 0	00	4,9	0,6		44.5		7.3	0,9	07.	110	1.6	4,9	0
Т. ИНЭКВИРР			49	55	37,5	14,0	2,0	12,3	1.5	21.1	14.0	2,0	8,2	1.0	37,5	11,2	1,6	12,3	1,5	27,7	11.2	1,6	8.2	1

RPORKTHBIÚ UHCTUTSTA I

Схема нагрузок на фундаменты

ПРИМЕЧАНИЕ:
В ТАБЛИЦЕ приведены нартативные наеругки на Уробне верхнего обреза фундатента пов одну центрифугированную стойну кольцевого сечения. нагрузки с индексат, Х" деистбуют бдаль юй эстакады, с индексат, у"— перпендикулярна оси эстакады.

TK	Нагрузки на фундаменты центрифуюфан- ных опор эстокад типа IIII ж.	3.015-2	7/77
1977	War onop 12 m.	BUNSICH TU I E	!!"11 30

TO HO TOPON- MOLU METP	HUE 07 8epxa 3c takado) 3c Tagnypo So s Noú ot met ku	ная	809			purng	урныц	810			= 60				П	7emn	ерату	рныс	i đị	OK	4	= 72	M
nero I	OTMETKU	1,, 4 4, 30	raepys	MOOR!	erkym	04499	0110	00	K	онце	вая	олоро	7	Проп	1ежу/	TOYH	78 0.	nopa	/50	нцев		опоро	
	3emau	ng	Krc/M	N 70	M x rcm	Hx rc	My	Hy TC	Ν τ c	Mx TCM	Hx rc	My TCM	Hy	N TC	M x TCM	H x rc	My	Hy	Ŋ rc	M x TCM	Hx TC	Му тсм	H
j		29	35 55	36,7	2,7	0,6	5,2 8,7	0,9	26,9	7,8	1,7	3,4 5,8	0,6	36,7	4,6	1,0	5,2 8,7	0,9 1,5	26,9	14,2	3,1	3,4 5,8	O,
	6,0	49	35 55	36,7	5,9	1,3	5,2 8,7	0,9 1,5	26,9	11,0	2,4	3,4	9,6	36,7	9,2	2,0	5,2	49	26,9	19,3	4,2	3,4	4,
	***************************************	20	35	36,8	3,1	0,6	5,7	4,9	27,0	7,2	1,4	3,8	0,6	36,8	5,2	1,0	5,7	0,9	27,0	13,0	2,5	3,8	0,
VIII aje	ŕ	49	35	36,8	6,7	1,3	5,7	0,9	27,0	10,4	2,0	3,8	0,6	36,8	10,4	2,0	5,7	0,9	27,0	18,7	3.6	3,8	1. 0.
V=4,9 _{5/M}		29	3.5	37, 2	3,4	0,6	6,3	0,9	27,4	9,2	1,6	4,2	0,6	37.2	5.8	1,0	6,3	0,9	27.4	12.1		4,2	0,
	7,2	40.	35	37,2	7.5	1.3	6,3	0,9	27.4	13.3	22	7,0	0,6				10,5 6,3	0,9			<u> </u>	7,0	0,
			35 35				10,5 7,3	1,5 2,9			2,3	7,0	1,0	37,2	11,0	2,0	10,5	1,5	27,4	10,0	3,2	7,0	1,0
	8,4	29 	55	37,5	4,2	0,6	12,3	1,5	27,7	8,4	1,2	8,2	1,0	37,5	7,0	1,0	12,3	1,5	27,7	18,2	2,6	8,2	1,
		49	55	37,5	9,1	1,3	12,3	1.5	27,7	13,3	1,9	9,9 8,2	1,0	37,5	14,0	2,0	7,3 12,3	1.5	27,7	25,9	3,7	8,2	0,
	L M 9	TMETKI Ero oði Syngdi	esor-	(!	N 139	<u>'</u> x							ypobi yen: Haepy C yni	ye 8e) Dugy 13ku Bekco)	C UM	oubeo o obje onny derce - nep	enbi 1830 10 ci 10m, X h 10en 8	HODA COYAC HOUK HOEÚC UKYAK	дамені У коль твуюї Грна	ma n sye8o m 68o ocu 3	TOD CO Pro CO MG DCU PCM Q	90000000000000000000000000000000000000	7. 986
-	-7	-44 _{1/m} 7,2	111 st 217 49 7,2 49 49 29 49 49 29 49 49 29 84 49	111 yc 6,6 2 7 35 55 55 49 35 55 49 35 55 55 55 55 55 55 55 55 55 55 55 55	111 ye	111 Je 6,6 217 35 36,8 3,1 11 Je 149, 35 36,8 6,7 12 149, 35 37,2 3,4 17,2 17,2 17,5 17,5 17,5 17,5 17,5 17,5 17,5 17,5	111 ye	111 Je 6,6 217 35 36,8 3,1 0,6 5,7 9,6 49,6 49,6 55 37,2 3,4 0,6 6,3 10,5 10,5 10,5 10,5 10,5 10,5 10,5 10,5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19 35 36,8 3,1 0,6 5,7 4,9 27,0 111 12 12 13 35 36,8 6,7 1,3 3,6 1,5 27,0 12 29 35 37,2 3,4 0,6 6,3 0,9 27,4 13 29 35 37,2 7,5 1,3 6,3 0,9 27,4 14 29 35 37,5 4,2 0,6 7,3 3,9 27,7 29 35 37,5 4,2 0,6 7,3 3,9 27,7 29 35 37,5 4,2 0,6 7,3 3,9 27,7 29 35 37,5 4,2 0,6 7,3 3,9 27,7 29 35 37,5 4,2 3,4 3,3 3,9 27,7 29 35 37,5	111 yr	111 yr	11 14 15 16 17 18 18 18 18 18 18 18	11 12 35 36,8 3,1 0,6 5,7 0,9 27,0 7,2 1,4 3,8 0,6 14 35 36,8 6,7 1,3 5,7 0,9 27,0 10,4 2,0 3,8 0,6 15 37,2 3,4 0,6 6,3 0,9 27,4 3,3 2,3 16 40,5 55 37,5 37,5 4,2 0,6 7,3 3,9 27,7 8,4 1,2 17 40,5 55 37,5 37,5 4,3 7,3 0,9 27,7 8,4 1,2 18 40,5 40,5 40,5 40,5 40,5 18 40,5 40,5 40,5 40,5 18 40,5 40,5 40,5 40,5 18 40,5 40,5 40,5 18 40,5 40,5 40,5 18 40,5 40,5 40,5 18 40,5 40,5 18 40,5 40,5 18 40,5 40,5 18 40,5 40,5 18 40,5 40,5 18 40,5 40,5 18 40,5 40,5 40,5 40,5	11 12 35 36,8 3,1 0,6 5,7 0,9 27,0 10,4 2,0 3,8 0,6 36,8 6,7 1,3 3,5 3,5 37,2 3,4 0,6 6,3 0,9 27,4 1,3 2,3 2,3 1,0 37,2 1,4 3,5 37,5 37,5 37,5 4,2 0,6 7,3 2,9 27,7 8,4 1,2 4,9 0,6 37,5 37,5 37,5 37,5 37,5 37,5 37,5 3,4 3,5 37	11 12 13 15 16 18 17 18 18 18 18 18 18	11 12 35 36,8 3,4 0,6 5,7 0,9 27,0 7,2 1,4 3,8 0,6 36,8 5,2 1,0 11 12 12 13 35 36,8 6,7 1,3 5,7 0,9 27,0 10,4 2,0 6,4 1,0 36,8 10,4 2,0 12 29 35 37,2 3,4 0,6 6,3 0,9 27,4 9,2 1,6 7,0 1,0 37,2 5,8 1,0 12 29 35 37,2 3,4 0,6 6,3 0,9 27,4 9,2 1,6 7,0 1,0 37,2 5,8 1,0 13 29 35 37,2 7,5 1,3 6,3 0,9 27,4 13,3 2,3 4,2 0,6 37,2 1,6 2,0 29 35 37,5 4,2 0,6 7,3 2,9 27,7 8,4 1,2 4,9 0,6 37,5 7,0 1,0 29 35 37,5 9,1 1,3 7,3 0,9 27,7 8,4 1,2 4,9 0,6 8,2 1,0 37,5 7,0 1,0 29 35 37,5 9,1 1,3 7,3 0,9 27,7 8,4 1,2 8,2 1,0 37,5 14,0 2,0 20 35 37,5 37,5 9,1 1,3 7,3 0,9 27,7 3,3 1,9 4,9 0,6 8,2 1,0 37,5 14,0 2,0 20 37,5 14,0 2,0 30		11	1	111 A	111 R 6,6 21 35 36,8 3,1 0,6 5,7 0,9 27,0 7,2 1,4 5,8 1,0 36,8 5,2 1,0 5,7 0,9 27,0 13,0 2,5 1,4 5,5 36,8 6,7 1,3 5,7 0,9 27,0 10,4 2,0 3,8 0,6 6,4 1,0 36,8 10,4 2,0 5,7 0,9 27,0 18,7 3,6 6,4 1,0 35,8 10,4 2,0 5,7 0,9 27,0 18,7 3,6 6,4 1,0 35,8 10,4 2,0 5,7 0,9 27,0 18,7 3,6 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	1

RODBI U I	Pacemon nue om верха эетакады ño	Продоль - ная нагруз-	Ветро- вая нагруз-				оперечн		80808 /	+ 12 м прубопр нцевая	080808 011	opa	
	MATHUDO- BOYHOU OMMETKU JEMAY M	Kď	KG M2	N rc	M _X	Hx TC	My	Hy TC	N rc	Mx TCM	Hx TC	M y TCM	Hy TC
		29	35	36,7	4,6	1,0	16.8	2,9	26,9	14.3	3,1	15,1	2,6
	6,0	-7	55	0 47.		,,,	20,3	3,5	20,5	7.,,0		16,8	2,9
	0,0	110	35	00.00			16,8	2,9			,,,	15,1	2,6
		49	55	36,7	9,2	2,0	20,3	3,5	26,9	18,4	4,0	16,8	2,9
		20	35		50	10	18,6	2,9				16,6	2,6
_		29	55	36,8	5,2	1,0	22,4	3,5	27,0	12,5	2,4	18,6	2,9
<u> </u>	6,6	//0	35	05.0	40.11	22	18,6	2,9			- 1	16,6	2,6
9=4,0TC/M		49	55	36,8	10,4	2,0	22,4	3,5	27,0	17,7	3,4	18,6	2,9
′ ′'''		20	35	24.0	5.0	10	20,3	2.9				18,2	2,6
	7,2	29	55	37,2	5,8	1,0	24,5	3,5	27,4	H,6	2,0	20,3	2,9
	1,2	// 0	35				20,3	2,9				18,2	2,6
		49	55	37,2	11,6	2,0	24,5	3,5	27,4	17,4	3,0	20,3	2,9
		00	35				23,8	29				21,3	2,6
	8,4	29	55	37,5	7,0	1,0	28,7	3,5	27,7	18,2	2,6	23,8	2,9
	0,7	Ua.	35	17.5	<i>m</i> o		23,8	2,9	07.7			21,3	2,6
		49	55	37,5	14,0	2,0	28,7	3,5	27,7	24,5	3,5	23, 8	2,9

OTMETKA BEPX-HETO OSPESA PUNGAMENTIA

UCTOAHUTEM

Проектный институт

occmpoú CCCP г. Ленинград

Схема нагрузок на фундаменты

В тавлице прибедены нормативные нагрузки на уровне вержнего обреза фундатента под одну центрифугированную стойку кольцевого сечения. Нагрузки с индексот "Х" действуют вдоль оси эстакады, с индексот " у "- перпендикулярно оси эстакады.

				0 /			
TK	Нагрузки	нафун	Заменты	центрифугирова		3,015-	2/17.
1977	эстакад	mund	<u>V///</u> yc .	War onop	12 M.	Выпуск І	Aucm 82

ПРИЛОЖЕНИЕ К выпускуТ

серии 3.015-2/77

Ten Эстака	ГАБАРИТНАЯ СХЕБИА	PODMATHBHAA BEPTHEARCHAA HALPYSEA HA POTOHKOW METP JETAEARCH		8H61E 1E pi:/	Притечания
A61	·	TC/M	(mm)	(mm)	· ·
Īη	C C C CONTROL SENTING CONTROL	0.25	1200 1800	1200	За сттетку верха эстакацы принята верхняя грань траверсы. Уэксгрукции стальных опор, тразерс и пролетного строёния стотрите в выпуске III.
<u>I</u> m	Sometice aspects sometimes aspects sometimes aspects sometimes aspects sometimes aspects and approximately approxi	0.5	1200 1 80 0 2400	1200	ЗА ОТМЕТКУ ВЕРЖА ЭСТАКАДЫ ПРИНЯТА ВЕРЖАЯ ГРАНЬ ТРАВЕРСЫ КОНСТРУКЦНИ СТАЛЬНЫЖ ОПОР, ТРАВЕРС И ПРОЛЕТНОГО СТРОЕНИЯ СМОТРИТЕ В ВЫПУСКЕ III.
ĪŪĸ	CTOLLICH WESTERD SETTON WESTERD SETTON WESTERD SETTON WESTERD SETTON WESTERD SETTON WESTERD SETTON WESTERD SETTON WORK LEMTON WORK SETTON WORK SETTON WORK SETTON WORK SETTON WORK SETTON WHIT OROP 12.0M	1.0	3000		ЗН ОТПІСТКУ ВЕРГЕН ЭСТЯКАДВІ ПРИНТАТА ВЕРГЕННЯ ГРАНЬ ТРАВЕРСЬІ. ПОНІТАТА ВЕРГЕННЯ ГРАНЬ ТРАВЕРСЬІ. ПОНІТРУКЦИНІ СТАЛЬНІКІ ТРАВЕРС В ВЫПУСКЕ III. ПОНЕТРУКЦИНІ ПРЯТОУГЛЬНИЯ ЯКЛЕЗОБЕ- ТОНЬЯ В КОЛОНН СПОТРИТЕ В ВИПЯТЕ II-р СТОЕК ЖЕЛЕЗОВЕТОННЫЙ ЦЕНТИРУМИРО- ВЯННЫХ КОЛЬЦЕВОГО СЕЧЕННЯ СТОТРИТЕ В СЕРГИН 1. 400-14

HONZAGNA TELIK TRINBAH DOSAGONA BOANAHASA

1K

TREAPUTHE CREME A REPARTMENTE DEPTHIBITE HELE HARPYSKI WA NOTOKHEW METP SCHOOL TUNGE IM; IM; III.X

3.015-2/17 BUMBE AHET I 83

TUN 9019KA- A61	Гибаритива сеета	новантивняя вертикальная нагрязка на погонный тетр эста и яды. терт	PA31	HEPEI C (mm)	Примечания
Шт	OTTONE THE SERVED	1.0	3000	1800	ЗА ОТМЕТКУ ВЕРСЕН ЭСТАКАЦЫ ПРИНЯТА ВЕРОСНЯЮ ГРАНЬ ТРАВЕРСЫ. КОНОГРУКЦИИ СТАПЬНЫХ ОПОР, ТРАВЕРС И ПРОЛЕТНОТО СТРОЕНИЯ СТОТРИТЕ В ВЫПУСКЕ III.
<u>N</u> r	CADILEA TOO TOO TO THE TOO TOO THE TOO TOO TOO TOO TOO TOO TOO TOO TOO TO	1.5	3600 4200		ЗА ОТМЕТКУ ВЕРХА ЭСТЯКАДОІ ПРИНЯТЯ ВЕРХНЯЯ ГРАНО ТРАВЕРСЫ. КОНСТРУКЦИИ СТАЛЬНЫХ ТРАВЕРС И ПРОПЕТНОГО СТРЕННЯ СПОТРИТЕ В ВЫПУСТЕ II—3, СОНСТРУКЦИИ ПРИПОУОЛЬНЫХ ИСНЕВОВЕТИН- НОГО КОЛОННО СМОТРИТЕ В ВЫПУСТЕ II—3, СТОЕК МЕЗПЕЗОВЕТОННЫХ ЦЕНТРИРУГИРОВЯЙ— НОГО КОЛОНДЕВОГО СЕЧЕННЯ СПОТРИТЕ В СЕРВИИ 1.400—19.
Nm	Signatura seman	1.5	3600 4200	2400	ЗА ОПЛАБТКУ ВБРОСН ЭСТАКАДЫ ПРИНАТА ВЕРОСНАЯ ГРАНЬ ТРАВЕРСЫ. КОНЕТРУКЦИН СТАТЬНЫХ ОПОР, ТРАВЕРС И ПРОПЕТНОГО СТРОЕНИЯ СМОТРИТЕ В ВЫПУЕКЕ II.

Гаваритные ссеты и нормативные вертисам-ные инграсы на погонный метр зетака, типов Шт; Тк; Тт. 16130—100

3.015-2/77 BUNYEK NUCT I 84

NP MESTIVE US	1600			
GRICHBAH	BOAK SHICKERS			
HODONHHIEN	(hoseon)	,		
A STATE OF THE STA	1	(Janes	Service of the servic	
MOHHU	Боодский	BOARDINGA	30044	PODHRHRA
To unate no.	HAY. OTTIENA	TA. KOHETOYKT	Pyr roynnel	G. HHWEHED
	XAPROBLAZ	DDUNFTDUZINIDOFK		

TUN ЭСТАКА- ДЫ	Гаваритная схема	HOPMATUBHAA BEPTUKATIBHAA HAFPY3KA HA NOTOHHUY METP 3CTAKAJG TC/M	0c40 E pasn 8 (mm)	8,461E NEP61 C (MM)	Примечання
$ \overline{\underline{V}}_{k} $	GONKU ROD ROD ROD ROD ROD ROD ROD ROD ROD ROD	20	4800		ЗА ОТМЕТКУ ВЕРГА ЭСТЯКАДЫ ПРИНЯТА ВЕРГАНЯЯ ГРЯНЬ ТРЯВЕРСЫ. КОНСТРУКЦИИ СТЯТЬНЫГЕ ТРЯВЕРС И ГГРОПЕТОКО ЕЩЕ В ВЫГУСКЕ Ш. КОНСТРУКЦИИ ПРЯТОО СТОТИНЫЕ ЖЕЛЕЗО-ВЕТОННЫГЕ КОПОНИ КОПОРИТЕ В ВЫПУСКЕ Т3, СТОЕК ЖЕЛЕЗОБЕТОННЫГЕ ЦЕНТРИРУГИРОВАННЫГЕ КОПОЦЕВОГО СЕЧЕНИЯ СТОТРИТЕ В СЕРИИ 1.400 14.
∑m	San Municipal Cultural Service for a seman	2.0	4800	2400	ЗА ОТМЕТКУ ВЕРГА ЭСТАКАДЫ ПРИНЯТА ВЕРГАНЯ ГРАНЬ ГРАВЕРСЫ. КОНСТРУКЦИИ СТАПЬНЫХ ОПОР, ТРАВЕРС И ПРОПЕТНОГО СТРОЕНИЯ СМОТРИТЕ В ВЫПУСКЕ ТИ.

Габаритные соеты и нормативные вертикаль-ные нагрузки на погодный метр эгтагад типов I.K., I. т. 3.015-2/17. BUNYEK NULT. I 85 101

XAPINITIEKM HIP DIZERP BORDERIN TO TOBERN BORDERING TO TRACENT GREENERS (1/4)					
LILIKAN HIR DIGGER BROKKER F. DAHMIPUEKT GLENDER STORE STORE PENDE GLENDER STORE FENDE		dis			
LILIKAN HIR DIGGER BROKKER F. DAHMIPUEKT GLENDER STORE STORE PENDE GLENDER STORE FENDE		KASOMBUDG			
LILIKAN HIR DIGGER BROKKER F. DAHMIPUEKT GLENDER STORE STORE PENDE GLENDER STORE FENDE	10000	COSECUL			
DAHMINDEKT OF CONCENS OF PENCE PENCE OF PENCE OF PENCE OF PENCE OF WAYNERS OF		1	1	Son	J. Call
JOJE KAŽ OSTAŽE POKT Pokto	~ 111111	5009444	80489410108	300411	Sono upra
JOJE KAŽ OSTAŽE POKT Pokto		HAY OTGERRY	TA KOHETVET	DVC. DVANOL	G. WHYFHED
~ > ·		アンプローススス	Ξ	L XAPPENDE	115.11

TUN ЭСТАКА- AGI	Гябяритная схемя	Нормативная вертнісяльная нагрязка на погонный метр эстакады 10/м	00H081 PA3HI B (IIIM)		Притечания
VIIm	Samuel Sense	3. 0 (cmojoute ngu- mevanue)	4800 6000	3600	За оттетку вкрха эстакады прината верхная гране траверсы. Конструкции стальных опор, траверс и пролетного строення стотрите в выпуске III.
VIIIm	STREAM DEPOSE STREAM OF S	Ч. О (спотрыте пры- печяные)	7200	3600	ЗА ОТМЕТЕУ ВЕРГОН ЭСТАКАДЫ ПРИНЯТА ВЕРХНЯЯ ГРАНЕ ГРАВЕРСЫ. КОНСТРУКЦИИ СТЯПЬНЫГО ОПОР, ПРАВЕРС И ПРОЛЕТНОГО СТРОЕНИЯ СМОТРИТЕ В ВЫПУСКЕ III.

MAMMEYAHUE.

На прометное строение эстакая типов $\overline{\mathbb{M}}_{m}$ и $\overline{\mathbb{M}}_{m}$ передается нагрузка 2.0 тс/п. т

TK	[ABAD
1977	HEVE

Авпритные схеты и нормативные вертигальные ингрузки на погонный метр эстига типов <u>VII</u>, <u>VIII</u> м.

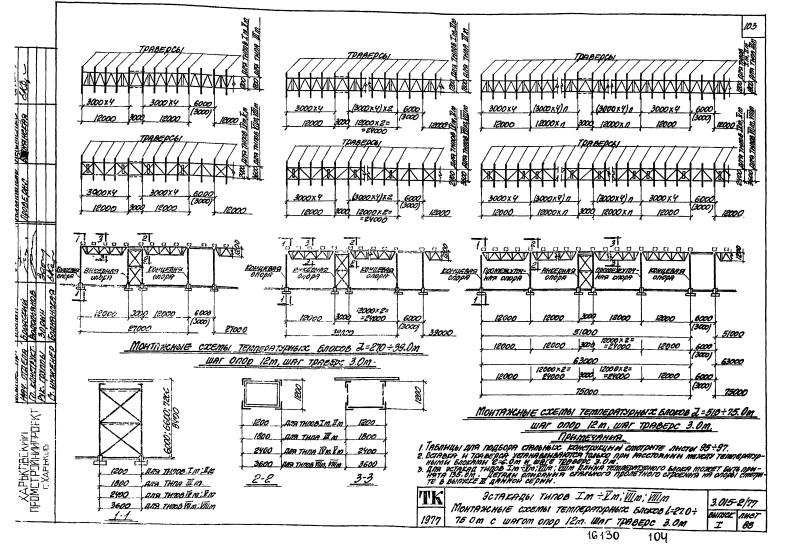
3.015-8/77 SUNYEK NUET I 86

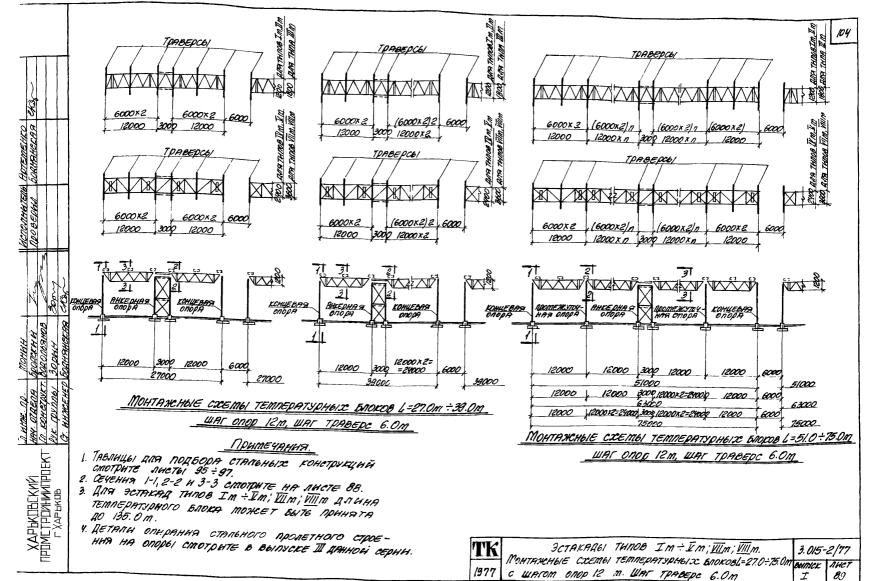
	аппектпапн-та	MERBHUKOB	аш-ди женп из	Lacen	aunmes	
Ордена Трудобого Красилеа	To the THI-HIT THE STATE OF	Кизнецов	Бригадир	7-72/3	Batunbeb	
I TRITITUDE CK TETO OLENDET BUK II NO	How marken street	dannek	проверия	Mersh	Лекай	
ศัมผมแบบเบา เามาอยายา เวยตันม	TO KINETING DING COLLECTES	Мильмин	กราชอนนา	- 1 cm	Назаренка	
F. Massega	Aama Boinyere	19775		, ,		

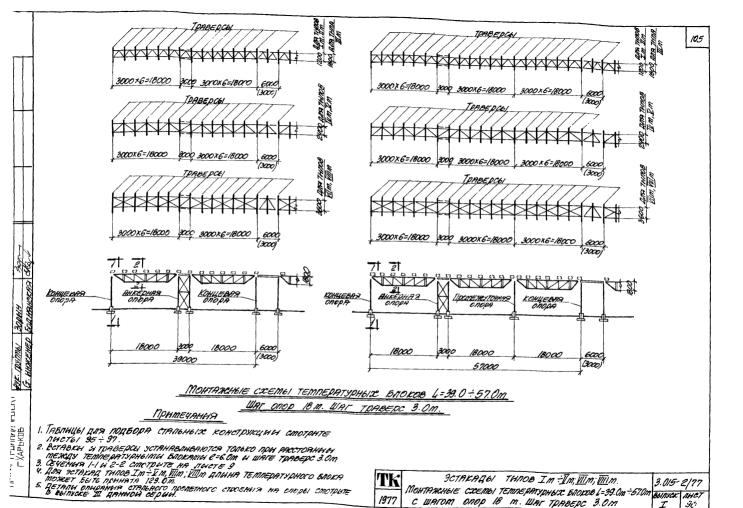
MQ) 31BN	TKU Mehinu	BET KT		Maj 318N	IKA NEHITA	BEG KF
	БК3 БК4	18II 318			<i>15</i>	28.4 30.3
2	5K5	300			76	3δ.8 32.1
Бапки	<i>δΚδ</i>	373			77	42.0
	<i>4</i> P1	300			T8	48.0
	<i>408</i>	350		Траверсы	T 9 T 10	55.4 63.6
	Ψ3 Φ4	415 548			T11	96.6
	\$P\$	561			TIB	143.4
	\$76	<i>620</i>				
191	<i>4</i> 07	740			<i>B/11</i>	414
4Pepmbl	<i>408</i>	900			0//2	1246
3	Ф9 Ф10	1060 1328			0113 11114	445 1240
	411	1411			0/75	479
					ОПБ	1393
	71	10.4			0177	585
		12.5		Опары	0/18	1733
	TZ	17.18 14.00		DTL	011 g 011 10	509 1255
Траверсы		20,8			0//1/	543
age	<i>T3</i>	19.6			0//12	1423
5	T4	34.5			<i>DП13</i>	59Z
		88.3	 	لبا	01714	1748
		,	70114	IP).C	11 11 1 a ·	

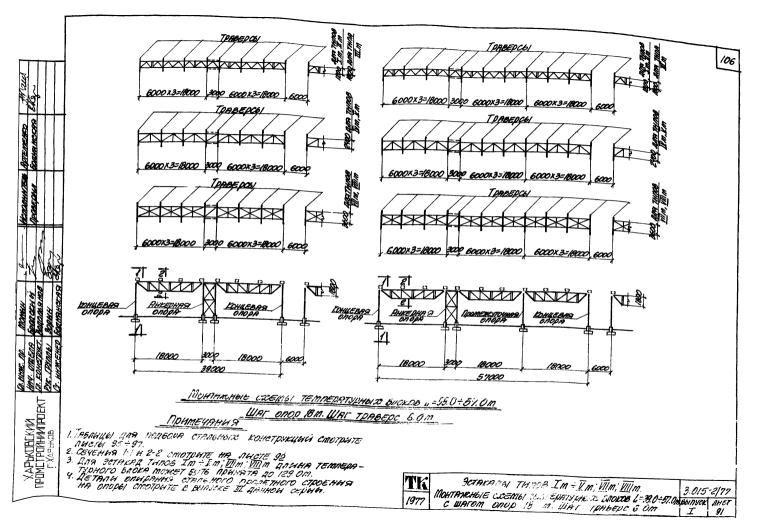
	Прка Рменгта	BEG KF
3/16	MEHIIU	
	UN 15	547
	DN 16	1910
	DIT 17	555
	0/7 18	1705
	01119	705
	011 20	1814
	0/121	185
	DTT 222	2185
//	ON 23	862
	0/1 24	2350
	D/125	865
	01125	2390
	0727	891
ларь/	01128	2281
2	ON 29	930
	0/730	2575
	01731	1129
	0732	2920
	DN 33	509
	017 34	OSSS
	01735	544
	017 35	2337
	0/737	53Z
	0/7 38	2522
	01739	740

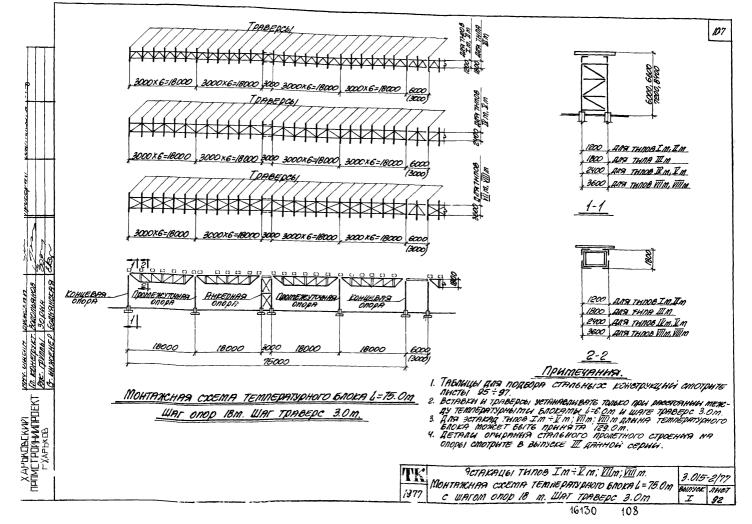
	OKU Mehitiu	BBG KF
	01740	2950
	01141	596
	DN 48	1240
	BN 43	534
	01744	1387
	017 4.5	598
	01746	1448
	017 47	770
	DN 48	1587
	017 49	723
	017 50	1481
	DN 51	803
190	DN 52	1601
Лпарь/	ол 53	835
~	01154	1677
	<i>011 55</i>	1015
	01156	2155
	47 57	884
	011 58	1705
	01759	919
	011 60	1814
	01751	956
	DNBZ	2185
	QN 63	1157
	011 64	236D

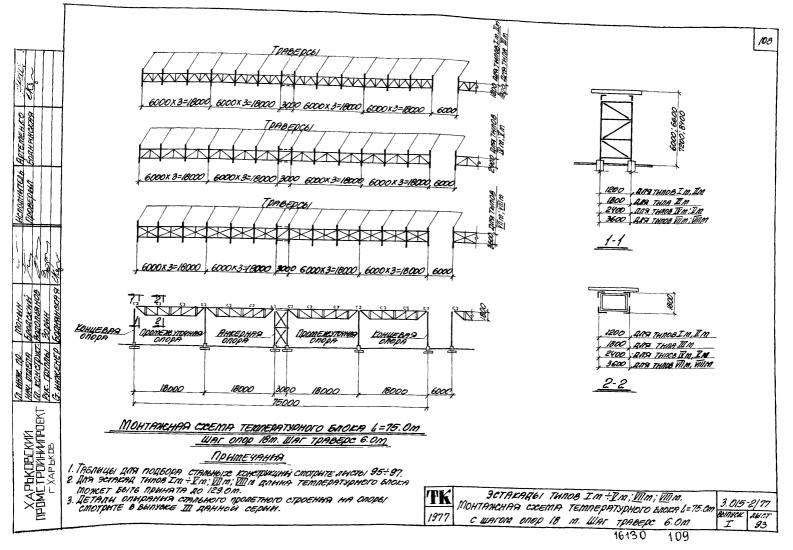

	TKU MBH111U	BEG K[
	UN 65	955
	01166	2293
	01167	991
	011 68	2323
	01159	1177
_	DN 70	2448
חססח	0/771	1345
110	<i>0.</i> 772	2814
•	01173	2300
	017 7 4	2402
	DN 75	32 <i>96</i>
	0/176	328E
	MB 1	320
	MBB	37 <u>9</u>
	MB3	455
1	1164	524
30	MB5	724
Ястабки	MB 6	783
9		
	[IXEMII]	<i>208</i>
37	EXEMA 2	294
ББЯЗИ	EXEMA 3	430
		495*

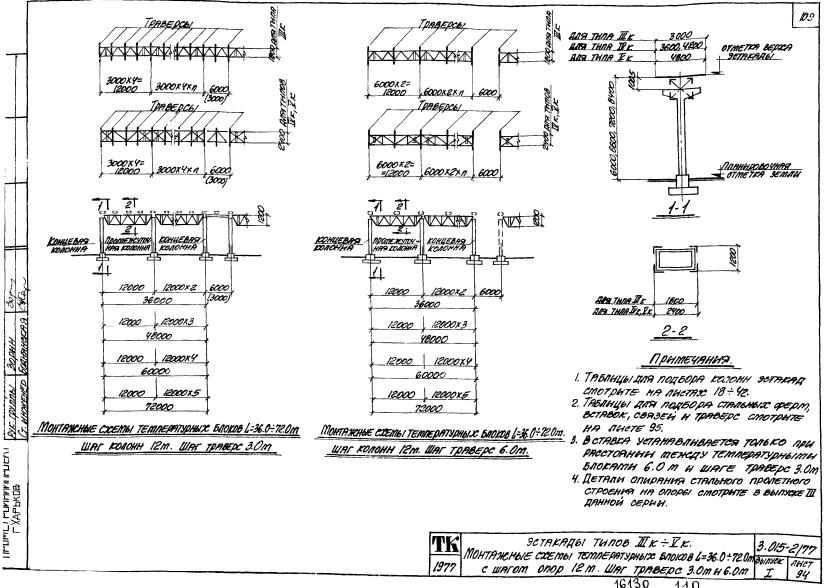

Мар. Элем	KII ABHITI II	BBC KT
	Ciemu 4	654 752*
	Ежеми 5	338
36	СХЕМЦ в	436.U
Бвязи	GXLMU 7	708
3	Exemu 8	953
	51	0.53
	52	24.0
	53	<i>30.0</i>
	54	24.0
	55	32.D
	56	44,0
	57	35.D
	58	67.D
	59	26.0
	510	3 <i>5,D</i>
Базы	511	47.0
Đ	512	50.D
	513	44.0
	514	47.0
	515	44.0
	516	45.0


Примечания:


- 1. Показатели са знаком (*) талька для связей с шагом вм.
- в. Специрикацию стали на элементы стальных конструкций смотрите в выпуске II данной серии.
- 3. В таблице расхода материалов для траверь указан вес поганнага метра элемента.
- 4. Для траверс марок T1-T6 в знаменателе указан вес погонного метра троверс из холодногнутого замкнутого профиля.


	TH	Паказатели расжода материалов на одну стальную балку, ферму, траверсу, опору, вставку, связь и базу.	3.015-	3
1	1977	टिमंडिक प रिवाउप	I	





| Tun semaka
Balan ya
Balan a)
1447 |
|---|--------------|
| | |
| q = 0.25 | |
| ## M Q = 0.5 M | |
| Managara de la la la la la la la la la la la la la | 1 |
| $\overline{\underline{Y}}K:\overline{\underline{V}}M$ $\overline{Q}=\overline{R}D$ | |
| | |
| ###################################### | |

Тип эсптакады и нагрузка на	Длина траверс	<i>Шवर траверс</i>										
TO PHHOLLI MEITO TG/M	MM	MM	Рядовая траверса в пролете	рядивая траверсц на опоре	Усиленн ая траверса	Ферма	Вставка	Горизонтать ные связи	Консольные балки под Фермы			
IM	1200	3000	T1	rz	TZ	<i>4</i> 27	MB1	N1	_			
Q = 11,25	1800	6000	T1	72	72	797	7-101	,,,				
II M	1200	3000	Τ1	TZ	TZ	Ø2	MBB	N1	_			
Q. = 13.5	1800 2400	5000	TZ	TZ	73	Φ.δ						
<u>∭</u> K: <u>∭</u> M	7000	3000	TZ	TZ	73	<i>4</i> D3	MB3	SN	5K3 5K5			
Q=10	3000	6000	<i>T3</i>	73	T4	75	7100		b KJ			
	3600	3000	TZ	TZ	T4		M84	<i>w3</i>				
<u>IV</u> K: <u>IV</u> M		5000	T4	T4	75	\$7 4			5K4			
Q = 1.5	/ 200	3000	T4	T4	74				5K &			
,	4200	<i>6000</i>	76	T5	T8							
<u> </u>	4800	3000	T5	T5	75	Φ5	M85	N3	5K4 5K5			
q = 2.0	1000	6000	T8	78	rg	70			5K &			
<u>VII</u> M	1000	3000	75	T8	78		i i					
q =3.0	4800	6000	77	T10	T10	<i>Ф5</i>	MB5	,,,				
7 40	n	3000	T 5	T8	<i>T8</i>	Ψ3	טטויו	N4	_			
	<i>6000</i>	5000	77	TIO	T1							
<u>VIII</u> M	7200	3000	76	TIZ	TIB	\$7.5	M8 &	N4	_			
9 = 4.0	T200	6000	79	TIZ	TIB	400	1100	// 7				

Примечания:

DK3 : 5K4 AAR T-OÕPASHOIX M.Õ. KOJOHH ĀAR ЦЕНТРОРУКІРОВЕННЫХ СТОСК КОЛЬ

	TH
6488020	497

Таблица для подбора ферм, связей, траберс, вставок одноярусных эстакай типов $\underline{\mathbb{M}}$ К $+$ $\underline{\mathbb{Y}}$ К $+$ $\underline{\mathbb{Y}}$ М $+$ $\underline{\mathbb{Y}}$ M $+$ \mathbb	3.015	-2/77
и консольных балак под фермы одно прусных зетикад типов \overline{m} к $\div \overline{Y}$ к (was опор 12 м).	Выпуск Т	ЛИСТ 95

Тип Эстакады и нагрузка на	. Δυνυ Αυμοδερος	Шл» траверс	Марки траверс, ферм. встабак, горизонтальных связей и консольных балок под фермы.									
пасрузка на погонный метр ГБ/М	MM	мм	មិនពី១ទី១ន ស្រាប់ទី១១ ស្រាប់ទី១១	ជិនបិព្វជិន ការជាសិខ្សាជា អារា បារាបារាខ	Усиленная траверса	Ферма	Вставка	Горизонтопь НЫС СВЯЗИ	Конгольные балки под Фермы			
IM	120D : 1800	3000	77	TZ	TZ	<i>ሞ</i> δ	MB1	N5	_			
q=0.25	77700 - 1000	<i>6000</i>	TI	77	TZ	40	7407	//3				
ĨM	1200 : 1800 :	3000	T1	TZ	TZ	<i>Ф</i> 7	MBZ	N.S	_			
y = 0.5	2400	<i>6000</i>	72	TZ	<i>T3</i>	7	1100	7.0				
<u> </u>	<i>3001</i> 7	3000	TZ	TZ	<i>T3</i>	<i>478</i>	M83	NS	_			
Q = 1.0	Jano	<i>5000</i>	T.3	73	T4			,,,				
	3600 4200	3000	TZ	72	73		MB4	N7				
<u>IV</u> M		<i>50011</i>	T4	<i>T4</i>	7.5	IP G			_			
q. = 1.5		3000	T4	74	75	"						
		<i>6000</i>	ТБ	T6	77							
Ÿм	4800	<i>3000</i>	75	T5	76	QD 10	M85	N7	_			
y = 2.0	7050	50 0U	T8	T8	79	<i>μ</i> ,ο	///					
	4870	300C	75	דינו	<i>T.</i> 9							
<u>VII</u> M	7030	<i>6000</i>	78	TII	711	<i>4211</i>	MBS	N8				
g = 3.0	<i>5000</i>	วิขาด	<i>15</i>	<i>דוט</i>	TID	4"	17100	/"	_			
- The Charles and Section Country Prophylogical Sec		MUU	Te	T11	TI							
YIII M	<i>ገንብብ</i>	3000	Τδ	TIE	TIZ	<i>4</i> 211	мвδ	N8	_			
9=40	7200	5000	78	TIB	TIZ	""	1.00	,,,,				

L'AMPTER L'HIBRUR.

	Tun	Наименива	Расстаяние			מסחם עאמםיי	u 193				
00 0	Зыпакады	HUP	०ात हैहिए द्रव ३५ तावस्त्रवंश वेठ वताः	-	Was anap 18	M		Ша	г опор 18 м		
20 1	и Нагрузка на поганны	. เกลกหลอน - กรถผถมหา	ниравачний	Температу	AHBIE BADKI	1 L=27.0 ÷ 7	5.0 M	Температура		L = 39,0 - 75.0	
.:::ттев Опсильев Лекай Назаренка	МВППД ТБ/М	מאטתם	DRIMEITKU SEM- DU MM	Промежуточ-	базы прамежу- тачных алар	Анкерные Опоры	Бозь) анкерны х Опар	Прамезнауточ- ные апоры:	Базы прэмяжу точных алор	AHKEDHBIE DADDBI	БДЗЫ ДНКЕДНЫХ ОПОД
100 O	,	+		Semon	дя нагруз						
	Im	12-	6000	0/71	i i i i i i i i i i i i i i i i i i i	0/1 Z		01733		0/14B	
		40)	5600	2773	F.	0174	54	ОП 35	57	DI 44	<i>Б1</i> 3
	9 = 0, 25		7200	0115	<i>51</i>	D/16	1 07	рп 37		01145	טום
3		ря нагрузка нагрузка 4	8400	0/77		0/18	[077 39	58	01148	
		1 ≥ ≥ ≥	5000	0/11		ОПЕ		0//33		0/14B	
<i>Du</i>	ĪĪM		5600	0173	<i>51</i>	0114	54	D/135	57	01744	514
	Q = 0.5	°§ ≥ ≥	7200	0175	01	0.77.6	1 "	₽Л 37	Ì	01146	
Гл инэж пр Бригадир Проверил Испалнил	9-2.0	/продольная вдольная на	8400	0/17		0118	1	D/139	58	DN 48	
uner Tage			5000	0119		0/7 10		0П41		01150	
2 2 2	<u> </u>		5500	D/111	Бг	071Z	54	0743	59	01158	513
	9 = 1.0		7200	01113	55	0/714	1 "	01745		01154	
777	* "°	блок (продольн к (продольная	8400	01715		0.1715		<i>DIT 47</i>		01156	
Medahukab Kysneyab Nanmeb Muna man 19777.		1	6000	0/717		017 18		0П49		017 58	
330	<u>IV</u> M	nu ba anax	6600	0719	<i>5</i> 2	0720	55	0П51	51₫	0П БО	513
\$ \$ \$ \$ \$	Q = 1.5	1 2	7200	DT 21	0.5	2270		DN53		рл Б г	
E 1 3	7	ый температурный температурный б	8400	017.23		D/1 B4		DN 55		071 54	
			6000	0117		01718		0749		<i>Q758</i>	
133	ΨM	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5500	DI 19	52	DU 2D	55	0П51	510	07 60	513
1.23	Q = 2.0	שום.	7200	01721	0~	01722		0/153]	DN 62	
	φ <i>B</i> ,δ	22	8400	Dn 23		011 24		0П.55		DN 64	
уектор ин-та инж. ин-та ч. отдела консто, отд ата быпуск		1 2	60 00 7	<i>U1125</i>		017 BB		DF157		01156	1
кктор ин отдела энстр. оп та выпу	V∏M	14	5508	077 27	Б3	017 28	55	01759	511	DN 58	515
7. TE 10 12 12 12 12 12 12 12 12 12 12 12 12 12	Q = 3.0	₹ 2	7200	01729		01730		01161		פרחם	
диуектор ин-та Га икж. ин-та Нау. отдела Та кансто, отд Дата выпуска		1000	84 <i>00</i>	01731		<i>0/132</i>	56	01163		87 NO	
याद्याञ्चाद्य ब		Промежутачный и канцевой то	8000	DN 25		01734		0Л65		0/7.73	<i>515</i>
₹	VIII M	KO!	<i>6600</i>	<i>DN</i> 27	53	0/738	58	01167	511	0/774	
<i>красного</i> ОНСТРУКЦ ИЯ	9 = 4.0	00/	7200	DN 29		0/7 38		01169		0/775	515
pac.	<u> </u>		84/11	DN 31		0/74/)		0/171	512	DN 76	

Opitera Taylobbasa Koacuaza Janenu UHHNIIPOEKTETAUKÜHETPYKUJ r. Mackba

Таблица для подбора опор и баз одноярусных 3.015-2/77 эстакад типоб Ім÷Ум; VIIм; VIIIм (Шаг опор 12 м и 18 м) Выпуск лист 97

Марха	Расчетн	чыв нагр	узки на	វិចិខ៣និង ខ	ппары	Марка	PALYETT	HAIR HAG	ГДУЗКИ НИ	។ វិសិលាសិប	ОПОРЫ
ОПОДЫ	N(T)	$M_X(TM)$	My(TM)	Hx(T)	Hy(T)	<i>втпры</i>	N(7)	Mx(TM)	My(TM)	Hx (т)	Hy(T)
017 1	12.9			0,7B	1.0	DFI 21	28 !	-	_	2,6	1.4
<i>0</i> //2	14.7	_		1.5	1.0	0.11 Z.Z	28.1	_		5.2	1.4
D17 3	13.9		_	0,72	1.0	ij17 23	31.8			2,6	1.4
0114	15,0	_	_	1.5	1.0	UN 34	31.8	_	_	5,2	1.4
DN 5	14.8	_	_	0.72	1,0	017 25	336	_	_	4.9	3.8
0116	17,3			1.5	1.0	017 25	30.5	-		7.4	3.3
0177	15.3	_	_	0.72	1.0	<i>BN</i> 27	42.3	_	_	4.9	3.8
0178	199		-	1,5	1.0	0/1 28	<i>32.5</i>	_	_	7.4	3.3
0119	15.8	_	_	1.3	1.95	DN 29	44.9	_	_	4.9	3.8
01710	15,8	_	_	2.7	1,05	017 30	34.4	_	_	7,4	3.3
0/71!	17.1			1.3	1,05	D/7 31	50.4	_	_	4,9	3.8
81710	17.1	_	-	2,7	1,05	01732	38,5	-		7.4	3.3
ДП 13	18.2	I -	T	1.3	1.05	D/733	22,5	-	_	1.5	1.7
DIT 14	18.2		_	2,7	1.05	ап 34	39.5			9.8	3.8
DI115	29.6	_	_	1.3	i.05	0/7 35	24.6	_		1.5	1.7
01716	20. F		_	2,7	1.05	017 36	48.3	-	_	9.8	3,8
DT 17	24.6		-	2,5	1.4	0П 37	26,5	_	_	1.5	1.7
017 18	24,5	_	T -	5, Z	1.4	017 38	44.9	_	-	9.8	3.8
DT 19	25.4	-	-	2,6	1.4	0/7 39	30,6	_		1.5	1,7
DN 20	25.4	T	T-	5. Z	1.4	01740	.50,4	_	T -	9,8	3.8

EXEMO HORPY30K HO ФИНДАМЕНГЛЫ тметка ± Мх ерхнего бреза пун-та ± Му (ճմերը ուրաբեն)

Примечание:

В таблице дины рисчетные нагрузки на уравне верхнево обреза фундамента. Для получения нормапив – ных нагрузак необходимо указанные наврузки умна-JHUMTO HO K=0.9

Таблица нагрузок на фундаменты опор марок ОП1 ÷ ОП 40.

3.015 - 2/77 Выпуск Лист I 98

<i>V</i>	• `
111	ч
177	- 1
Ν.	- 7

Madka	PACHEITI	чые нагру	3KU HQ 10	ียกาชัย อก	0,06/	Марка	Расчет	ныв наг	рузки на	опоры		
ወበወ [26]	N(T)	Mx(TM)	My(TM)	Hx(T)	Hy(T)	апары	N(T)	Mx (TM)	My (TM)	Hx (7)	Hy (T)	Сжема нагрузок на
D1741	22.5		_	2.7	1.75							алундаментты
071 4B	22,5	_	_	1.5	1.7	CN 61	33.5	_	-	3.63	4.4	, His of
DT 43	24.2		-	2,7	1,75	07.5%	35,4	_	_	5,3	2,1	Daimenika EMX There of the Control o
07744	24.6	_	-	1.5	1.7	01783	35.3	_	_	3,53	4.4	INTUESO +My +HX
DN 45	25,9	-		2,7	1.75	017 64	40.9			5,3	2,1	(និមិនរាជ ភាពូងដ
017 46	25.5	_		1.5	1.7	317 65	39,3			4.9	5,0	1
01747	29 .4	-	_	2.7	1.75	መን አን	30,5	_		3,63	4.4	
84 דום	30,6	_	_	1,5	1.7	017 67	41.0	_		4.9	5.0	THE TAILING
01749	3Z.4		-	5.3	<i>2,1</i>	017 58	32.0	-		3.6.3	4,4	Примечание:
D1750	22.5	-	_	2.7	1.75	D/7 69	42.9	_	_	4.9	5,0	В тавлице даны дасч
077.51	34.4	_	_	5.3	2.1	917 713	33.5	-		3,63	4.4	ные наерузки на урабне
01752	24.2		_	2.7	1.75	<i>DI</i> 771	45.4	_		4.9	5.4	него обреза фунвамента Для попучения нармата
01753	35,4	_	_	5,3	2.1	BIT 72	35,3	_	_	3.53	4.4	ных нагрузак неабхой
01754	25,9	_		£,7	1.75	0.773	39.3	-		4.0	5,0	указанные нагрузки ун
0/155	40.9		_	5.3	1.8	0/774	41.0	_	_	4.9	5,8	жить на К=0,9
ปีกิงัช	29,4			2,7	1.75	0/7 75	42.9			4.9	5,0	
2/7.57	30,5			3,63	4.4	פֿד ווני	45,4	_		4.9	5.0	
01758	32.4	_	_	5.3	2.1							
017.59	32,ū			3.63	4.4							
ON EO	34.4			5,3	2.1						T	

Киректор ичта Положе ичта Нач, атдела Та комстр отд Дата Выпуска

Прдема Тоудгового красмого Змажени ЦИКИПРОЕКТЕ ПЯЛЬКОНЕ ГРУКЦИЯ г масква

Таблица нигрузок на фундаменты опор маррк ОП 41÷ ОП 76 16130

3.015-2, Bungex na I 9.

(115)