ГОСУДАРСТВЕННЫЙ КОМИТЕТ СОВЕТА МИНИСТРОВ СССР
ПО ДЕЛАМ СТРОИТЕЛЬСТВА

/ ГОССТРОЙ СССР/

типовые конструкции и детали промышленных зданий и сооружений Серия КЭ-01-58

СВОРНЫЕ ЖЕЛЕЗОВЕТОННЫЕ ОВВЯЗОЧНЫЕ БАЛКИ И ПЕРЕМЫЧКИ ДЛЯ ПРОМЫШЛЕННЫХ ЗДАНИЙ

выпуск 2 перемычки

5,5015

NWITCH UNPOARC

МОСКВА

ЦЕНТРАЛЬНЫЙ ИНСТИТУТ ТИПОВЫХ ПРОЕКТОВ ГОССТРОЯ СССР

Москва, Б-66, Спартаковская ул., 2а, корпус В Сдано в печать *20∭* 1970 года Заказ № *950* Тираж*€000* экз. Зам. дир. ИНИЖБ ТО С. С. М. В Васильев
Зам. дир. ЦНИИСК С С С Быховский
Рук. лаборатории Велебе. Быховский
Бук. лаборатории Велебе.

государственный комитет СОВЕТА МИНИСТРОВ СССР

ПО ДЕЛАМ СТРОИТЕЛЬСТВА

/ ГОССТРОЙ СССР/

типовые конструкции и детали промышленных зданий и сооружении

Серия КЭ-01-58

СБОРНЫЕ ЖЕЛЕЗОБЕТОННЫЕ ОБВЯЗОЧНЫЕ БАЛКИ И ПЕРЕМЫЧКИ ДЛЯ ПРОМЫШЛЕННЫХ ЗДАНИЙ

выпуск 2 ПЕРЕМЫЧКИ

DABOUNE UEPTEMN

РАЗРАБОТАНЫ

Центральным научно-исследовательским и проектно-экспериментальным институтом промышленных зданий и сооружений /ЦНИИПРОМЗДАНИЙ/при уастии Научно-иследовательского института бетона и железобетона /НИИЖБ/

УТВЕРЖДЕНЫ и введены в действие с Гоктября 1967г.
Государственным Комитетом совета Министров СССР
по делам строительства
Приказ № 118 от 18 июля 1967г.

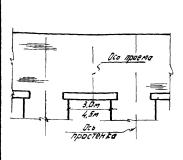
ЦЕНТРАЛЬНЫЙ ИНСТИТУТ ТИПОВЫХ ПРОЕКТОВ МОСКВА

	JUCTH	27p.		NU CTH	CT/
Пояснитепьная записка.			स्थाना है जिल्ला है ज	4	/.
1, Общая часть	-	3	APMUPOBOHUE TESEMINER,		
Р. Канструктивные решения	-	3	Προστρομοτδένη- ε λυοκτού ΕΠΙ-ΚΠΙΟ	5	ئ <u>ے</u>
3. Tex huveckue Tpedosonus k usrotosne-				-	-
нию, приемке и монтажу	-	4	ADMUDIBIHU E NEDEMBIHEK.		
и, Указания по применению раба-			SNEYUDUKUYUN MAPUK ADMOTYPHOIK		
YUX YEPTE KEÜ	_	7	นา สิงคนน์ - งฉะคนวิหมน์ เวียาตกอน์ หม		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,	пространствечный каркае	ŝ	4
Padavue yeptesku			and the second		
PEDEMBIYKU 611-1, 512-1, 512-2,			APMUPOBUHUR TRIRKHIKEK. KAPKOCHI KPI-KPB, CETKU CI-C4,		
5.05-1, 6.06-1.			SUKNOBHONE BETUNK MI-M4	7	ž
Ппапувачный чертеж и армирование.			• • • • • • • • • • • • • • • • • • •	,	•
Takasarenu pacxuda marepuanab	1	16	APMUPOBSHUE TE DEMOTYEK, CHEYU-		
			фикация и выбытка стапи на		
1epenoi4tu 5113-1, 5113-2, 5114-1, 5114-2, 5117-1, 5118-1.			odno opnostypuse usitenua	8	4
ти-2, ит т., итом. Ппапубруный чертеж и армирование.			Pasbubka saknadnow deraneu 194		
Makasarenu pacxada morepuano 8	عے	17	u depebramoux apadak b nepembiykax		
•			BARKPENNEHUR UKOHHBIX NEPENNETOB	3	
APMUPABAHUE NEPEMBIYEK			MOTOR OF WATER LOOP BELL BOOK BOOK BOTH OF BOTH OF		
אוא קבים אים אום אום אום אום אום אום אום אום אום או			Aeto nu yctoholku nepemolyek b ctehox	10	Ź
usdenuū u saknadhaix detaneū					

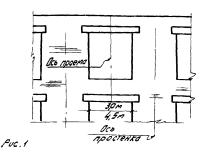
Содержание

1. Общоя чость

1. 1. B HOCTORWEU CEPUU BOHN pobosue seprestu nepembisek над проемами в каменных стенох промышленных зданий и detanu no yetahobke nepembyek.


1.2. Rependentu paspadorana das apoemos uupunou 30 U 4,5 m & CIENOX CREDINOUUX BUDOS:

б/ из nerkodetohhbix komheu no roct 6928-54* толщиной 190, 390 u 490 mm.


REPEMBILLU MORYT RELIMENTIBER & CTEHOX U US DOUTUS естественных и искусственных камней провильной формы.

Had pepembiykou masket duits condumos ciena unu ciena C MODEMOMY / PUC. 1)

ANA MODEMOB MEHEE 3,0 M MOTYT MOUNTEHRTECH MEDEMBILLU NO FOCT 948-66 , MEDEMANTU SCENE BODETONHAGE COOPHOLE BAR фильож и общественных зданий."

peresposit CCCA UHUKAPO MSOBIHIN

1.3. Padoque vepre deu nepemblyek u montadennie detanu pas-Радотаны в соответствии со спедующими мормативными до-KYMENTOMU:

CHUN \overline{II} -A. 4-52. Eduku'n modynbkun cuctema. Ochobkole nana -JEHUR PROEKTUPOBYHUR;

CH 223-62 Основные попожения по унификации объемно-תושאים בושאל עד ארמובארט אי אוטאים לפתעאות POOMOILINEHHOIX 300HUU.

СНип 11-В. 1-62. Бетомные и железоветомные конструкции. Нар-MU APOEKTUPOBOHUA;

СН иЛ 11-В. 2-62, коменные и армока менные конструкции. HOPMSI APOEKTUPOBOHUA.

2. KOHCTPYKTUBHHE PEWEHUR

2.1. Tiepembiuku paspadotambi 2-x pasmepob no dnume

3.5m - 312 NOOEMOS WUPUNOU 3,0 M, 5.0 M - das apoemos wypunou 4.5m

и 4-х размеров по ширине сечения:

200 mm - Ina cmen us nerkođe to nihuz komneŭ ton-WUHOU 150 MM:

250 איי - פוא לעף העירושו בדפא דסחעעואסע 250 איי ;

380 mm - ANA KUDHUHHHIX CIEH TONULUHOU 380 MM LI CTEH US NETKODETOHININ KOMMEN TONUNUNON 390 MM;

MORCHUTENBHOR BONUCKO

K3-01-58 BOINYCK 2

510 mm - бла курличных стен толичной 510 mm и стен из легкобетонных компей тэлциной 490mm.

BOICOTO REPEMBILLE LA PUHATO POBROU 290 MM.

Ала каждага гипорозмера разрадотомо по одной марке перемычки, предназначенной для применения, в основном, в останескийх стенах, а для перемычек длинай зум и ши-ринай год 380 и 510 км эзлическирована по одной дапални-пеньной марке с повышенный нескирей спосоднастью для глучая передачи на перемычку краме нагрузки от стены значи-тельных даполнительных напочаск / марритер, в песицих стенах, воспринитающих нагрузку от порозтия и т.п./.

Аля перекрытия проемов ширимой 4,5 м при мотичии эмочительных дополнительных мотонзак могит быть использованы одвязочные балки, приведенные в вып. І настоящей серии.

2.2. Maoko nepembuku cocrour us dukbennbik u uudpo-Baix adasmavenuu.

bykBы bN odo3nayanor- danta - перетычко; первэл чифра апределяет типо размер перетычки, втором - месчичко спосаднасть.

Каменклатира перемычек и их тархировка приведены в ros_{n} . 1

Nounevakue: Braghu nepemblyek nou yarakalke suknadkuiz getanei B coarbetatuu c nuciom I Balakus anonakutenakus akkeembir ustekoki: g''-npu saknadabik aetanek ahi koennek-s Cianbhoix jepenneral u "K"-npu yarakalke npadak ana koennekun depelakubux nepemejus.

Honpumep: 613-10, 613-28, 611-18.

- 2. 3. Перемычки изготовляются из детоно марки 200.
- 2.4. Перетончки армирчются пространственными каркасоми, собираемыми из ппоских каркасов.

Радочой продологии армагеро принега из геречекатаной стали периодического профиль классо R-U по 1001 5781-51; поперечноя и прадольной канструктивной арматура - из круглой горечекатоной стали классо R-I по 1001 5781-61.

MONTULANDE TIETAU M1-M3 BONACHD BOTTOMATCE TOADEC US TOPR VEROTO HOU CTOAU KNOCCO A-T MOPOL BCT. 3 CAU BCT. 3 AC NO TOCT 380-60*.

30k10θμως θεταπι M9 υ3τοτοβηθητίου U3 Παποσαδού σταπυ Νο /OCT /U3-57* μαρκυ βος.3kn na /OCT 380-60*.

- 2.5. Закладные деталь M4 должны дыть защищены чинкодыт пакрытым в coardeterduu с "временными skasamumu по антикоррозийной защите стальных закладных деталей и сварных соединений в крупналанельных зданиях"/СН 205-62 издания 1963г/.
 - 3. Texhuveckye Tpedobahur k usrotobnehuro, npuemke u montasey.
- 3.1. Ustatobnehue nepemoiyek, ux npuemba u kontpanb kayestba, a takite xoahehue tuahcnoptupobanue u mahrait danikhu npousbodutoca b cootbetctbuu co chediyautumu mopmotubnimu datamentamu:

CHUN 1-8, 5-62, \$enesoSeronnoie usdenum, Adujue ykasamum; CHUN 1-8, 5, 1-62, \$kenesoSeronnoie usdenum õnm sõamuu;

TOCT 13015-67, Usdenus tenesoderommue u detommue.

Norchutenbhor 3 sanucka

#3-01-58 B31046#2

ANUNG PEPE-	Tanepeynae Cê4ênue nepemblyku	Mapka nepe- mbi4ky	Pacxo d	Mare.	Mapko	Bec nepe-	Допь	Ckaemble 5	CUNUR		
MOIYKU	MM	MOIYEY	DETON	cidno	DETO-	MOINKU	,	M, IM		Q, T/Ha onope/	
		 	M3	kr			PACYET - HUU	אסטמקעם - אטני	PACYETHOR	HOOME -	
3,5	640	671-1	0.20	15,2		0,5	1,8	1.6	6,1	<u>5.8</u>	
5,0	200	6115-4	0,29	37,0		0,7	3,6	3,3	7,6	<u>7,0</u> 5,7	
3,5	97	6N2-1	0.25	15,2			1,8	1.5	6,9	5.3 5.0	
3,5		6/12-2	4.53	39,4		0,6	6.0	<u>3,5</u> 3,5	8,6	<u>7,8</u> 7,8	
5,0	250	B116-1	0,36	37,0	200	0.9	3,7	3.4 3.4	8.6	7.8 6.3	
35	250	6173-1	932	21,5		<i>Q8</i>	2,4	20	6,9	6,3 3,0	
35	3 8	6/13-2	4,02	43,5		20	6,0	<u> 55</u>	8,6	7,8	
5,0	380	BN7-1	0,45	52,6		1,1	5 /	4.6	<i>8,6</i>	7,8	
ي ج	380	514-1		25,1			3,1	2,2	8,7	7,7	
3,5	02	574-2	0,45	60,7		61	8,0	7,3	12,9	11,7	
5,0	510	5178-1	0,64	67.6		1,6	6,7	<u>6,/</u>	11,0	25	

HOMENKHOTYPA REPEMBIYEK

Примечани Приведенн NOTICE THE TOTAL SHORE STATE OF THE POLICIES TO THE PROPERTY OF THE POLICIES O

MINDINATIONAL PORTO STATES

HHHIOPIM3DRHHH

MORCHUTENHHAR 3d nucko

K3-01-58 BUINUCK < Ykasanua na ternanoruu snektoacisaku apmatupui skenesadetannisik kanctoakuuri 180438-51/ MCNMX N -MC3C/;

Указания по гехнологии производство армотурных работ в пратышпенном и графданском сгроительстве /нз-6/ НИОМТП/;

1001 10922-64. Aprilatypa u soknodnie deranu obojenie Ann Lenesoderommin koncrpykuut. Termuyeckue spedobamun u merodoi uchostamus.

ГОСТ 8829-66. Детали фелезоветонные сворные. Методы испытаний и оценка прочности, фесткости и трещиностойкости;

Инструкция по технологии изготовления и установке стольных заклюдных детопей в сборных железадетонных и бетонных изделиях /СН 3/3-65/;

Инструкция по монтафу сварных фелеговетанных конструкций промышленных званий и сваруфений/СНЗ19-65/.

- 3. 2. Otheck neperwisek majok 601-1 608-1 notpeduteako 3abadan - usratabutenem paspeuwetra b netnee boema na che dactustenua detakan ne menee 70% a bsunnee boema -100% nodekthoù noouna cru atask nepembiek majok 602-2 - 604-2 kak b netnee tak u bsunnee boema danyckaetra nache dactustenua detakam ne menee 100% nodekthoù noounach
- 3.3. Otknohenur of hopekthux pasmepob hepemulek he Bankhu npebuwato benuluh, ykasahnuk ha yeptekak fohyckaemule atknohenur no tahwuhe sawuthata charts mm.

Mectione depektol nepemblyek ne donkinol npebbliwoto cnedynwwx snavenuû: a/ uctpubnemue spameů b sapusansamnoù mactoczu Bansitaesca ne danee 3 mm na tazisaví meso Binunu, na ne danee 8 mm na Beno Bruns nepembyty

S/ pakobuno donectanorco pasmepom ne dónee 10 mm u Insdunou ne donee 5 mm b konuvecibe ne comue dous na odun no ronnou mero nepembutu;

8/ akanu rpsnei u unab fanukanica na mudunu ne danee 5 mm, b adnam nanepeunam ceuemuu danuckaeica ranuka adun akan;

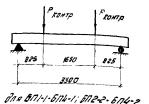
г / на поверхности перемочки дальскаются усадочные грещины ширинай не danee QD5 mm.

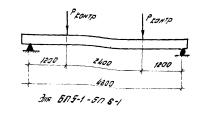
качество повержности перетычки должно удовлетворять допускам по классы шероховатости [1-Ш.

- 3.4. При хранемии и транспортиравании перемычни дапънны эстанавливаться в радочет попожении на поякладки, располагаемые строго друг над другом на расстоянии от торчов перемычки ме дапре 20 см.
- 3.5. Для проверки прочности, жесткости и ширины раскрытия трешим спедчет произвадить испытания перемычек в соответствии с 1001 8829 66 "Петапи жепезоветонные сворные. Методы испытаний Тоценки прочности, жесткости и трешиностойкости", по схеме, приведеннай на рис. 2

величины контральных напочать по праверке пранности фесткости и ширины раскрытия трещин перенычек, а так-же величины контральных прогидав и кантральнай ширины раскрытия трещин приведены в таба. 2.

\overline{T}	Пояснительная записка	k3-01-58 Bbinyck &
$ \Delta $	HONE HOTEHONON SUNDER	
1967.		1 1


Если при изгитавлении перемычек производится кантраль качество бетона, арматуры и арматурных изделий в соответствии c.n.n. 1.5, 1.6 и 1.8 Гаст 8829-68, испытания перемычек мо-гит не производиться


Таблица 2 Данные для испытания перемычек кантропьной нагрязкой

Mapka Nepe- Mbiyku	ROHTPOADHOR HOTPOSTO NO NOOH HOETU 1083 YUUTA COOCTBEHNOTO SECO TROMHUHU/ PROHTP. BET	TONTPONDHOR NOTPESTA NO SECTEDATE O POCKED THO TPEMUN / des Systa codes Behing seco Repembirkul KANTP, BET	KON TCONBHOU NOOTUS NE- PENDISUS E CEPESUNE NOOTNETO NOM	KENTEDNO- HIR WUDU- HI POCKEDI- TUR TPE- WUN 6 MM
501- 502- 502-2 803- 503-2 504-2 504-2 505- 508-	2700 2700 9830 3480 9600 4550 72650 3700 3750 5020	/760 /750 6380 2260 6230 2950 8220 2400 2440 3250 4340	7,3 5,3 11,3 7,5 11,0 6,6 11,0 10,1 9,8 9,3 9,8	q,z

Neumenahue, Paspywehue nepembinku npoucyodur neu reksnecru neodonbhau pasthhau apmorapai.

3.6. La matana appustadorba nepemblek saladamu -usroto butenamu dankhol doto paspadatamol u utbepktembl b uctomob nemom naprake texhuleckue ucnobua u texhonoruleckue apabuna na usrotobnehue u apuemku nepemblek b captberotbul z tpeda -

PUC.2

BOHUAMU CHUM 1-8, 5-62, O TOLSE M.M. 3,3-3,5 MORCHUTEABHOÙ SOMUCKU.

- 3.7. При четамовке перемочек на степу длина апирания перемочек дапукна двить 250 мм (сучетом дапускаемых атклонений-не менее 235мм). Перемычки дапукны четамовливаться на слоб раствара марки не миже примятой для кладки стен.
- 3.8. При применении перемычек в стемях из петкобетонных капней для увязки рядов кладки с высотой перемычки под опору перемычки яклодывается ряд кирличной кладки,
 - 4. Укозания па применению робочих чертежей / материалы для проектирования /

На значение радочих марок перемычек

4, 1. Назначение рабочих марок перемычек в самонесьщих каменных стенах праизводится по табл. З в зависимости ст нирины проема под перемычьой, типщины стены и бысаты кладки над перемычкой с учетам указаний п. 4, 2.

122	רוס ארט ארי	ח

TO THE SOLUCKO FOR BOUNTS

При ноличии энфинельных дополнительных нагрузак на Стенз /например в несущих стенах, воспринитающих нагрузку от покрытия и т. п. / марки перемычек принимаются по таба. 4 С учетст эказаний п. 4.6.

MPU UCHAMBOBANUU NEPEMBIYEK B COOTBETCTBUU C SKABAHUAMU TADA. 3 u 4 BANIKM DOITB ADECHEYENS NOOTHOCTB U YCTAUYUBACTB CTEN COMBOKO TOEBOBAHUAM CHUN 11-8, 2-62,

4.2. 6 rada. 3 noušeđeni makcuminimo danici unime pachernie baca ti knadku mag nepembirkamu 571-1 - 578-1 dna ctem us moudanee mupoka noimensembir matepuanab - kunuva u nerzade. 10 mbir kannet no 1001 6928-54.**

Высоты стем дамы при клюдке в петних условиях, Аля эимней клюдки высоты стем назначаются по расчету в соответствии с тредованиями СН и П \overline{U} -В. 2-62. При этам вазмафоно применение перемычек при клюдке в зимних условиях с устоновкой временных стоек под ними.

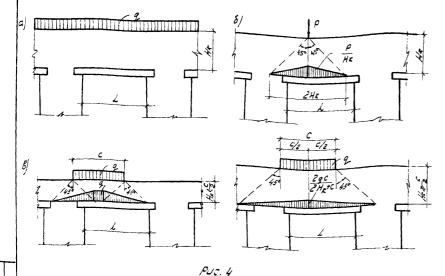
B CAYYOR, ECAU AO BEPAY CAADUHATA ADRCO KADKU HAD REPEMBYLOÙ BBICOTOÙ HE REPEDDETCH DORDHUTEABHAS HOLPYSKO JOT REPERBETOB APOCTEHKOB, ARUT AOKPHITUR KOPHUSA U DPJ, POCYELHOR BBICOTO KADDKU H DAPEDEABETCH C YYETOM SKBUBO REHIHOTO STOÙ HOLPYSKE ADRCO KADDKU BBICOTOÙ H₂, T.E. H=Hk+H₃ /PUL. 3/.

Πρυ эτοм, εсли $H = \frac{1}{2} L$, ραςчетная βωίζοτα Η πρυκυπαετία не danee значений, γκαзα κτώκ δ ταὰν. 3· εсли $tk \leq \frac{1}{2} L$, βωίζοτα Η πρυτυπαετία νε δανέε 1,5 m; πρυ $\frac{1}{2} L \leq H_{c} L = \frac{1}{2} L$ βωίζοτα Η απρεθέππετία να υπτερποπαίψου.

высота эквивалентного поясы кладки от ровночерно поспределенной нагрузки $9/T_h$, припоженной по верху стены / рис. 4a/, равно $H_3 = \frac{1}{2}$, где g и в - объетный бес и толицино $\frac{1}{2}$ есной.

Сосредотлуенной и местной распределенной нагрузки замемногой нагрузкоми по рис. 40 и в.

Полученная нагрузко, расположенная в пределах длины L,


/при подивре перемычек по данной серы /приводится k зквивалентной равномерно распределенной магруз ke для свододно ледсощей далки: при $Hk > \frac{1}{3}L$ - по опорной реакиии, при $Hk \le \frac{1}{3}$ L - по опорной реакиии, при $Hk \le \frac{1}{3}$ L - по изгидающему моженну

Puc. 3

9,- HOLDYSKO OT BECO OKONHOTO SANDINEHUR; 91.-HOLDYSKO OT BECO KNOSKU BIJOOCTENKE UNI LIYXOM YYUCIKE; 93.-HOLDYSKO OT BECO KNOSKU HOO BWUENDFOUEÜ NEDEMWYKOÜ | C SAUTPUKOBOHHOLO YYOCIKO.|

ΔT	
19375	

Расчет перемычек и кладки произведен на спедующие спучаи загружения;

a/ Narpeskau, paunpedenennau na Breu dnune nepembieku ut nonca cBascesnoskennoù knadku, boicatoù pobnoù t L rde L - wupund npoemo nod nepembiekoù:

र्व मवाव्यवस्वां वा हेट्ट टारमां या वाहरविर्देशार्व सावविस्य

При расчете то п "S" зчитивалась дополнительная сасредоточенная наг, ка от эвзх длаков подвесной тольки по 900 кг на один элак при рассторнии тежду блокати гт. 4.4. Harpysko na nepembuky ot ctenbi us otbopdobweż knadku npu pacyete nepembuku u knodku na cnotue nod anopoù npu H > \frac{3}{2} anpedenena no metody npap. Skemaukuna b bude npeutanbuuka/puc. 5/ c apduna taù y kpan npoctenko

 $d_0 = 3,3 \sqrt{\frac{8}{E_R}g}$ $\beta \neq 0 pm snax / [I \cup I^2] \quad nounate checken upe odoswanenus:$

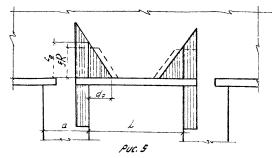
Н - высата стены над перемычкой в м:

פ - דמחשטאם בופאטו 8 אין

1 - ширина проето в т;

d - WUDUNG APOCTENKO B M;

Ex- MODENS EMPEROCIU KNOCKU CTENOL & T/m2.


B - fectocie nepembruku B im 2, unpedementan cornocho n. g. 10 Chun \underline{B} -B. f-G2; npu pocyeté knodku no emature A0 Chun A0

В ТОМ СЛИЧОВ, КОГТЭ ОЗВЛЕНИЕ КЛООКИ НО ПЕРЕМОГИКУ $\frac{R}{2}$ ПРЕВЫШОВТ РОСЧЕТНОВ СОПРОТИВЛЕНИЕ КЛООКИ С КОТИГО R, НОГРЭЗКО НО ПЕРЕМОГИКУ ПРИНЯТА В ВИДЕ ТРОПЕЦИИ, РОВНОВЕЛИ - $\frac{R}{2}$ ТОВИГОНИЧЕ, С $\frac{R}{2}$ ВИСОТОЙ, РОВНОЙ В R, И С НОКЛОННОЙ СТЭРОНОЙ ПАРАПЛЕЛЬНОЙ ГИПОТЕМИЗЕ ТРЕУГОЛЬНИКО $\frac{R}{2}$ ССС $\frac{R}{2}$.

NORCHUTE ASHOR SUNUCKO

K3-01-58 Sunvck 2

HHHHID WOOD WATER

Nou pachete knadku ha chatue had anapamu nepembiyek каспределение давления в отвердевщей кладке принималось AG A. 9.54 CHUN 11-8.2-62.

MPU H = 1 Harpyska at cremoi apunumanaco pagno. Meano pochpedene HHOU

1700 1/2 L LH L ZL YCUNUR HO NEDEMBIYKY ONDEDENR NUCE NO UHTEPHONAGUU.

- 4.5. Mou anpedenemun Harpysak ar crem Ha nepembiaku adzem How bee das kupau How knodku apunat poshom 1,8 1/m3 DAN KAODKU US APEKOOPETOHHSIX KOMMEÜ - 1,5 F/MB
- 4.6. B TOOM. 4 Apubedena donackaaman pacyethale u HODMOTUBABE HOLDASKU NOU OBYX CXEMOX 30 FAYSCEHUR ONG NEDE. MULYER BAZ-2 + BA4-2, ADUMENSEMBLY ADU SHOYUTERDHOLY DODON-HUTERBHOLK HOLDASKAK NO REPEMBIYKY / ROMUMO HOLDASKU OT CTENST / KOTOO HECYLLEN CHOCOO HOCTU HEPEMBLYEK BAZ-1 + BAL-1 akasulbaerca nedaciaiosno. Aanschaemose kaipsisku, noube. DENHIUE & TAGO. 4. NENYVENSI US PACHETO REPEMBIYER NO TOEM ADEGENSHIM COCTURAURA; ADU STOM BONGCHO BUTE OBSCHEUEND ΠΡΟΥΝΟ CTO KNOOKU & COOTBETCTBUU CO CHUN II-8. 2-62

ADDACKGEMEN HELDERSKU NO NEDEMBILKU DODEGENEHEL UR спеднощих ноговий : ногразка ит кладки стан принята равномерно распределенной о сосреда THE MADIE MORPHISKY, POICT BYPOWNE TO BED TO KNOOKY, DOCUMOT-

PUBOIDTER FOR TIPUTO SERNINE HETTOS PEDETBEHHO & DEPENDINE DES YYETO POCHDEDENEHUR USC B TENE KNOCKU.

Nou buco se knodku Had nepembiykoù dane 1,5 m /H > &L/ donackaembie Harpasku morar dollo nobulwenou uckoda us pac-DOE DETERNING DOBREHUS OF KNOWKY HO TEPEROVERY NO TRESTONDANCY согласно п. 4,4; при этом сосредоточенная нагрузка PACCMETPU BUETCA KUK EKBUBU NEHTHUU DOMONHUTENEHUU MORC KNOOKU COMOCHO N 42

9KO3OHUR DOUMEHEHUR NEDEM BIYEK TOU HUSKUX TEMPEDOTYPOX U & OFFECCUENDIDE cpedax.

4.7. And repemblyet skernyatupyemble nou pacyethble tem-REPUTYPOS OF MUNYC 30 DO MUNYC 40, APODONOTO POSOLATE **Фриатире дапжиа применяться из горяче**катаной стали к**ла**сса A. III MODOL 3518 UNU 25126, O MORREPEHHOR COMOTHEO - US ropayetara Haû cranu thacca A.I mapak Cr.3ch unu Cr.3nc.

TIPL PACHETHUX TEMMEPATERAX HULLE MUNEC 400 ADOBOADADA - ביז שומי שואי אינו עו אינו אינו אינוע nu knacca A-ili mapku 25/20, a nanepeunaa apmarupa - us TOPAYEKOTOHBŪ CTONU KNOCCO A-T MOPKU CT. 3cn.

B CAYYOR, ECAU BOSMOSKEN MONTOSK REPEMBLYEK APU TEMME-POTADE MUNAC 40 " U HUGKE DAR USTOTOBREHUR DOB DEMINIX NETENT donikko npumeharoca rodayekstahaa stano knisca A-J mapku BCT. 3CA.

4.8. REPEMBLYKU MOLYT NOUMEHATECA B KITOBURY CAODO U CREJHE огрессивной среды при обеспечении необходимой плотности derans mapky derana no bodhenpohuyaemaczu, bodowenehrhoro 3 dknodnoix desaneu & coorbescreuu c "Ykozakunmu na npoeksuрованию антикоррозионной защиты строительных констрыкций /CH 262-67/

NORCHUTENDHOR 3 dnucko

Данные для подбора марак перемычек в сомонесицих коменных стенах

Mapka	Ширина		Makcuman	5 HQ 2 6 BUE 070 K	nagku nag	ITEPEMBIYKOM	HBM					
nepe- mbjyku	אינים איני דין 8		U3 kUpnuya Mapku				U3 nerkođetohnus kommen majoku					
		TONULUNG CTEHBI	75		100		TOALUHA CTENSI		50		75	
		8 MM	אם סמרום	b ope mapku	HO PACTO	OPE MOPLU	ממת	HO PO	на растворе марки		Ha pacibape mapku	
			10	25	25	50		10	25	50	25	50
6/7/-/		_	-	_	_	_	190	4,5	5,7	6,7	8,7	9,9
5N2-1 6N3-1	3,0	250 380	4,2 5,4	6,0 7,2	7,8 9,0	9,6	390	- 6.0	7.5	8,7	— 10,8	12,0
514-/		5/0	5,4	7,2	9,0	10,8	490	6,0	7,5	8,7	10,8	12,0
6115-1 6116-1		250	- 2,4	3,6	- 4,2	5,4	190	2,4 —	3,3 —	3,9	<i>5,</i> /	<i>5,7</i>
5/17-/ 5/18-/	4,5	380 510	3,D 3,D	4,2	5,4 5,4	6,0 6,0	390 490	36 36	4,2	5,1 5,1	6, 3 6,3	6,9 6,9

Примечания: 1 Наменклатура перемычек дана в габа. 1.

г. Высоты кладки приведенные в габл. 3, нозначены из расчето прочнасти кладки на смятие у опор перемычек. При этом обеспечена прочнасть перемычек, прогиб в далях пропета не превосходит 1/200, а ширима раскрытия трешин одгат

3. Данные, приведенные в табл. З для стен из легкобетонных камней, не распространяются на кладку из гипсобе. TOMMUX KUMHEU.

4. При определении высот кладки, приведенных в табл. 3 нагрязки на перемычку принимались по п.п. 4.3-4.5 поясни-тепьной записки; при этом эчтены нагрязки от собственного зесо перемычки и подвесной лютьки согласно п.4.3.

5. При назначении высоты кладки над перемычкой по данной таблице дапжно быть обеспечена прочность и устойчиваеть стен в соответствии с тредованиями Снип 17-8 2-62.

6. При пользовании данной таблицей следует руковадствоваться указаниями Л. 4.2.

JAHADPOM3 DRIHA

Τσδηυμο 4

Данные для апределения токситально далястичной расчетной и нартогивной магрузки на перетычки БП2-2, БП3-2, БП4-2

Mapka népe- muytu	1	1,5 m	(5m	-2	Q75m 1,5m Q75m 3,0m					
	PT	9°, T/11m	17 - PH P	P," T	q", T/n,m	P, T	9°7/n.m	N= PH	P", T	g#. T/n.m
1	2	3	4	5	6	7	8	g	10	11
	a	4,0	a	a	2,8	0	4,0	0	Q	2,8
	1,3	3,2	0 0,2 0,4 0,6	1,2 1,3 1,5 1,6	2,2	1,2	3, 2	0 0,2 0,4 0,6	0,8 0,9 1,1 1,2	2, 2
	2,6	2,4	0 0,2 0,4 0,6	2,2 2,4 2,7 2,8	1.7	2.4	2,4	0 0,2 0,4 0,6	1,5 1,7 1,9 2,2	1.7
5/12-2	4,0	1,6	Q 0,2 0,4 u Sonee	3.5 3.9 4,2	1.1	3,6	1,6	0 0,2 0,4 0,6	2,4 2,7 3,0 3,4	1.1

MOCKRO

TA

NOACHUTENBHOR JONUCKO

K3-01-58 Bainyck 2

1	2	3	4	5	6	7	8	g	10	//
	5 , 3	0,8	g z u donee	4,5 5,0	<i>Q,6</i>	4,8	0,8	0 0, 2 0, 4 0,6	3, / 3, 4 3, 9 4, 4	0,6
6112-2	<i>E,6</i>	0	0 4,2 u donee	5, 7 6, C		6,0	0	0 0, 2 0, 4 0,6	3, 9 4, 4 4, 9 5, 6	0
	0	3, 9	0	Ø	2,6	9	3,9	0	0	2,6
	1,3	3,1	0 qz q4 q6	1,1 1,2 1,3 1,5	2,1	1,2	3,1	0 0,2 0,4 0,6	0,9 1,0 1,1 1,2	≥,/
	2,6	23	0 0,2 0,4 0,6	2,1 2,3 2,6 3,0	1,6	24	2,3	0 0, 2 0,4 0,6	1,6 1,7 2.0 2,2	1,6
603-2	3,7	5	0, 2 0, 4 4 donee	3,3 3,7 4,0	1,0	3,4	1,6	0 0,2 0,4 0,6	2, 4 2, 7 3, a 3, 4	1,0
	5,1	08	0 0,2 0,4 4 donee	4 ; 4 9 5.0	95	4,6	0,8	0 0,2 0,4 0,6	3,1 3,4 3,9 4,4	0,5

WHINDOMSO RHAM PAKE PROPERTY OF THE STATE OF

T.

Пояснительная записка

K3-01-58 BUNYCK 2

- | -

,	2	3	4	5	6	7	8	9	10	11
<i>6173 - 2</i>	6,4	0	O D, 2 u danee	5,4 5,8	0	5,9	0	0,2 0,4 0,5	3,8 4,2 4,8 5,4	0
	D	5, 2	0	0	3,8	0	5,2	0	Ø	3,8
	1,7	4,2	0 0,2 0,4 0,6	1,7 1,8 2,1 2,3	3,0	1,5	4,2	0 Q2 Q4 Q6	1,1 1,2 1,4 1,6	3,0
	3,5	3,/	0 0,2 0,4 0,6	3,1 3,4 3,8 4,0	2,3	3,/	3,/	0 0,2 0,4 0,6	2,1 2,3 2,6 2,9	2,3
BN4-2	5,1	2,/	0 0,2 0,4 4 6 anee	4,8 5,2 5,3	1,5	4,7	2,1	0 0,2 0,4 0,6	3,2 3,6 4,0 4,5	1.5
	<i>5, </i>	1.0	O O,2 4 donee	6,2 6,5	0,8	6,3	1,0	0 0,2 0,4 0,6	4, 2 4, 6 5, 2 5, 9	0,8
	8.6	0	1700 1100- 001% 3100- 4014019%	7,8	0	7,9	D	0 42 44 46	5,3 5,9 6,6 7,2	D

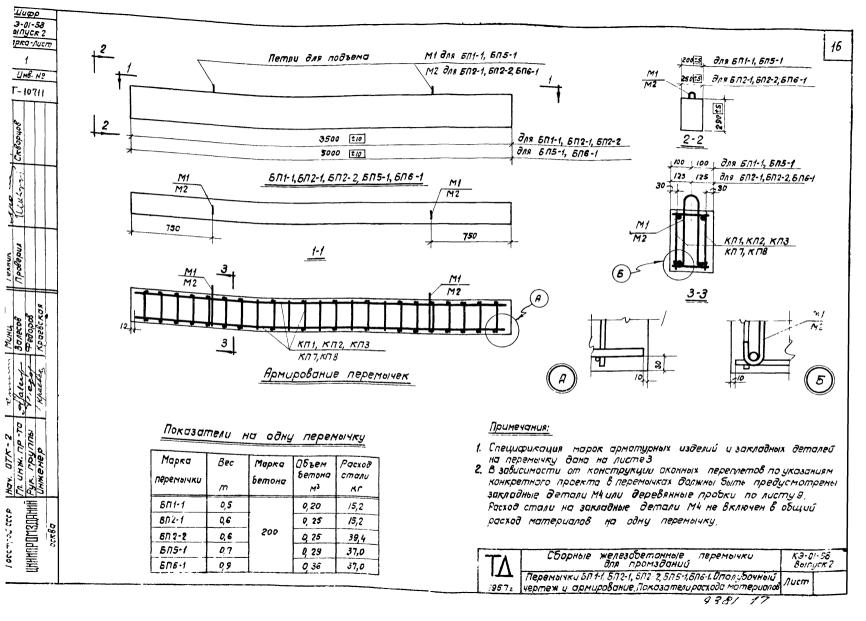
Unimitation in Martin Court Towns God ...

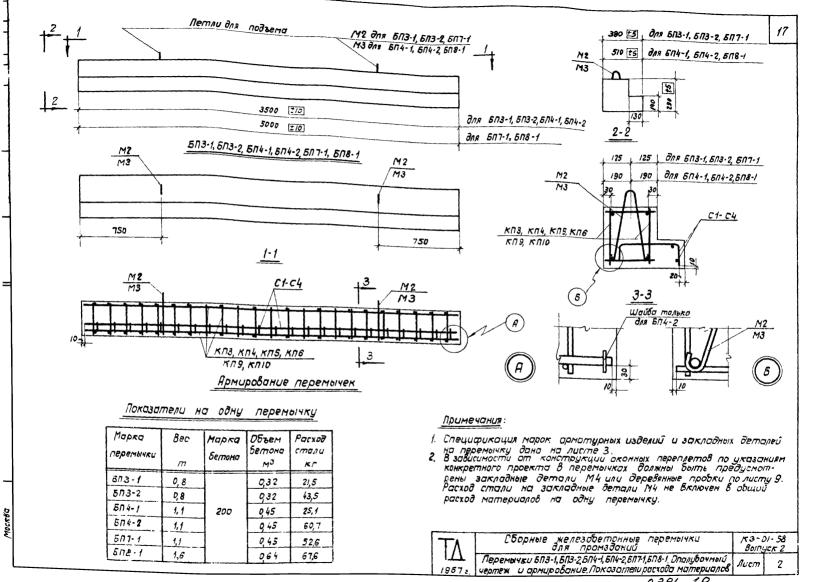
9381 15

Scholube odosno venua:

 $p^{\mu}_{u}p^{\mu}$ - расчетная и нармативная сосредота ченные нагрязки; $p^{\mu}_{u}q^{\mu}$ - -" - — равнамерно распределенные нагрязки; $p^{\mu}_{\kappa\rho}$ - кратка временна действующа я часть нармативной сосредото ченной магризки.

ROUME YORUS: 1. HOMENKAOTYPO REPENSIVEK DANG 8 TODA. 1.


- 2. Величины расчетной и нармативной нагрузак, приведенных в тобл. 4, назначены из расчета перемычек по прочности и деформоциям, принимоя предельный прогид в допях пролега элемента равным 1/200 при этом ширима раскрытия трещин в перемычках не превосходит 0,2 mm.
- 3. В тобл. 4 нармативная равномерно распределенная нагрузка д^н принята длительно действующей. В тех случаях, когдо имеется как длительно действующая, так и коаткавременная равнамерно распределенноя нагрузка, дрячскаемая величина папной нармативной нагрузки может дыть повыш**е**на в соответствии с расчетом.
- 4. При определении допустимых значений расчетной и нармативной нагрузки на перемычки, приведенных в radn. 4, учтены нагрузки от cadcibenных веса перемычки и от подвесной пюльки согласно п. 4.3. пояснительной записки.
- 5. При назначении нагрузки на перемычки по данной гадлице должна быть одеспечена прочность и устойчиваеть кладки в спответствии с тредованиями СН и П 11-8. 2-62


Marchurenbhas sanucka

K3-01-58 Boinyck 2

JHHHIDDIMBIRHIHI 72. 4

10713

antidraus (retrams

Спецификация марок арматурных изделий и закладных деталей на одну перемычку

				
Марка переноики	Марка изделия или,заклад- най детали	К ол-во шт.	Vincuma No	
	K11	1	5	
	M1	2	7	
5 <i>11-1</i>				
	КП2	1	5	
Б Л2-1	M 2	2	7	
0//2 /				
	КПЗ	1	5	
5n 2-2	M2	2	7	
DITE				
	кП4	1	5	
5 /13 -1	MZ	7	7	
	Cf	1	,	

Марка перенычки	МДРКО U382ЛUЯ UЛU30КЛОд- HOÙ BEMOЛU	Кол-80 шт.	nle nucma
	клз	1	5
	M2	2	_
БПЗ-2	CI	1	7
	кпъ	1	5
574-1	МЗ	2	7
6/14-1	C 2	1	
	кп6	1	5
БП 4-2	M3	2	_
	C 2	1	7
	KN7	1	5
	M1	2	7
<i>5⊓5-1</i>			

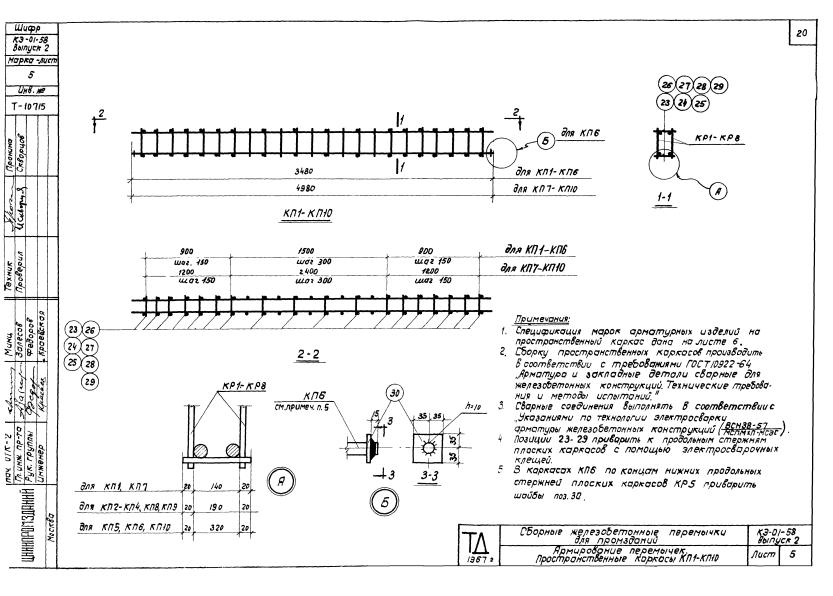
Марка перемычки	Марка изделия или заклад иой детоли	Кол-8 о шт.	Vacua Y5		
	KN8	1	5		
506-1	M2	2	7		
-					
	KNS	1	5		
5N 7 -1	M2	2			
<i>511</i> 1 -1	<i>C3</i>	1	,		
	KNIO		5		
5/18 - f	МЗ	2	7		
D.1.5 1	C4	C4 1			

TΛ	Сворные железоветонные перемычки для промзданий	K9-0. Beiny	CR 2
/967 2.	Ярмирование перемычек. Спецификация тарок арматурных изделий и закладных деталей на одну перемычку	fu cm	Э

K3-01-58 Bbingek 2

Nucm

0	ı
0	ľ
ĸ	ı
ū	ı
	ı
0	ı
E	ı
`	ı
	ı

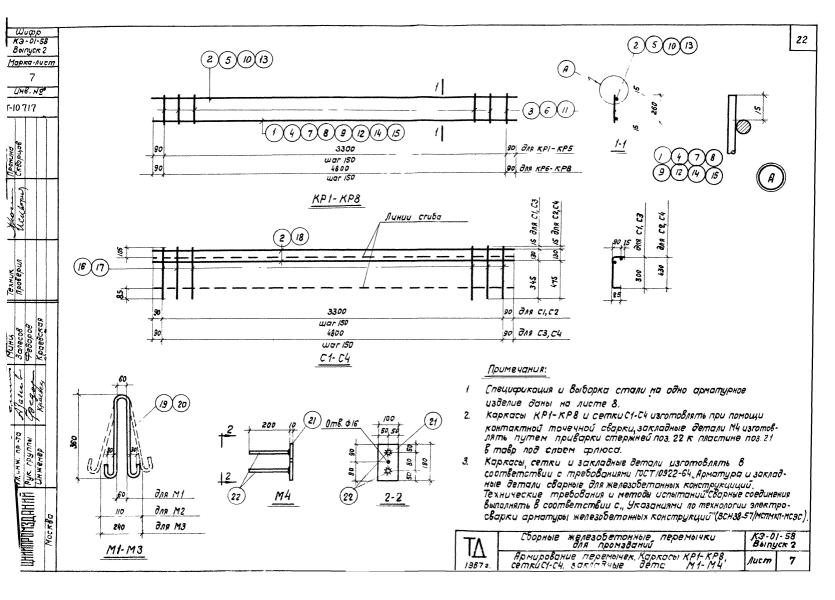

Выборка стали на одну перемычку кг.

Μαρκα				munai	KO	ко гана нстру	кций	racr 51	181-61			MOHHBIX		
элемента	77	ериоди	HECKUE	a npaq	гиля, А	ласс А	-7/			Кру	глая, к	nacc A-1		Bce21
3/10 / 10 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1				φ, m				Umaea			Ø, MM		<u> Итого</u>	7
	28	25	22	18	16	14	12		12	10	8	6		<u> </u>
<i>51</i> 7 1-1	-	-					6,2	6,2	_	1,2		7.8	9,0	15,2
5/12·f		_	_			_	6,2	б, 2	_	1,2		7,8	9,11	15,2
6/12-2	_	27,0	-	_		_	_	27,0		1,2	11,2	-	12,4	39,
<i>БП3∙</i> ∤	_			_		8,4		8,4	_	1,2	_	11,9	13,1	21,:
<i>573-2</i>	_	27,0						27,0		1.2	11.2	4,1	16,5	43,
6/14-1	_		_		11.0	_		11,0	1,6			12,5	14.1	25,1
6П4-2	33,8	_				-	_	33,8	1,6	19,0		4,7	25,3	59,1
5.75-1	_	_	-	20,0		_	-	20,0	_	1.2	15.8		17,0	37,4
6 <i>1</i> 16-1				20,0	_			20,0		1,2	15,8	-	17,0	37,
5/17-!	_		29,8	_	-			29,8		1,2	15.8	5,8	22,8	52,
5/18-1	-	38,4					_	38,4	1.6	_	20,8	6.8	29,2	67,

Примечание:

B nepsmbiyke 5/14-2 Janoahumeabha yyeemb nooccbyo emaab no fact 103-57 mapku Cr3kn no fact 38% 50% & 10 my 1,6 kc.

ſ	TΔ	Сворные железоветонные перемычки для прсмэданий
l	1967r.	APMUPOSCHUP DEOPMHUER

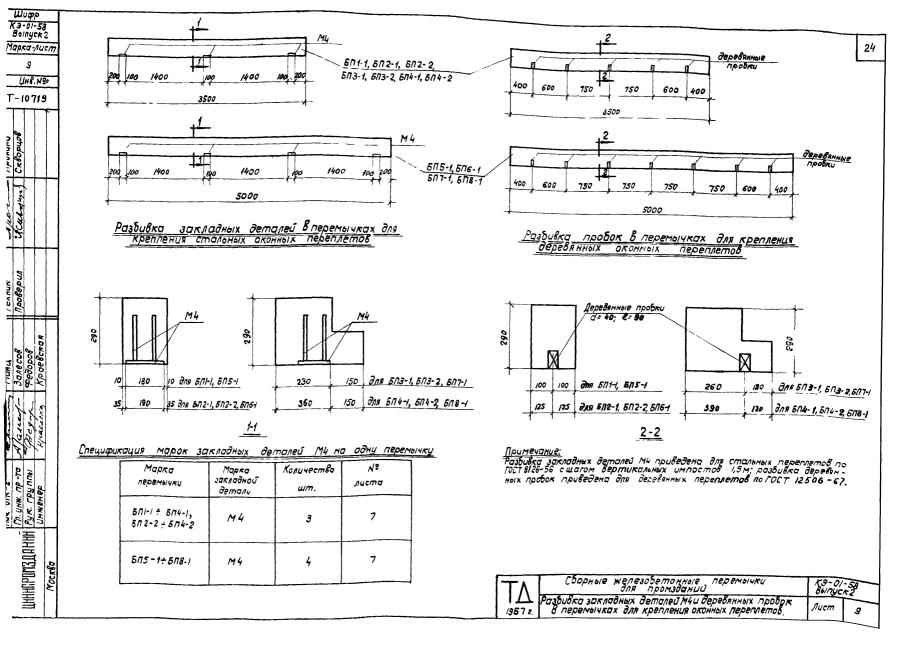


Спецификация марок арматурных изделий и закладных деталей на пространственный каркас

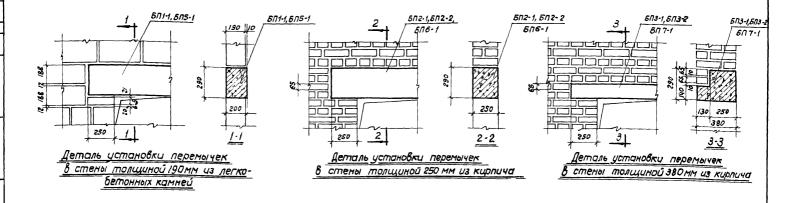
Марка простран- ственного каркаса	MOPRO U3BENUA UNU 3ORNOB- HOÙ GEMONU U AF NOS.	Кол-во шт.	Nº.
	KP1	2	7
KN1	23	36	8
	KPI	2	7
К Л2	24	36	8
	KP2	2	7
кл3	27	36	8
	KP3	2	7
KN4	24	36	8

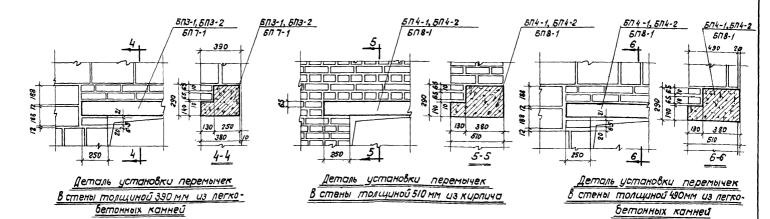
Марка простран-	Марка изделия	Kon-Go	Nº
ственного каркаса	UNU SAKNOD HOU DEMONU U Nº NOS.	шm.	Aucma
	KP4	2	7
K/15	25	36	8
	KP5	2	7
кП6	29	<i>3</i> 6	8
	30	4	8
	KP6	2	7
77	26	50	8
			-
	KP6	2	7
КП8	27	50	8
			ļ
			1

Марка простран- ственного каркаса	Mapka usdenuk unu saknad- nou demanu u n≅ nos.	Кол-во шт.	Vncwa Vz
	KP7	2	7
K/19	27	50	8
	KP8	2	7
KNIO	28	50	8



_		• •		~	08	~~	2
Спецификация	u	BUDODKA	спічли	MU	UUMU	שטאמטווונטדיועט	usaenue


	i			27	euuqo	UKQ	448	u t	קטטופנ	AU	<u> </u>
	Mapka	Nº	T	0	Длина	12	ne	8018	OPEO (cmanu	$\overline{}$
	изделия	nos.	Эскиз	UJU CEYEH. MM	MM	wm.	Дбицая М	\$ UNU CEYEN.	Opmas gvina	Bec	-
		1		12R 111	3480	1	3,5	12811	3,5	<u> </u>	4
	KP1	2		6AI	3480	f	3,5	GAT	9.5	3,1	
١		3		6A I	260	23	6,0	Umi		2,1	
1	400	4		25 R I I	3480	1	3,5	25 A 17		5,2	
J	KP2	5		BAI	3480	1	3,5	BAT	9,5	135	
1		6		BAĪ	260	23	6,0	1	פתפת	3,8	
		7_		14/11	3480	1	3,5	14/11		17,3	7
-	KP3	2		6AT	3480	1	3,5	GAT	3,5	4,2	7
-		3		6A <u>I</u>	260	23	6,0	-	9,5	2,1	7
1		8		16AII	3480	1	3,5	Um	oro	6,3	7
	KP4	2	***************************************	6AĪ	3480	1	3,5	16 Acti	3,5	5,5	7
		3		6AI	260	23	6,0	SRI	9,5	2,1	4
		9		28 A III	3480	1	3,5	Umoro	1000	7,6	4
1	KP5	10		IDAT	3480	1	3,5	28411	3,5	16,9	4
		11		IDAT	260	23	6,0	IDAI	9,5	5,9	4
		12		18A111	4980	1	5,0	Umo	ro	22,8	1
	KP6	/3		847	4980		5,0	18A III	5,0	10,0	4
		6		BAT	260	3.3	8,6	BAI	/3,6	54	1
		14		22 4111	1980	1	5,0	U	moro	15,4	4
	KP7	13		8A7	4980	1	5,0	5581g	5,0	14,9	4
		6		8AT	260	ļ	-	8A.T	13,6	5,4	1
		15		258111	4580	33	8,6	Umo	10	20,3	1
		/3		BAI		1	5,0	25RIII	50		
	KP8	6	***************************************	8AT	4980	1	5,0	BAT	136	19,2	
				<u> </u>	200	33	8,6		oro	5,4	J
		!		L	L	L		L^{-}	Γ	24,6	
	1							_	<u> </u>	j	7


									•
T-			<i>\$</i>	T	r		<u> </u>		
Марка	Nº	Gerus	טמט	Длина	Kon.	Общая		PKO C	עוניסרון
นรสิยภบล	nos.		CEYEH.	MM	шт	Bruna M	\$ UNU CEYEN MM	длина Вршиа М	Bec
	2		GAT	3480	2	7,0	6AT	18,3	4,7
C1	16	With Confession and C	6AI	490	23	11,3	ותע		4,/
	2		GAT	3480	2	7,0	6AT		4,7
C2	17		GAĪ	620	1		-	21,3	
	/8		6AI	-	7.3	14,3		10.00	4,7
C3	16	-		4980	2	10,0	6AT	26, 2	5,8
-	/8		BAT BAT	490	33	16,2		070	5,8
C4	·····		-	4980	2	10,0	6AI	30,4	6,8
~	/7		GAT	650	33	20,4		000	6,8
MI, MZ	/9		IORI	900	1	0,9	IDAI	9,9	0,6
M3	20		IZAI	900	1	0,9	12AI	9,9	0,8
		cm. nucm 7			L				
	2/	Полоса	100×10	180	1	0,2	-100×10	0,2	1,6
M4	22		IOR III	200	2	04	10 A III	0,4	9,3
							Un	ora	1,9
	23		6AI	180	1	9,2	6AT	0,2	9,1
≥	24		6/1	730	1	9,2	6AT	9,2	0,1
nosonan	25		GAI	360	1	94	6AI	0,4	0,1
3 5	26		8AT	180	1	9,2	188	0,2	0,1
6 3	27		SAZ	230	1	9,2	845	0,2	91
Отодельные ожни и по	28		847	360	1	04	847	0,4	0,2
Отд стержи	29		IDAI	360	1	94	IDAT	0,4	0,2
COL	30	9 0m8. \$\phi 32	-70×10	70	1	Q/	-70>10	0,1	94

~~·	Сборные железобетонные перемычки	K3-01	'- 58 <u>'</u>
1 / 1	מות מות פות פות פות פות פות פות פות פות פות פ	BUTTLE	<u> </u>
177			ø
19672	Армирование перемычек. Спецификация и выворка стали на одна арматурное изделие	Jucm	0

NOUPECKON

ТД Сборные железобетонные перемычки кэ-тл- 38 Выпуск 2
Детали установки перемычек в стенах Лист 10