ГИЛОВЫЕ КОНСТРУКЦИИ И ДЕТАЛИ ЗДАНИЙ И СООРУЖЕНИЙ ДЛЯ КАПИТАЛЬНОГО РЕМОНТА В ЛЕНИНГРАДЕ

СЕРИЯ 1.14 1-КР-1

ПАНЕЛИ ЖЕЛЕЗОБЕТОННЫЕ ПРЕДВАРИТЕЛЬНО-- НАПРЯЖЕННЫЕ С КРУГЛЫМИ ПУСТОТАМИ СО СТЕРЖНЕВОЙ АРМАТУРОЙ

AAbbom-I

РАБОЧИЕ ЧЕРТЕЖИ СБОРНЫХ ЖЕЛЕЗОБЕТОННЫХ ИЗДЕЛИЙ

ТИПОВЫЕ КОНСТРУКЦИИ И ДЕТАЛИ ЗДАНИЙ И СООРУЖЕНИЙ ДЛЯ КАПИТАЛЬНОГО РЕМОНТА В ЛЕНИНГРАДЕ СЕРИЯ 1.141-КР-1

ПАНЕЛИ ЖЕЛЕЗОБЕТОННЫЕ ПРЕДВАРИТЕЛЬНО-- НАПРЯЖЕННЫЕ С КРУГЛЫМИ ПУСТОТАМИ СО СТЕРЖНЕВОЙ АРМАТУРОЙ

АЛЬБОМ I

COCTAB CEPHH

АЛЬБОМ I — Рабочие чертежи сборных железобетонных изделий часть 1 — изделия панели кНК часть 2 — изделия панели БПК

Разработан
институтом "Ленжилпроект"

Главный инженер ин-та
Главный конструктор
Начальник отдела Астиса (А. В. Сдобников)
Главный инженер пр-та В В В Кузьменко В В В Кузьменко

COTAACOBANO:

Управления капитального ремонта Ленгориспол ком а:

откорректирован ц

ИЛЬБОМ ОТКОРРЕКТИРОВАН И Ополнен 07.78г. ГИП ЖИТ /ВИНЕД/

ı	ì		
١			

	Наименование черптежей	NN cmp.	√ √ чертещ	ни Наименование черппеней стр.	4 H
	Информационная карта Содернание альбома	1A 1,2	1.141-KP-1.1.000	Спецификации и характеристика изделия КНК 390 г.5	1.144-KP-1.1.021ua
	Пояснительная записка	3	1.144-KP-1.1.001#1	Спецификации и хакактеристика изделия кик 400 гб	1.14 1-KP-1.1.08244
	Homenkvamypa n lokasamsvn Hamenkvamypa n lokasamsvn	4,5	1.141-KP-1.1.00em	Спецификации и характеристика изделия кнк410 г	1.141-KP-1.1.0831-1
	Опалубочный чертен панелей кнк 270÷ кнк 750	6	1.14 1-KP-1.1.0034	CHELLI WHILE X YELLE THE THE THE THE THE THE THE THE THE TH	1.14.1-XP-1.1.084u1
	Армирование панелей кнк 610 ÷ кнк 120	٦	1.141-KP 1.1.004	Спецификации и характеристика маделия КНК 430 29	1.141-KP-1.1.025u1
	Cemka C-1	8.9	1.144- KP-1.1.005	Спецификации и характеристика изделия кик 440 зо	1.141-KP-1.1.026u1
	Каркасы К-1; К-2; К-3; К-4; Сетки С-2; С-3	10	1.144-KP-1.1.006u	Спецификации и характеристика и завлия КНК 450 д	1.141-KP-1.1.087u
	увлы 1 и 2	11	1.14 J-Kp.1.1.007u	Спецификации и характеристика изделия КНК 460 38	1.141-KP-1.1.028u1
	YEAH 3 4 4	12	1.14 1- KP-LI -0084	Спецификации и характеристика изделия кнк 470 33	1.141-KP-1.1.02941
	Спецификации и характеристика изараня кнк ето	13	1.141-KP-1.1.009ut	Спецификации и характеристика изделия КНК 480 34	1.141-KP-1.1.080u1
	Спецификации и характеристика изделия КНК 280	14	1.141-KP-1.1.010HI	Спецификации и характеристика изделия КНК 490 35	1.141-KP-1.1.03141
	Спецификации и характеристика изделия КНК 290	15	1.14.1-KP-1.1.0Hu	Спецификации и характеристика изделия КНК 500 36	1.141-KP-1.1.032U1
	Спецификации и характеристика изделия КНК 300	16	1.141-KP-1.1.01241	Спецификации и характеристика изделия КНК 510 37	1.14.1-KP-1.1.088u-1
	Спецификации и характеристика изделия кнк 310	Ŧ	1.14 J-KP-1-1.013µ1	Спецификации и характеристика изделия КНК 520 38	1,141-KP-1.1.034u1
	Спецификации и характеристика изделия кнк 320	18	1.147-KP-1.1.01441	Спецификации и характеристика изделия КНК 530 39	1.14 1- KP-1.1.035u1
4	Спецификации и характеристика изделия кнк зво	19	1.14 J-KP-1.1.018 HI	Спецификации и характеристика изделия КНК 540 40	1.141- KP-1.1. 0364
	Спецификации и характеристика изделия кнк 340	80	1.14.1-KP-1.1.016µ1	1.141- KP-1.1.000 u	4
	Спецификации и характеристика изделия КНК 350	61	1.141-KP-1.J.017m	Way Aver No A OKYM DOAD MATA	MACCA MACUIMAS
_[Спецификации и характеристика изделия КНК 360	88	1.14 J-KP-1.1.018un	РАВРАБ. ДЕРЮГИНА ОФИ 1977 СОДЕРНАНИЕ АЛЬБОМА ПРОВ. ХОМИЧ Семия	
518	Спецификации и характеристика изделия КНК 310	23	1.141-KP-1.1.019u	TUT KYSHMEHKO Pras	Пипуп
ري	Спецификации и характеристика изделия кик 380	24	1.14 1-KP-1.1.020+1	<u> Ленн</u>	NVUDOSKU

Копировал: Никитина Формат 12

		144	4 <i>0 1 1 1 1 1 1 1 1 1 1</i>				2	3	1 4	5
HOMEP 4					-					
विवाव ४३	Краткое содержание изменении		2012011-		1			+	+	
MEHEHUS		POBRA	нения	вание	<u> </u>			<u> </u>	 	
1	2	3	4	5	<u> </u>			1		
14.07.782	Уточнение объемов	CEPUR 1.141- KP-1	<i> .]4 -KP-</i> -11.HX-1	CEPUA 1.141-KP-1.1	ļ					
		CANDON I 4.1 430. 19782.		CINSSOMI 41.				<u> </u>		
	ветона и диаметров	1990. 1970z. NUCITOL:		<u>1130.197h.</u> AUCTOL:	₩			ļ	 	
	CPMQ/778Pbl	<u> [41KP-1. 1.000H </u>	÷	1.141-KP-1.1.000:	#					
	÷	1. <i>PH-KP-J.1.004W</i>	· ÷	1:141-KP-1.1.004						
		1.141 -KP · 1.1.006H	<u>.</u>	1.141-KP-1.1.006÷						
		1. 141-KP-1.1057H	/	1.141-KP-1.1.059						
15.02.792	Изменение каркаса К-3	1.141 - KP-1.1. UK-2		1.141-KP-1.1.WK-1	L					
		1.141-KP-1.1.006H2]. 141-KP-1.1.008HI	<u></u>					
		1.141-KP-1.1.004W2		1.141-KP-1.1.004W						
	Изменение привязки подъёмных.									
	петель.	1.141-KP-1.1.003 W2		1.141-KP-1.1.0034)						
						· · · · · · · · · · · · · · · · · · ·		<u> </u>	<u>. </u>	
						UK-2 Africa 11-7	1 111 2	P-1.1. HK-A	2	
						HK-2 Affamo 11-7. HK-1 Logue W-2 (ISAN JUCT H GOKYM, Modara Han	7. 141 - KF	'-1.1. HK-A		
						Pasnab. Maknoba taksel Meob. Xamuu Xamu	<u> </u>		Sum. Su	em Nyemou
						TUIT BUHEP X	UHPOPMALLI		UHCITA	שעוואות
						Ymb.	KAPITI	Y		nrpoekm

Копировал: Кериман

POPHAM 12

							1
		44	44				
	Наименование чертеней	CMP.	чертен.				
Специ	Фикации и характеристика изделия КНК 550	41	1.141-KP-1.1-037u4				
Специ	Фикации и характеристика изделия кнк 560	42	1,141-KP-1.1-038u4				
Специ	Фикации и характеристика изделия кнк 570	43	1.141-KP-1.1-039u1				
Специ	Фикации и характеристика изделия КНК 580	44	1.14 1-KP-1.1-040u1				
Cheun	Фикации и характеристика изделия КНК 590	45	1.14+KP-1.1-04144				
Специ	Фикации и характеристика изделия КНК 600	46	1.141- KP-1.1- 04241				
Специ	ФИКАЦИИ И ХАРАКТОРИСТИКА ИЗДЕЛИЯ КНКО	47	1.14 - KP-1.1-04341				
Специ	ось яни килоден анитончетная и и инранит	48	1.144-KP-1.1-044u1				
Специ	ФИКАЦИИ И ХАРАКТЕРИСТИКА ИЗДЕЛИЯ КНК 630	49	1.14 1-KP-1.1-04541				
Специ	Фикации и характеристика изделия кик 640	50	1.14 1-KP-1.1-046u4				
Специ	Фикации и характеристика изделия КНК 650	51	1.14 1-KP-1.1-047u1				
Специ	ФИКАЦИИ И ХАРАКТОРИСТИКА ИЗДЕЛИЯ КНК 660	· 52	1.141 KP-1.1-04841				
Специ	CON KATIN N XADAKWEDNCHNKA NFFEYNA KHK 610	53	1.14 4· KP-1.1-049u1				
Специ	ово жима жимаристича изделия КНК 680	54	1.141- KP-1.1-05044				
Специ	ФИКАЦИИ И ХАРАКПІЗРИСПИКА ИЗДЕЛИЯ КНК 690	55	1.141 KP-1.1-051u				
Специ	жикации и характеристика изделия КНК 100	56	1.14.4- KP-1.1-05eur				
Специ	ОІГ ХНХ КИЛОДЕН АЯНТОНЧЕТТА И ИНДАНЬФ	5η	1.141- KP-1.1- 053u4				
Специ	ОЗГННЯ КИЛЭДЕН АНИМОНЧЕМИХАРАХ И ИНДАНИФ	58	1.141-KP-1.1-054u4				
Специ	обг ЯНК киледен амитонерткамия книго	59	1.141-KP-1.1-055u1				
Специ	Фикации и характеристика изделия КНК 140	60	1.144- KP-1.1-0564				
	Фикации и характеристика изделия КНК 150 некезоветопные-с круглыми тустопами КНК 510+ кН К 150	61	1.141- KP-1.1-057u+				
BUEOPH	стани при классе стали Ат Т	-65	1.14 1-KP-1.1-058u7	П			Лист
BUBOPKA	MONEY OF THE STATE OF THE PROPERTY OF THE TRANSPORT OF TH	-63	I.14 1- KP-I.I-0594	NSM NACT NO PORT N. 110711	MC VII.78	1.141 -KP-1 1.000 Ht	2

Копировал:

Никитина

POPMAM 12

На основании договора 12933 с производственным объединением "Стройдеталь" сцелью максимальной экономии метал-АА В СТРОИТЕЛЬСТВЕ, РАЗРАБОТАНЫ РАБОЧИЕ ЧЕРТЕНИ ПРЕДВА-РИТЕЛЬНО - НАПРЯЖЕННЫХ ПАНЕЛЕЙ С КРУГЛЫМИ ПУСТОТАМИ НА HATPYSKY 900 KT/M2 C & MX BUTYCKHLIMN PEBPAMN . е= e.7 ÷ 7.5 м шириной 1.0 м.

KAK MOKABANA MPAKMUKA HOBOTO CMPONMENECMBA, HACMIN-AND C KPYTANIMU TYCTTOTTAMU TO CPARHENNO C DRAALHIMU хин в нах нап иннедан ээлог и кинелвототь так как в них плоские полки которые могут поотсутствуют MOHKNE врендаться изготовления и транспортировки. RMS98 08

ПРИ СОСТАВЛЕНИИ АЛЬВОМА ПРИНИМАЛИСЬ БОКОВОЙ ПРОФИЛЬ и размеры круглых пустот в соответствии с гост 9561-66 76 "Панели желевобетонные многопустотные для перекрытий **НИЛЬІХ И ОБЩЕСТВЕННЫХ ЗДАНИЙ**.

При применении панелей с круглыми пустотами достига. ется повышение звукоизоляции перекрытия. Панели раз-PABOMAHU B COOMBEMCMBNU C CH N 1 1-21-75.

TAHEAN BOOK ANH OM 2.7 : 7.5 M - RPEABAPH MEALHO - HARPS HEH-HUR. PAEDHAR TPEABAPHTTEALHO-HATTPHHEHHAR APMATTYPA TPN-HAMA NO CHANN KNACCA A- IT FOCT 5781-75. 4 AT-II, AT-I ГОСТ 10881-71: В СПЕЦИФИКАЦИЯХ АРМАПУРЫ приводятся ANNHU MPERBAPHMENLO- HAMPSHEHHUX CITEPHHEN, COOMBEMOM-ВУЮЩИЕ ДЛИНЕ ПАНЕЛИ, БЕЗ УЧЕТА ПРИПУСКА НА УСТРОЙСТ-BO AHKEDOB.

Каркасы и сеттки предусматриваются из арматуры CMANN KNACCA A-I FOCT 5781-75 NB XDNOAHOM9 HYMON NPO-BOADKY B-I FOCT 6727- 52 N NOTO MOBANABAHOMES B COOMBEMEM. вии с СН 393-69.

TPN NOTOMOBACHUN CEOPHEIX HEVESO ECHOHPIX SYEMEH-ATTRHAORIGE OMNAOXACOH BOTT требования следующих HOPMAMINBHIX N NHCMBAKMNBHIX TOKAMEHWOB" NETENNA HEREZOBEMONHINE N BEMONHINE. OBULNE MEXHNUECKNE MPE-BOBAHUR "(TOCT 13015-75). " XKASAHUR TO TPUMEHEHUHO B КОНСТРУКЦИЯХ СТЕРЖНЕВОЙ АРМАТУ-XIdhhomsaoesnsh PH" (CH 390-69).

Превования по допускам, приемке, складированию, транспортировке, методам испытания N NNASAEN т. Д. принимаются по действующим MEXHANGERAM YCLOBNAM

И ПРОЧНОСТИ НАСТИЛОВ ПРОИВ-Кантроль несткости водить по госту 8829.66.

РАЗМЕРЫ НАСПИЛОВ приняты в соответствии "Номенклатурой CEOPHNIX железоветонных нимых домов в г. Ленин-OTOHANAMINAN RIA AMHOMSA TPARE" " 1976 F.

ПЕРЕД МАССОВЫМ ИЗГОТОВЛЕНИЕМ НАСТИЛОВ НЕОБХОДИМО ВЫПОЛНИТЬ ПРОБНЫЕ ИСПЫМАНИЯ

				1.141-KP-1.1.0	01 41		
	UK-1	XO-MY	VII-78		Λĸm.	MACCA	MACUMA
Nam. Nuci	MYOKYM	Подпись	AAMA	КАНАЛЯМИНОВОП	ПТ		
PASPAB.	Дерюгина	Defre	1377	KAHANSHIINHSKOII	III		
TI PO BOPH		TOMB	l	ЗАПИСКА		Ц,	ــــــــــــــــــــــــــــــــــــــ
TNN	KY36MBHKO	253			VACU	Лист	
					NHO	Y M N M	m
			/		IVEH	НИЛ ПР	oekm
YMB.	COOSHUKOB	100			1,,		

HUKUMUHA

1.141 - KP · 1.1.002 H 1

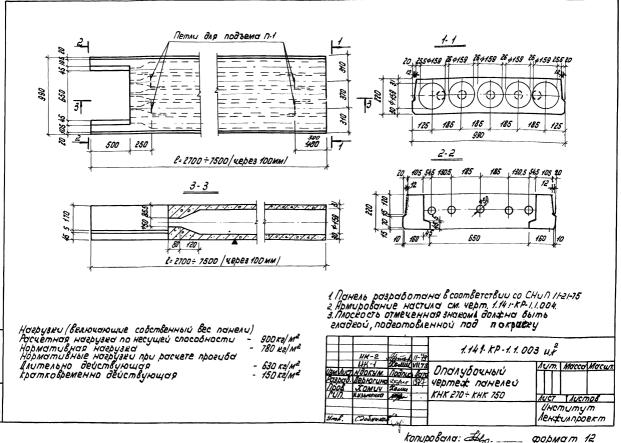
1.141 - KP · 1.1.0

Копировала: Кериман

POPMAIN: 12

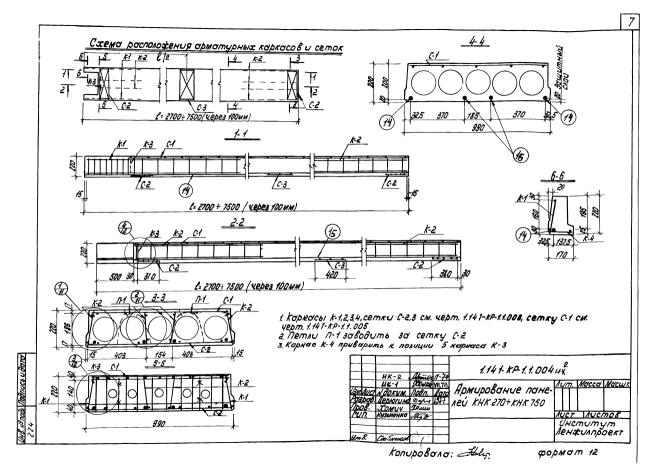
HOMEHKNAMIYPA	U NOKASAMENU HA OBUH	
	OS and Granding of the	

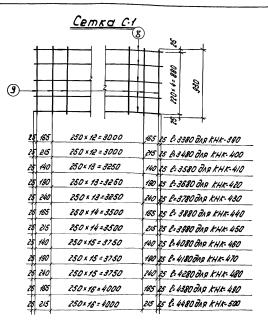
)
(/ <u>00</u> 000	
70000	

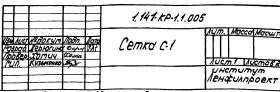

ЭСКИЗ

1. Марка бептона - "300" 2.Расчетная нагрузка по несущей способности - q - 900 кг/м²

OMEHKA	THYP	$\alpha u r$	70KQ30	7/17/2/	U HO	9 000	TH 3	REMEHI					
Μαρκα	Pasi	MEPOL	в мм	OOBEM TAHERU R. TO	[Tepekk [TPONETS [See with	ow baen v 8 cbers	Pacxo	MATTIEPUL MANS & KR. MPSR. CEP PEKA	INC Seron		HAKUE CTAN ETAKA BKI UNP. Ap-PE. KN.)		
31eMeHMO	l	8	1	POSNOS B M3	Lo Max.	Comin	A-IÌ	n vsa. Op pe idj	M3	A IT	ше.сф-ге. кл.,	TQ K?	CITIP.
KHK - 510	5100	990	220	1.112	4720	4630	26.18		0.574	45.61		1435	6-12;3
KHK- 520	5200	990	220	1.134	4820	4730	26.48		0.586	45.19		1465	6:12;38
KHK - 530	5300	990	220	1.155	4920	4830	26.77		0.598	44.76		1495	6-12:39
KHK - 540	5400	990	220	1.177	5020	4930	30.10		0.609	49.43		<i> 523</i>	6:12:40
KHK- 550	5500	990	220	1.199	5120	5030	30.40		0.621	49.02		1553	6:12:41
KHK-560	5600	990	220	1.221	5220	5/30	32.83		0.632	51.95		1580	6:12:42
KHK- 570	5700	990	220	1.243	5320	5230	33.17		0.644	51.50		1610	6:12:43
KHK - 580	5800	990	220	1.264	5420	5330	33,52		0.656	51.10		1640	6-12:44
KHK-590	5900	990	220	1.285	5520	5430	34.00		0.667	50.9		1668	6:12:45
KHK- 600	6000	990	220	1.308	5620	5530	34.32		0.679	50.54		1698	6:12,46
KHK- 610	6100	990	220	1.330	5720	5630	37.80		0.690	54.80		1725	6÷12;47
KHK- 620	6200	990	220	1.352	5820	5730	38.19		0.702	54.40		1755	6:12;48
KHK- 630	6300	990	220	1.373	5920	5830	38.60		0.714	54.06		1785	6÷12;49
KHK- 640	6400	990	220	1.395	6020	5930	43.22		0.725	59.61		1813	5÷12;50
KHK- 650	6500	990	220	1.417	6120	6030	43.70		0.737	59.25		1843	6:12;51
KHK- 660	6600	990	220	1.439	6220	6130	49.40		0.748	66.04		1870	6-12;52
KHK- 670	6700	990	220	1.461	6320	6230	49.93		0.760	65.70		1900	6-12;53
KHK- 680	6800	990	220	1.482	6420	6330	55.47		0.772	71.85		1930	6:12;54
KHK- 690	6900	990	220	1.504	6520	6430	56.20		0.783	71.80		1958	6-12;55
KHK- 700	7000	990	220	1.526	6620	6530	61.62		0.795	77.51			6-R; 56
KHK - 710	7100	990	220	1.548	6720	6630	62.40		0.806	77.42			6-12:57
KHK- 720	7200	990	220	1.570	6820	6730	63.04		0.818	77.10			6-12;58
KHK. 730	7300	990	220	1.591	6920	6830	63.73		0.630	76.80			6-12;59
KHK- 740	7400	990	220	1.613	7020	6930	70.72		0.841	84.10			6:12:60
KHK- 750	7500	990	220	1.635	7/20	7030	71.45		0.853	83.81			6:12:61

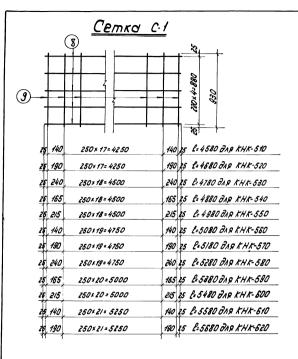

1					
١			NK-1	20 mm	11-78
	BA	NUCT	NOOKYM.	Modnuo	<i>Ilana</i>

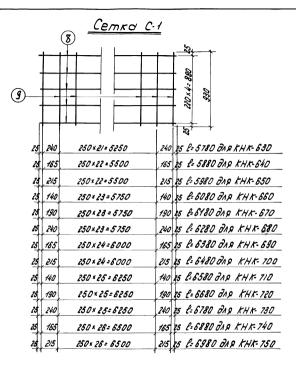

1.141-KP-1.1.002 H1



UNE.Nº noão, Nodruce u dara

DODMOM 12

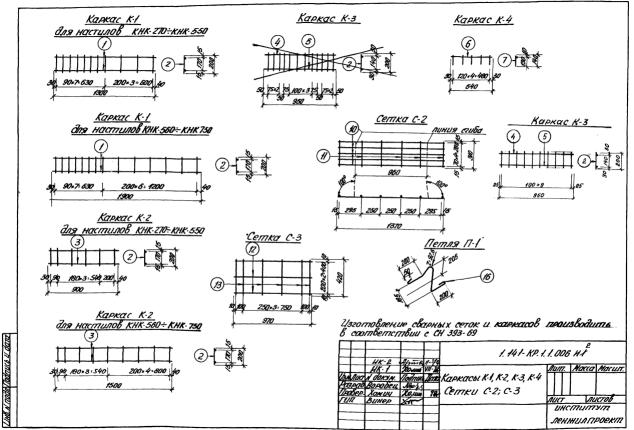


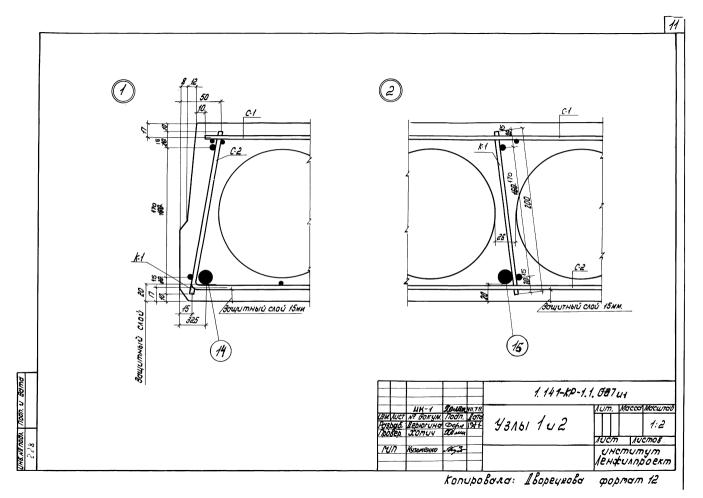

KonupoBana:

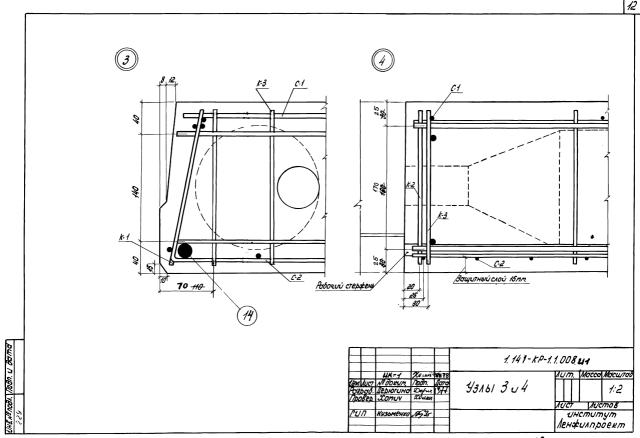
160peuro6a

Popmar 12

HENFORD MEDIUS U BOTO


LAMAUCT WE BORYM. MODIFICE BOTO


1.141-KP-1.1.005


Konupobara: Lleg.

POPMOT 12

g

KonupoBara: Abopeyroba popmariz

	Cnei	цифик	MA RALLIA	АТУРЫ	идо Ан	н элем	ент		Сиепификупия сп	ТАЛЬНЬ	іх элемен	тов	
	Марка	1 N 103.	ф мм	AHNA A MM	Kon-80 um.	КА <i>ЩаО</i> Ани∧д	MACCA		MAPKA	Кол-во шт.		Всех	OB CMP.
	K-1	1	58I 841	1300	5	2.60	0.40		K- 1	8	0.62 	1.24	10
		5	4BI	500	1/1	2.2	0.22	1	K- 6	6	0.40 0.46	2.40 2.11	10
	K- 2	3	5 bī	900	5	4.8 +6 -1.2 +0	0.28 0.36	1	K-3	1	0. <i>8</i> 6	0,86	10
		2	4BI	600	<u>6</u>	-10	0.12 0.10		K - 4	٤	9, 28	0,56	10
	K - 3	1 4	6 AI 8 AI 4 BI	950 950 200	<u> </u>	1.0	0.2e 0.40 0.14	1	C-1	1	2.00	2,00	8
	N 3	5	481	600	12	1.0	0.14		C - 6	2	0.87	4,74	10
	K - 4	6	IAB	540	1	0.54	0,12	1	c - 3	1	0,54	0,54	10
		7	EAI	140	5	7.0	0.16		Оштеурные сшернии	4		6,05	
	c - {	- 8	481	2180	88	10.9	1.08		Петли	4	0.69	2.16	10
		9	481	059	10	5.9	98,0	1					
	C - 2	10	481	1370	Б	6.9	83.0		XAPAKMEPHO	: M N K A	издел		
Į	·	jŧ	4 BI	310	6	1. 9	0.19		MACCA				740
		12	4BI	970	3	2.9	0.29		Анотова мобар			M3	0.276
ł	C - 3	13	4 B I	420	6	2,5	0. 25		Анишлот каннадавичП	HACT	пила	CM	4 12.61
П	Отрельные	1.4	ZI A OF	00r9	2	5,4	3,33		MACCA CMANN				-8.1- 7.73
	стерни	15	MAGE	5500	2	4.4	2.74		PACKOA CMANU HA 1 M ²			KS	### 61.3
Ī	Пешли	16	10 A I	1120		4. 1	0.69		Расход стали на 1 м ³	Бетон	Δ	KZ	300
ľ		A RAA	- ĪV 60	= 5100 K	Z/CM ²				Кубиковая прочность Бетона	ZED OEMAI	THE HUHE	KZ/CM2	200
ŀ					<u> </u>				ОБъем панели по внешни		MEPAM	МЗ	0.588
Н		DPIP	OPKA	CMAN	И				Длина Равочей Арматуры Без		SAXBAMOB	(1103, 13,	14)
24%	Диаметры Класы ст		ф Ю А Й	_	10 AI 881	6AI	481	58 I	11K-1 1001111111111111111111111111111111		. QQ9 u1	A um IMace	A MACUITA
t	Длина м		9.80		4.48 1.0	3.48 18.50	56.25 - 68.65 -	16.00	MAMANETTI Nº AOKYM TOATHCE AATTA	AKME	АЦИИ И РИСППИКА		
┽	MACCOL K		6.05	- 1	2.76 440	9.76 410	5.57 5.64	2.48	TPOBERNA XOMNY RESILVE	43 A C A K		Vicin IV	1CITIOB
-⊋ }	RaH		6000		2400	\	5500		TUN KYSEMEHKO 11738 11 A H G			инстип	mעד
4	ТОСТ		5781-	15			6727-53					VEHHNV	NPOEKM
									Копирова л:	Ник	Ф Анитпи	OPMAM 1	2

Спец	ифика	19A RNJ	иатуры	ДО АН	ин элеі	Nehm		Спецификация с	та Льнь	IX ЭЛСМО	80mHS	
M APKA	N N.	ф_	АНИЛД	Кол-во	<i>кашао</i> Анулд	MACCA		MAPKA	Κολ- 8 ο ωπ.	DD A M OS OH AO AMHSMSAE	BCEX	DB CMP.
	1	50I	1300	2	3.60 E.67	0.40	=	K-1	2	0.62 0.00	1.24	10
K - 1	2	4BI	200	4	2.2 2.8	0.22	7	K - 5	6	0.40 8.46	2.40	10
У 0	3	56I	900	2	1.8	0.28	1	K-3	1	0. 86	a. 66	10
K - 2	8	4 B I	500	+ 6	1:3	0.12	7	K-4	5	0.28	0.56	10
	4	IAB	950	1	1.0	0.22	7	C-1	1	2.05	2.05	8
K - 3	٤	48I	950 20 0	12	1.4	0.40	1	C-2	5	78.0	1.74	10
K-4	δ	6AI	540	1	0.54	0.12	1	c-3	1	0.54	0.54	10
ν - τ	7	6AI	140	5	۵.٦	0.16		Оштеурные сшерния	4	-	6.29	
0 1	8	481	6580	5	11.4	1.13		Петли	4	0.69	87.9	10
C-1	9	4BI	930	10	9.3	92.0]	V			·	
• •	10	4BI	1370	5	6.9	0.68	}	Характерист	ПИКА	изден	R N	
C - 5	11	4BI	510	6	1.9	9.19]	MACCA			KZ	_801_ 770
C-3	11.	481	970	3	2.9	0.29		Анотова месай			M3	-0.32+ 030
C-5	13	4BI	420	6	2.5	0.25	1	Анишлот каннадавичП	HACT	ПИЛА	CM	-4-12.55
Оштеурные	14	ZZ A OI	2800	٤	5.6	3.45	1	MACCA CMANN PACKOL CMANN HA 1 M	2	14.0	KZ	19.3 184
стерни	15	MA OF	2300	٤	4.6	2.83	4				K2	-1.9 7.54 - 50. 59.8
Пешти	16	IAON	11 20	4	1.1	0.69]	РАСХОД СТАЛИ НА 1 М МАРКА БЕТОНА	BEIIIO	пд	KZ	300
	RΛΔ	A- II 6	o = 5100 K	z/ CM2				Куриковая прочность Бетона	20 05HA1	DIME HE HAME	KZ/CM ²	200
				A 14				Перем шанели по внет		MEPAM	M3	0,610
	Бы	SOPKA	cm /	. ЛИ ————————————————————————————————————			_	Алина рабочей арматуры Бе	з учета	3AXBAMO	B (nos. 1	3, 14)
кла <i>сы</i> сг Диаметры		ф loal ф	-	INS I A OF	6AI	4BI	ф5ВІ	1 1 111 1 111 1 1 1 1 1 1 1 1 1 1 1 1 1		1.1. 010 111	I A um IMA	CA [MACUTA
Длина	M	10, 20		4.48 1.0	-1816 3.48	57.45 57.7		VISMINICT N. MORYM. TIDATINCE LATA N XA	PAKILLEDI TINDIK V	NGITINKA	1,411 144	-CA INCUMA
	K2	6. 29	_	2.76 440	4.10- 0.78	5.66. 5.75	2.48	TIPOB. XOMNY TOWN	HEND K	Я Н К- 28 0		
Rall		6000		240	0	5500		Ги П Кузьменко Жэ			Инст /	
FOCT		5781-	75			6727·55						проект

Копировал: Никипина

St mamage Ahum

	HH	ф	Длина	KON-BO	ОБЩАЯ	MACCA	•		l.,	MACCA		
MAPKA	поз.	MM	мм	шт.	AHNAA	KS		MAPKA	Кол-во шт.	010нд0 Атнямэле		اد
K-1	1	56I 4A2	1300 1880	2	2.60	0.40		K-1	٤	0.62 1.65	1.24	
N*	5	481	500	2 11 15	2.2	022		K- 5	6	0.40	2.40	
K- 6	3	-642	-950	٤	1.8	0.28		K-3	1	0, 8 6	0.86	
N- 6	6	481	500	= 6	1.2	0.12		K-4	8	0. 28	0,56	
K-3	4	IA 6	950	1	(.Q	0.22		C-1	1	2.19	8.19	
V. 2	8	481	950	15	1.4	0.22 0.40 0.14		C-5	ع ا	0.87	1.74	
K-4	6	EAI	540	1	0.54	0.12		c.3	1	0.54	0.54	
	7	EAI	140	5	۲.0	0.16		Оштеурные сшеьния	4	-	6.54	
c-1	8	4BI	0869	5	41.9	1.18		илтэп	4	0.69	2.76	
L-1	9	481	950	11	10.2	1.01						=
C-8	18	481	1370	5	6.9	0.68		XAPAKMEPHC	MNKA	ИЗДЕЛ	N S	
	11	481	310	6	1.9	0.19		Macca			KZ	•
C-3	12	481	970	3	8.9	0,29		AHOMSA MS43D				=
	13	481	420	6	2.5	0.25		АНИДИЛОТ КАННЭДЭВИЯП	HACMINA	<u> </u>	CM	_
Ошбеурные	14	10 A JF	5900	8	5.8	3.58		MACCA CTIANN				=
CITI & PIHH N	15	VIA O1	2400	8	4. 8	8.96		PACKOA CIMANN HA 1 M ³			K2	=
Пешли	16	IAOL	1150	1	1.1	0.69		PACXOL CMANN HA 1 M3	Bemon	<u> </u>	Ne	_
	¥14	A - IV 0	50: 5100 1	15/CME				Кубиковая прочность Бетона	AHAO OTS	HUHSH #NIT	K2/ CM2	
	Вы	BOPKA	CITI A	Λu				ИНШЭНВ ОП ИЛЯНАП МЭЕЗО			M 3	
				, , ,				Длина рабочей Арматуры Бе		ЗАХВАЩОВ	(nos. 13,	11
кучсся си Унамешья		Ф I0 A II	-	10 A I 8AI	IA 9	4 b I	5581			- 1. 1. O 11 ua	Aum. Macc	-
ANHA	М	10.60	-	4.48 1.0	3.48	39.7 58.98	16.0	NOM. NUCTTI. NO ADKYM. MOATINGS LATA	USH NAI	SHCILLINKY NKY MN	Aum. IMAG	<u>_</u>
MAGGA	KZ	6.54	-	2.76 0.40	9.78 4.16	3.97	2.48	PASPAS. APPIOTURA COPER STA	NBACN	N S		_
RaH		6000		240		5 5 Q Q		ГИП КУЗЬМЕНКО ТОТ ПАНЕ	VP KHK-5	30	унсш и	

Копировал: Никитина

CDDPMAM 12

	1	T	1	KON- BO	РА ДЕО	MACCA	7			MACC	A KZ.
MAPKA	N N nos.	ф	анил Д, мм	шm.	AHMAA	Ke		MAPKA	Кол- во шт.	OTHONO VE	
	1	56I	1300	2	2.60	0.40 -0.88		K-1	e	0.62	1.24
K-1	2	481	200	11-15-	3.3	0.22	1	K-8	6	0.40	2.40
	3	581	900	٤	1.8 1.2 1.2	0.28 0.12 0.12]	K-3	1	0.86	0,86
K- 5	8	481	200	≠ 6	1.2	0.12]	K-4	۶	0, 28	0.56
	4	6 4 1	950	ı	1.0	0.22		c-1	i	2.24	2.24
K- 3	5	841 48I	950 200	12	1.0 1.4	0.40]	C-5	5	0.87	1.74
K- 4	Б	6 A I	540	1	0.54	0.12	_}	C- 3	1	0.54	0.54
K- 4	7	EAI	140	5	0.7	0.16	1	Отрельные сшерини	4	-	6.79
- 1	8	481	2480	5	12.4	1.23	1	Петли	4	0.69	2.76
C-1	9	4BI	930	11	10.2	1.01	4		~ !! ~ ~ !! !!	4 110 4 01	
C- 8	10	4 81	1370	5	6.9	0,68	4	ХАРАКПО	ристик	А ИЗДе	T
C- E	11.	4 B I	310	6	1.9	0.19	4	MACCA			K2 M ³
C-3	11_	4 BI	970	8	2.9	0.29	1	Объем Бетона			CW N ₃
	13	481	420	6	2.5	0.25	-	Млот каннодовичП илато Ароам	HA HAC	MINA	K2 =
энналэдт0	14	TLA OF	3000	<u>e</u>	6.0	3,70	-	РАСХОД СТАЛИ НА	1 M2 NSTE	RNA	KZ
CWEBMHN	15	10 A IV	2500	2	5.0	3.08	-		1 M3 ESM		K2 =
Петли	16	10 A I	1180	1	1.1	0.69	1	MADKA ESTICHA			
	ελД	A - 1 <u>V</u>	ರ _{ಿ =} 5100 1	Ke/cme				Кувиковая прочность ветона	AHIBO 019 ah	MINE HE HUHE	K2/CM2
	Ruc	OPKA	CMAN	!			l	OBJEM WAHEN UD BHE		MEPAM	M³
	Dale	1	CITIANA	<u>'</u>		г	 1	ANHA PABOJEN APMAMYPH	Без учета	SAXBAMOB	(1103. 13,
КЛАССЫ СІ КЛАССЫ СІ	N NAAIT	ф 10 A II		10 A I 8AI	641	481	ф58І		141- KP-1		II.
Длина	М	11.0	_	4.48 1.0	3.48	59.6 53.85	16.0	MAN ANCT NO ACKYM. POATHCE AATA	Специфи	KATNN :	Aum. Macc
MACCA	KZ	6,79	_	2.76 040	9.78	5.92 5.83	2.48	PABRAG DEPHOTUHA DEPER 1847 M	XAPAKMEP NBACN NBACN HENL KHK-3	NS	Ш
RaH		6000		e400		5500		ГИП Кузьменко 1832 ПА	HEVP KHK-3	500	NHCM NH

Копировал: Никиппина

POPMAM 12

														1
	Cne	T NOONK !	MAA RNJA	АПУРЫ	на один	3Nemel	lm.			Спецификация сп	ПАЛЬНЬ	IX BVGW6	нпов	
		ИИ	ф	Длина	Кол-во шт.	RA JU Z O	MACCA			MAPKA	Кал-во	МАСС	BCEX BCEX	N N
	MAPKA	1103.	581	1300	 	260	0.40				wm.	316Mehm A	1.24	
	K-1	1	-647	1520	8	-2-04-		4		K-1	2	0.85	±10	
	N - 1	5	48I	200	11	2.2 ====	0.22	_		K-6	6	0,40 -0.45	2.40	10
		3	561 641	=880=	5	1.8	0.28			K-3	1	9.86	0, 86	10
	K- 8	6	4BI	800	≠ 6	1.2	0.12			K-4	8	89.0	0.56	40
		4	6 AI 8 AI 4 BI	950 950 800	1	1.0	0.22			c-1	+	2.39	2.39	8
	K - 3	5	4BI		lż	1.4	0.40	_		C - 8	6	0,81	1.74	10
		6	6AI	540	1	0.54	0, 12]		C-3	4	0.54	0.54	10
	K-4	7	6 A I	140	5	۵.٦	0. 16			Отрельные стершии	4	-	7.04	-
		8	481	2580	5	12.9	1.28			Петли	4	0.69	2.76	10
	C-1	9	4BI	930	12	41. 2	4. 11]						
	C - 5	10	481	0761	5	6. 9	0.68	_		XAPAKMEPHCI	ПИКА	лэден	ИЯ	
	(-2	11	481	310	6	1.9	0,19			MACCA			KE	= 808 ;; 855
	_	11	4BI	970	3	2.9	0.29	_		ОБЪЕМ БЕТОНА			MB	4:360-0342
	C-3	19	4BI	420	6	8.5	0. 25			АНИДИЛОТ КАННЭДЗЯНЯП	HACM	MAA	CM	4- 12.46
	Оштеченые	14	VI A O!	3100	2	6. 2	3.83			MACCA CMANN			K2	-20/1- 19.53
	СТЕРННИ	15	ZI A O!	5200	5	5.2	3.21	1		DACKON CHIANN HA 1 M2	NSAEN	ия	K2	7.12
	пешли	16	IAOL	4150	4	4.4	0.69]		Расход стали на 1 м3	Pemor	14	KZ	-55.5 -57.10
	HOMEN	RAA	A - IŸ	60 = 5100	Ke/CM2			-		MAPKA BEMOHA		u	K2/cm²	300
					•				1	Кубиковая прочность бетона на ег				009
		Вы	SOPKA	cmA	ΛИ.					Объем панели по внешним	PASM		M3	9F3,0
. в. N° подп. Подпись и ДАПА.	КЛАССЫ СП Диаметры	N NAAr	ф 10 A Ū	~	MR IAOF	6 A I	481	ф 58I				. 013 u1	El 60n)	
УРШ	AHNA	м	11.4		4.48 1.0	-18.56- 34	€0,30 €1,1	16.0	Ė	KEM NUCH. Nº AOKYM NOANUG LAMA CHE	и пифик	АЦИИ	AMT. MA	CCA MACUTAB
Ĕ	MACCA	K2	7.03		2.76 0.40	4+0 -0.78	6.016.0	2.48	. [DOOR XOUND POR	NBYGVA	(57.		
10 TOA	RaH		6000		2400		5500		-	FUN KYSHNEHKO 335 NAHEAL	KHK-3	10	Aucm	
3	roct		5781	- 75			6727-53*						ИНСШ И	VUDO6KW
1														.,

	44	ф	АнилД	KOA-B	о ОБЩАЯ	MACCA		61.		V	MACCA		
MAPKA	поз.	MM.	MM.	шm.	AHNAA	KZ		MAPKA		Кол- во шт.	O10HA0 Amhsmsae		пов
· ·	1	58I -6#I	1300	8	2.60	0.40 9.59		K-1		2	0.62 	1.24	
K-1	5	4BI	200	#		0.22		K - 5		6	0.40	2.40	
	3	581 6A1	900	e	1.8	0.28 		K-3		1	0.86	0.66	
K- 2	٤	481	200	=	6 1.2	0.12 1.10		K-4		8	0. 28	0,56	
U 2	4	6AI	950	1	1.0	0.22		C- 1		1	2.43	2.43	
K-3	25	481	950	12	1.4	0.14		C- 6		5	0.87	1.74	
K-4	6	641	540	1	0, 54	0.12		C · 3		1	0. 54	0. 54	
	7	GAI	140	5	0.7	0,16	M M	ельные сшеы	нни	4	-	89.1	
c-1	8	4BI	6890	5	18.4	1.33	<u> </u>	Пешли		4	0.69	97.9	
	9	4BI	930	12	11.6	1.10		XAPAKI		- U A	лэден	u d	
c - 2	10	4BI	1370	5	6.9	0, 68				INKK	подел	и <i>л</i>	
	H.	481	310	6	1.9	0.19	MAG					KS M 3	7
C-3	17.	481	970	3	6.9	0, 29	0630 0630		- 1 · · · · · · · · · · · · · · · · · ·	HAO	m u v A	CM	=
	19.	481	480	6	2.5	0.25	MAC		<u>унитис</u>	MAC	ШИЛА	KS	7
СШБРЖНИ Ош Твүрүү	14	ZA OF	3200	5	6.4	3.95	PAC		HA 1 M2	эден	RNA	KZ	=
	15	ŽÍA Of	0019	5	5.4	3.33	PAC		HA 1 M3	Бето		KZ	=
Пешли	16	10 A I	1180	1	1.1	0.69	MAP	PKA BETTOHA					~
	A RAL	- N 60:	5100 Kz/C	ME			KYBNKOBA	АЯ ПРОЧНОСТЬ БЕТО	HA THE CH	A## 00	WAS HE HAME	KS/CM2	8
	BHE	OPKA	CMAAN	4			OEF	- Hilliam Ho			EPAM	M 3	0
Диаметры	И						THN/T	TAMAA NSPORA				(103, 13	. 14)
KNACCHI CI		φ ł0 A TI		IAO	8AT 6 AI	4BI	SBI			1 - KP-	1.1.014 111	No.	
АНИЛД	М	11. 8		4.5	1.0 =18.9-3.48	44.8- 61.6	.00 Nam Auct	HE LOKYM. HOATHICE LAT	T CIT	епифи	КАЦИИ	∧и ш. М.	ACCA
MACCH	KS	7. 28		2.78	0.40 -1.10 0.78	6.98 6.11	PASPAS.	XOMNY Tourn	4 A	Р КНК- 3 ИЗУСУ1 В КНК- 3	ANIMONGS	Ш	
R _a H		6000			2400	5500		Кузьменко эдэ	TUNHEN	P KHK-	250	инеши Уисш	
roct		5781	- 75			6727 - 53 [*]			-			VEHMN	

Che	I NOONK V	MAA RNJ	иатуры	NAO AH	н элеме	Hm.	
MAPKA	44	ф	Длина	шm.	РАДДО АНИЛД М ОЭ.5	MACCA K2	
MAPA	nos.	3BI	1300 1300	8	-2.64-	0.40 -0.59 0.22	1
K- 1	<u> </u>	481	500	-13-11	2.2 2.6 1.8 1.64	0.28	1
	3	58I 6 AI	- 820 -	5	1.8	0.12 0.12	1
K - 8	8	4 BI	500	<u>-5-6</u>			ł
K-3	4 5	6 A I 4 B I	950 950 200	1 12	1.0	0.29 0.24	
	50			1	0.54	0.12	
K-4	6	6 AI	540 140	5	۳.0	0.16	
	7 .	6 AI	2780	5	18.9	1.38	
C-{	<u> </u>	4 BI	930	12	11.2	1.10	
		48I 4BI	1370	5	6.9	0, 68	
C- 8	10	4 BI	310	6	1.9	0,19	
	12.	4BI	סרפ	3	2.9	9.29	}
C-3	13	4 BI	420	6	2.5	0.25	
Оштеурные	14	10 A IV	3300	9	6.6	4.07	
CUSPHHN	15	VI A OF	2800	2	5.6	3.46	
Петли	16	IAOS	1120	1	1.1	0,69	
	κλД	A - 1\(\bar{X}\) G	is: 5100 f	e/cme			
	Выв	OPKA	cm A A	1			
КЛАССЫ СП	N NAATI	Ф 100 M	1	10 A I SAI	EAI	481	ф 5В.
AHHAA	м	12. 2	_	4.5 1.0	-18.5 348	447 621	16.0
MACCA	KZ	7.46	_	2.76 040	4. 10 0.78	8.11 6.16	2.48
RaH		6000		240	0	5500	
TOCT		5781	- 75			6727 - 53*	1

HIB. Nº DOAR. HOANUCE W AAMA

Спецификация стальных элементов

Споциникации	, ITTA NOTES	- Shelfle	nings	
		MACCA	KZ.	
Mapka	Kon- Bo	OTOHAO ATHSMSAE	BCEX	HH.
K-1	2	0.62 - 0.65	1:35	10
K-6	6	0.46 0.46	2.40 2.11	10
K-3	1	0.66	0. 66	10
K-4	٤	0.28	0.56	10
C-1	1	2.48	2.48	8
C-5	2	0.81	1.74	ło
C-3	1	0.54	0.54	10
Оштетрные сшеьнии	4	-	7.53	_
Пешии	4	0,69	2.76	10

ХАРАКТЕРИСТИКА ИЗДЕЛИЯ.

MACCA	KZ	-970-9 15
AHOMSA MSEAD	M 3	- 9.386- 0.366
АЛИПОАН АНИШЛОП КАННЯДЯВИЧП	CM	+ 12.44
MACCA CITIANN	K2	20.9 20.11
PACXOL CMANN HA 1 M2 NASKANA	KZ	11. 6.85
Расход стали на 1 м3 ветона	KZ	- 53.6- 5494
МАРКА Бетона		300
Кубиковая прочность Бетона же его обнатие ненине	KZ/CN2	500
МАЧЭМЕРА МИНШУНА ОЛ ИЛУНАП МЭЕЛО	M3	0.719

1.14 - KP-1.1.01544

114-4 Дами VII 18

ISM NACE. Nº ADKYM. ПОДПИСЬ ДАТА
РАВРАВ. Дерготина Дера (Sy)
ПРОВ ХОМИЧ
ГИП КУЗЬМЕНКО
ПАНСКА КНК-330

NACE MACEMBAS

NACE

Копировал: Никитина

ANNHA PAGOYEN APMAMYPH GES YYEMA BAXBAMOB (1103, 13,14)

POPMAM 12

	Cne	ЦИФИКА	лда кидл	АМАБРЫ	до ан	ин элем	ент			Спецификация ст	АЛЬНЫ	X JVEWER	нтов.	
	141544	НН	φ	анилД	Kon-80	РАШАО	MACCA	1		MAPKA	KON-BO	ADDAM 010HA0	RZ BCEX	44
	MAPKA	no3.	MM	MM 1300	шm.	ANNHA	KS				щm.	AMHSMSAC	SOMHOMOVE	CMP.
	K-1	4	5AI GAI	1300	8	2.60	0.40	1		K-1	2	0.62 -0.65	1.24	10
	K ,	2	481	800	-13 11	3.2	0.22	7		K- 5	6	0.40 0.46	2.40 2.11	10
	1 ,, ,	3	301 6A1	900 820	٤	1.8	0.28	1		K-3	1	0,86	0.86	10
	K-2	٤	4BI	200	-\$-6	1:3	0.12	1		K-4	e	0.28	0,56	10
		4	IA9	950	ŧ	1.0	0,22	1		C-1	1	8.63	2.63	8
	K-3	ě	48I	950 200	:12	2.4	0.40	1		C-8	٤	0.87	1.74	10
	K-4	6	6AI	540	1	9,54	9,18	1	ı	c-3	1	0.54	0.54	10
	N-4	7	6AI	140	5	٥.٦	0.16	1		Оштеурные сшеьния	4	•	7.77	-
		8	481	2880	5	14.4	1.43]		Петли	4	0.69	2.76	10
	C-1	9	481	930	13	12.1	1.20		ì					
		10	4 BI	1370	5	6. 9	0,68]		ХАРАКТЕРИСТ	NKA	ЛЭДЕИ	RN	
	C-5	13	4BI	310	6	1.9	0.19	; 		MACCA			Кг -	1002 943
		11.	4BI	970	3	6.3	0,29		I	Дерем вешону			м3 -	0.399 0377
	c-3	18	481	420	6	2.5	0, 25			Анишлот каннодовичП	наст	AAN		4 12.40
	Отдельные	13	10 A IV	3400	و	6.8	4. 19		ŀ	MACCA CMAN				20.5
	сшержни	15	ZLAOL	2900	5	5,8	3.58		- }		ЛЭДБИ			6.74
,	Пешли	15	IAOF	1120	4	1.1	0,69		ŀ		Анота			59.4 <i>543</i> 8
	HEIMAN	A AR A-		= 5100 K2/	CME			ı	ŀ	МАРКА БЕПОНА при при на на е			KS/CM2	200
		₩ W W -	т оо	- 5144 167					ŀ	INHERITA OF NASHAR MAGAO				0.741
		Выб	OPKA	CMAN	И.			ĺ	L	Длина рабочей арматуры без		MEPAM		
HHB, Nº 1041, 1041, 1041, AMA	Диаметь Диаметь		Z A OI ф	_	IAS IA OI	6 A I	4 8 I	φ5 8 Ι	ŀ	1,14		-1.1.016 H	1	
AUM	AHNAA	M	12.6		4.5 1.0	3.48 18.3	63. 5 -68.4	16.00	Į	HEM NUCTIN NO A OKYM. NOATHO JAMA C DO		ІКАЦИИ	Num. MACCA	MACUIAD
Ĕ		K2	7,78		2.78 0.40	0.78 4.10	\$.31 \$25	2.48	Ľ	PASPAB. APPOPUHA Defee 1577 N XAPI	N376Y	NANULUS NA		
₹ug	RaH	N-	6000		2400		5500		F	ПРОВ. ХОМИЧ Пасил ГИП КУЗЬМЕНКО ТЕЗТ ПАНЕЛЬ	KHR. 3	40	лист Тлист Пист Тлист	
46 C	FOCT		5781-	. 75			6727-53 [*]		F				VEHHNVU	
Z	1001													40

Cne	ЦИФИКА	ция Арі	матуры	AO AH	MAVE HN	ie H m		Спецификация	стальнь	IX Sheme	нтов	
MAPKA	И И И И	ф —	Длина мм	Кол-во шт.	КАШАО АНИЛД	M A CCA		MAPKA	Kon-Bo	MACC A 070HA0	Bcex	OB CMP.
	1	58I	7300 1320	2	2.60	0.40	1	K-1	٤	0.62	1.24	10
K-1	2 .	481	200	13-11	2.2	0.40 0.59 0.22 0.86	1	K- 5	6	0.40	2.40	10
	3	587 5 N I	900	5	1.8	0.28	1	K-3	1	0.66	0.66	10
K-5	5	481	500	-5- 6	1.2	0.12 -0.10	1	K-4	5	0.28	0,56	10
	4	IAB	950	1.	1.0	0.22		C-1	1	83.5	8.68	8
K-3	5	48 Î	950 200	12	1.4	0.49 0.24]	C- 5	8	r8.o	4.74	lo
K-4	δ	EAI	540	4	0,54	0.12		c-3	1	0,54	0.54	10
V4	7	148	140	5	0.7	0.16]	Оштегрня сшерни	4		30.8	_
2.1	8	481	2980	5	14.9	1.48		Петли	4	0.69	2.76	10
c-1	9	481	930	13	12.1	1,20						
C - 5	10	4 B I	1370	5	6.9	0,68		XAPAKMEPH	СШИКА	NSTEV	R	
(- 2	11,	4 B I	310	6	1.9	0.19		MACCA			KZ	10 35 973
c-3	12	4BI	ore	3	8.9	0.29		Овъем ветона			м3	+ 12.39
C-5	13	481	420	6	2.5	0.25		Анишлот каннодовичП	HACMI	114	СМ	
Omdevarie	14	10 A VI	3500	8	7.0	4. 32		MACCA CMAAN	P		KZ	21.6 20.80
стерини	15	MAOI	3000	8	6.0	OF.6			^в издел		KZ KZ	-6.9 6.62 -514 53.47
11 em Au	16	IAO	1120	4	4.4	0.69		PACXOA CMANN HA 1M	Bellion	IA	NO.	300
	рл Д	A - <u>I</u> <u>Y</u>	60 = 5100	O KZ/CM2				Куриковая прочность Бетона НА	ETD OBHA	MA S HS HNHS	KS/CM2	500
	D							NHWSHE OF NASHAR MSEED			M3	0.763
	рыв	OPKA	CMAN	и 				Длина рабочей арматуры Ба	3 yyema	3AX BAMOI	(103 13	5,14)
класы сш Тирмешья		ZI A O l	-	IO A I 8AI	6AI	4BI	φ58Ι			- 1.1.017 H		CA MACILIMAS
Длина	М	13.0	-	4.5 1.0	18.3 3.48	63.0 640	16.00	MSMINICTO Nº ADRYM TOLOTUS LATA N X	ПСЦИФІ ОПХАЧА ИЛЯЙЕН	PRCITIKA	N M M. I MAC	CA MACUMAS
Массы	KZ	8.02	-	e.76 0.40	4.10 0.78	6.30 6.36	2.48	DAGA YOMAN Z-	VP KHK-		Nucm IA	Hamas
RaH		6000		240	10	5500		TITL HYSbriethkologis			инсти	шХш
roct		5781-	75			6727-53					VEHHN	vuboekm

MHB.Nº NOAA. NOANKE W AAMA

311	пполкт	HAY KNA	AT Y P bi	AD AH	N3AE HH	. W T		[пецификация	4 4 7 2	b H bl X	HANANE	106	
	14	•	ANNA	Kon. 10				, ,	T		MACCA	K2	
MAPKA	nos.	NH	ни Тими	WT.	ра шав Анила	NACEA KS		Marka		KON. 80 Wt.	OIOHAO AIH3H3AE	RCEX THEMENT	4 A A CT P.
	1	381	1388	1	2.50 1.64	-0.40		K-1		1	9.62	1:10	4 40
K-1	2	481	-290	+3-11	1.6-22	8:22		K-1		б	8.4°	4.7	- 10
V A =	3	5 6 I	-111	1	1.8	0.28		K-3		1	0.86	0.86	40
K.1 -	ı	481	100	√ 6	1.0-1.2	0.12		K-4		l	0.28	0.56	10
K.3 -	4	143	950	1	4.0	0.22		1.1		1	1.81	1.81	. 8
V- 3	2	8#I 181	100	12	24	0.24		(.1		٦	0.87	1.74	10
K.4 -	6	148	540	1	0.5	0.12		(-3		1	0.54	0.51	10
N·4	Ŧ	140	140	5	0.7	0,16		Оттечрные слеынни		4	_	8.26	_
1.3	3	481	3060	5	45.4	4.53		NETNH		ų	0.69	1.76	10
1.1	3	181	930	14	13.0	1.29							
1.1	10	481	1370	5	6.9	0.68		XAPAKTEPU	בוא	K A	NJAEN	N S	
1.0	11	481	310	b	1.9	0.19		HACCA				KS	1067 100
[.3	N.	481	970	3	1.9	0.19		AHOTEE MEETOHA				ИЗ	1.41504
į., ,	13	481	418	6	1.5	0. 15		НИШАОТ РАНИЗ ДЗВИЯЛ	A	HYCIN	i k k	HJ	+ 12.35
3104413418	14	VI 4 01	3600	2	٦,1	4,44	- 1	MACEA CTARM	1			ΚS	118 21.1
CTEPHHN	15	<u> </u>	1100	٦	6.2	3.82	H		N 2	3 11 8 11		K2	€. € 6.54 51.00c
NETLN	16	IAOF	1120	1	1.1	0.69	+	PACKOD CTANN HA 1	M 3	6ET 0 H I		K2	-51.15 52.5 300
	A RAL	<u> </u>	5100 K2	len 2			Ì	KYENKOBAR NOOUHOLTE BETOHA HE	0 073	YHTAWA.	HE HAME	KS CW2	100
	Выбо	1 0 K A	LTAAU				7 I	DEBEN NAHENN NO BHEW			HEPAN	и,	0.785
	0000		LINAN				J :	Данна Рабочей арнатуры б	יף רש	ATTA	3AXBATOS	1003. 43	.14]
ANAMET PH KARELH (T)	N N A	<u> </u>	_	10 A 1847	6A I	481	$_{I}$	III. J. Oleman vu za f.a.			-1.1. 018		LCA HACWT.
TVAHY W		13.4		4.5 1.0	18.9 348	65.0 65.4		IIM ANLT NADKYM. NAAN. ALTA XA PAPPA B. LEPIDINIA OGGS STO	PAKT	EPUETUI	MAN N Kansteynd	TI TI	LEN HALWI,
MACCO	Kz	8.27		2.78 040	4.100.78	6.44 65	7 [ПРОВ. ХОНИЧ Жоши ГИЛ КУЗЬМЕНКО ЖАЗ	HEND	KHK-	360	NUCT 1	ANCTOB :
RaH		6000		240		5500	_	I MII KYSOMEHKU 1980				NHEIN	TYT
IDLT		57 81	. 15	5784	- 75	6727.53						VEHHA	ANPOEKT

Копир.: Дольникова

POPHAT 12

	<u> прикуп</u>	1	ATYPW	NAO AH		EHT	-	[пецификация с	т	3 NEME!		
Mapka	NA nos. —	нн — ф ~	ANWA.	КОЛ- ВО ШТ	VANAY Demya	KS		Napka	KOA- BO WT.	ADDAM DANDAD ATHAMAAE	BCEX 34EHEHT	16 CTP.
	1	- 5 P I	1300	1	1.60	8.59		K-1	1	165	1:10	10
K-4	1	481	290	-13-11	2.2	1.16		K-1	6	0.40 11-46	2.40 1.77	10
K-1	3	S NI	110	1_	1.64	0.28]	K-3	1	0.86	0.86	10
W. F	1	4 81	260	5-6	1:2	1.11	1	K-4	1	0. 28	0.56	10
K. 3	<u> </u>	6 A I	950	1	1.0	0,22		t·1	1	1.87	2.87	8
W. 1	ขึ้	481	100	12		6.24		t - 2	1	0.87	1,74	10
K.4	6	6 A I	540	1	0.5	6.12	1	t · 3	1	0.54	8.54	10
	7	6 A I	140	5	0.7	0.16		Втаельные стерини	4		8.52	
1.1	8	4BI	3180	5	15. 9	1.58	-	NETAN	4	0.69	1.76	- 10
	9	481	930	14	130	1.29		XAPAKTEPUCTUV		U11 CAU.0		
1.7	10	481	1370	5	6.9	0,68		AAPARIEPHLIM	. A	N3TEVA		
-	13	481	310	6	1,9	0.19	1	MACCA			Ke	1100 1031
[-3	11.	481	970	3	1.9	0. 19	1	AHOTEA METOLA			H ₃	Q 438 04 Q 12.34
	13	481	420	6	1.5	0.15	<u> </u>	ПРИВЕДЕННАЯ ТОЛЩИНА	HALTH	I A A	LH K2	<u>-</u>
OTAEABHBIE CTEPWHU	14	II A OI	3700	1	1.4	4.57		MACCA CTANN/ PACNAL CTANN HA IN	2 H3AE	A 11 0	KS	11.321.41 17 6.44
	15	VI A OF	3100	1	6.4	3.95		PACKOA CTANN HA 1H	SETOHA		KE	50.9 52:1
NETNU	16	IA OF	4120		4.4	0.69		MAPKA BETOHA NOU		<u>. </u>	N.F.	300
	- A R1∆	- <u>N</u>	= 5100 K2	CH 2				KYENKOBAN NPOUHOCTH SETONA HA E	NTAHAO OT	E HE HWHE	Ke [n²	190
	вы в 🛭 Р	KA L	NAAT					Перен панели по внешн		MEPAH	M3	0.807
ANAHETPH	1							ДЛИНА РАБОЧЕЙ АРМАТУРЫ БЕ	HUETA	JAXBATOB	/nos. 43	.44 /
	N A R M	VI A D1	_	10 A Z A OF	IAB	481	φ58Ι			- 4.1. 019		
A AHNA		13.8	-	4.5 1.0	18.3 3.48	-65.5-659	16.00	HIM, ANCT Nº AOKYM, MOAR, LATA	N O U K A U I K T E P N C I	UU U	AUT. HA	CCA HACUIT.
	S	8.51	_	2.76 840				PASSAS ACOMOUNA TO A SACA	VIELNE	1 P K B		
RaH		6000		241		5500		THIN KY36MEHKO TE			AUCT	ANCTOB
1001		- 1877	-75		_7 5	6727-55					VEHAN	Anpaekt
						1 - 1 - 1 - 1 - 1					<u> </u>	PHAT 12

in]	ПИФИК Р	UUS API	MATYPЫ	HA OA	13AE HU	I E H T		[UEANDNK VAN A	A 7.3	X H H d X	345454	108	
Mapka	NU NOS.	4	Анил Ми	КОЛ- ВО шт.	RAWAD AHHAA	HALLA		Mapka		KON-BO WT.	MALCA ODVAO OTHINANE	NS BLEX BARMENTO	h h a c
K-4	1	- SBI - NAI	1300	1	2.60	0.40		K-I		١	115	1.24	- 10
W·1	1	101	200	+3-41	2.2	9.22		K-L		Ó	-0.46	3.49 1.11	- 10
K. L	3	581	900	2	1.8	0.28		k-3		1	0.66	0.66	10
N. C	1	481	200	56	1.84	0.28 1.16 0.42 1.10		K.4		1	0.18	0.56	40
k 1	4	6 A I	950	1	10	0.21		[.]		1	1.91	1.91	. 8
K - 3	ĺ	3#1 481	930	12	140	0.14		[.]		1	0.87	1,74	10
K-4	6	6 A I	540	1	0.54	0.12		[.]		1	0.54	0.54	10
1 11.1	Ŧ	6 A I	140	5	۲,0	0.16		OITETPHABE CLEBHIA	4	¥	_	8.79	; –
1.1	8	181	3280	5	16.4	1.63		NETAN		4	0.69	1.76	10
1.1	9	481	930	14	13.0	1.29							
1.1	10	481	1370	5	6.9	0.68		XAPAKTE	. PHETHK	A	R N A 3 A E N		
	11	181	310	6	1.9	0.19		HALLA				KZ	11} 106
[.3	11.	181	970	3	1.9	0.29		UPPEH BELOHY				11 3	1.4510.42
(,,	13	181	410	6	1.5	0.25			ANNUMA	TAR	MAA	EM.	-4-12.31
DITEVPHAIT	14	10 N ĪL	3800	2	1.6	4.69		MACCA CTANU				K2	11.521.7
NH H19373	15	<u> </u>	3100	l	6.6	4.07		PACKAL CTARN H		NJAEN	49	Ke	6.33
UEINH	18	10 N I	4420	4	4.4	0.69	ł	PACKOD CTANN HA MARKA BETOHA	14,2	BETOHA		Ks	\$8.+ 51.3.
	A RAA	· Ī 60 ·	5100 K2 1	LH 2				MARKA BETOHA KUSUKOBAR RROUHOLTA BETOI	ua mou co	n new Att	L Ut numer	K2 [N 2	190
	8 ы Б О Р	<u> </u>	****				- ¬		HEWHUM	PASHER		171	0.818
	א נו פופט	N A	N A A 13				'	ANHA PABONEN APHATYP		YMETA	3AX BAT OB	1003. 13	
	N LANN	VI A DN	-	I A ON	841 6 A I	481	ВІ		1.1	41-KP	- 1.1. 020	Ц1	
A AHHALL A 22 AH	(2	14. L 8.76			1.0 <mark>18.3</mark> 3.48 0.40 4.10 0.78	-16.D GG! -1.546.60		HIM ANIT N AOKYM, NOAN, AATA PATTAS, AEPWENHA Octas 1577 NOOD, XONNY REVIEW	XAPAKI NAHEAD	YNKAY IEPHETHI - KHK	INN N KA N3AEANA -380	Aut. Ha	CCA MACWT.
RaH		6000			100	5500	<u> </u>	THO KYSHMEHKO 2525					AUCT OB
1301		578(.	75	L		6727.53*						NHHHN NHCTN	AN POEKT

[ne	UN DUKA	LUA APR	ATYPЫ	AO AH	IBAE HN	1641		Eneyuqukayua ct	а ве ны х			
Marka -	NA NA	ф нн	Аниа	KON-BD W.T.	ТУЙНУ Пещая	HACCA		Marka	Kan-Ba WT.	A D D A M O T O D A A D A T H B H B A E	BCEX BCEX SYEHENTOE	H N CT 8.
HATRA	1103.	- TAT	1300	1 2	2.60 -1.64	0.40	1	K+1	1	8.85	1:56	10
K:4	1	481	100	-13-11	4:2	9:15 9:15 9:36]	K-1	6	8:46	4:17	40
	3	- 181 - 181	380	2	1.64	0.76]	K-3	1	0. 86	0.86	10
K-L	1	481	100	5-6	17	0.12]	K -4	1	0.18	0.56	10
	L	6 AT	950	l	4.0	0.21]	t-1	1	3.07	3,07	8
K-3	1	881 481	น์ขึ้	12	14	0.14	l	t-1	1	0.87	1.14	10
V 11	6	6 A I	540	4	0.54	0.12	1	C-3	11	0.54	0.54	(0
K-4	7	6 AI	140	5	0.7	0.16		Оттеченые стермин	4		9,01	
[-1	\$ #	481	3380	5	16.9	1.68		NETAH	4	0.69	1.76	10
1-1	9	481	930	15	14.0	4. 39		Yanakasausa		112 A F L II	•	
[-2	10	481	1370	5 .	6.9	0. 68		XAPAKTEPULT	u K A	N3 A E N U	X	-ingu
	16	181	310	б	1.9	0.19		MACCA			KS	1088 1115 9435
[-3	1L	481	910	3	1.9	0.19		OBJEH BETOHA			M3	+ 12.30
	13.	481	410	6	1.5	0.15		ПРИВЕДЕННАЯ ТОЛИНА	HA CT	W A A	K2 CH	15.18
BIGHENSATD	14	EZA OF	3900	l	1.8	4.81		MALLA CTANU PALKOA LTANU HA 4 H	2 NJAE	A II A	KS	13.5 6.27
CTEPHHN	15	DAON	3 400	1	6.8	4.20		PACKOR CTARN HA 4 H			KS	-49.6.50.99
NETAH	16	IA OP	1110	1	1,1	0.69	i i	NAPKA BETOHA	VEIDNA		"	300
	A RA A	-II 00	= 2400 Ks	lenz				KYGHKOBAR NPOHHOCTH GETONA HA ET	NTAHAO (HE HHHE	KS SW 5	100
	выба	PKA	LTAAN					Перен ичнечи ио внетнин			H 3	0.850
1								AANHA PAGOUEÙ APHATYPH BES	YYETA	3AX BATOB	1003. 43.4	4/
KNYCCH C. TNYMELDPI	HA A	10 A ĪV	-	IAO	BAI 6 A I	481	φ58I			-1.1. 01.1 u		LA MACWT.
▼ VHHY W		14.6			1.0 18.3 3.48		16.00	WHI ANET IN A OKYM. ROAR LATA XAPAN	TEPULTU	ХЦИИ И Ка изделия		LN RALWI.
	Ke	9.0			140 4:10 0.72		2.48	1908. XONNY Carre 11 AME	ND KHK	- 190		
R or H		6000		14	00	5500		INU KAZPWEHKO 1825-			NHCT HTV	8073N
1001		5781	- 15	578	J - 75	6717-53					NHH3A	N POEKT

£n:	ENNONKY	INA PAN	Idqetar	NAO AH	N3AE H	EHT		ENEULOUKAUUA C	A VPHPIX	34646	H T O B	
Marka	NN 1003.	ф	Анил <u>А</u>	KON- BO WT.	RAWAA AHWAA	N A C C A		Marka	KOA. BO	A 2 2 A M O 1 O H A O A I H B H B A E	REEX BLEX BLEX	
K-1	1_1_	5 BT	-1 300	1	3.60	1.54		K-1	1	0.62	1.22	10
K-1	1	481	700	+341	4:8	8:16		K-1	6	8:46	1.11	
K-1	3	561	300	1	1.64	1.16		K-3	1	0.66	0.66	
N-L	1	4 B I	100	-5 6	118	8:182		K-4	1_	0.28	0.56	10
K-3	<u> </u>	143	950	1.	1.0	0.22 0.24		[-4	1	3.42	3.12	8
K-1	<u> </u>	189	130	ΙŻ	1.4	8.14		[-1	1	0.87	1.74	- 10
K-4	δ	6 A I	540	1	0.54	0.12		£-3	4	0.54	0.54	1 10
	Ť	148	140	5	0.7	0.16		Отдельные стерини	ų	_	9.16	
L-1	- 3	481	3480	5	47.4	1.73		NETAH	Ч	0.69	1.76	10
	3	481	930	15	14.0	1.39						
ι-1	10	481	1370	5	6.9	0.68		XAPAKTEPHET	N K A	N 3 T E V N 3		
	11	787	310	6	1.9	0.19		NACCA			K2	1118
L-3	R	181	970	3	1.9	0.19		AHDT38 H368D			ИЭ	- Putt
	13	181	410	б	1.5	0.25		ПРИВЕДЕННАЯ ТОЛИНА	12 A H	TUAR	H3	4-12.3
DITEVPHPIE	14	VIA 0 1	4000	1	8.0	4.94		HACCA CTANH			KS	-133-22.48
NH H19373	15	Q 4 0 h	3500	l	٦.0	4.32		PACKOA CTANN HA 4 H			Ks	1.4 6.18
HATBA	46	10 01	1120	1	4.4	0.69		PACKOA CTANH HA IN	BETOH	\	KS	-48, 6 50.30
1	A RAA	-IL 0 = 5	100 K2 CH	12				Марка Бетона при Кубиковая прочность бетона на его	Ochia sile		V2 1	300
	8 61 6 0 1	Y A									KS CH F	100 0.872
	1000	T NA I	NA AT				- 1	THE DE NAME OF THE PARTY OF THE		TEPAH	1 003. 43	
	N NAA T	10 A TX	_	IA OF	BAI 6 A I	181	φ58Ι		1.444 - K	P-4.1. D 11	41	
AHHA	H	15.0		4.5	0 18.33.48	-68,0 68,4	16.00	INSHIAMET IN A BRUM IRBAN IALIAI VA A A L	HONKA	N NNA RHAB a ch as		ICCA MARWIT.
HACCA	KS	9.26		1.18	40 4.10 0.78	6.746.80		PASDAG. AEPHOTHHA COGLES 1574 NAHE	b KHK-	400		
S la H		6000		24		5500		ГИП Кузьменко				ANCIOB
1301		5781-	-15			6727-53*					NHTHN	NPDEKT

Копировал: Дольникова

POPHAT 12

lnı	E U I I I I I I I I I I I I I I I I I I	MAN BR	HIPH	IAD AH	IN BAENE	71
Марка	NU Nos.	ф NN	AHHA AH MM	Кал. во Шт	RA LUB [] AHNA A	KS Halla
	1	FAT	1300	1	2.60 1.64	1.59
K-1	1	4 B I	100	++ ++	1.6-2.2	1.16
k.₁	3	55E	900	1	+1.64	0.28
W. C	1	4 B I	100	-5 6	-1.8- 1.2	0.12 -0.10
K. 3	<u>ų</u>	6AI	950	1	10 14	0.11 0.14
l√·)	ĭ	481	188	12	14	0.74
K . 4	6	8 AI	540	4	0.54	8.12
W-1	F	IAB	140	5	0.7	0.16
1.3	8	48 I	3580	5	17,9	1.78
b * 1	. 9	481	930	16	14.9	1.48
[.]	10	181	1370	5	6.9	0.68
	11	481	310	б	1,9	0.19
[.]	A.	481	970	3	1,9	0.19
	13	481	420	6	1.5	0.15
ЭНН ВЛЗ ДТО	14	VI A OF	4100	1	8.1	5.06
CTEPHHU	15	VI A OF	3600	l	7.1	4.44
NETAN	16	IA Dh	1120	1	4,4	0.69
	AAQ A.	W G.	5100 K2/c	u 1		

TV8 Y.M. Q: 2100 K5 CH 5

_	B 91 E	OPKA	KAATI					
	ANAMETPH N KNACCH CTANN	10 A Ū	_	I A Ot	8AI	i A d	4 BI	φ5 B I
	AANHA N	15.4	_	4.5	10	18.3 3.48	69.4694	16.00
	MALLA KE	9.50	_	1.18	0,40	4.18 0.78	6.8869	42.48
16	Re H	6000		1	00%		5500	
7	roct	5781	٠٦5				6727-53*	

[nen n an k a in a	ETA A B H BI X	NBNBAE	106	
Napka	Kor- eo	AJJAM OTOHAO ATHJHBAE	K2 BCEX BAEHEHTOB	NN 179.
K-1	l	1.62	1.70	10
K-1	6	-0.46	1.17	10
K-3	1	0.86	0.66	10
K.4	1	0.28	0.56	10
1.1	1	3. 26	3.16	8
1.2	١	C8.D	1.74	10
[.]	1	0.54	0.54	10
Отдельные стершии	Ч	_	9,50	_
NETAN	4	0.69	1.16	10

XAPAKTEPHLTUKA UJAEN	uя	1145
MACCA	KS	1110
DEPEN PELDHY	4,2	8.45
AANTSAH AHN WADT RAHH3 A. 3 BN 9 M	c n	-4-12.27
MACCA CTANN	KS	11.1 22.86
PACKOD ETARN HA IN 2 HIDEAUR	NS.	- 6.9 6.12
PALKOA CTANN HA AN' BETOHA	KZ	48449.9
HAPKA BETONA		700
KYENKOBAR REDUKOLTE GETOHA THE ETO DEMATHE HE HUHE	K2 CH2	100
MAGAMEAS HUHWAHB ON WASHAN MAGAD	H3	0.894
ANNA PABOLEN APPATYPH 623 YUETA 3AXBATOB	1003. 13	. 14 /
-1.144 - KP - 4.1. 01	3 41	
UN AUT NAOK MAN AUT APAKTEPUTIKA UJATANA	INI. INI	ICCA MACUT.
RAD PAGE LEPOGUNA DEPOS VSFT XAPAKTE PUCTUKA UJAFAHR		
11908. XONNY LOVER HAMERD NHA-410	NUCT	ANETOO
ГИЛ Кизьменко 235-	NHLIN	
		INPOEKT

Капия: Дальникова

11 TANGOD

	[ne	HNONKA	9A RNU	MATYPH	HA OA	3AE HN	HEHT		Епецификация ст	A A b H bi)	J JAJAE 1	H T O B	
	Hapka	N N 003.	ф нн	Дина Ни	Кал. во шт.	DEMNA T	MACCA		Marka	Ko k. 90	432 4 M 010H 4 D 4 T H 3 H 3 A E	BCEX SCEX KS	4 A A A A A A A A A A A A A A A A A A A
	K.1	1	- SBI	1110	1	1.60	€: A10°		K-1	1	1.15	1.24	10
	K-1	1	481	100	+1) +1	3.20 1.0	1.16	1	K. L	6	9.46 1.46	3:40	- 10
•	K.l	3	56L 6 A I	110	L	-1:64	0.28	1	K · 3	1	0,86	0.86	10
	N.F	1	481	100	5 6	1.6	1.11	1	K · 4	1	0.28	0.56	10
	K-3	4_	IND	950	1	1.0	0.12		t-1	1	3.30	3.30	8
	K. 3	ซ้	Ŷ8Ĩ	188	12	1.4			ſ· 1	2	0.87	1.74	10
	K-4	6	IAB	540	1	0.54	0.12		L·3	1	0.54	0.54	10
	K- 7	7	6 4 1	140	5	0.7	0.16		NHH 9372 SIGH GASATO	4	_	9.75	_
	[.1	8	481	3680	5	18.4	1.82		NATBU	4	0.69	1.76	10
	L-1	5	181	930	16	14.9	1.48		,				
	[.]	10	481	1370	5	6.9	0.68		XAPAKTEPHE	HKA	3 ∆ € N	RNA	4175
	L. L	11	481	310	б	1.9	0.49		MACLA			K2	
Ī	[.3	11.	181	970	3	1.9	0.19		DEDEN BETOHA			M ₂	-1363 -0.583
	r. 1	13	481	410	6	2.5	0. 15		АНИ ШАОТ КАННЭ ДЗВИЧП	HAL	AAN	CH	4-12,26
	OTTEVPHPIE	44	RA OF	4200	1	8.4	5.18		MACCA CTANY			KZ	24.0 23.
	CTEPHHN	45	10 A D	3700	1	7.4	4.57		HI AH WAATS LOKSA9			Ke	-6.3 -6.84
	UELVA	16	IAON	1120	(4.4	0.69		PACKOT CLAVN HY 1 H3	HOISS	<u> </u>	K2	47.7 492
1		A RAA	· IL Go:	5100 K2 C	N 2				MARKA GETOHA KYENKOBAA NPOYHOCID BEIDHA HA		u ve uuwe	KEICHZ	300
		# N/ N										H3	200
		BHIED	PKA 1	LTA AV					NHWARR ON WARRAN WAGGO THE CES		HEPAH	1003. 13,	0.916
245 NOAL NOAL WATA	ANAMETPHI KNATCHI TI ANNHA	N A A M	10 A II	_		BAI 6 A I	4 8 I 70 3 69 28 69 28	ф5ВI 16.90	MK-4 ZOCCOM VN 78 [NE]	1. 141- JUDUKAN KTEPUCI	JAXBATOB KP-4.1. DZ IUN U IKA HJAENHA	4 44	
	HALLA	K2	9.75		2.78	140 4:78	192	2.48	NOB. XDHHY Reside	ab KHK		Щ.	
2 5	Ray		6000		24		5500		CNN KYSEMPHKO 253			NHET HTY	NETOB #
NHB.11	1001		578(-				6717-5 3					VEHMNV	NPOEKT

	Ins	4 N O N K A	HAR RNY	IATY P bi	AO AH	IBVE HN	EHT		[пецификация ст	X	3 N E N E V	8071	
	MAPKA	UD3.	ф нн	аниа <u>т</u>	KOA-BO WT.	рашая Аниа	KS HVCCV		Marka	Kon. 80	O10HAD ATHIMINE	RS BLC X BLC X	NA 08 CTP.
	K-1	4	- 501	1300	2	4.60 1.64	0.59		K-1	1	0.85	ANCHEHIO - 1.70	10
		1	481	100	13 41	1.622	-8:16		K·L	6	0.46	1.11	
	K. L	3	111	110	1_	1.641.8	8.36		K.3	1	0.86	0.66	
	w. r	l L	4 61	100	÷6	-1.0- 1.2	1.112		K · 4	1	0. 28	0.56	
	K-3	4	148	950	1	1.0	0.41		(.1	1	3.35	3.35	
	V. 1	1	48î	100	12	14	8.24		1.1	1	0.87	1.74	
	K. 4	6	140	540	1	0. 54	0.12		[.3	1 1	0.54	0.51	
		٢	IAB	140	5	0.7	0.16		NHHABIS BIAHANBULD	4		10.00	
	1.1	8	481	3780	5	18.9	1.87		NETNH	4	0.69	1.76	10
		9	184	930	16	14.9	1.48		XAPAKTEPHET	11.14.4	110 4 2 4 11	^	
	1.2	10	181	1370	5	6.9	0.68			ИКА	NYTEVN		1205
		11	181	310	б	1.9	0.19		MACCA			KS	11.95
	[.3	12	181	970	3	1.9	0.19	-	AHOTER MEGAL			H3	
		13	184	420	6	1.5	0.15		ПРИВЕДЕННАЯ ТОЛИНА	HALTH	A A	KS CH	+ 12.26 -14.3 23.45
	DITEVPHPIE	4	VLA OP	4300	l.	8.6	5, 31		MACES ASSEM M L AH MAAFS AGKSAA	2 W3AE	AUG	K2	67 5.96
	KHMABIJ	15	ZIA ON	3800	1	7.6	4.69		PACKOT CLUMN HT 4 H 3	SETDUA		K2	474 48.65
	UEINN	16	IAON	1120	1	1.1	0.69		MAAUA CCTAUA	DEIGHA		i iii	300
		RΛΔ	A · <u>IV</u>	Go : 5100	Ke (cn²				KARMKOBY USOAHOCIP BEIDHY HY EL	NTAHED O	HE HUHE	K2 / [H 2	200
		Bbisa) N N	NA A7			1		ИНШЭНВ ОЛ ИЛЗНАП МЭЕВО		MEPAH	43	0.937
a		D 91 0 0	r N M L						ANHA PABOUEH APHATYPH BES	ATBPP	3AX BATOD	nas. 43	1.14/
PA	THELLAND	N						↓ Fa∓		. 444 - Y	(P -4.1 . 01!	5 114	
=	KNACEDI CI	VVN -	10 A D1	-		BAT 6 A I	181	φ58 <u>Ι</u>					TWIAH A11
NOLO. WASTA	AHNA	H	16.2		4.5	1.0 18.3		16.00	HIM. AMET N A.O.K. MOLIN LITTA XAPAKT PASPAS AFFICHAM SOME 1577 MAHEN	EPHETHK	RNA3 A ENU A	 	11.00.00.11
Ta .		K2	9.99	_		240 18	4.3.	2.48	HYDB. IXUNNY NORMA	b KHK-	430	1111	
700	RacH		6080		24	00	5 500		THI KUSHMEHKO 2532			N 1 1 1 1 N N N N N N N N N N N N N N N	ANCIDA
HHB. A NOAA.	1011		5781	· 75			6727·53*						ANPDEKT

£n£	T N OD N K V	нча риш	ATYPH	AD AH	NH 37EH	EHT		LUEANDI	NKAUNA ETA	<i>КЫНЫХ</i>	TH3H3AE		
MAPKA-	N N 003.	- 4 - MN	Деина Ин	KOL- BD WT	лийни Дейта	KS		HAPKA		KON- 80 W1.	A 113 A M 0 1 0 H A O 2 N H 3 H 3 A E	BLEX	
	1	- VAI	1300 1310	2	2.60 4.64	1.59	Ī	K-1		ı	1.07	1.24	10
K-1	ì	481	100	+3-44	16	0.22		K.1		6	1.46	1.11	10
1. 0	3	56I	980 818	1	4.64	0.76		K · 3		4	0.86	0.66	40
K. J	2	181	200	5 -6	4.6	0.12		K. 4		1	0.28	0.56	
K- 3	ų	IAB	950 100	1,	1.0	0. 12		1.1		1	3.49	3.49	8
W. 1	ł	181	100	12	2.4	0.24		[.1		Ĺ	0.67	1,74	10
K. 4	5	6 A I	540	1	0. 54	0.12		[.3		1	0.54	0.54	10
N. 4	Ŧ	6 A I	140	5	0.7	0.16		ЭТДЕЛЬНЫЕ	CT EPH HN	Ч	_	10, 14	
1.1	8	184	3880	5	19.4	1.92		NATAN		Ч	0.69	2.78	10
. ,	9	181	930	17	15.8	1.57							
1.1	10	181	סרנו	5	6.9	0.68		XA	PAKTEPULT	HKA	N3TEV	NA	
	11	181	310	6	1,9	0.19		MACCA				K2	444 444
1-3	n.	181	970	3	2.9	0.19		DEDEN BETO	на			ИЭ	
_	13.	481	420	6	1.5	0.15		Ubabetehha	A HUWAOT A	HA	AANTI	LH	4 12.23
DITTEVANTE	13	10 A OF	4400	l	8.8	5,43			NA A			KS	14.7-238
C1EPHH HN	(5	10 A O1	3900	1	7.8	4.81		ALT TOXIVE				KS	-81-594
VELYM	16	IA Oh	1120	- 1	1.1	0.69		ALIZ AOXIA9		BETOHA		3)/	46.74834
	$R n \Delta$	<u>vī</u> - A	60 = 5100	KS CH 2				MAPKA BET KYEHKOBAR RABOHHOLI	D H D			K2 [CH2	300 100
	Выбо	PKA 1	TANU			-		RYBHKOBAR TIPBUHOLT			HEPAN	to ITH -	0.959
1		· · · · · ·	LINNU					·			SOTABLES	1003. 43,	
THRHEIPH CI	N A A V	VÎ A OF	_	10 A I	PAT		1	THAN PARRIET					111
				10 8 1	BAT 6 A I	181	ф5ВІ	ue-1 2	1 1		- KP-1.1. (CLA HACWI.
AJJAH	H	16.6		4.5	0 18.3 348	71.0 72.2	16.00	Non Auct W Aok. No	An AATA YAPAK	D UKAYU Teductu	N N KA NSAEAHA	I III	LIN HALLII.
Late	KE	10.24		1.76	140 4 : 18 0.78	7.117.4	72.48	PASPAL ARROWAL S	area 1577 NAHEN	b KHK-	440		
10[]		6000		24	00	5 500		TWN KYSEMPHKO	2			NUCTUTY	KUCTOO
		5781	75			6727-53							, U PO EKT

l r	EUUOUKA	HYA RHY	MPYTAL	4.0 4. H	13AE HN.	TEHT		E nequ o uk	ITI RUVA	альны :	N 3 N E N E N	108	
Hapka	N N 1003.	ф нн	Дина	KOA- 80 W1.	Dem va Dem va	HALLA		Mapka		Kon. 60 Wt.	DA HOLD A DA	KS BCEX BREHENTO	HH 8 72.
V 1	1	381 8 N T	1300 1310	2	4.64	0.40		K.1		1	1.15	1:24	10
K-1	1	181	200	+3-41	1.62.2	0.22 0.16		K. L		6	0.46	1.11	10
V 0	3	\$87 8 A T	110	1	1.64-1.8	8.36		K-3		1	0. 66	0.66	10
K-L	1	4 81	100	56	1.0 1.2	0.10		K - 4		1	0.18	0.56	10
K-3	Ц	EVI	950	1	4.0	0.11		1.3		1	3.54	3.54	8
W.1	Ž	ÎÎ P	100	12	2่ฯ	0. 11. 0.24		[.[1	0.87	1.74	10
K-4	6	IA B	540	4	0. 54	0.12		[.3		1	0.54	0.54	10
	7	IAd	140	5	۵.٦	0.16		DITT EYPHPIE CLI	EPHHH	¥		10.49	
1.3	8	481	3980	5	49.9	1.97		NETAN		4	0.69	1.76	10
	9	181	930	17	15.6	4.57		Yaa	AKTEPHLII				
(.1	10	181	4370	5	6.9	0.68		A R F I		4 K A	H3AEA1	K N	
	- 11	181	310	6	1.9	0.19		MACCA				KS	1767
[.3	17_	181	970	3	2.9	0.29		Анотза набав				н 3	3765
	13	181	420	6	1.5	0.15		RAHH 3 A 3 BURN	TONWHHA	HALTU	N A	H3	12.23 15.03
314Hda3A7D	4	V. A 01	4500	1	9.0	5.55		MACCA CTAN PACXDA CTAN		. 112 6 5	1 11 A	KE	150
CTEPWHH	45	VLA OF	4000	1	8.0	4.94		WARTS ADXIAS		3 <u>1.</u> 6N -		KE	46.0477
NATAN	16	IA OF	1120	4	(.4	0.69		MAPKA BETOH		DEIUN	.	No.	300
	RAL	A - IV (⊙• 5100 K	2 [N2				KYENKOBAR REDYHOCID		BHATI	HE HEHEE	K2 ICH2	100
	Выбо	DVA IT	A A A			-		UBBEN NAHENH	по внешни	1 143	HEPAN	43	0.981
ļ		TNA LI					→ .	ANHA PABOUEN APPAL	EBB INGPERA	ATBPP	3 AX BATO B	1003. 43	. 44 /
ANAMETPH KAACCH	- N - NAA73	II A Ot	_		BAT 6 A I	481		114-4 Fran	1 1		P - 4.1. 017		CA HACUT.
AHNA	H	47.0		4.5	1.0 +8.3			HR-4 COMM WAN ANCT A LOKYH, NOAN, PASPAG. ACPIGINHA Deparance NOBB. XONNY Comm		TEPHETI KHK-	RUABACH ANN	nnt. [RA]	LM MALMI.
RaH	KE	10.49			040 1.78	7,167.22	48	пров. Хонич воши гип Кузьменко гуз	IIMITEAL	—————————————————————————————————————	טנד		. 001211
ran TDLT		6000	٦,	240	30	5500			+			NH[TUT NHHU 7.	NOPBEKT
IULI		5181-	לו			6727-53*			<u> </u>			ALIIII N	MITULAL

МАРКА ПОЛ. НИ НИ ЩТ Дарка К.З Ш. ЗАЕНСНТА ЗАЕНСНТ	•
K-1 1 GRT 1710 2 1.54 0.59 K-1 2 40 1 200 43-44 1.6 0.54 K-2 3 6 1 100 1-6 4.0-42 4.0 K-3 4 6 1 950 1 4.0 0.72 K-3 4 6 1 700 72 74 0.0 K-4 6 6 1 540 1 0.54 0.12 K-4 6 6 1 540 1 0.54 0.12 K-4 7 6 1 740 1 0.54 0.12 C-1 7 6 1 740 1 0.54 0.12 C-1 7 6 1 740 1 0.54 0.12 C-1 7 7 6 1 740 740 1 0.54 C-1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	PLEX NA
N-1	1.70 10
K. 2 3 60 2 1.64 6.36 2 491 100 5-6 4.0-12 6.16 K. 3 4 641 950 1 4.0 0.72 K. 4 5 6 6 6 1 5 40 1 0.54 0.12 K. 4 6 6 6 1 5 40 1 0.54 0.12 C. 1 7 6 1 440 5 0.7 0.16 C. 1 3 481 4080 5 70.4 1.02 D. 1 3 481 4080 5 70.4 1.02 C. 1 3 481 4370 5 6.9 0.68 C. 2 40 481 4370 5 6.9 0.68 C. 3 41 481 970 3 1.9 0.19 C. 3 41 481 970 3 1.9 0.19 Date in bridge 44 40 Au 400 400 400 400 400 C. 3 40 400 400 400 400 400 400 400 400 400 400 C. 3 40 400 400 400 </td <td>2.17 10</td>	2.17 10
K-3	0.66 40
K-3 Y	0.56 10
K - 4	3.68 8
Т. 1	1.74 40
TAEABHBIE CTEPHHH	0.54 10
1-1 3 48	10.74 —
1	1.76 10
1 - 2 Н 481 310 6 4.9 0.19 1 - 3 Н 481 970 3 1.9 0.19 1 - 3 Н 481 970 3 1.9 0.19 0 - 3 12 9.1 0.19 0.19 0.19 0 - 4 10 10 0.19 0.19 0.19 0 - 5 10 0.19 0.19 0.19 0.19 0 - 6 1.5 0.25 0.15 0.19 0 - 7 10 0.19 0.19 0.19 0.19 0 - 7 10 0.19 0.19 0.19 0.19 0 - 7 10 0.19 0.19 0.19 0.19 0 - 7 10 0.19 0.19 0.19 0.19 0 - 7 10 0.19 0.19 0.19 0.19 0.19 0 - 7 10 0.19 0.19 0.19 0.19 0.19 0 - 7 10 0.19 0.19 0.19 0.19 0.19 0 - 7 10 0.19 0.19 0.19 0.19 0.19 0 - 7 10 0.19 0.19 0.19 0.19 0.19 </td <td></td>	
11 481 310 6 1.9 0.19 1 4 481 970 3 1.9 0.19 1 4 481 470 6 1.5 0.15 Отдельные 44 10 л 400 2 9.2 5.68	4040
13 48 480 400 2 9.2 5.68 ПРИВЕДЕННАЯ ТОЛЩИНА НАСТИЛА С ОТДЕЛЬНЫЕ 44 10 АЙ 4600 2 9.2 5.68	(2 1)11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
DILLERSHORE 13 TUAL YOU L 9.L 3.00	CH + 12.20
	ks <u>15.4</u> 2453 Ks <u>-6.4-5.</u> 8
LICEPHRIA 1/2	Kz -6.0-5. 8 Kz 45.84 7 <i>5</i> 2
METAN 16 10AT 1170 1 1.1 0.69 HAPKA BETCHA	300
	len 2 200
	N3 1.003
ON GOTAGKAE ATBUE E33 IGGYTANGA WIDUOKAG ANNAL	103. 13. 14 /
Димитры 40 мп	T. [MAREA MARWE.
102-4 22-00 W 78 C ΓΕ ΥΝΟ ΝΚΑΥΝΝ Ν ΑΝΤ. ΔΑΝΗΑ Η 47.4 - 4.5 10 18.3-3-48 73-76 16.00 ΤΑΣΡΑΚΙΑΙΚΑΣΙΚΑΣΙΚΑΣΙΚΑΣΙΚΑΣΙΚΑΣΙΚΑΣΙΚΑΣΙΚΑΣ	
11.14 - 4.5 14 4.5 17.14 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70	
Ray 6000 2400 5500	NHCTHTYT
10LT 5781-75 6127-55	EHHNNNPDEKT

[ne	1 N O N N A I	448 BNA	Idq PTA	140 AH	HARE HI	EHT	Eue An dank y And	ET A Ab H bix	9 3 N 3 A E	4108	
Marka	44	ф ММ	Ания Д	KOA- 80	ретичу Ветичу	HALLA HALLA	Mapka	KOA-DO WT.	AJJAM OTOHAO ATHIMINE	BCEX RSDEHENTO	1 d d
11 11 11 11		- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1300 1310	<u> </u>	2.60	8.59	K-1	1	1.65	1.24 1.70	10
K - 1	1			13-11	2.30	8.16	K-L	6	8.46	3:49	
	1	48I	110 100	1	1.64	0.56	K-3		0.86	0.66	40
K.L	3				1.0 1.2	8.10	K-4	1	0.18	0.56	10
	1	181	200	-5-6		0.11	1.1		3,73	3.73	8
K-3	1	IAD IPP	950 100	 	10	8.24	[.]	1	0.67	1.74	10
	1			12	0.54	0.12	1.3		0.54	0.54	10
K-4	- 6	641	540	1	0.7	0.16	Отдельные стерини	4		10.96	
	٦	BAI	140	5	10.9	2.07	NETAN	4	0.69	1.16	10
1.1	8	481	4180	5	16.7	1.66	Y		112 4 2 4 11	٥	
	3	181	930	16	6.9	0.68	XAPAKTEPHI	LTWKA	NYBTEN	Ж	1320
[.1	10	481	1370	5	1.9	0.19	MACCA			NS.	1415
	11	181	310	6	1.9	0.19	AHOTEN BETOHA			И Э	0.5680
[.]	11	4 BI	970	3	1.5	0.15	ПРИВЕДЕННАЯ ТОЛИН	HA HACTH	11	LH SN	+12 15.6 =
	13	IBY	420	6	9,4	5.80	HACCA CTANH	1.1		ke ke	-5.9 £
314H 4A3 A TO	13	VI A OP	4700	٤	8.4	5.18	PACADE ETANN HA			Ke	451-4
UH HH 9 77	15	II A Dr	4200	1_	4.4	0.69		N3 BETOH	,	Ve	100
NETNH	16	IA DN	1120	1	1.1		Марка Бегона Кубиковая прочность бегона VI	Uera acman	t us nome	K2 EN Z	100
	RAA	A . IX 6	o - 5100	KS CH 2			THE OU MAHEU WARDOWNEN		SHEPAH	143	1.015
	86160	OKA	HAAT				ANHA PABOYEN APHATYPH			I nas. 13.	
	78100	TNA			\top				P - 4.1. 019	1 114	
KNACCH LT	N A Nu	VI A D1	_	IADA	BAI 6AI	ϕ 4 8 I ϕ 5 8 I	HIN AND A LOK. NOAM LATE YES			NUT. HAL	WIAH AI
					10 48.3348	74.4746 16.00	TORSONE ACOUNT HUND POLICITE ""	EUHON KAU AKTEPHETHK	RUABACH A		-
TVAHV H		17.8		4.5	40 4.100.78	- and	NOO. XONNY ZOLLU NA	HEAD KHK-	410	1 JANA	ANCTOB
	3)	10.98			0	5744	1 INSUMERING PASS			UNITUI	V T
Rall		6000 5781-		140	<u>u</u>	ถา. รร*				VEHHIN	ANPUEK

Int.	UNDNKAI	HGA DUL	Idakita	AD AH	NN 3VEH	THE		етэ киранифирал	KHHHA		08	
		T	1							MACCA	N.S.	
MAPKA	NA Nas	ф	ANNA MH	KOA- BO WT	RAWNA AMNA	HACCA		MAPKA	KON-BO WT.	DIOHAD ATHEMBAE	X338 OTHBHBAE	8 279.
	1	- 58 <u>5</u>	1300	1	2.60 1.64	0.40		K-4	1	-0.05	1:10	10
K-1	1	481	100	13-11	1.622			K-1	1	-€.₩°	4.11	10
	1 3	5BE	300	1	-1.641.8			K-3	1	0.86	0.86	10
K.L	1	181	100	-5-6	-1.0 -1.2	0.49		K.4	1	0.18	0.56	10
 	1 1	6AI		1	1.0	0.11		1.1	1	3.78	3.18	8
K-3	1	481	950	12	1,4	8.24		t·2	1	0.87	1,74	10
<u> </u>	6	SAI	540	1	0.54	0.12	-	1.3	1	0.54	0.54	10
K-4	7	149	440	5	0.7	0.16		BLTEVPHPIE CLELMHN	4		44.23	
	8	481	4280	5	21.4	2.12		NETAN	Ų	0.69	1.76	10
1.1	3	181	930	18	16.7	1.66						
	10	181	1370	5	6.9	0.68		XAPAKTEPUCT	NKA	NJTEN	RNA	4850
[.1	11	184	310	6	1.9	0.19		MACCA			KZ	1857
. 1	A.	181	970	3	1.9	0.29		AHOTE HEGED			ИЗ	- 1.581 054
[.]	13.	184	420	6	1.5	0.25		ПРИВЕДЕННАЯ ТОЛЩИНА	HACT	NNA	EH	+ 12.20
ВТДЕЛЬНЫЕ	11	<u>W</u> A Oh	4800	2	9,6	5.92		MARTA CARAM	1		K2	15.9 25.11 5.9 5.67
NH M9373	15	IZA 01	4300	L	8.6	5. 31		PACKOA CTANU HA IN			KS X	46,4 46.5
NETAN	15	10 A I	1170	1	1.1	0.69		PACKOT FLOUR HO 143	BETON	A	No.	300
	A RAA	- <u>Ī</u> V 60	= 5100 Ke	len 2				KYBHKOBAA RPOHHOLIB SEIDHA HA	ern dema	INT AL MAME	K2 CH2	200
							$\overline{}$	NHMBHR OU NYBHRU HBRO		HEPAH	H3	1.098
4	8 11 6 0	PKA	CTANN					ANNHA PABDUEN APHATUPHI BE			1003. 43.	14 /
ANAMET PHI KNACE DI	N HA A T	VĪ A OÞ	_	10 A I	RAI 6 A I	181	φ56I			KP -1.1. 03	0 111	TWIAH AS
AHHAA	H	18.2		4.5	10 18 3 34	74.9 75.1	16.00	HIN ANT NASK. NOAM. AATA XAPA VASPAG. AEPKINNA OGUS (SH	KTEPHLI	- 480 - 480	1 77 ""	
HALLA	Ke	11, 22	_	1,78	0.40 4. 48 o.78	1.42746		NOOD XOMMY ROLLE MAKE	b KHK	- 480	1	ANCIDA
Rel		6000		241	30	5500		I W 11 NYSOMEHRO MASS			NHETHT	117
1001		5781	75			6727.53						NNPOEKT

HHB. M NOAK, NOAM. W AKTA

	Eneu	NONKAN	NA YEA	IdqVTAI	AD AH	HIJAE "HN	71.			
	Marka	h h .can	ф нн	AVUAL MM	08-10X	RAWAD AVVAA	RS HACCA			
	K-1	1	5 AT	488	1	7.89	0.40]		
	N·1	1	481	100	++ 11	1.62.2	-8:46	1		
	K. 1	3	2 8 I	110	1	1.64	9.35			
	N. L	ı	181	100	-5 6	1:6	1:10			
	V 0	ų	ZA 3	950	1	1.0	0.11			
	K-3	ĺ	111	100	12	2.4	0.74	1	Ī	
	K-4	6	IAB	540	4	0.54	0.12	1	I	
	K-4	3	SAI	140	5	0.7	0.16	1		NIAEN
	1.1	8	481	4380	5	21.9	2,17	1		
		3	401	930	19	11.7	1,15	1		
	ί.η	10	481	1370	5	6.9	0.68	1	ı	
		11	481	310	6	1,9	1,19	1	ŀ	HAC
	[.3	1L	481	970	3	1.9	0.19	1	- 1	0676
		13	481	410	6	1.5	0.15	ł	ı	Ubna
	BITEVONDE -	14	10 A IV	4900	1			ł	Ī	MALI
	CLESMAN	15	VI A OF	4400	1	9.8	6.05	l	Ī	PALY
	UEINN	15	10 A I	4110	1	8.6	5, 43		ı	PALX
		Ang A		· 5100 1		1.1	0.69	ļ	ſ	MAPK
				. 7100	SI [H c				()	KYBNKOBAS
		B 6160 p	KA CT	ANV					L	DEPEI
1		и							٠.	ANNHA P
=	KNACEN ET	AAH	WA Dt	_				_	ŀ	+-+
1	M AHUA A				IADI	BAT 6 M I	481	φ58I	F	\mp
252 NOLD, H. A. M. T. A.	NACCO	Ke	18.6	_	4.5	0 40 03	45.070	16.00	Ā	AN AUCT N A 3 P A 6. A 1 P O B. X
100	RaH	.6	11.48	-		0 18, 3 348	96.2766		1	1908. X
3	1007		6000		240	140 4.18 0.78		2.70	1	NU KX
			5781.	15	111	JU	5500		F	
							6717-5 <i>3</i> *			

	Тпецификация ста	abhbi X	HBNBVE	T 0 6										
	Marka	KOA - 60 WT.	ADDAM OTOHAO ATHBHBAE	BLCX BLCX KS		44 27 P.								
	K-1	1	185	1:10	-	10								
	K-L	6	1.46	11	۴	10								
	K.3	1	0.86	0.86		10								
	K.4	1	0.18	0.56	i _	10								
	[.4	1	3.92	3.91]	8								
	[.1	_	0.87	1.71	4	10								
	[.]	4	0.54	0.54		10								
	OT TEVAPHOLE CLEAM HN	4		44,48										
	NETAN	4	0.69	2.76		40								
	XAPAKTEPHETH	i A	N 3 T E V N			1378								
	MACCA			K2		1490-								
	AHOTES MEGED			N ₂		5440.55								
	AHULANDT RAHHAABUNN	HAC	IN N A	HJ		12.17								
	MALLA CTANH		1 11 A	K2		25.50								
ŀ	PACKOA CTANU HA 1 h 2		KNA	KE		5. 8- 5. 6 3 11.3 4 62 8								
ŀ		A NO 738		kz	_	300								
ŀ	<u>MAPKA BETOHA</u> KYBHKOBAR NPOYHOLTH BETOHA HA EFO	OEW ATU	E NE HUME	K2 CH2		100								
7 h	DEPEN NAMELU BEIDAN MACEU		MEPAN	M3		068								
յ ՝		HAELY	SAXBATOR	1003, 43										
[T		-1.1. 031 u	14.										
7 F	AH AUT N A OKIN, NOAO, AHA XAPAKT PATRA, LEPUTUHA 2003 ISTT NAHEAL NOO. XONNU ZOO THIN NYSMEHKO 2520-	OUKAUI EPULTUK KHK-	A HILENHA	NULT	AUE T	MALWI.								
	Years tarren			NET TAKETOB NHETHTYT NEH HIN NO POEKT										

Копие.: Дольникова

POPHAT 11

МАРКА 003. ММ НМ ШТ АМИНА КСР ПЛАКА МАЛ. В ЗАВЕНКИВ В ЗЕПЕЧКИВ В ЗЕПЕЧ													L
HAPKA 103. NN MN WIT ANNIA K2	[UE	T'NO NKVI	49A RUL	IATYPH	AO AH	NA 3 VEN	EHT		Епецификация с	KINANA	THEMENT	0.8	
MAPKA 1		114	d	Asuus	Kon an	DEWAG	NACEA			T	MACCA		1 44
N-1	Marka				i	1	Ke		HAPKA		O 1 O 1 O 1 O 1 O 1 O 1 O 1 O 1 O 1 O 1	X3]B BOTH 3 H 3 A E	1
N-1		1	DAI	1300	1	1:64	8.38		K-1	1	-0.62 0.62	4.70-	1.24 10
K-2	K-1	1		100	13-11	2.30			K-1	6	8.46 D.40	1.77	2.40 10
1		3	SAL	110	1	1.8	8:38			- 1	0.86	0.66	10
K-3 1 051 100 12 14 014 K-4 6 6A1 590 1 0.54 0.11 T	K·L	1	181	200	5 6	4.5	1.10		K.4	1	0.18	0.56	10
K.U 6 6AI 540 1 0.54 0.11	1/ 2	Ч		950	1	1.0	o il			1		3.97	8
C - 1	K-3	ĺ	ÎÎP	100	12	1.4	0.14			1	0.87		10
C.4 3 481 448 5 0.7 0.16	V.U	6	IAB	540	4	0.54	0.12		[.]	1	0.54		10
C - 1	L ***	F	IAB	140	Ş	0.7	0.16			4			
C - C 10 40 1370 5 6.9 0.68	1.1	8	181	4480	5	11.4			NETAN	4	0.69	1.76	10
C - 2			101	930	19	{1.1	1.75		Y 4 4 4 4 7 7 4 11 4 7	114 A			
11	1.1			1370		6.9				N K A	KHAJACH		4600
1.3 ЧВГ Ч10 6 1.5 0.15 ОТДЕЛЬНЫЕ 1 10 ДО 5000 С 10.0 6.17 ПЕТЛИ 15 10 ДО 110 1 1.1 0.69 Выборка СТАЛИ Дианетры и до А Ш — 10 Д 18 1 6 Д 1 4 В 1 Ф5ВІ Масса СТАЛИ НА 1 Н 1 Н 1 Н 1 Н 1 Н 1 Н 1 Н 1 Н 1 Н		11	101	310		4,9							1316
ПТА ЕЛЬНЫЕ 13 10 A № 5000 1 10.0 6.17 ПЕТАН 15 10 A № 700 1 9.0 5.55 ПЕТАН 16 10 A № 110 1 1.1 0.69 Выборка стали Массы стали на 1 н² изделия кг 13.4 ине 13.6 ине нине кг сп² 10.0 кг 13.4 ине на 14.5 его обнать не нине кг сп² 10.0 кг 13.4 ине распорання по вышини разнеран н² 1.0 ине на 10.0 кг 13.4 и 10.0	1.3	11.	48T	970							•	 "- 	
ТЕРИННИ 15 10 AU 4500 2 9.0 5.55 ПЕТАН 16 10 AI 1110 1 1.1 0.69 Выборка стали Аля А. Ш 66 5100 k2 cm² Выборка стали Алина н 19.0 — 45 10 18.3348 76.777.1 16.00 Наска к2 41.12 — 1.76 040 4.49078 7.5976€ 2.48 Rev 6000 2400 5500			104	410		1.5				HAI	AAWI		-\\-12.17 -\\\-18.525.79
ПЕТАН 45 40 AI 410 1 4.1 0.69 — МАРКА БЕТОНА КУБИКОВАЯ ПРОЧЕЙ АРНАТУРЫ БЕЗ УЧЕТА ЈАКОВАТОВ ПОЗ. 43.44 — МАССА К2 41.12 — 1.76 040 4.49078 7.5976€ 2.48 — ПЕТАН 45 40 AI 410 4 4.1 0.69 РАСКОД СТАЛИ НА 1 Н 5 БЕТОНА КУБИКОВАЯ ПРОЧЕЙ БЕТОНА НЕ СТО ОБНАТИЙ НЕ НИНЕ КВ [СП² 100 100 100 100 100 100 100 100 100 10										2 41 15	1 U 0		-10.0 23.17 -5.8 5.58
ПЕТЛИ 46 10 A I 11 I I I I I I I I I I I I I I I I	LIEDMAH	15		4500	1						ANA		43.8 45.8
АЛЯ А. Ш бо. 5400 k2 cm² Выборка стали Ананетры и томпьют томпьют томпьют бетона на температ томпьют бетона на температ томпьют бетона на температ томпьют бетона на температ томпьют томпьют томпьют бетона на температ томпьют томпьют томпьют томпьют бетона на температ томпьют томпью	NETNH		_ ,		1	1.1	0.69		HADKA BETOHA			""	300
Дианетры и 10 ай 40 ат 48 бат 48 б		ρηΔ	A · III Go	: 5100 ki	s ch 2			1	KARNKOBNU USOAHOCIP BELOHU WAT	TAMED 073	HE HUME	KE CH2	100
ΔΑΝΗΑ ΡΑΘΟΨΕΊ ΑΡΝΑΤΎ ΡΟΙ ΘΕΣ ΨΕΤΑ JAXDATOB / ΠΟΣ 13,149 ΔΑΝΗΑ ΡΑΘΟΨΕΊ ΑΡΝΑΤΎ ΡΟΙ ΘΕΣ ΨΕΤΑ JAXDATOB / ΠΟΣ 13,149 ΔΑΝΗΑ Η 19.0 - Ψ.5 1.0 18.3348 76.777.4 16.00 ΗΔΕΙΑ Κ2 11.71 - 1.76 040 Ψ.40028 7.597.6 2.48 RQY 6000 2400 5500		Rhisa	• K A	11 A 11			•		Объен панели по внешн	A9 NW	SHEPAH	<i>н</i> 3	1.090
КЛАССЫ СТАВИ — 10 АШ — 40 АТ 897 6 АТ 4 ВТ Ф581 ДЛИНА И 19.0 — 45 1.0 18.3348 76.777.1 16.00 НАССА К2 11.72 — 7.76 040 4.40028 7.597.6 2.48 RQV 6000 2400 5500			* N. N						ANNHA PABOUEN APHATYPHI BE	AT3PP &	BOTABXAC	/ nas. 43,	141
Данна Наста Ка 10 <td></td> <td></td> <td>VI A DI</td> <td>_</td> <td>IAD</td> <td>IA B TA</td> <td>481</td> <td>ф58І</td> <td></td> <td></td> <td></td> <td></td> <td>A</td>			VI A DI	_	IAD	IA B TA	481	ф58І					A
HACLA K2 11.72 - 1.76 640 4.40038 7.59784 2.48 1100 KSHNN COMMENT OF MALTINETIS	Анил Д	1	19.0					70.00	NHM. NUCT U LOK. NOLD LATA YAP TASTAB. LEPHOTHHA DOGGE 1577 DAN	IN OUKAU N IKTEPHETHI FALKUV	N N RHABÆEN AI	ANT. MAS	CA MACULI.
Ray 6000 2400 5500 WHET WAYS		K2						2.48	MOD. XONNY Raise	······································	700	Nutt 1	46738
					240	10						NHCT NTY	
10LT 5184- 15 6717- 53 ⁸ AEHWUNNOPOEN	1961		5781-	15			6717-537					VEHHNV	INDEKT

2n2	TNO NK F	HAR RHU	I A T Y P DI	AO AH	HILE HN	EHT		EVERNONKARNA EL	A NO HOLX	HIMINE	106	
HAPKA	NN nos.	ф	AHHA A	KON-BO WT.	RAWAD AHNAA	KS		HAPKA	Kon. 80	AJJAH GIGHAG AFHJHJAE	SX 2338 DIHIHINE	hin 973 8
V.1	1	- 641	1300	1	1:10	-0.59		K-1	1	-0.65 D.62	+.78	1.24 40
K.1	1	481	100	43-11	7.30	1.16	1	K-L	б	D.48 0.40	4.77	240 10
	3	TAT	-111	1	18	0.36	1	K-3	1	0.85	0.86	10
K.L	1	181	200	46	13	9.16		K-4	1	0.18	0.5	10
<i>,</i>	4	IAB	950	1	1.0	0.11		L-1	1	4.11	4.41	9
K-3	1	in	100	12	1.4	0.14		1.2	1	0.87	1.74	
K-4	6	6 A I	540	1	0.54	0.12		[.]	1	0.54	. 0.54	
K-4	7	IAB	140	5	0.7	0.16		NHH 9 373 314 443 ATO	4	_	11.97. 44.74	
[.1	8	481	4580	5	22.9	1.17		NETAN	4	0.69	1.76	10
	9	481	930	10	48.6	4.84		V			_	
1.1	10	181	1370	5	6. 9	0.68		XAPAKTEPHETHI	(A	RNABAEN		
	11	181	310	б	1.9	0.19		HACCA			Kz	1435 -1555 -2574
[.3	1L	481	970	3	1.9	0.29		ANDTER HEGGO			H 3	8.574 1.574
	13	481	420	6	1.5	0. 15		AHNUNAOT RAHHBABBHAN	HACTV	177	KS EN	4-12.15 -49.8-26.12
314H dx 3 A 1 B	14	10 12 A ĪŲ	5100	ι		6.2 7 §.§6 -		MACCO CTANN HA A H	L N3VE	A II A	K2	-63-5.54
CTEPHINN	15	II A Oh	4600	1	9.2	5.68		PACKOA CTANN HA 1H3	AHOIZZ	KNA	K2	48.45.6
NATAN	16	IAOP	1120	1	1.1	0,69		MAPKA BETOHA	DETUNA		1 20	300
	FV7	1. <u>I</u> I 60	5100 K2	tn ¹				KARNKOBY USOAHOCIP PELOHA HA-CLO	DEMATHE	HE HUME	KE [n 1	200
	Выво	DKI	WA ATT					DEDEN NAHERN ND BHEWHNN		IEPAN	ИЗ	1.112
		T N. N.	LIN IN					LANHA PAGOULU APHATYPH SES	ATBPY	3AX B A 1 Q B	Inas. 43	. 14 /
THRHET PHI	NA A	NO N JE	Ū Δ Oŀ		I A 8 IA8	401	φ58Ι	HK-1 Zeattee VII 78 FREILL	41 - KP	- 1.1. 033 LI		cca Macwit.
Дния Д	H		19.4 9.1	4.5	1.0 18.3 040 1.70°	78.5 1.73 1.73	16.00	Itlam At all A At. Bas Asset	EDULTUK	RHK3AEN A		LEN NUCLUI.
RaH	KE	9.06	11.97 5,68	24		5500	2.78	TUN KYSHMEHKO ASSA				NUCTOR
1301		5781.			uu	6727-53*	$\overline{}$				I TOHN UMU 4 A	ANPDEKT
Inri		3 101.	. 13			10111.73					UFUMA	ALL BERT

lne.	4 N&NKV1	HPA PUJ	Idq YTA	NAO AH	A BYENE	41		[neuw w n k a u n s	CI A A B H D I X	3 N 3 N E	1108	
Marka	NA nas.	ф NH	Данна нн	Кол. во шт.	DEMVV	HALLA KS		HAPKA	Ka k. 60	A 2 2 A M O 1 O H A O A T H B H B A E	REEX BLEX	hh 8013NA 8
		BAI	1300	l	2.60 1.64	0.40 1.59		k.1	1	3 A E N E H T A -0.62 -0.65	1.24	40
K.1	1	481	200	17-11	1.62.2	€. 26 022		K. L	6	8.46	1.11	
	3	₩.	810	1	1.64 1.8	0.16 0.28		K.3	1	0.86	0.86	10
K. L	1	481	100	5-6	4.0 4.2	-0.18 0.12		K-4	1	0.18	0.56	10
	4	6AI 68Î	950		1.9 1.4	0.11		[.1		4.16	4.16	9
K · 3	1	îi	100	12	2.4	0.74		[.2	<u> </u>	0.87	1,74	
v ti	6	BAI	540	1	0.54	0.12		[.}		0.54	0.54	10
K.4	٦	6 4 1	140	5	۲.9	0.16		OTTENAME CLEBMAN	4		-15.84	
1.1	8	481	4680	5	23.4	1.32		NETAH	4	0.69	1.76	10
11	9	481	930	50	18.6	1.84		V				
1.1	10	481	1270	5	6.9	0.68		XAPAKTEPI	ALTHKA	A3 ACH	KH.	1465
	11	481	310	6	1.9	0.19		MACCA			K2	1787
1.1	11 <u>.</u>	481	970	_ 3	1.9	0.19		AHOTER HETOHA			H3	-4-12.15
	13	481	420	6	1.5	0.15		MACCA CTANA	HA HAC	INAA	LH K2	-10,1-26,48
BILEADHDIE		10-12 AÑ	5100	1		6.42 9.24		HACCA CTANN NA	IN U NIA	1 u a	K2	-62 549
CLEAMAN	15	PLA OF	4700		9.4	5.80			n) beton		K2	-47.6-451
NETAN	16	10 AT	1120		1.1	0.69		MAPKA BETOHA				300
	ΔM	À.ĪL G.	: 2100 KS	CH F				KYENKOBAR NPONHOLIH BEIDHA T	PU ETO OSHAT	HE HUHE	K2 Ch2	200
	Rhise	PKN	LTAAH			:		DOBEN NAHENN NO BHE		MEPAH	Н3	4.134
		, , , , , , , , , , , , , , , , , , ,						LANHA PABOHEN APHATYPHI	BE3 YHETA	3 AXBATO 8	1003. 13	. 14 /
ANAMET P bl KNACC bl C1	N N A	NY	10 V II		IABI	481	<i>₱58</i> I	11k-4 22.1110 yu.78 [1.141_KP-	1.1. 034 u		LA NACUT.
TYNHY	H K2	10.4	19.8 12.32 5.80	2.78	0 18 3 348 40 4.10 028	78.6 79.0 7.78 7.84	, 6.00	MM, ANCO N. ADRYM. MODER. AATH PASPAB. AEPHOCHHA Degrep 1577 NI NOOB. XOMNY Terenex	APAKTEPULTU NHEAD KHK-	KA H31EAH9		METOS
Rail		6000		241	30	5500		THO KYSHMEHKO 7335			YHETHE	T
720]		5781.	75			6727.53					VEHHN	IUbbeki
<u> </u>								Kan	HORBAN: ABRON	NKOBA	POPHAT	12

	[n]	.4 N & N K P	H9A RUU.	IATY P bi	40 AN	IAE NN.	HEHT		LUEANGANATUS	CTAR	<i>x 14 N d</i>	THIMBAE	08	
	HAPKA	NN ND3.	ф ни	Дини Тини	KOA. BD	ДЕЩ АЯ	MACCA		Нарка		Kon-Bo Wt.	AJJAM DIGHAD ATHBHBAE	SCEX BCEX BCEX	VNC108
	K-4	1	- 55I - 6AI	1300 1311	1	2.60 1.64	8.40 - (),59		K.4		L	1.15 0.62	4.70 1.2	
	-	1	181	500	+3-11	1.6 2.2	-0.26 0.22		K-L_		6	8.48-0.40	1.77 2.4	d 10
	K.2	3	-56 <u>1</u>	410	2	4.64	-0.28 -0.36		K-3		-	0.86	0.86	40
	W. C	1	481	200	46	-1.8 1,2	1.10		K.4		1	0.18	0.56	10
	K - 3	4	EAI	950	7	1.0	0.11		[.4		4	4.21	4.21	9
	7.1	ໍ້	48 f	100	12	1.4	1.14		l·L		Ĺ	73.0	4.74	10
	K-4	6	6 A I	540	4	0.54	0.12		1.3		4	0.54	0.54	10
		7	IAB	140	5	0.7	0.16		DIAEBBHBIE CTEPMHN		4	_	12,46	-
	1.1	8	481	4780	5	13.9	2,37		NETAN	\neg	4	0.69	1.76	10
		9	181	930	20	18.6	1.84							
	1 1.2	10	481	1370	5	6.9	0.68		XAPAKTEPI	HCTV	IKA	N3TEV	u g	1495
		11	481	310	6	1,9	0.19		HACEA				K2	-1610-
	[.]	12	481	970	3	2.9	0.29		DED EN BETONA				И 3	1610 8.646
		13	181	420	6	1.5	0.25		ПРИВЕДЕННАЯ ТОАЩИ	H A	HALT	N N N	EH	4-12.13
	BITE VP HPIE	15	WASt OF	5300	1		6.54 9.42		HACCA CTANN					10.5 26.7
	NH # 4 3 7.3	15	10 A Ū	4800	i	9.6	5.92		AN WAATS ADKSA	145		NA		6.1 5.41
	NETAN	16	TADE	1120		4.1	0.69			H 3	AHDIS		KS	47.2-44.
		214		: 2100 KS	1042				MAPKA BETOHA	pu		u	ha 1. 1	300
				. 1100 40	(L n				Кченковая прочность ветона Ж				KS [CH2	100
_	1	B PI E D	bky c	NA A T					DANNER OF MARKET MARKET			TAXBATOB	103. 13.1	4.155
	ANAMETPH	И			т	7-7	T		ANNA PABOUEN APMATYPH					1 /
		NA A T	N A II	IZ A OF	IADE	IA D TA	487	<i>58I</i>		4.44	4- KP -	4.1. 035 us		
									UK-1 ZOCHWYNTS [N	EHNA	HKAUH	ии	ANT. HACCI	MACUT.
_	TYAHY I	`	10.6	12.46	4.5	0 48.3	79, 1-79.5		PASPAB. LEPIDIHNA Defor 1843 na		PUCTHK -KHK	RHABAEU AD OF7-		
S	MALLA	KS	9.42	12.46 5.41		140 4.78	7.83.7.87	2.48	THO KYSHMEHKO			*** U		6013
S	Ray		6000		241	00	5500						NHCTUTYT NEHHHAN	DUŁKI
	7301		5781-	75			6727-53						ALREAL	- GERT

ГНЗНЗАЕ ИИ Д О АН ИОРТАНЧА Р ИЏАНИФИЏЈЈ														
Napka	44 003.	ф ИН	Ани. Дамиа	Кол- во шт.	ания Д Мила Д	Macca K8								
V 1	1	- 5AI	7300 1118	L	2.60 1.64	0.40 0.59								
K-1	1	181	200	43-41	1.1	1.16								
	3	- SEI	900	1	1.64	1.36								
K-L	1	4 8 I	100	- 56	1.6	8:102								
V 2	Ŋ	IA B	950	Ţ	1.0	0.72								
K-3 2 481 266 12 2.4 0.24														
K-4 6 6AI 540 1 0.54 0.12														
N- 1	Ŧ	IA d	140	5	0.7	0.16								
5 481 4880 5 24.4 2.42														
L·1	[.4] 3 48T 930 21 49.5 4.93													
 ι.ί	10	18 P	1370	5	6.9	0.68								
	11	481	310	б	1.9	0.19								
[.]	(L	187	970	3	1.9	0.19								
	(3	181	420	í	1.5	0.25								
зівн вкз ДТВ	44	15 VI	5400	1	10.8	9.59								
LTEPHHH	15	<u>v</u> ī a 01	4900	l	9.6	6.05								
NATAN														
	L. A RAA	Ñ 60 : 5	5100 K2 CH	2										

BNEOPKA CTANN

N ANTA	ANAMETPH H KARCEN ETARN	12 A 🗓	II A OF	10 A I	8AI	6 A I	4 BT	ф58І
NO.	м аниа Д	10.8	9.8	4.5	1.0	18.3348	80.5 809	16.00
5	MALLA KE	9.59	6.05	1.76	040	4.1002		
NAB. J. NOAA	Ray	6000		l 1	400		5500	
M	7201	5781	. 75				6727-53*	

[пецификация ста	X Id Hd A	HIHIAE	108	
Mapka	KOA-80 WT.	A 1 1 A M O 1 O H A O A T H 3 H 3 A E	BLEX BLEX	44 MC10B
K-1	2	0.85-0.62	1.78 1.24	10
K-L	6	0.46 Q4	1.77 2.40	10
K-3	4	0.86	0.86	10
K.4	ı	0.18	0.56	10
[.4	1	4.35	4, 35	9
1.1	1	0.87	1.74	40
[.3	1	0.54	0.54	10
NHH 9373 310H 6A3 ATO	4	_	15.64	
NET NA	4	0.69	1.76	40

XAPAKTEPHETHKA UJAE	NUS	15 <i>23</i>
PALXOD CIAAN HA 1H2 H31EANS K2 PALXOD CIAAN HA 1H3 SETOHA KSHKOBAR OPOUNDCID BEIDHA TH EID OSHATNE HE HNHE K2 LH2 OSDEM NAHEAN OO BHEWHUM PASHEPAM H3 LANHA PASONEN APHATY PDI BES VUETA SAXBATOB (003.43) 1.443 KP - 4.1. 036 H4 WHAT H2 LOSHAN OO A LAST AAPAKTE PULTUKA H31EANS THO B. KSHOHNKO FOLL WALLEL OF THE CONTROL OF THE CON		4651
DESCH SETONA	H 3	-8.859
ПРИВЕДЕННАЯ ТОЛЩИНА НАСТИЛА	[H	+12.
MACCA CTANN	KZ	18.9 30
PALXOA LTANN HA 1H2 N3AENNS	KZ	-6.1-6.00
	Ke	47.1-49.
		300
KVENKOBAN OPDUNDETE BETONA THE ETO DENATUE HE HUNE	KS [HZ	100
	Из	4.477
	1 003.	13, 44 /
1.444- KP-4.1. 036 u	14	
HK-1 . 20 MAR VIITE LNEUHOHKAUNN N		ACCA HACW
MACLA OBDEM BETONA IN OPHOELEH HAR TONWHHA HACTHAR OF ALVOL CTANH PALCA CTANH CAN REPORT CAN REPORT OBDEM OBHEAR AND MEMBER OD HAREA GETO OS HALL OBDEM OBHEAR OD HACHARD OD HABAGAR GETORA OD HABAGAR GETORA OD HABAGAR GETORA OD HABAGAR ATTER OD HABAG		
	1111	
ILL ROLL THE PARTY OF THE PARTY	TINA	AUCTOS
	MHETH	1111
	VFHMI	1 N 1 1 Y U E N 1

COOPHAT 12

Lue	4 N O N K A 4 I	LQ APK	AT Y P W	HT DY	IH 3VE HI	ENT		Епецификация ст	L V P H PI X			
Hapka	NN 1001.	ф NN	Данна НН	KOA-BO WT.	тийну Оетав	HACCA		HAPKA	Koa. 60 Wt.	A 2 2 A M DI OHAD A TH 3 H 3 A E	BCEX BCEX BCEX	NUCT 0
		551 VAT	1300 1110	1	2.60	8.40 1.59		١٠.٨	ı	1.65	1.24	10
K-1	1	481	200	+1-11	4.62.2	1.16		K-L	6	1.46	1.11	10
	3	361	900 110	1	-1.841.8	8.36		K-3	1_1_	0.86	0.86	10
K-1	1	181	100	5 6	-19 12	0.12		K-4	l	0.18	0.56	10
	l u	IAR	950	4.				1-1	4	4.40	4.40	9
K - 3	Ž	SAI SAI SAI	350	12	1.0	0.11 0.44		1.1	ı	0.87	1.74	10
V 11	6	IAB	540	4	0.54	0.12		1.3	- 1	0.54	0.54	10
K - 4	7	6AI	{40	5	0.7	0.16		OT LEADABLE CTEPHAN	4		45.94	-
	3	461	4980	5	24.9	1.47		NETAH	4	0.69	2.76	40
1 -1	9	481	930	21	19.5	1.93		XAPAKTEPHET	11 1/ 4	N3TEV	U 0	
1.1	10	481	Orch	5	6.9	0.68			n	MITEN		1553
	11	461	310	6	1.9	0.19		MACCA			K2 K2	1685 1671
[- 3	n.	481	978	3	1.9 -	0.19		AHUWAOT RAHHBABBHAN			CH	4-12.
L - J	13	481	410	б	1.5	0.25		MALCA CTANH MACCA CTANH	HAC	INAR	K2	713-30
DI DERP HPIE	19	17 A TL	5500	ſ	11.0	9.77		PALADA LIANN HA 4 H	M3AE	AMG	KZ	-64-5.9
ET ET WHU	15	LIA DI	5000	ι	10.0	6.17		PACKOA CTANU HA (H)	BETOHA		Ke	46.6-45
NETAN	16	I A DI	4120	4	1.1	0.69		MAPKA SETOHA	5615117			300
	ΑΛA	A · IX G	6 - 5100 K	SICHZ				Kysukoba a npouhoeth setoha Ha et	OSHAIN	IE HE HNIHE	KS EUJ	100
	8 6 6 0	1 K A	LIAAW					NAMED ON HASHAN MEGAU THE COST OF STATE		HEPAN 3AXBATOB	M3	<u> 1,199</u> 14 /
ANAMETPHI N 1.141- KP-11, 037 H1												A HATW
Trant 1	4	11.0	10.0	4.5	1.0 18.3	\$1.3 1.0	16.00		EPHCTHI KHK-	L N3TEVA	1111	
MACLA	Ke	9.77	6.17		0.40 4.18	0.42	48 جے	THO ASSEMENKO 2525				METOS
ReH		6000		140	10	\$500					AN HHAA	
וטנז		5781	. 15			6727-55*					VEHMMY	ur ut K

[UE	# N O N K A H	NA PH	ATYPH	TO AH	M3AE HW	EHT		вотнанале хібнблаго вирая и Фирап 1	
Hapka	44 001.	ф МН	Диина нн	Кол- во шт.	Д УЙН У О ЕЩ В В	HACCA KL		MAPKA KOA-BO OAHOTO BCEX WIT. JAENEHTA JAENEHT	0.
K. 4	4	- DBI	1900	1	3.8	0.59		K-1 2 4.16 2.11	-
N·1	2	481	100	-16-14	7.12.8	9.38		K-1 6 0.64 3.84	-
K.1	3	582 VA 1	1500	1	3.2¥	8.46 8.11		K-3 4 0.66 0.66	<u> </u>
K. L	ı	481	200	9	1.8	0.18		K-4 1 0.16 0.56	i
K- 3	4	SAI	950	1	1.0	0.12	1	C -4 4 4.55 4.55	5
V-)	٤	8 # I 4 8 I	100	12	14	0.14		1.1 1 0.87 1.74	
K-4	6	6 4 1	540	1	0.5	0.12		C-3 4 0.54 0.5	¥
	7	SAI	140	5	0.7	0.16		Отдельные стерини 4 — 46.2	4
[.4	8	481	5080	5	15.4	1.51	1	N.7.5 P. 0.69 1.7.6	<u>. </u>
	3	481	930	11	20.5	2.03	_	Y	
(.1	10	4 81	1370	5	6.9	0.68		Характеристика изделия	1:
	11	481	310	6	1.9	0.19	1	NACLA KE	704
(. 9	fL.	481	970	3	2.9 -	0.19		DEDEN PELONY NO	
	(3	481	420	6	1.5	0,15	1	ПРИВЕДЕННАЯ ТОЛЩИНА НАСТИЛА СП	-
<i>ПТАВАЗАТ</i> О	14	11. A ÎV	5600	1	11.2	9.95		MALLA LTANU HA (M² USALNUS KE	- }
NHW9373	15	10 A ĪV	5100	1	10.2	6.19	1	PALXOA CIANN HA 1H " NSALNNN KT	٠,
NETAN	16	10 A I	1120	4	1.1	0.69	1	MARKA SETONA	
A	VI.A RI	Q: 2100	KE CH 2				1	KARNKODUN USOAHOCIP ZELOHY HY ELO DEMYINE HE HAME KOLCUS	
	Вывал	YA FT	AAV					DEPEN UNHERN UD BHEMHMU SAZHESHU NJ	1.
	****							ANNA PAGOLEN APMATADO ES VICTA SAXBATO INO. 43	,14
ANAHETPH KRACCH C	N A NN	41. VĀ	E A DI Φ	168 I A DI ¢	φ6 A I	44 BI	φ 58 <u>Ι</u>	1. 141- KP - 1.1. 038 u4	ALLA
ANNA	t .	11.2	40. L	4.5 1.0	-34.4-3.48	88.7	25.60	WIN ANCE IN ADKUM. MOAR. DATA XAPAKTEPHCINKA HILAEANG	neek
MACCA	KL	9.95	6.19	1.76 040	-6.770.78	8.76	3.94	1000. XONNY ROSSELL MAHEND KHK. 560	Luca
RaH		6000		14	00	5 5 0 0		NACIA	NE.
1101		5781-	- 75			6717·53	,	NHH3A	LÄPI

l1	JENANKYI	INA DNI	169 4741	AO AH	N3AE HW.	EHT			<u>Eney u op u k a y u</u>	9 []	1	HIHIKE	108	
HAPKA	NN nos.	ф Nn	Аниа <u></u>	KOA. BD WT.	DEWAS.	H A C C A				KON. BO WT	A 1 2 A M 0 1 O H A O A 1 H 3 H 3 A E	SS K338 BOIH3H3AE	4 h	
K-1	1	- SAI	1900	1	3. 8	8.59 1.64]		K-1		1	-1.16 0.87	1.32 1.7	4 10
N•1	1	181	100	-16- 14	1,1 2.8	9.38		K-L		6	-0.90 0.64	-5.48 38		
K.L	3	561 5A1	1500	l_	3.24	8.46 4.11	J		K-3		1	1.86	0.86	10
N. C	1	181	500	9	1.8	0.18]		K-4		l	0.18	0.56	10
1 € 1 1 1 1 1 1 1 1 1 1	4	BAI	950	1	1.0	0.11 0.14			1.1		1	4.59	4.59	9
	1	f##	100	12	2.4°		l	ŀ	<u> [.]</u>		٦.	0.87	1.74	40
K-4	6	IAB	540	1	0. 54	0.12		ŀ	1.3		1	0.54	0.54	40
	- 7	IAB	140	ς	0.7	0.16		ł	DIAENDHDIE CTEPHI	111	4		16.54	-
1.1	8	181	5180	5	15.9	1.56		Į	UELVA		4	0.69	1.16	10
	9	481	930	11	10.5	1.03		ſ	XAPAKT	FPUTTI	IKN	H3AEN		
[.]	10	481	1370	5	6.9	0.68		-				41777		1610
	11	181	310	, p	1.9	0.19		ŀ	APCEA BETONA OHOTEG NEGED			-	K2 H3	1750
[.3	11.	181	970	3	1.9	0.19		ŀ		АНИША	UACI	AANI	EM .	+12.12
No. 4 o 4 b 111 b o	13	481	420		1.5	0.15		ı	MACCA CTANH	пырипи	HAL	MAN	KL	35.3 33.17
ОтДЕЛЬНЫЕ СТЕРНИИ	45	LA SP LA SP	5700 5100	1	44,4 10,4	10.12 6.42		Ī		IA I HE	1 A CN	RNA	KE	6.6.24
		10 A I	1170	1	10.4	0.69			PALXDA LTANN HE	(11)	BETDHA		Ke	50, 6 51.5
NA 73/1	16				1.1	0.03		ļ.	HAPKA BETOHA	npu		u		300
	Try BVT	L 00:7	100 kr 10	.# ~				4	CARNORN BELOWNAR	HA HA E			KC CH2	200
	BHED	PKA [NAAT.			;		L	ON WASHAN MS 680 TANNA PABARA AHWA	BHEMHNA Bhemhna		RAYRATAR	/nos. 43, 4	1. 143
THE HELDPI	U CT A A U	ቀየር ል ፲፱	<u>w</u> a de 4	148 I 4 0 P 4	46AI	фЧВІ	ф5ВІ	þ			4, 444	- KP - 4.4. 0	139 u1	I MACUT.
AHHA	n	11.4	10.4	4.5 1.0	36.4	88.0	25.60	¥	H.K-4 Godine VII.7 3M, ANCI N LOKYM. NOAN. AAN ASPAG. ASPNOINHA Defres 1857		A O N K A U E P N E T N I	(A NJAENHAI	ANT. MALE	TI A CM.
MACCA	kı	10.12	6.42	2.76 04	6.77	3.87	3.94	ļ	PRO. XDHUY ROSEE	NAHEN	KHK.	570	NUCT I N	ULTOS
RaH		6000		240	0	5500		þ	WIN KYSEMENKO	_			NHETHTYT	
ושנז		5781	- 15			6717-53		止					VEHMNV	IPOEKT

Lue	чиф ик в	19A RNY	Idaytai	AD AH	H 31 E HN	EHT		EUEANGAKVAN N	CLUBHOUN	AYEHEN	108	
	1 44	1 6	Аниа	Kon-bo	Общая	MALEA			K0 4 - 80	MALLI		
MAPKA	nas.	HH	HH	шт.	AHNAA	Ks		MARKA		OTOHAD ATH3M3N E	X318 OTH3M3AE	
K-4	1	- fki	1900	2	3.8	8.84		K-1	l	0.87 - 1.16	1.7	10
	1	181	100	-16-14	3.1	9.28 1.31		K.l	ß	1.40	3.0. 1. H	10
V 0	3	- 191	1500	ı	3.0	8.46 8.11	1	K.3		0,65	0.66	10
K. L	1	461	100	9	1,8	0.18	1	K-4	l	0.18	0.5	6 10
K - 3	¥	149	950	1.	1,0	0.12		t.·l	1	4.64	4.6	4 9
, N.J	ĺ	111	100	12	14	6.24		1.1	1	0.87	1.74	1 10
K · 4	6	6 A T	540	1	0.54	0.12		1.1	1	0,54	0.5	4 10
***	7	110	140	5	0.7	0.16		OTAERBHBIE CTEPHHN	Ч		16.84	
1.1	8	487	5180	5	26.4	1.61	Į	NA 73 (1	4	0.69	2.76	10
.,,	9	482	930	เเ	La.s	1.03	ſ	V 101 V27 0 11 0 21				
1.2	10	IB H	1370	5	6.9	0.68	[X APAKTEPH LTI	IKA	NY3TEVN	Я	17.10
	11	481	310	б	4.9	0.19	1	HALLA			KE	1640 -1781 0.656 -1.711
[-3	11_	481	970	3	2.9	0.29	1	AHDT38 H3880			н,	
	13.	184	450	6	1.5	0.25	-	НИШЛОТ РАННЭДЗОНЯП	A A A	AAHT.	EN	+12.11 発
DITERPHPIE	件	IZ X II	5800	ı	11.6	10.30	-	MACEA LEANN AD A	2		Ke	35.4 6.6-6.20
LTEPHHHH HH	15	II A ON	5300	L	10.6	6.54	H	A HAATI AOKIAG	M ² N3 <u>L</u> 1	KNA.	K2 K2	50.2 51.1
NETAN	16	IA Oh_	4120	1	4.4	0.69	t	MAPKA BETOHA	DEIUNA		1 82	300
	ANA.	A·IX %	= 5100 Ka	elcn ²			j _k	CARNKOBUS ULANDELP PELBHY HA	TAHAD OTE	IE HE HHHE	KE CH2	200
	86160	DKA (NA A I					DEPEN UVHEVN UD BHE M		HEPAH	Из	1,264
								Длина рабочей арматчры б	ATTPY ET	BOTABKAE	1003. 13	
ANAMET P bi	W NA A I	ቀኪል፱	<u>w</u> a or ¢	0 40 N I	ásrigóba i	φ4 BI	ві			1- KP - 1.1.		
Д НИИ Д	H	11.6	10.6		10 30,43.49	85.9 89.5 8.53		AND THE PROPERTY OF THE PARTY NAP	LHONKAUL KTEPUCTHI	DRESER A	NNT. MB	ICCA HACUT.
	Ke	10.30	6.54		0.40 6.77 0.73			NPOD. XOHNY RESERVE ITAL	IEAD KHK	- 200	NWET 1	NKETOD
RaH		6000		24	100	\$500	-	THE STREET STREET			NHETH	YT
1967		5781	. 75			6727-53 [*]					VEHWA	LAPOEKT

Копиг.: Точрникова

909Ma1 12

	10	JEUNONKE!	tus but	18 9 4 7 4.	HA DA	AN JEHE	NT				[neyw	RUUANU	KIBHBAATI	3 N E N E N
	HAPKA	N N .	φ	Даниа ММ	Ka N. 80	R A 14 & O H AHNA 4	HACCA Kr				MAPKA		KQA. 00 WT	A 2 2 A M O TO H A B A T H 3 H 3 A E
	K-1	1	581 - 481	1900	1 -18 14	3.6	-0.84				K-1		1 6	0.87 -\\\- 0.64 -\\\
	K.L	3	561 - 111	1500 -1610	1	1.1 3.0	2.8 1.31				K.1 K.3		1	0.66
		1	481	100	9	1,8	0.18				K.4		1	0.18
	K-3	1	187	950 188	12	1.4	0.11 0.14		-		<u> [.]</u>		1 2	4.78 0.87
	K-4	6	148	540	1	0.5	0.12		L		[.3		1	0.54
		-	EAI	140	5	0.7	0.16			3470	8 P H P I E	CTEPHHN	4	
	1.7	3	481	538Q 93Q	13	16.9	1.66		L		NETA	· M		0.69
	1.1	10	481	1370	5	11.4 6.9	2.12 0.68				7	XAPAKTE P	UCTUKA	NJAENI
	ļ	- 11	481	310	6	1,9	0.19			MAI	LCA			
	[.3	13	481	970	3	1.9	0.19				EN BET	I O H A		
	DITETAPHPIE	113	181	420	6	1.5	0.15		-		HIABO		NHA HAC	THAA
	CTEPHHN	45	1\ A \bar{V}. 10 A \bar{V}.	5900 5400	1	11. 8	40.48		-	JAM		ETA NN	1 H2 N3AE	
	NETAN	16	IA OF	1120	1	10.8	6.66		-			AH WAATI LAH WAAT	H 3 BELOH B	
		A RAA	_	2100 Kr	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.1	0.69			W. n		****		
_		BNED		AAU	E11				, K			H AHOT38 6730 H8 ON W.S.	HIAMAD DIS A	HE HUME
	ANAMETP	N N							1			I APH PTA HOA		
	KVVECPI	NA A 73	\$12 V V	<u> </u>	040 A T	BAID 6 A I	648 1	ф5ВІ	E					1 - KP -1.1. (
	LANHA	H	11.8	10. 8		1.0 30.4-3.48	00.0 07.0		us.	1 1111	N 70K N⊼-1	REALER VII 78 [NEUN PUN A	TAN N
282	Ray	Kt	10.48	6.66	1.76	0.40 6. 77 3.84	9,98 87.3		1	179 A B.	<u>LEPIGINNA</u>	Deful 1871	XAPÄKTEPHCT N3.LENHЯ	
3	IDLI		6000		24		5500	J. 74		NU.	KARPMEHKO	Roun	NAHEAD KHK.	590
			5781	٠ ٦5			C717 62 ⁸		1			1		

6717. 53"

ПОЕЦИФИКАЦИЯ СТАЛЬНЫХ ЗЛЕМЕНТОВ Марка Кол. во шт элементов Одного элементов ВССХ элементов К. 1 1 -16 - 174 - 174 - 40 4.066 - 174 - 174 - 40 К. 1 5 -10 - 174 - 174 - 40 4.066 - 174 - 174 - 40
Марка Кольо шт эленента эленентов шт эленентов Одного шт эленентов Всех из не при
K.1 1 1 11 10 10 10 10 10 10 10 10 10 10 1
K.1 6 0.64 3.87 11
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
V 3 4 0.66 0.86 10
K-3 1 0.66 0.86 11
[.4] 4 478 478 9
t-1 2 0.87 1.74 10
C-3 4 0.54 0.54 1
DTAERBHUE CTEPHHN 4 - 17.14 -
NETAN 4 0.69 1.76 40
XAPAKTE PHITHKA UJAENNA 1668
MACCA KO 1815
DEBEN BETONA NO BILL
ПРИВЕДЕННАЯ ТОЛЩИНА НАСТИЛА СМ —4-12
MALLA ETANH KO 36.43
PACADA ETANH HA 4 H2 NOAENNA NO 6.5-6
PACKOA CTANN HA 1 N 3 SETOHA KL 49.9.
HAPKA SCIONA DOLL 300

внешния PASMEPAM PH BES YYETA SAXBATOB 1003. 13, 14 1 1.444 - KP - 1.1. 041 ur ENEUHOUKAUHH H XAPAKTEPHCTHKA N3AEANG NAHEALKHK. 590 ANT. MACCA MACUT. VACLALAL VACLALAL VACLALAL

Копия.: Дольникова

CPAPHAT 12

KE | CH2

100 1. 186

1698

Спес	цифика	ция арг	наптуры	на оди	ин элен	ент
Марка	NN 1103.	ф	Длина мм	Кол-во шт.	Дбщая длина м	Массо кг
K-1	1	GAT.	1900	2	3.8	-0.59 -0.84
	2	4 <i>B</i> I	200	16 14	-3.2 28	232
K-2	3	-SAI	1500 1620	2	3.2 3.0	0.46
N-2	2	481	200	9	1.8	0.18
<i>V</i> 2	4 52	6AI	950	1	1.0	0.22
K-3	2	487	200	1/2	1.4	0.24
K-4	6	6AI	540	1	0.54	0.12
N - 7	7	6AI	140	5	0.7	0.16
C-1	8	4 <i>8I</i>	5480	5	27.4	2.71
6-1	9	4 <i>BI</i>	930	23	21.4	2.12
4.0	10	481	1370	5	6.9	0.68
C-2	11	481	310	6	1.9	0.19
<u> </u>	12	48I	970	3	2.9	0.29
C-3	13	481	420	6	2.5	0.25
Ітдельные	14	12 A <u>I</u> V	6000	2	12.0	10.66
стержни	15	10 A 1 <u>V</u>	5500	2	11.0	6.79
Петли	15	10 A I	1120	1	1.1	0.69
i	ina A-	į 6.	= 510 0	KB/CM2		
	BUSI	DEC	CMOR	,,		

Выборка	стали
---------	-------

				_			
Дианетры и классы стали	Ø12 A 1 <u>P</u>	Ø10A IV	φ10AI	BAI		φ4 BI	\$ 58I
Алина М	12.0	11.0	4.5	1.0	30.43.48	91.4 87.8	25.60
Масса ка	10.66	6.79	2.76	0.40	6.770.78	- 9.05 8.74	3.94
Rat	6000	2	2	40		5500	
TOCT	5781-	75				6727-53 [*]	

Спецификация стальных эленентов

0.104242114211 0111	0,101.01	,, 0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
		Масса	KS	
Марка	Кол-во шт.	Одного Элемента	Всех элементоб	NN OMP
K-1	2	1.16 0.87	2.32 1.74	10
K-2	6	0.90 0.64	5.40 3.84	10
K-3	1	0.86	0.86	10
K-4	2	0.28	a.56	10
C-1	1	4.83	4.83	9
C-2	2	0.87	1.74	10
C-3	1	0.54	0.54	10
Отдельные стержни	4	1	17.45	
Петли	4	0.69	2.76	10

Характеристика изделия

Hacca	Ke	-/847
Объем бетона	M3	0.737
Приведенная толщина настила	СМ	4 12.10
Масса стали	K2	36.5 34.32
Рассход стали на 1 м² изделия	KE	-6.5- 6.1
Расхад стали на 1 м³ Бетона	Ke	49.5 50.54
Марка бетона		300
Кубиковая прочность бетоно не его обхратие не ниже	KZ/CM2	200
Пбъем панели по внешним размерам	мз	1.308
Алина рабочей арматуры без учета захватов	1003. 13	3,14/

1.141-KP-1.1.042 U1

| IK-1 | 18-им | Спецификации и Лит. Моссо М-Б | 13-мист М-босум | Подпидит | 13-т |

лист (листов Институт Леннилпроект

Cheu	ифика	IGA RNJ	машуры	ДО АН	ин элем	iehm		Спецификация с	LI V V P H F	MSVE XIC	ehmor 	
1	NN	ф	АнилД	K01-80	РАДИВО	MACCA				MACC	A KV	
MAPKA	ПОЗ.	MM	MM	шm.	ДЛИНА	κı		MAPKA	Кол-во шт.	отондо Атнэмэле	BCEX SAEMEHMOB	1 4
K-1	1	- 6 4 I	1900	2	3.8	0.59		K-1	2	1.16- 0.87	- 2.32- 1.74	1
	.	481	200	-16- 14	2.8	0.28		K- 8	6	-0.98 0.64	5.40 3.84	1
K- 2	3	- SAI	1500	2	3.0	0.46		K-3	1	0.86	38,0	1
	5	481	500	9	1.8	0, 18		K-4	e	89.0	0,56	1
K-3	4	6AI	950	1	1. 0	0.22		c-1	1	4.97	4.97	
K- 3	ş	4 g I	200	12	1:4	0.49		C- &	٤	0,87	1.74	_
K-4	6	6AI	540	1	0.54	0,12		C-3	1 1	0.54	0.54	1
, 1	7	IA 3	140	5	۵.٦	0, 16		Оштетрные сшержия	4		20.79	L-
C- 1	8	4BI	55 80	5	27.9	2.76		Пешти	4	0.69	2.76	1
<u> </u>	9	4BI	930	24	22.3	2.21						
C - 8	10	481	1310	5	6. 9	D, 68		ХАРАК ТЕРИС	MNKA	лэдби	ия 	1725
	lt	4BI	310	6	1. 9	0.19		MACCA			Ke -	1880
	11.	481	910	3	2. 9	0.29		Овъем Бетона				0.69 150
C - 3	13	481	420	E	2.5	0.25		АНИДІЛОТ КАННЭДЭВИЯП	НАСПИ	\ <u>A</u>		4-1
0 тдельные	14.	IZ A JĪ	6100	e	12.2	10.84		MACCA CITIANN				39.9
стерини	15	12 A IY	5600	a	11.2	9,95		Расход стали на 1м2	изделия			6.9 53.2
Петли	16	IAOL	1120	1	1.1	69.ه		PACKOA CITIANN HA 1M3	Анота			300
Hellikk			5100 KZ	CMS				Анот ветона прочность Бетона НА	OTO DEWA	mue He HUMe	 	200
	A RAA	TF 60.						MINHENH OU NYSHYU WSEAO	PASME			(.330
	Выб	OPKA	CMAVN					Длина Рабочей Арматуры Бо			(103.13,14)	
Дидметр Классы с	ы м	ф 12 A IV		IAS I A OI &	фбАІ	ф48І	FBI		1.14	1 - KP-1.1.0	H3 U1	INA
			 		-3043.48	00.000	60		(в Пифон		AN M. INACCA	TIMA!
P I I I I I I	М	23.4		4. 5 1.0 e.76 0.40	-50.77 0.78		94	РАЗРАБ. Дерюгина Осров 1577	NSACH	NAMMANA		
III PLOCES	KL	20.78 6000		240		5500	7	LNU KAZPWEHKO SZZ- WAHEV	P KHK- P	10	Институ Кист Лис	
RaH		5781				6727-53*	\dashv				леннил	
roct												

Спег	TIMMIKYI	NA VDM	іашуры	на од	ин элем	енш						
Марка	<i>N N</i> no3.	ф мм	Длина мм	Кол-во шт.	Общая Анилб М	MACCA						
,	1	GAI	1900	2	3.8	0.59						
K-1	2	4BI	200	16 14	- 3.2 -2.8	0.28 -8.32						
У 0	3	- 891	1500 1600	2	- 3.2 3.0	0.46 0.72						
K - 2	2	4 BI	200	9	1.8	0.18						
,,	4	6AI	950	1	1.0	0.22 0.40 0.24						
K-3	2	481	950 200	15	2.4	0.34						
K-4	6	1A3	540	1	0.5	0.12						
איז	7	6AI	140	5	0.7	0.16						
C - 1	8	4 BI	5680	5	26.4	2.81						
•	9	4BI	930	24	22.3	2.21						
C - 2	10	4 B I	1370	5	6.9	0.68						
6 2	11	4BI	310	6	1.9	0.19						
C - 3	13	4BI	970	3	2.9	0.29						
0-3	13	4 B I	420	6	2.5	0.25						
Отдельные	14	12 A 🗓	6200	2	12.4	11.01						
стернни	15	12 A [V	5700	2	11.4	10.12						
Петли	15	10 A I	1120	1	1.1	0.69						
	AAA A- IV Go = 5100 K2/cm2											

23.8

21.13

6000

5781-75

Ин В. Антодл. Подпись и дата

Длина

MACCO

FOCT

М

ĸε

для А-	ĬΛ (2° =	5100 °°/c	M ²			
Выб	рка	СПАЛІ	И			
Диаметры и классы стали	φ12 Α <u>Ι</u> ν	-	φ10 A I 8 A I	ф6АІ	ф4ВІ	φ5BI

4.5 1.0

-30.43.48

2.76 0.40 6.770.78

2400

25.60

72.3 89.1

5500

6727-53

924890 3.94

Спецификация	СШАЛЬНЫХ	элементов
011051105111111	O	0, 10, 110, 111, 111

опецификация спальных элеменнав									
Марка	Кол- во шт.	Масса Одного Элемента	кг Всех элементов	N N cmp					
K-1	2	1.16 0.87	2.32 1.74	10					
K-2	6	-0.90 0.64	5.40 3.84	10					
K- 3	4	0.86	0.86	10					
K-4	2	0.28	0.56	10					
C-1	1	5.02	5.02	9					
C - 2	2	0.87	1.74	10					
C-3	1	0.54	0.54	10					
Отдельные стержни	4	•	21.13	-					
Петли	4	0.69	2.76	10					

Характеристика изде	ЛИЯ	1755
MACCA	кa	-1912-
Объем бетона	M ³	8:783
Привевенная толщина настила	CM	4 12.08
MACCA CMANN	KZ	403-38.19
Расход стали на 1m² изделия	KE	-6.9-6.6
Расход стали на 1m3 бетона	кг	-52.8 54.40
Марка бетона		300
Кубиковая прочность бетона та его обнатие не ниме	KS/CW2	200
Объем панели по внешним размерам	Wg	1.352
Алина рабочей Арматуры без учета захватов	/ поз. 13	:14/
1.14 I- KP - 1.1. D4	44 41	
Нам Анст И Вони Мите Спецификации и Разраб Дерюгина Феду 1577	Aum M	ACCA M-δ
ПРОВ. ХОМИЧ ROLLUN ПАНЕЛЬ КНК-620	Aucm	Листоб

Копировала: Тусь

формал 12

VEHMNVUDDEKU

Спецификация арматуры на один элемент										
Марка	NN 1103.	ф <i>нн</i>	<u> Алина</u> нн	Кол-во шт.	Общая длина м	Масса кг				
K-1	1	GAI	1900	2	3.8	0.59				
	_ 2	4BI	200	16-14	3.2 2.8	835				
K-2	3	SAL	1500	2	3.2 3.0	0.46				
// 2	2	4 <i>B</i> I	200	9	1.8	0.18				
K-3	4	6AI	950	1	1.0	0.22				
<i>n</i> 3	3	481	200	12	2.4	0.24				
K-4	6	6AI	540	1	0.54	0.12				
/1 /	7	6AI	140	5	0.7	0.16				
C-1	8	4 <i>B</i> I	5780	5	28.9	2.86				
	9	4BI	930	24	22.3	2.21				
C - 2	10	4 <i>BI</i>	1370	5	6.9	0.68				
	11	4BI	310	6	1.9	0.19				
C - 3	12	4BI	970	3	2.9	0.29				
	13	4BI	420	6	2.5	0.25				
Отдельные	14	12 A IV	6300	2	12.6	11.19				
стержни	15	12 A IV	5800	2	11.6	10.30				
Петли	15	10AI	1120	1	1.1	0.69				
	для А-	<u>I</u> V 60	= 5100 Ke/	CM2						

Выборка	стали
---------	-------

Uнб. № подл. (Подпись и дата

1									
	Диаметр классы (φ12 A <u>I</u> V	-	φiOAI	841	φ6AI	φ4 BI	\$58 I
	Длина	М	24.2	-	4.5	1.0	304 3.48	-93. 8 9 0.2	25.60
Т	Масса	Ke	21.49	-	2.76	0.4	6. 773.94	-9.298.9 5	3.94
13	. R."		6000		2	40	70	5500	
3	ГОСТ		5781 -	75				6727-53	

Спецификация	СПОЛЬНЫХ	эленентов

1 ' ' '				
Марка	Кол-ва	Macco	a K8	NN
Trapka	шт.		Всего элементов	Стр
K- 1	2	7.78	<u> 53%</u>	10
K-2	6	8.88	5.40	10
K-3	1	0.86	0.86	10
K-4	2	0.28	0.56	10
C-1	1	5.07	5.07	9
C- 2	2	0.87	1.74	10
C- 3	1	0.54	0.54	10
Отдельные стержни	4	-	21.49	-
Петли	4	0.69	2.76	10

Масса	1	1785
Объем бетона	KE	9.714
	M ³	- 0.778 -
Приведенная толщина настила	CM	4-12.08
Масса стали	KS	40.7-38.6
Расход столи на 1 м² изделия	KE	-6.9 -5.91
Росход стали на 1м³ Бетона	KE	52.4 54.06
Марка бетона		300
убикавая прочнасть бетона на его абэкатие не ним	KE /CM	200
Объен панели по внешнин размерам	M ³	1.373

Копировала: Тусуз

ик-1 Тенин үчтэ Спецификации и Фазров Дерюгина Дорги (511) Пров. Хамич Хамич Панель КНК-630

формат 12

Лит. Масса М-Б

Лист |Листов Инстилут ЛЕННИЛПРОЕКТ

1.141-KP-1.1.045U1

Марка ЛУ м мм ф мм Длина мм Колбо долина мм Масса кг мм Марка М	Спе	цифика	ипа вы	матурь	на од	ин эле	иент		Спецификация ст	альны	х элемеі	нтов	
K-1 1 501-1-1000 2 3.8 0.84-1000 K-2 2 481-2000 79-32-8-38-400 -3.84-	Марка		MM			дулна	KS			Кол-во	Масса	K2 Bcex	
К-2 4 ВІ 200 +6-14 3-2-28 0-3-4-2-28 К-2 3 -	И.	1	56I OAI	1900	2		0.59		K-1	 			
K-2 3	N-1	2			16-14	3,2 ,2.8	8.32 0.2	į	K-2	6		3.84	
К-3	V - 0	3	GAT	1500	2	- 3.2 4 3.0	- 0.72 0.46		K-3	1			
K-3	N-2	2	4 BI	200	9	1.8	0.18	,	K-4	2	0.28	0.56	10
К-4	И 3	4	6 AI		1		0.22		C-1	1	5.21		
К-4 7 6AI 140 5 0.7 0.16 C - 1 3 4BI 5880 5 294 2.91 G - 2 40 4BI 1370 5 6.9 0.68 G - 2 11 4BI 310 6 1.9 0.19 G - 3 13 4BI 420 6 2.5 0.25 Omdenation 14 14AVI 6400 2 12.8 15.49 C - 2 14 14AVI 6400 2 12.8 15.49 C - 3 14 14AVI 6400 2 12.8 15.49 C - 4 15 12AVI 6400 2 14.8 10.48 Macca 10AA 1120 1 1.1 0.69 Balborka 14 14AVI 6400 2 14.8 16.48 Macca 15 1.0 1.0 1.0 1.0 1.0 Balborka 14 1.1 0.69 1.0 1.0 1.0 Balborka	N-5	Ž	4°Bİ	200	12	2:4	8:24		C-2	2	0.87	1.74	40
С-1 3 4 bl 5880 5 294 291 С-2 10 4 Bl 1370 5 6.7 0.68 11 4 Bl 3310 6 1.9 0.19 С-3 11 4 Bl 3310 6 1.9 0.19 С-3 12 4 Bl 420 6 2.5 0.25 Отбельные 14 14 Al V 6400 2 12.8 15.49 Стержни 15 12 Al V 5900 2 11.8 10.48 Петли 16 10 Al 1120 1 1.1 0.69 Выборка стали Анаметры и классы стали ф14 Al V ф12 Al V ф10 Al 80 ф6 Al Ф4 Bl Дламетры и классы стали ф14 Al V ф12 Al V ф10 Al 80 ф6 Al Ф4 Bl Ф56I Алина м 12.8 11.8 4.5 (10 36h-3/8 95.3977 95.60 Масса кг 15.49 10.48 2.76 бм 6.77 а.77 9.44981 3.94 Выборка стали (18 15.49 10.48 2.76 бм 6.77 а.77 9.44981 3.94 Потременний потременно по внешним размерать без учета захватов (поз. 13;14/ м14 видективной кг 15.49 видективной кг 15.	K-4			540	1	0.54	0.12		C-3	1	0.54	0.54	10
С-1 3 4BI 5880 5 294 2.91 С-2 10 4BI 1370 5 6.9 0.68 11 4BI 310 6 1.9 0.19 С-3 11 4BI 310 6 1.9 0.19 13 4BI 420 6 2.5 0.25 Оторини 15 12 A V 5900 2 11.8 10.48 Петли 16 10 AI 1120 1 1.1 0.69 Выборка стали Алиметры и классы стали Алина м 12.8 11.8 4.5 10 3643/8 75.3977 25.60 Масса кг 15.49 10.48 276 рм 6.77078 7.449% 3.94 Пост. Кг 15.49 10.48 276 рм 6.77078 7.449% 3.94 Пост. Кг 15.47 16 10.4 Кик-640 Алит Масса Масса Карокина избелия масса Масса Карокина Кар		7	6AI	140	5	0.7	0.16		Ошдельные сшерини	4	_		
С - 2 10 4 BI 1370 5 6.9 0.68 11 4 BI 310 6 1.9 0.19 С - 3 11 4 BI 310 6 1.9 0.19 С - 3 12 4 BI 420 6 2.5 0.25 Оторини 15 12 A IV 5900 2 11.8 10.48 Петли 16 10 AI 1120 1 1.1 0.69 Выборка стали Анаметры и классы стали Диаметры и классы манаметры без учето захватов / поз. 13;14/ Диаметры и классы манаметры и классы ман	C = 4	8		5880	5	294	2.91			4	0.69		10
С-3 11 4BI 310 6 1.9 0.19 С-3 11 4BI 970 3 2.9 029 13 4BI 420 6 2.5 0.25 Отфельные 14 14 ЛУ 6400 2 12.8 15.49 Стерини 15 12 ЛУ 5900 2 11.8 10.48 Петли 16 10 ЛІ 1120 1 1.1 0.69 Выборка стали Алина тизична таки ф 12.8 11.8 4.5 1.0 384348 95.3977 25.60 Масса кг 15.49 10.48 2.76 № 6-37078 9.44980 3.94 Пасса кг 15.49 10.48 2.76 № 6-37078 9.44980 3.94 Пост кг 15.44.75 Пост стали таки базана базана полицина настила стали на 1м² изделия кг 15.49 Пост стали таки базана полицина настила стали на 1м² изделия кг 15.49 Пробетная полицина настила стали на 1м² изделия кг 15.49 Пост кг 15.49 10.48 2.76 № 6-37078 9.44980 3.94 Пост кг 15.49 10.48 2.76 № 6-37078 9.44980 3.94 Пост стали таки по внешним размерити и масса м-8 Пост стали таки базана полицина настила стали на 1м² изделия кг 15.49 Пост стали на 1м² обрана полицина настила стали на 1м² изделия кг 15.49 Пост стали на 1м² обрана полицина настила стали на 1м² изделия кг 15.49 Пост стали на 1м² обрана полицина настила стали на 1м² изделия кг 15.49 Пост стали на 1м² обрана полицина настила стали на 1м² обрана полицина настила стали на 1м² обрана полицина настила стали на 1м² изделия кг 15.49 Пост стали на 1м² обрана полицина настила стали на 1м² изделия кг 15.49 Пост стали на 1м² обрана полицина настила по внешним размерам м³ 1.395 Алина рабочей арматуры без учета захватов / поз. 13;14/ Пост (маст полицина настила изделия на 1м² обрана полицина настила полицина нас		9	4BI	930	25	23.3	2.30						
С-3 11. 46I 970 3 2.9 029 13 48I 420 6 2.5 0.25 Оторовные 14 14 AV 6400 2 12.8 15.49 Стерини 15 12 AV 5900 2 11.8 10.48 Петли 16 10 AI 1120 1 1.1 0.69 Выборка стали Алина м 12.8 11.8 4.5 1.0 3643.48 95.39.77 Алина м 12.8 11.8 4.5 1.0 3643.48 95.39.77 Васса кг 15.49 10.48 2.76 0№ 6.77.078 9.449.0 3.94 R ** 60000 2400 5500 10.49 Вость технической панель кнк-640 Анагритация панель кнк-64	C - 2			1370	5	6.9			Характери	стик	а пздеч	лия	1012
С-3 48I 970 3 2.9 0.29 19 4BI 420 6 2.5 0.25 Отторить нье 14 14 AV 16 6400 2 12.8 15.49 Стеряни 15 12 AV 5900 2 11.8 10.48 Петли 16 10 AV 1120 1 1.1 0.69 Выборка стали Анаметры и классы стали Анаметры и классы стали Алина м 12.8 11.8 4.5 1.0 364-3/8 95.39/7 25.60 Масса кг 15.49 10.48 2.76 04 6.770.78 9.449.% 3.94 Вотторить не		11	481	310	6	1.9	0.19		Macca			K2	
13 4BI 420 6 2.5 0.25 Отдельные 14 14 ЛІЎ 6400 2 12.8 15.49 Стеряни 45 12 ЛІЎ 5900 2 11.8 10.48 Петли 16 10 ЛІ 1120 4 1.1 0.69 Выборка стали Анаметры и классы стали ф14 ЛІЎ ф12 ЛІЎ ф10 ЛІ 8П ф6 ЛІ ф4 ВІ ф5 ЛІ Алина м 12.8 11.8 4.5 1.0 384 348 95.5977 25.60 Масса кг 15.49 10.48 2.76 № 6.77 ля 9.449м 3.94 Петли 18 10 ЛІВ	0-3	12			3	2.9							0.789
Стернни 15 12 A V 5900 2 11.8 10.48 Петли 16 10 A I 1120 1 1.1 0.69 Выборка стали Алина т 12.8 11.8 4.5 1.0 384.348 95.3977 25.60 Масса ке 15.49 10.48 2.76 рм 6.370.8 5.00 Воборка стали в 12.8 11.8 4.5 1.0 384.348 95.3977 25.60 Масса ке 15.49 10.48 2.76 рм 6.370.8 5.00 Воборка стали в 14.8 4.5 1.0 384.348 95.3977 25.60 Масса ке 15.49 10.48 2.76 рм 6.370.8 5.498 10.48 2.76 рм 6.370.8 5.608 10.488 1		13	4BI	420	6	2.5			Приведенная толщина	з наст	πυλα	см	4 12.06
Петли 16 10 AI 1120 1 1.1 0.69 Выборка стали Анаметры и классы стали Алина м 12.8 11.8 4.5 1.0 384-348 95.3977 25.60 Масса ке 15.49 10.48 2.76 № 6.797.88 9.449.10 3.94 Петли 16 10 AI 1120 1 1.1 0.69 Расход стали на 1м³ бетона ке 300 Кубикобая прочность бетона не-его обматие не ниже к²/см² 200 Объем панели по внешним размерам м³ 1.395 Алина рабочей арматуры без учета захватов /поз.13;14/ 1.14 1- КР-1.1. 0.46 ил Масса ке 15.49 10.48 2.76 № 6.777.078 9.449.10 3.94 Проб. Хомич Калин панель кнк-640 Лист Листов Проб. Хомич Калин панель кнк-640 Лист Листов Проб. Хомич Калин панель кнк-640 Лист Плистов Проб. Хомич Калин панель кнк-640 Лист Плистов Проб. Хомич Калин панель кнк-640 Лист Плистов	ı	14		6400	2	12.8	15.49					KS	45# 43,22
Выборка стали Диаметры и классы стали Длина м 12.8 11.8 4.5 1.0 384-348 95.3977 25.60 Масса ке 15.49 10.48 2.76 № 6.37078 9.449.10 3.94 Кай 6000 2400 5500 ПОТТЕТЕТЕТЕТЕТЕТЕТЕТЕТЕТЕТЕТЕТЕТЕТЕТЕТЕТ	сшерни	15	12 A IV	5900	2	11.8	10.48					KS	
Выборка стали Диаметры и классы стали ф14 А № ф12 А № ф10 Л I 8AI ф6 А I ф4 В I ф5 В I 1.14 I- KP-1.1. О 46 и I I I I I I I I I I I I I I I I I I	Nemvn	16	10 A I	1120	1	4.4	0.69			бетон	1a	KS	
Выборка стали Диаметры и классы стали ф 4 А 1½ ф 10 А 1 881 ф 6 А 1 ф 4 В 1 ф 5 В 1 мл 4 Стали мл 12.8 11.8 4.5 1.0 364 3.48 75.39.7 25.60 Масса ке 15.49 10.48 2.76 оч 6.37.078 9.449.0 3.94 R 1 6000 2400 5500 Панель кик-640 Листов Мистипут		ang A-	iv G=	5100 K2/cm	2				Марка Бетона Ил		<i></i>	W2 / D	
Диаметры и классы стали ф14 А № ф12 А № ф10 А I 88∏ ф6 А I ф4 В I ф56 Г Длина м 12.8 11.8 4.5 1.0 364 348 75.5917 25.60 Масса кг 15.49 10.48 2.76 № 6.37 078 9.449/м 3.94 R " 6000 2400 5500 ГП Кузьненко Ф4 В I ГП Кузьненко				200									
Диаметры и классы стали ф14 А № ф12 А № ф10 А I 881 ф6 А I ф4 В I ф56 I Длина м 12.8 11.8 4.5 1.0 364 348 95.391.7 25.60 Масса кг 15.49 10.48 2.76 № 6.37 078 9.449.0 3.94 R " 6000 2400 5500 ПП Кузьненко Оста 1911 Проб. Хомич Ламич Лами		DPIO	ирки	CIIIQA	u			_					
Масса кг 15.49 10.48 2.76 № 6.370.78 9.449.10 3.94 R # 6000 2400 5500 ГОП Кузьненко № Панель КНК-640 Лист Листов Ответительной портистителя порт			ф 14 А <u>і</u> ў	φ 12 A <u>I</u> ỹ	φ40 A I gaj	φ6AI	ф4ВІ	φ58Ι				6 u1	
Масса кг 15.49 10.48 2.76 № 6.77078 7.449м 3.94 R M 6000 2400 5500 ГПП Кузьненко станов Пистипут	Длина	М	12.8	11.8	4.5 1.0	384 3.48	95.3 91.7	25.60	MK-1 LOTHE AND CUENT	ифика	עמת ה		сса М-В
R 4 6000 2400 5500 ГИП Кузьненко Т панель кнк-640 Лист Листов	Масса	KS	15.49	10.48	2,76 040	6.770.78	- 9. 449.1 0	3.94	Paspad Deposuna Defos 1977 XUPOKI	uebncur	тка пздечпа		
FDCT 5791-75 G707.5** NHCmumym	R #		6000)	240	0	5500			панель	KHK-640		
			5781	- 75			6727-53						

KHS. Nº noða. Noðnuce u ðama

Копировала: Уусу формат 12

Спе	ЦИФИКА	ция Арг	ИАПИРЫ	DO AH	ин эле м	16HW	T		Спецификация	СШАЛЬНЫ	х элемен	HMOB	
Марка	<i>N N</i> поз.	ф	Длина мм	Кол-во	Общая Влина	MACCA K2			Марка	Кол-во шт.	Масса Одного Элемента	ке Всех элемент	OB CMP
K-1	1	56I 6AI	1900	2	3.8	0.59	1		K-1	2	-1.10- 0.87		10
	2	481	200	-16 14		- 0.38	j		K-2	6	0.98 0.64	5.40	10
K - 2	3	- BAI	1620	2	30	- 8.72]		K-3	1	0.86	0.86	10
	2	4 B I	200	9	1.8	0.18			K-4	2	0.28	0.56	10
K-3	2 2	IAB	950	1	1.0	0.22		l	C-1	1	5.26	5.26	9
	ž	4 8 f	200	12	1.4	624	ļ	l	C-2	2	0.87	1.74	10
K-4	- 6	IA6	540	1	0.5	0.12			C-3	1	0.54	0.54	10
	7	6AI	140	5	0.7	0.16			Отдельные стерни	1 4	-	26.39	-
C-1	8	481	5980	5	29.9	2.96	1		Петли	4	0.69	2.76	10
<u> </u>	9	4BI	930	25	23.3	2.30		F					
C - 2	10	481	1370	5	6.9	0.68			Характе	ристика	издели	19	1843
U 2	11.	4BI	310	6	1.9	0.19]		MACCA			KS	-2010-
C - 3	12.	481	970	3	2.9	0.29	1		Объем бетона			M ³	0.802
U-5	13	481	420	6	2.5	0.25		L	Приведенная толи	цина наст	ила	СМ	4 12.06
Отдельные	14	14 A IV	6500	2	13.0	15.73		-	MACCA CMANN			къ	-45.8- 43.7
стернни	15	12 A IV	6000	2	12.0	10.66		ŀ	Расход стали на 1 м² изделия			KS	-7.5 -7.15
Петли	15	IAOF	1120	1	1.1	0.69		-	Расход стали на 1	м³ бешона		K8	57.+ 59.25
710	DAR A		5100 K2/c	m ²			•	1	Марка бетона Кубиковая прочность бетона	ηρυ _	И	K8 / 2	300
		-						ľ				Mg∖cw.	200
	Выбо	PKA C	MAVN			;	. 1	1	объем панели по внегодить по в	L TOS WIGHT	PAM		4.447
Диаметры Спаметры	NAAII	φ 14 A <u>ι</u> ν	φ12 A <u>Ι</u> ν	φiDAI 84)	φ6AI	ф4ВІ	ф5ВІ	-		1.14	1- KP-1.1.0	47 41	
A		13.0	12.0	4.5 1.0	3:48	70.8	25.60	H.	MANCH NOTOKYM NOTOKYM ATA	:Пецификациі Арактеристиі	N N KA N3AEANG	MAN MAK	CCA M-B
MACC B	KS	15.U 15.73	10.66	2.76 0.40	A 70	5.48	3.94	LP.	POB. YOMAY Karay				
R#	116	6000	15.55	240		5500			ИП Кузьменко буда	панель КН	IK-650	Aucm Ai	
FOCT		5781-	 75			6727-53*		F				VHHHNV	Uboekw
1001		3/01										10	

Ин В. И•пода Подпись и Фаша 203

Копировала: Тусво формат 12

Спе	цифика	ция арм	латуры	на оди	MBVE HI	енш		Спецификация ст	альны	х элеме	нтор	
Марка	<i>NN</i> no3.	ф	Длина мм	Kon-Bo wm.	Общоя Влина М	Масса къ		Марка	Kon-Bo wm.	Масса Одного элемента	кг Все∝ элеменп	N N nob cmp
14 .	1	-3AI	1900	2	3.8	0.84		K-1 2 -1.16		2.32	10	
K-1	2	4BI	200	-16- 74	-3,2 2.8	-0.32 0.28		K-2	6	-0.76	\$:46	10
ν 0	3	-5A±	-1520 -	2	3.24 3.0	- 0.72 0.46		K-3	1	0.86	0.86	10
K-2	2	4BI	200	9	1.8	0.18		K-4	2	0.28	0.56	10
V 2	4	6AI	950	1	1.0	0.22	1	C-1	1	5.41	5.41	9
K-3	2	4Bf	200	12	18	8.24		C-2	2	0.87	1.74	10
K-4	6	6AI	540	4	0.54	0.12		C-3	1	0.54	0.54	10
IV -T	7	6AI	140	5	0.7	0.16		Омдельные стерини	4	•	30.73	
C - 1	8	4BI	6080	5	30.4	3.01		Nemvn	4	1.0	3.98	10
0-1	3	481	930	26	24.2	2.40		V				
C - 2	10	4 B I	1 370	5	6.9	0.68		Характери	стик	а изде	ΛИЯ	1870
	11:	4BI	310	6	1.9	0.19					-2042-	
C - 3	12	481	970	3	2.9	0.29		Объем бетона м³			<u> </u>	8.875
C - J	13	4 BI	420	6	2.5	0.25					4-12.0	
Отдельные	14	14 A 🕸	6600	2	13.2	15.97		Масса стали			KS	-51.5-49.4
стернни	15	14 A 🕸	6100	2	12.2	14.76		Расход стали на 1м			KS	8.3 80
Петли	16	12 A I	1120	1	1.1	1.0		Расхыд стали на 1м³ Марка Бетона	5emc	на	KS	68,2 66.07
	ðλg A-	īv ഗു = 5	100 Ks/C	m ²				Марка ветона Кубиковая прочность бетона при	รด กก็พด	TILLE HE WILHE	K2/CM2	200
	D 5	22146	стал			1		Объем панели по внешний				1.439
	DNO	орка	CHICA	u .		1		Длина рабочей арматуры бе			/nos. 13	3-14/
Диаметрь классы сп		ф14 А 1ў	-	ф12 AI 8AI	φ6AI	φ4 BI	φ58Ι		1.14	1-KP-1.1.04	8 u1	
Длинα	M	25.4	-	4.5 1.0	-38/+3.48	97.2936	25.60	MEN ANCH NO BOKYM RODRING ANTO X COOK	цифика перисти	хипп п ка пздеупъ	Λum (Mαc	са М-б
Масса	KZ	30.73	-	3.98 040	6.77-0.78	9.639.3	3.94	Разраб. Дерюгина Дерия 15/11 Пров. Хамич Кания		WIIW Con		
R#		6000		240		5500		LNU KARPHENKO 25	панель	KHK-660	Vicia Vi	истов
FOCT		5781	-75			6727-53*						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
						<u> </u>			$\overline{}$			

Инб. № подл. Подпись и дама

Копировала: Туев формат 12

Спе	цифика	ция арп	ичшльы	HA O	ðи	н элем	енш		
	NN	φ	Длина	Кол-в	0	Общая	MACCA	1	
Марка	поъ.	MM	мм	щm.		AHNA	кs		
K-1	1	SEL	1900	2		3.8	0.37	1	
N-1	2	4BI	200	-16-1	14	-3.2 2.8			
K- 2	3	-6AI	1620	2		3.24 30	0.72]	
N-2	2	4 BI	200	9		1.8	0.18		
K-3	2	6AI	950 200	1		1.0	0.22]	
N-2	Ž	48Î	200	12		2.4	8.24		
K-4	6	1A9	540	1		0.5	0.12		
	7	6AI	140	5		0.7	0.16	1	
C-1	8	4BI	6180	5		30.9	3.06		
0 1	9	4BI	930	26		24.2	2.40		
C -2	10	481	1370	5		6.9	0.68]	
0 2	11.	481	310	6		1.9	0.19]	
C-3	12	481	970	3		2.9	0.29		
U-5	13	4BI	420	6	\perp	2.5	0.25		
Отаельные	14	14 A IV	6700	2		13.4	16.21]	
Стернни	15	14 A IV	6200	2	4	12.4	15.00		
Пептли	16	12 A I	1120	1		1.1	1.0		
	A RAG	ાંેે હ∘	=5100 K2/d	cm ²					
	Выбі	орка	СПАЛ	И					
Диаметры Үлассы сп	ИМА	φ14Α[Ϋ	-	ф12АІ 8	-+		ф4ві	φ5Β.	
ANNA	М	25.8	~	4.5		3443.48		25.6	
Массы	K5	31.21		3.98		6,770.78		3.94	
Rat		6000		24	400	0	5500		
TOCT		5781	- 75				6727-53		

Спецификация с	шүүрнө	х элемен	вот	
	T	MACCA	KS	_
Марка	Кал-60 ш т.	Элемента	Всех элементов	NN Cmp.
K-1	2	-1.16 -1.16	2.52	10
K-2	6	-0.9 0	5.40	10
K-3	1	D. 6 6	0.86	10
K-4	2	0.28	0.56	10
C-1	1	5.46	5.46	9
C-2	2	0.87	1.74	10
C-3	1	0.54	0.54	10
Отдельные стернни	4		31.21	-
Петли	4	₹.0	3.98	10

Характеристика изделия ₁₉₀₀									
MACCA	KS	2075							
Объем бетона	M3	0.828							
Приведенная толщина настила	CM	4-12.05							
Масса стали	KS	-51.1 -49.93							
PACKOO CMANN HA 1M2 NEBENNA	кe	8.2 7.92							
Расход стали на 1м3 бетона	KS	-62.9 65.70							
Марка Бетона	300								
Кубиковая прочность бетона НА его обжатив нениже	KS/CM2								
Въем панели по внешним размерам	M ³ 1,461								
Длина рабочей арматуры без учета захватов	/поз. 13;14/								
1.141-KP-1.1.04									
	Vin W	ACCA M-B							
ИЗМ/ЛИСТ / ООКУМ ПОВПИСНАТА ХАРАКТЕРИСТИКА ИЗДЕЛИЯ РАЗРАБ Дерюгина № / 1877									
Прав. Хомич Кассия ПАНЕЛЬ КНК-670									
TUTI KYSEMPUKO MEZS	Лист	AUCHOB							
	VHHPV NHcw	IVUboekt nwam							

Копировала: Гуиво формат 12

	NN	ф	Длинд	Кол-во	Общая	MACCA				MACCA	KS	T
Марка	поз.	мм	MM	шm.	M	KS		Марка	Kon-Bo WM.		элементо Элементо	В
K- t	1	- SAT	1900	2	3.8	0.89		K-1	2	1.16	2.32	\top
N-1	2	4BI	200	-16- 14	3.2 2.8			K- 2	6	0.64	5.40	1
K-2	3	- 581	1620	2	3.213.0	0.46		K-3	4	0.86	0. <i>8</i> 6	\Box
	2	481	200	9	1.8	0.18		K-4	2	0.28	0.56	T
K-3	4	6AI	950	1.	1.0	0.22		C-1	4	5.51	5.51	
1, 3	2	481 4BI	950 200	12	2.4	0.40		C-2	2	0.87	1.74	
K-4	6	6AI	540	1	0.5	0.12		C-3	1	0.54	0.54	\perp
<u> </u>	7	6AI	140	5	0.7	0.16		Отдельные стернии	4	-	36.7	
C-1	8	481	6280	5	31.4	3.11		Петли	4	1.0	3.98	T
	9	481	930	26	24.2	2.40		V				_
C - 2	10	4BI	1370	5	6.9	0.68		Характери	ICM NK	A N3GE	ЛИЯ	,
	11	481	310	6	1.9	0.19		MACCA			KS	-2
C-3	12	481	970	3	2.9	0.29		Объем бетона			m ³	-0
	13	4BI	420	6	2.5	0.25		Приведенная толщина настила			CM	
Ошдехеные	14	16A 1	6800	2	13.6	21.49		Масса стали			KS	-5
стернни	15	14 A IV	6300	2	12.6	15.25		PACKOO CMANHA 1M2	издел		KS	-9
Пешун	16	12 A I	1120	1	1.1	1.0		PACKED CHANN HA 1M3	решон	Α	KS	68
	TV8 Y	∙ାହି ଔ	= 5100 K2	/cm²				Марка бетона Кубиковая прочность бетона на		muo uo uu	KS/CM2	2
	Выбі	рка	СПАЛЬ	1				Объем панели по внешни				1.4
		1		· ·	T			Длина рабочей арматуры без	учета	3AXBAMDB	/поз. 13:4	
Диаметры классы ст		ф16 А іў	φ14 A Ι <u>ν</u>	ф12AI 84I	φ6AI	ф4ві	SBI		1.14	1-KP-1.1.05	50 u1	
AHNAL	М	13.6	12.6	4.5 1.0	30.4 3.48	78.274.6	5.60	WAM AUCH NO BOKYM - HOBENCO LATA XAPA	INDUKAL	тка избечна Тип п	Лит. Мас	:4
	KE	21.49	15. 25	3.98 040	6.770.78		3.94	DASPAS. DEPROBUHA Defer 1877				Ì
		6000		240	n	5500	7	CHI KYSEMENKO PERAK	іанель К	HK-680	Aucm Au	cm
R.#		5000		270		2300	1				Инстип	_

Konupobana: Tyels

формат 12

Спе	цифика	ция арг	матурь	на од	UH ƏNEI	мент	
Марка	N N 103.	ф мм	Длина мм	Kan-Ba wm.	Общая М	Масса	
	1	-331	1900	2	3.84	0.59	1
K-1	2	481	200	-16-14	3.228	0.32	
	3	-871-	1500 1628	2	3.0 3.24	-0.72	
K-2	2	481	200	9	1.8	0.18]
	4	6AI	950	1	1.0	0.22]
K-3	2	相	250	12	2.4	024	
· · ·	6	6AI	540	1	0.5	0.12	
K-4	7	6AI	140	5	0.7	0.16	
	8	4BI	6380	5	31.9	3.16	
C -1	9	481	930	27	25./	2,49	
	10	4BI	1370	5	6.9	0.68	
C -2	11	4BI	310	6	1.9	0.19	1
^ -	17.	4BI	970	3	2.9	0.29	
C -3	13	4BI	420	6	2.5	0.25	
Этдельные	14	16 A IV	6900	2	13.8	21.80	
стернни	15	14 A [V	6400	2	12.8	15.49	
Петли	16	12 A I	1120	1	1.1	1.0	
	дуа А-	ହୁଁ ୁ	= 5100 K2/	CM ²			
	Выб	эрка	стал	١			
Диаметры классы сп		φ16 A <u>ι</u> ν	Φ14 A Ϊ́V	φ12AI 8AT		ф4ві	φ56
Длина	M	13.8	12.8	4.5 1.0	3043.48		25.6
Массы	K2	21.80	15.49	3.98 0.40			3.94
R _a ^H		6000		240	0	5500	_

5781 -75

6727-53*

KH5. Nonoda. Nodnuce u dama

FOCT

Спецификация стальных элемен	MOD.
------------------------------	------

	Macca	Ke	
		BCex	NN
			CMP.
2			10
6	0.90	3 .40-	10
1	0.86	0.86	10
2	0.28	0.56	10
1	5.65	5.65	9
2	0.87	1.74	10
1	0.54	0.54	10
4	-	37.29	-
4	1.0	3.98	10
	2 6 1 2 1 2 1 4	Кол-во шт.	Кол-бо шт. Элемента элементов 2

Характеристика изде	ΛUЯ	1958
Macca	кs	2140
Объем бетона	M3	0.793
Приведенная толщина настила	CM	4-12.04
Масса стали	KS	58.30
Расход стали на 1 m² изделия	KE	9.8.64
Расход стали на 1м3 бетона	KS	-68.3-71.80
Марка бетона		300
Кубиковая прочность бетона на его обжати е не ниже	KS/CM2	200
Объем панели по внешним размерам	M ₃	1.504
Длина рабочей арматуры без учета захватов	/nos. 13	;14/

| 1.14 1- KP-1.1.051 и1 | 1.1

Копировала: Тусь формат 12

Спел	цифика	чая Арм	іапуры	на оди	ин элвм	16HM		Спецификация ст	Альны	х элеме	нтов	
Марка	NN NN	ф мм	Длина мм	Кол-во шт.	ращая В никб	KS WYCCY		Марка	Кол-во шт.	Масса ОзонбО Атемента	K2 BCe× 3/2000000000000000000000000000000000000	NN Cmp.
14	1	SAI GAI	1900	2	3.8	0.84	1	K-1	2	9.87 1.16	2.32	10
K-1	2	4BI	200	-16 14	3.8	0.32		K-2	6	0.64 0.90	-5.40 -	10
14.0	3	- 6AI	1620	2	3,0	0.72	1	K-3	1	0.86	0.66	10
K-2	2	4BI	200	9	1.8	0.18	7	K-4	2	0.28	0.56	10
., 7	4	6AI 48I	950	1	1.0	0.22	1	C-1	1	5.70	5.70	9
K-3	2	48Ī	950 200	12	2.4	6.24	1	C-2	2	0.87	1.74	10
K-4	6	6AI	540	4	0.54	0.12	1	C-3	1	0.54	0.54	10
	7	6 A I	140	5	0.7	0.16	1	Отдельные стержни	4	-	4 2.66	-
C-1	3	4 BI	6480	5	32.40	0.16		Пешыи	4	10	3.98	10
6.1	9	481	920	27	25.4	2.45]					
C-2	10	481	1370	5	6.9	0.68		Xapakmepu	CMNK	а издел	ЛИЯ	1988
0 2	11	4BI	310	6	1.9	0.19		MACCA K2				2172-
C - 3	12	481	970	3	2.9	0.29	1	Объем бешона м³				3.867
0-5	13	481	420	6	2.5	0.25	1					4-12.04
Отдельные	14	16 A [V	7000	2	14.0	22.12	1	Масса спали				3.8 61.62
стернни	15	16 A [V	6500	2	13.0	20.54]	PACCXOB CMANN HA 1M2				9.6 9.33
Пешли	15	12 A I	1120	1	1.1	1.0]	PACCXOD CMANN HA 1M3	бетон	A		73.8- 77.51
TOTAL	A RVE	- IV ♂.	= 5100 K2/	CM2			ł	Марка бетона		4	KS/CWS	300
							 -	Кубиковая прочность бетона на е				200
	Выр	рка	CMAAN	1				Дотем панели по внешним Длина рабочей арматуры без				.526
Диаметры		ф16 У і <u>л</u>	-	ф12 A I 8A <u>ī</u>	ф6 АІ	ф4ві	φ58Ι		1.141	- KP - 1.1. 05	2 u1	
Длина	M	27.0	_	4.5 1.0	30/ 348	100.1	25.60	ИК-1 Косимунт8 Специ Изм листи № ВОКУМ ПОВПИСЬДАТА ХАРАК	PHENCH	N N	Aum. MACCA	M-8
Массы	KS	42.66	-	3.98 040		950	3.94	PASPAS LEPHOTHHA Defus 1577				
RaH		6000		240		5500		ПРОВ. ХОМИЧ Колец ПАНЕЛ	ь KHK-	- / 44		тов
ГОСТ		5781	- 75			6727-53					VSHHNVU NHCUNUA	

Спец	цификац	ция арм	атуры	H a 001	ин элен	ehm
Марка	N N ПОЗ.	ф мм	Длина мм	Кол-во шт.	Ωδщая длина н	Нассо кг
K-1	1	GAT	1900	2	3.8	0.59/ 8.84
	2	4 <i>BI</i>	200	16 14	3.2 2.8	9.32
K-2	3	- SAI	1500 1620	2	3.24 3.0	0.46 8.72
N-2	2	4 BI	200	9	1.8	0.18
<i>V</i> 7	4	6AI	950	1	1.0	022
K-3	2	48Î	200	12	2.4	0.40
K-4	6	6AI	540	1	0.54	0.12
	7	6AI	140	5	0.7	0.16
C-1	8	4 <i>BI</i>	6580	5	32.9	3.26
	9	4 <i>B</i> I	930	28	26.0	2.58
C -2	10	4 <i>BI</i>	1370	5	6.9	0.68
0 2	11	4 <i>BI</i>	310	6	1.9	0.19
C - 3	12	4 <i>B</i> I	970	3	2.9	0.29
U J .	13	4BI	420	6	2.5	0.25
Отдельные	14	16 A <u>Į</u> ₹	7100	2	14.2	2244
стержни	15	16 A <u>I</u> V	6600	2	13.2	20.86
Петли	16	12 A I	1120	1	1.1	1.0

для A - IV̄ б₀ = 5100 K²/см²

Выборка (сm	али
-----------	----	-----

					_			
	Диаметры и классы стал	_	_	ф12 А І	8A]	φ6AI	φ4BI	φ58 I
	Длина м	27.4	_	4.5	1.0	30.4 3.48	101.5 979	25.60
	Массы кг	43.30	_	3.98	0,40	6.77 0.78	10.05 9.7	3.94
2	R _a "	6000	7	1 4	24	00	5500	
c,	ГОСП	5781	- 75				6727-53	

Спецификация стальных эленентов

	Кал-ва	Macco		
Марка	шт.	ОЗНОВО	Всех элементов	NN cmp.
K-1	2	1:16	1.74 2.32	10
K-2	6	0.64	-5:48	10
K-3	1	0.86	0.86	10
K-4	2	0.28	0.56	10
C-1	1	5.84	5.84	9
C-2	2	0.87	1.74	10
C-3	1	0.54	0.54	10
Отдельные стержни	4		43.30	_
Петли	4	1.0	3.98	10

Характеристика изделия 2015 Macca 2205 0.800 Объем бетона Приведенная толщина настила 4-12.02 64.5 Масса стали ĸe 3.51 Расход стали на 1 м² изделия 77.42 Расход стали на 1м3 Бетона Марка бетона 300 Кубикавая прочнасть бетона на его обжатие нените ^{ке}/см² 200 Объем панели по внешним размерам 1.548

Алина рабочей арнатуры без учето захватов (поз. 13,14/

			<u> </u>	1.14.1-KP-1.1.053	u1		
Разраб. Пров	Дерюгина Хомич	Deful	VII 78 401110 13 1 7	Спецификации и характеристика изделия панель-КНК-140	Aum.	Насса	Μ-δ
Γυπ	Кчзьменко	143-				<i>Глист</i> Ституп ПИЛПРО	7

		A 11:	ug ADM	АПУРЫ	AO AH	NH ƏVEN	1eHm		
	Специ	NY DNKYT.	ф K	AANAA	K01-80	ОБЩАЯ	MACCA	7	
	MAPKA	пов.	мм	ММ	шm.	M.	KZ	1	
		1	56I 6AI	1900	5	3.8	0.59	j	
	K-1	٤	481	600	16-14	3.8 2.8	0.28	1	
		5	SEI SAI	1500	۶	3.0	0.46	7	
	K - 6	2	481	200	9	1.8	0.48	1	
		4	6AI	950	1	1.0	0.22	1	
	K-3	2	48I	950 200	12	2.4	624	1	
	, h	6	6AI	540	1	0.54	0.12	1	
	K-4	7	6AI	140	5	0.7	0.16	1	
		3	4B1	6680	5	33.4	3.31	1	
	c-1	9	4BI	930	28	26.0	2.58.	1	
		10	481	1370	5	6.9	0.68	1	
	C - E	114	481	310	6	1.9	0,19	1	
		12	481	970	3	8.9	0,29]	
	C-3	13	4BI	420	6	2.5	0.25		
	Оштельные	14	16 A IV	7200	8	14.4	22.72	1	
	стернии	15	16 A IV	6700	e	13.4	21,17		
	Петли	16	12 A I	1120	1	1.1	1.0		
	HOMEN	А вл Д		= 5100 Kg/				ļ	
		Выб	DDKA	CMANI	И				
AEA	Выборка стали Анаметры и классы стали Фівла то фівла								
ν γ	KYYCCPI CLI		IN IASI O	ŢΑ∂φ	ф4BI	φ58Ι			
Annc	A Lupa .		14.4	+3.4-27.8		30.4 3.48	-102.0	25.60	
2 <u> </u>	Длина л		28.8	21.17 43.89	4. 5 1.0 3. 98 040	8.770.78	10:10	3.94	
¥0₽	MACCH K	5	6000	Sin 7 73,87	3,98 049 240		5500		
A. O.	FOCT		5784-	75	240	10	6727-53*		
S	1007		3 101 .	10	·				

МАРКА Колью одного элементов одементов одемен		Спецификация с	:m a ۸ b+	HPIX 3VG	менто)B.
K-1 2 116 2.32 10 K-2 6 2.30 5.40 40 K-3 1 0.86 0.86 40 K-4 2 0.86 0.56 40 C-1 1 5.89 5.89 9 C-2 2 0.87 1.74 40 C-3 1 0.54 0.54 10 ОПДЕЛЬНЫЕ СПТЕРМИИ 4 4 43.37 — ОПДЕЛЬНЫЕ СПТЕРМИИ 4 4 43.37 — ОПДЕЛЬНЫЕ СПТЕРМИИ 4 4 40 43.37 — ОПДЕЛЬНЫЕ СПТЕРМИИ 4 4 40 43.37 — — 43.37 — — 43.37 — — 43.37 — — 43.37 — — 43.37 — — 43.37 — — 43.37 — — 43.37 — — 43.37 — — 43.37 — — 43.37 — — 43.37 — — 43.37 —		MAPKA		ОДНОГО	Bcex	
K-2 6 0.80 5.40 40 K-3 1 0.86 0.86 10 K-4 2 0.28 0.56 40 C-1 1 5.89 5.89 3 C-2 2 0.87 1.74 40 C-3 1 0.54 0.54 10 ОПДЕЛЬНЫЕ СПЕРМИИ 4 4.339 - 4.339 ПРИВОВНЕННИЕ 1 0.54 0.54 10 ХАРАКПЕРИСПИКА ИЗДЕЛИЯ 2045 МАССА КЕ 2045 МАССА КЕ 2045 МАССА КЕ 2025 МАССА СПАЛИНА НАСТИКА МАССА СПАЛИНА НАСТИКА 1202 МАССА СПАЛИНА 1 1202 МАССА СПАЛИНА 1 1 МАССА СПАЛИНА 1 1 МАССА СПАЛИНА 1 1 МАСОН СПАЛИНА 1 1 МАСОН ОБЪИНА 1 1	-	K-1	5		4.74	-
K-3 1 0.86 0.86 10 K-4 2 0.28 0.56 40 C-1 1 5.89 5.89 g C-2 2 0.87 1.14 40 C-3 1 0.54 0.54 10 ОТВОТИТИКА ИЗДЕЛИЯ УАРАКТОРИСТИИКА ИЗДЕЛИЯ УАРАКТОРИСТИИКА ИЗДЕЛИЯ УАРАКТОРИСТИИКА ИЗДЕЛИЯ УАРАКТОРИСТИИКА ИЗДЕЛИЯ УАРАКТОРИСТИИКА ИЗДЕЛИЯ ОБЪЕМ БЕТОНА МА СА ИЗДЕЛИЯ ОБЪЕМ ПАНЕЛИ НА 1 МВ ВЕТОНА КЕ 1456304 ОБЪЕМ ПАНЕЛИ ПОВТИКА ИЗДЕЛИЯ ОБЪЕМ ПАНЕЛИ ПОВТИКА ИЗДЕЛИЯ ОБЪЕМ ПОВТИКА ИЗДЕЛИЯ ОТОТИКА ОБЪЕМ ПОВТИКА ИЗДЕЛИЯ ОТОТИКА ИЗДЕЛИЯ ОТОТИКА ИЗДЕЛИЯ	Ī	K-5	6	0.64		
К.4 2 0.88 0.56 40 С-1 1 5.89 5.89 9 С-2 2 0.87 1.74 40 С-3 1 0.54 0.54 10 ОТВЕННИЕ СТВОРИНИ ВОВЕННИИ ВОВЕННИИ ВОВЕННИИ ВОВЕННИИ ВОВЕННИИ ВОВЕННИИ ВОВЕННИЕ ВОВ	ŀ	K-3	i			
С-1 1 5.89 5.89 9 С-2 2 0.87 1.74 40 С-3 1 0.54 0.54 10 С-3 1 0.54 0.54 10 Стартни	t	K-4	2	0.28	0.56	
С-8 8 0.87 1.74 40 С-3 1 0.54 0.54 10 Отраньные стренни 4 4 43.89 10 Петали 4 4.0 3.98 10 Характеристика изделия 2045 Масса 4 2045 Масса 4 4.0 3.98 10 Масса 4 4.0 4.0 4.0 Масса 4 4.0 4.0 4.0 Масса 4 4.0 4.0 4.0 4.0 Масса 4 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	ŀ	c-1	1	5,89		
Отдельные стерини 4 — 49.87 — Петли 4 1.0 3.98 10 ХАРАК ТЕРИСТИКА ИЗДЕЛИЯ 2045 Масса Кг 2045 Масса Кг 2045 Масса Стали Кг 12.03 Расход стали Кг 14.563.09 Кг 14.563.09 Расход стали На 1 м² изделия Кг 14.59.27 Расход стали На 1 м² изделия Кг 14.59.27 Расход стали На 1 м² изделия Кг 14.59.27 Марка ветона Про пот пот пот пот пот пот пот пот пот по	ſ		٤	T8.0	1,74	
Отдельные стерини 4	ſ	6-2	1	0.54	9.54	10
Петами 4 4.0 3.98 40 ХАРАКТЕРИСТИКА ИЗДЕЛИЯ 2045 Масса Не серт 10.00 <td< td=""><td>ľ</td><td>Оштетрные сшержии</td><td>4</td><td></td><td></td><td></td></td<>	ľ	Оштетрные сшержии	4			
МАССА ОБЪЕМ БЕПОНА ПРИВЕДЕННАЯ ПОЛЩИНА НАСПИЛА СМ 4202 МАССА СПАЛИ РАСХОД СПАЛИ НА 1 № 2 ИЗДЕЛИЯ РАСХОД СПАЛИ НА 1 № 3 БЕПОНА КЗ 11.3 63.09 РАСХОД СПАЛИ НА 1 № 3 БЕПОНА КЗ 10.5 9.27 РАСХОД СПАЛИ НА 1 № 3 БЕПОНА КУБИКОВАЯ ПРОЧНОСТЬ БЕПОНА КОВИКИ ВОВОТИНА КОВИКИ ВОВОТИНА КОВИКИ ВОВОТИНА КИВТОВИКАЦИИ И КОВИКИТ ВОВОТИКАЦИИ И КОВИКИТ ВОВОТИКАЦИИ И КАРАКТТЕРИСТИКА ИЗДЕЛИЯ ПАНЕЛЬ КНК-120 ЛИСТ ЛИСТОВ ИНСТИТИТУТ	T		4	1.0		10
МАССА ОБЪЕМ БЕПТОНА ПРИВЕДЕННАЯ ПОЛЩИНА НАСПИЛА МАССА СПАЛИ РАССА СПАЛИ РАССА СПАЛИ НА 1 № 1 ИЗДЕЛИЯ МЕСА СПАЛИ НА 1 № 1 ИЗДЕЛИЯ РАССОВ СПАЛИ НА 1 № 1 ВЕПОНА КЗ 71.363.04 КЗ 71.363.04 КЗ 71.363.04 КЗ 71.363.04 КЗ 79.8-77.10 МАРКА ВЕПОНА КУБИКОВАЯ ПРОЧНОСТЬ БЕПОНА НА СТО ОБНАТИЕ НЕ НИЖЕ КЗ/СМ² 200 ОБЪЕМ ПАНЕЛИ ПО ВНЕШНИМ РАЗМЕРАМ МВ 1.510 ДАИНА РАБОЧЕЙ АРМАТУРЫ БЕЗ УЧЕПТА ЗАХВАТОВ ОВЪЕМ ПАНЕЛИ ПОДПИСЬ ДАТА РАВРАБ. ДЕРОГИНА МЯССА МАСШТАБ ПРОВ. ХОМИЧ СОСССС ГИП КУЗЬМЕНКО ЗБТ ПАНЕЛЬ КНК-120 ЛИСТ ЛИСТОВ МНСТИТИТУТ	ſ	ХАРАКТСРИСТ	пикА	издеи	ия	2045
Приведенная полщина настила см 4-1202 Масса спали кг 71.3-63.04 Расход спали на 1 м2 изделия кг 105.9.27 Расход спали на 1 м3 белона кг 79.8-77.10 Марка велона при по внешним размерам м3 1.510 Длина рабочей арматуры без учета захватов (поз. 13, 14) 1. 14 1 - Кр - 1. 1. 0.54 и 1 Марка белона по внешним размерам м3 1.510 Длина рабочей арматуры без учета захватов (поз. 13, 14) 1. 14 1 - Кр - 1. 1. 0.54 и 1 Марка белона по внешним размерам м3 1.510 Длина рабочей арматуры без учета захватов (поз. 13, 14) 1. 14 1 - Кр - 1. 1. 0.54 и 1 Марка белона по внешним размерам м3 1.510 Длина рабочей арматуры без учета захватов (поз. 13, 14) Пров. Хомии Соссей (157) Пров. Хомии Соссей (15		MACCA			KS	
МАССА СПАЛИ РАСХОД СПАЛИ НА 1 № 1 ИЗДЕЛИЯ РАСХОД СПАЛИ НА 1 № 1 ВЕПОНА КЗ 10.5 9.27 РАСХОД СПАЛИ НА 1 № 1 ВЕПОНА МАРКА ВЕПОНА КУБИКОВАЯ ПРОЧНОСТЬ БЕТОНА КУБИКОВАЯ ПРОЧНОСТЬ БЕТОНА ДОО ОБЪЕМ ПАНЕЛИ ПО ВНЕШНИМ РАЗМЕРАМ М. 1. 510 ДЛИНА РАБОЧЕЙ АРМАТУРЫ БЕЗ УЧЕТТА ЗАХВАТОВ ОВЪЕМ ПАНЕЛИ ПОДПИСЬ ДАТА КУБИКОВАЯ ПРОДИКЪ ДАТА ДЕПОТИНА КАРАКТТЕРИСТИКА ИЗДЕЛИЯ ПОРОВ. ХОМИЧ КОЗМЕНКО ТИП КУЗЬМЕНКО ТИТ ТИТ ТИТ ТИТ ТИТ ТИТ ТИТ Т		OBJOH BOMOHA			E M	0.818
РАСХОД СПАЛИ НА 1 м² ИЗДЕЛИЯ K2 10.5 9.27 РАСХОД СПАЛИ НА 1 м³ БЕПОНА K8 79.8-77.10 МАРКА БЕПОНА 300 Кубиковая прочность бепона НА СТО ОБНАТИКЕ НЕ НИМЕ К2/СМ² 200 200 ОБЪЕМ ПАНЕЛИ ПО ВНЕШНИМ РАЗМЕРАМ М³ 1.510 ДЛИНА РАБОЧЕЙ АРМАПТУРЫ БЕЗ УЧЕПТА ЗАХВАПОВ (ПОЗ. 13, 14) 1.14 - KP - 1.1.054 U1 МВ-1 Уславия КАРАКТВЕРИСТИКА ИЗДЕЛИЯ ВАРАБ. ДЕРОТИНА ОБЛИКЬ ДАТА ИЗДЕЛИЯ Спецификации и ХАРАКТВЕРИСТИКА ИЗДЕЛИЯ ИЗДЕЛИЯ ПРОВ. ХОМИЧ Солько ГУЛ. ПОДПИСЬ ДАТА ИЗДЕЛИЯ ИЗДЕЛИЯ ПАНЕЛЬ КНК-120 КУЗЬМЕНКО СОЛЬКО ГИП КУЗЬМЕНКО ГОВ ПОВОЛЬКО КНК-120 Лист Листов Инстинтут	L	АНИДЛОТ КАННОДОВИСП	HACT	ПИЛА	CM	4-12.02
Расход стали на 1 м³ бетона кг 79.8-77.10 Марка бетона при и при и кубиковая прочность бетона на его обнатие не ниме кг/см² гоо гоо Объем панели по внешним размерам м³ 1.510 1.510 Длина рабочей арматуры без учетта захватов (поз. 13, 14) 1.141-Кр-1.1.054 ил Мист Геоти и коми подпись дата разва. Дерюгина гоми правит пров. Хоми и гоми подпись дата из дели пров. Хоми и гоми правит пров. Хоми и гоми правит пров. Хоми и гоми правит пров. Коми правит пров. Коми и гоми правит пров. Коми пров. Коми пров. Коми правит пров. Коми пров. Коми правит пров. Коми правит пров. Коми пров. Коми правит пров. Коми правит пров. Коми пров. К	L				Kz	71.3 63.04
МАРКА Бетона 300 Кубиковая прочность бетона НА его обнатие не ниме ка/см² 200 Объем панели по внешним размерам м³ 1.510 Длина рабочей арматуры без учетта захватов (поз. 13, 14) 1. 141-Кр- 1. 1. 054 ш1 Мам/Лист п° докум. Подпись дата Разра. Деристина Спецификации и характеристика из делия Гип Кузьменко гра панель кнк- 120 Лист Листов институт	L				KS	
Кубиковая прочность бетона на его обнатие не нине из/см² 200 Объем панели по внешним размерам м³ 1.570 Длина рабочей арматуры без учетта захватов (поз. 13, 14) 1. 141-Кр- 1. 1. 054 и1 1. 141-Кр- 1. 1. 054 и1 Кудына по внешним размерам м³ 1.570 Алина рабочей арматуры без учетта захватов (поз. 13, 14) 1. 141-Кр- 1. 1. 054 и1 Кудына по внешним размерам масел масштая из делия и масел масштая из делия по по внешника из делия по по внешним по по внешним по поз. 13, 14) Кудына по внешним размерам масел масштая по по внешним по по внешним внешним по вне	-		AHOMS		KS	
ОБЪЕМ ПАНЕЛИ ПО ВНЕШНИМ РАЗМЕРАМ М5 1.570 ДЛИНА РАБОЧЕЙ АРМАПТУРЫ БЕЗ УЧЕПТА ЗАХВАПТОВ (ПОЗ. 13,14) 1. 14 1 - KP - 1. 1. 0.54 и 1 1. 14 1 - KP - 1. 1. 0.54 и 1 1. 14 1 - KP - 1. 1. 0.54 и 1 Въм/Лиет № ДОКУМ. ПОДПИСЬ ДАТА РАЗРАБ. Дерогима Сорби 1377 ПРОВ. ХОМИЧ Соссее ГИП Кузьменко СБС ПАНЕЛЬ КНК-120 ЛИСТ ЛИСТОВ ИНСТИПТУТ		00//		-u	-, -	
ДЛИНА РАБОЧЕЙ АРМАПТУРЫ БЕЗ УЧЕПТА ЗАХВАПТОВ (ПОВ. 13, 14) 1. 14 1 - KP - 1. 1. 05 4 11 1. 1	1					
1. 141-KP-1.1.054 11	Ļ					
Изм/Лист № ДОКУМ. ПОДПИСЬ ДАТА РАБРАБ. Дерогима Уоди 1377 ПРОВ. ХОМИЧ КУЗЬМЕНКО УЗЕ ПАНЕЛЬ КНК-120 МНСТИПУТ	Ê				(1108, 13	. 14 <i>)</i>
THE KYSEMPHKO TO THE MARCHEN HE THE MACHINE THE MACHIN		MINIOTI NO LOKYM. MOLITHEL LATA CHELL			Aum. MAC	CA MACUTAS
институт	01	POB. XOMNY Kanua	NSAEN			
	1	NN KYSEMEHKO CEST NAHENE	KHK- 720			Romon
	E					

Cne	TNOONKAI	лдА . RNД	ивтуры	до ан	NH ЭNEM	ент		Спецификация ст	А ЛЬНЫ)	A SYEME	40 m l	
MARKA	ИИ	_ ф	АнилД	Kon-80	РЕЩЕ В В В В В В В В В В В В В В В В В В	MACCA		MAPKA	Kon-Bo	MACC	Bcex	чч
MAPNA	103	561	1			0.59	<u> </u>	K-1	2	31.2meh må +.16- 0.87	элементо 1. 26.2	
K-1	2	481	200	-16-14	-3.E-2.8	0.28		K-5	6	0,80,0.64	5.40-3.	84 10
	3	- 5 P I	1500 1680	٤	3.0	0.46 -0.12]	K-3	1	0.86	0, 86	10
K- 6	2	4BI	500	9	1.8	0.18]	K-4	6	83.0	0.56	10
	4	6 AI	950	1	1.0	0.22]	C-1	1	5,94	5.94	9
K-3	. 5 E	481	500 320	12	2.4	0.24		C-5	6	0.87	4.74	10
K - 4	6	IAA	540	1	0.54	0.12		C-3	1	0.54	0.54	10
7	7	6 A I	140	5	۵.٦	0.16		Оштетрняе сшерини	4		44.53 50.63	
C-1	\$_	4BI	6780	5	33.9	3.36		Петли	4	1.0	3, 98	10
	9	481	930	28	26.0	2.58		V				
C- B	10	4BI	1370	5	6.9	0.68		ХАРАК ТЕРИС	: ПИКА	_ N976Y	ия	2075
	11		310	6	1.9	0.19		MACCA			KS	2270
0.3	11.	481	970	3	6.9	63.0		объем вешону			М3	9.306
	13	48 I	420	6	2.5	0.25		Ани шлот каннодовия	H ACI	AANET	CM	+ 12.02
ош Келеные	14	18 A IV	7300	2	14.6			MACCA CMANN HA 1M2 N	RNASAE		KS	10.4 9.23
СШЕРИНИ	15	16 A IV	6800	٤	13.6	21.49			ьетон а		KS	19.5 76.8
Петли	16	IASI	1160	1	1.1	1.0		MAPKA BEMOHA	SCHONA			300
	к∧Д	À - <u>IX</u>	Go = 5100	KZ/CM2				Кубиковая прочность Бетона на е	TO DEHAI	MUE HE HUHE	KS/CM2	200
	BNE	OPKA	C m l k i					иншена оп иленап мобав		IEPAM.	м3	1.591
		N A		\ 				ANHA PABOUCH APMAMYPH BES	АШЭРК	3AXBAMOB	(nos. 15.	14)
		4 18 A TV	ф {6A <u>lv</u>	ф12 AI 847	φ6 AI	ф4вІ	φ58I	1. UR-1 20011110 WITE	141- KP	- 1.1. 055 u		. In.
м анилД		14.6	28.2 13.6	4,5 1.0	3.4,8	98.9 101.5	25.60	Изм Лист. Н. ДОКУМ. ПОДПИСЬ ДАТА С П	е Пифин	КАЦИИ И	Num. MAC	CA MACUMAE
MACCH K	3	29.20		3,98 040	6.7	9.82 10.15	3.94	PASPAB. LEPHOTHHAL DEFUR 1SH XAI	РАКПСРІ ИЗДСЛ КНК-13	NCMNKA		
Rα ^H	K-Р 2 4 BI 200 9 1.8 0. K-3 4 6 AI 950 4 1.0 0.2 K-4 5 2 18 II 200 12 2.4 0.2 K-4 6 6 AI 540 1 0.54 0. K-4 7 6 AI 140 5 0.7 0. C-1 3 4 BI 6780 5 33.9 33 C-1 3 4 BI 6780 5 33.9 33 C-2 40 4 BI 1370 5 6.9 0.6 C-2 40 4 BI 1370 5 6.9 0.6 C-2 41 4 BI 970 3 2.9 0.6 C-3 41 4 BI 970 3 2.9 0.6 0 2.3 4 BI							THE RYSPMENKO BY NAHEVE	KHK-13	× ×	VACE IV	истов
LOCL	МАРКА ПОЗ ММ ММ ШП. ДЛИНА К К-1 1 6A1 1900 2 3.9 -9.4 К-1 2 4 BI 200 16-14 -3.2.2.8 0.38 К-2 3 5A1 1620 2 -3.2.3.0 0.32 К-2 2 4 BI 200 9 1.8 0.18 К-3 2 4 BI 200 9 1.8 0.18 К-3 2 4 BI 200 9 1.8 0.18 К-4 6 6 AI 540 1 0.54 0.12 К-4 7 6 AI 140 5 0.7 0.16 С-1 3 4 BI 6780 5 38.9 3.36 С-2 10 4 BI 1370 5 6.9 0.66 С-2 11 4 BI 910 3 2.9 0.29 0 12										иннау.	9

HHB. Nº NOAM. NOANUCE W AAMA

н н сшь.

												
Cnei	ЦИФИКА	ЧА РИ Д.	мапуры	на оди	1H ƏNEM	ент		Спецификация с	тальны	NEME XI	ентов	
Mapka	N N 103.	ф	AHNA	Кол-во	РАШАЯ	MACCA		MAPKA	Kon-80	MACCA OT OH AO AMHOMONE	BCGX BCGX	B CMP.
	1	58I 581	1900	e	3,8	0.59	1	K-1	e	0.87	4.74	10
K-1	8	4BI	500	-16 14	3.8 2.8	0.28	1	K · E	6	0.64	3.84	10
4.0	3	182	1500	5	3.04 3.0	0.46	1	k-3	1	0.86	0, 86	10
K- 8	٤	4BI	200	9	1.8	0,18	1	K-4	٤	63.0	0.56	10
	4	14.6	950	1	1.0	0.22	1	C-1	1	6.08	6.08	9
K- 3	5	481 481	950 200	12	2.4 2.4	0.24		C-5	2	0,87	1.74	10
K-4	6	6 A I	540	1	0.54	91.0		C-3	1	0.54	0.54	10
	7	Î A I	140	5	0.7	0,16		Ош Усурные сшерини	4		51.38 -54.20	
C-1	ъ	481	6880	5	34.4	3.41]	Петли	4	1.0	3.98	10
	9	48I	930	29	27.0	2, 67						
C-2	16	481	סדבו	5	6.9	0.68		XAPAKMEPU	стика	. изде	KN X	2103
	16	4BI	01E	6	1.9	0.19		MACCA			KS.	0.919 0.919
c-3	化	48 <u>1</u>	970	3	2.9	0.89	1	Анотов модао			M3	4-12.0-
	19	481	420	8	8.5	0.25	}	Анишлот каннэдовичП	НАСМИ	^ A	KZ	78.77707
Оштетрные	14	VI 4 81	7400	٤	14.8	29.60 21.78		MACCA CITIAAN	NASAEN		KS N	-H-E 10.1
CIMEPHIN	15	46 A Ⅲ	6900	5	13.8	21.78 21.60			Bemona		KZ	85.684.1
Детали	18	12 A I	1160	1	1.1	1.0	l	MARKA SOMOHA				300
}	<u> </u>	ў бо=5	100 KZ/CM	2				Кубиковая прочность бетона	ero abwa	MNE HE HUHE	KS/CM2	200
	RLIE	OPKA	CMAN	1				Объем панели по внешним	PABME		M3	1.615
	DBID	OP N A	CITANA	<u></u>				Длина рабочей арматуры без	YYema-	BAXBAMOB	(103. 13,	14)
кууссы сш	-	φłδλΨ	ф16A- <u>Ī</u> Ÿ	TAS IASI O	фбаі	ф4 ві	♦ 58I		41 - KP	-1.1.0564		CA MACIUMAE
ANNA	M	14.8 88.6	13.8	4.5 1.0	770	100.4 104. 0	25.60	PASPAB LEPHOTHHA DEAN 1847 XA	Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н	HUN N	111	- I I I I I I I I I I I I I I I I I I I
MACCL	KZ	29.6 51. 20	24.78	3.98 040		18:36	3.94	THE RYSLIMONEO OF MAHENE	N3Ae 1	, и я О+		истов
RaH		6000		240	00	5500		The same two forth			ИНСШ И	M γ m
' roct		5781	-15			6727-53					V.Cumn	MIPUENI

Cne	:ЦИФИК	IGA RNJA	машуры	'A0 AH	ин элем	ISHW	l	Спецификация сп	1	MACCA		Т.
	NN	ф	анил Д	Кол-во	РАДИЗО АНИЛД	MACCA		MAPKA	Kan-Bo Wm.	ОДНОГО	Bcex	1
MAPKA	nos.	MM 561	MM	2	3.8	0.59		K-1	8	1.16-0.87		_
K-1	1	4BE	19 00	16 14	3.8 2.8	0.32-2.8		K-2	6	-0.30 -0.64	5.40- 3.84	10
	2 3	56 <u>F</u>	1500 1620	e	3.64 3.0	- 0.70 0.40		K-3	1	0. 86	Q, 66	10
K-8	2	481	500	9	1.8	0.18		K-4	٤	0. 28	0.56	10
		6AI	950	1	1.0	0.22		c-1	1	6.13	6, 13	9
K- 3	4	485	950	12	2.4	624		C-5	e	0.87	1.74	10
	6	IAB	540	1	0.54	0.12		C-3	1	0, 54	0.54	10
K-4	7	GAI	140	5	0.7	0.16		Оштеурные сшеьни	4		- 58.0 -	_
	8	481	6980	5	34.9	3.46		Петли	4	1.0	3.98	10
c-1	9	481	930	69	27.0	12.9		W. 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4			1	
	10	481	1370	5	6.9	0.68		ХАРАКТЕРИСТ	ПИКА	NSAEN		2133
C-8	10	481	310	6	4.9	0. 19		MACCA				
	12	4BI	970	3	2.9	Q.29		Анотза мобар			м ³ -	950
C-3	18	481	400	6	2.5	0.25		АНИШЛОТ КАННЯДЗЯИЯП	НАСП	INVV		
0-1-11110	14	18 A 🗓	7500	٤	15.0	30.0		MACCA CITIANI HA 1 Mª	W2404	v a		
СШББННИ ОШТБУРНЫЕ	15	# AŪ	7000	٤	14.0	22.1 28.0		PACKOL CITIANU HA 1 Mª				10 10 10 10 10 10 10 10 10 10 10 10 10 1
	16	12 A I	1160	1	1.1	1.0		Марка Бетона	КОЛ-ВО ОДНОГО ВСЕХ СПР. 2 1.16-0.87 - 2.38-1.74 10 6 - 3.30 0.64 540-3.84 10 1 0.86 0.86 10 2 0.28 0.56 10 1 6.15 6.13 9 2 0.87 1.74 10 1 0.54 0.54 10 4 - 56.0 - 4 1 0.54 0.54 10 2 0.87 1.74 10 2 0.87 1.74 10 3.98 10 СПИКА ИЗДЕЛИЯ КЕ 2535 - 3.98 10 СПИКА ИЗДЕЛИЯ КЕ 19.5-7746 МВ БЕППОНА КЕ 10-10 КЕ 10-3.38 КЕ 2535 - 3.38 КЕ			
Пешли	Для А-		= 5100 KZ	CMS				Кубиковая прочность Бетона на с	O OBMAN	HE HUHE		
								МИНШЭНА ОП ИЛЭНАП МОЕТО				.635
	BNB	OPKA	CMANI	1				Длина равочей арматтуры вез	АШЭРК	SAXBATTOB	(nos.13,14)	
Диаметры Классы ст	N TAAN	ф18 А П	ф <i>16</i> А- <u>ї</u> ў	ф 12 A I 8AI	ф 6AI	,	65BI	III A Matter VIII 70				МАсші
		29.8 15.0	14.0	4.5 1.0	384 348	100.9	25.60				TI	
	1	58.0- 30.0	22.1	3.98 040	6.79 0.78	10.35	3.94	TIPOB XOMNY Round	NBACAN S] [Lucia Lauca	
MACCH *	(3	6000		2400		5500		THE RYSEMENKO TO TAHEN			инсшищу	117
ra"		5781	75			6727-53				1	Ленни и и пр	oek