ГОСУДАРСТВЕННЫЙ КОМИТЕТ СОВЕТА МИНИСТРОВ СССР ПО ЛЕЛАМ СТРОИТЕЛЬСТВА

ТИПОВЫЕ ДЕТАЛИ И КОНСТРУКЦИИ ЗДАНИЙ И СООРУЖЕНИЙ

СЕРИЯ ПК-01-76

СБОРНЫЕ ЖЕЛЕЗОБЕТОННЫЕ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННЫЕ СЕГМЕНТНЫЕ ФЕРМЫ

ДЛЯ ПОКРЫТИЙ ЗДАНИЙ ПРОЛЕТАМИ 18, 24 и 30 м С ШАГОМ ФЕРМ 6 м

Выпуск 8

РАБОЧИЕ ЧЕРТЕЖИ ФЕРМ ПРОЛЕТОМ 30 м ИЗ ЛИНЕЙНЫХ ЭЛЕМЕНТОВ С НАТЯЖЕНИЕМ АРМАТУРЫ НИЖНЕГО ПОЯСА НА УПОРЫ

РАЗРАБОТАНЫ
Проектным институтом №1
Министерства строительства РСФСР
при участии Научно-исследовательского
института по строительству
Министерства строительства РСФСР

УТВЕРЖДЕНЫ Государственным Комитетом Совета Министров СССР по делам строительства 26 января 1961г Приказ №42

ЦЕНТРАЛЬНЫЙ ИНСТИТУТ ТИПОВЫХ ПРОЕКТОВ

Отпечитено в ЦИТП г. Моснва. Спартиновская 2 и

MOCKBA 1961

ЦЕНТРАЛЬНЫЙ ИНСТИТУТ ТИПОВЫХ ПРОЕКТОВ УПРАВЛЕНИЯ ПЛАНИРОВАНИЯ ПРОЕКТНЫХ И НАУЧНО-ИССЛЕДОВА ТЕЛЬСКИХ РАБОТ И ОРГАНИЗАЦИИ ТИПОВОГО ПРОЕКТИРОВАНИЯ ГОССТРОЯ СССР

Москва,Б-66, Спартаковская ул. 2а, корпус В Сдано в печать 20 феброля 1964
Заказ № 451 Тираж 120 экз.
Цена $2_{\rm p}$, $22_{\rm kon}$.

	NN	NN
Наименование	_	страниц
Содержание		1
Пояснительная записка		2-5
Чертежи		
Фермы пролетом 30м. Сортамент и расход материалов. Схемы строповки	1	6
Ферны пролетом ЗОн, Общий вид и выборка стали	2	7
Фермы Пролетом 30м. Сборочная схена и расход материалов на фермы Ф5-30-1, Ф5-30-1, Ф5-30-2, Ф5-30-2, Ф5-30-3, Ф5-30-3, Ф6-30-1, Ф6-30-2, Ф6-30-2, Ф6-30-3,	3	8
Фер:ны пролетом 30H Сборочная схена и расход материалов на фермы Ф530-4, Ф530-4Я, Ф5-30-5, Ф530-5Я, Ф6-30-4, Ф6-30-4Я, Ф6-30-5, Ф6-30-5Я	4	9
Фермы пролетом ЗОМ. УЗЛЫ 1,2,3,4,5,6	5	10
Фермы пролетом зом. Узлы 7,8,9,10	6	11
Фермы пролетом зом. Элементы ферм НП1,Н12	7	12
Фермы пролетом зом. Элементы фермы наз	8	13
Фермы пролетом зом. Элементы Ферм нп4инп5	9	14
Фермы пролетом 30 м. Элементы фермы нпв	10	15
Фермы пролетом зом. Элементы ферм нпт и нпв	11	16
Фермы пролетом зом. Элементы ферм НП9 и НП10	12	17
Фермы пролетом зом. Элементы ферм 81-300,81-400. 818-300, 818-400, 82,828	13	18

Наименование	ΝΝ Λυстов	NN стр а ни
Фермы пролетом 30м. Элементы ферм ВЗ, ВЗА,В4,В4А	14	19
Фермы пролетом 30м. Элементы фермы 85,858,86,868,87878	15	20
Фермы пролетом ЗОМ. Элементы ферм ВВ,ВВЯ,В9,В9	15	21
Фермы пролетом 30м. Элементы ферм 810, 810А, Р1-РВСКО	17	22
Фермы пролетом 30м. Каркасы ПК-1÷ ПК-8	18	23
Фермы пролетом ЗОМ. Каркасы ПК-9-ПК-18;ПК-20,ПК-21,ПК-23	19	24
Фермы пролетом 30м. Коркасы ПК-22 ПК-24 + ПК-27. Сетки С1 + С12	20	25
Фермы пролетом 30м Закладные детали м-1÷м-19	21	26
Фермы пролетом 30м. Закладные детали м-16÷м-22 Стыковые накладки Я1÷Я7,МН-1,МН-2,Шайбы Ш-1÷Ш-5	22	27
Фермы пролетом 30м. Спецификация стали на элементы нп1, нп2, нп3, нп4, нп5, нп6, нп9	23	28
Фермы пролетом 30м. С'пецификация стали на элементы нпв, нп9, нп10, 81-300, 814-00, 81A-300, 81A-400, 82, 82A	24	29
Фермы пролетом 30м. Спецификация стали на элементы 83,83Я,84,84Я,85,85Я,86,86Я	25	30
Ферны пролетом 30м. Спецификация стали на элементы 87,87я,88,88я,89,89я,810,810я	26	3/
Фрермы пролетом 30м. Спецификация стали на элененты Р1+Р8, С1, С2 и на крепежные детали. Заказ марок М	27	32
Фермы пролетом 30 м. Опорные столбики ОП1, оп2, ОП3, Дополнительная маркировка ферм	28	33
Фермы ПРСЛЕТОМ 30м для покрытия с фонарем. Схета расположения стыковых накладок. Расход мотериолов на одну Ферму	29	34

Пояснительная записка.

I. Общая часть

- 1. Настоящий выпуск содержит рабочие чертежи типовых сборных экселезобетонных предварительно напряженных стропильных ферм сегментного очертания из линейных элементов с натяжением арматуры нижнего пояса на упоры для покрытий производственных зданий с пролетами 30 м и шагом ферм 6 м под крупнопанельные плиты размером 3.0×60 м и 1.5×6,0 м.
- 2. Ферны запроектированы для бесфонарных пролетов и пролетов с продальными фонарями - металлическими (серии ПК-01-68) и экелезобетонными (серия ПК-01-69), для зданий с подвесным транспортом и без подвесного транспорта.
- з. Фермы гопроектированы только цельными Нижние пояса армируются предварительно напряженной арматурой в виде высокопрочной проволоки или стержней.
- 4. Фермы могут применяться в условиях как неагреасивной, так и огрессивной среды и при относительной влажности более 60%. Защитный слой бетона вля рабочей арматуры во всех элементах принят не менее 30 мм.
- 5. В условиях агрессивной среды и при относительной влажности более 60% рекомендуется применение ферм со стержневой напрягаемой арматурой.
- 6. Фермы для покрытий с плитани 1,5×6,0 м отличаются от ферн для покрытий с плитани 3,0×60 м наличием в верхнем поясе дополнительных закладных частей и опорных столбиков в первой панели для опирания плит.
- л. Все элементы ферм прямоугольного сечения.
- в. Ярматура в элементах ферм принята из стапи марки 25°72°С (ПОСТ 5058-57, сартамент по ГОСТ 7814-55) или 35°ГС (ЧМТУ 223-59, сартамент по ГОСТ 7814-55) и холоднотянутой проволоки (ПОСТ 5727-53). Выпуска арматуры из поясов, свариваеные с арматурой решетки, приняты из круглой стали марки Ст 3 (ГОСТ 380-57, сартамент по ГОСТ 2590-57).
- g. Предварительно напряженная арматура в нижних поясах ферм при-

нята в виде высокопрочной проволоки периодического профиля Ф5 мм (ГОСТ 8480-57) или стерусней из стали марок 25Г2С или 35ГС а упрочнением вытяжкой до R % =5500 кг/см², при удлинении не более 3,5%

- 10. Фермы обозначаются марками, состоящими из букв и цифр. Аля ферм, арнированных высокопрочной праволокой, принят индекс "ФБ", для ферм со стержневой арматурой—индекс "ФБ". Остапьные цифры в марках ферм показывают соответственно пролет и условное обозначение наерузки. При покрытиях с плитами 1,5×6,0 м вводится дополнительный индекс "Я", при наличии фонарей—индекс "Ф" (например ф5-30-2Я, ФБ-30-3ЯФ). Фермы с различными стол-биками для опирания плит допалнительно маркируются в проекте здония см. лист 19.
- 11. Элементы ферм обозначаются марками, состоящими из букв и цифр. Приняты следующие буквенные обозначения: "В"-верхний пояс; "НП"-нижний пояс; "С"-стойка; "Р"-раскос. Цифры обозначают порядковый момер элемента, нумерация ведется в ферме каждого пролета от 1.

Элементы верхнего пояса, предназначенные для покрытий с плитани $4.5 \times 6.0 \,\mathrm{M}_\odot$ обозначены индексом "Я" (например, 84.8).

- 12. Нагрузки на фермы, усилия в элементах, детали и др. данные для проектирования покрытий приведены в выпуске 1 настоящей серии.
- 18. Фермы пролетом ЗОм с нижним поясом из отдельных элементов, с натяжением арматуры на бетон разработаны в выпуске 4.

II. Uзготовление ферм

Из Изготовление ферм предусматривается в условиях заводов желегобетонных изделий в соответствии с требованиями "Технических условий на изготовление и приемку сборных желегобетонных и бетонных конструкций и детолей" (сн 1-57), Руководства по изготовлению желегобетонных сборных предварительно напряженных сеементных ферм из линейных элементов", разработанного научно- исследовательским институтом по строительству (НИИ-200) Минстроя РСФСР, издание 1960 г., и временной инструкции по

out CKO

технологии изготовления предварительно напряженных железобетонных конструкций», разработанной НИЦЖЕ ЯСИЯ СССР, издание 1959г и Технических условий на производство и приемку строительных и монтажных работ.

Бетонные и железобетонные работы " (СН 65-59). При изготовлении эпементов и ферм, применяемых в условиях агрессивной среды и при относительной влажности более 60%, следует также руководствоваться "Указаниями по защите арматуры железобетонных конструкций от коррозии», раз-Pagomanyamu HUUX6 ACUA CCCP, UBBahue 1960 2

- Элененты ферм должны изготовляться в инвентарной стальной опалуб-Ke.
- Для предварительно напряженных нижних поясов ферм принята стендовоя линеиная технология изготовления с натяжениет артатиры на цпоры.
- При стендовом методе изготовления нижних поясов ферм с применением пропаривания или прогрева разность температур натянутой арматуры и истройств, воспринимающих исилия натяжения принята равной 40°.
- Кибиковая прочность бетона к моменту стпуска натяжения должсостовлять не менее 70% от проектной. Отпуск натрукения проволочного пакета может производиться только поспе установления надежности заанкеривания концов проволок в бетоне по торуам элементов в соответствии с ф 5 главы 🗓 "Временной инструкции по технологии изготовления предварительно напряженных железобетонных конструкций», НИИЖБ ЯС и Я СССР, 1959г.

В соответствии с этой же инструкцией следует выполнять все технологические процессы по изготовлению нижних поясов ферм с проволочной и стержневой арматурой.

Арматурные каркасы должны изготовляться при помощи точечной сварки в соответствии с "Техническими условиями на сварную арматуру ЭЛЯ ЖЕЛЕЗООЕТОННЫХ КОНСТРУКЦИЙ"(ТУ-73-56 МСПМХ П) И "УКОЮНИЯМИ ПО ТЕХнологии электросварки арматуры для железобетанных конструкций "(ВСН-38-57/ . [МСПМХП]. Электродуговую сварку выпусков арматуры из стали марки 25Г2С и ЗЕГЕ С выпусками из сталу марки Ст. 3 производить электродами типа ЭБОА. сварки пре 🗓 деталей из отали марки Ст.3 -электродами типа 342.

па особое внимание на качество выполнения и точность уста-

Фермы собираются в горизонтальном положении на специальнам кондукторе. Сборка ферм должна производиться в заводских условиях в отдельных случаях допускается сборка ферм на строительной площадке.

После рихтовки элементов фермы и выпусков арматиры привари-Ваются стыковые накладки к закладным планкам по верхнему поясу фермы и свариваются выпуска арматуры. Правильность работ по сварке выпусков арматуры в узлах подтверждается специальным актом.

Швы между элементами поясов зачеканиванатся быстротвердеющим иементно-песчаным раствором состава 1:1 по объему с добавкой хлористого кальция до 5% от веса цемента.

Затем устанавливается металлическая опалубка узлов и производится их замоноличивание быстротвердеющим бетоном состава 1:1,5:1 no οδъεми c добавкой χπορυσποεο καπьция до 2% om веса цемента.

- Все необетонированные поверхности стальных элементов, к которым не бубут привариваться другие элементы должны быть очищены стальными щетками и окрашены масляной краской за два раза. В фермах, μαχοθημιμίχεη ο αερεςευδμού ερέθε υ πρυ οπιρευπελομού δλαφελοςποί δοπέε 60% эти детали должны быть оштукатурены цементным раствором.
- Стальные детали изготовляются согласна Техническим условиям на изготовление и монтаж стальных конструкций (СН 95-60).

III. T'EXHUYECKUE MPEÕDBOHUA

- Укрупнительная сборка ферм производится после достижения бетоном в элементах 100% проектной прочности, что далжно быть подтверждено паспортом, выдаваемым заводом-изготовителем.
- Толщина защитного бетонного слоя для продальной арматуры в каркасах должна составлять 30 мм, а для хомутов и поперечных стержней 25 мм.
- Отклонения размеров элементов от установленных в рабочих чертежах не должны превышать:
 - а/ по размерам сечений элементов б/ по длине элементов DXHERD PORCO שאעתם מח /6 DEK L POCKOCOB

- г/ по длине выпусков арматуры +20 MM
- д/ по расположению мест выхода выпусков арматуры на элементах поясов /во всех направлениях/ ± 10 мм
- e/ по толщине защитного бетонного слоя для арматуры ± 5
- жі по расположению центров отверстий для крепления связей в элементах верхнего пояса /во всех направлениях/ ±10.
- Отклонения от проектного расположения стальных планок на верхнем и нижнем поясах фермы не должно превышать в плоскости планок 5 мм и перпендикулярно плоскости планок - 2 мм.
- Выпуски арматуры в элементах поясов запроектированы из стали марки Ст.3; изготовление их из стали другой марки не допускается
- Внешний вид элементов должен удовлетворять следующим требова-HUAM:
- d углы между гранями дилжины быть прямыми; отклонение от перпендикиляра допискается не более 2мм на высоту или ширини элемента;
- б) поверхности ераней элементов должны быть плоскими; искривление редер и поверхностей допускается не далее: на внешних торцовых гранях нижнего пояса на 1 мм и на прочих торцовых гранях 2 мм по высоте и ширине сечения: на боковых гранях 5мм по всей длине элемента;
- в/ околы целов и ребер допускаются на глубини не более 10 мм.
- раковины диаметром до 15 мм и глубиной до 5 мм допускаются не более двух на 1 м длины одной грани элемента и не более четырех на 1 м длины одновременно на всех гранях элемента:
- д/ на поверхности элементов дапускаются только волосные трещины. обнажение арматуры на поверхности элементов не дапускается; ж./ лицевые поверхности закладных частей из листовой стали а также поверхности выписков арматуры должны быть чистыми без наплывов бетона.
- Укрупнительная гоорка ферм ведется со строительным подъемом. который в готовой фер з должен составлять ~70 мм.
- Отклонение длины гобранной фермы от установленной по проекти не должно гревышать ± 20 м
- Взаимное смещение элементов поясов в собранной ферме по высоте и

- в плане не должно превышать 5 мм.
- Искривление вертикальных граней порсов в собранной ферме не должно превышать по всей длине в поясах 20мм.
- При изготовлении элементов ферм должен осиществляться систематический контраль прочности бетона и арматиры в соответствии с иказаниями стандарта "Детали железобетонные сборные: методы испытаний и оценки прочности жесткости и трещиностойкости " ГОСТ 8829-58 /. Должен также осуществляться постоянный контроль технологии изготовления элементов и строгого соответствия их рабочим чертежам.

т. Правила приемки методы контроля Kayecmba u uchumahua

- Элементы принимаются комплектами на ферму. Проверке внешвида и размеров подвергаются все изделия в кождом комплекте.
- Проверка внешнего вида и размеров ферм после укрупнительной сборки производится поштучно.
- Прочность бетона в элементах и в узловых соединениях для каждой фермы проверяется испытанием контрольных кубиков на суютие, согласно ГОСТ 6901-54 "Методы определения удобоуклодываемости бетонной смеси и прочности бетона ".
- Прочность цементного раствора в швах поясов проверяется для каждой фермы путем испытания на сжатие контрольных кубиков размером 7х7х7 см. Образцы до испытания должны храниться в таких же условиях как и собираемая ферма.
- Размеры эленентов, швов, радочей арматуры, выпусков арматуры и ферм, а также расположение закладных частей и выпусков арматуры проверяются стальной мерной линейкой / метром/ и стальной рупеткой. Величины искривлений, неровностей и околов определяются измерением стальной мерной линейкой /метром/ зазора между ребром выверенной линейки или натянутого шнура /проволоки / и поверхностью элемента или фермы. Правильность прямых углов проверяется помощью угольника
- Проверка размеров и расположения арматуры и закладных

частей, а также надежности их крепления в опалибке производится до бетонирования элементов.

41. При освоении изготовления ферм на каждом предприятии с целью проверки их качества необходимо производить контроль прочности и трещиностойкости питем испытания ферм контрольной нагрузкой. Испытание произboduman c coδηκοθε μυεμ πρεδοβαμού Γοςτ 8829-58 / cm maκκε п. 34/ и по специально разработанному проекту вагружения фермы нагризкой.

$ar{\mathbf{v}}$ Mapkupoetakai u nacnopmusauueta

Каждый элемент фермы должен иметь следующие маркировочные знаки: марки элемента и фермы, парядковый нофермы, дату и смену изготовления и штамп ОТК. Каждая собранная ферма должна иметь на боковых гранях нижнего пояса у опор следующие маркировочные знаки, марку фермы, номер фермы по порядку изготовления. WMOMN OTK.

Маркировка железобетонных элементов и ферм должπρουβδοδυπьος μεσμωδαεμού κρασκού.

Каждую ферму, а также каждый комплект линейных элементов на ферму завод -изготовитель снабусает паспортом, в котором указывается. d/ наименование завода-изготовителя;

б/ номер паспорта и дата его выдачи;

в) наименование и марка изделия / например комплект элементов на DEPMY 905-30-3/;

г/ номер фермы и дата бетонирования;

б) отпускнога прочность бетона в элементах фермы;

е/ то же в узловых соединениях фермы;

s/c/mo s/ce, pacmbopa β cmыκαx.

Паспорт должен быть подписан уполномоченным на это лицом.

<u> VI.</u> Хранение и транспортирование

Готовые элементы ферм хранятся комплектами на каждую ферму Элементы укладываются горизонтально на деревянные прокладки

Фермы хранятся истановленными вертикально на двих брисчатых подкладках, уложенных под крайними излами и должны быть надежно предокранены от падения подпорками или растяжками

Во время кантования и подъема фермы стропятся в местах ука-ANHHUX HO CXEMOX CMPONOBKU / NUCM 1 /

Готовые элементы перевозятся комплектами на ферму При перевозке элементы опираются на деревянные прокладки и надежно закрепляются /во избежание ударов друг о друга и о кузов овтомашины /. Толщина прокладок должна быть не менее высоты выступающих монтажных петель и выпусков OPMOITHUPSI.

50. Оберны перевозятся в вертикальном положении опертыми в местах показанных на схеме / лист 1 / Средства транспорта должны быть оборудованы устройствами, предохраняющими фермы от падения на бок и от продольных и поперечных перемещений во время перевазки.

VII MOHMOUK GOEDM

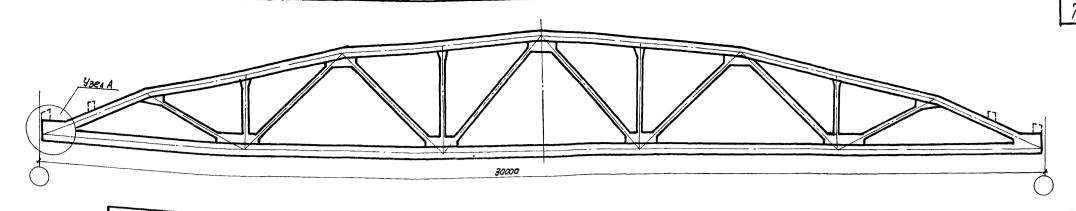
51. Монтаж ферм должен осуществляться по технологическим правилам, разработанным в составе проекта организации работ. Проектные материалы по производству монтажных работ должны быть разработоны в объене, предусмотренном п.п. 36-38 "Указаний по применению соорных железобетонных конструкций и деталей в строительстве" / У-107-56/

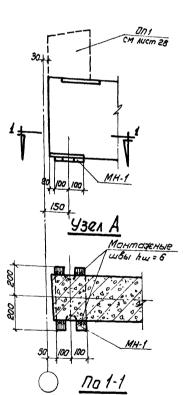
При разработке проекта организации работ и при монтаже ферм должны соблюдаться указания по монтожу сборных железобетонных конструкций. приведенные в упомянитых У-109-56

При монтаже ферм необходимо установить по верхнему поясу инвентарные распорки, которые снимаются по мере укладки плит покрытия Применение этих распорок должно быть предусмотрено в проекте организации работ.

Пип	Mapka	Основная расчетная (в скобках	Расчетная (в скобках Нормативная)	Напрягаемая нижнего по	0800	Марка	Расход м на фе	атериалов Гому	Bec
фермы	фермы	нормативная) нагрузка кг/мг	нагрузка От подвесного транспорта	Струны из проволоки по 20ст 8480-57	Стерэсни из стани марки 35 02 с Упрочненной 20 ст 5053-57, сортамент по 20 ст 73/4-55	бетана	Сталь ке	Бетон м3	ФЕРМЫ
	Ф5-30-1	350(290)		68 ¢ 5 m		300	873	6.8	
	Ф-5-30-1Я.			,			895	0.0	17.0
	\$\phi 5-39-2	350(290)	12py3 6.5(5.0)	80 \$ 5 TN		300	1029	ô. 8	17.5
	Ф5-30-29	450 (380)				400	1052	5.0	17.0
	Ф5-30-3	450(380)	12py3 6.5(5.0)	88 \$ 5 TA		400	1019	6.	
Na	Ф5-30-3Я						1042	6.8	17.0
натя ж ением Упарь/	Ф5-30-4	550(450)		96 ¢ 5 m		400	1094	6.8	/72
нотя ж Упорь/	Ф5-30-4Я						///6	0.0	17.0
10 \$	Ф5 -30- 5	550(450)	12043 6.0 (5.0)	116 \$5m		400	/263	6.8	
	Ф5-30-5Я						1286	0.8	17.0
Uз линейных элементов Орматуры нижнего пояса	Ф-6-30-1	350 (290)			2 \$ 25 ks	300	1171	6.0	
JE HE	Ф6 -30-1Я	`			4\$22KA		/194	6.8	17.0
/H6/X	Ф6 -30-2	350(290)	1 epy3 6.5(5.0)		6 \$ 25 KA	300	/37/	6.0	
лоны Этур	Ф6 -30-2Я	450(380)			0 \$25XX		/399	6.8	/7.0
5%	Ф6 -30-3	450(380)	12043 6.5(5.0)		2 \$ 28 km	400	/39/		
	Фб - 30 - 3Я				4 \$ 25 km		1414	5.8	/7.0
	Φ6 -30 -4	550 (450)			2 \$ 25 KA	400	1490		
1	Ф6-30-4Я				4 \$ 28 km	700	1512	6.8	17.0
, Lan	\$6-30-5	550 (450)	12py3 6.5 (5.0)		6 \$ 28k1	400	1630	6.8	
3	Ф6-30-5Я				3 7 - 5 - 1 / 1	100	/653	0.0	17.0

Стема строповки фермы при кантовании

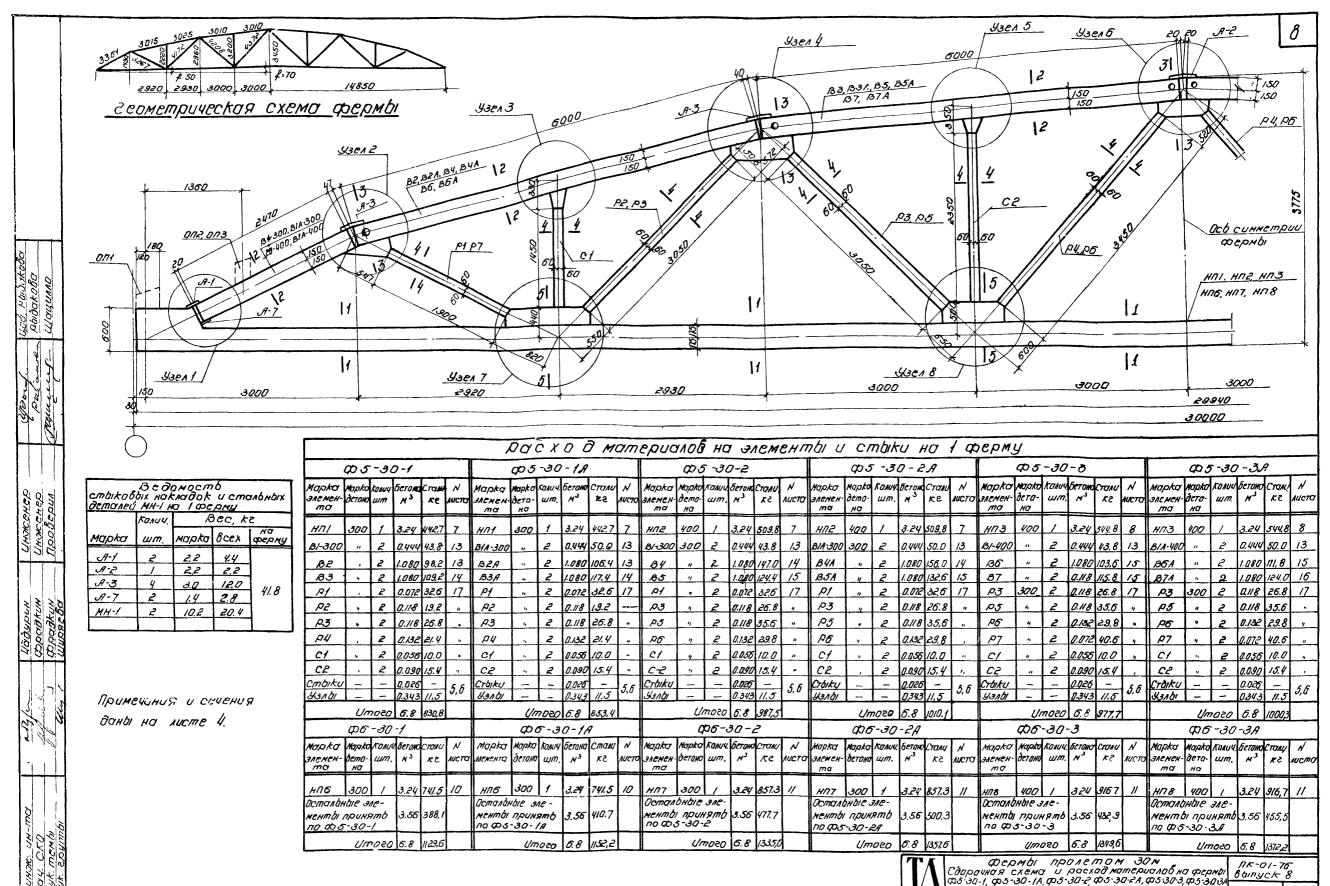

NOUMEYCHUA


- 1. Все фермы расчитаны с учетом нагрузки от фонаря. 2. Марки ферм с дополнительным индексом Я даны для ферм покрытий с плитами 1.5×6.0м.
- 3. При хранении ферм подкладки следует устанавливать под впарными узлами.
- 4. В графе "марка бетана" дробью паказаны. в чис
 - мителе марка бетана вержнего пояса и решетки, а в знаменателе-марка бетона нижнего паяса.
- 5. ДЛЯ элементов решетки в фермах всех марок принят бетон марки М-300. 6. Подвесной груз 6.5(5,0)т. мажет быть приложен влюбом

YBAR HUJEHRED NORCO.

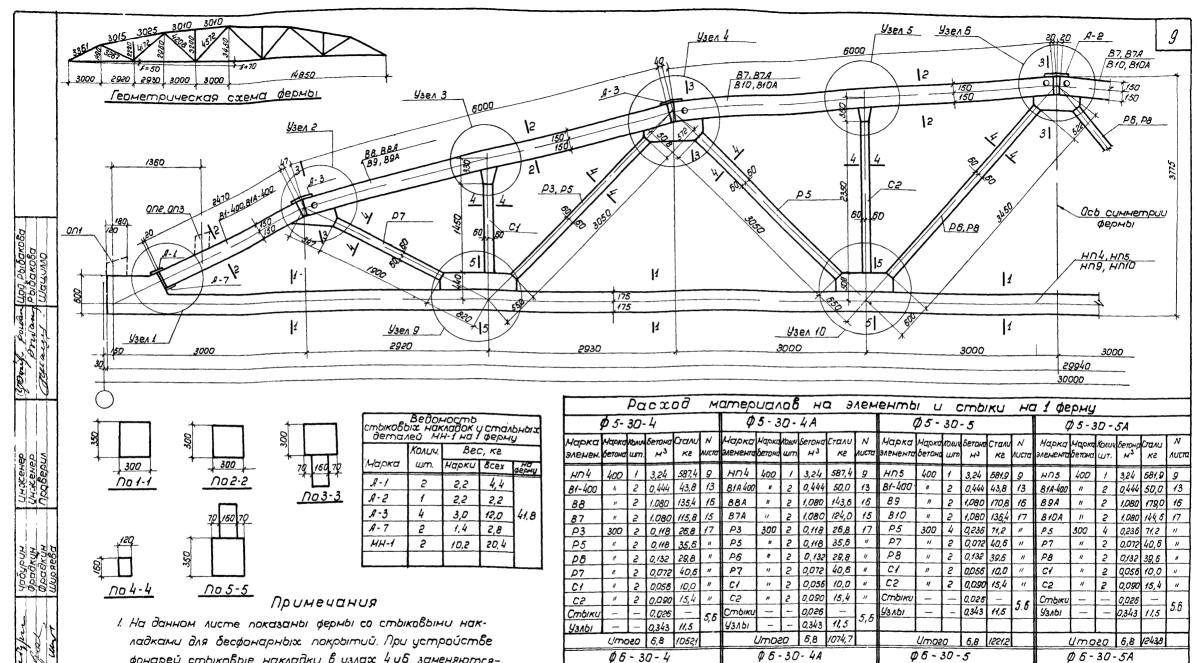
Фермы пролетом 30м Сортамент и расход материалов. Сжемы страповки

NK-01-76 BUINUCK 8 Aucm

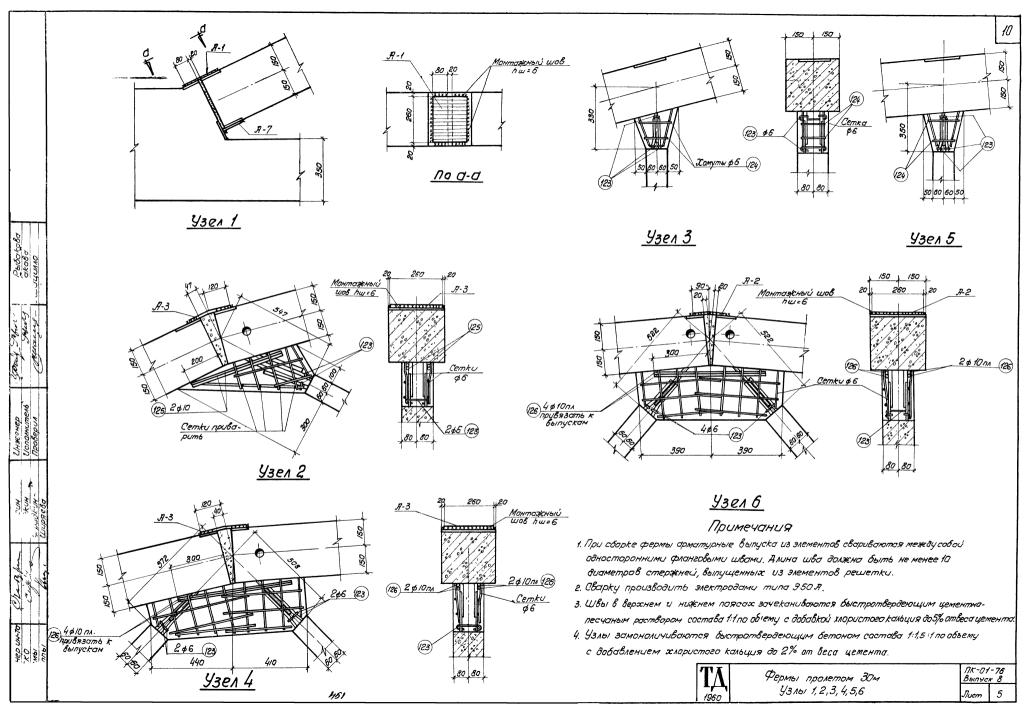

											В	6160	pk	Ø	CI	ק אָר	14	HO	9	bep	my,		te																	
									40.	BAEN																					gedel					KU	MOP	KU A	,	
Mapka	l	Cmo	אוני	25 505	120 18-57	•		C	7701	5 20	<i>D94</i>	ekar	ndHo	IR K	.pye/	109	CT. 3	3	Право Халаді	40M9-		716						156		/lpo8ox nepuoc vecko npodol	gu - S	YAPOY	HEHH					ookan		Bceeo
фермы	Сарп	namer	ח מו	7 <i>20</i> 0	7 73	14-55	5										2590		Rymo 20c7 6	727-55	ΠΟΛΟ	COO		U 1 7.3	wem	000	79	7.326	50	npodol roct 842	10.57 m	ОС (П) Омен	505 E m no	8-57, 20071	COP- 1314-55					Hd
		φ	, MM				200					4	, MA	1				82	φ,	мм	Mc	NULU	HØ	, MI	4		250	966e 7. ∂00		Ø, M		Φ,			080		ЩИНС		S	Ферму
	1801	l6nu	1401	12m	IOns	6пл	Z Z	24	22	20	18	16	14	15	10	6		3	51		20		2	10	8	6	משכ	503066. d://4". A	7	5m	22	PAN E	25 KA	28ka	\$	14	10	6	5	
Ф5-30-I	_	30.4	57.8	86.4	91.4	7.8	273.8	7.8	24	2.q	48.2	16.9	_	12.2	10.0	61.4		150.9	33.4				-	20.8	7.6	31.4	59.8	5.6	533.5	297.3	T	T		\Box	297.3	17.6	2.8	21.4	41.8	872.6
Ф5-30-/A	_	30.4			,	3								12.2				160.9	33.4								77.4										1	21.4	1	ł
Ф5-30-2	_					7.8						-		12.2				185.6	33.4			\top		30.4			61.8				\top									1029.3
Ф5-30-2A		30.4	1		1							_		12.2				185.6	33.4					30.4	-	49.0	79.4	5.6	<i>660.4</i>	349.7							T	1	T	1051.9
Ф5-30-3	38.4		3	ı		7.8						_		12.2				185.6	33.4				_	30.4			61.8					1		1						1019.5
Ф5- 3 0-3А	38.4	-		1		7.8						-	_	12.2	10.0	61.0	T	V85.6	33.4					30.4			79.4				十	1						1		1042.1
\$5-30-4	38.4	-	1	4		7.8					_	10.3	6.8	12.2	10.0	61.4		196.0	33.4				-	30.4	_	31.4	61.8	5.6	632.4	419.7	$\neg \dagger$	1					_		T	1093.9
Ф5-30-4A	38.4	-	1	ı		7.8		1			1			12.2			1	196.0	33.4				-	30.4			79.4			1	1						-		1	1116.5
Ф5-30-5	38.4		1	1	1	7.8		-			514	<i>,</i>	_	12.2	10.0	61.4		207.9	33.4			/	$\neg \neg$	16.0			64.2									1		1	T	1263.0
Ф5-30-5A	38.4		248.4	53.0	60.4	7.8	408.0	33.8	38./	1	51.4	-	_	12.2	10.0	61.4		207.5	33.4			/	6.8	16.0			81.8			1				_ 1		+				/285.6
Φ6 -30-1	_	30.4	57.8	86.4	72.7	7.8	255.	7.8	2.4	2.0	48.4	22.9		12.2	10.0	59.3		165.0	33.4		20.7		-	20.8	7.6	3/.4	80.5	5.6	539.6		3	59.4	230.6		590.0	17.6	2.8	21.4	41.8	1171.4
\$\$ -30 -/A		30.4	57.8	86.4	77.7	7.8	260.1	7.8	2.4	2.0	48.4	22.9	_	12.2	10.0	59.3		165.0	33.4		20.7	1	-	20.8	7.6	49.0	98./	5.6	562.2	_	3	59.4	230.6	_	590.0	17.6	2.8	21.4	41.8	1194.0
Ф6-30-2	<u> </u>	30.4	178.0	79.8	36.6	7.8	332.6	7.8	33.0	48.8	12.8	6.0	_	12.2	10.0	58.9	,	189.5	33.4		20.7			30.4		Ţ	82.5	1	T		T	-1	691.4			1	1			/370.8
Ф6-30-2A	<u> </u>	ł .	ł	ł	1	7.8	1	1	1	1	1		-	12.2	10.0	58.	9	189.	33.4		20.7		-	30.4		1.	100.1					-	691.4		f		 		1	1399.4
\$\$6-30-3	38.4	_	91.2	//3.8	36.6	7.8	287.8	7.8	33.0	48.8	12.8	6.0	_	12.2	10.0	58.9	,	189.	33.4		20.7		-	30.4			82.5	1		1		_ [461.2					1	1	1391.4
Ф6-30-3A	38.4	_	81.2	113.8	41.6	7.8	292.8	7.8	330	48.8	12.8	6.0	_	12.2	10.0	58.	9	189.	33.4		20.7		-	30.4			100.1							1	1	1	1	+	1	1414.0
Ф6-30-4	38.4	_	120.8	113.8	36.6	7.8	3/6.6	7.8	52.3	10.4	24.8	16.1	5.8	12.2	10.0	59.	3	199.7	33.4		20.7		_	30.4	_	1	82.5	-	+	1						-	1-	+	 	1489.6
\$6-30-4A	38.4	_	120.2	113.8	41.6	7.8	321.8	7.8	52.3	10.4	24.8	16.1	6.8	12.2	10.0	593		199:	33.4		20.7			30.4	_		100.1		1		1				1		1	 	1	1512.2
Φ6 -30-5	38.4	<u> </u>	248.4	53.0	36.0	7.8	384.8	33.8	38./	1.0	51.4	6.0	_	12.2	10.0	59.3	3	211.6	33.4		20.7			16.0	_	1	84.9	 		-	1				1		 		1	1630.5
Ф6 -30-5A	38.4		248.	53.0	41.6	7.8	389.2	2 33.8	38./	1.0	51.4	6,0	-	12.2	10.0	59.	3	211.8	33.4		20.7		16.8	16.0			102.5		1	-		_		I			1	1		1653.1

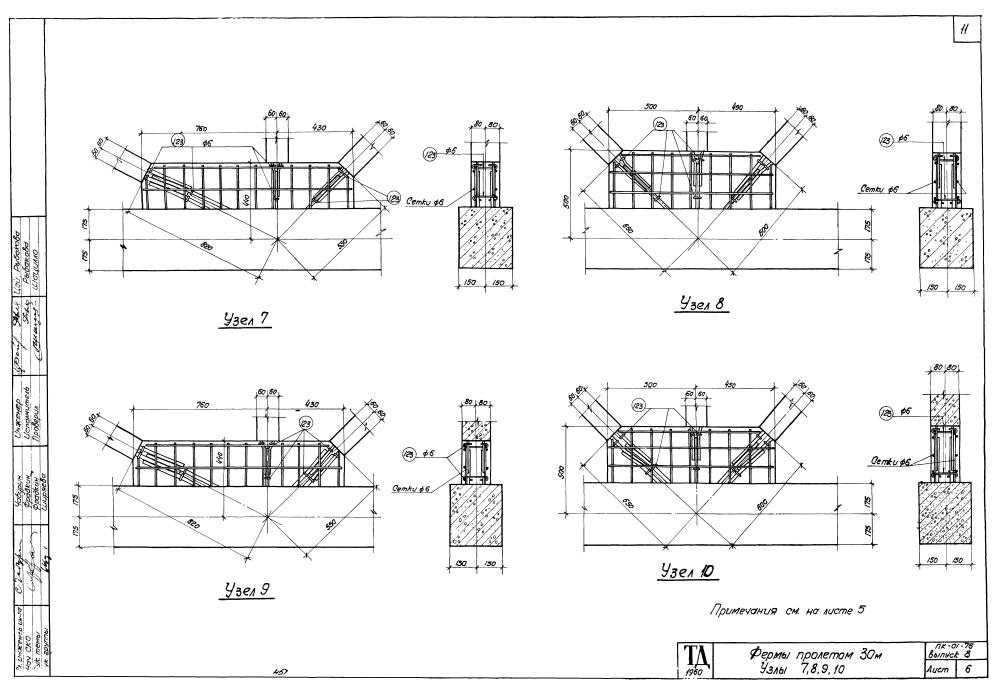
Примечания

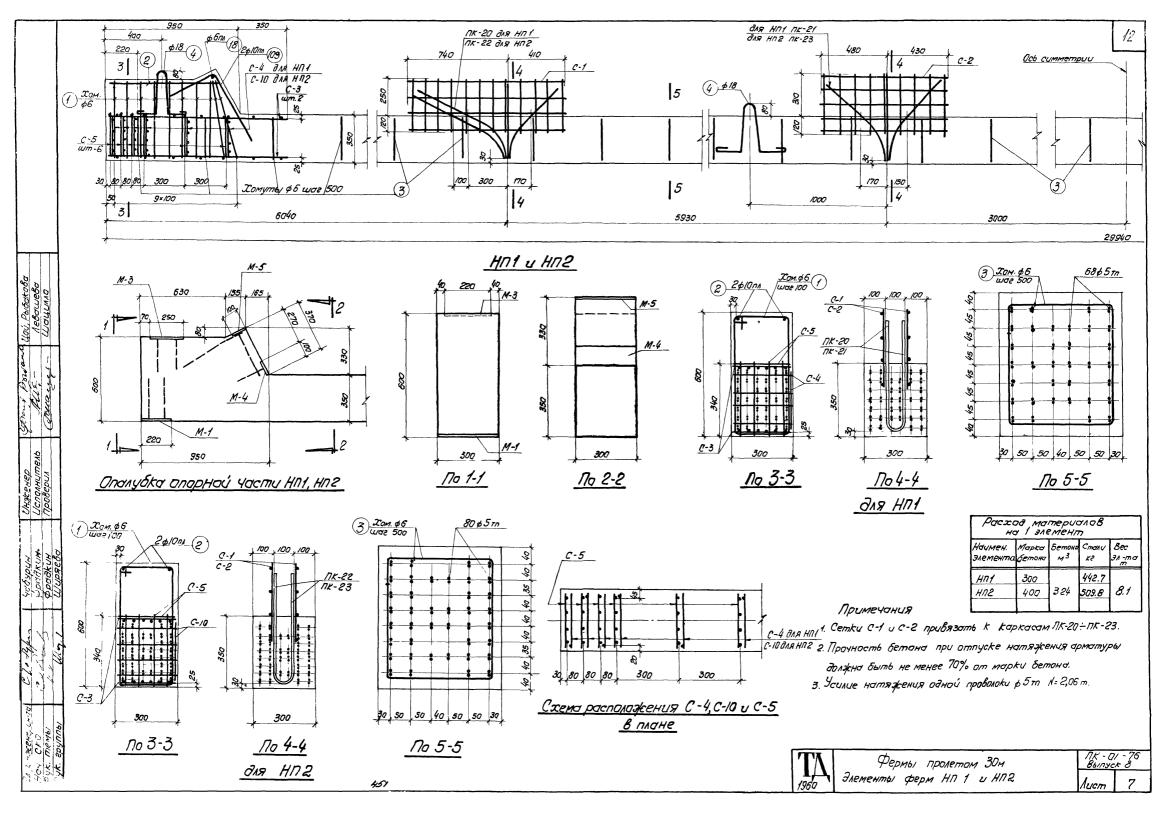
1. Сбарачные сжемы ферм даны на листах 3 и 4.

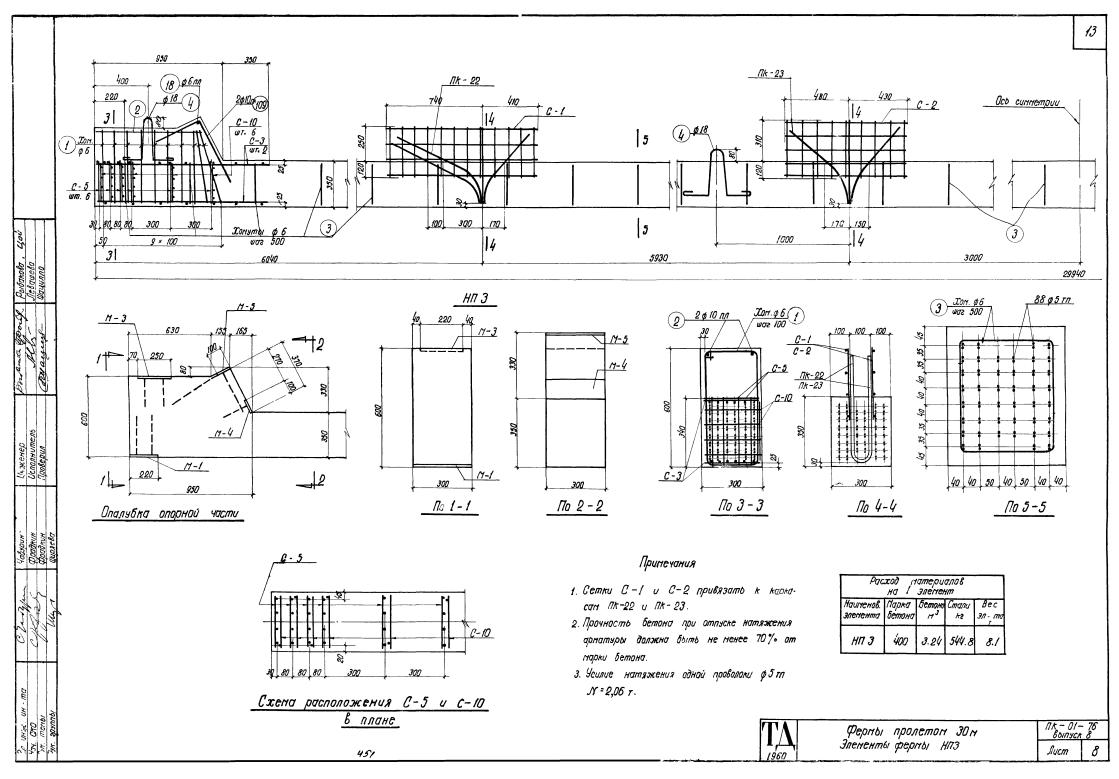


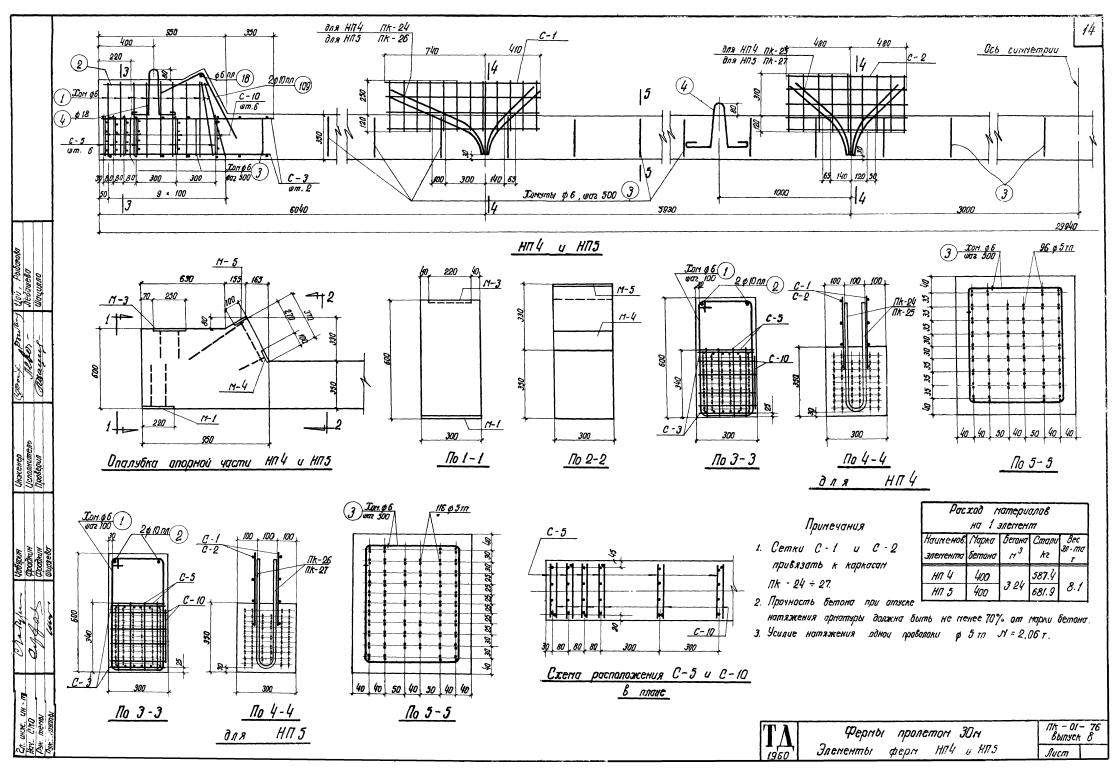
Фермы пролетом 30м Общий вид и выбарка стали NK-01-76 Bunyek 8

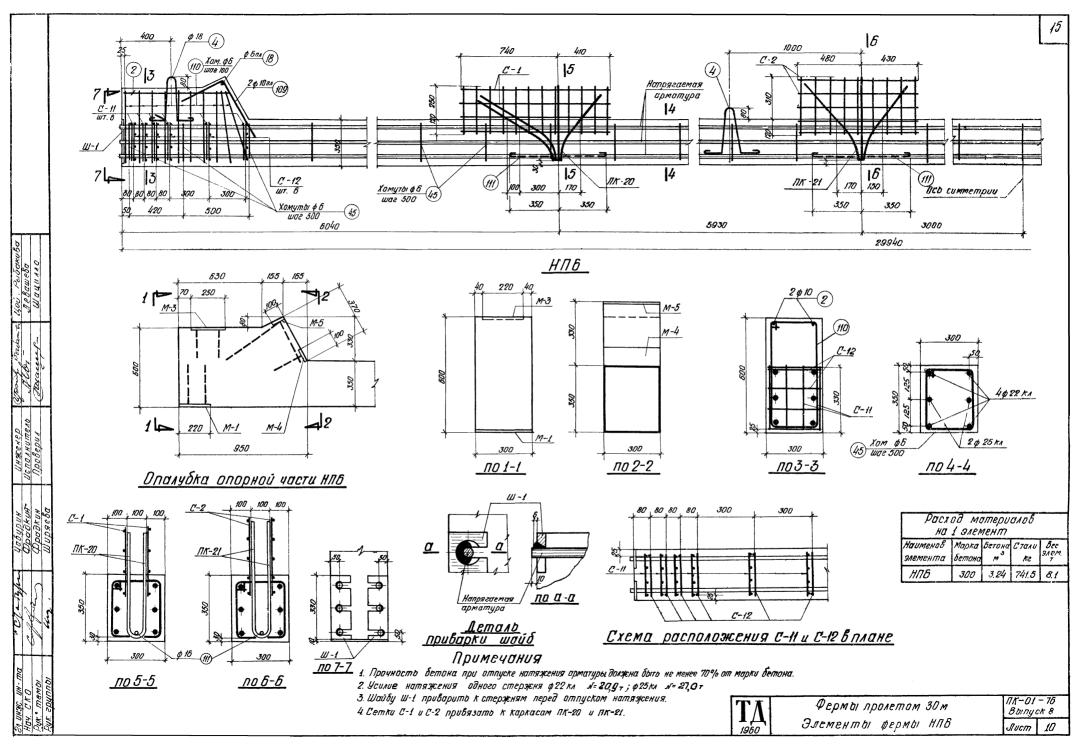

\$5-30-1, \$6-30-11, \$6-30-2, \$6-30-21, \$6-30-3,\$6-30-31

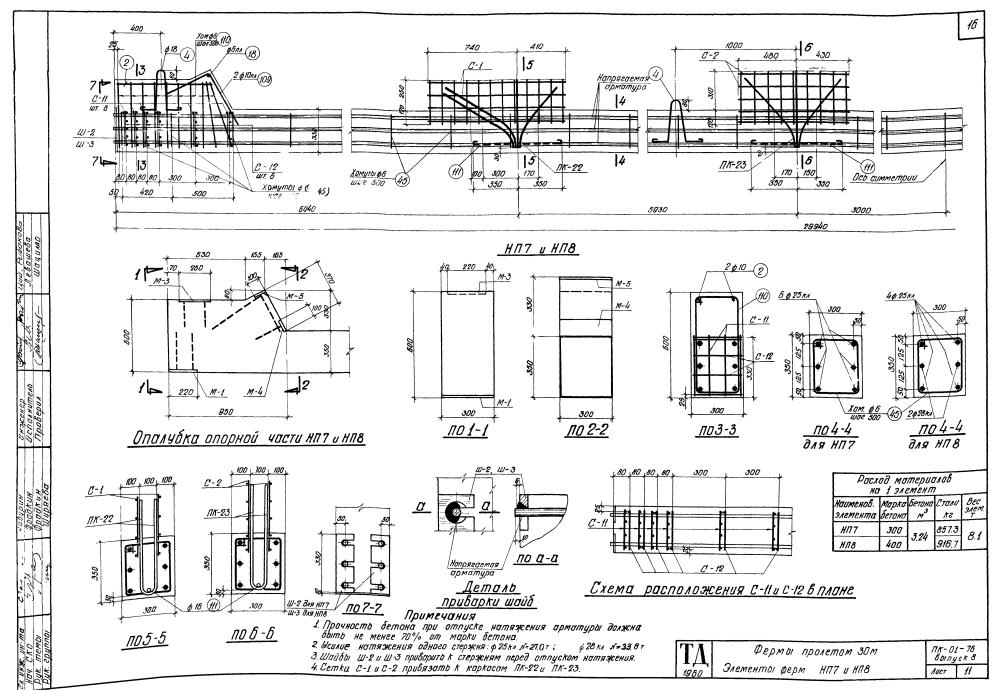

451

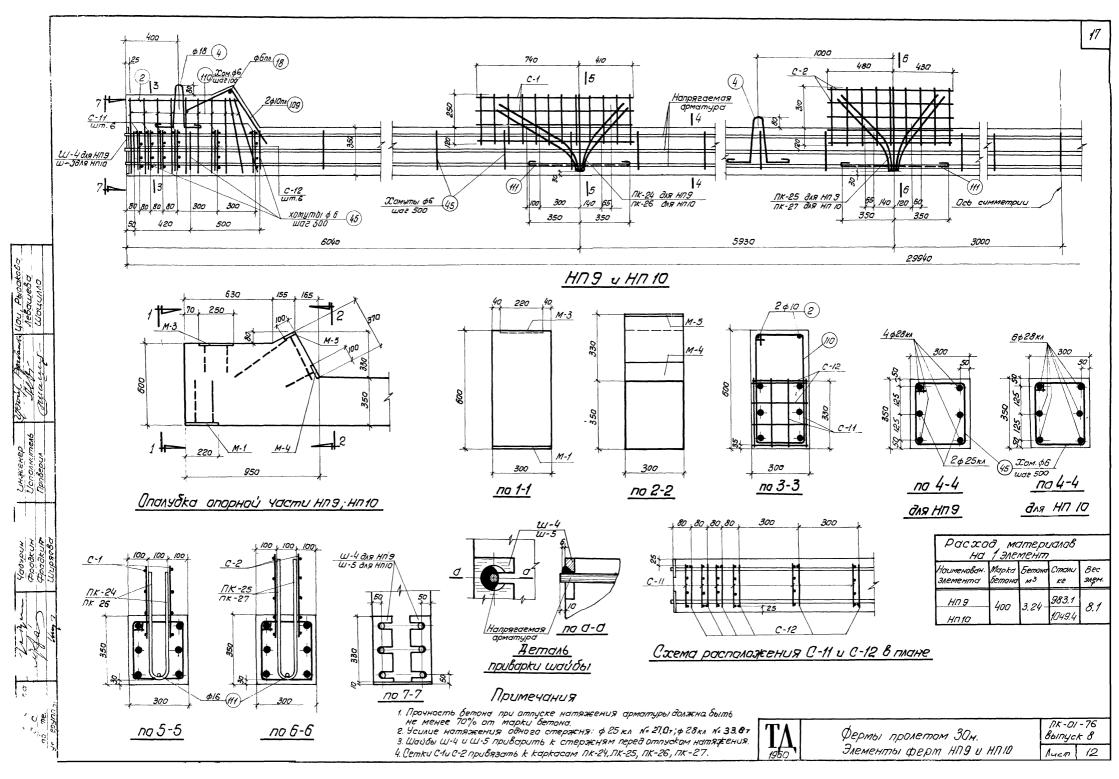


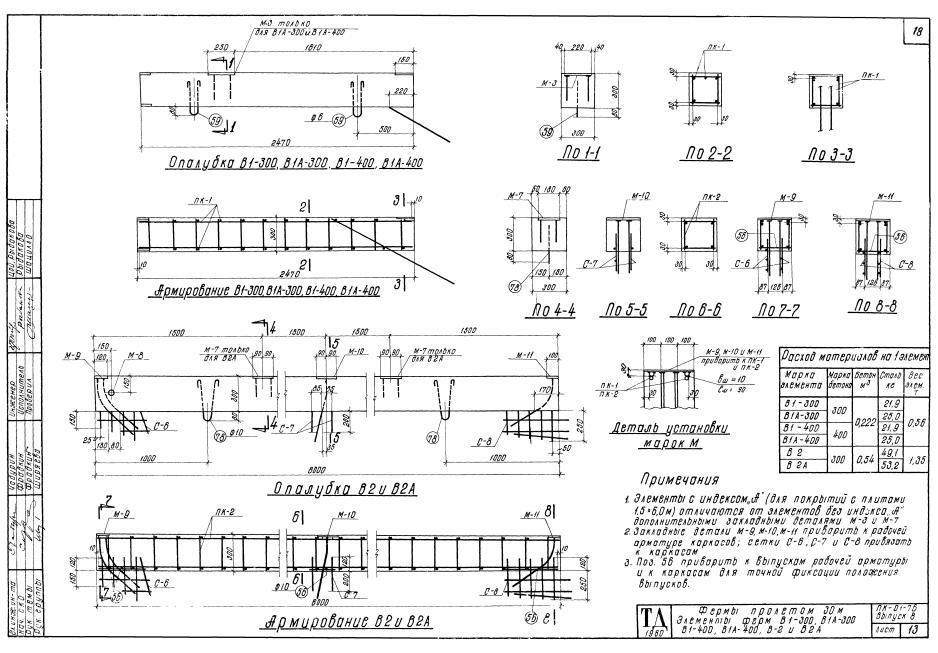

- фонарей стыковые накладки в узлах 4 ив заменяются-CM. AUCID 29.
- 2. Столбики DN1, DN2 и DN3 πρυβαρυβαются после сборки фермы. Наличие столбиков определяется шириной кровельных плит и условиями опирания фермы - см. лист 28.
- 3. Стыковые накладки А-1, А-2, А-3 и А-7 даны на листе 22.
- 4 Lemanh MH-1 dana na nucmax 2 u 22.
- 5. Узлы даны на листах биб.

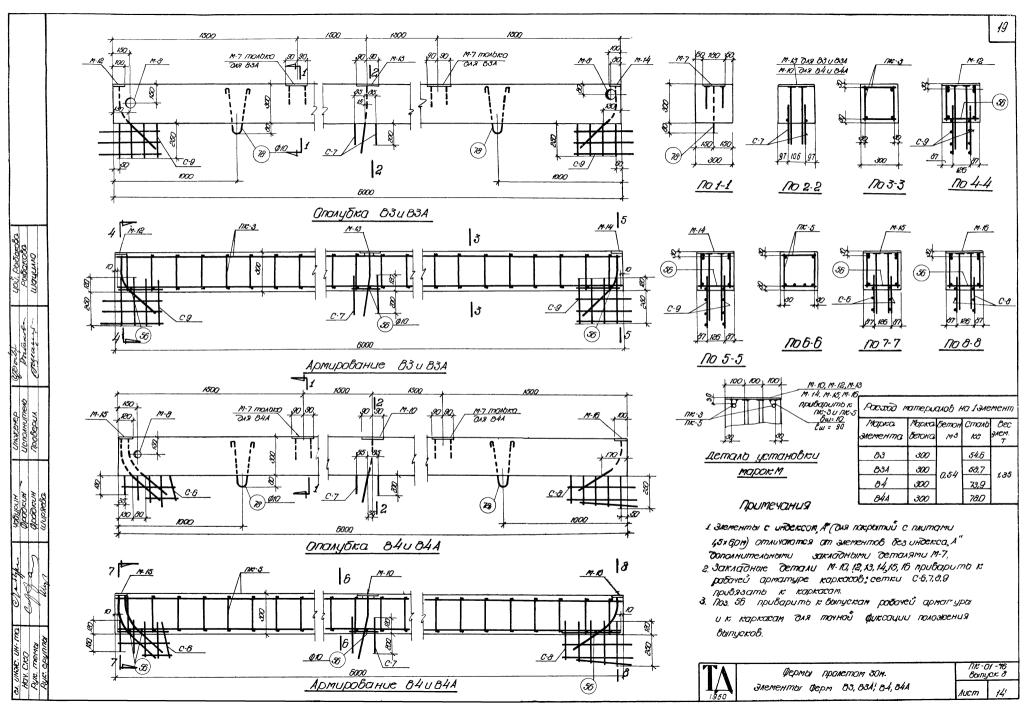

	Ø 5-	30-	4			Φ	5 - 3	Q-	4A			(Ø5-	30	- 5				75-3	30 -	5A		
Марка элемен.			<i>бетана</i> м ³			Марка эленента						Марка эленента	Марка ветона	KONUK	бетона _М 3			Марка эленента			бетона м ³	ке ке	Λυετα
HN4	400	1	3,24	587,4	9	HN4	400	1	3,24	587,4	g	HN5	400	1	3,24	581,9	9	HN5	400	1	3,24	681,9	9
81-400	//	2	0,444	43,8	13	B1A 400	"	2	0,444		13	B1-400	"	2	0,444	43,8	13	81A-400	"	2	0,444	50,0	13
88	"	2	1.080	135,4	16	88A	"	2	1,080	143,6	16	89	"	2	1,080	170,8	16	89A	"	2	1,080	179,0	16
87	"	2	1.080	115,8	15	87A	"	2	1,080	124,0	15	810	"	2	1,080	135,4	17	BIDA	//	2	1,080	144,5	17
РЗ	300	٦	0,118	26,8	17	РЗ	300	2	0,118		17	P5	300	4	0,236	71,2	"	P5	300	4	0,236	71,2	"
P5	11	2	0,118	35,6	"	P5	"	5	0,118	35,6	"	P7	"	2	0,012	40,5	"	Ρ7	"	2	0,072	40,5	"
PB	"	2	0,132	29,8	"	P6	,	2	0,132		"	P8	"	2	0,132	39.5	"	P8	"	2	0,132	39, 5	"
P7	//	2	0,072	40,5	"	P7	"	2	0,072	 	"	CI	//	2	0,055		"	Cf	//	2	0,056	10,0	"
C1	//	و	0,058	10,0	"	C/	"	5	0,056			C5	"	2	0,090	15,4	"	C5	"	2	0,090	15,4	"
C2	"	2	0,090	15,4	"	C5		2	0,090	15,4	"	באולחח		<u> </u> _	0,025		5.6	Стыки		_	0,026		5.6
Стыки		_	0,026		5,5	Стыки	<u> </u>		0,026	-	5,8	<i>9</i> 3 <i>1b1</i>		<u> </u>	0,343	11,5	0.0	43161	<u> </u>	二	0.343	11,5	0.0
43161	<u>L=</u>	<u>L-</u>	0,343	11.5	<u> </u>	431bi	<u> </u>	<u></u>	0,343	11,5	├ ─-			<u> </u>	<u> </u>				L		<u> </u>	L	
	עיייט	૦ક૦	6,8	10521	<u></u>		Umoa			1074,7	<u>L</u>		Umae			1221,2	<u></u>		Umo	100	6,8	12438	<u> </u>
	Ø 6	- 3	0-4				\$5.	- 30	- 4A			4	6-	30 -	5			,	D 6 -	30-	5A		
Марка	Марка	KONLY	бетона	Crany	Ν	Нарка	Нариа	Atomus	Бетона	Стали	Ν	Марка	Марка	KONUK	бетона	CTQAU	~	Марка	Марка	Калич	Бетона	Стали	~
эленента	бегона	шт.	₩3	KZ	листа	элем ента	бегона	Wī.	м³	Ke	листа	элемента	бегонс	யா	μ3	KE	<i>NUCTO</i>	элеменга	бетона	Wτ	μ3	ĸe	NUCTO
HD9	400	1	3,24	983.1	12	HN9	400	1	3,24	983,1	12	HOIO	400	1	3 24	1049,4	12	HNIO	400	1	3,24	1049,4	12
Пстально пы про Ф 5 - 3 с	לרחמאונ	NO ON	3,56	464,7		0сталь менты по Ф 5	NOUP	IPTO	3,55	487,3		Осталь менты по Ø 5	DOUH	PMÓ	3,56	<i>539,</i> 3		Ocmano Hehmb na Ø.	NOUH	8Mb	3,56	561,9	
	Uma	20	6,8	1447,8			Umo	20	6,8	1470,4		L	moa	20	6,8	1588,7		·	Umoe	20	6,8	1611,3	L
									T	Ί	 С б ора на ф	04HQ9 8PMbi (30-5A	ермо хема 5 - 30	o o o	DAETT	POM POCY 30-4	30M 100	матер 5-30-5	υαλο	08	NK-C Bbing	71-78 JCK 8	
									1	960	Ø5÷.	30-5A	Φ5-3	30-4	φ6	30-4	4 Ø6-	30-5 0 5	-30-5.	A	Λυση	٦ <u></u>	4



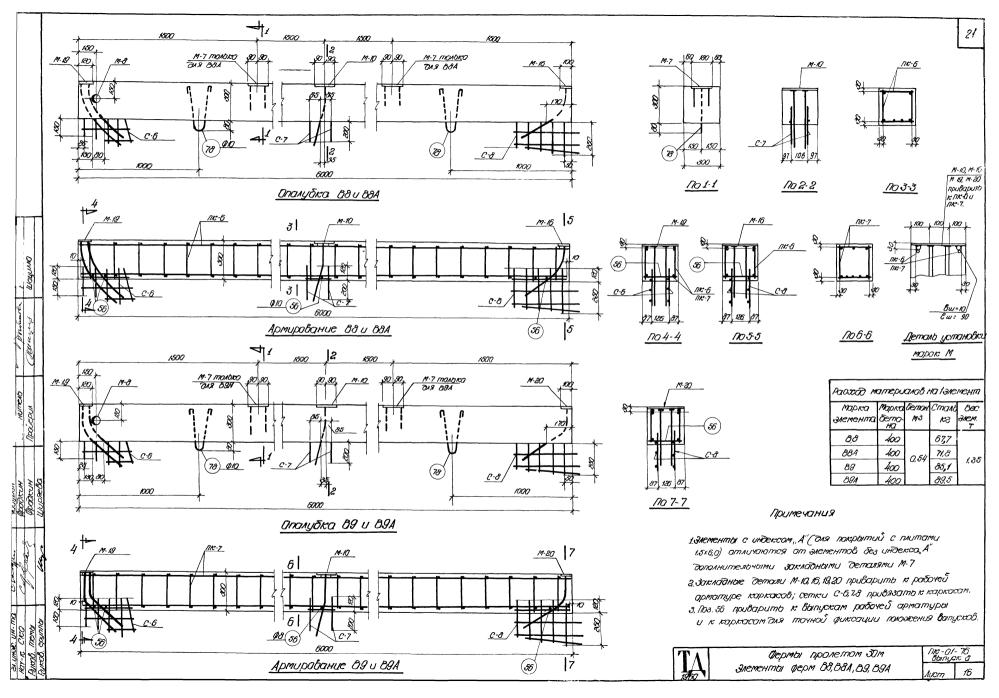


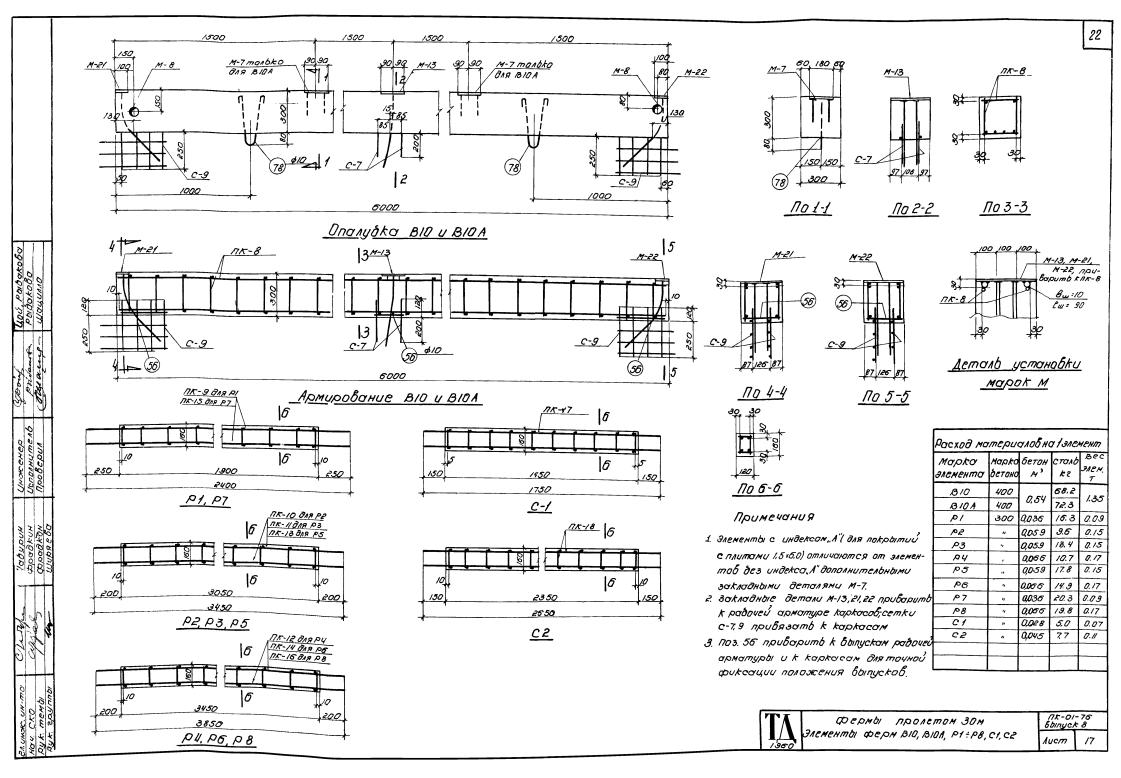


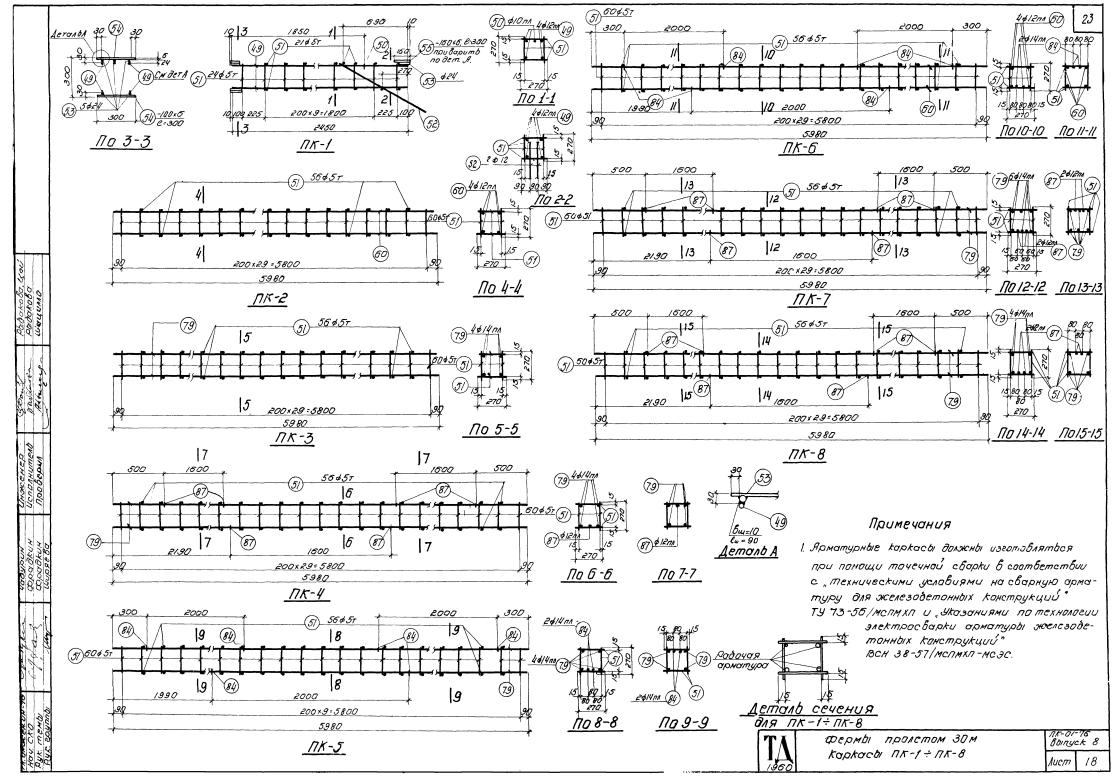


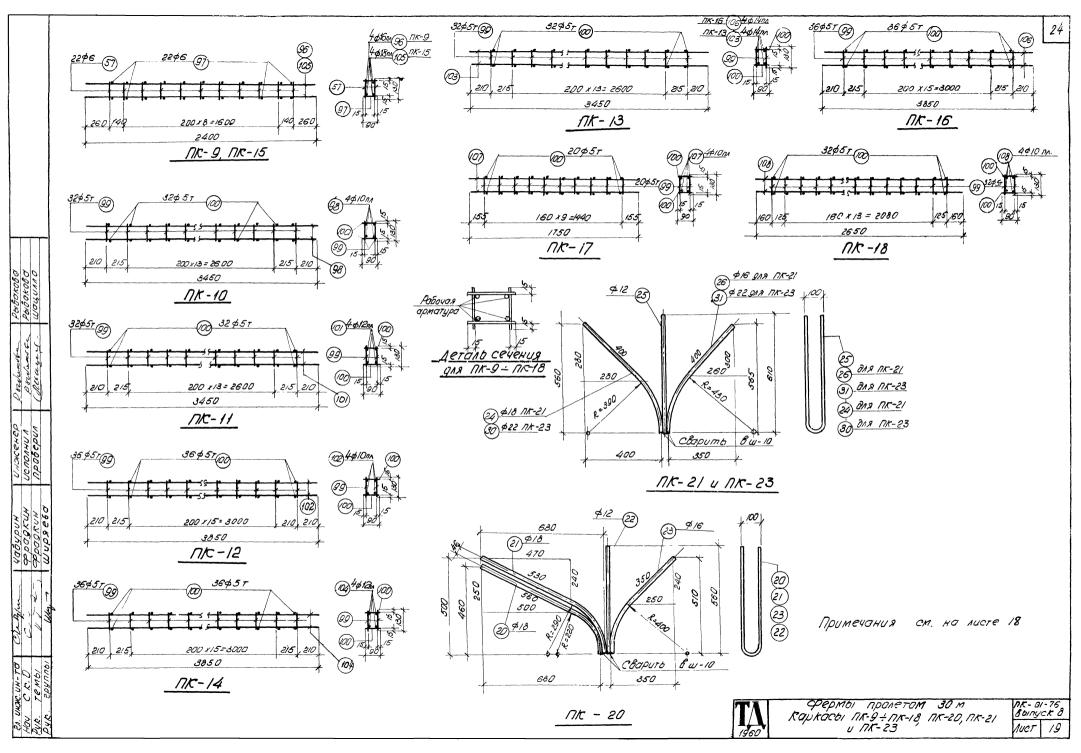


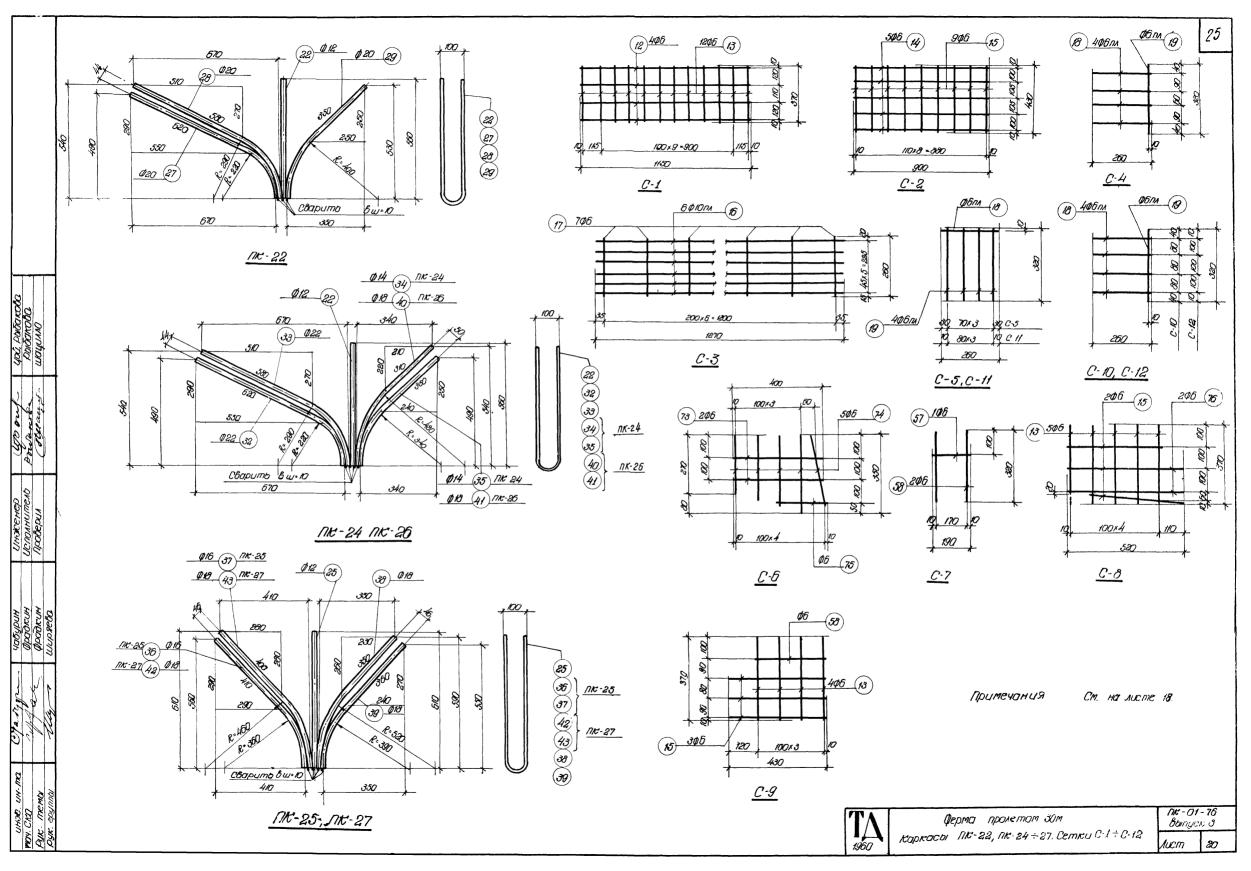


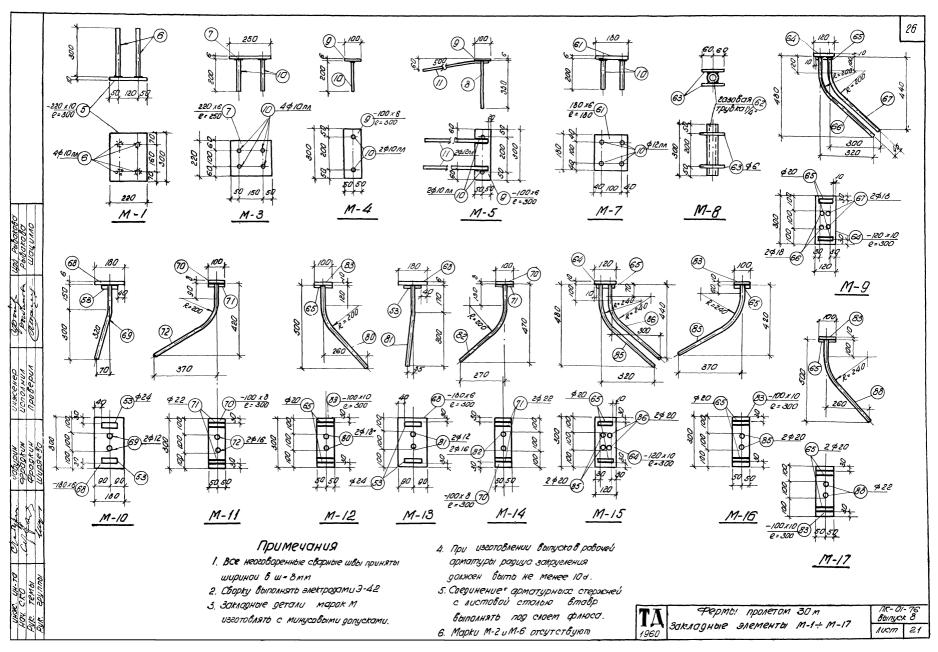


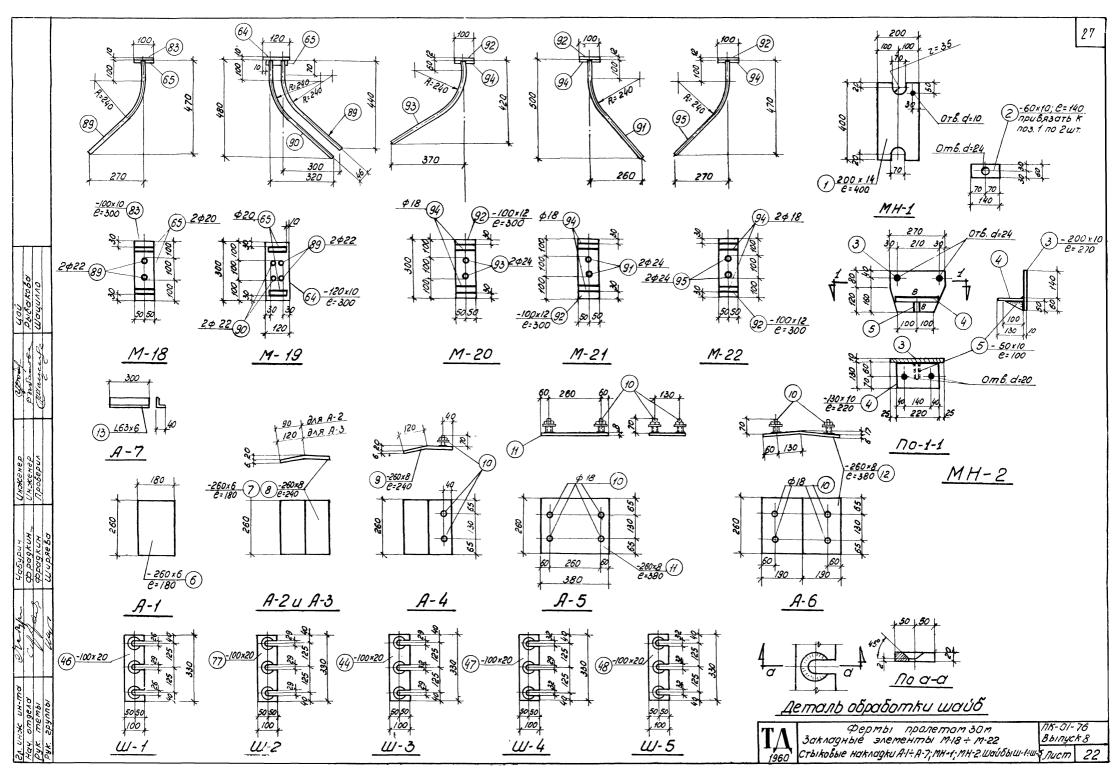


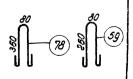












	1														Ľ	
	}						Bbiōopka cmanu Ha 13nemenm	Can		BOITOPKA CMANUHA 13NEMBHM	Con	цификация стали на 1элем	выборка Стали на 1элемент	Car	ецификация стали на 1 элемент выборка стали на 1 элемент	
1	ļ	ושחנ	upuko	UUA CMC	TAU HO 1 3AE		691		цификация стали на Ізлемені	13лемент	2010	1 5 SV 1 1 1 F SV		10116	EUU DUK GUUR CITI GAL HOL 19/18MEHIT CITI GAL HOL	
		e H	200 / n	E Sept C	n Wm.	n Bec	Now Bec	ент	MM porace of the property of t	Des Bec	мено лено	MADKO MAN MIN MIN MIN MIN MIN MIN MIN	Bec 2 3 Bec	NexC TEHIN	DO TOTALE & Kon-Bo PA Bec PAR Bec	
-	İ	Men.	NN KGDX NN	MW Walder	HOT ROPK BCEED M	1 KZ	Sy Cap	Haumeh 31emeh	AN SOUN MM Kaby Beeso W KE	A Unep Homes Captome SA KS	Наимен Элемен	MM Kabi Beed M	Sagar V	nave Mane	ASS SUPPLY AND RESERVE WEST SUPPLY RES	
	Ì	5 (5)		1- 05111 2994	0 - 68 20	360 2973	Ø57n 297.3			7 Ø57n 349.7		Напрягае-ф577 29940 — 116 3473.	0 507,1 \$570 507.1		C-2 14 06 900 5 20 18.0 4.0	71
- [емая арматур		1 1 5		DGAA 7.8		арматура	Ø6nA 7.8		<i>арматура</i>	Ø6 ns 7.8]]	15 96 440 9 36 3,8 3,5	
ł	Ì		1	\$6 1750	- 20 3	50 7.8	010nn 26,5		27 \$20 1880 1 2 3.8 9.4				11.4 O10nn 26,5		шт. 4	
			2	PlOnn 800	<u> </u>		D120A 1.8		NK-22 28 020 1960 1 2 3,9 9.		1	33 \$\text{\$\text{\$Q22}\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	[[C-11 18 Obn 260 1 12 31 07 wr.12 19 Obn 320 4 48 15,4 3.4	- []
	ļ		475 3	\$6 1210			Ø6 41.0 Ø12 4.4		WT.2 22 012 1220 1 2 2,4 2.	41	1	WT 2 40 018 1460 1 2 2.4	2.1 06 41.0 5.8 012 4.4	11	WT.12 19 4011 520 4 40 10,7 3.4 VImora 4,1	- 11
			300 4	\$18 1600 \$10m 900	-143	0 0 0 1	Ø16 9.4.	0	1 Umozo 28		1	41 \$18 1360 1 2 2.7			C-12 18 \$600 260 4 48 125 2,8	- 11
ļ			100/18	Ø61A 260		0 41.0		HD.	Nr-23 30 022 1580 1 2 3,2 9,0		8	Langue University] }	WT. 12 19 \$600 320 1 12 3.8 0.8	- 11
-	\neg		M-3 7		1 2 0	5 5,2	S=10 10.4	`	25 412 1320 1 2 2.6 2.		12	42 018 1580 1 2 3,6		l s	M-1 5 22000 300 1 2 06 104	
			WT.2 10	P10na 200			8=6 10.8	-	WT. 2 31 \$22 1480 1 2 3.0 9.0		`	Nr-27 43 018 1660 1 2 3.3		100	M-1 5 -220M 300 1 2 0.6 10.4 WT. 2 6 010nn 300 4 8 24 1.5	
pg	01		-	60 0 300	1 2 Q		Imo20: 442.7	}	18 \$600 250 4 48 125 23		1	WT. 2 38 018 1540 1 2 3,1	1 1	090	Umo20 11.9	
aka	תשיו		M-4 9	100×6 300 010nn 200	1 2 0				C-10 19 \$600 320 / 12 3.8 20			39 \$18 1460 1 2 2,9		1 2	M-3 7 220x6 250 1 2 0.5 5.2	
tac Doid	70/		WT.2 10	7,01111 2.00	Umazi		j		шт. 12 Итого 3.			Umozo	27.3	\	WT.2 10 010m 200 4 8 16 10	
H	7		9	10016 300	1 2 0	6 2.8			Omđenskie no 3u uu u , M-1, M-3, M-4 M-5, C-1, C-2, C-3u C-5 B3Amb no HN1	1	1	Отдельные позиции, М-1,		9	M-4 9 1006 300 1 2 0.6 2.8 1 10 100 100 200 2 4 0.8 0.5	-
	\mathcal{M}		M-5 8	\$10nn 350		4 0.5			Напрягое-Ф570 29940 88 2035 38	957A 384.7	1	M-4, M-5, C-1, C-2, C-3, U C C-10 no HN2	-5,	🖹	W1.2 0 0000 200 2 4 0.8 0.5 W1.2 W1020 3.3	- []
13/2	31		WT2 11	\$12na 500		0 1.8		ł	мая арма	\$600 7.8	\vdash		0 000 000 000	1	9 -10×6 300 1 2 0.6 2.8	
2 3	37		1 5	22010 300		0 5.1			mypa	\$10nn 5.5 \$12nn 1.8		2000 10 2 00	9 2306 P25xxx 2306 7 3594 P22xxx 359.4	11	M-5 8 \$\overline{Q}(0)\alpha\end{a} 350 2 4 1.4 0.5 \\ \overline{Q}(1)\alpha\end{a} 900 2 4 2.0 1.8 \end{a}	- 11
200	R		M-1 6			4 1.5			G-10, NK-22 U NK-23 B3AMB NO HNZ	\$6 410		2 \$1000 - 4 3.2		11	WT020 5.1	
-	\mathcal{H}	1	шт.2			0 11,9		<i>w</i>	M-1, M-3, M-4, M-5, C-1,	Ø12 4,4		4 018 1500 - 4 5.4]	W-1 46 -10020 330 - 4 132 207	
049		ИΗ	01 12			9.4 4.1		12	C-2, C-3, C-5 U amaenonie	Ø18 12.8		9 18 06 nn 260 - 2 0.5		↓	W7. 4	<u>, </u>
001	Прове рил	_	WT.4 13	Ø6 <i>370</i>				`	חס אחון משונים ביים ביים המשונים	\$20 25,0 \$22 18,6		1 45 06 1170 - 61 71.5 109 0101 900 - 4 3.6	1.2/0-11:	1	Напрягаема 1925км 29940 — 6 179,6 691,4 1925км 691,4 арматура — 012nm 1.8	
) Joyo	29€		14	96 900	5 20 10	9.0 4.0		1	1	8=10 10.4		10 06 1700 - 20 34.		11	27 020 1880 1 2 3.8 9.4 010nn 7.7	
SC C	IJρ		0.2 15			5.8 3.5		1		8=6 10,8		0 = 111 Ø16 940 - 4 3.8	6.0 06 38,9	71	Mr. 22 28 020 1960 1 2 3.9 9.7 0801 7.8	
十			WT.4		Umpa	20 7,5				<i>Итого 544,8</i>		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 46.5 8=6 10.8		WT:2 22 012 1220 1 2 2.4 2.1 022 18.6 29 020 1420 1 2 2.8 6.9 020 25.0	
-			C-3 15			25 18.8		1	Напрягаемая (1571) 29940 - 96 28742 413 арматура	-	3	120 \$18 1180 / 2 3.0 NK-20 21 \$018 1860 / 2 3.7		- · ·	Uno20 28.4 P18 12.6	
HILL	RUH		WT. 4 17	06 250		3 1.6		1		\$\phi 60n 7.8 \\ 4 \phi 10n 26.5	904	WT. 2 22 012 1220 1 2 2,4			25 \$12 1320 1 2 2.6 2.3 \$16 6.0	
7697 000	lup.		C-4 18	06nn 260	4 48 1	25 28		1	33 022 1960 1 2 39 12	7 91200 1.8	`	23 016 1420 1 2 2.0				
30	63		WT 12 19	Ø5 M 320	/ /2 3 Um 0	8 0.8			VK-24 22 Ø12 1220 1 2 2.4 2.				0 21.1	41	110000 209 5=6 100	8
+			C-5 18	Ø60A 260	1,1,0	3.1 0.7			W7.2 34 \$9.14 1460	5 012 4.4		NR21 24 Ø18 1580 1 2 3.1	6.2	$\{ $	C-1, C-2, C-11, C-12, M-1, M-3, M-4, \$=10 10.4 M-5 U OMBENDHOIE 103UUUU 838Mb VINOCO 857.	纠
11.	2/1		WT 12	Ø6nn 320		5,4 3,4 20 4,1		14	35 014 1360 1 2 2.7 3.	3 014 5.8 0 016 10.3		WT. 2 26 \$ 16 1480 1 2 3.0	0 4.7	11	М-5 и птаельные позиции взять	<i></i> []
Charles	13			018 1780	7 1 2 3	8 72		104	35 015 1580 1 2 2 2 5	1 10 10 248				1	NO HN-6	2
33			118-20 21	Ø18 1860	1 1 2 3	3.6 7.2 3.7 7.4 2.4 2.1 2.8 4.4		`	Nr-25 37 016 1560 / 2 3,3 5,	2 022 23.1		C-1 12 \$\phi 6 \text{1150} \text{4} \text{16} \text{18}. \begin{array}{c ccccccccccccccccccccccccccccccccccc	4 4.1]]	111-2 77 110020 330 - 4 732 207	
6) ()			WT2 22	2 012 1220	1 2 6	2.4 2.1		1	WT. 2 25 PAC 1320 1 2 26 2	3 8=10 10,4 2 8=5 108		WT. 4 13 06 370 12 48 17.0	9 3.9	┨┖	wm. 4	_
1	H		23	9 16 1420	1 1//22/22:	20 211	1 1		ПК-25 016 1560 / 2 3.3 5. шт. 2 25 012 1320 / 2 2.6 2. 38 018 1540 / 2 3.1 5. 39 018 1460 / 2 2.9 5.	8 VIMOZO 587.4		1000	0.0] 7	400 0 200	
. mo	1011		24	018 1580	7 1 2 3	3/ 62		1	<u> </u>	6	_			<i>(199</i>)	8 — (#)	
Z K	Pyk. membi Pyk. epynnbi		VIN-21 25	912 1320 916 1480	1 1 2 3 0 1 2 6 0 1 <u>2</u> 3 Umo c	7.6 2.3			Om đenohole nosuyuu M-1, M-3, M-4, M-5, C-1, C-2, C-3	- 1			/	Q	Depmoi nponemom 30 M Bhinger	
Z 3.7	7 3		1 20	970 7400	Umac.	- 13.2		L	UC-5 B3AMB NO HN1, C-10noHN &				1960 Cned	уиф и.	KAULUS CITICAU HO SAEMENTOI DEPM BEINYCK 11, HNZ, HN3, HN4, HN5, HN6 UHN? AUCT 2.	
# H	0												7900	///	I, IIII E, IIII J, IIII T, IIII J, MIII U MIII L I NOCIN E.	<u></u>

	_									B 6160	DKO DU HO	Ca	ециф		11110	omo
	Cn	ециа	DUKC		a cma		HO 1. Yectbo	9.NEM	ент	120	DWDUT		T . 1	~~	্ত্ত	
	НОСІМЕНОВ. ЗПЕМЕНОГО	Μαρκα καρκασο	NN गळणपण्डे	Ф ИЛИ НОМЕР. ПО СОРТАМЕНТЗ	e MM	Ha 1 kapk.	шт всего	En M	Bec re	d unu Howep. No Cap Tamenm	Beo Ke	НОИМЕНОВ ЭЛЕМЕНТО	Μαρκο καρκασο	NN TOBUGUE	UNU HOMED IN COPTOMEN	e mm
			$\overline{}$	ф28кл		=	2	59.9		Ø28KA	289 6		Hanpa	PARMAR		2994
		арма		Ø25KA		-	4	119.8	461.2	Ø25KI	461.2	1	apma	тура	Ø25K1	299
	!		2	Ø10 nn	800	_	4	3.2	2.0	Ø12n1	1.8		1	32	φ22	188
	1	}	4	Ø18	1600	_	4	6.4	12.8	Ø10M	7.7		1	33	Ø 22	198
	1	2%	18	Ø6111	250		2	0.5	0.1	Ø8111	7.8		NK-24	22	Ø12	122
		отдельные позиции	45	06	1170	_	61	71.5	159	\$22	18.6		шт. 2	34	914	140
		36/2	109	PIONA	900	二	4	3.6	2.2	020	26.0		ļ	35	914	130
	1	188	110	<i>\$6</i>	1.700	<u> </u>	20	34.0	7.5	Ø18	12.8			1.	415	100
\prod	1	10	111	\$15	940	-	4_	3.8 Inoed	46.5	Ø16 Ø12	<i>5.0</i> <i>4.4</i>		i	36	Ø16	150
	1		├	├		 	- ا	71102	70.5	\$5	38.9		NX-25	+	012	130
0	1	-	27	020	1880	1	2	3.8	9.4	<i>6=6</i>	108	0	WT. 2	38	018	154
200		NK-22	00	020	1960	1	2	3.9	9.7	5=10	10.4	0		39	\$18	140
Garaba	1	1	22	Ø12	1220	1	2	2.4	2.1	Õ=20	20.7	1	L		<u> </u>	L
Dologros Wayunno		WT. 2	29	Ø20	1420	1	2	2.8	6.9	Umozo	916.7	\parallel	4-4	47	-100x x 20	33
+}}	┨					_	<u> </u>	UT020			L		UT. 4			
3		nr 03	30	Ø22	1580	1	2	3.2	9.6	.		Н				
		/JK-23	25	012	1320	1	2	2.6	2.3	#		H	Dom	ח פה	ьные	no
No.	90	WT 2	31	Ø22	1480	+-	2	3.0	9.0	1					-12, /	
Colorense of				1	4450	-	1=	Umoeu		1				3,917		
	HD	Q-1	12	06	370	12	15	18.4	3.9	╢				•	_	
9	1 `	Um. 4	13	00	070	12	Um	_	8.0	1		 	-			
UCOONHUMENS POSEPUN			14	06	900	5	20	180	4.0	il .			Напря			299
JONO SEPUL		C-2	15	06	440	9	35	15.8	3.5	1			OPMO	mypa		L
000	1	LUM 4		-			Umo	_	7.5	il .						
30	Ì	C-11	18	Ø5nn	260	1	12	3.1	0.7	1			0	mae.	ЛЬНЫ	e .
+++	┥	417.12	19	Ø5nn	320	4	48	15.4	3.4	Į .					C-11,	
						ļ.,	Umo	+	4.1	-		1	ļ	M-5	B3A	M6
Z Z Z		C-12	18 19	\$6111 \$6111	260 320	4	12	<i>3.8</i>	0.8		j			32	022	188
S S T		WT. 12	13	40101	020	 	Umo		3.5	l		1	i	33	Ø22	_
POOKUH POOKUH VDRBEBO			5	-220:10	300	1	2	0.5	10.4				NK-26		012	
883		M-1	5	DICAA		4	8	2.4	1.5			15	WT.2	40	Ø18	
+++	-	UM.2					Umo	20	11.9			0	ł	41	Ø18	130
	•	14-3	7	-220×6	250	1	2	0.5	5.2			I			\mathbb{L}	上
]	шт.2	10	Ø10 <i>01</i> 1	200	4	8	1.6	1.0			1		42	Ø 18	158
	1						Uma	20	6.2			1 .	1_	43	08	166
13/12	1	M-4	9	-100× 6	300	1	2	0.6	2.8			1	NK-27	25	012	132
141		Um. 2	10	\$10nn	200	2_	4	0.8	0.5			1	<i>₩</i> 7. 2	38	Ø18 Ø18	154
+++-	ł	\vdash				_	umo		3.3					39	410	1770
0) /0/2		M-5	_	100×6	300	2	2	0.8	2.8		ŀ	1	111 5	48	-100×20	33/
		W7.2		Ø1000	350 500	2	4	1.4	0.5				W-5 WT. 4	40	100 120	1550
ry. C PPS/	1	}	<u>"</u>	Ø12nn	500		-	2.0	1.8				WT. 4	-	 	1
Pyk.		Ш-3	,,				Um		5.1	ľ			ļ	-	-	\vdash
3 00		W7.4	44	100×20	330	-	4	1.32	20.7	١			L	<u></u>	<u></u>	L

Cne	euv qt	UKO	ция	eman	U HO	13.	NEME	HT	BUGO	ON Q MEHM	Специ	gbura	 14UR	מממו	U HO	13/1	EME	מזאני		86160PK HOI 1371			(
наименов элемента	Μαρκο Ταρκασο	אא טטטטפסר	O UNU HOMED NO SOPTOMENTS	e mm	KONUY N U HO 1 KOPK.	vec18. um. BC020	en M	8eC K2	A UAV HOMED NO COPTONEHIS	8ec K2	Наинен. элемента	нарка каркаса	NN nosvyvů	Ф ИЛИ НОМЕ О ПО СООМОМ	e MM		ectbo UM BCe- 20	en M	вес кг	O UNU HOMED IN COPINOM.	Bec K2	90, 100, 100/	HOUNEHOS
63	Hanpaz	_ <u>`</u>		200/10	-	4	119.8	579.2		579.2			49	ф121Л1	2450	4	4	9.8	8.7	ф12ПЛ	8.7	Г	
	арма	ТУРО			-	2		230.6	 	230.6			50	Ø 10nn	1850	1	1	1.9	12	φ10nn	1.2	1	Č
	\vdash	32		29940 1 88 0	1	2	3.8	11.4	Ø12nn	1.8		0r 1	51	Ф57	270	45	45	12.2	1.9	Ø24	2.5	١	(поплаткение)
			Ø 22			2	3.9	11.7	Ø10nn	7.7	2	NK-1	52	<i>Q12</i>	1200	2	2	2.4	2.2	Ø12	2.2		350
	a	33	\$22	1960	1	2	2.4	2.1	Ø5111	7.8	004		53	Ø24	100	7	7	0.7	2.5	\$6	0.3		200
	ПК-24 Шт. 2	34	Ø12	1220	1	2	2.9	35	Ø22	23.1	1		54	-100×6	300	2	2	0.6	2.8	Ø5T	1.9		000
	<i>u,,,,,</i> 2	35	014	1360	1	2	2.7	3.3	Ø18	248	8	ļ	55	-160×6	300	1	1	0.3	2.3	6=6	5.1		0
		00	W/7	1,000	<u> </u>		U7020	32.0	Ø15	16.1	0				L	<u> </u>	Un	020	21.6	UMOEO	21.9		ď
		36	Ø16	1580	1	2	3.1	4.9	014	6.8				<u> </u>			<u> </u>						
		37	\$16	1660	1	2	3.3	5.2	\$12	4.4	-300	Omd.	59	06	680	_	2	1.4	0.3			Н	
_	NK-25	25	\$12	1320	1	2	2.6	2.3	96	<i>38.9</i>		103U- 14UU	Ĺ			ļ	_	ļ		ļ		Н	
o)	WT. 2	38	018	1540	1	2	3.1	6.2	6=10	10.8	8				L		<u> </u>	ļ				П	
6		39	\$18	1460	1	2.	2.9 U1020	5.8 24.6		104		M-3	7	-220x6	250	1	1	0.25	2.6	\$ 1200	8.7	П	
I	1. 1		-100x	 	┼─	١.,		 	0=20		1	ит.1	10	\$10m	200	4	4	0.8	0.5	Ø10nn	1.7	┞	
	W-4 WT.4	47	×20	330	-	4	1.32	20.7	47020	983.1				<u></u>	<u> </u>		um	020	3. 1	Ø24	2.5	П	
	W/. 7	L	L	<u> </u>	<u> </u>		L	<u> </u>			00	,	7K-	10.	NO3.	5 6				\$12	2.2	П	
	1										300			838	mb i	70	81-	-300		\$6	0.3	Н	
	Om	дель	HUIE	11034	ועטט	, 0-	1, 0-	2,			80									Ø57 δ=6	1.9 7.7	П	
	C-	11. C-	12, 1	M-1, M	1-3,	M-4	UM-	5	1		00%											П	
	8	3,91716	, 17	O H	78							l								Umozo	25.0	П	Q
	ĺ									•			50	Ø12N1	5980	4	4	23.9	21.3	\$12nn	21.3	П	q
	Напряг	200400	A20r	20040	, _	6	129 6	268.8	Ø28KA	868.8	}	7X-2	51	Ø57	270	116	115	31.4	4.8	Ø24 ·	0.7	H	Ø
	OPHO!			23340	+-	ا	1.70.0	1	PIZIM	T		WT. 1		¥			Um	020	26.1	Ø22	0.6	П	
	чрнил	ngpu	L	<u> </u>	<u> </u>		<u> </u>		Ø10m		il .	•								\$20	0.5	П	
									Ø5111		H	14-8	62	193.TP	300	1	1	0.3	0.9	Ø18	5.0	Ш	
	01	ndel	76H6	ie no	7304	UU,	C-1,		022	23.1		417.1	63	φ6	120	4	4	0.5	01	Ø1E	2.0		
	6			C-12,			3, M-	4,	Ø18	49.0	li				L		Um	020	1.0	Ø12	0.8	П	
	1	M-5	839	M6 N	וא ט	7-8			016	6.0		M-9	64	120×10	300	1	1	0.3	2.8	010	1.9	١l	
		32	\$22	1880	1	2	3.8	11.4	\$12	4.4		47.1	65	\$20	100	12	2	0.2	0.5	Ø5 Ø57	3.3		
		33	Ø22	1980	1	2	3.9	11.7	05	38.9	[]] .	66	Ø18	630	2	2	1.3	5.0	<i>δ=6</i>	48		
_	NK-26	22	012	1220	1	2	2.4	2.1	6=6	10.8	0	İ	67	Ø18	580	2	2 Uma		83	5=8	2.6 1.9		
02	ב.דש	40	Ø18	1460	1	2	2.9		ō=10		8	-	60	-180×6	300	1	1	0.3		ō=10	2.8		
0		41	Ø18	1360	1	2_	2.7	5.4			ł	M-10	60	\$ 12	470	2	2	0.9		PO3.TP.	0.9		
1					<u> </u>	┞-	11020		UTOEO	1049,4	İ	WT. 1		Ø24	100	2	2	0.2		Unozo	49.1		
		42	018	1580	1	12	3.2	5.4	 					`		†	Uno	20	4.1				
4		43	018	1660	1	2	3.3	2.2	H				70	-100x8	300	1	1	0.3	1.9				
	NK-27	25	012	1320	1	2	3.1	2.3 5.2]]		l	M-11 WT: 1		<i>Ф22</i>	100	2	2	0.2	0.6				
	шт. 2	<i>38</i>	Ø18	1460	1	2	2.9	5.8	l l			w. 7		Ø15	<i>630</i>	2	2	1.3	2.0				
		99	40	1,,,,,,	†-	 -	+	27.3			ll .						Umi	020	4.5				
ł	111.5	48	-100×20	330	1-	4		20.7	11							L	L						
- 1	W-5	40	100120	1555	+-	+-	 		tl 💮		_							-					

Cne	?yu q t	UKO	YU9 C	שתנומחו	אם	l ane	Meh	רווי	85100 CM 011 131181	U HO
Ноименов Эпементо	Mapko Kapkoco	NN ROXUGUÜ	O UNU HOMEDIO COPMOM.	e MM	KONU HO1 KAPK	чест шт, ВСе- 20	en M	8CE- 20	ф и:ж номер по сортам.	Bec Ke
	2	73	Ø6	400	2	4	1.6			
	C-6 WT.2	74	96	07 270 20350	5	10	3.0	1.1		
છ્	عح	75	Ø6	220	1	2	0.4			
HO3										
В 2 (продалжение)		58	Φ5	320	2	4	1.3	0.3		
Da	C-7 WT.2	57	96	190	1	2	0.4	0.1		
tu)	ء الم					Umo	20	0.4		
2		15	Ø 5	430	2	4	1.7	04		
9	C-8 WT.2	75	<i>\$6</i>	520	2	4	2.1	0.5		
		13	Ø5	370	5	10	3.7	0.8		
						umo	20	1.7		
	Отдел.	78	\$10	950	I	2	1.9	10		
	103U-	56	\$10	270	-	4	1.1	1.9		
	400									
									PIZNA	21.3
	17K	-2, 1	1-8, M	-9, M-	10, M	-11, 6	?-6,		Ø10nn	1.0
	0-	7,0-0	3 U 01	пдельн	ibie i	7030	400	,	024	0.7
	l	-		емен			•		#22	0.6
		_		-,	·· y -	_			020	0.5
	\vdash	£4	180×6	100		<u>ا ، ا</u>	0.36	2 1	918	5.0
0	M-7	61	PIONA	180	4	2	1.5	3.1	Ø16 Ø12	0.8
88	ur. 2	,,,	7 101111	200	1	Uno		4.1	\$10	1.9
00				1		0,			95	3.3
									Ø57	4.8
	i								δ=6	57
									<i>6=8</i>	1.9
1									δ=10 Γαз το	28
ł	l								193.TP.	0.9
									Umozo	53.2
L	<u> </u>								<u> </u>	

1960

Фермы пропетом 30 м Спецификация стали на элементы ферм нпв, нпв, нппо, в1-300, в1-400, в 1 я - 300, в1Я - 400,в2, в 2 Я

ПК-01-16 Выпуск 8 Лист 24

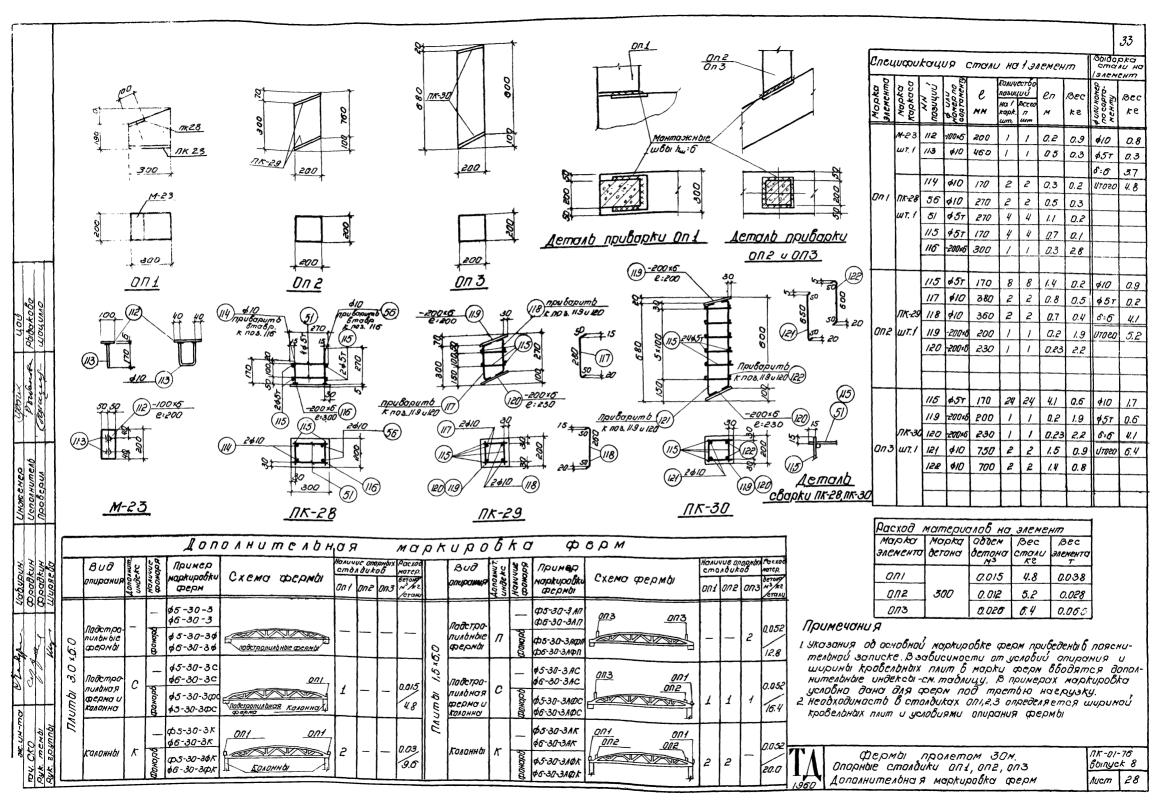
	Cne	4400	UKQU	Ug	cma	ווווי	HA	7	86150	DKO																												[30
	9 9	. 6	رُ ا	1em	<u>eun</u>	701-6	HO :		Bbibo Cmand 131em	PHM	Cneu	upuk	0409	ema.	IU HO	131	enei	4111	Bb160) HT 13	DO CTONU NEMEHM	Cne	циф	UKCIL	LUA CI	MONU	HO 1	JAEME	HM	Bbibapi Ha 131 e	T CTOW MEHIN	Cney	אטקסטא	0449	CMON	U HO.	1 31EME	CHITT	BOIBOPKO HO 1 31em	T CITI
	Madak	xabrac oxdow	0300 0 040	¥6.		03/4 01/80 00/4		Вес кг	HOM	Bec ri	Наитен. Элемента	Μορκο Καρκασο	700	0000	e ka	privect. 1 Beec priving	en	Bec	A UNU HOMED NO	Bec RI	_	Марка	_	ODTOMENTS	l mm	Ha I	100 C1	Bec K2	news	Bec KZ	напина	Mapka	N N 10344UÚ	ou dawon m	Kanu Ba ni Ha l	vecm- osuu. Boero En	T	nep no	Bec MZ
		шт. А		51 2	270 1	16 1	4 23.9 16 31.4 Imozo	4.8 33.7	\$24 \$22 \$20	0.70 0.6 0.5		ЛК-5 ШТ.1	79 p. 51 q 84 p.	14na 5. 157 2 14na 20	980 4	4 4 6 116 6 6	23.9 31.4 12.0		ф14 п. ф24	1 43.4 0.7		17N-4	79 87	ф14пл ф12пл ф5т	1600	4 3 116	4 23 3 4.6 116 31.4	4.3	ф14пл ф12пл ф24	<i>4,3</i> <i>0.7</i>	18	NK-2 WT-1	60 M	201 590	90 4	4 23.5 116 31.4	9 21.3 4 4.8	ыгл г ф24 с	2/.3 0.7
			62 mg 63 q	-	100	2 .	2 0.6 8 1.0 Umozo 2 0.2	2.7 0.5	\$16 \$12 \$10	1.7		M-15 WT.1	64 12 65 9 85 9 86 9	320 B		/ / ? 2 ? 2	0.3 0.2 1.3	2.8 6.7	Ø12 Ø10	0.8 1.9 3.2		WT-2	63	эаз. тр. 114" ф5	120	4	Umoeo 2 0.6 8 1.0 Umoeo	1.9	\$20 \$12 \$10	7.2 1.0 0.9 1.7						Umae0		φ12 0 φ10 0 φ6 3	10.4 0.8 1.9 3.2 4.8
U OKOBO UNNO	3	M /2	65 \$ 83 100 80 \$ 53 \$.			2 .	2 1.2	2.4 2.4 5.3	\$57 6:6 6:8	3.4 4.8 2.6 1.9 2.4	78	М-16 ШТ.1	83 H 85 G 65 G	10×10 3 020 6	00 1	Um	0.3	9.5 2.4 3.7	0:16 0:16 103.0 11/4	2.6 0 5.2 0 0.9	85	ודוש	65 88	<i>\$22</i>	100 590	2	1 0.3 2 0.2 2 1.2 Umoeo	0.5 3.6 6.5	\$57 8:6 8:10	3.4 4.8 2.6 4.8	98							8:6 8:10	2.6 5.2 0.9
400m		шт. 1 M-14	68 18. 81 p 70 10	0×6 3 12 4 0×8 3	100 190 a	1 2	1 0.3	2.6 0.9	Ta3.mp. 1'14" Llmoeo	19		M-10 WT.1	68 -1 69 (180×6 3		Um 1 1 2 2	0.3	6.1 2.6 0.8	Umoe	v <i>73.9</i>		W7.1	68 81	\$24 -180×6 \$12	<i>490</i>	1 2	2 1.0 Umoeo	2.6 0.9 42	103.TP. /4" /1020	1.9 62.2									
Ma actor		C-7	71 p. 82 p 58 p 57 p	6 3	20	2 2 U 2 4	2 1.2 Imoeo 4 1.3	0.6 1.9 4.4 0.4				M-8 W7-1	63	ø6 1	20 4	1 1 4 Um	020	0.1				WT:1	65 89		100 580	2	2 0.2 2 1.2 Umoeu	3.6 65				M-15 OMÔ	5, M-16, 1 7. 103U	M-8, M-;	10, C-6, 110	C-7, C-6 B4	80		
сженер полнитель гоберил		e-g w14	13 p 58 p 15 p	6 3 6 3	70 2		6 5.9	28					73 g 74 g 75 g 57 g 58 g	66 20 66 20	270 350 5 20 1	10 2	0.4	0/1				WT-2	57 13 58	<i>\$6</i>	190 370 320	1 .		2.8				NK-1 C-8	2, M-1. U OMO	15, M-16, . 7. 103 (M-8, M	10,C-6,	36	520 1	
ин Ик чин Ие гин Ир		ינטטען ארז ארז	78 ø. 56 ø	10 2 8, M	1.12, M	1-13.	9 1.9 3 0.8 M-14, C	0.5	ф14ПЛ ф10ПЛ	28.9 1.0			13 q 15 q 76 q	16 3	70 S 30 L	10 2 4	3.7	-				M.7	56 61	\$10	950 270 180	- - 1		1.2 0.5 6 3.1	\$14NA	-	868	M-7 WT-2	61 76 10 \$1	80×6 180 10m 200	0 1	2 0.30 8 1.6 Umoec	5 3.1 1.0 7 4.1	\$10 1 \$6 3 \$57 4 \$:6 5	1.9 3.2 4.8 5.7
4000 00000 00000		C-9 M-7 L	0 01 53,9111 61 -41	nde,	16HB1 0 B3	ie no	2 0.36	<i>3.f</i>	\$24 \$22 \$20	0.7 0.6 0.5 2.4		0m8. 11034- 14UU	56 q	610 2 510 9 80×6 1	70 - 50 -	2 2	1.1 1.9 0.36	1.2	ø#n	43.4	9		10	ΨΙΟΙΙΧ	200		8 1.6 Umozo			4.3 1.0 0.7 7.2 1.0									5.2 0.9 55.9
Chapper of the	B3A	WT.2	10 \$10	ina 2	00 4	0	9 1.6 Imoeo	1.0 4.1	\$16 \$12 \$10	17		М-7 ШТ.2	10 p	5, M-8	00 4 M-10,	1 8 Um M-15,	1.6 020 M-10	1.0	\$1000 \$24 \$20 \$12 \$10	1 1.0 1 0.7 10.4 0.8 1.9	858	0-9	100		AbHbie	e no	71-18, C		\$12 \$10 \$6 \$57	0.9 1.7 3.4 4.8		en							
TA. UHM. UHMO HOV. CKO PUK. MEMBI PUK. EPYINDI								- 13	\$6 \$57 \$-6 \$.8 \$:10 \$13,mp.	5.7 1.9 2.4 1.9	848		oma	ельн	7, C- bie n b no	030	400		φ6 φ51 δ.6 δ.10 103.m 114 Umoat	3.3 4.8 5.4 5.2 0.9								PIN	6:6 6:10 103.mp. 114" Umoeo		- 360	U —	78)						
Hau Pur Pur									Umozo .	58.7									Limoa	78.0								196	0 6	TREYU PPMBI	EPMC B3A, B	74 N.P. 74U A 84, 84.	ONEM CMO A, B5,	OM 30 NU HO B5R, B	Um, 7 31e, 6. B6	менто Я, ВЗ	TIVE I	-01-79 140 K E	

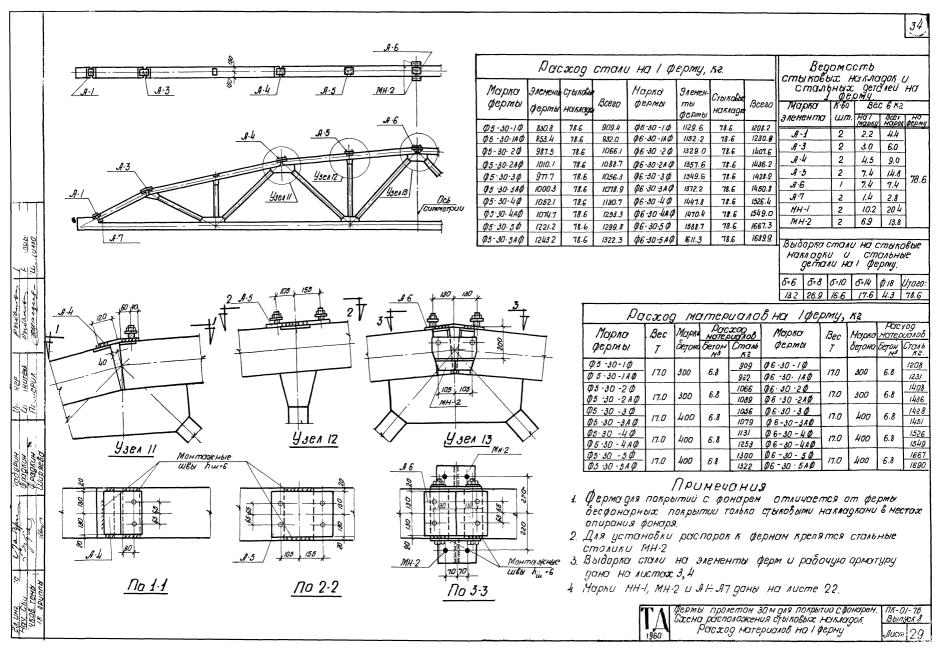
Consequence Consequence																																								31	_
		Cney	UPU	1040	I A CI	nasu	HO 1.	INEME	HM	86160pxa Ha 131em	CTOMU CHM	Crie	ruuq	UKOL	LUA C	manu	HO 1.	snem.	ент	BOIDOD	HO C	пец	UPUK	KO4U)	i em	מוע ו	HO /	элете	HM	Boild	DAG U HO	Ca	euc	IDUK	allia	ama ı		12122	12	bibopra	1
## 15 St. 10 St.		Морко Энетента	Морка коркасо	N N nosvyvý	HOMEO NO HOMEO NO CODICIMENTS	l MM		T M	re	7 VOM C	ec	MODEO	Μαρκα καρκασο	ingual Sangua Sangua	Номер по сортоменту	l mm	KON-8 103UU 101 80 101- 1	0, 10 en 10 m	7 Bec	d UNU Hamep no captament	ec re	элемента	Mapka	NN NB3U4UÚ DUNU	натер по Сортатенто	e nm	KOA- 103UU Ha (BO LUU PARADO PA	Вес	58	Вес	ниеново- ние	Mapka	moce M	UNU Tep no The Hims	e di	ONUMECTO POSULLUÚ POS	en.	see I	5.61	
1960 8 7; B 7A; B 8; B 8A; B 9; B 9A; B 10; B 10 H Juem 26	The control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the co	7.8	M-8 WT-1 WT-1 M-17 WT-1 M-18 WT-1 C7 WT-2 C9 WT-1 WT-2 PM-080	5/ 62 63 65 88 83 65 88 81 53 65 89 58 57 78 56 61 70 77, C	\$57 \$700.10 \$420 \$420 \$420 \$420 \$420 \$420 \$420 \$420 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400.10 \$400	300 120 300 100 590 100 300 490 300 100 580 190 370 320 430 950 270 180 200	1	4 23.5 6 34.4 Ilmozo 2 0.6 8 1.0 Ilmozo 2 0.2 2 1.2 Ilmozo 2 0.2 2 1.2 Ilmozo 2 0.2 2 1.2 Ilmozo 2 0.2 2 1.2 Ilmozo 3 1.3 2 0.3 2 1.3 2 0.3 3 1.3 3 1.3 3 1.3 4 1.3 2 0.3 6 5.9 8 1.6 8 1.0 8	4.8 33.7 0.2 2.1 0.5 3.6 0.5 0.7 2.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	\$\psi \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \) \(\psi \)	0.7 7.2 10 1.7 3.4 4.8 2.6 4.8 2.6 4.8 1.9 1.7 7.2 1.0 0.9 1.7 7.2 1.0 0.9 1.7 7.2 1.0 0.9 1.7 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	88	M-8 M-19 M-19 M-19 M-10 M-10 M-10 M-16 M-16 C-6 M-7 M-7	5/ 8/4 6/5 6/5 6/5 6/5 6/5 6/5 6/5 6/5 6/5 6/5	\$57 \$1410A \$23.7.P \$140' \$46 \$20 \$20 \$22 \$24 \$28 \$22 \$24 \$28 \$20 \$20 \$20 \$20 \$20 \$20 \$20 \$20	5980 270 2000 300 120 300 100 530 530 470 300 470 300 470 300 470 300 470 300 470 300 470 300 470 300 470 300 470 300 470 300 470 300 470 300 470 300 470 300 470 300 470 300 470 300 470 300 470 300 470 470 470 470 470 470 470 470 470 4	COC W W 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 23.4 16 91.4 16 12.6 17 0.5 17 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 19 1.6 10 1.6 10 1.6 10 1.6 10 1.6 10 1	4 4.8 0 14.5 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 40.6 0 4	\$\text{\$\psi \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!} \text{!}	1375 289 386 29 77 528 9 387 289	9,4	M-20 U OI	51 9 37 9 92 10 93 9 94 9 8, M-1 maens 7, M-20 3enbus	57 collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collection of the collectio	10, C- 888 888 1000 10, C- 10,	6 116 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 35. 116 31. 6 96 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0	8 43.3 4 4 8 8.5 5 5 6 6 3 2.8 7 0.4 7 7, C-8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	# 12 m # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20 # 20	43.3 8.5 5.3 7.5 0.4 0.8 1.9 3.3 4.8 2.6 2.8 2.8 0.9 85.4 43.3 8.5 0.4 0.8 1.9 3.3 4.8 5.3 7.5 0.5 0.9 4.8 0.9 1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	8108	MT. M-2. WT. M-2. WT. M-2. UT. UT.2	8 79 8 87 51 8 62 2 63 91 92 1 94 95 1 94 95 1 96 1 96 1 97 1 97 1 97 1 97 1 97 1 97 1 97 1 97	\$1400 \$1200 \$1500 \$1500 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000	300 100 590 100 590 100 590 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	1	23.9	28.9 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8.5 p. 8	Ke Ke Ke Ke Ke Ke Ke Ke	

101/24	upe	KOU	UA C	MOAL	I HO	1 31	eme,	400	Bubol condau gaen	HO	Спец	supi	ukau	(UR C				NEM	CHID	CMAN.	HO	Cneu	uæu	kau i	IR CI	שגשת	' HC	191	emer.	וחו	BUDO CITICA 1948	NU EM
Марка Элемента	Mapka Kapkaca	nosuqui	d unu Homep no Copmomenty		kap-	er b a u ú boez a n um	ln M	Bec ke	3 8 6	Bec kë	Mapka snemerima	Mapka kapkaca	יש הסשטעעיל	φ υλυ Homep no Copramenmy	2	kap.	ecrifo 1344 80ew 17 wm.	en H	Bec ke	KWHAMPUODS OU O'AWOH OVI O'AVO	Bec kë	Марка Элемента	Μσρκο κσρκοσο	AA nosuquú	ACMED TO	l mm	Kanuve Nasuu Ha 1 Kap Kac	suú Breeo N	1 1	Bec ke	A UNU DO HOMEHIN	HAMOU
		96 9	b16/11	2400	4			<i>15.2</i>	ф16пл	15.2		~	/03	\$14na		4	4	13.8	16.7	φ/4η,	16.7		٠,			1750	4	4	7.0	4.3		7
ía			ø6	/30	22			1.1	φ6 	/./ /6.3	25	7-1	99	φ5τ			32	4.2	1"	φ 5 τ	1.1	10	7K-1		\$57 \$57	130 90		20 20	2.6 1.8	0.7	\$5 _T Unoea	+
1	£ \$	97	φ6	90	22	28	2.0	-	<i>Цтого</i>	10.0		6 3	100	φ5τ	90	38	32	2.9	_	<i>Цтого</i>	17.8		/ 3			30	20	20	"			
1		98	b/Ons	3450	4	4	/3.8	8.5	ΦlOna	8.5			104	ф/2ги	3850	4	4	15.4	13.7	ф/2na	/3.7				\$10nx	2650	4	4	10.6	6.5	фЮпл	Ц
	0.		φ5τ	/30	32		4.2	1,,	ф5 _Т	1.1	50	7-4	99	φ5r	/30	36	36	4.7	112	ø57	1.2	25	7-18		Ø57	130		32	4.2	1 <i>7 /</i> •7	<i>∮5</i> ⊤	J
P2	0x-10 cum.1	-	φ5τ	90	32	32	2.9	J "."	Umozo	9.6	d	£ 3	100	φ5 ₇	90	36	36	<i>3.3</i>] "-	Umoen	14.9	6	ראט. עשי	100	φ5 ₇	- 90	32	32	2.9		Umozo	,
+		101	∌/2na	3450	4	4	13.8	12.3	\$12na	12.3	-		105	\$18na	2400	4	4	9.6	19.2	ø/8n#	19.2	431	6/	/23	<i>ø6</i>	180	<u> </u>	66	11.9	2.6	ø6	
2	×.		Ø5T	/30	32	-	4.2	1./	ø57.	1.1	7	5,	57	\$6	130	22	22	2.9	1	φ6	1.1	фер		124	ø6	760		8	6.1		Ø/0	
1 ~ 1	17K-11 WM.1		ø57	90	32	32	2.9	1/	ZImaza	13.4	Ö	17K-15 Wm.1	97	ø6	90	22	22] "	Umoго	20.3	`		/25	\$10	1140	T-	4	4.6	2.8	ØVOns	,
1 1	- 3						<u> </u>		L			3												126	\$10na	620	-	12	7.5		1/maza	
7		102	DIONA	3850	4	4	15.4	9.6	\$10 m	9.5			106	\$/4na	3850	4	4	15.4	18.6	\$MA	18.6											
7	2/2	99	Ø57	/30	36	36	4.7	11/2	Ø5 r	1.2	00	95	99	ø5r	/30	36	36	4.7	1.2	ø57	1.2										L	_
10	1 2	100	φ5 ₇	90	36	36	3.3	<u> </u>	Umozo	10.7	à	£ 25	100	ø57	90	36	36	3.3	11	Umozo	19.8			<u> </u>	├ ─	<u> </u>	ـــــ	\sqcup			<u></u>	_

			2	Bak	Ø3 ,	закла	7 BH	16120	31en	neh	mol	8 Max	ook	·M	HO	07/	44	фер	my				
Ф5-30-1 Ф6-30-1						Ф6-30-2,Ф6-30-3		Ф5-30-24, Ф5-30-3.4 Ф6-30-24, Ф6-30-3.4					Ф5-30-4Я Ф6-30-4Я		Ф5-30-5 Ф6-30-5			Ф5-30-5Я Ф6-30-5Я					
Mapka	Коли- чество щт.	Obuyuú Bec ke	Mapka	KONU- Vectilo Lum.	08440Ú 8ec K2	Mapka	KOAU- YECTBO LUM,	Obuyu's bec ke	Mapka	Kanu- yectba Lum.	Obujuú Bec kz	Mapka	Коли- чество цит.	Obujuú Bec ke	Mapka	Konu- yecibo wm.	Obuyu'u Bec Ke	Mapka	Kanu- 4ectbo wm.	Οδιциύ Bec ke	Mapka	KONU- Yectbo LUM.	
M-1	2	11.9	M-1	2	11.9	M-1	2	/1.9	M-1	2	11.9	M-/	2	11.9	M-/	2	//.9	M-1	2	11.9	M-/	2	11.9
M-3	2	6.2	M-3	4	12.4	M-3	2	6.2	M-3	4	12.4	M-3	2	6.2	M-3	4	12.4	M-3	2	6.2	M-3	4	12.4
M-4	2	3.3	M-4	2	3.3	M-4	2	3.3	M-4	2	33	M-4	2	3.3	M-4	2	3.3	M-4	2	<i>3</i> .3	M-4	2	3.3
M·5	2	5./	M-5	2	5./	M-5	2	5./	M-5	2	5./	M-5	2	5./	M-5	2	5./	M-5	2	5.1	M-5	2	5.1
M-8	6	6.2	M-7	8	16.4	M-8	6	6.2	M-7	8	16.4	M-8	6	6.2	M-7	8	16.4	M-8	6	6.2	M-7	8	15.14
M-9	2	16.6	M-8	6	6.2	M-10	2	8.2	M-8	6	6.2	M-10	2	8.2	M-8	6	6.2	M-10	2	8.2	M-8	6	6.2
1410	2	8.2	M-9	2	/6.6	M-13	2	8.4	M-10	2	8.2	M-13	2	8.4	M-10	2	8.2	M-13	2	8.4	M-10	2	8.2
M-11	2	9.0	M-10	2	8.2	M-15	2	19.0	M-/3	2	8.4	M-16	2	12.2	M-/3	2	8.4	M-19	2	21.6	M-/3	2	8.4
M-12	2	10.6	M-//	2	9.0	M-16	2	12.2	M-15	2	19.0	M-17	2	/3.0	M-16	2	12.2	M-20	2	15.6	M-19	2	21.6
M-/3	2	8.4	M-12	8	10.6	M-17	2	13.0	M-15	2	12.2	M-18	2	/3.0	M-17	2	/3.0	M-21	2	/4.8	M-20	2	15.6
M-14	2	8.8	M-13	2	8.4	M-18	2	/3.0	M-17	2	13.0	M-19	2	21.6	M-18	2	/3.0	M-22	2	14.8	M-21	2	14.8
· · · · · · ·			M-14	2	8.8				M-18	2	13.0				M-19	2	21.6		_		M-22	2	14.8
Umbeo 94.3		Umozo 117.0		Umozo 106.5		Umaza 129.1		Umozo 109.1		Umozo 131.7		ZImazo 116.1		Z/mozo /38.7									

	No.	UKOYUR	e	KO1.		c, k				
Mapka	no3.	Профиль	MM	um.	lum.	всех	Mapke	Примечание		
1	1	-200=/4	400	1	8.8	8.8	10.2	Cm. 3 [OCT380-57		
I-HM	2	-60*10	140	2	0.7	1.4	14.6			
<u> </u>	3	-200 * 10	270	-	4.2	4.2	-	1		
0	4	-/30=/0	220	1	2.3	2.3	6.9	Mo ace		
MH-2	5	-50×10	100	1	0.4	0.4				
1.4	6	-260×6	180	1	2.2	2.2	2.2	Mo gee		
	Ļ		/80	<u> </u>	1_	<u> </u>	<u> </u>	ļ <u>.</u>		
A-2	7	- 260×6	180	-	2.2	2.2	2.2	Mo ‡e		
A.3	8	-260×6	240	/	3.0	3.0	30	mo ste		
1	9	- 260× 8	240	/	4.0	4.0	\vdash	Cm. 3 (OCT380-51		
4	10	Chkep \$18	70	2	0.14	0.5	4.5	BKAHOYEN BEC		
	↓_			 	<u> </u>	Ь		waύδ v zaek		
A.5	//	- 260× 8	380	4	6.3	6.3	۱_,	Cm.3 (OCT 380-57		
1 %	10	OHKEP \$ 18	70	+	0.27	1.1	7.4	Включен вес шайб и гаек		
	12	-260×8	380	1	6.3	6.3		Cm.3 [OCT380-57		
A-6	10	CHKEP \$18	70	4	0.27	1.1	7.1	BENOYEN BEC		
7.4	/3	-100=6	300	1	1.4	1.4	1.4	20ek u wada		
	· _	(2) S		Kony	6/ 30 Mec	16930	7776	<u> </u>		




TA

Фермы пролетом ЗОн.

Спецификация стали на элементы ферм Р1 + Р8; Выпуск в пист СП, С2 и на крепежные детали.

ЛК-01-76
Выпуск в лист 27

