типовые строительные конструкции, изделия и узлы

серия 3.015-1/82

УНИФИЦИРОВАННЫЕ ОТДЕЛЬНО СТОЯЩИЕ ОПОРЫ ПОД ТЕХНОЛОГИЧЕСКИЕ ТРУБОПРОВОДЫ

ВЫПУСК II-4 сборные железобетонные колонны и траверсы вариант армирования сталью класса ат-ivc рабочие чертежи типовые строительные конструкции, изделия и узлы

серия 3.015-1/82

УНИФИЦИРОВАННЫЕ ОТДЕЛЬНО СТОЯЩИЕ ОПОРЫ ПОД ТЕХНОЛОГИЧЕСКИЕ ТРУБОПРОВОДЫ

ВЫПУСК II-4
СБОРНЫЕ ЖЕЛЕЗОБЕТОННЫЕ КОЛОННЫ И ТРАВЕРСЫ
ВАРИАНТ АРМИРОВАНИЯ СТАЛЬЮ КЛАССА АТ-IVC
РАБОЧИЕ ЧЕРТЕЖИ

PA3PABOTAHЫ

ИНСТИТУТОМ ХАРЬКОВСКИЙ ПРОМСТРОЙНИИПРОЕКТ

ГЛАВНЫЯ ИНЖЕНЕР ИНСТИТУТА МАГЛАВНЫЯ ИНЖЕНЕР ПРОЕКТА Јаминальник асо-3 магле Тот. Конструктор Зор-7

А.М. МОНИНМ.И. БРОДСКИЙВ. В. ЗОРИН

УМВЕРМАЕНЫ ГЛАВНЫМ УПРАВЛЕНИЕМ ПРОЕКТИРОВАНИМ ГОССПРОЯ СССР, ПИСЬМО ОТ 21.06.88 г. N° 6/6-1256 ВВЕДЕНЫ В ДЕЙСТВИЕ СО1.12.88 г. ННСТИТУПОМ "ХАРЬКОВСКИЙ ПРОМСТРОЙНИИМПРОЕКТ," ПРИКАЗ ОТ 27.06.88 г. N° 79 СРОК ДЕЙСТВИЯ — 1972 г.

Обозначениє	HRUMEHOBAHUE	CTP.		Обозначение	Наименование	Crp
3.015-1/82. I-4-TT	Технические требования	4		Остопитерия		
3.015-1/82. A-4-HU	HOMEHKARTYPA TERESOBETOHHOLD	5			K13-6A+Wc K13-8AT-Wc; K20-1A1-Wc;	
7	KOHCTPYKUNÜ	2			K20-2AT-IZC; K20-5AT-IZC; K20-6AT-IZC;	
3.015-1/82. 1-4-1	Колония K1-1AT-GC K1-3AT-GC;				K25-1AT-19C K25-7AT-19C	
	K1-5AT-IGC; K7-IAT-IGC K7-4AT-IGC;	10		3.015-1/82.II-4-11	Колоння K13-YAT-IPC; K13-5AT-IPC;	20
	K31-1AT-Wc; K31-3AT-Wc	\vdash	1		K20-3AT-IVC; K20-YAT-IVC; K20-7AT-IVC;	
3.015-1/82. I-4-2	Колоння KI-ЧЯТ-ФС; KI-6 ЯТ-ТС;	11			K20-8AT-WC; K35-1AT-WC; K35-8AT-WC	
700.5	K31-2AT-IEC; K31-4AT-IEC; K34-1AT-IEC;	77		3.015-1/82.1-4-12	Колоння К15-1Ат-іўс	21
	K34-2A7-IPC			3.015-1/82-[7-4-13	Колоння К17-1 Ят-йс; К28-2 Ят-йс	22
3.015-1/82.1-4-3	Колоння К2-1АТ-12 К2-ЗАТ-12С;	12		3.015-1/82.11-4-14	Колоння К18-1АТ-12С; К18-2АТ-12С;	23
7-2-	K8-2AT-WC; K8-5AT-IEC; K8-6AT-IEC;	12			K24-2 AT-UC	
	K8-9AT-IPC; K8-12AT-IPC		İ	3.015-1/82.1-4-15	Колонна К 19-1AT-IEC	24
3.015-1/82.0-4-4	Колоння K2-4AT-IFC; E8-1AT-IFC:	13	1	3.015-1/82.11-4-16	КОЛОННЯ К21-1 АТ-18С; К21-3 АТ-18С:	25
	KB-3AT-IPC; KB-YAT-IPC; KB-7AT-IPC;	13			K 26-1AT-WC K26-6AT-WC; K38-2AT-WC	
	KB-BAT-IVE; KB-10AT-IVE; KB-11AT-IVE			3.015-1/82.1-4-17	Колония K21-2AT-IEC; K36-1AT-IEC;	26
3.015-1/82.0-4-5	Колоння КЗ-1АТ-12С КЗ-ЧАТ-12С.		ŀ		K36-2A7-WC; K40-1AT-WC	2.0
700.0 70	K9-1AT-IZC K9-3AT-IZC; K14-1AT-IZC	14	J	3.015-1/82.[-4-18	Колоння K22-1AT-UC; K22-2AT-IFC	27
3.045-1/82. II-4-6	Калоння КУ-IAT-IPC; K10-2AT-IPC		İ	3.015-1/82.17-4-19	КОЛОННЯ К 23-1AT-UC; K 28-1AT-UC	28
3.012-1/82.17-4-7	Колонна KY-2AT-IRC KY-5AT-IRC:	15		3.015-1/82.1-4-20	Колоння К. 23-2AT-IPC ; К. 23-3AT-IPC	29
0.072 178 2.11-4-7	V10.1 P= 150 V10 200 150 V10 V10 5	16		3.015-1/82.1-4-21	Колонна K24-1AT-UC ; K24-3AT-UC	
	K10-1 AT-18C; K10-3AT-18C; K10-4AT-18C; K16-1AT-18C; K16-2AT-18C		!	3.015-1/82.1-4-22	KOJOHHA K 27-1AT-IEC	30
3.01:-1/82.1-4-8	Колонна К5-1A1-19c К5-3A1-18c;			3.015-1/82.1-4-23	Колоння К. 29-191-19С	31
J. 012 1/02.11 1-10	K11-1AT-WC; K11-2AT-WC;	17	E	3.015-1/82.IT-4-24	Колоння К 30-1AT-IC; K30-2AT-IC	32
3.015-1/82.11-4-9	Калоння K6-1 AT -BC; K12-1AT-IBC		KHB.A	3.015-1/82.[-4-25	Колоння K 32-1 Ат- IPC ; K 39-1 АТ- IPC	
3.015-1/82.17-4-10	КОЛОННЯ K13-1AT-IEC K13-3AT-IEC ;	18	B3AM.	3.015-1/82.1-4-26	Колоння К 32-2АТ-ГС; К32-3 ЯТ-ГС	34
3.01. 1/82.11	EDUTORIA KISTAT-IE KISTSHT-IEC;	19	60	3.015-1/82.11-4-27	Колоння К 33-1AT-IEC; К 37-1AT-IEC	
•			44.0		K38-1AT-WC;	36
YAY OTA SPOACKUD			3	3.015-1/82.11-4-28	Колоння K40-2AT-IPC; K40-3AT-IPC:	
KONTP. 30P IH 30PT	3.015-1/82.17-4	[OKC		K43-1AT-WC; K43-2AT-IPC	37
PYK. TP. WAXNOBONE JA	Craqua Just In	(CERO)	VOJ.	3.015-1/82.11-4-29	KOJOHHA KUT-TAT-INC	
UCROTH. APTEMETIC STORY	COLEPOKAHUE	4	040			38
ПРОВЕР. БОДНЯНСЕЛЯ	T XAPbKOBCK		HAB. Nº ROBAL ROBUNCO			
	ПРОМСТРОЙНИИ	1FOEK	148		3.015-1/82:11-4	711

			_ i		
<i>П</i> 503НЯЧЕНИ Е	Наименование	GP.		ОБОЗНЯЧЕНЦЕ	Наименование
3.015-1/82.1-4-30	KOJOHHA K42-1AT-IECK42-3AT-IEC	39	11	3.015-1/82.11-4-5	TPABEPCA T8-1AT-QC T8-3AT-QC
3.015-1/82. I-4-31	KOJOHHA KYY-IAT-IBC; KYY-3AT-IBC;	, ,-		3.015-1/82.1-4-5	
	K44-6AT-GC; K45-1AT-GC; K45-3AT-IEC;			3.015-1/82.[-4-5	
	K45-4AT-18C; K47-1AT-18C; K47-3AT-18C	,	11	3.015-1/82.11-4-5	
	K47-4A7-WC			3.015-1/82.11-4-5	
3.015-1/82.1-4-32	KONOHHA KYY-2AT-WC; KY6-2AT-WC;	41		3.045-1/82.11-4-50	7 TPABEPCA TIO-IAT-IEC; TIO-2AT-IEC
	KY9-2AT-IEC		1	3.015-1/82.11-4-5	
3.015-1/82.[-4-33	Колонна КЧЧ-ЧЯТ-ЩС; КЧ5-2ЯТ-ЩС	42	1	3.015-1/82.17. 4-60	
3.015-1/82.11-4-34	Колоння КЧЧ-5ЯТ-IEC; КЧЧ-7ЯТ-IEC;	43		3.045-1/82.11-4-61	TPABEPCAT12-1AT-IEC; T12-2AT-IEC
	KY6-1AT-IFC			3.015-1/82.II-4-6	
3.015-1/82.1-4-35	Колоння К 46-3Ат-йс; К46-4Ат-йс	44		3.045-1/82.11-4-63	1,
3.015-1/82.1-4-36	Колоння K46-5AT-IEC; K47-2AT-IEC	45		3.015-1/82.17-4-64	
3.015-1/82.1-4-37	Колоння КЧВ-IAT-IEC; K52-3AT-IEC	46		3.045.1/89 7	1, 1, 20.0, 1, 1
3.015-1/82.17-4-38	Колония К48-287-йс: К52-287-йс	47		2.012.7/29 7	1111521 41110 411 307110 0111 40
3.015-1/82.11-4-39	Колонна К. 48-3 Ат-180; КУ9-1 АТ-180	48		2015-1/82.11-4-67	TPABEPCAT 16-1 AT-IEC
3.015-1/82.11-4-40	Колоння К 48-4 ЯТ-IVC ; K52-1ЯТ-IVC	49]]	3.015-1/82.11-4-68	TPABEPCAT16-1a AT-IEC
3.015-1/82 1-4-41	Колоння K.50-1AT-ISC; K51-1AT-ISC	50	1	3.015-1/82.II-4-69	TPABEPCA T17-1AT-IEC
3.015-1/82.11-4-42	Колонна К 52-4АТ-18С : К53-1АТ-18С	51	1 .1	3.015-1/82.11-4-90	TPABEPCATIT-10 AT-WC
	K53-3AT-IEC			7 - 2 - 4 - PC	ВЕДОМОСТЬ РАСЖОДА СТАЛИ НА
3.015-1/82.1-4-43	Колония K 54-187-IZC; K55-187-IZC	52	.	-	GJEMEHT, Kr
3.015-1/82.1-4-44	TPABEPCA TI-1AT-IFC	53	1		
3.015-1/82.17-4-45	TPABEPCA T2-1AT-IRC	53	ret		
3.015-1/82.1-4-46	TPABEPCAT3-1AT-IEC	54	9		
3.015-1/82.1-4-47	TPAGEPER TY-IAT-IEC	54	1 ×		•
3.015-1/82. I-4-48	TPABEPCAT5-1AT-PC	55	1 88		
3.015-1/82.1-4-49	TPABEPCA TO-1AT-IEC; TG-2AT-IEC	55	488		
3.015-1/82.11-4-50		56			
3.015-1/82.1-4-51	TPABEPCATT-1AT-IC	56	uxes	•	
3.015-1/82.1-4-52	TPABEPCATT-2AT-IEC; TT-3AT-IEC	57	1904	•	•
			1 2		
Γ	3.015-1/82/1-4	Лист З	инь летодл.Подпись и дятя воят инь л	ſ	2 m/s 1/00 T "
	,	1-			3.015-1 <i> </i> 82. ∏-4

CTP.

714c) 4

2. Конструкции отдельно стоящих опор, армировянные сталью Ат-15с, предназначены для применения только в обычной, неагрессивной газообразной среде. Остальные условия применения принимать по вып. I.

3. Марки колонн и траверс, разработанные в настоящем выпуске, соответствуют маркам тех же изделий, разработанных в выпусках []-1... []-3, и отличаются только добавлением обозначения класса арматуры Ат- юс.

4. При подборе мярок колони и тряверс отдельно стоящих опор пользоваться тявлицями, приведенными в вып. I на листах 16...41.

5. Приведенняя в дянном выпуске номенклятиря колони и тряверс является дополнением к номенклятире конструкций, содержащейся в вып.

6. Конструкции колонн рассчитаны на косое внецентренное сжатие по программе "Факос-ЕС" и на раскрытие трещин в каждой плоскости изгиба по программе "Сечение-ЕС", разравотанным Ленинградским Промстройпроектом. Конструкции траверс рассчитаны на косой изгив по программе "Факос-ЕС" и на кручение

MORTHULE IN A RTH BEAM, WHE A

		-		E	ТРЕ БОВ ЯНЦЯ	XAPI	K Q B	CKUÚ NNPOEKT
	38.75.	WHINDERHU	3	7	TEXHUYECKUE	P CTHRICE	Juci 1	Juctos 2
7	Pur co	ЗОРИН Шяхновекий	3	4		· Ideas	7	Muarras.
	H. KOHTP.	Зорин	ayr)	4	3.015-1	/82. <u>#</u> -	4-T7	<i>r</i>
	HAY.OTA	БРОДСКИЙ	Tues					

7. Указания по конструктивным решениям, расчету, нагрузкам и изготовлению конструкций принять по вып. \overline{U} -1 настоящей серии.

8. СЖЕМЫ НЯГРУЗОК ПРИНЯТЬ ПО РЯБОЧИМ ЧЕР-ТЕЖЯМ СООТВЕТСТВУЮЩИЖ КОЛОНН И ТРЯВЕРС С ОБЫЧНЫМ ЯРМИРОВЯНИЕМ.

9. Пространственные каркасы собираются из плоских каркасов, отдельных стержней и закладных изделий с применением контактной точечной сварки и вязки стержней вязальной проволокой.

В. СОЕДИНИТЕЛЬНЫЕ ПОПЕРЕЧНЫЕ СТЕРЖНИ, ОБЪЕДИНЯНОЩИЕ ПЛОСКИЕ КАРКАСЫ В ПРОСТРЯНСТВЕННЫЕ, СЛЕДУЕТ ПРИВАРИВАТЬ К ПРОДОЛЬНЫМ
СТЕРЖСНЯМ ПЛОСКИХ КАРКАСОВ С ПОМОЩЬЮ
КОНТАКТНОЙ ТОЧЕЧНОЙ СВАРКИ, ВЫПОЛНЯЕМОЙ
ЭЛЕКТРОСВАРОЧНЫМИ КЛЕЩАМИ.

4. Крепление закладных изделий в пространственном каркасе осуществляется с помощью дополнительных стержней.

12. Закладные изделия разработаны в выпуске 11. 3 настоящей серии и серии 3.400-6/76

3.015-1/82.<u>1</u>1-4-TT

Auc 2

ЭСКИЗ	MAPKA TPABEPCЫ	PASI	MEP61,	MM	Enacc.	PAC.X MATEPH	OA IANOB	Maci
TPRBEPCH		4	8	4	BETOHA	БЕТОН, МЗ	CTRING,	′
	TI-IAT-[Vc	2400				0.3	21,3	0.8
	T2-10T- PC	3000			815	938	26,6	1,0
٠.,	TS-IAT-Te		500	250	(M200)	0.45	31,1	1.13
	T4-191-00	4200	l	l		0,53	35,6	1,3
	T5-1AT-UC	4800			1	0,6	40,5	1,5
~	76-1AT-WC				(M300) 815		39,1	
,	T6-2AT-IVC	ĺ	150	300	815 (M 200)	0,11	49,1	Q3
	76-3AT-[ÎC	2400			825		56,2	
	TT-IAT-LVC				(M30g)		55,5	
	77-2A1-lic		250	500	815	9,3	67,9	98
8	78-19T-19C				IM 200	[71,1	
7-7	18-2Ar-IVc	1	i	١.			467	
		l	150	300	825 (M300)	0,14	54,2	
	TB SAT-LÜC				815 (M20d)	4,17	72,1	935
	18-4AT-[Vc	3000			BZ5 (M300)		66,8	
•	19-1AT-[Vc 19-2AT-[Vc		250	500			56,6	-
		Ì	العقا	300	815 (M200)	0,38	77,9	10
			L		(micuq		83,1	*-
	TIO-IAT-LVe	3600	150	300	7	0.16	62,7	9,4

9CEN3	MAPEA TPABEPCЫ	PA3.	MEPU,	MM	Enace	PACX MATEPA	OA IRNOB	MACCA	
TPRBEPCЫ	J	4	6	4	SETOM	BETOH, M3		,	
	T10-2AT-10c	1	150	300	815	916	83,9	0,4	
	TH-IAT-OC	3600			(11200)	-	64,0		
	TH-2AT-17c		250	500	 	0,45	93.7	1,1	
	TII-3AT-IVC	1	Į]	825	3,75	103,7		
•	TIZ- IAT-LTC		-	\vdash	(M 309)				
R)	712-2AT-ÜC		150	300		9.19	72,8	0,5	
	7/3-/AT-IJC	4200		 	8/5		64,7		
<u>, </u>	7/3-201-NC		250	500	815 (M20a) 825		75.8		
	7/3-3AT-18C			1300	(M3og	0,53	119,7	1,3	
<u></u>	714-191-Dc			├	-			132,8	
<u> </u>	714-2AT-10c	ļ	150	300	815	0,22	86,4	0,6	
8	TIS-IAT-IVC	40		<u> </u>	(M200)		73,4		
, ,	TIS-THI-LIC	4800		1_	—		85,3		
		i	250	500	825	0,6	121,4	1,5	
·	715-3AT-LIC				(111300)		157,9		
	TIG-IAT-Uc	1200	ĺ				29,6		
	716-12AT-LYC	1800			815	405	248	914	
	717-1AT-18c		150	500	maod		39,3		
	717-laft-ive		ĺ	1	[]	0,08	345	92	

Раскод стали приведен с учетом заклядных изделый.

HAY. OTT BOOKERHA	左	_		
A KONTP BOOKN	89-7 7-7		3015-	1/82. <u>1</u> Ĩ-4-HU
PYK FR DIAZHOBOG POBERG GOOMSMCC	2016	_	Номенилатура	стидна лист листов
PROBEP EODINACO	aller.	_	ACERESOSETONINGIZ KONOTPAL	XAPHKOBCKVIÁ NPOMCTPOVIHVUNPOEKT
	<u></u>		23374-01	<u>I IPOMCT POVIHVAJ IPOEK I</u>

ЭCEN3	MAPEA KONOHHЫ	PR3	MEPU,	MOT	ENACE	PACX MATEPI	HANOB	Maca
KOROHMSI	1	H	6	4	BETONA	BETOH, M³	CTANG, KT	7
	KI-IAT-LIC			1			55,9	
	Kt-2AT-LVC	l	l	i	}		66,3	ł
	El-SAT-Lic	6200	300		1000		77,9	٠,,
	KI-4AT-TYC	DECO	300	300	825 (M30g)	<i>Q56</i>	89,8	1,4
	KI-SAT-OC		(1	(14504)		583	İ
	KI-GAT-[VC			[l i		923	
	K2-1AT-IJC				1 1		946	
111	12-201-DC		١,	١.	1		121,5	l
3	E23AT-BC	6000	400	400	-	0,96	71,4	2,4
	124AT-WC			1	815		110,3	ļ
	K7-1AT-ÜC			 	[M200)		60,4	
· ├┤──¥	KT-ZAT-UC	CO		ł	825 (M300)		736	
B	E7-3AT-IVC	6800	300	300	(M20g) (M20g) (M30o)	961	63,0	1,5
	K7-4AT-[8c							
	K8-IAT-Ne		<u> </u>	 	(M300)		76,2	
()	128-2AT-IVC		l	l	815		76,5	İ
8	EB-3AT-IVC		ĺ	1	(M200		66,3	
			1	ĺ	895		101,6	
	C8-4AF ITC		1	l	B25 (M300)		123,2	
•	CB-SAT-LTC	6600	400	400	t i	406	77,1	26
	CB-GAT-LVC		j	(815	'	105,7	40
	IB-TAT-CIC]		(M200		158,3	
	CB-BAT-[Vc			J	[- 1	799]
	K8-9Artic		l	ļ	i í	i	69,5	

∂CKN3	MAPEA	PRIM	MEPOI, I	07/07	ENACC (MAPIN	PAC: MATEPH	COA ANOB	Maca
<i>СОПОНН61</i>		H	В	h	6ETOHA	BETON,	CTANG, ET	T
	KB-IOAT-[ÎC KB-HAT-[ÎC KB-IZAT-[ÎC	6600			(M200) 825 (M300)	1,06	1049 126,4 80,3	26
	K13-1Ar-Ýc K13-2Ar-Ýc K13-3Ar-Ýc K13-5Ar-Ýc K13-5Ar-Ýc K13-8Ar-Ýc	7200	400	400	815	1,15	70,2 81,5 82,2 114,5 133,5 95,8 74,0 85,3	48
	E20-181-ÜC E20-281-ÜC E20-381-ÜC E20-481-ÜC E20-581-ÜC E20-581-ÜC E20-781-ÜC	7800			(M 200)	1,25	75,1 87,9 105,3 132,5 79,0 91,8 110,4 137,6	3/
	124-187-18c 124-287-18c 124-387-18c	1		500		156	150,1 184,1 154,5	39

РАСКОД СТАЛИ ПРИВЕДЕН С УЧЕТОМ ЗИКЛАДИВІЖ ИЗДЕЛИЙ.

3.015-1/82. II-4-HU

<u>wo</u>

125 AN TEC 125 2M TEC 125 3M TEC 125 4M TEC 125 5M TEC 125 6M TEC 125 7M TEC	H 8400	8	400	815 (M200)	6етон, м3	79,1 92,0 125,9	MRCCA
1252m ii c 1253m ii c 1254m ii c 1254m ii c 1255m ii c 1256m ii c 1257m ii c			400	815 (M20g)		79,1 92,0 125,9	
[26-1AT-∏c [26-2AT-∏c [26-3AT-∏c		400	500	8 25 (M30a) 8 15 (M20a)		112,4 163,6 83,5 96,4 145,7 160,5 206,8	34
126-5AT-[Îc 126-6AT-[Îc 1231-1AT-[Îc 1231-2AT-[Îc				,		1507 1655 2164 53,8 873	
CH-4AT-ÜC C32-IAT-ÜC C32-2AT-ÜC		300	<i>300</i> 400	B15 (M209)	0,53	55,8 89,4 105,3 88,3	43 43
	E26-3AT-17c E26-4AT-17c E26-5AT-17c E26-6AT-17c E31-4AT-17c E31-3AT-17c E31-3AT-17c E31-3AT-17c E31-3AT-17c E32-4AT-17c E32-4AT-17c	126-311-13c 126-411-13c 126-511-13c 126-611-13c 124-141-13c 124-141-13c 124-141-13c 124-141-13c 123-141-13c 123-141-13c 123-141-13c 123-141-13c	126-317-13c 126-417-13c 126-617-13c 126-617-13c 124-147-13c 124-147-13c 124-147-13c 1232-147-13c 15c 1232-147-15c 1232-147	126-347-15c 128-447-15c 128-547-15c 128-647-15c 131-147-15c 134-247-15c 134-447-15c 134-447-15c 132-147-15c 132-147-15c 132-147-15c 132-147-15c 132-147-15c 132-147-15c	126 2 Ar 10	126 2 Ar 15	1605 1605

ЭCKN3	MAPER KONOHHЫ	PASI	MEPU,	MM	KARCC (MAPIA)	PACS MATER	COA WATOB	MACCA,
EONOHM61		H	8	4	BETOHIT	BETON M3	CTANO,	7
	£33-187-18		400	500	825 (M300)	1,14	122,9	2,9
	E34-IAT-[Pc	6200	300	300	PISA.	0,58	81,2	1,5
	K35-IAT-[Vc K35-LAT-[Vc			400		1,01	83,6 152,2	25
ПТ	<u> 136 IAT-∐c</u> 136-2AT-∐c	6300				126	101.8	3,2
1	K37-1AT-[Ve K38-1AT-No	7200	400	500		1.44	181,8 151,7	3,6
	L38-LAT-[Vc	6900			815	1,38	146,0 223,4	3,5
$\sqcup \bot$	K40-IAT-LÝC			400	(M200)	1,10	127,2	28
	E40-281-IIc E40-381-IIc E41-181-IIc	<i>150</i> 0				1.50	177,9 126,8 131,5	3,8
				500		188	204,5	4,7
8	L42-187-18c D42-287-18c D42-387-18c	8100	500			202	198,4 2800	5,1
·	1243-197-[Tc 243-297-[Tc	٠.	400			(62	203,6 199,1 208,8	4,0

РАСХОД СТАЛИ ПРИВЕДЕН С УЧЕТОМ ЗАКЛАДИОХ ИЗДЕЛИЙ

3.015-1/82. [ī-4-HU

ЭCEN3	MAPKA KONOHHGI	P	73M	FP 61,	MA	1	ENACE (MAPKA)	PACX	OA PHANOB	MACCI T
KONOMNEI	1	H	В	h	81	C	BETOHA	БЕТОН, M3	CTRNb, Er	
81 .	C3-IAT-[Ic C3-2AT-[Ic L3-3AT-[Ic C3-4AT-[Ic				/200	520		1,18	102,7 114,3 105,5 117,1	30
	K4-AAT-BC K4-2AT-BC K4-3AT-BC K4-4AT-BC K4-5AT-BC	6200	400		1800	410	815 (M200)	1,29	95,0 137,4 131,4 140,2 134,2	32
	E5-1AT-LÎC E5-2AT-LÎC E5-3AT-LÎC		<i>\$00</i>	400	240c	300		138	80,7 115,1 83,3	3,5
B	K9-IAT-ĪVC K9-2AT-ĮVC K9-3AT-ĮVC				/200	520	825 (M30a)	1.60	159,8 115,5 160,6 118,5	3,2
	E10-IRT-Vic E10-2AT-Vic E10-3AT-Vic E10-4AT-Vic	6 9 00	400		1900	410	815 (M209	1,40	114,6 139,1 177,8 118,0	3,5
	Ell-lAT- <u>N</u> C Ell-2AT- <u>N</u> C		C		2400	300	825 (M300) 815 (M200	1.48	966 129,2	3,7
	CI2-IAT-EC		500		.		825 (M300)	1.72	200,5	43

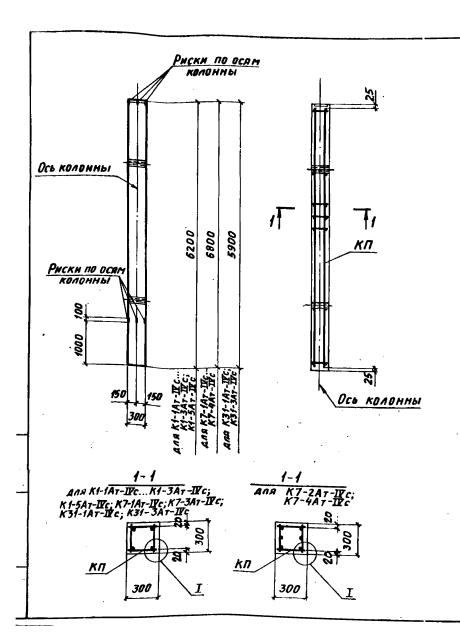
ЭCEN3	MAPER KONOHHEI	A	93ME	PH,	MM	,	ENREC (MAPER)	PRCX	OA HANOB	MACO
COMOHHS!		#	В	ħ	6,	c	GETOHR	БЕТОН, МЗ	CTR/16,	•
	K14-1AT-LTC		400		1200	520		1.37	139,6	3.4
	KIS IRT-UC		500	1			815	165	166,0	4.1
. B1	E16-PAT-ITC	i .	400		1800	410	(M200)	1,49	127,8	37
7 7	CIT-IAT-We	7400	500	1		l	825 (M300)	176	131,1	4.4
<u></u>	KIB-IAT-IVC			l	\vdash	-	(M300)	410	182,6	4,7
	K18-2AT-18c		400		2400	<i>30</i> 0	815 (M204)	159	116,0	4,0
	KIG-IAT-IVC			1			L	1.84	253,1	46
1 2	E22-IAT-[Îc E22-2AT-]Îc E23-IAT-[Îc	800	500	00 400	1200	520	825 (M300)	1,75	178,3	44
					+		17.1304		182,2	
B	1:23-2A1-[Ic 1:23-3A1-[Ve				1900	410		1,88	155,4 213,4 218,2	47
	124-1AT-[Îc 124-2AT-[Îc 124-3AT-[Îc		400		2400	300	815 (M200)	1,67	158,9 200,3 162,5	4,2
<i>F</i> - F	E27-1AT- <u>I</u> Vc				1200	520	ľ	1.87	2073	4,7
	C28-IAT-IIc IC28-2AT- <u>N</u> c		500		/800	410		20	191.5	5,0
	K29-1AT-WC		400				825 (m300)	176	2898 1758	4.4
	K30-IRT-INC K30-ZRT-INC		500		2400	300	815 (M 200	200	191,5 195,8	52

Рискод етали приведен с эчетом закладивых изделий.

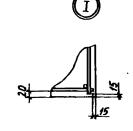
3.015-1/82. IJ-4-HU

114CT

2337E- 01 9

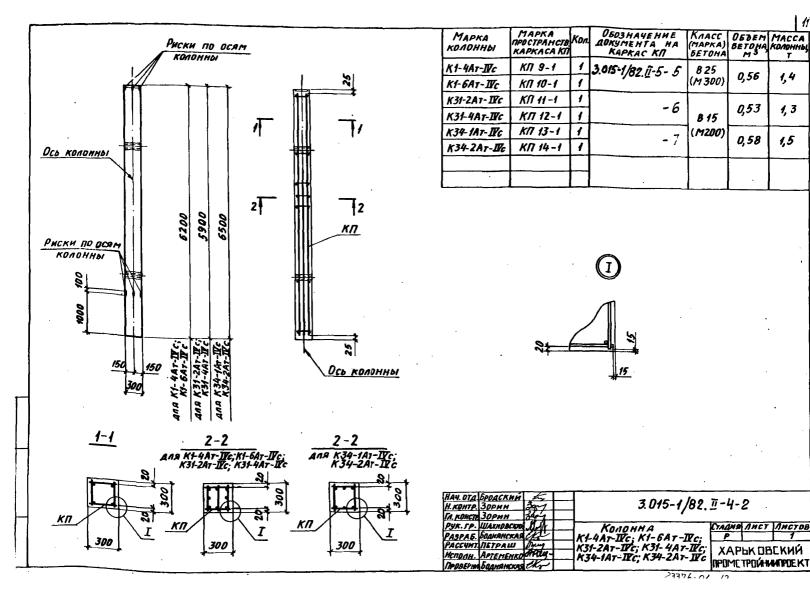

им жетада. Угодатко и дата (блок. ин

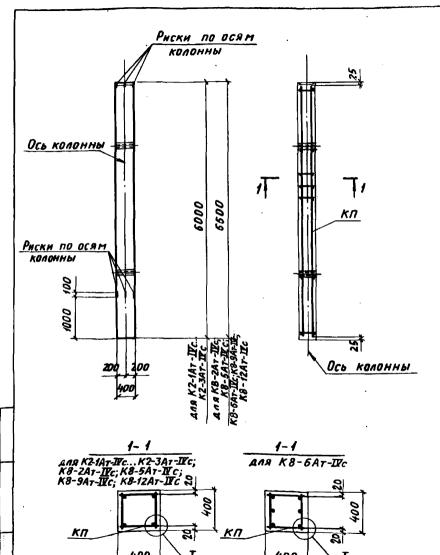
3CKN3	MAPICA		PASI	MEP	5/, 12	1111		igo)	PAC:	COA PHAN	MACOR
<i>ЕОЛОНН</i> 61	CONDHHЫ	H	H,	He	h	h,	В	Engeral Serona	BETOH, M	CTATAS POT	7
	K44-IAT-BC K44-2AT-BC K44-AAT-BC K44-5AT-BC K44-5AT-BC K44-7AT-BC K45-2AT-BC K45-2AT-BC K45-3AT-BC		5 9 00	1800 1600	600	3 8 0	400	830 (M400) B25 (M300) (M400) B25 (M300)	1,65	134,2	42
1-1 h 2-2	L45-4AT-[Vc L46-1AT-[Vc L46-2AT-[Vc L46-3AT-[Vc L46-5AT-[Vc L47-1AT-[Vc L47-3AT-[Vc L47-3AT-[Vc	8100	6500	1800	,			830 Miles 825 Miles Miles Miles Miles Miles Miles Miles		138,9 125,9 248,3 151,4 193,9 306,6 165,8 200,2	4,6

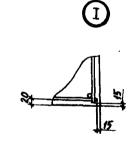

Эскиз	MAPKA	′	PASI	MEPO	y, mi	n		182	PACE	СОД РНАЛ.	MRCCR
COTOHHEI	EONOHH61	Н	Н,	H2	h	h,	В	1938 1888	BETOH, M³	CTRING, ICT	7
h.	1547-4AT-No	8100	6500	1600				830 M400	1.80	171,3	4,5
	K48-IAT-ÜC K48-2AT- <u>Ñ</u> C K48-3AT-ÎÎC K48-4AT- <u>Î</u> ÎC	8900	5900	3000	600				1,87	197,1 250,7 234,0 142,1	4.7
# # #	K49-IRT-LTC K49-2AT-LTC	8700		2800					1.84	237,6 179,0	4.6
2 72	E50-IAT-IVe			L	Ron	<i>38</i> 0	400	825	238	297,7	GO
├ ─┴─┴─⋠	K51-IAT-LYc	9100			3	<i>5</i> 20	""	(M3a,	241	294,1	6,0
□ 20 17 14	C52-1AT-[]c C52-2AT-[]c C52-3AT-[]c C52-4AT-[]c	9500	6500	3000	600				202	170,1 272,8 211,4 261,5	5,1
<u>2-2</u>	K53-IAr- <u>I</u> Vc K93-2Ar- <u>I</u> Vc K53-3Ar-IVc	9300		2800					1,99	199,4 259,1 205,7	5,0
	IC54-IAI-DC		<i>15700</i>		Воо			830 0140	<u> </u>	320 _/ B	
<u> </u>	CS5+AT-[Fc	9700	ľ	3000	1		l .	7	260	323,2	6,5

Расход стали приведен с учетом закладных изделей.

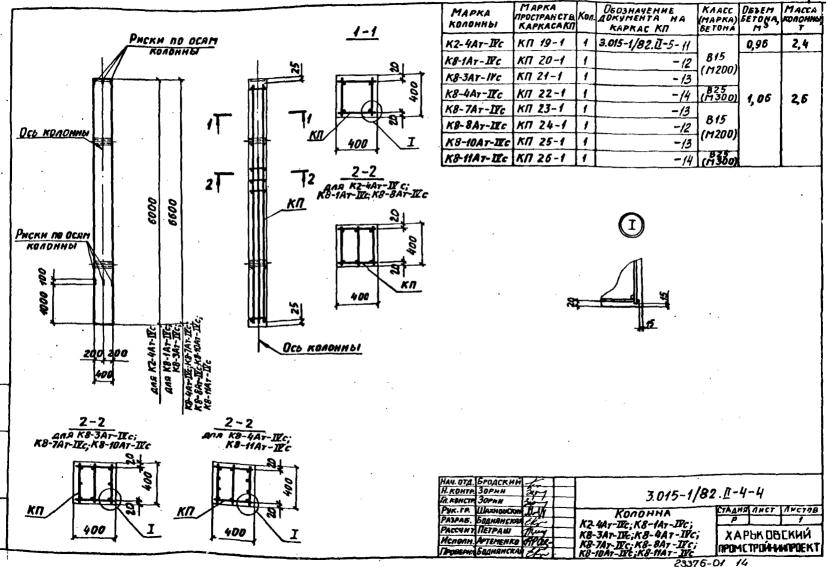
3.015-1/82. II-4-HU

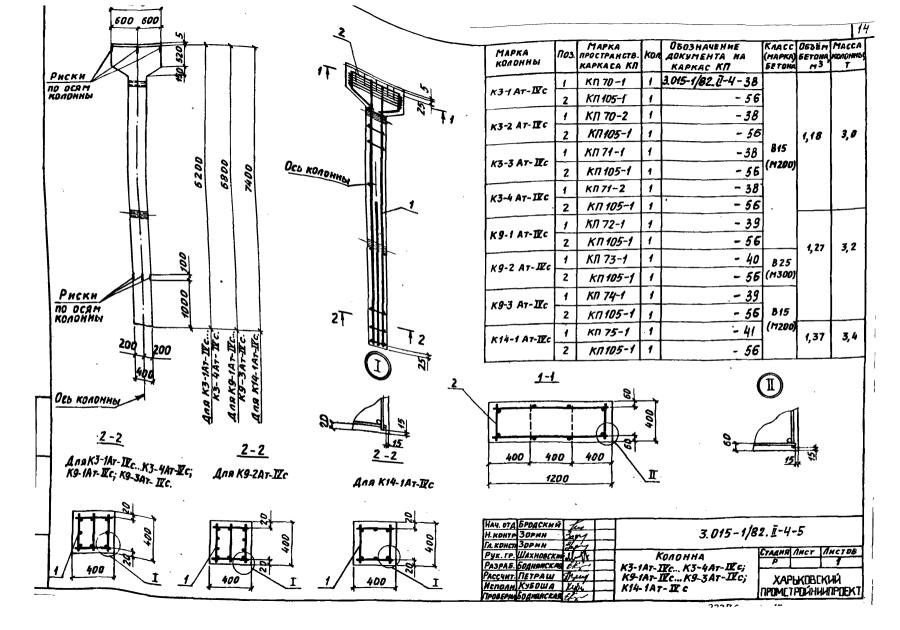


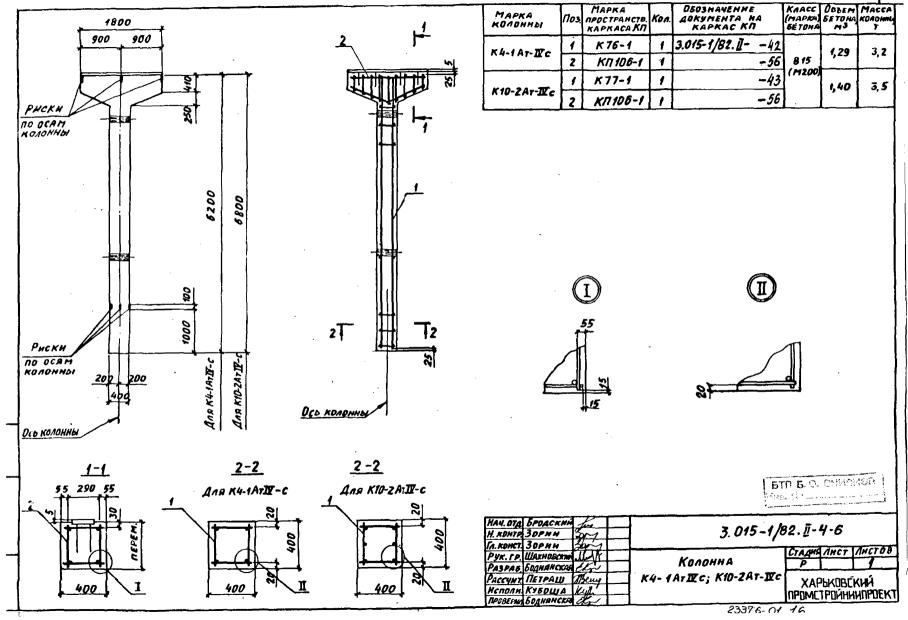

Марка Колонны	MAPKA NPOCTPAHCTB. KAPKACA KN	Kon	Oboshayenne Aokymenta na Kapkac KN	KAACC (MAPKA) BETOHA	OBDEM BETOHA, M³	MACCA KONOHM T
K1-1A T-IVC K1-2A T-IVC	КП 1-1 КП 1-2	1	3.015-1/82.[i-5-1	B25	0.50	
K1-3AT-IVC	KN 1-3	1	3.013-1/02.12	(M300)	0,56	1,4
K1-5A7-IVc K7-1A7-IVc	KΠ 2-1 KΠ 3-1	1	3.015-1/82 <u>II</u> -5-2	(M 200)		
K7-2AT-IVC	ΚΠ 4-1 ΚΠ 5-1	1	- 3 - 2	(M300) (M300) (M200)	0,61	1,5
K7-4AT-IVC	KN 6-1	1	-3	(M 300)		
K31-1AT-IVC K31-3AT-IVC	KΠ 7-1	1	- 4	815 (M200)	0,53	1,3

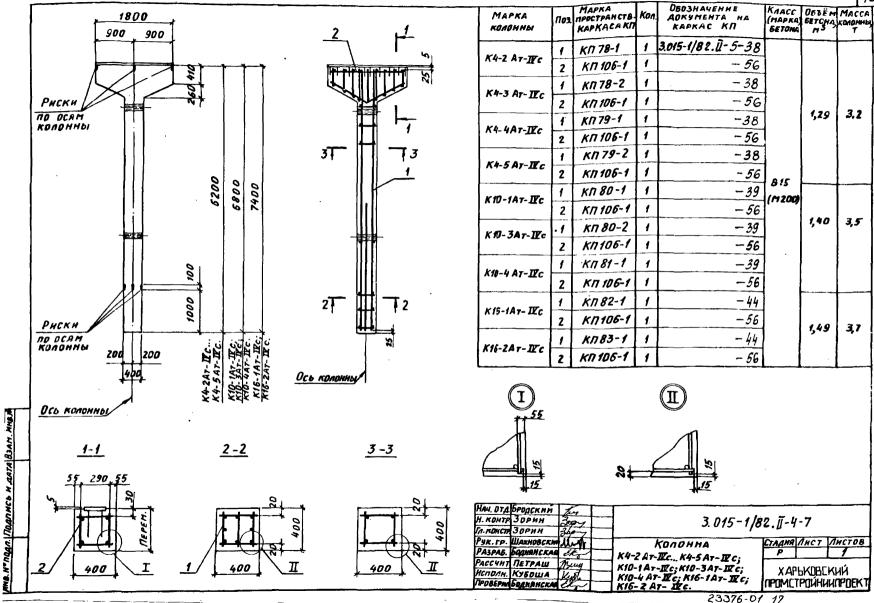

HAY. OTA. H. KOHTP. TA.KOHCTP.			207	3.015-1/82.			
	ШАХНОВСКИЙ БОДИЯНСКАЯ			KONOHHA K1-1AT-IVCK1-3AT-IVC;	CTAANA P.	Auct	ANCTOB
Исполн.	NETPAW APTEMENKO BOAMANCKAR	8	My.	KI-5A1-TVC; KT-1A1-TVC KT-4A1-TVC; K31-1A1-TVC; K31-3A1-TVC			CKUÚ MPDEKT

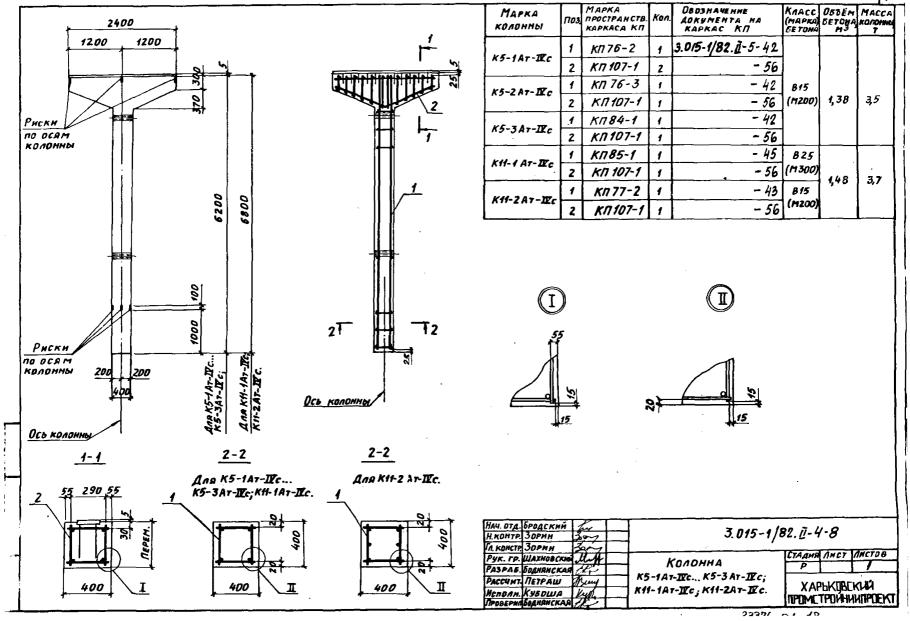
23376-01 11

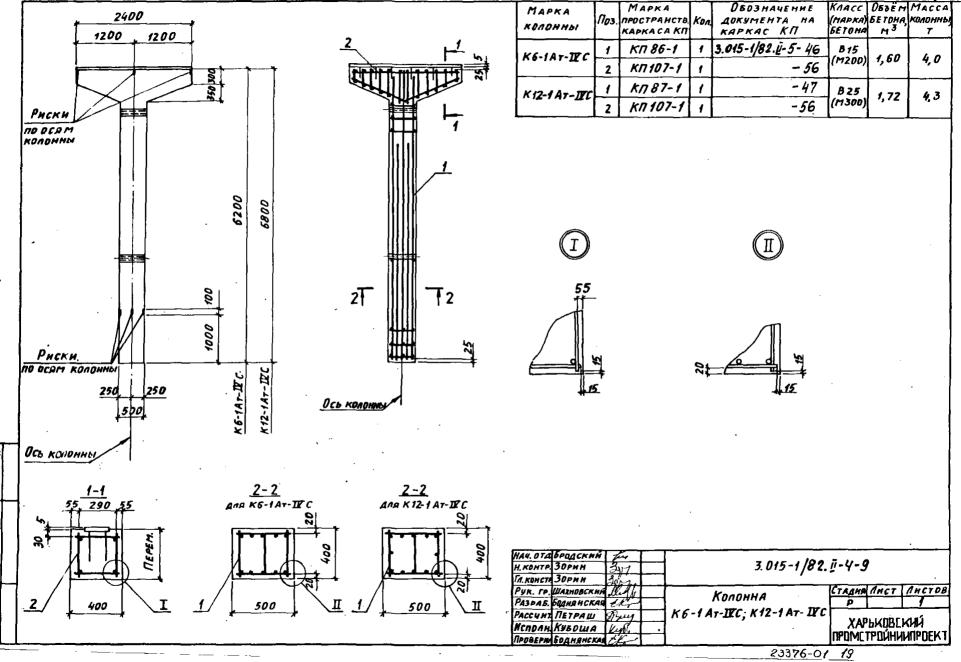

МАРКА КОЛОННЫ	MAPKA NPOCTPAHCTB. KAPKACA KN	Kon.	Oboshayehhe Adkymehta ha Kapkac Kri	KAACC (MAPKA) BETOHA	DEBEM BETOHA,	МАССА КОЛОННЬ Т
K2-1AT-IVC K2-2AT-IVC	ΚΠ 15-1 ΚΠ 15-2	1		8 25 (1300)	0.96	2,4
K2-3A7-IVc K8-2A7-IVc K8-5A7-IVc	KN 16-1	1	3.015-1/82. <u>1</u> -5-8	815		
K8-6AT-IVC K8-9AT-IVC	KN 17-1	1	- 9	(M 200)	1,06	2,6
K8-12A7-IYC		1	-10			

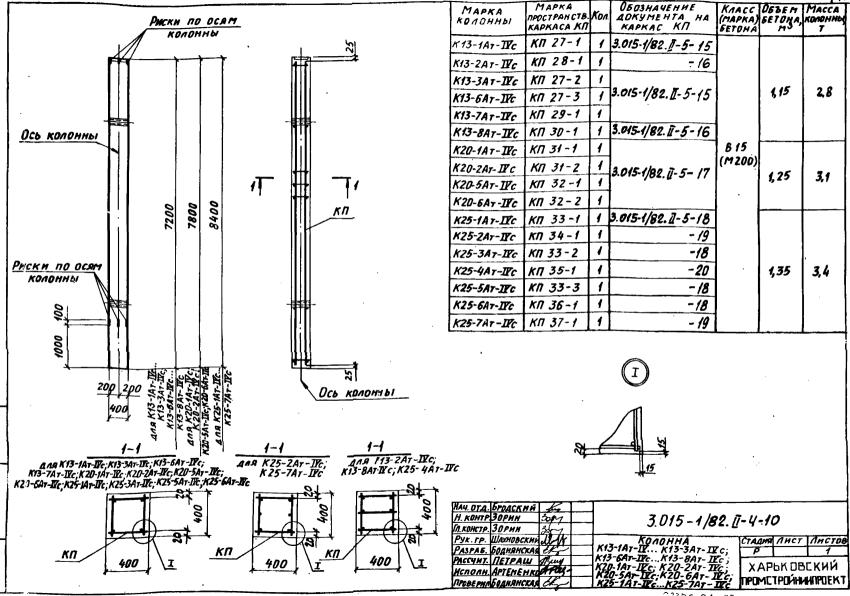


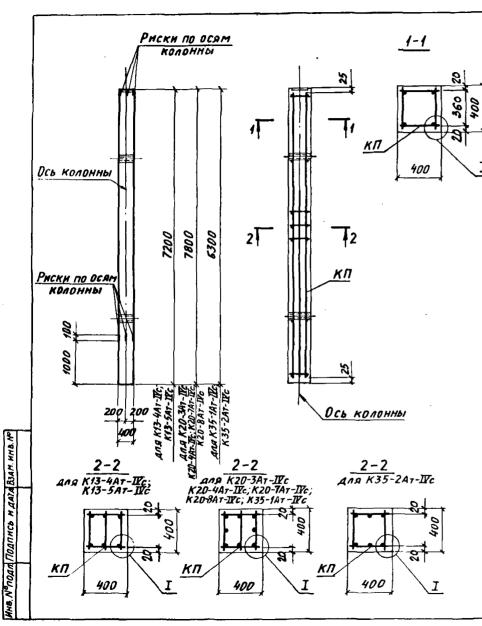

	BPDACK NH
H. KOHTP	30PHH
Tn. KOHCIP	ЗОРИН
Pyk. rp.	WAXHEBOOK
PASPAS.	BOANAMCKAR
PACCYMT.	NETPAW
Исполнил	APTEMENM

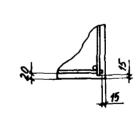

3.	0	15	-	1/	/8	2.	Ū	-	4	'-	3	,

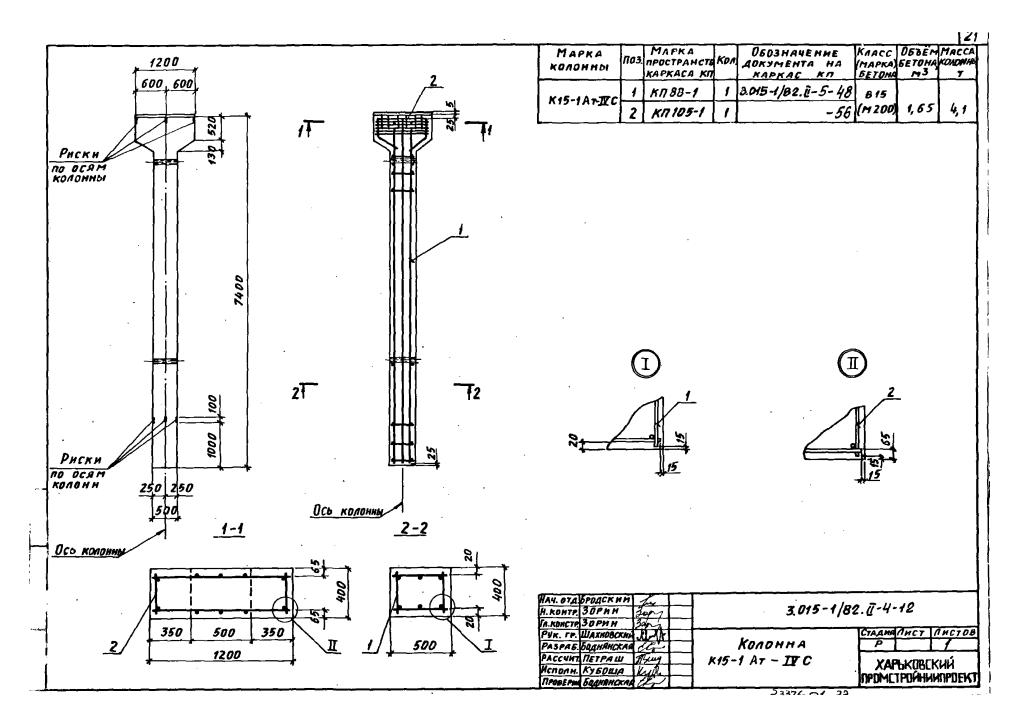

КОЛОННА K2-1A7-IVc... K2-3A7-IVc; K8-2A7-IVc; K8-5A7-IVc; K8-6A7-IVc; K8-9A7-IVC; K8-12A7-IVc

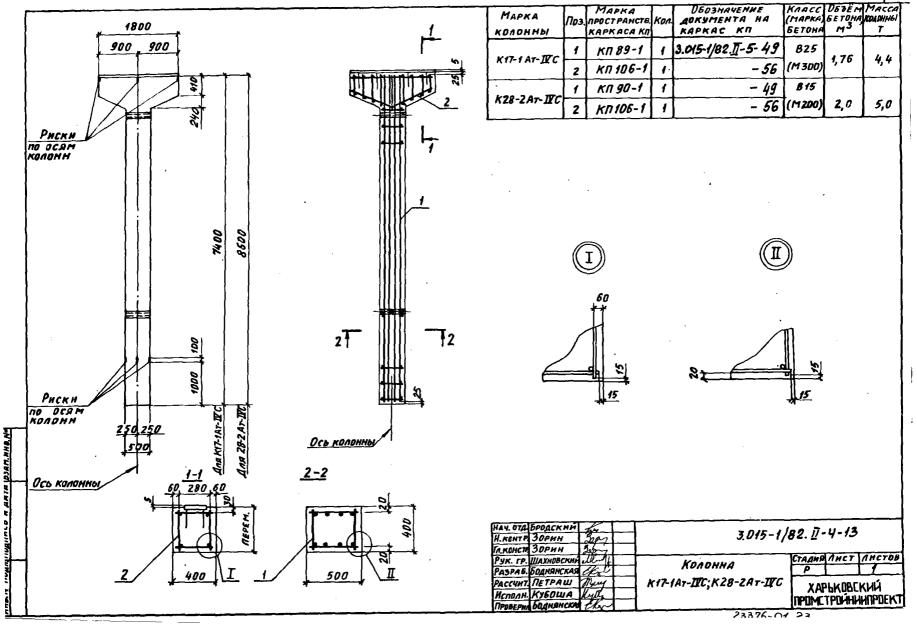


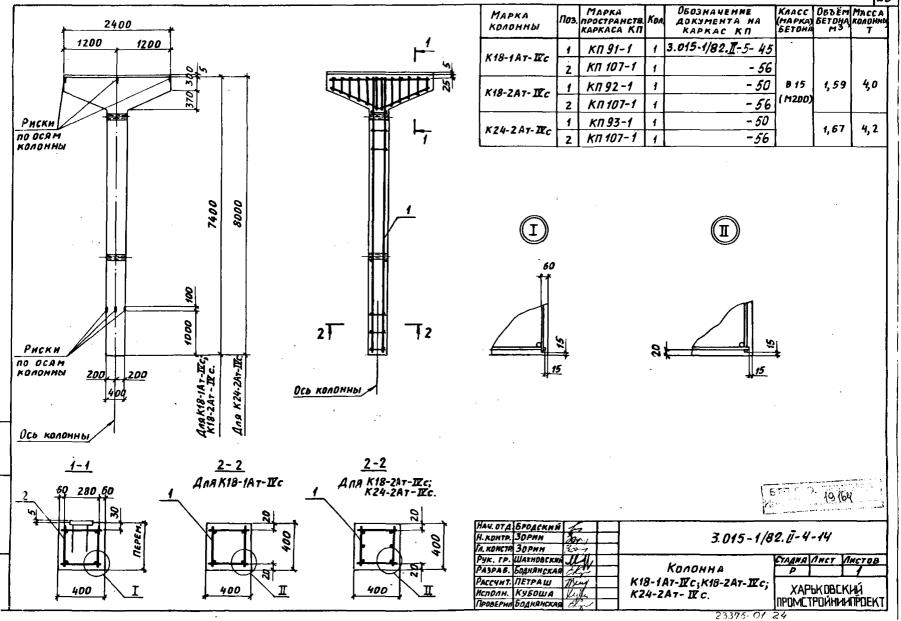


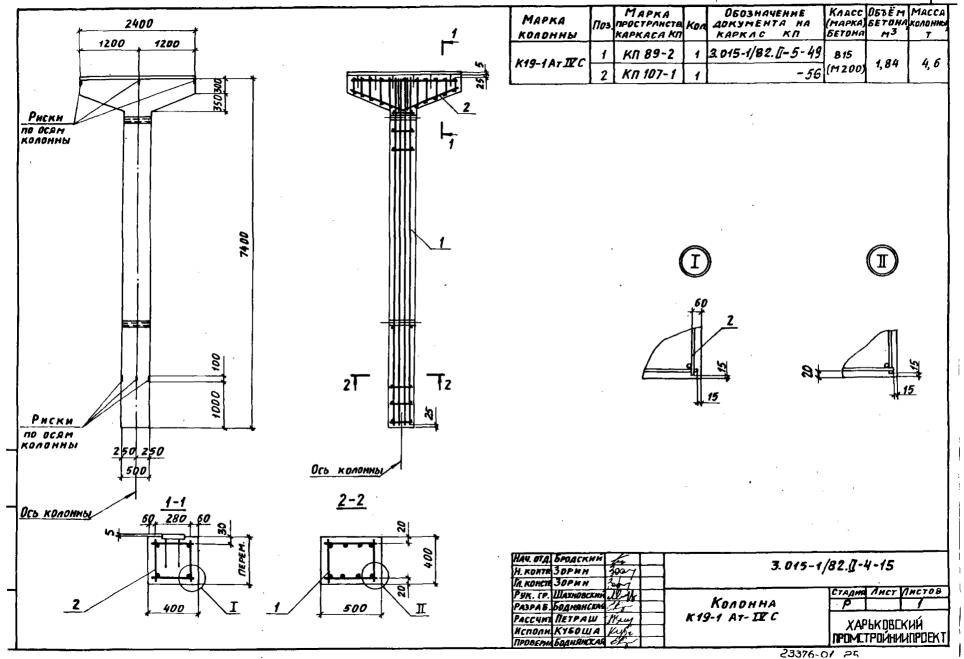


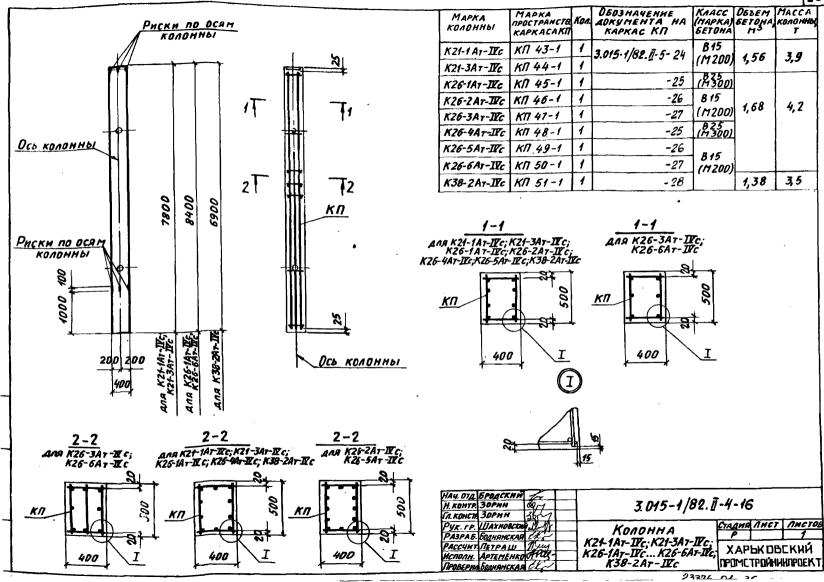


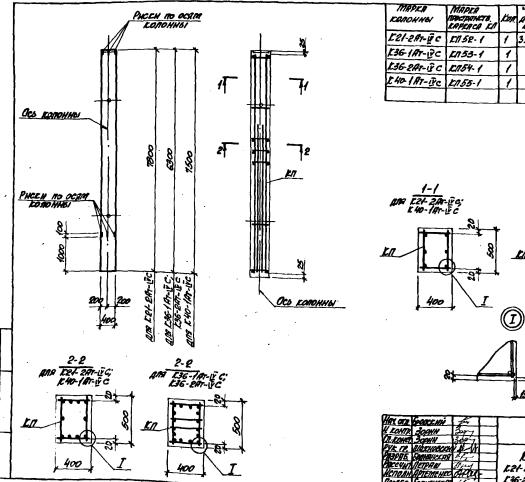


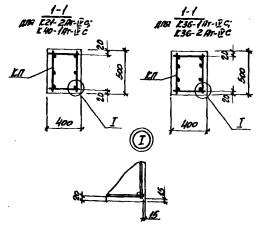

							i
	МАРКА КОЛОННЫ	Марка пространств каркаса КП			KAACC (MAPKA) BETOHA	BET DHA	MACCA KONOHHU T
	K13-4AT-IVC	KN 38-1	1	3.015-1/82.[[-5-2]		1 1E	20
	K13-5AT - IVc	K/7 38-2	1	O.O.O. IJOZ.M. D. Z.		1,15	2,8
Ì	K20-3AT-IVC	KN 39-1	1]		
	K20-4A1-IVC	KN 39-2	1	3.015-1/82. [-5-22	B 15	1,25	3.4
1	K20-7AT-IVC	KN 40-1	1	0.010 1/01.4-5 22	(M 200)	1, 25	3,1
	K20-8AT-IVC	KN 40-2	1	_	1		
I	K35-1AT-IVC	KN41-1	1	3.015-1/82.1-5-23		4.04	2.5
	K35-2AT-IVC	KN 42-1	1	-21		1,01	2,5

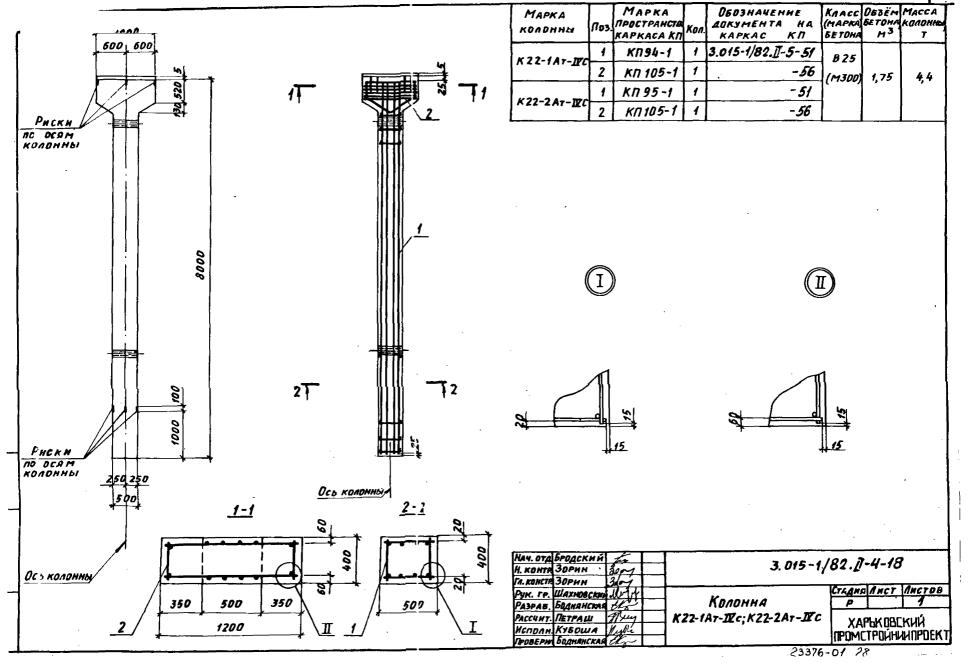


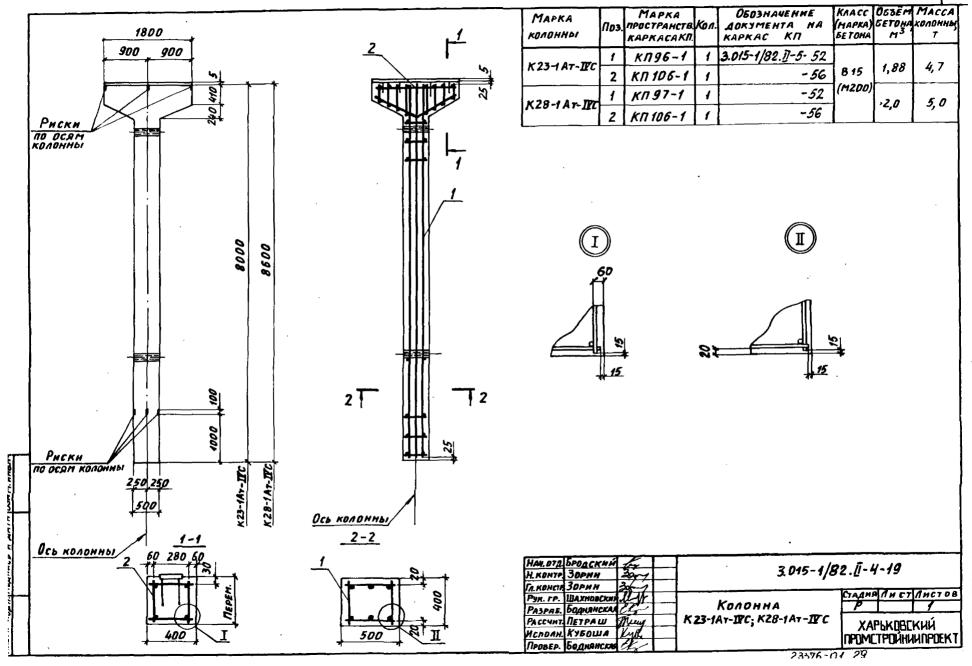

HAY.OTA. H. KOHTP.	<i>БРОДСКИЙ</i> ЗОРИИ	300,	3.015-1/82.	ii-4-1	11	
TA. KOHCTP.		3007	3.013.1/6=	<u>.</u>	•	
Pyk. rp.	WAXHOBCKM	MA		Стадия	AHCT	AHCTOB
PASPAS.	Боднянская	1Kg	K13-4AT-IVC; K13-5AT-IVC; K20-3AT-IVC; K20-4AT-IVC;	Ρ		1_
PACCUNT.	TETPAW	Buy	KZO-JAT-IYC; KZU-4AT-IYC;	VAD	-k ne	СКИЙ
Исполн.	APTEMENK	099013-	K20-7AT-IVC; K20-8A1-IVC;			
POBEPH	БОДИЯНСКАЯ	CE	K35-1AT-ITC; K35-2AT-ITC	ULAME	TPUNHN	HUBDEKT



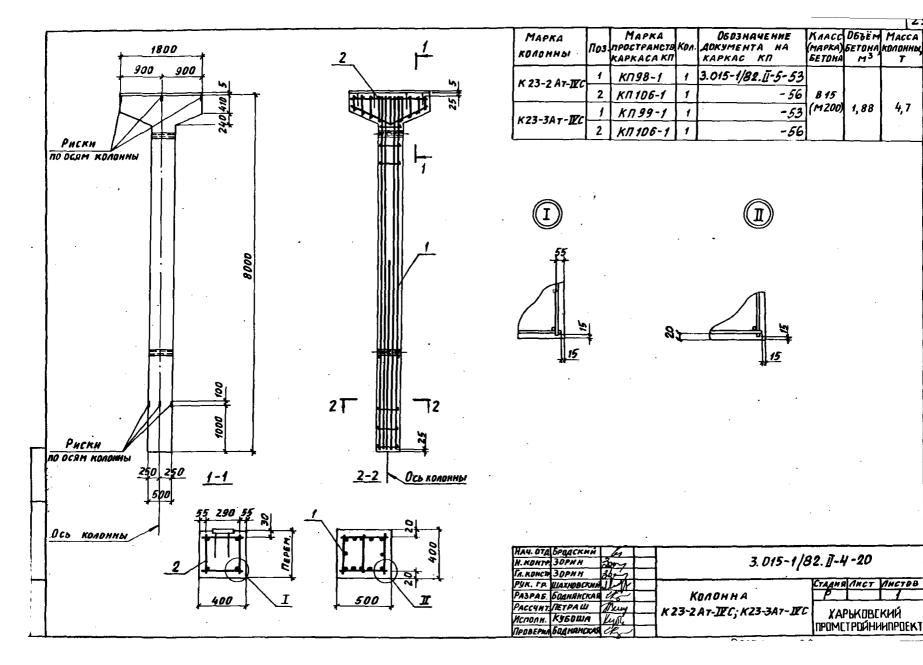


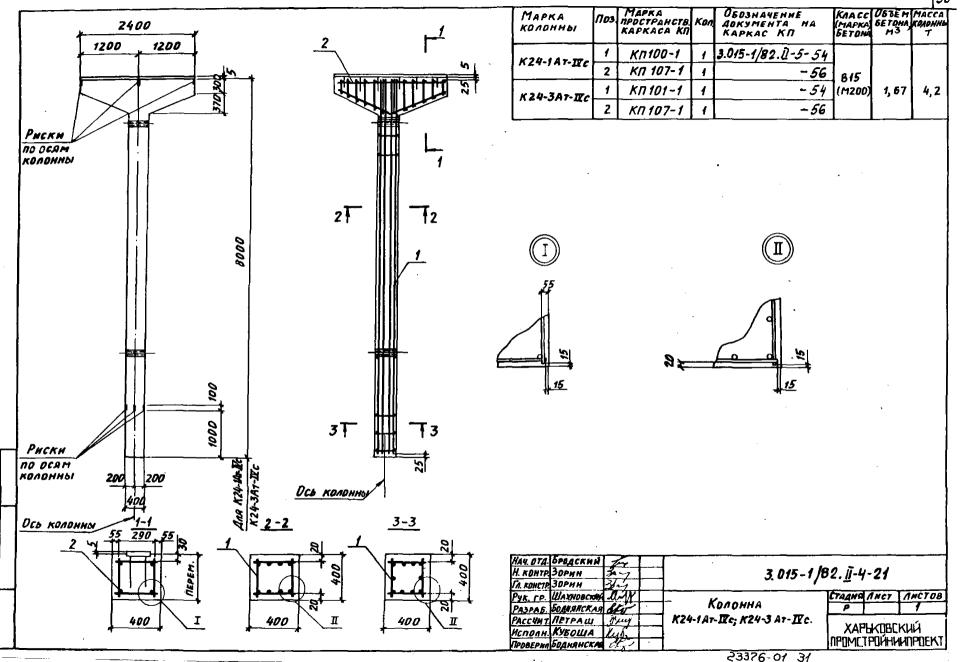


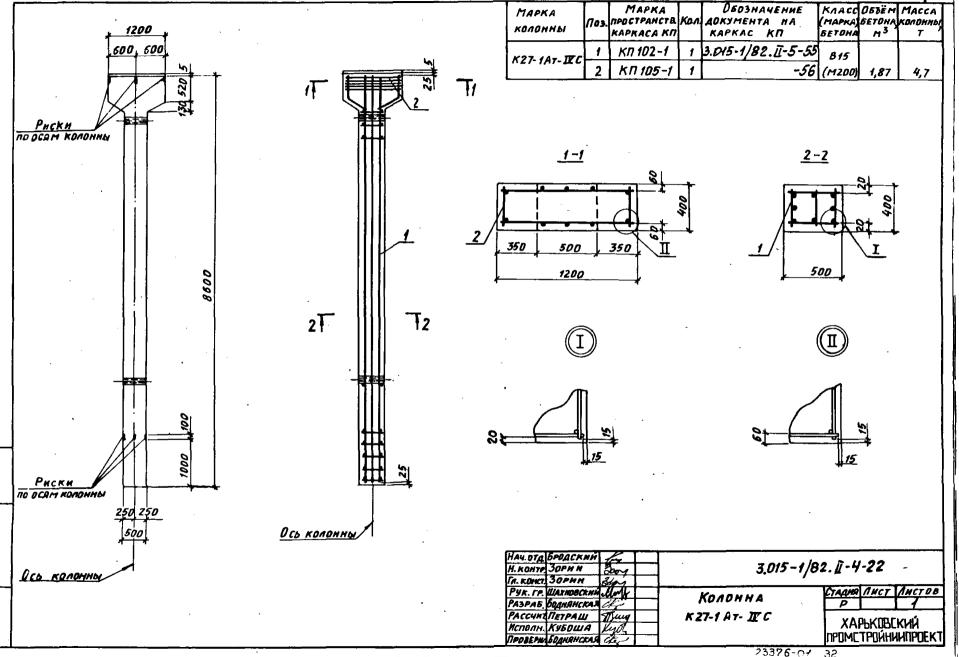


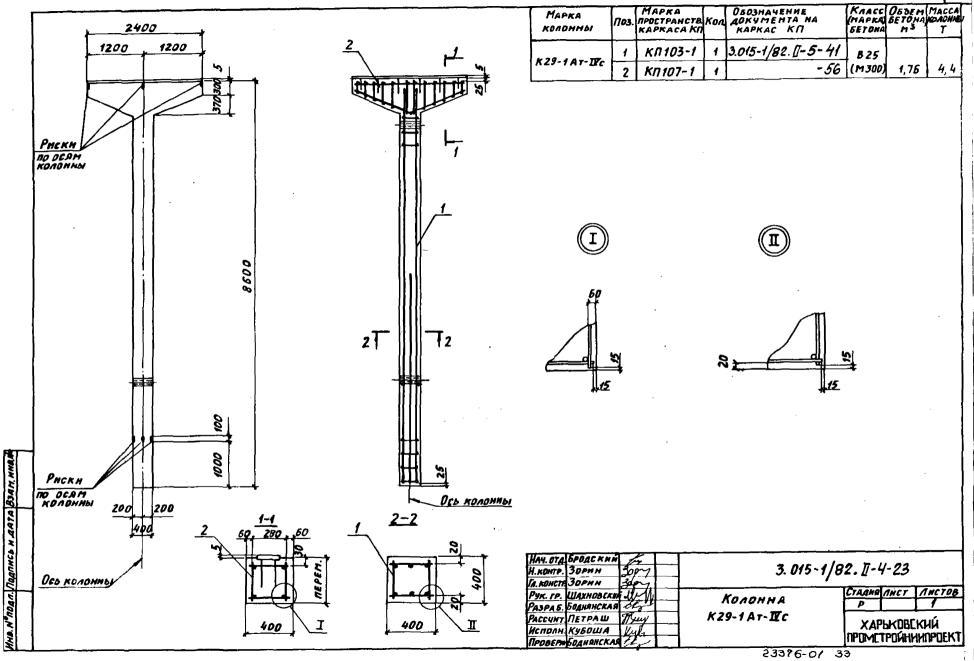


MAPKA KOROHHEI	MAPER MARTHAHETB. ERPERCA EN	ED9.	* OSOSHAYENNE DOCYMENTA NA CAPLAC LA	EMACC (MAPER) BETONA	GETOHR, M3	MACCA CONONHA,
E21-287-₩ C	E1152-1	1	3.015-1/82 II-5-29		1,56	3,9
1.36-1AT-12C	IN53-1	1		815		
£36-241-18 C		7	-30	815 (M200)	126	3,2
£40-187-18c		1	-29		1,50	3,8

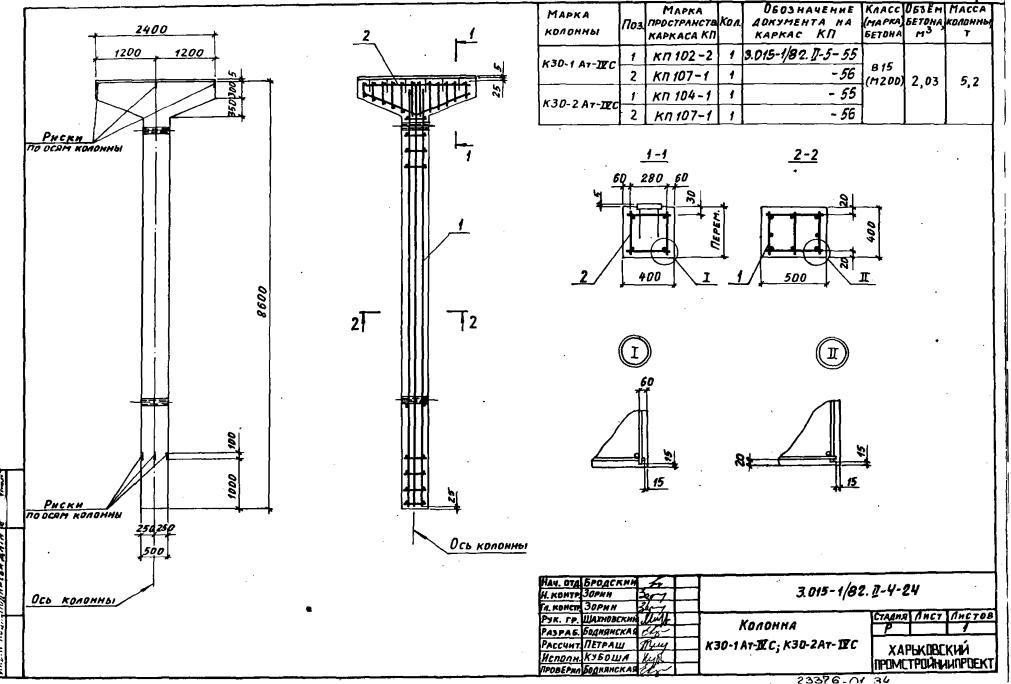

4-17	
P THERE	MAGOB
XAPHKOBE NPOMETROPHI	
	CTARHS JINICT P XAPHKIIBE

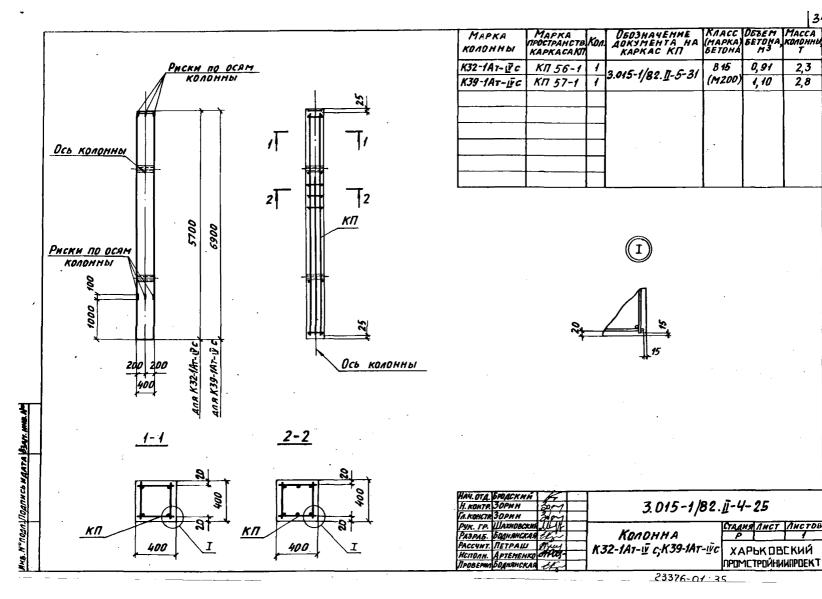


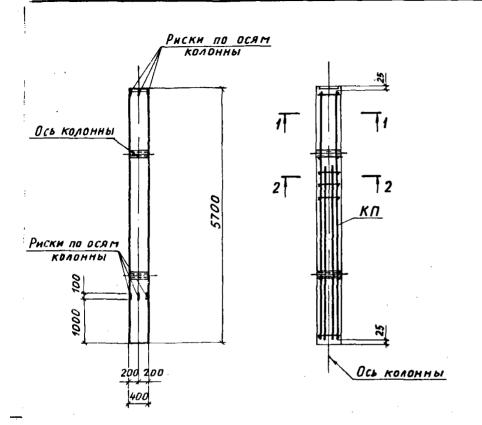


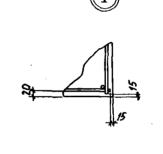


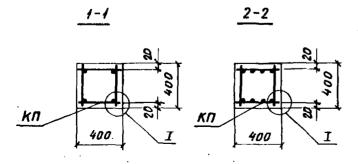
4,7

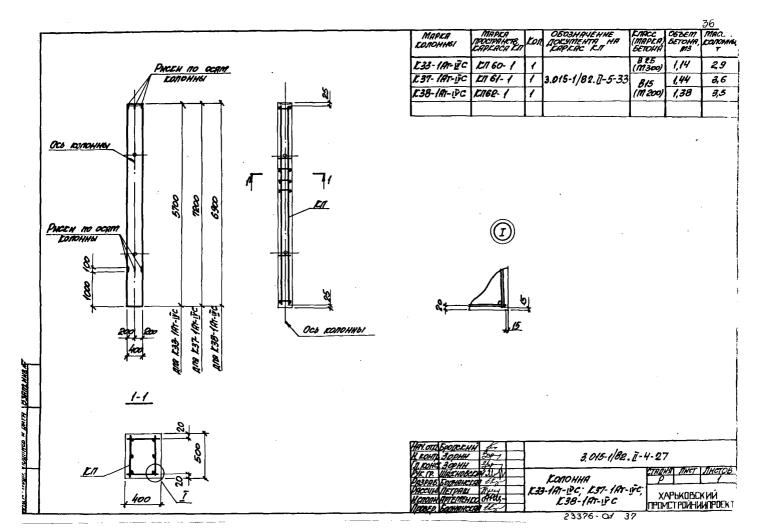








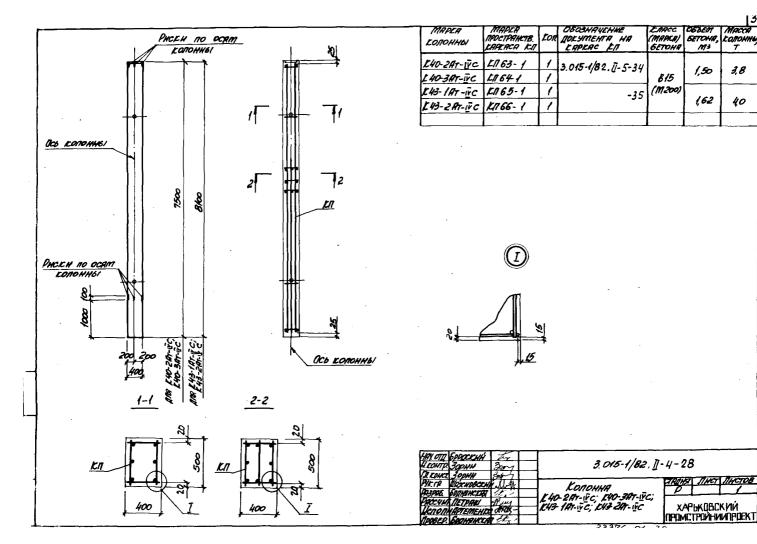


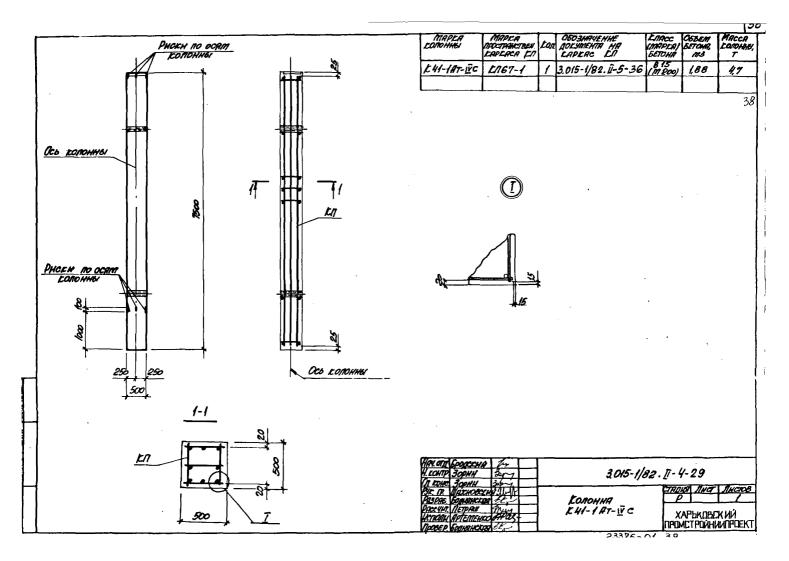

МАРКА КОЛОННЫ	MAPKA NPOCTPAHCIB KAPKACA KN	Kon.		KAACC (MAPKA) BETOHA	OBJEM BETOHA, M3	МАССА КОЛОННЫ, Т
K32-2Aт- <u>іў</u> с K32-3Aт- <u>і</u> ўс		1	3.015-1/82 .II-5-32	B 15 (M200)	0,91	2,3

OTA BPOACKHIN &	
•	BIT E.O. GOLDEN

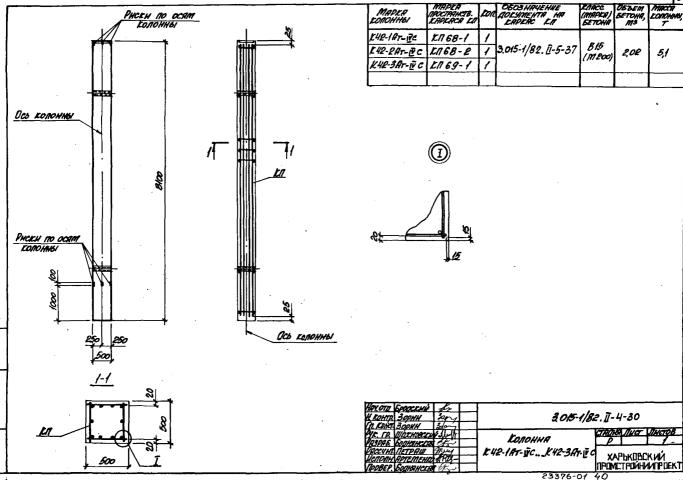
HAY. OTA. BPOACKUM FOR SOLUTION SOLUTIO	3.015-1/82.[i-4-26	
PASPA 5. BODHANCKAR FR	Колонна	CTAANA ANCT ANCTOR
PACCYNT. NETPALU MAY MODDAH. APTEMEHKO APOLY NPOBEPHA BORANANOKA SE	K32-2AT-1₽ C; K32-3AT-1₽ C	ХАРЬК ОВЕКИЙ ПРОМСТРОЙНИИПРОЕКТ

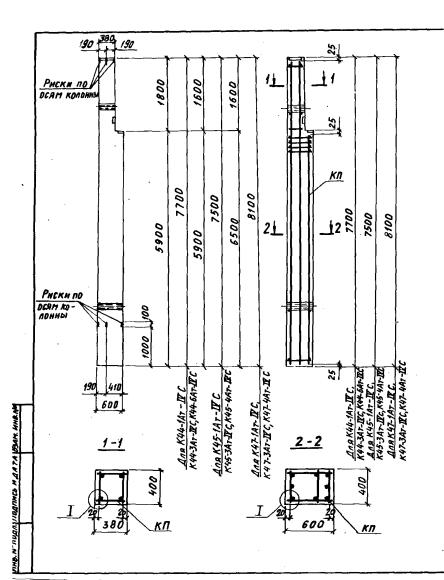
3,8

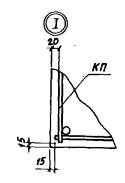

40

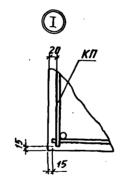

OSBEM BETOHR, LONDHHU

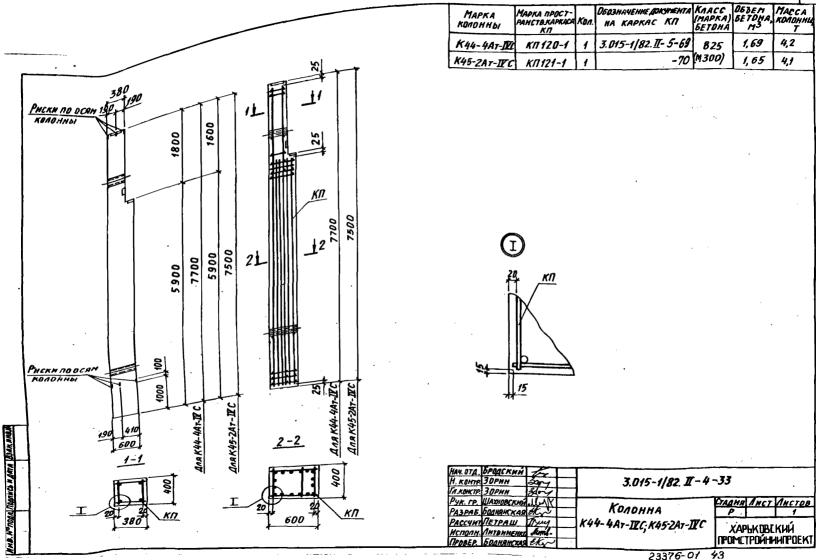
173

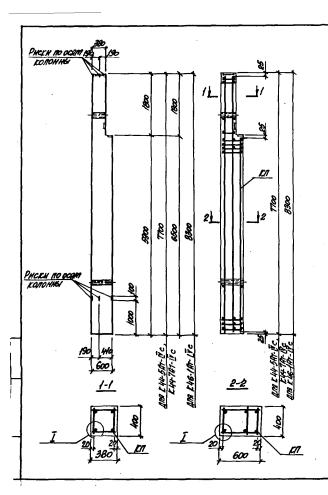

1,50


1,62

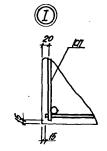



MAPKA KONOHHЫ	MAPKA NPOCTPAK CTBEH. KAPKACA KN	Kon.	D603 HAYEHNE ADKYMENTA HA KAPKAC KN	Kaacc (mapka) Betoha		MACCA KOADHHSI T
K44-1AT-IEC	K/7108-1	1	3.015-1/82.II-5-57	B30 (M400)		4,2
K44-3AT-IIC	KN 108-2	1		(M3 0 0)	1,69	
K44-6AT-IEC	K17109-1	1	-58	830 (M400)		
K45-1AT-IZC	KN110-1	1	50			
K45-3AT-IIC	КП 110-2	1	<i>−59</i>	(M 300)	1,65	4,1
K45-4AT-II C	KN 111-1	1	-60		}	
K47-1AT-IVC	KN112-1	1				
K47-3AT-IXC	KN112-2	1	-6/	830	1,80	4.5
K47-4AT-IIC	KΠ113-1	1	- 62	(M400)	,,,,,,	1 "

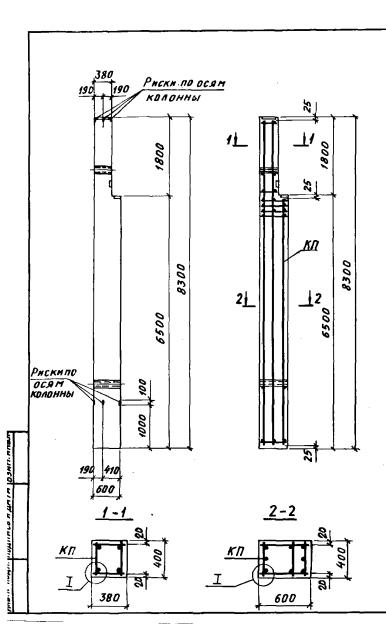

Hay ara	БРОДСКИЙ	Γ.	ter	, 	T					
H. KOHTP.	30PHH	Ž	7	-	3.015-1/82.]]-4	-31]		
	WAXHO8CKHI	Į,		_	1		AMET	AMETOB		
PACCUMY.		27	ry	4	K44-1AT-IIC;K44-3AT-IIC;K44-6AT-IIC; K45-1AT-IIC;K45-3AT-IIC;K45-4AT-IIC;					
	Литвиненко Болнянская				K47-1AT-IVC;K47-3AT-IVC;K47-4AT-IVC	NPOME:	rpoúhi	INNPOEKT		


PHEKH NO OCRIM B	380	1800	2800	1	25
Риски по всам колоним	2005	6500 8300	8200	2	20058 0077 0078
190 190	410 600	3 400 Ans K44-2N-IE	H	227	200 Ans K44-281-111 Ans K49-281-111

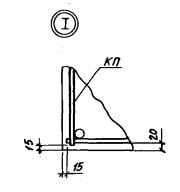
.МАРКА КОЛОННЫ	МАРКА ПРОСТ- РАНСТВ.КАРКАСА КП	Kon	DEGSHAYEMNE ADKYMENTA HA KAPKAC KIT	KAACC (MAPKA) BETOHA	Obbem Betoha, M ³	МАССА КОЛОННЫ, Т
K44-2AT-IEC	KΠ115-1	1	3.015-1/82.II-5-64		1,69	4,2
K46-2AT-ITC	KП116-1	1	- 65	<i>B25</i> (H300)	1,83	2.6
K49-ZA7-17C	KΠ117-1	1	-66	,	1,84	4,6



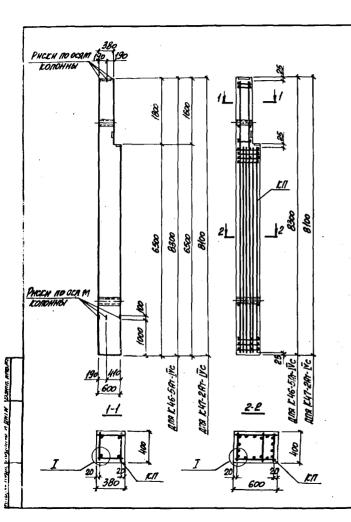
HAY.OTA.	БРОДСКИЙ	4				
H. KOHTP.		Sport	3.015-1/82. <u>I</u> I-4-32			
A. KOHETP.	30рин	34000				
PYK. FP.	ШАХНОВСКИЙ	MAK	Колонна	CTAAMS	MICT	INCTOB
PA3PA6.	50AHAHCKAA	der		P_		1
PACCUMY.	ПЕТРАШ	Trung	K44-ZAT-ITC; K46-ZAT-ITC;	XAPHKOBCKI		าขนน์
ИСПОЛН.	ANTBHNEHKO	Jumb-	 240 2A 117 C			
TODASO	FORHOHER & C	15.	7,7,2		PUNHR	14NPOEK

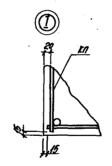


MAPKA KOROHH61	MAPKA NAOK- PAHCTB. KAPKA- CA KII	<i>011.</i>	DEOSKRYENNE DOLYMEN TA HA EAPLAC E.A	LAACC (MAPEA) BETOMA	OGBEM BETOHR, M3	MACCA KONOHA	7 (6)
E44-5AT-LTC	EN 124-1	1	3.045-1/82.I-5-73			4.2	
E44-7AT-[TC	LA125-1	1	- 74	830 (M 400)	1,69		
K46-IAT-ITC	KN126-1	7	- 75		1.83	4.6	

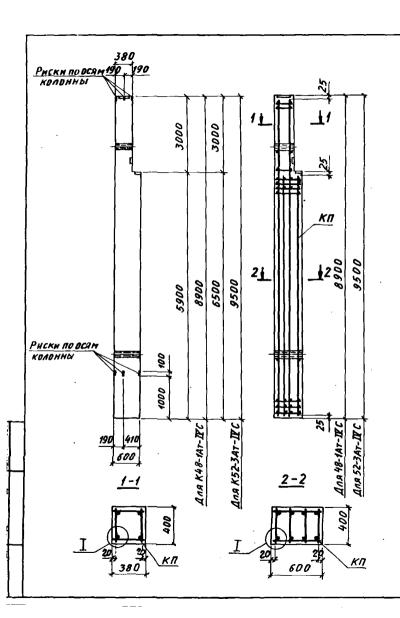


HPN OTH SPORCKUM H. KOHIP JOHN TR. KONA JOHN	2077 3077	3.015-1/82.jj-4	1-34		
PASPAS GODINING PA		Солоння	P	TINCT	Листов
PACCY HA METPHUL	Hunt	1244-5AT-[VC; 1244-7AT-[VC; 1246-1AT-[VC	XAP ITPDMC	SKOBC TPOVHV	KUÚ WUPOEKT

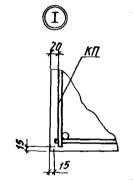

2.3374-01 LI


							•
МАРКА КОЛОННЫ	MAPKA TIPOCT- PAHCTO KAPKACA KII	Kon.	OGOЗНАЧЕНИЕ ДОКУМЕНТА НА КАРКАС КП	KAACC (MAPKA) BETOHA	053EM SETOHA, M3	MACCA KONDHHЫ T	
K46-3A7-IFC	KN114-1	1	3.015-1/82.11-5-63	B30	1.83	4.6]
K46-4AT-IFC	KП114-2	1	•	(M400)	,,,,,	"	

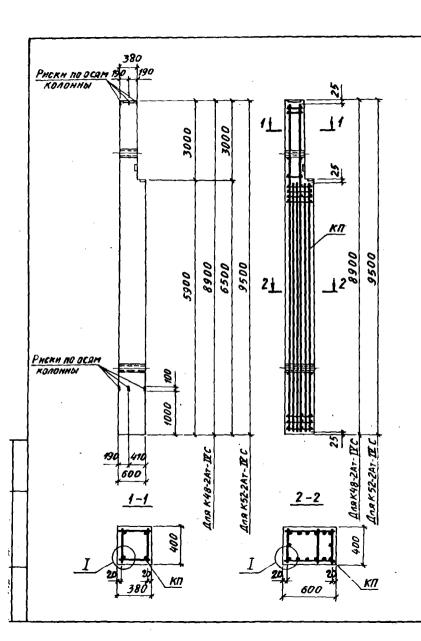
HAY. OTAL BROACKH IN THE HAY. OTAL BROACH BOPH BOPH BOPH BOPH BOPH BOPH BOPH BOP	7	3.015-1/82. <u>[</u> [-4-35					
PYK. TP. WAXHOBCKHIN		Колонна	CTAANS	ANCT	ANCTOB		
PASPAG. GODHAHCKAA CAG PACCUMI NETPAW Mu		K46-3AT-IVC; K46-4AT-IVC	XAPHKOBCKUH				
MCDOAH ANTENHEHRO SUN PROBER BOOMBHCKAS CK	W-		_ ^/\		, run IUNPO EKT		

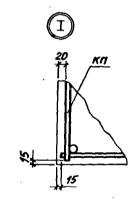


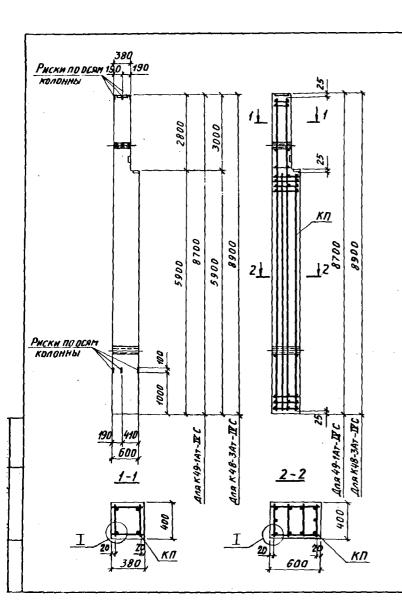
MAPKA KOROHH61	MAPKA APO- CTPANT. KAP- KACA KA	zar		CARCC (MAPLA) BETOHA	DBBEM BETOHA, M3	MACCA CONONHU, T
E46-5AT-18c	EN122-1	1	3.015-1/82.1-5-7/	825	1,83	4.6
147-2AT-1Ve	E1123-1	1	-72	(M300)	1,80	4,5

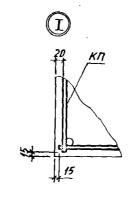


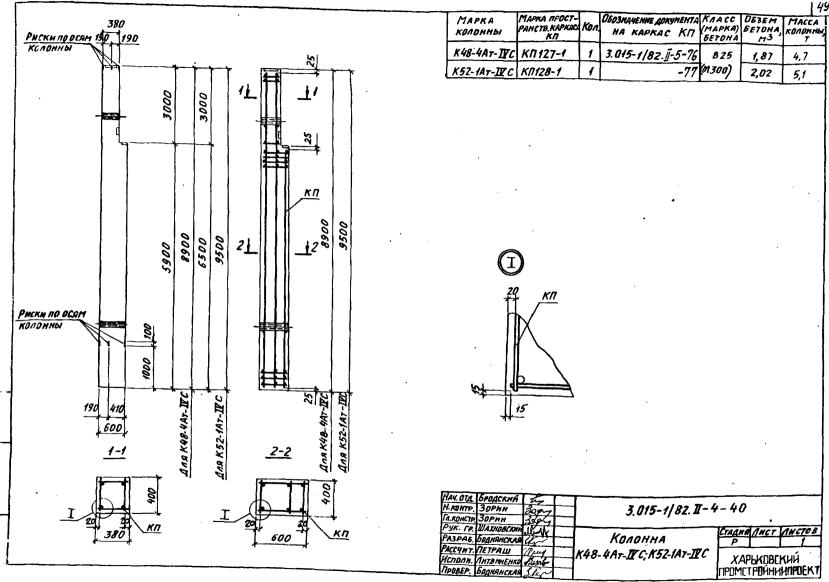
HAN.OTT BOOTEENN &	3.015-1/82 , [i -4 - 36						
PAR. IP. WAICHOBOOK J. J. M. PAR. BOOMBHOOK & C.	Солонна	CTRANS AINCT VINCTOB					
PACE SUN PETPRILL TOUT	K46-5AT-LTC; K47-2AT-LTC	харьковский					
TOORED GOOMSHOUGH ELS	7	ПРОМСТРОЙНИИПРОЕКТ					

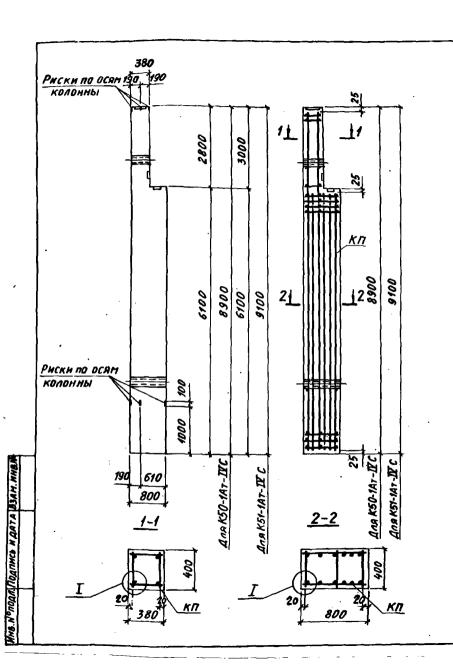

23376-D1 4K


МАРКА КОЛОННЫ	MAPKA NPOCT- PAHCTB.KAPKA- CA KII	Kon.	DEDSHAVEHNE ADKYMEN TA HA KAPKAC KIT	KAACC (MAPKA) BETOHA	SETOHA.	MACCA KONOHHU, T
K48-1AT-IFC	KN 118-1	1	3.015-1/82. <u>I</u> I-5-67	B25 (M 300)	1,87	4,7
K52-3AT-IEC	KN119-1	1	- 68	B30 (M400)	2,02	5,1

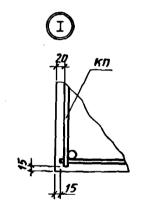

HAY. OTA BOOGER WIN 2907 H. KONTP 30 PM 2907 TA. KONCH 30 PM H 3000	3.015-1/82 <u>. jī</u> -4-37					
PYK. TP. WAXHOBCKHA JA.	, <i>אאאטתט</i> א	CTAMM ANCT ANCTOB				
PACCYM ПЕТРАШ Я Гид Исполи Литеннения Ячть ПРОВЕР БОДИЯНСКАЯ СК	K 48-1,A1-IVC; K52-3A1-IVC	ХАРЬКОВЕКИЙ ПРОМСТРОЙНИИПРОЕКТ				


Марка Колонны	MAPKA NPOCTA PANCTB. KAPKACI KN	Kon.	OGOSHAVENNE ADKYMENTA NA KAPKAC KII			МАССА КОЛОННЫ, Т
K48-2AT-IEC	KП 129-1	1	3.015-1/82.II-5-78	B 25	1,87	4,7
K52-2AT-IVC	K/1130-1	1	- 79	(M300)	2,02	5,1

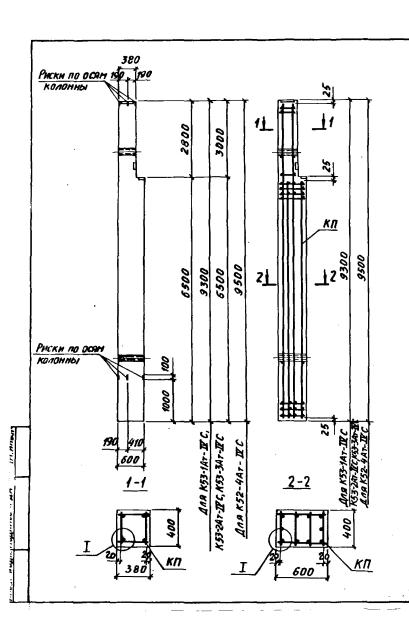

H. KOHTP.		3000	3.015-1/82.II-4-38				
Гл. конст. Рук. ГР. Разраб.	ЗОРМН Шахновский Боднянская	TO THE REAL PROPERTY.	Колонна	Ста дня Р	MET	AMCTOB	
РАССЧИТ. Исп ол н.	NETPAW NUTBUHEHRO BOAHANCKAS	New	K 48-2AT-IIC;K52-2AT-IIC	ХАРЬКОВЕКИЙ ПРОМСТРОЙНИЙПРОЕК			

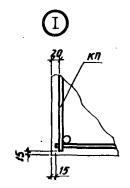


MAPKA KONOHHU	МАРКА ПРОСТ- РАНСТВ. КАРКАСА	Kan.	DEDSHAYEHME LOKYMEHTA HA KAPKAC KIT	(MAPKA)	BETOHA.	МАССА КОЛОННЫ
K48-3A1-IIC	KN	<u> </u>	3.015-1 82.II-5-80	B 25	1,87	4,7
K49-1A7 -IVC	КП132-1	1	-81	(11300)	1,84	4.5



НАЧ ОТД БРОДСКИЙ ДО Н КОНТР ЗОРИН ДОРУ	3.015-1/82. II-4 -39			
TA. KOHCTA 30PMH 3060				
PYK. TP. WAXHOBCKHIN LE	KONOHHA	Стадия	1HCT	ANCTOR
PASPAS. BODHAHCKAR EX		P	i	1
PACCYNT METPAW Ting	K48-3AT-IYC;K49-1AT-IYC	Υ Δ Δ Ε	,PK080	נונואן
MCDOAH. VINTBUHENKO SILME				
ПРОВЕР БОДНАНСКАЯ СТО		HUML	1 PUMHA	<i>AUNPOEK</i>

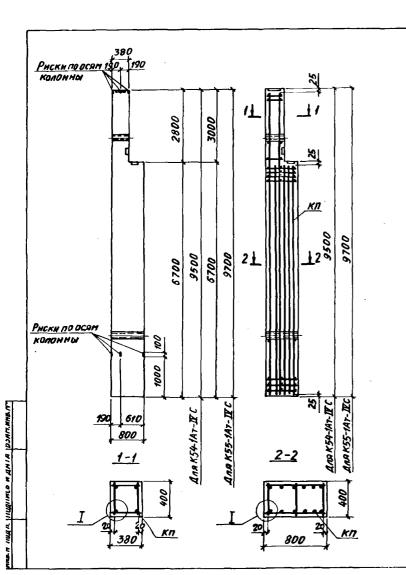


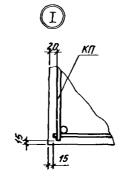

МАРКА КОЛОННЫ	MAPKA TIPOCT- PAHCTB. KAPKACA KIT	Kon.	O6O3HAYEHME QOKYMEHTA HA KAPKAC KIT		BETOMA,	
K50-1Ar-IEC	КП137-1	1	3. 015 - 1/82. <u>1</u> 1-5-86		2,38	6.0
K51-1AT-IYC	KN138-1	1	-87	(M300)	2,41	6,0

HAY.OTA. H. KOMTP. TA KOHCTP		3000	3.015-1/82.II-4-41					
Pyk. FP.	Ш <i>ахновский</i> Боднянская	Il W	NUNUHHA	GARHA	AHCT	AHCTOB 1		
РАССЧИТ. ИСПОЛИ.	METPALI	Mily	K50-1AT-IEC;K51-1AT-IEC	Х АРЬКОВСКИЙ ПРОМСТРОЙНИИПРОЕКТ				

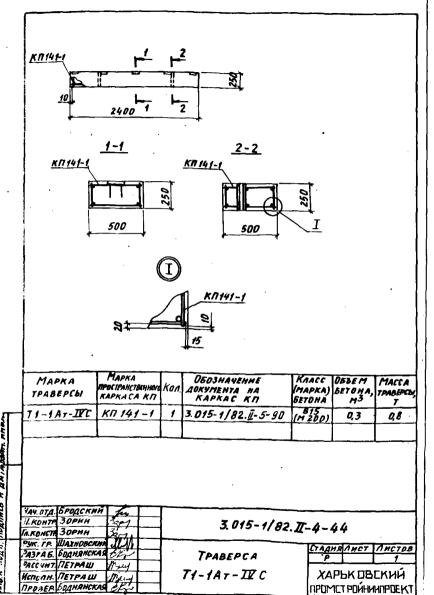
МАРКА КОЛОННЫ	MAPKA NPOCT- PAHCTB. KAPKACA KN	Kon	OSO3HAYEHHE MORYMEHTA HA KAPKAC KII		OSBEM SETOHA, M3	
K52-4AT-ITC	KN133-1	1	3.015-1/82.1-5-82		2,02	5,1
K 53-1A7-IIC	KN134-1	1	- 83	B 25		
K53-ZAT-IIC	KN135-1	1	- 84	(M300)	1,99	5,0
K53-3AT-ITC	K17136-1	1	- 85			

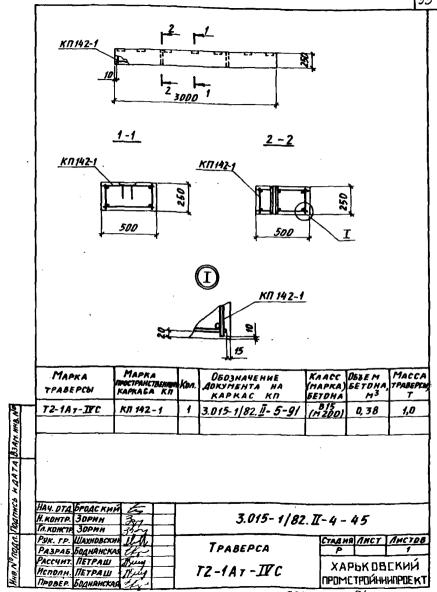
AY.OTA BPOACKNA

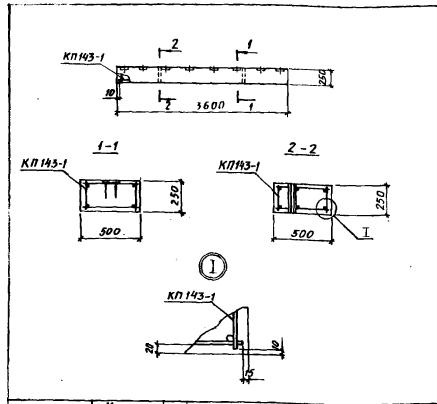

] <i>3.012~1/02.11~</i>	24~1	<i>30PMH</i>	H.KOHTP.
Ì	3000	30PMH	TA.KOHCH.
Колонна		WAXIOBEKN	
1000442	de	<i>BODHAHCKAR</i>	PA3PA5.
K52-4A7-ITC	Meny	ПЕТРАШ	РАССЧИТ
K53-1A1-IYC K53-341-IX	June -	ANTENNEHKO	Исполн.
	der	Баднанская	TPOBEP.


XAPEKOBEKNÁ JEDMET POMHNHI POEKT

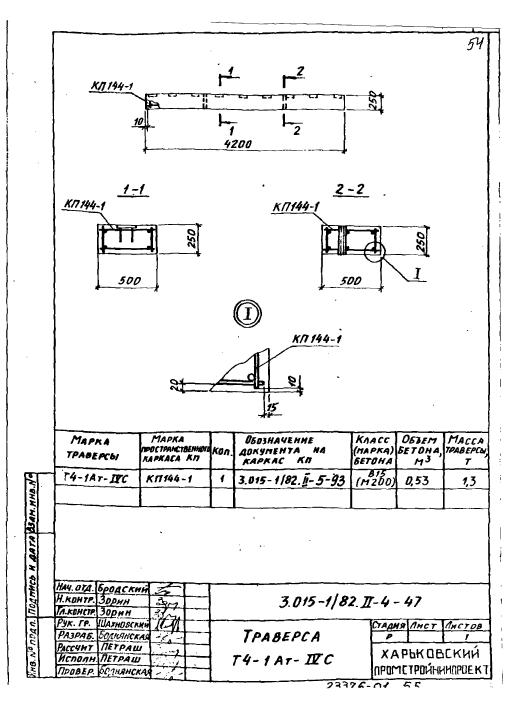
CTARHA MICT MICTOR

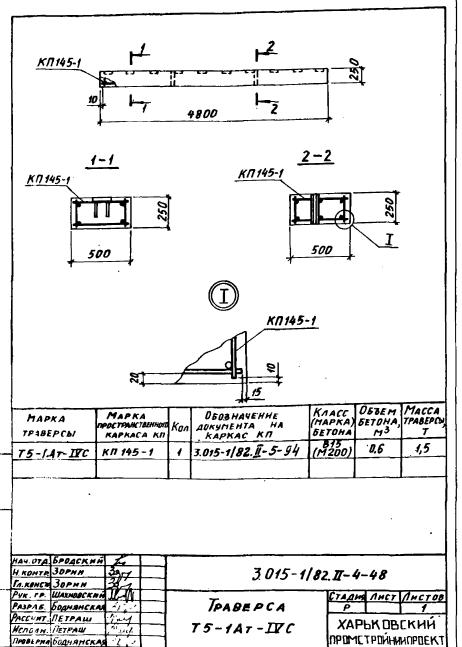


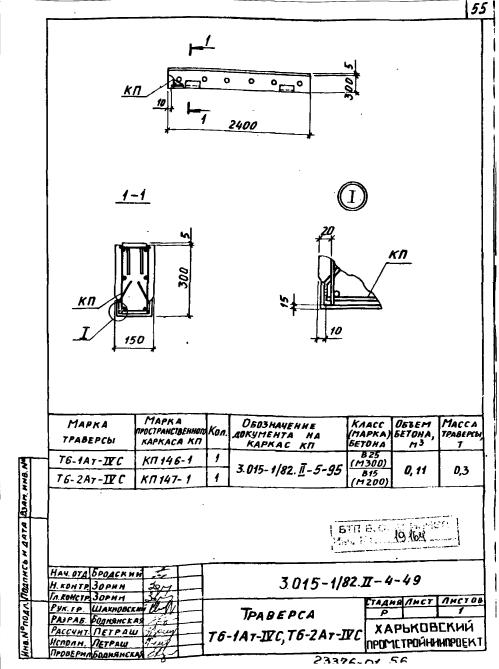

Марка колонны	MAPKA TIPOCT- PAHCTB. KAPKACA KIT	Kon.		KAACC (MAPKA) SETONA	OBBEM BETOHA, M ³	MACCA KONOHHU T
K54-1AT-ITC	KN 139-1	1	3.015-1/82,II-5-32	B 30	2,57	6,4
K55-IAT-IEC	KП140-1	1	-93	(0400)	2,60	6,5

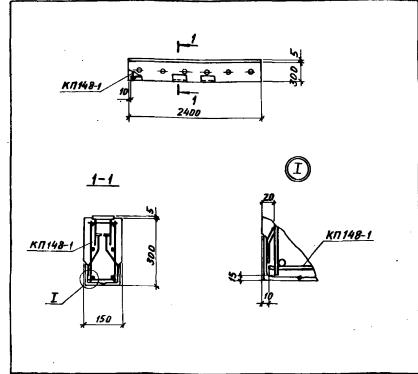


НАЧ. DTA БРОДСКИЙ Дог Н. КОНТР ЗОРИИ ЗОРУ ГАКОНСТИ ЗОРИИ 3907.	3.015-1/82.II-4		
РУК. ГР. ШАХНОВСКИЙ ДИНЯ	Колонна	CTAMA MICT M	HCTOB 1
PACCYNT TETPA W Thuy NETION IN ANTENNEHRO Jum -	K54-1AT-IYC;K55-1AT-IYC	I VALDA DOCUM	
ПРОВЕР БОДНЯНСКАЯ СС	23326-07	NPOMETPOÚHUUE	MILEN

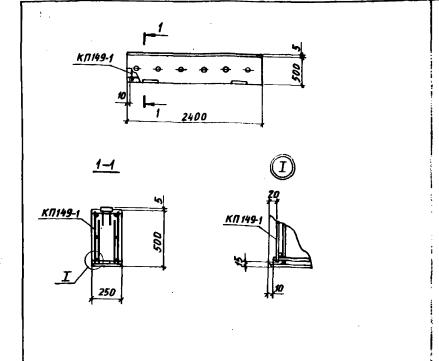




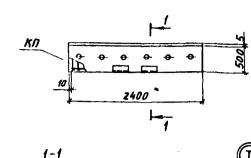


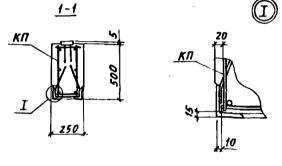

MAPKA TPABEPCH	Mapka RAPKACA KA	Кол.	ADKYMENTA HA	KAACC (HAPKA) BETOHA	OBBEM BETOHA, M ³	MACCA TPABEPON, T
T3-1AT-IYC	K/7143-1	1	3.015-1/82. <u>11</u> -5-92	(M 200)	0,45	1,1

	ł							
	HAY. OTA H. KONTP TA. KOHCTP		34	3.015-1/82.II-	4-46	5	,	
	Pyk. TP	Waxhobekhi			Стадня	THET	MICTOB	J
	PACEYM:	БОДЧЯНСКАЯ ПЕТРАШ ПЕТРАШ	1.1	<i>Траверса</i> Т3-1Ат-IV С	XAPI	K QB	СКИЙ	
!		HAHCKAK	7	 13 /A/ H	חפמאכ	TPOUHL	KULOEKT	



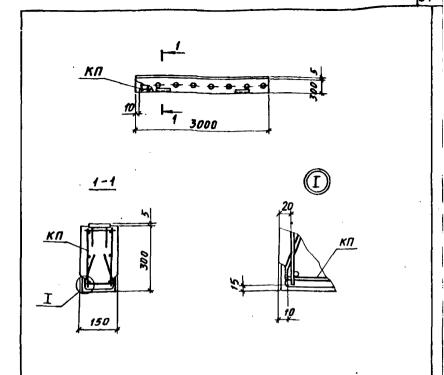
MAPKA TPABEPCH	MAPKA IPOCTPAHCTBEWOID KAPKACA KIT	Kon.	DOKYMENTA HA		063EM BETOHA, M ³	
T6-3AY-INC	KN 148-1	1	3.015-1/82. <u>II</u> -5-96	(H 300)	0,11	0,3
				1		

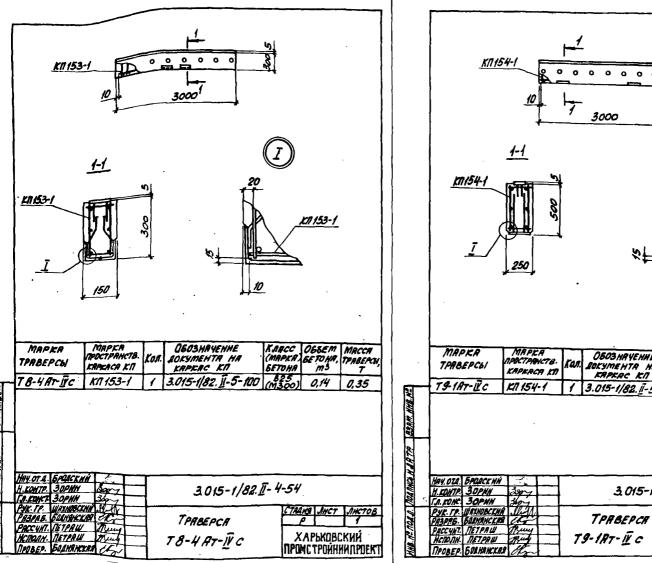

H. KOHTA		347	3.015-1	/82.II-4-50
PASPA 6.	ЭОРМН Шахновски Боднанская ПЕТРАШ		TPAREPCA T6-3AT-IVC	СТАДИЯ ЛИСТ ЛИСТОВ Р 1
	ПЕТРАШ БОДНАНСКАЯ	Trug	76-3A7-IIC	THOMET PONHUMBPOEKT



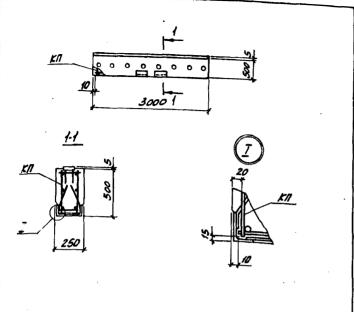
	MAPKA TPABEPCHI	MAPKA RPOCTPAHCTBEHHOTO KAPKACA KIT	Kan.	DEOSHAYEHUE ADKYMEHTA HA KAPKAC KTI		OGBE M BETOHA, M³	MACC/ TRABEPO T
E NO. N	77-1AT-IFC	KΠ149~1	1	3. 015-1/82 <u>1</u> -5-97	(m300)	0,3	0,8
63874	1			•	•		
2							
1001	HAY. OTA. BROACK H.						
HODUMED W DAT	H. KONTP. BOPWH	330		3.015-1/8	32. <u>I</u> T – 4	-51	
1001	H. KONTP. BOPHH	30		3.015-1/8 TPABEPC A		-51 18/14CT	Aucro.

23376-01 .57

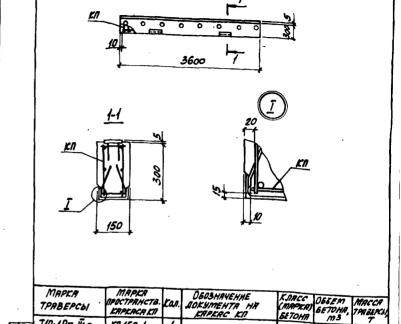



	MAPKA TPABEPCЫ	MAPKA TPOCTPAHCTBEHHOT KAPKACA KIT	Kon.	OSO3HAVEH ME AOKYMEHTA HA KAPKAC KIT	KAACE (MAPKA) GETOHA	OBBEM BETOHA, M3	MACCA TPABERCH T
4	T7-2Ar-IVC	КП 150-1	1	z 045-4/82 ii. 5-08	815	0.3	0.8
l	17-3AT-IFC	КП 150-2	1	3.015-1/82. <u>I</u> I-5-98	(M 200)	0,5	0,0
l							

HAY OTA BPOACKHI	3.015-1/82.II-4-52				
H. KOHTP. BOPHH 30M		4-	9 Z		
PYK. TP. WAXHOBEKHIR SLANG	7-,	СТАДНЯ	SHET	AHCTOB	
PASPAS SOAHAHCKAS (L)	TPABEPCA	P			
PACCYM! TETPALL TITLE	7	X A PI	-K NA	EKHÚ	
ИСПОЛН ЛЕТРАШ /11 мм	T7-2AT-IVC, T7-3AT-IVC			HNPOEK1	
TPOSEPHA GOAHANCKAR 1821		I ILDIAIC	ILUNUA	MILDEL	


	MAPKA TPABEPCHI	MAPKA NPOCTPANCIBEHMOL KAPKACA KN	Kon.	0503HAYEHHE ДОКУМЕНТА НА КАРКАС КП	KAACC (MAPKA) BETOHA	OBBEM BETOMA, M3	MACCA TPABEPCE T
<u>FI</u> -	T8-1AT-IFC	KN 151-1	1		(n 200)		
HHB.N	T8-2A7-IFC	KN151-2	1	3.015-1/82. <u>I</u> -5-99	B25 (M300)	0,14	0,35
Ę	18-3AT-IYC	KD152-1	1		(M 200)		
H GATA		•					
b H AATA	HAU DTA DPDOCKH	· #~\					
b H AATA	НАЧ. ОТД. БРОДСКИ Н. КОНТР. ЗОРИН	300		3.015-1/8	32. II - 4	-53	
Подпись и дята	Н. КОНТР. ЗОРИН Гл. КОНСТР. ЗОРИН	307		3.015-1/8			ΛυςτΩΚ
Подпись и дата	Н.КОНТР. ЗОРИН ГЛ.КОНСТР. ЗОРИН РУК. ГР. ШАХНОВСКІ РАЗРАВ, БОДНЯНСКІ	30/7 30/71		3.015-1/8 TPABEPCA		-53 A (INCT)	Листо <u>в</u>
b H 4	H.KOHTP. 30PMH FA.KOHCTP. 30PMH PYK. FP. WAXHOBCKI	30 M	T8-		Craan P		1

22244 01 00


100 101154-1 10 KARCC OSSEM MACCA (MAPKA) SETOHA, TPABEACH OBO3 HRYEHME BOLYMEHTA HA BETOHA m3 3.015-1/82.11-5-101 3.015-1/82.11-4-55 MICTOB ХАРЬКОВСКИЙ **NPOMCTPONHNUNPOEKT** 23376-01 5.9

	MAPKA NPOCTPAHCTB KAPKACA KN		NUPSING TIN TH	KARCC (MRPKR) 6ETOHR	OBBEM BETOHA, m3	MACCA TPRBEACH
79-281-18c	KN 155-1	1		815		
T9-3 AT- <u>IV</u> C	KN 155-2	1	3.015-1/82. <u>I</u> I-5-102	(M200)	0,38	1,0

HAY. OTA. H. KONTP. T.J. KONCT.		3077	3.015-1/82. 🗓 -4	<i>l-56</i>
PRBPAB. PRCCYNT.	Wirkhob <i>cichi</i> h Boahahcicha Tiet <u>paw</u>	They	TPABEPCA T9-2AT- <u>IV</u> C,T9-3AT- <u>IV</u> C	СТАВНЯ ЛИСТ ЛИСТОВ Р ХАРЬКОВСКИЙ
	<i>TIETPRUL</i> Baahshekan	Bing Car		NPOMCTPONHUM/1POEKT

81.618			
Пратись И.	HAY OTA BPOACKHH A. H. KOHTP BOPAH BOPAH BOPAH BOPAH	3.015-1/82. <u>Ī</u> -	4-57
HIB. NE MOBOT.	PUE TP. WINNESCHA JUST PREPARE ENHANCERS PROCENT TETPOW Trung HOROMA TETPOW Trung	TPABEPCA TIO-IAT- <u>[V</u> C, TIO-2AT- <u>IV</u> C	СТИМЯ ЛИСТ ЛИСТОВ Р ХАРЬКОВСКИЙ ПРИМСТРИЙНИИПРИКТ

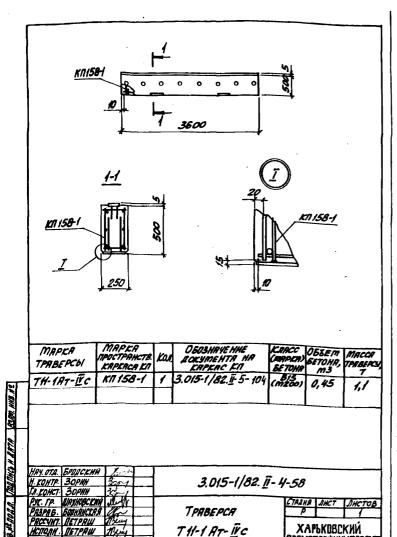
3.015-1/82.<u>1Ĩ</u>-5-103

TID-IAT-IFC

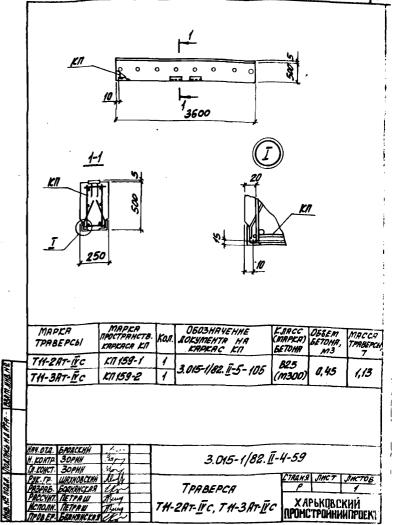
TIO-2AT-ITC

KN 156-1

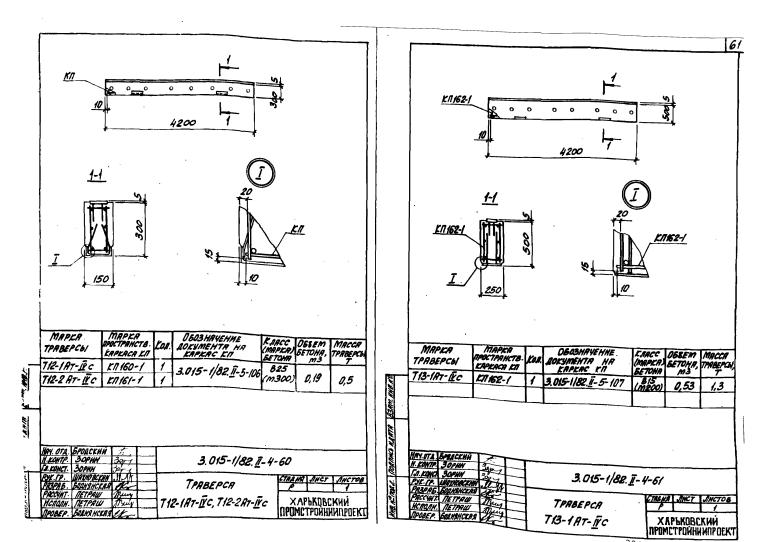
KN 157-1

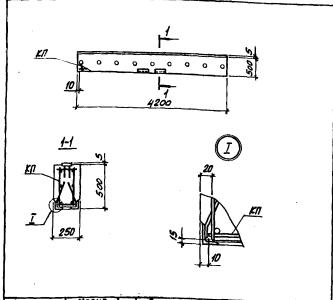

23326-01 60

BETOHR,

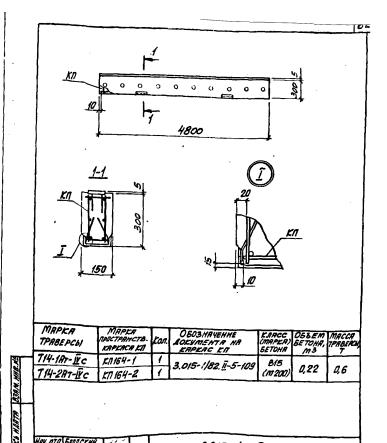

0.16

BETOHR

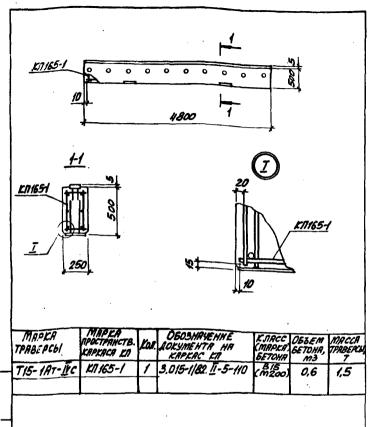

815

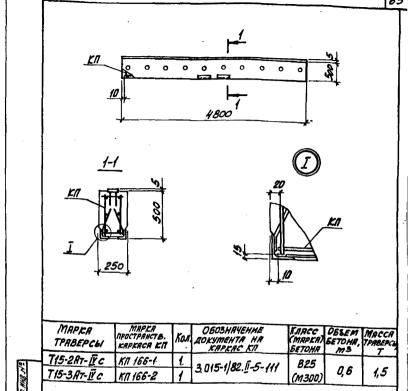


ПРОМСТРОЙНИИПРОЕКТ

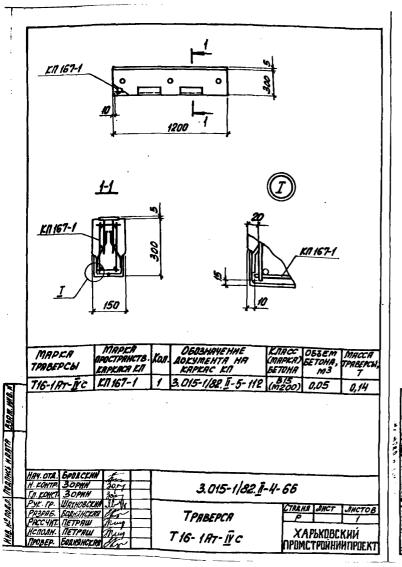

3520 E W/ E/

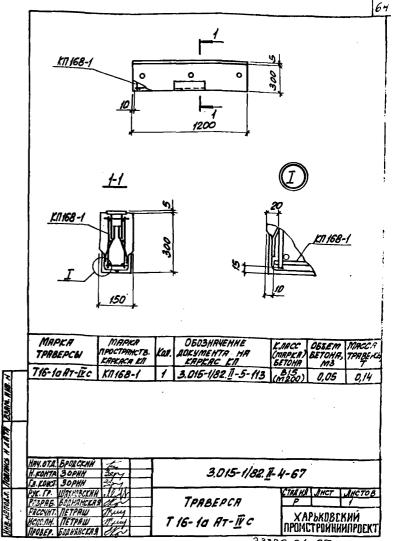
TPHBEPLBI	MAPKA MACTPANCTB. KAPKACA KN	Kan.	HOICHNEH IN NH	KARCC (MRPKA) BETOHA	OBZEM BETOHR, M3	MACCA TPABEPCU,
T13-2 AT- IFC	KN 163-1	1	2 0/5-1/92 11 5-100	825	4 7 4	· · ·
T13-3A7- <u>I</u> rc	KN 163-2	1	3.015-1/82 <u>.1</u> 1-5-108	(M300)	0,53	1,3

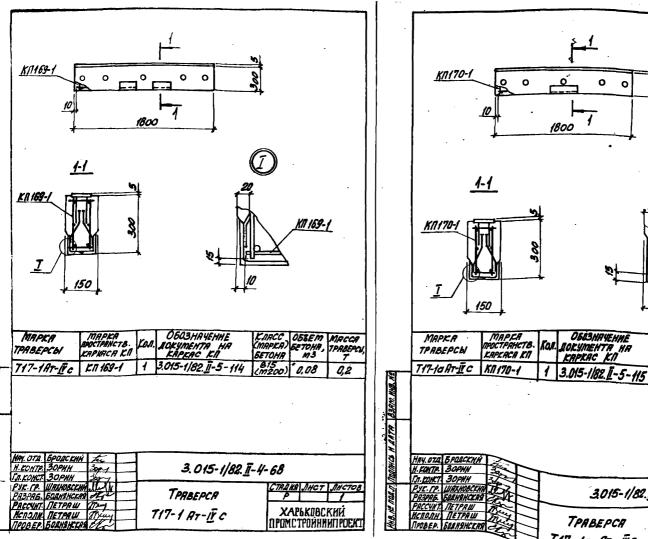

W Sulling I	HAY OTA SPOACENH HISTORY H. EDHTP BOPHH SOLL TA KOHCH BOPHH	3.015-1/82 <u>.I</u> I-4-62
MB.M- ereni	PSE TO WINDOCKIN I STORY PROPERTY TO THE PREME TO THE PROPERTY THE PRO	7 РЯВЕРСЯ СТВАНЯ ЛИСТ ЛИСТОВ ГО ТОВ ТОВ ТОВ ТОВ ТОВ ТОВ ТОВ ТОВ ТОВ ТО


H-KONT	3OPHH	33-7	二	3.015-1/82. <u>I</u> I-	4-63		- 1
PYK. TP.	30PHH MAXHUBCKHÜ GORRRICKAS		\exists	TPHBEFCH	CTRAHR P		JACTOB
	TETPAW	Merry		714-1AT-18C, 714-2AT-18c	XAI	PKOBC	кий
	BODH AUCKAS			23376			MIPUEKI

HAB Nº NOLA






HAY OTA BROACK MA H. LONTP 30PMH TA. KOHET 30PMN	34C7	3.015-1/82. <u>i</u>	1 -4-64
PSE P WIGHOBERN PRAPES SEINSHEERS PRECYPT, NETPRW HENDOMA, NETPRW NEOBER, SERHANCERS	The Theng Theng	TPABEPCA T15-1 AT- <u>IV</u> C	СТЯВИЯ ЛИСТ ЛИСТОВ Р У ХАРЬКОВСКИЙ ПРОМСТРОЙНИИПРОЕКТ

0/2			
7 11 93	HAY. OTTO BPORCENH		
Dagunce	H.KOHTP 30PHH 3gby	3.015-1/82. <u>J</u> i	-4-65
noun	PSK. TP. WAXHOBCKMA SLAV PASPAG. GORANCKAR SC	TPRBEPCR	CTRANA ANCT AMCTOR
HHD. A II	MCRONH RETPAW THING MCRONH RETPAW THING MPOSEP BRANHCERS SE	T15-2AT- <u>N</u> C, T15-3AT-NC	ХАРЬКОВСКИЙ ПРОМСТРОЙНИИПРОЕК

65 KN170-1 KARCO DESEM MRCCA (MARCA) BETOHA, TRABERCI SETOHA m3 3.015-1/82 11-5-115 0,2 3015-1/82.1-4-69 CTARKA JACT MICTOB ХАРЬКОВСКИЙ ОРОМСТРОЙНИИПРОЕКТ T17-10 AT-INC

22276 A/ 6A

163-

H. KOHTR G.KOHCTP.	30PHH	327	3.015-1/82.	<u>I</u> T-4	-PC	
	Шахновский Боднянская Петраш		BEAOMOCTE PACKOAA	Стадия Р	ANCT	AHCTOB 10
Исполн.	АРТЕМЕНКО БОДНЯНСКАЯ		CTAAN HA BAEMEHT,KI	AA1	PAK OB C	KHÁ MOPDEKT

		И	3.4 E	ЛНЯ		API	1ATYPH	b/E							H3A	EAMA 3A	SAA	QHD	I E			
MAPKA				API	4477	PA	KAACO	A						AFM	1ATYF	A KAACCA		DKA		APKH		1
3AEMEHTA			AT	- <u>IV</u>	C					4 - <i>I</i>					A	<i>I</i> II		BC	3 Kn	2		Оъщ
SHEFTERIA		r	CT	108	84 -	81 *		roc	7 5	781-	- 82			r	OCT .	5781 - 82	1990	C7 3-74	ГОСТ 32	62-75*		PACE
	\$12	\$16	<i>\$18</i>	ФZ0	ф22	\$25	Hroro	\$6	\$8	\$10		Hrara	BCEra	φ8	# 12	Vitor	8=8	8=10	FA3.TP.	Итого	OCE/O	KE
K5-1AT-IFC	4,2	38,8		П			43,0		8.2	3,2		17,6	60,6	2,4	_	2,4	15,1	1_	2,6	17,7	20,1	80,
K5-2AT-IYC	4,2		_	=	73,2		77,4	6,2	8,2	3,2		17,6	95,0	2,4		2,4	15,1	1=	2,6	17,7	20,1	115,
K5-3A7-IFC	4,2	38,8	- 1			_	43,0	8,8	8,2	3.2		20,2	63,2	2,4		2,4	15,1	4=	2,6	17,7	20,1	83,
K6-1AT-IFC	4,2	_	54,2	60,8		_	119,2	8,5	8.2	3,2		19,9	139,1	2,4	-	2,4	15,1	4-	3,2	18,3	20,7	159, 8
K7-1Ar-IFC		42,8	_	_		-	42,8			-		5,0	48,8	-	3,0	3,0	L	6.6	2,0	8,6	11,6	60,4
K7-2AT-IYC		56,0	_	<u> </u>	<u> </u>	_	56,0	<u> </u>	_	-		60	62,0	1	3,0	3,0	<u> -</u>	6,5	2,0	8,6	11,6	73,0
K7-3A7-IFC		42,8			_	-	42,8		_	-		8,6	51,4		3,0	3,0		6,6	2,0	8,6	11,6	63,
K7-4AT-IEC	Γ-	56,0	-	_	_	-	56,0	7	_	_			64,6		3,0	3,0	L	6,6	2,0	8,6	11,6	76,
K8-1AT-IVC	Ι-	54,0	_	_		1	54,0			_			62,5	_	2,2	2,2	<u> </u>	9.2	2,6	11,8	14,0	76,
K8-ZAT-IEC	Ι-	41,6		_			41,6					8.0	49,6	_	2,2	2,2	_	11,9	2,6	14,5	16,7	66
K8-3AT-IVC	<u> </u>	24,0	524			-	76,4	8,5		_		8,5	84,9	_	2,2	2,2		11,9	1	14,5	16,7	101,
K8-4AT-IFC		29,5	71,0	_	_	_	100,6			_		86	109,2		2,2	2,2	1=	9,2			14,0	-
KB-5AT-IIC	<u> </u>	<u> </u>	52,4	_	_	1	52,4	-2-		-		8,0	60,4	_	2,2	2,2	<u> </u>	11,9			16,7	+
K8-6AT-IFC	ᄂ			84,1		_	84,1	_		-		7,6	91,7	_	2,2	2,2	二	9,2	1-2-1-		14,0	
K8-7AT-IYC	1=	_	-	_	136,1	-	136		T			8,2	144,3	-	2,2	2,2	_	9,2			14,0	+
K8-8AT-IYC	<u>:-</u>	540		<u> -</u>		_		11,9		_		11,9	65,9	_	2,2	2,2		9,2	+		14,0	+
KB- 9AT-IVC	<u> </u>	41,6		-		-		11,2		_		11,2	52,8	-	2,2	2,2	<u> </u>	11,9			16,7	+
KB-10AT-IXC	=	24,0	52,4	<u> </u>		-		11,8		_			88,2		2,2	2,2	1=	11,5	+		1	104
K8-11AT - IYC	<u> </u>	29,6	71,0	_	_	1							112,4		2,2	2,2	1=	9,2	+		14,0	-
K8-12AT-IEC	<u> </u>	_	52,4	-	_	_		11,8	 	_		11,2			2,2			11,5	+		16,7	
K9-1AT - IFC	5,8	13,6	71,2			-		11,2	6,1			13,5	104,1	1,2		1,2	1		2,6		11,4	
K9-2AT- ITC	5,8	_	63,0	66,8	_	-	90,6				-		149,2		—	1,2	7,6		2,6		134	_
K9-3A7- IVC	5,8	13,6	71,2	_	_		135,6	7,5 10,4	6,1	 -	-		107,1		1 =	13	7,6		2,6	10,2	1164	118,

3.015-1/82.A-4-PC

		Из	REAL				PHHE							4.00				3AK					
MAPKA				YATS		^	MACCA						_	APM			MACCA		OKA		APKH		
3AEMEHTA	 	^		IF C				├		-I			BŒTO	-		4-111				3 KA		Beer en	<i>ОБЩНА</i> РАСХОЛ
3/12/12/17/	1	1- 4-			1088			+	_		1-82	-		<u> </u>		781-					3262-75	1	KF
		Ø 16			922	925	_	+-	+	Ø 10	┦	HTDFO		١	Ø12			_	0=10	ΓΑΣΤΡ. Ø1/4"			<u> </u>
K 10-1AT-IYC		25,2	54,0			_	82,4	+	+-	2,4	-	Ť	98,9		-		1,8	11,3	L	2,5	13,9	T	114,6
K10-2AT-IYC	3,2	-	_		104,2		107,4		_	2,4	↓	16,0	123,4	_	-		1,8	11,3	<u> </u>	2,6	13,9	7	139,1
K10-3AT-IFC	3,2		32,0			104,0	139,	+	20,5	2,4		22,9	152,1	1,8			1,8	11,3	_	2,6	13,9	15,7	177,8
K10-4AT-IYC	3,2	25,6	54,0		<u> </u>		82,6	10,4	6,7	2,4	ļ	19,5	102,3	1,8	-	<u> </u>	1,8	11,3		2,6	13,9	15,7	118,0
K11-1A7-IVC	4,2	-	540	-		<u>L</u> -	58,	6,9	8,2	3,2		18,3	76,5	2,4	_		2,4	15,1		2,6	17,7	20,1	96,6
KII-ZAT-IKC	4,2	-	_	86,6	_	_	90,	6,9	8,2	3,2		18,3	109,1	2,4	-		2,4	15,1	_	2,6	17,7	20,1	129,2
K12- 1 AT-IYC	4,2		88,4	66,8		_	159,	9,0	8,2	3,2		20,4	179,8	24	-		2,4	15,1	-	3,2	183	20,7	200,5
K13-1AT-IEC	1-	45,2	-			_	45,	8,3	_	_		8,3	53,5		2,2		2,2		11,9	2,6	14,5	16,7	70,2
K13-2A7-IYC	-	58,6	_	_	_		58,6	8,9	<u> </u>	_		8,9	67,5		2,2		2,2		9,2	2,6	11,8	14,0	81,5
K13-3A1-IYC	_	_	57,2		_		57,	8,3	_			8,3	65,5		2,2		2,2		11,9	2,5	14,5	16,7	82,2
K13-4AT-IYC	<u> </u>	_	1	92,2	-	_	92,	8,3		_		8,3	100,5	_	2,2		2,2	-	9,2	2,6	11,8	14,0	114,5
K13-5 AT- IYC	-	_	_	_	111,2	-	111,	8,3	<u> </u>			8,3	119,5	_	2,2		2,2	1-	9,2	2,6	11,8	14,0	133,5
K13-6 AT- IYC		-	1	70,8			70,8	8,3	<u> </u>	<u> -</u>		4,3	79,1	_	2,2		2,2		11,9	2,6	14,5	16,7	95,8
K13-7Ar - ITC]_	45,1	-	-	[45,	1 12, 2	<u> </u>	<u> </u>		12,2	57,3		2,2		2,2		11,9	2,6	14.5	16,7	74,0
K13-8AT-IYC	-	58,5	<u> </u>	_		<u> </u>	58.	12,8	<u> </u> –			12,8	71,3		2,2		2,2	<u> </u>	9,2	2,6	11,8	14,0	85,3
K14-1 AT-IEC	5,8	_	L	21,2	87,5	_	114,	5 7,5	5,1	<u>-</u>		13,6	128,2	1,2	<u>-</u>		1,2	7,6		2,6	10,2	11,4	139,6
K15-1 AT-IEC	18,8	_	-	_	-	113,2	132,	<u> </u>	22,0	_		22,0	154,0	1,2			1.2	7.6		3,2	10,8	12,0	166,0
K16-1 AT-IFC	3,2	14,6	77,2	_	_	-	95,	8,0	6,7	2,4		17,1	112,1	1,8	-		1,8	11,3		2,6	13,9	15,7	127,8
K16-ZAT-IEC	3,2	14,6	77,2	_		_	95,	11,3	6,7	2,4		28,4	115,4	1,8	-		1,8	11,3		2,6	13,9	15,7	131,1
K17-1 AT-IFC	3,2	_	_	145,6		_	148,	8 8,4	6,7	2,4	-	17,5	166,3	1,8	_		1,8	11,3		3,2	14,5	16,3	182, 6
K18-1 AT-IFC	4,2	_	-	72,8	_	_	77,0	7,5	8.2	3,2	<u> </u>	18,9	95,9	2,4	_		2,4	15,1		2,5	17,7	20,1	116,0
K18-2A7-TEC	4,2	-	-	21,2	87,6	-	113,0	7.5	8,2	3,2		18,9	131,9	2,4	_		2,4	15,1	_	2,6	17,7	20,1	152,0

CONTINUE WARTA BEAM WI

			EAH				PHOIE							Ann		13AE	ARGA	SAN	NAA	NOIE			
			A PM	ATYP	A	KA	ACCA					·		API			ACGA		POK		MAPKH		1
MAPKA		A	7 -	IK C				l		- <i>I</i>						-777			BCT	3 K	7 2		Общий
3AEMEHTA			roc	7 1	088	14- 8	31 *	ru	CT_	5781	- 82		BŒro		067	5781					3262-75	BCETO	PACXAL
	Ø12	Ø16				Ø25	Итоп	\$6	Ø 8	\$10		HTOTO		Ø 8	Ø 12		Un	ro δ= l	8 5=10	911/4"	Mron	_	
K19-1AT-IC	4,2	_		_	87.6	113,3	205,	-	24,1	3,2		27,3	232,4	2,4			2,	4 15,	_	3,2		20,7	
KZD-1AT-IEC	1	49,1	1	_	_	_	49,	9,3		_		9,3	58,4		2,2			2 -	11.9			16,7	75,1
K20-2 AT-IEC	~	-	61,9	-	-		61,5	9,3	 			9,3	71,2	<u> </u>	2,2		3	2 -	11,9	2,6	14,5	16,7	87,9
K20-3 AT -IYC	-	78,7	_	_	_	· -	78,	9,9	-	_		9,9	88,6		2,2		2,	2 -	11.9	2,6	14,5	16,7	105,3
K20-4AT-IYC	_	29,5	_	76.4	_		105			-		9,9	115,8	-	2,2		2	2 -	11,9	2,6	14,5	16,7	132,5
K20-5AT-IEC	_	49.2	_	-	_	_	49			=		13,1	62,3	1	2,2		_ 2	2 -	11,9	2,6	14,5	16,7	79,0
K20-6AT-IYC	_	-	62,0	_	_	_	621		T	-		13,1	75,1	_	2,2		2	2 -	11,9	2,6	14,5	16,7	91,8
K20-7A7- IVC	_	80,0		_	_	_		13,7] -		13,7	93,7	_	2,2		2	.2 –	11,9	2,6	14,5	16,7	110,4
K20-8AT-IVC	_	30,8		76,4	-	_		13,7		-		13,7	120,9	-	2,2		2	2 -	11,9	2,6	14,5	16,7	137,6
K21-1 AT- IFC	_		62,0		_	_		10,4		-		10,4	135,5	-	2,2		2	2 -	9,2	3,2	12,4	14,6	150,1
K21-2 A7- IYC	-	-	67.0		92,4	_		10,1	-	-		10,1	169,5	-	2,2		2	2 -	9,2		12,4	14,6	184,1
K21-3AT- IYC	-	63,2		_	_	-		14,7	_	-		14,7	139,9	_	2,2		2,	2 –	9,2		12,4		154,5
K22-1A7- IYC	5.8			-	94,8	_	151,0	-	6,1	-		15,3	166,3	1,2			1,	2 7,6	1-	3,2		-	178,3
K22-2AT- IYC	5,8			-	94,8		151,0		6,1	•		19,2	170,2	1,2	_		1,	2 7,6	-	3,2			182,2
K23-1 AT - IFC	3.2		_	117,6	_		120.8		6,7	24		18,3	139,1	1,8	_		1,	8 11, 3	<u> </u>	3,2		-	155,4
K23-2 AT- IFC	3,2	-		_	94,8	_		11,2	6,7	2,4		20,3	197,1	1,8	-	_		8 11,3	<u> </u>	3,2			213,4
K23-3AT-IYC	3,2		-	_	94,8		176.			2,4		25,1	201,9	1,8			1,	8 11.3	<u> </u>	3,2	14,5	16,3	218,2
K24-1.AT- IVC	<u> </u>	115,0		_	-	_	119.2	 				19,6	138,8	2,4	_		_ 2	4 15,	1 -	2,6	17,7	20,1	158,9
K24-2AT-IFC			_		268	122,5			23,5				180,2			_	2	4 15,	1 -	2,6		20,1	
K24-3 A T-IKC	-7-	115,0		_		-	119,2				-	23,2	142,4	2,4	-			4 15,1	1-	2,5	137	20,1	162,5
K25-1AT-IYC		52,8	-		_	_	52,8			-			62,4		2,2		2,	2 -	11,9			16,7	
K 25-2AT-IYC	_	68.4					68,4		_	-			78,0	_	2,2		2	2 -	9,2	2,6	11,8	14,0	92,0

			И3,	ΔΕΛ	n A	A	PHATYPI	IDIE									ENNA	•	AKAA		E		
ļ					ATY	PA	KAA	CCA						APM			ACCA		MPOK.	47	MAPKH		
MAPKA				II.						- <i>T</i>						-20		\perp	<i>BC</i>	7 3 K	n 2		Общи
3AEMEHTA					884	- 81	*	7	roc1	578	11-8	72	A CE FO	$\overline{}$			- 82	19	0 C T 9 0 3 - 74	roc	73262-75	BCETO	PACXO, KT
	Ø12	Ø16	Ø18	\$20	Ø22	Ø 25	Wrong	96	Ø 8	\$10		Utoro		Ø 8	Ø 12		Mrs	oro d	8 8=11	911/4	Итого		
K25-3 AT - IEC	1	_	_		99,6		99,6		_	_	L.,	_	109,2		2,2		_ 2	.2 -	- 11,5	2,6	14.5	16,7	125,5
K25-4AT-IVC	-	_	86,0	ı	-	-	86,0	12,4	_		<u> </u>		98,4		2,2			,2 -	9,2	2,6	11,8	14,0	112,4
K25-5AT-IEC	1	_	_	1	1	128,9	128,9	_	18,0	1-		18,0	146,9		2,2			,2 -	- 11,5	2,6	14.	16,7	163,6
K25-6AT-IVC	1	52,8	_	_	_	1	52,8	14,0	_	_	ļ	14,0			2,2	_		,2 -	- 11,5	2,6	14,	16,7	83,5
K25-7AT -IVC	-	68,4	_	-	_	_	68,4	14,0	_	_	<u> </u>		82,4		2,2			,2 -	- 9,2	2,6	11,8	14,0	96,4
K26-1 AT - IFC	-	120,4	_	-	_	_	120,4	10,7	_				131,1		2,2			,2 -	- 9,	3,2	12,4	14,6	145,0
K26-2 AT -ITC	-	135,2	_	-	_	-	135,2	10,7		_			145,9		2,2			.2 -	- 9,	3,2	12,4	14,6	160,
K26-3AT- IVC	_	41,8	_	-	_	128,8	170,0	s —	21,6	<u> -</u>		21,6	192,2		2,2			,2	- 9,2	3,2	12,	414,6	206,
K26-4 AT- IYC		120,4				_	120,4	15,7	_			15,7	136,1	-	2,2			2 -	9,	3,2	12,	14.6	150,
K26-5 AT - IFC	_	135,2		_	Ι_	_		15,7		<u> </u>	L	15,7	150,9		2,2			,2 -	9.	3,2	12,4	14,6	165,
K26-6A7-IVC	<u> </u>	41.8		_	_	128,8		1	31,2	_	L		201,8		2,2			22 -	- 9,	3,2	12,4	14.6	216,
K27-1AT - IFC	5.8	l	19,6		153,0	$\overline{}$		10,7	-	1		16,9	195,3				/ 1	2	7,6 -	3,2	10,	8 12,0	207,
K28-1AT - IIC	3,2		13,0		153,0		156,2						175,2					_	.3 -	3,2	14,5	16,3	191,5
	3,2		<u>-</u>	_		131, 6		-	25,3	T			264,5						3 -	3,2	14.5	16,3	280,8
K28-2AT-IFC	4,2		-	_	131,2		135.4	-	8,2	3,2			155,7		-			4 1		2,6	17.	20,1	175,8
K29-1 AT-ITC	4,2			_	102,0			10,8				12,2	170,8		-				51 -	3,2	18,	20,7	191,
K30-1 AT- IVC				_	102,0			15,1	-	T _			175,1					-	5,1 -	3,2	18,	20,7	195,0
K30-2AT- IVC	4,2	42,4		_	_		36,9	_		_			42,2	1	3,0			,0	- 6,0	2,0	8,1	11,6	53,8
K31-1AT-IFC	_	36,9		<u> </u>		_	70,0		,	-		5,7	75,7		3,0	_		,0	- 6,0	2,0	8,0	11,6	87,3
K31- 2AT-ITC		23,2		<u> </u>	-	- -		7,4		-	1	7,4	44,2		3.0			,0 -	- 6,	2,0	8,6	11.6	55,0
K31- 3AT- IYC		36,8		<u> </u>	-	_		7,8		-		7,8	77.8		3,0			3.0 -	- 6,0	2,0	8,6	11,6	89,4
K31-4AT-IFC	-	23,2	46,8		L		10,0	1. "	L														

3.015-1/82.II-4-PC

		u.	BAEA	RN	AF	MAT	YPHDIE								<u> </u>	AEAI	H A	3A	KAA	AHB	IE			T
:			APM	ATY	PA	KA	ACCA							Apr	IATYF	A K	NAC	CA		NPO	KAT	MAPK	w .	1
MAPKA			Ar-	- IV (A	-1			۱ ۱		A	<u> </u>		_		BC73	Kn	2	T	ОБЩИ
PAEMEHTA	L					4- 81			roct	578	1-8	2	BCEro			781 -	- 82		1990.	7 74	FOCT.	3262-75	BCETO	MCXQ
	912	Ø16	Ø18	\$20	Ø 22	Ø25	WTO	\$6	Ø8	\$10		troro		Ø 8	\$ 12		14	סיסד	5=8	S=10	POSTP	Hron	7	KI
K32-1AT -IFC	_	_	1	17,4	67,2	_	84,	5,7	=	-			91,3		2,2			2,2	_	9,2	2,6	11,8	14.0	105.3
K32-2AT-IFC		22,0	45,2			-	67,2	$\overline{}$	_	-		-	14,3		2,2			2,2	_	9,2	2,6	11,8	14,0	88,3
K52-3A7-IYC	_	22,0	45,2	_		_	67,2	9,6	-	-		9,6	76,8		2,2			2,2	_	9,2	2,6	H,1	14,0	90,8
K33-1AT- IFC	_	_	-		100,8	_	100,	1 -		-		7,5	108,3	_	2,2	\perp		2,2	-	9.2	3,2	12,4	14,6	122,5
K34-1AT- IYC	-	12.2	51,6	-		_	63,	-	-	-		5,8	69,6	_	3,0	\perp		3,0	_	6,6	2,0	8.6	11,6	81.2
K34-2A7- IVC	_		51,6		-	_	63.	1		_		8,2	72,0		3,0			3,0	_	6,6	2,0	8.6	11,6	83.6
K35-1AT - IYC	_		_		130,0	_	130,			_		8,2	138,2		2,2			2,2	_	9,2	2,6		14,0	152,2
K35-2AT- IYC	-	_	_	80,2	_	_	80,			-		7,6	87,8		2,2			2,2	_	92	2.6	11,8	14,0	101.8
K36-1AT- IYC	_	92,4	_	61,6	_	_	54		1	-		9,6	163,6		2,2			2,2	-	9,2	3,2	12,4	14,6	178.
K36-2 AT- IYC		92,4	_	61,6	-	_	154,		1	-			167,2		2,2			2,2	_	9,2	3,2			181.8
K37-1AT- IYC		-	_	-	127,8	-	127,			-		9,3	137,1	-	2,2			2,2	÷	9,2	3,2	12,4	14.6	151,7
K38-1A7- IFC	_	_	-	-	122,4	_	122,			-			131,4		2,2			2,2	_	92	3,2	12,4	14,6	146,0
K38-2AT-IFC			-	88,2		105,6	193		15,0	-			208,8		2,2			2.2	-	9,2	3.2	12,	14,6	223,
K39-1A1-IYC		_	~	-	105,2	_	105	1		-		8,0	113,2		2,2			2,2	_	9,2	2.6	11,0	14.0	127,2
K40-1AT-IVE	_	_	_	153,2	_	_		10,1	-	-			163,3	_	2,2			2,2	·	9,2	3,2	12,4	14,6	177,9
K40-2AT- IKC	-	23,6	77,0	=	_	-		11,6	_	_			112,2		2,2			2,2	_	9,2	3,2			126,0
K40-3A7-IIC	_		77,0	_			100	1		_			116,9	_	2,2			2,2	_	9,2	3,2			131.
K41-1AT-IEC	-	_		_	177,6	_	177,	+		_		_	189,9		2,2		-1	2,2	_	22				204.
K42-1A7- IFC	_	76,2	-	_	96,0	<u> </u>		11,6	T	_		11,6	183,8		2,2		\bot	2.2	_	9,2	3,2	12,4	14,6	198,
K42-2A7-IYC	_	-		119,4	_	124,0	243,		22,0		_		265,4		2,2			2.2	_	9,2	3,2			280,0
K42-3AT-TEC		76,2	- 1	-	96,0	_		16,8	-	-		16,8	189,0	-	2,2			2,2	_	92	3,2	12,	14.6	203.6

3.015-1/82. II-4-PC

6

		-	13AE	nu.	9	API	MATYPE	DIE							EAH	A BA	KNA	AH	b/E			
. ~				APM	ATY	PA	KAA	CCA					APM	ATYP		IACCA	ΠF	OKA	r /	HAPKH]
MAPKA				- Д		(A-I]		A	-111				3 K			Общі
3AEMEHTA			OCT	10	884	- 8	1 *	50	CT S	5781	- 82	BCETO	1	OCT.	5781					3262-75*	BCETO	PACX
•	912	Ø16	Ø18	Ø20	Ø22	Ø25	Hron	26		Ø 10	tror	d	ø8	Ø10	Ø12		8=8		103 W. 101 /6"	Hrore		
K43-1AT-IFC	_	39,8	_	=		124,0			20,7	-	20,	184,5	_	<u> </u> =	2.2	2,2		9,2	 +			199
K43-2AT-IIC	-	39,8		-	_	124,0		-	30,4	_	30,4	194,2	_	_	2,2	2,2		9,2	_	12,4	14,6	208
K44-1AT-IYC	-	18,4		_	_			13,6	<u> </u>	-	13,6	116,5	_	1,8	2,2	4.0		9,2		15,3	19,3	135
K44-2A7-IVC	_		-	-	160,8			14,3	1	_	14,3	175,1	1 –	1,8	2,2	4.0		9,2		15,3	19,3	194,
K44-3AT-IYC	~	_	<u> </u>		115,2			13,6	1	-	13,6	166,6		1,8	2,2	4,0		9,2	3,4	15,3	19,3	185,
K44-4AT-IFC	-		_	248,4	_	_		13,6	-		13,6	262,0	_	1,8	2,2	4.0	3,0	9,2	3,1-	15,3	19,3	281,
K44- 5AT-IYC	_	66,8	_	_	_	_		13,7	1	1	13,7	80,5		1,8	2,2		3,0	9,2	3,1	15,3	19,3	99
K44-6AT-IVC	-	18,4	84,5	_	_	-		190		_	19,0	122,0	<u> </u>	1,8	2,2	4,0	3,0	9,2	3,1	15,3	19,3	141,
K44-7AT-IKC	_	66,8		-	_		66.	18,8	—	1 -	18,	85,6	_	1,8	2,2	4,0	3,0	9,2	3,1	15,3	19,3	104,
K45-1 AT -IFC	_	_	_	65.6	79,2	_		13,5	1	-		158,3	_	1,8	2,2	4,0	3,0	9,2	3,1	15,3	19,3	177,
K45-ZAT-IYC			_	246,4				13,4	-	-		259,8		1,8	2,2	4,0	3,0	9,2	3,1	15,3	193	279
K45-3AT-IYC	_	18.4	83,0	<u> </u>	_		101,4	_	_	-	-	114,9	1	1,8	2,2	4,0	3,0	9,2	3,1	15,3	193	134
K45-4AT- IVC	_		82,8		_			18,4	-	-		119,6	_	1,8	2,2	4.0	3,0	9,2	3,1	15,3	19,3	138
K46-1A1-IYC	_	_	91,8	_		-	91,	14,8	_	<u> </u>	14, 8	106,6		1,8	2,2	4,0	3,0	9,2	3,1	15,3	19,3	125
K46-ZAT-IYC	1	[-	_		87,5	113,2	200,	9 -	28,2	_	28,	229,0		1,8	2,2	4,0	3,0	9,2	3,1	15,3	19,3	248
K46-3AT-IVC	1	_	117,6	-	-	1	117,	14,5	-		14,5	132,1	-	1,8	2,2	4.0	3,0	9,2	3,1	153	19,3	151,
K46-4AT-IYC	_	_	_	72,7	87,6	-	160,	14,3	<u> </u>	_	14,3	174,6	_	1,8	2,2	4,0	3,0	9,2	3,1			193
K46-5AT-IYC	_	_	_	272,8	-	_	272	14,5		_		287,3		1,8	2,2	4,0	3,0	9,2	3,1			306,
K47-1AT- IVC	_	20,4	-	111,6	-	_	132,	14,5	1 -] -		146,5		1,8	2,2	4.0	3,0	9,2	3,1	+ :-	· · ·	165,
K47-ZAT-IFC	_	_	_	270,8	_	_	270, 8	14,4				285,2		1,8	2,2	4,0		9,2	3,1		19,3	-
K47-3AT-IYC	-	_	_	32,0	134,4	_	166,4	14,5				180,9		1,8	2,2	4,0	3,0	9,2	3,1		19,3	-
K47- 4AT - IYC	_	20,4	-	111,4	_	_	131,8	20,2	-	[-		152,0		1,8	2,2	4.0		9,2	3,1			171,

A DOONACE H ABY AREAL WAS

3.015-1/82.II-4-PC

		И.	BAE	145		API	MATY	PH	bIE							H	3AE	NHA .	BAK,	NAA	HЫE			ļ
A 4 . 5			A	PMA	TYF	4	K	1 A (CA						Apr	ATY	PA I	KARCCA	1	POK	AT M	APKH]
MAPKA			A	r- 1	Y C						A -1	7				<u> </u>	A - 🎹			BCT	3 KT	2]	Овщи
DAEMEHTA			roc7	10	884	7 - 8	1 *		Γ	OCT	578	1-8	2	Beero		OCT		1-82	1990	C 7 13-74	roct.	3262-75	BCETO	PACXOA
	Ø12	Ø16	Ø18	Ø20	Ø22	Ø25	14	סיסד	Ø 6	Ø8	Ø10		HTOFO		Ø 8	Ø 10	Ø 12	Итого	5=8	S= 10	01'4"	Hrore	ĺ	Kr
48-1A7-IFC	_	_	_	72,6	87,6	-	1	60,2	12,9	4,7	_		17,6	177,8	1	1,8	2,2	4,0			3,1	15,3	19.3	197,1
(48-2A7-IVC	_	-	129,0	_	87,6	ı	2	16,6	14,8	П	_		14,8	231,4		1,8		4,0	3,0	9,2	3,1			250,7
48-3AT-IFC	-	_	82,2	_	1	113,0		95,2	11,0	8,5	_		19,5	214,7		1,8	2,2	4,0	3,0	9,2	3,1	15,3	19,3	234,0
48-4AT-IYC	-	_	35,4	72,6	_	_	10	08,0	14.8		-		14,8	122,8	_	1,8	2,2	4.0	3,0	9,2	3.1	15,3	19,3	142,1
49-1AT-IYC		_	81,4	_	_	111,6	19	93,0	3,0	22,3	=		25,3	218,3		1,8	2,2	4.0	3,0	9,2	3,1	15,3	19,3	237,6
49-2AT-IVC	_	_	58,0	-	86,4	1			15,3	_	_		15,3	159,7		1,8	2,2	4,0	3.0	9,2	3,1	15,3	19,3	179,0
50-1AT-IEC	_		_	133,2	-	114,8	2	48,0	1	30,4			30,4	278,4		1,8	2,2	4,0	3,0	9,2	3,1	15,3	19,3	297,7
C51-1AT-IYC	_		_	134,2	_	116,2	2	50,4	1	24,4	_		24,4	274,8	1	1,8	2,2	4,0	3,0	9,2	3,1	15,3	19.3	294,1
52-1AT-IFC	_	_	37,8	_	94,8	-	_		13,2				18,2	150,8	ł	1,8	2,2	4,0	3,0	9,2	3,1	15.3	19,3	170,1
52-2 AT-ITC		_	140,5	_	94,8		_	_	13,2		_		18,2	253,5	_	1,8	2,2	4,0	3,0	9,2	31	15.3	19,3	272, 8
52 - 3AT-IKC			_		94,8	$\overline{}$	\vdash		13,9		_		18,9	192,1	-	1,8	2,2	4,0	3,0					211,4
52 - 4AT-IIC		_	894			122,4	-	11,8		30,4	_		30,4	242,2	1	1,8	2,2	4,0						261,5
(53-1AT-IFC		70,0			93,6	ĺ			16,5		_		16,5	180,1	1	1,8		4.0					1	199,4
(53-1AT-IEC			88,6	_	_	120,8		094	_	30,4				2398		1,8		4,0		1			т-	259,1
53-3AT-IEC		70,0	_	_	93,6	_			22,8	_	_			186,4		1,8		4,0					1	205,7
(54-1 AT-ITC		-		145,0		124,0		69,0		32,5	_		32,5	301,5	_	1,8	2,2	4,0		_			1	320,8
(55-1AT-IIC		 -		146.0		125,4		71,4		32,5				303,9	_	1,8		4,0					_	323,2

		K	3AEA		_	APM.			E						A		3AE I KAAC			AKNAA					
MAPKA					YPA		MACE	:A					-	ļ.	APHAT			LA		POKAT					Овщи
31EMEHTA		-			IV C					50.5	A	<u>1</u> 81-8	1	BCETO	-	A-I			rot	BCT 3 T 700 -74* 8510	KN L TOCT	10C1,		BCETO	PACX
	0310		014			Ø22	025	Ø28	Henra							578		Urom	19903 8=8	- 74* 8510 L11	-86 8240-7 0 x 18 E 14	3262-1- TA3.TP	Wroco		KI
TI-IAT-IFC	-	-	11,6		720	722	-	_	11,6	\neg	_	<i>P10</i>	4,1		1.0	7.2	7/7	1,0	3,0	×70:	- BL 14		4,6		21
TZ-1AT-IEC	_		14,4		{	_	_	_	14,4		_			19,4		_		1,4	4,2		. _	1,6	7		26,
73-1AT-IVC			17,2			_	_	_	17,2				_	23,1				_			+=	1.6			31,
74-1A7-IYC			20,0			_		_	20,0				_				-	1,6	4,8 5,4		+_	1,6			35,
T5-1AT-IFC	\vdash		23, 2					_	23,2	7,7	_			26,8				1,8	6,0		+	1,6	-	9,6	-
T6-1AT-IYC	6,0		23,2						6,0	3,8	_			30,9 9,8			<u> </u>		-		7.4		25,5		
T6-2A7-IVC	9,0	-	H,2	-				-	11,2	1,0		_	3,8	19,8			-	_	15,1 15,1		7,4		25,5		
T6-3A7-IEC	3,0		n,z	_	=				14,8			_	_		_				1	10,	 -		29,7		
77-1AT-IYC	_	8,4	-		11,8		_		8,4	1.0				20,9			_		16,3 24,1	10,	7		28,9		
T7-2AT-IEC	_	-	-						11,6	1,0	11,4		11,4				9,8	-	15,1] 		33,1		
T7-3AT-IYC	_ ,	1.	11,6	-	-		_			_	9,6			22,2				-		13		4,8	33,1	457	71
T8-1AT-IEC	_	_	-		11,8		_	_	14,8		9,6		10,6			 -	3,8		15,1	13					
18-1A1-IEC	-	40 /:	-	_					7,2			 -	_	12,0			-	4,4	1		- 7,4		30,3		
T8-3AT-IEC		10,4	-	100				=	10,4		9,1	-		19,5				4,4			- 7,4	4,0	30,3 30,3	747	7 7
18-4AT-IEC				18,8		<u> </u>	_	<u> </u>	18,8	-	-	18,6	_	37,4			 -		18,9	 	- 74				
		\vdash	<u> </u>	18,4	_				18,4		6,7	_		26,5		2,8	_		20,1	 		4,0	34,5	40,0	
T9-1AT-IEC	7,2			-	_		_	<u> </u>	7,2	7,7		-	<u> </u>	14,9		4,4		+	27,9		+=	6,4	257	517	7 77
79-2A7-IFC		<u> </u>	-	9,4	_		<u> </u> —	-	13,0		11,8	_		26,2			9,8		18,9				25,3		
T9-3A7-IEC				-	14, 6	<u> </u>		-	18,2		11,8		-	31,4			9.8	+	18,9	1	-		25,3		
110-1AT-IVC		12,8			<u> </u>			<u> </u>	12,8		10,8		<u> </u>	23,6			1=	+	22,7		- 7,4	4,0	34,	70	1 8:
T10-2AT-IEC	_	<u> </u>	-	22,4	=	1			22,4		<u> </u>	22,4	22,4			1	 _	1	22,7	1	- 7,4	4,1	34,1	133,	1 64
T11- (AT-IC					_	!-	1=	<u> </u>	8,8	_		1=		17,9		4,4			31,7	1		6,4	38,	40,	
<u> T11-2A+-IYC</u>	4,4	<u> </u>		-	17,6	-			22,0	1.6	14,0	-	15,6	37,6	6 4,0	1 —.	9,8	13,8	3 22,7	1 13	,2 —	6,	4 42,	7 20,	113

MAB. Nº NOGA. NOGANES H BATA BOAN. HIMA

ANCT 9

Марка Эленента	N3AEANA APMATYPHЫE														ИЗДЕЛИЯ ЗАКЛАДНЫЕ											
	APHATYPA KAACCA							C A						APMATYPA KAACCA				MPOKAT MAPKH						ОБЩ ий РАСХОД		
	AT - IXC									A - I					A - <u>III</u>				BCT3 KD 2						L	
	FOCT 10884 - 81 *									TOCT 5781- 82					FOCT 5781-82		J	19903-74 8510-88			78C7 70C1 824072326273			BCEFO	Kr	
	Ø 10	Ø12	Ø14	Ø16	\$20	Ø22	Ø25	\$28	itroro	\$6	\$ 8	Ø10	Итога	<u>. </u>	\$8	\$12	Ø14	Htora	δ=8	L1 X7	10x 0×8	C14	87%	Hrora		İ
711-3AT-IIC	4,4	-	1	1	-		27,6	-	32,0	1,6	14,0		15,9	47,9	4,0	1	9,8	13,8	22,7		3,2	-			56,1	103,7
112-1AT-IFC	-	1	20,0	-		1			20,0	9,3	-	1	9,3	29,3	5,6			5,6	26,5		-1	7,4	4,0	37,9	43,5	72,8
712-2 AT-IYC	_	14,4	-		-	-	_	-	14,4	6,8	-	_	6,8	21,2	5,6		_	5,6	26,5		- [7,4	4,0	37,9	43,5	64,7
T13-1AT-IFC		14,8	_	_	-	-	1		14, 8	10,5	1		10,5	25,3	4,2	4,4	_	8,6	35,5		=	_	6,4	41,9	50,5	75,8
T13- 2AT-IVC	_			-	40,6	-	1	_]	496	1,8	16,0	_	17,6	58,4	4,6	-	9,8	14,4	26,5	1	3,2	-	7,2	46,9	61,3	119,7
T13-3AT-IIC	5, 2	_		-	<u> </u>	-	-	40,0	45,2	1,8		24,5	26,3	71,5	4,6	_	9,8	14,4	26,5	1	3,2	_	7,2	46,9	61,3	132,6
T14-1AT-IEC	_	 	23,2	-	-	_	~	_	23,2	<u> </u>	14,4		14,4	37,6	6,2	_	_	6,2	30,2		- [7,4	5,0	42,6	48,8	86,4
T14-2AT-IYC	_	16,0	_	-	Г —	-	-	_	16,1	8,2	-		8,2	24,3	6,2			6,2	30,2		- T	7,4	5,0	42,6	48,8	73,1
T15-1AT-IFC	_	16,8	-	-	_	~	_	 	16,8	12,1	_		12,1	28,9	4,8	4,4	_	9,2	39,2		- [8,0	47,2	56,4	85,3
T15-2AT-IFC	5,8		_	. –	_	28,6	-	-	34,4	2,2	18,4		20,6	55,0	5,2	_	9,8	15,0	30,2	1	3,2	_	8,0	51,4	66,4	121,4
715-3A7-IFC	-	-	-	15,0	-	=	=	46,0	61,0	2,2	28,3		30,5	91,5	5,2	=	9,8		30,2		3,2	_	8,0	51,4	66,4	157,9
T16-1 AT- IYC	3,0	-	<u> </u>	Γ-	-	_	-	I —	3,0	1,9	<u> </u>	_	1,9	4,9	1,2	2,8	_	4,0	8,8	1	0,4	_	1,5	20,7	24,7	29,6
716-1a AT-IK	3,0	1-	-	<u> </u>	<u> </u>	<u> </u>	_	 -	3,0	1,9	-	-	1,9	4,9	1,2	1,4	-	2,6	8,2		7,6	_	1,5	17,3	19,9	24,8
T17-1AT-IYC	1 –	6,0	-	-	 -	—	<u> </u>	I =	6,0	3,3	-		3,3	9,3	1,8	2,8	-	4,6	12,5	,	0,4	_	2,5	25,4	30,0	39,3
7 17-10 AT-IYC	 	6,0	-	<u> </u>	T-	 -	I –	-	6,0	_] —	3,3	9,3	1,8	1,4	<u> </u>	3,2	11,9		7,6	_	2,5	22,0	25,2	34,5

3.015-1/82.1-4-PC 10 23376-01 (76)