ГОСУДАРСТВЕННЫЙ КОМИТЕТ СОВЕТА МИНИСТРОВ СССР ПО ДЕЛАМ СТРОИТЕЛЬСТВА /ГОССТРОЙ СССР/

ТИПОВЫЕ КОНСТРУКЦИИ И ДЕТАЛИ ЗДАНИЙ И СООРУЖЕНИЙ СЕРИЯ З. 015-3

УНИФИЦИРОВАННЫЕ ДВУХЪЯРЈСНЫЕ ЭСТАКАДЫ ПОД ТЕХНОЛОГОВСТ ТРУБОПРОВОДЫ

ВЫПУСК $\overline{\mathbb{II}}$ СТАЛЬНЫЕ КОНСТРУКЦИИ ЭСТАКАД ТИПОВ $\overline{\mathbb{N}}$ – $\overline{\mathbb{XII}}$ ММ

rocyaarctbehhbiñ kommtet coreta mmhictrob cccp no qeaam ctronteabctba /rocctroñ cccp/

ТИПОВЫЕ КОНСТРУКЦИИ И ДЕТАЛИ ЗДАНИЙ И СООРУЖЕНИЙ СЕРИЯ 3.015-3

YHIQHUUNPOBAHHLIE QBYXDRPYCHLIE BCTAKAQLI NOQ TEXHOAOFNYECKNE TPY60NPOBOQLI

BPIUNCK III

CTAABHBE KOHCTPYKUNN BETAKAQ THNOS IX- XIII PASOHNE HEPTEXKI KM

PA3PA5.0 TA HDI

NHCTUTYTOM UHUNUNDORTCTANAKOHCTPYKUNR

УТВЕРЖДЕНЫ И ВВЕДЕНЫ В ДЕЙСТВИЕ С 1 ДЕКАБРЯ 1974г. ГОССТРОЕМ СССР ПОСТАНОВЛЕНИЕ № 178 ОТ 27 ПВЛИСТА 1974г.

Наименавание	NN NUC- MC	стр	Наименавание	NN Juc- ma	стр.	Наименаванис	NN NUC- ma	· /-	
<i>Питульный лист</i>	_	1	Маблица сечений и усилий траверс.	6	//	Разрезы к узлат (1) (3) (5,6)	14	19	
Садержание		2	Конструкции горизантальных связей и траверс по верхнему поясу ферм. Схемы N1, N2	7	12	Узел <u>г</u> 5 <u>Б</u>	15	20	-
Пояснительная зописка	-	3÷5	Канструкции горизонтальных связей и траверс по верхнему поясу ферм. Схемы N1, N2 (вариант)		/3	Паблица усилий, сечения планок, талщины сварных швав ратных узлов надкопонников.	16	21	T
Схема ферм Ф1,Ф2,Ф3,Ф4 Маблица сечений и усилий	1	6	Канструкции гаризантальных связей и траверс па верхнену поясу ферм. Схемы N°3, N°5.	g	14	Методика расчета рамного узла надколонников	17	22	1
Схемы связей по верхнему паясу ферм. Схемы Nº1+Nº6 Маблица сечений и усилий	2	7	Конструкции горизантальных связей и траверс па верхнему поясу ферм. Схемы №3, №5 (вариант)	10	15	Хадобые мастики, стремянки. Узлы.	18	23	
Кансали ферм, марки КІ, К2, К3. Маблицы сечений и усилий	3	8	Конструкции гаризантальных связей и траверс па верхнему паясу ферм. Схемы №4, №6	H	16	Спецификация стали на канст- рукции эстакад	19	24	
Схема надколанников марки ДП1 ÷ ОП 4. Маблицы сечений и усилий	4	g	Узел <u>(3</u> 5,5	12	17			_	-
Схема надколонников марки DN 5 - DN 9. Маблица сечений и усилий	5	10	y3en (1)	/3	18				

TK	Унифици рованны е технологические	двухъярусные трубопроводы.	эстанады пад	3 015-3
1974	Coi	Вер ж ание.		<u> </u>

я. В настаящем выпуске разработаны чертежи металлических конструкций ("КМ") пролетных строений двухъярусных

зстакад (фермы, траверсы, связи, надколонники и др.). 2 Канструкции выпалнены в саответствии са СН и П 11-8.3-72

"Стальные канструкции… Нармы проектирования".

з Нагрузки, габаритные схемы, таблицы подбора морок, элементов, мантажные схены эстакад см. выпуск І настаящей

серии. 4.В Быпуске принята спедующая маркировка элементов конструк-

นบบั. Ф - фермы пралетных строений.

К - кансали ферм пролетных старений .

надколонники.

траверсы

<u> ї Конструктивные решения.</u>

5. Пролетные строения эстакад выполнены в виде пра странственных блаков, состоящих из вертикальных ферм, соединенных между собой горизонтальными связями и траверсами по вержнему и нижнему поясам. высати ферм 3,0м (по обушким уголков). Пралетные строения опираются на надколонники киторые передают все вертикальные и горизонтальные нагрузки на железобетанные апары. Пропетные строения ч температурных швов могут иметь консоли дли-3,0 м, что дает возможность *ልшка зашрся ош*

температурных вставак, обеспечить более рабату блоков на температурные усилия и создать более благаириятные чеповия для ρα 3 δυβκυ πρακεω ายพลหลป между колоннами в температурном шве 9,0м. Расстояние Все элементы ферм и связей пропетных строений выполнены из одиночных чеолков. в Шиг триверс принят: по вержнему ярусу 3,0 и 6,0 м, по ниж-

неми ярусу - 3,0 м. рядовых траверс принято 35 типов:

а) из одиночных швеплеров в, из 2 швеплеров сваренных холодногнутых сварных карабачкай в) из замкнутых прафилей па ГОСТ 12336-66.

Праверсы надколонникав выполнены из коробчатых профилей сваренных из 2 швеллеров.

т Надопорные конструкции (надкаланники) выполнены в виде

сопряжением травера со стойкими. DAMOK C JEECWKAW Стойки рамок шарнирно опираются на закладные дев оголовках железобетонных колони и крепятся с помощью анкеров и мантазаной сварки, васприникающей гаризантальные нагрузки. Сечение стаек надколожинов приняты из 2⁵ угалкав, сваренных в наробочку, чта обеспечи-

вает миниматьный иж габарит. яСварка всех карабчатых элементов-надкалонников траверс - должна обеспечивать их герметичнасть во избежании пападания влаги внутри сечения все карабчатые сече-

พิกภายผล และเกาะ สายการเลา กา กากการเลา

	Унифицираванные двухъярусные эстакады под технологические трубапровады.	3015	_
1974	Пояснительная записка,	Bunyek III	nucm —

Ппирание трубопроводов на рядовые траверсы по фермамподвижное

10. Пля остатра и обслуживания трубопроводов предустотре ны ходовые мастики и стретянки к ним Ходовые мастики могут располагаться или по оси траверс или на их консолях

<u>III Материал конструкций двухъррусных эстакад</u> и в качестве материала конструкций двухъррусных эстакад

принята углеродистая сталь для сварных конструкций по ГОСТ 380-71.

Марка стали назначентся в зависимаети ат расчетной температуры и вида конструкций по нижеприведенной таб - 13. Способ пице.

Наименование	Расчетная /	пемпература	
конструкций	∂0 - 30°C	om - 30°C da - 40°C	Примечания
<u> î</u> Фермы пропетного строения . Консоли	BC m 3 nc 6	BC m. 3 nc 5	-
<u>ї</u> Надколонники, траверсы	B Cm 3 kn 2	BCm 3 nc 6	см. раздел Щ п. 12
III	BEm 3 kn 2	BCm 3 xn2	

12 Пля конструкций эстакад, эксплуатируемых в славоагрессивной среде районов сухай и нармальной климатических зон, выполняемых из профильного и листового проката толщиной да 12 мм допус: тется применение низкапегированной стапи марки /ОХНЭП без защиты их ат корозии. Профили праката, указанной стапи, поставляются по ТУ-14-1-206-72 и ТУ-14-1-389-72. Эконотичность применения стапи марки 10 хн ПЛ достигаентся за счет сокращения робот по очистке поверхности конструкций и окраски их на заводе изготовителя, а так же зи счет сокращения эксплуатационных расходов на возобновление окраски конструкций.

В случае применения стали IOXHDA CEYEHUA пролетных страений магут быть уменьшены, для н**еоб**жадита Выпапнить падбар СЕЧЕНИЙ กล บุรบกบลห กอนชื่อденным в таблицая *ต*ย48หนนั и усилий. Расчетное сопрапивление 10 XHDN R = 2900 KEC/CM? cmanu принитать <u>IV</u> Защита конструкций от корозии

3 Спосов защиты конструкций прапетных строений эстакад устанавливается в каждом конкретном случае проектной организацией в зависимости от агрессивности среды и уславий эксплуатации па данным технапогических организаций Грунтовких конструкций произвидится при изгоплавлении по рекомендациям проектной организации.

Ü спучае применения для канструкций пропетных строений столи спарки 10 жнЭп защита конструкций от кородии не требуется (см. раздел 11 пункт 12)

<u> V</u> Изготовпение и тонтаж конструкций

н Минтаж конструкций пролетных строений производится после установки и выверки железобетонных опор в соответствии с проектом организации строительных работ и со схемами монтажа конструкций

TK	Унифицированные двужьяругные эстакады под технологические трубапроводы	3.01	
1974	Пояснительная записка.	Bunyer	лист

разрибатываемых для канкретного проекта 15. Изготабление и монтаж канструкций пралетных строений должны выпалняться в сартветствии с таебованиями СНи П Л В 5-62" и инструкции по монтажу стальных конструкций промышленных зданий и COOPYSKEHUU MCH 246 77

Чипжижэ Евтипав

строений, гаризантальные связи, тра*њ Фепмы* паалетных минтиэка б версы и надколонники укрупняются на месте и устанавливаются на железовепрастранст**в**енные блоки

После установки блока, опорные элеменanophi. к закладным ηρυδαρυδαιοπορ надкопанникор агалавкав железобетанных Πρυβαρκυ ONOD. IAM производить pepm "U" нижнего nanca тента

កាជបុស្តិតកាជាគឺ១ -

строений

auб. праметных страений быбор мес-อิกอหอชิ мантачке *ฉฉิยะก*ะขบชื่น*ก*าธ ואאמחחממות далжны น เกอเอกิส u x. элементаб конструк -

пропетных

загрузки

заглушРк

 η_{Ω}

MADUAM

น บุยกาลบังนหิดยกาษ bre x прачность นบนั на Укрупненая σδορκα канструкций Empaexuú. пралетных กออนรอ็อสินการส ก็ถภากตระ *На* **ВМОЛЬНОЙ** точности сварке

l'βαρκύ κομεπράκαυῦ B cm 3 U3 cma.nu электрадами u 3429 ΠD muna - שמח חבוא שאם שאם א Иля сварки конструкций U3 CINDAU менять электроды АН-Х7 или Э 138/50 н no 1007 - 9467-60

карразианней стайкости целяж обеспечения элементов (триверсы, надкаций, сварку коробчатых พเรือคน ланники) выполнять сплошными

конструкций Kanuyeembo u цзлас решения ηρκα3αμы болтов толщины и длины шваб апределядиамета при разрабатке детали ровочных чертежей асновании расчетных цеилий, чказанных Ц *៣ធង្គរាបជធ* 🗴 *ต*ย4*ย* หมนั YCUNUU.

Указания NO PRUMBHRHU HO

испальзовании настоящего выпуска для разработнеабжадима: KONKDEMHOZO nanekma MUN 3CMAKAпо технологическому заданию *3ชชิบตนทดต*กน ғабаритных DМ наерузки поганный тета кальнай *тежналагической* эстакады.

8) NoousBecmu разбивну трассы эстакады на блоки с учетом длин блоков указанных в выпусках 📝 и 📶 в Составить мантажные схемы двухъярусных эстакад г) Произвести падбор марак элементов пролетных строений по

таблицам расположенным на листе 12выпуска Тнастоящей серии. д)Составить заказную спецификацию на металл двухъярусных эстанад отличающихся по габаритам

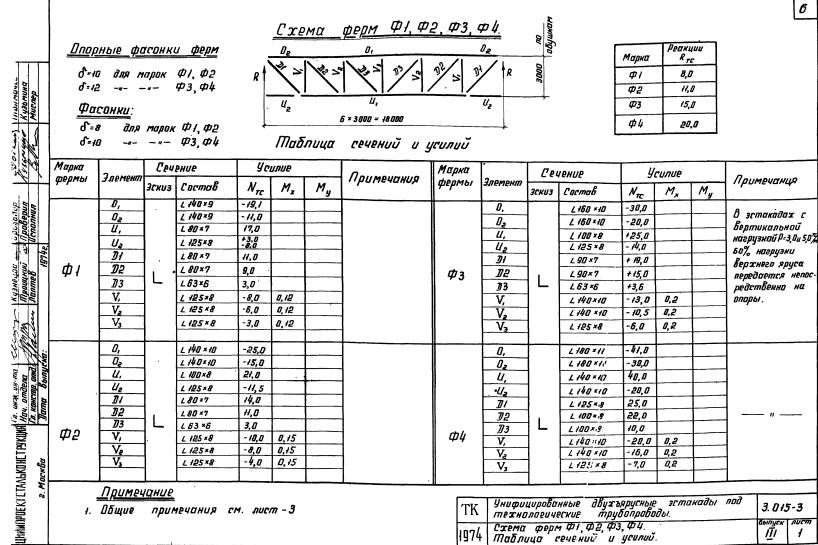
ат разрабатанных в настоящей серии вози навризкам типовых конструкций серии 3 015-3 применения мажнасть

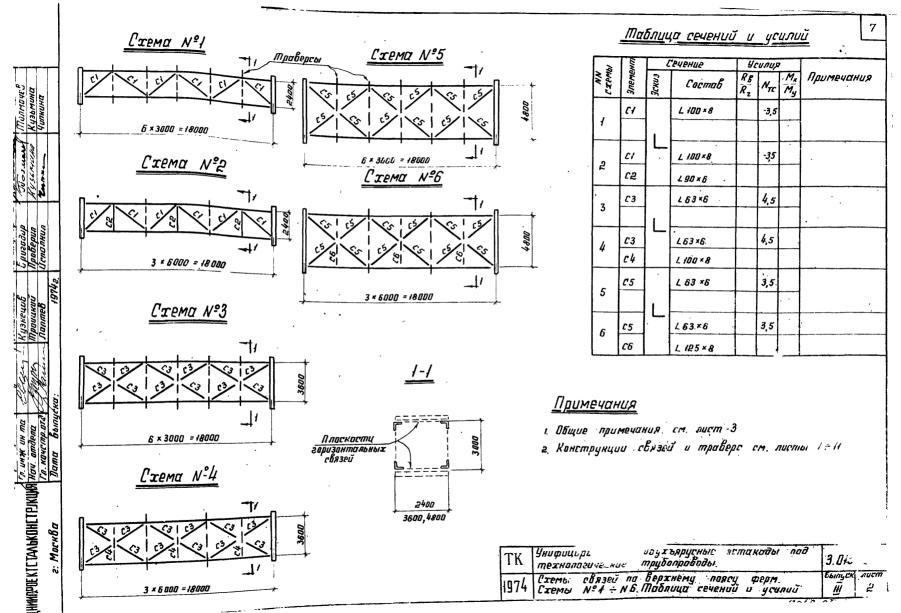
проверена расчетом

Сортамент профилей использованных в конструкциях л. Балки двитавровые по ГОСТ 8239-72.

г ШВеллеры па ГОСТ 8240-72

быть


далжн¤

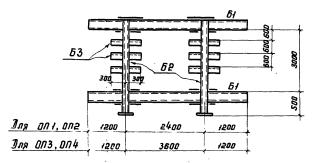

з Сталь углавая равнобокая по ГОСТ 8509-72.

4. Стиль широкополосная по ГПСТ 82-70 s.Сталь талстолистовая ла Гаст 5681-57*

Унифицированные двухъярусные эстанады ποδ πεχμοποευνεςκυς παυδοπροβοδοι

3 015-3 REIPURS J'CO

		Ma	<i>ចិរាប</i> ឬ	αι	ตอนอนบนั้	υι	וכטחט	<u></u>	8
		2	E	Ces	PHUE	4	Силир		
K1, K2, K3		Марко консоли	Элемент	2	Састав	RB Rr	Nrc	$\frac{M_{\chi}}{R_{y}}$	Примечание
			0		L 100×8		±5,0		
	Реакции	l	И	į	L 125×8		-8,a		
	Марка Ктс	,,,	1	L	L 75×6		8.5		
Y R B	K/ 7,0	Kł	ν		L 125 ×8		-7,0	0,14	
3 2	K2 9,0	Ì						-	
			0		L 100×8		±5,0		
<u>u</u>	K3 13,0	ĺ	и		L 125×8		-9.0		
		КÐ	D	L	L 75 ×6	<u> </u>	+13,0		
3000		ļ	v		L140×9				
			H		2170-9	├	-9,0	Д, 3	
<u> Дбщие примечан</u>			10						
The second secon		į			L 100 ×8	├	±5.0		ı
1. Мантажные схемы эстакод см. листы 5,6 ; таб ферм, надколонников, связей см. лист 12 выпуч	πυμη ποδδορα Μαρικ πραδομε, Το Αυτοπρομικό τρομι	K3	4	_	L#0×9		-16,2		
церм, наакалиннакой, сонзей ст. ласт та сотус 2 Материал канструкций см. паяснительную записку			1		L100×8	-	+22,0		
з Мантажные саединения на черных болтах и с	Вирке.		V		L140×9		-13,0	0,3	
4. Пипы электрадов для сварки канструкции см. 5. Минимальные мантажные и заводские балты ф.14	пояснительную эаписку раздел у пункт 19.	L			P	<u></u>	l		
5. Попатиланае мантолные и завишение банто учи 6. Все швы h=5mm, кроте оговаренных и па усилия	о, минитальные талщины узлавых швав		90	******	вные ос	003H	<i>YYEHU</i>	<u>8</u>	,
принимать в сватветствии со СНИП 🗵 В-372.	•		\ominus		9 узла Р листа	_			·
7. Неуказанные усилия на нертежах и в таблицах се		r	, mmmmm		варной шо Варной шо				
в. Все эпетенты крепить на аднавременное действие	усилий R.M.N , уназанных в таблице		****		יש טייים אונים מונים אונים אונים		-	HOIO	_
сечений и усилий. 9. Для саединений Встык, в катарых невазможна	асишествить падварку корня шва расчет	пные	-	Б	плт монт	7CT 24K H &	านั		•
сопротивления снижинится утнижениет на коэф	dunuent 1.7								
,	ТК Унифии	ировані	งษาย สิน	yx ъ	ярусные эсі Вы	maxaā	Thi NO	d mex	3.013 -3
	, KOHCON	u DE	PM M	αρκι	I KI, KI	2, K3	B.		Tunyek sulta
	1974 /Παδπυ	14 a C	ยนยหมมั	U	<i>ycนกบับ</i> .				


untiffil.

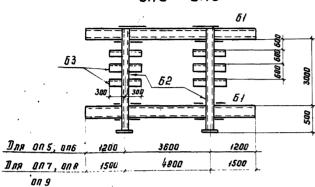
CANDILIPYKIIKKI HOV OMBRAL Tr. KOHEMB. DAM Dama Benyek

Kysewure Kyabmuna

The May Mounting

$\frac{\mathcal{C}x$ ема надколонников ол $i \div$ ол 4

Примечания


- I. Пбщие примечания см. лист -3
- 2. Методику расчета рамных узлав см. лист-17.

<u> Маблица сечений и усилий</u>

жа 0-	Элемент	Эскпз		y	ัดนกบอ		Маментыю
Марка надко- понника	306	35	Сечение	$\frac{R_x}{R_y}$	N _{TC}	M _x anop	ш ьадььс В консольж п веактоп
	51	C)	2 C 20	3,0	F.0	5,6	M x = 1,0
	0'	ļ		1.5	5,0	0,6	My = 0,5
וחם	52	ū	2 L 180×11		23,0	3, <u>6</u> 0,5	R _x = 1,5 TC
	53	٦	L63×6				•
		C.3	5 C 22	3.5		6,2	M _x = 1,5
	51			3,5 2,3	5,5	6,2 0,5	My = 0,8
2חם	52	ū	2 L 180×11		30,0	4,0 0,82	Rx = 2,5 rc
	Б3	٦	L 63 ×6				
		[]	2 C 20	3,0		5,6	M x = 1,0
	61			2,0	5,0	0,6	My = 0,5
олз	62	r,	L180×11		23,0	3,6	Rx =1,510
3 ,,0	<i>5</i> 3.	ı	L 63×6				
		C 2	2 C 22	3.5		6,0	M x = 1,5
	6/	-		3,5 2,5	5,0	1,0	$M_y = 0.8$
4תם	52	ū	2 L 180×11		30,0	4,0 0,82	Rx = 2,5 TC
	53	L	L63×6				

ТК Унифицированные двухъпрусные эстакады под то 3. 015-3

Схема надколонников 005 ÷ 009

Примечания

- 1. Пбщие примечания см. лист -3
- г. Методику расчета рамных узлов см. лист-17.

<u>Μαδίουμα σεμεμού ο μευλού</u>

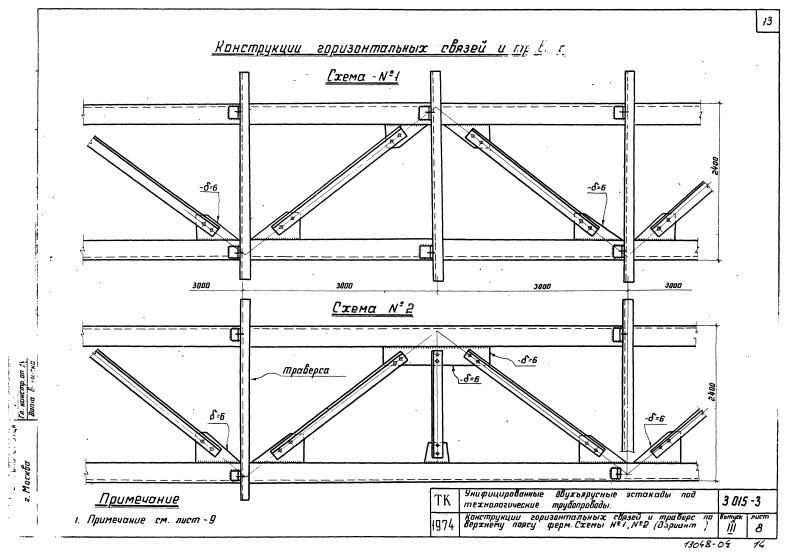
0 - 0 X	TH91	6)		5	Cunue		น ของหนึ่งป
Марка надко- лонника	Элемент	Эскпз	Сечение	R _x R _y	N _{rc}	M _x anop	n pedkudu ស หลหรอกคว ทางส ช ออก
	E.	נו	5 c 55	4,5		<u>6.2</u> 0,7	Mx = 1,5
	61			3,0	5,5		My = 12
DN 5	52	נ	2 L 200×12		35,0	4.0	Rx = 2,5 TE
	53	L	L63 ×6		ļ		
		[]	2 [27	14,0		8,2	M _x = 3,7
	51			7,5	7,0	2,0	My = 2,0
ДП6	52	ū	2 L 200×12		50,0	5,5 7,3	R . = 6.07
	<i>5</i> 3	L	L63×6				
	51	[]	5 C 55	5,0 4,0	6,0	6,5 0,6	M x = 1,5 M y = 1,2
0/17	<u> </u>	נ	2 L 200×12		35,0	4,0 1,1	R x = 2,51
יויט	63	L	L 63 ×6				
	61	E3	2 C 27	14,0 7,5	6,5	9,0 7,2	M _x = 4,5 M _y = 2,0
<i>0N8</i>	52	ū	2 L 200×12		50,0	5,0 1,5	R x = 5,0
	<i>6</i> 3	L	L63 ×6				
. •	61	נו	2 E 40	25,0 7,5	8,0	13.1 2,0	M x = 8,0
	52	נ	2 L 220×#		75,0	<u>6,5</u> 2,5	$M_y = 3.0$
<i>0N9</i>	63.	L	L 63×6			-	Rx = 8,5 TC
						:	

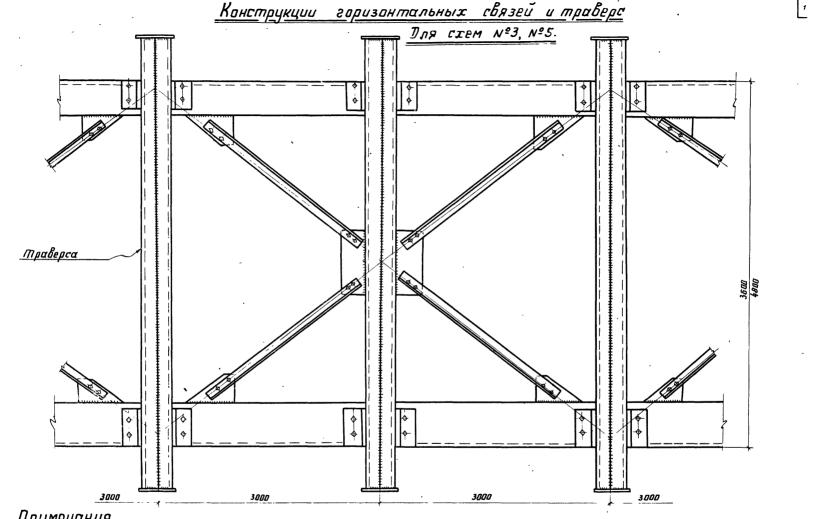
1974 Схема надколонников марки 075 ÷ 079. Выпуск ли ПП	TK	межно по гические тежно по гические	двухъярусные эстанады трубопроводы.		3. 015	
	1974	Схема надколон	ников марки ОЛ5÷ОЛ9. й и усилий,	l	ibinye× ∏I	nucm 5

3.015 - 3 Выпуск пист

6

<u> Маблица сечений и усилий</u>


Марка траверсы		Сечение	Pac	4emH0	e <i>ycu</i>	nue		Масса Іпог. метра	Примечание
радереа.	Эскиз	Састав	R _×	$\rho_{\mathbf{y}}$	N _{rc}	Mx	My	траверсы траверсы	
	С	C 12			,			10,4	Вариант из гаряче- китинных профиле
TI	٥	□ 110 × 110 ×4	1,1	0,5	/,0	0,35	0, 1	12,8	Вариант из холодни гнутых профилей
T 17	С	C 16					_	14,2	. ,
T2		0 110 × 110 × 4	2,0	0,5	4,5	<i>Q6</i>	0,15	12,8] "
Т3	כם	2C 12						20,8	
T3	0	□ 140 × 140 × 5	3,3	1,0	4,5	1,7	0,3	20,4	
T 4	כם	2014	1, -		11.00	2.0	0.3	24,6	
1 4	0	□ 160 ×160 ×5	4,5	1,0	4,5	2,2	0,3	23,5	
T 5	כס	2 C 16						28,4	,,
1 4		□ 180×180×5	4,3	1,0	4,5	3,0	0,5	26,6	
Т6	כם	2 C 20	55	,,,	11 5	27	1,0	36,8	,
ıu	0	□ 200 ×200 ×§	5,5	5 1,0	4,5	3,7	,,,,	35,3	

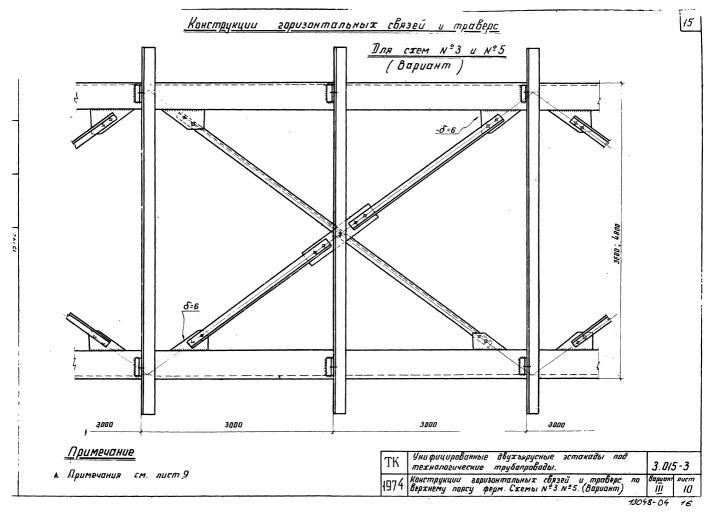

<u>Примечания</u>

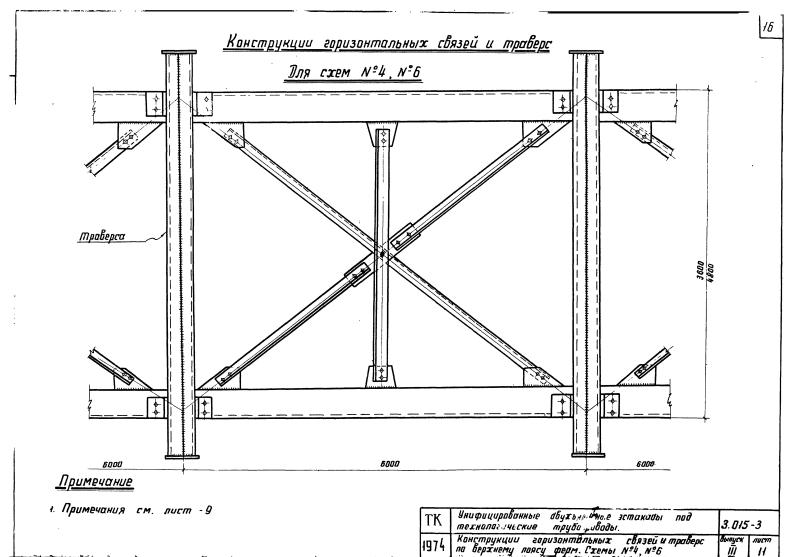
1. Общие примечания ст. лист - 3

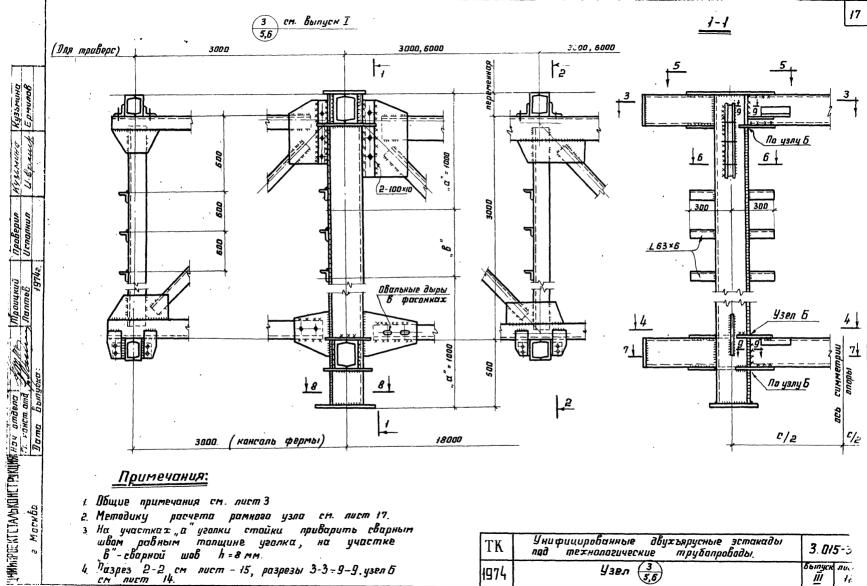
ТК Унифицированные двухълрусные зетакады под технологические трубопроводы.

ZEHJANIPUEKI LI ANBKUHLI PYK

Примечания


- ПИКНИП им

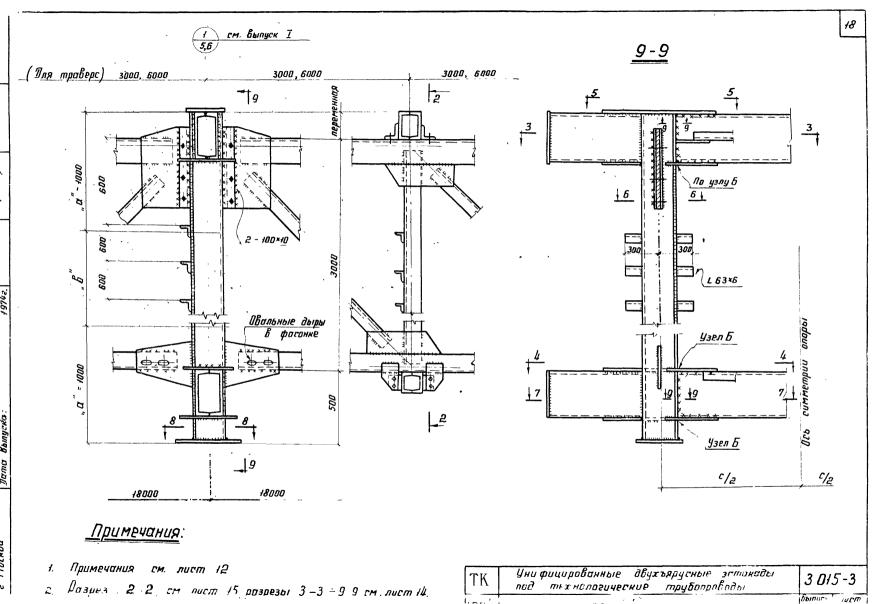

 1. Пощие примечания см. лист N°3


 2. Гаризантальные связи па нижнему
 порку ферм аналагичны гаризантальным
 покку ферм

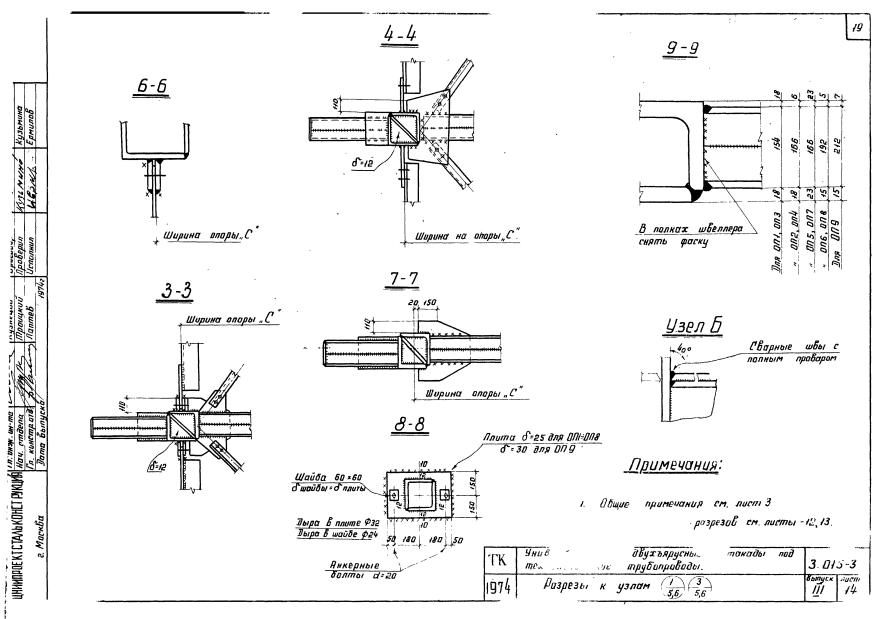
Унифицираваты.

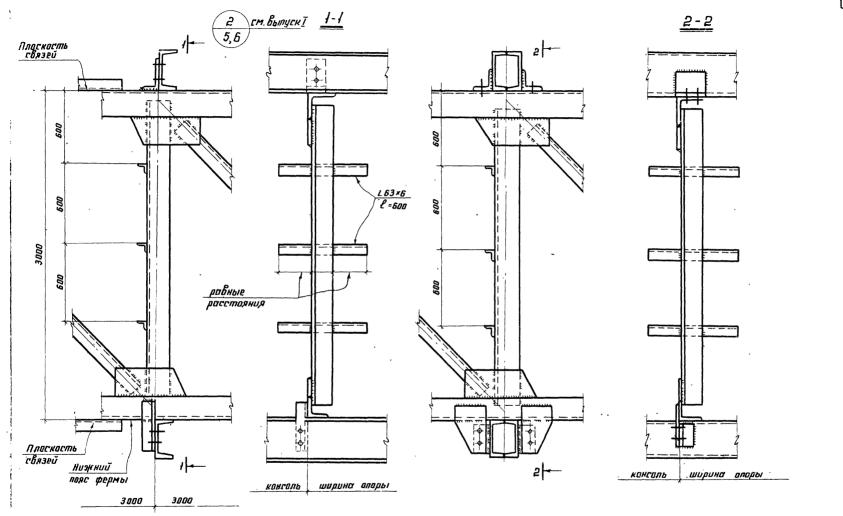
- 3 400 12 DIS -3

1974


- з На участках "а" уголки стойки приварить сварныт швом равным тапщине угалка, на участке "в"-сварной шов h=8 мм.
- 4 Лизрез 2-2 см лист 15, разрезы 3-3-9-9 узел Б

лад технопагические трубапровады. Унифицированные двухъярусные эстакады TK Y3es


12008-04

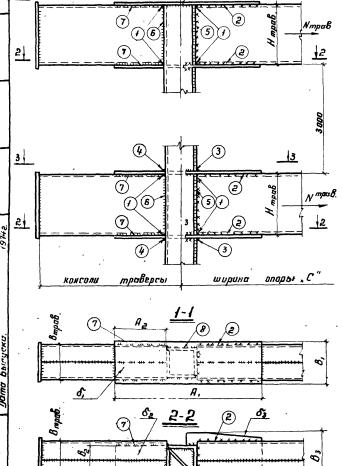

3.015-3

BUINYCK NUL

Mark

<u>Примечания</u>

- I. Общие примечания см. лист 3
- 2. Монтажную схему см. листы 5,6 выпуск Iнастаящей серии.


Инифицированные двухъярусные эстакады под 3.015-3 2 5,6 1974 *Узел*

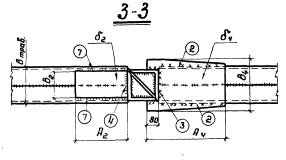
Bomytk nucm

швов рамных узлав надкаланникав

N		Марки		анникар Селенах		4	ะบกเ	IR L	rc rc				ρο	I SME	96/	Λ	ภสห	aĸ	b	MM							<u> </u>	w80			,	Reunewew.
	1/1	แบหลริ		Стойка	N,	N ₂ =N	N,	N ₄	N	N _s	N ₇	8,	0,	8,	0,	A,	A ₂	A,	A.	4	5	1	5	ħ,	4	h,	h,	1/5	h	h _z	h,	
and a conference of	1	0n i	C38C80	€ 21488×11	,	16,6			1,5	1,0	10,8				280	530	150	280	280	10	10	10	10	10	10		10		6		40	
n Come	2	DN2	[]2[22	Ū 2L 140×11	1,5	16,0	320	9,3	1.8	1,2	14,6	200	110	280	280	530	150	280	280	10	10	10	10	10	10	10	10	6	6		10	
NESOCIALIA MENGANUA 1974.	3	DN5	CJ 2C 22	Ū 2 L ≥ 00×12	1,5	17,1	34,3	9,8	2,5	1,2 .	17,3	200	110	280	280	530	150	280	280	12	12	12	12	10	10	10	10	6	6	8	12	
Paguun	4	0116 0118	[]2[21	Ū 21.200×12	1,8	20,5	41,1	21,3	7,0.	3,0	30,5	230	150	320	320	700	200	330	330	12	12	12	12	10	12	10	12	s	6	12	12	
dena mpyum: Ke. Bunycka:	<i>5</i>	0119	C32 C4a	ਹ 21 220 ×14	2,1	23,0	46,1	24,0	12,5	4,2	37,0	270	1 9 0	350	350	780	200	330	330	12	12	12	/2	10	12	10	12	8	6	12	12	
A MOCK BY A MONTH OF MINN AND A CONTROL OF THE CONT		a Memo	•	<u>Пр</u> росчета планок	pam	NUEM BIJC	y - 3	enob,	эскизь ? . см.		- 17.	1		L	T1		L gard L g L gard L g L gard L g L g L g L g L gard L g L g L g L g L ga	nyu	2U4 R (Hine.	o Byz	Mai	Bode	i. Gua	ж.	Me	omin of the second	UH BI	,	- 1	3. 015-3 Maryor Macm 11 16

- J. Дбщие примечания см. пист 3
- г Методику расчета рамных узлов, эскизы, обозначения планок и сварных швов см. пист-17.

, Расчет сварных швов в полкаж швеллеров Сварнай шав ηρυδαρυπь κεπούκε сварным швом h=10мм N=hw lw 0,7. Ry Усилия в сварнам шве (2) N 2 2 4 м 2 1 году 1 году 1 году 1 году 2 году Упилия в сварном шве 3 $N_3=2N_2$


Усилия в сварном шве $\sqrt[4]{W_y} = \frac{M_x^{\kappa \text{онс}}}{H_{mpaB}} + \frac{N^{7paBepcei}}{2}$

а Вержияя гаризонтальная планка вержнега рамного узла $B_{i} \cdot S_{i} \cdot R \geq N_{i} \cdot (B \text{ npaneme})$

г верхняя горизонтальная планка нижнега рамного узла $\mathcal{B}_{u} \cdot \mathcal{S}_{u} \cdot \mathcal{R} \geq \mathcal{N}_{e} \quad (\mathcal{B} \text{ nponeme})$ $\beta_{z} \quad \delta_{z} \cdot R \geq N_{z} \quad (\bar{\partial} n R \quad \kappa \alpha H C \alpha n u)$ з. Нижние горизантальные $\theta_3 \cdot \delta_3 \cdot R \ge N_2 \quad (\beta \quad npaneme)$

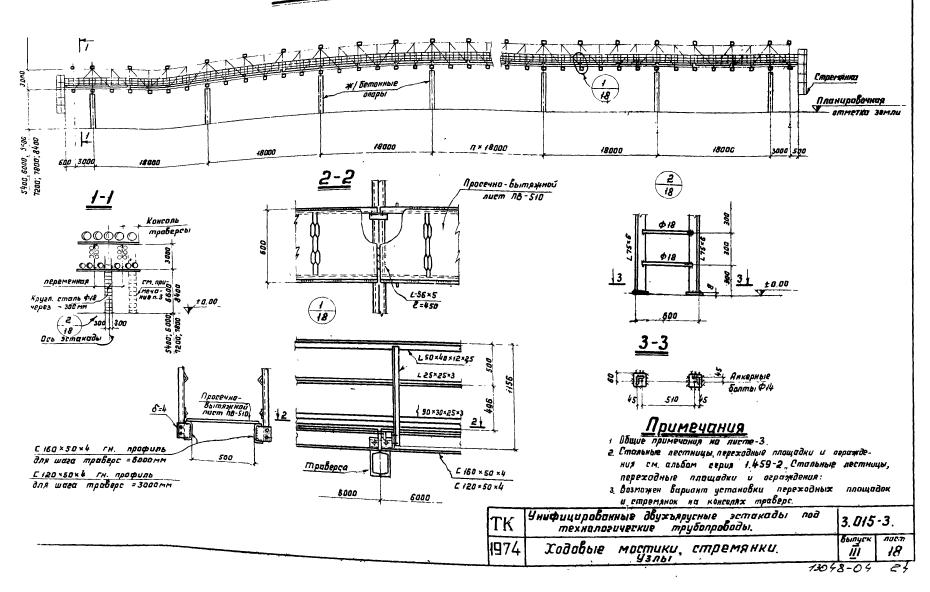
 $\mathcal{B}_{2}\cdot\mathcal{S}_{2}\cdot\mathcal{R}\geqslant\mathcal{N}_{7}$ (для кансали)

R = 2100 K2/cm2 R = 1500 K2/CM2

Примечания:

1. Общие примечания см. лист - 3. г Сечения рамных планак и еварных швов см. лист.-16. з. Поблицу сечений и усилий надколонников см. листы-4,5.

Уни фицированные двухъярусные эстакады TK под технологические трубоправоды. Методика расчета рамного y3na 1974


надколо́нников.

13048-04

3.015-3

Выпуск лист

Схема переходных площадок и стремянок

		Фер	MbI				Ko	нсали фер	M		Надко.	понн	ики				аизантальнь зи паферм	
-	NN N/n	Прафиль	в къ Въс	NN N/n	Профиль	В кг	NN N/n	Профиль	Bec B Ke	NN 11/11	Профиль	вес В кг	NN n/n	Прафиль	В ке	NN n/n	Профиль	в кг В кг
		# /			фз			KI			QN I		,	0/15 C 22	504		Cxema /	
į, l				-	<u> </u>	Γ						I	2	L 200 × 12	550	1	L 100×8	252
	,	1 140×9	349	,	1 160×10	445	1	L 125×8	94	1	£ 20	353	3	L 63 ×6	2/	, 2	·∂*6	17
\vdash	2	L125×8	326	2	1.140×10	260	2	L100×8	37	2	L 180 × 11	445	4	- ઈ =≥0	38			
	3	L80×7	245	3	L125×8	150	3	175×6	30	3	163×6	2/	5	-0°=12	135		Umaea:	269
IJ	4	L63×6	50	4	L+00×8	146	4	-d'=8	14	4	-o~-20	38		Umaza:	1249			
	5	-ರ್=8	60	5	L90×7	164	╟∸		 	5	-o=12	136		076			Cxema 2	
۱ ۴	6	-5°=10	20	6	L63×6	47	╫──		 	- <u>-</u> -	Umozo:	993	1	£27	665	1	L 100 × 8	252
\vdash				7	-5=10	70		Итага:	175		/_		2	L 200 × 12	550	æ	L 90×6	54
				8	-d'=12	30					פחפ		3	L 63 ×6	21	3	- of =6	18
		Итага:	1050	 			1	K2		 	C 22	403	4	- o = 25	47			
			1000	-			il .	nε		2	L 180×11	445	5	-0=12	136		Umozo:	324
				+	Umasa:	1312	 	1	T	3	L 63×6	21	 	Umozo	1419			
			L		· · · · ·	13/2	 	L140×9	58	4	-d-20	38		2077	1	1	CIENA 3	
1974e.		Ф2			Φ4		2		47	5	-0=20 -6=12	136	 	C 22	654	1	L63×6	222
16				 	 	Т	3	L 125×8		3	Umaea	1043	2	L 200 × 12	550	2	- 6 = 6	22
`	· ·			 		l		L 100×8	37			1043	3	1.63×6	21		Umozo:	244
	1	L 140 × 10	387	/_	L180×11	550	4	L75×6	30		<i></i>		4	-0°=20		 	dilloco.	
	2	L125×8	326	2	L140×10	750	5	-6=8	16	I	r ===	1	ļ		38 /36	-	Czema 4	
١ ١	3	L IDQ ×8	146	3	L125×8	180	 			1_	C20	441	5	- <i>6⁼12</i> ₩₩₩	1399	l . 1		117
	4	L 80×7	144	4	L 100×8	210	II	Umasa:	188	2	L180×11	445	 	อก8	1399	2	L 100 × 8 L 63 × 6	245
	5	163×6 ·	60	5	-6°=10	70				3	163×6	21	⊩.		870	3	-6=6	2/
	6	-σ°=8	60	6_	-Q.=15	30		K3		4	-6 =20	38	1	<i>E27</i>		-	Umoeo	383
Ġ.	7	- d`=10	20			 	 	·	,	5	-Q=15	136	2	L 200 × 12	550	 	Uniyey	383
J.			ļ	<u> </u>		 	 			 	ปฑอะดู:	1081	3	63×6 6=25	21	\vdash	Cxema 5	
190				 	l	 	1	1140×9	129	1	<i>an 4</i>		5	-0=23 -0=12	136	,	L63×6	245
7 77		<i>Umaea</i> :	1143		<u> Итого</u>	/190	2	L 100×8	88	<u> </u>			-	Umaza:	1524	2	-0°=6	22
*				<u> </u>			3	-o~=8	20	1	C 55	504	 	011020.	1027	1	Umozo:	267
-				lL	L		L			5	L 180 × 11	445	7		1500		Cxena 6	
				II	L	 	 			3	163×6	21	2	L 220 × 14	725	1	L 125×8	205
			ļ	 	 	 	 	Umaza:	237	4	- <i>6 =20</i>	38	3	163×6	21	2	∠63×6	245
á				 	ļ	_	 		L	5	- g=15	136	4	-d`=30	57	3	- 6-5	2/
7				ll						ll .	Итага:	1144	5	-6=14	159		Umesa.	471
1:1					Jenwear	ания	2				[its	, 9/	iu zpu	Umaea:	else	PYCH	е эстакийы	,

примечания см. лист 3 траверс на 1 погонный метр см лист6. 1. Дбщие e Marcy

3.0/5-3 สมุรุบัยหมูดอื่อสิ่ม. Bunyek nuem Специфокация стали на конструкции эстанад 1974

ЦЕНТРАЛЬНЫЙ ИНСТИТУТ ТИПОВОГО ПРОЕКТИРОВАНИЯ ГОССТРОЯ СССР

Москва, А-445, Смольная ул., 22

Сдано в печать 1974 года Заказ № 1249 Тираж 6,000 экз