ГОСУДАРСТВІЗНЫЙ КОМИТЕТ СОВЕТА МИНИСТРОВ СССР
ПО ДЕЛАМ СТРОИТЕЛЬСТВА

(ГОС СТРОЙ СССР)

типовые конструкции и детали зданий и сооружений Сърия 3.015-3

УНИФИЦИРОВАННЫЕ ДВУХЪЯРУСНЫЕ ЭСТАКАДЫ ПОД ТЕХНОЛОГИЧЕСКИЕ ТРУБОПРОВОДЫ

> ВЫПУСК <u>Т</u> материалы для проектирования

ГОСУДАРСТВИННЫЙ КОМИТЕТ СОВЕТА МИНИСТРОВ СССР ПО ДЕЛАМ СТРОИТЕЛЬСТВА (ГОССТРОЙ СССР)

типовые конструкции и детали зданий и сооружений серия 3.015-3

УНИФИЦИРОВАННЫЕ ДВУХЪЯРУСНЫЕ ЭСТАКАДЫ ПОД ТЕХНОЛОГИЧЕСКИЕ ТРУБОПРОВОДЫ

выпуск $\overline{\underline{I}}$ материалы для проектирования

РАЗ РАБОТАНЫ
ГПИ ХАРЫКОВСКИЙ ПРОМСТРОЙНИИПРОЕКТ
С УЧАСТИЕМ
НИИЖБ ГОССТРОЯ СССР

УТВЕРЖДЕНЫ И ВВЕДЕНЫ В ДЕЙСТВИЕ С 1 (ДЕКЛЯБОД 1974/г. ГОССТРОЕМ СССР ПОСТАНОВЛЕНИЕ № 076 ОТ 27 ОВГЛИТА 1974/г.

СОДЕРЖАНИЕ

ЛИСТ А. CODEP9KRHHÉ..... GETAKAR TUNOB IX U X. ТАБЛИЦА ДЛЯ ПОДБОРА КОЛОНИ ПРОМЕЖЕНТОЧНЫЯ SHCT 5:E ЛИСТ 8. TEMPEPATYPHIX 510008 QBYXX38PYCHI2C SINCT I. FREADUTHUE COMMUNICATION OF THE TEXHOLOGIA-YECKUE HAIPYSKU HA NOTOHHUH METP SCTAKAD ТАБЛИЦА ДЛЯ ПОДБОРА КОЛОНН КОНЦЕВЫЯ TUNDS IX + XIII..... Лист 9. TEMPEPATYPHING BAOKOB DBYXTBAPYCHING SUCT 2 HOMEHKARTYPR SICENESOBETOHHUSC KOHCTPYKLINY ТАБЛИЦА ДЛЯ ПОДБОРА КОЛОНН ПРОМЕЖУТОЧ-TOKASATENH PACKODA MATEPHANOS HA ODHY SINCT ID. JUCT 3 HUX TEMPEPATYPHUX ENOKOB DBYXTAPYC-CONCENERAL TO THE SECOND SECON HBISC SCTRICAD THUR XIII. 17 SHCT 4. MOKABATENU PACICODA MATEPUANOB HA ODHY TREJULIA DIA RODEOPA KOJOHH KOHLEBBISC SCENESOSETOHHYO KONOHHY H HA DOHY METRA-SHCT 11. TEMPERTYPHUX 500KOB ABYXX3APYCHUX JHYECKYID PEPMY, HARKONOHHHK, TPABEPCY, CB936.....// ТАБЛИЦА ДЛЯ ПОДБОРА МЕТАЛЛИЧЕСКИЯ STINCT 5. SCTAKADA TUD TX. MOHTASHHIJE COCEMIJI TEMPE-Лист 12. TPRBEPC, PEPM, HRDKONOHHUKOB, CBR3EH PATYPHOICE BAOKOB L=63.0+102.0m. $DBУХЪЯРУСНЫХС ЭСТЯКАД ТИПОВ <math>\overline{IX} \div X\overline{III}$. 19 ЛИСТ 6. ЛИСТ 13. PCTAKADU THOOB X +XIII. MOHTANHUE COCEMU TEMPERTYPHUX 500KOB $L = 63.0 \div 138.0$. SHCT 14. ΩΕΤΡΩΙЬ 2.....21 ЛИСТ 15:16. ТАБЛИЦЫ НАГРУЗОК НА ФУНДАМЕНТЫ......22,23 SHCT 7 TRENULA DAR NODEOPA KONOHH NPOMERKYTOY-HUX H KOHLEBUX BAOKOB QBYXBAPYCHUX

> 11K 1974

COLEPMAHUE

3.015-3 Bunyek Juci I A

BETOHE.

I OSWAR YACIL

COOFBETCTBUH C ГАБПРИТНЫМИ СХЕМЯМИ УТВЕРЖДЕН-HUMU FOCCTPOEM COCP PROTOKONOM OF 2/31-19711. 2. В настоящем выпуске приведены материалы ДЛЯ ПРОЕКТИРОВАНИЯ, ВКЛЮЧЯЮЩИЕ ГЯБЯРИТНЫЕ И МОНТЯЭЖНЫЕ СХЕМЫ; ТЯБЛИЦЫ ДЛЯ ПОДБОРЯ GENEROBETOHHUIX KOHOTPYKUHU. KONOHH; TRENUUU ДЛЯ ПОДБОРЯ МЕТАЛЛИЧЕСКИХ КОНСТРУКЦИЙ: ФЕРМ. НЯПКОЛОННИКОВ, СВЯЗЕЙ; ЧЕРТЕЖИ ПЕТЯ-ЛЕЙ УЗЛОВ СОПРЯЭКЕНИЯ НЕСУЩИХ КОНСТРУКЦИЙ. B BUNYCKE II-1 N II-2 NPUBEQEHU PREOYME YEPTE-ЖИ ЖЕЛЕЗОБЕТОННЫХ КОЛОНН. В ВЫПУСКЕ ТТ. ДЯНЫ ЧЕРТЕЖИ МЕТЯЛЛОКОНСТРУКЦИЙ: ФЕРМ, HADKONOHHHKOB H CB93EN. 3. B CEPHH PASPAGOTAHU QBYXBAPYCHUE GCTAKA-AN THROS IX + XIII , APH STOM APPONETHISE CTPOE-

HUA BUNONHEHU & METANNE KONOHHU - 8 SKENE30-

1. РЯБОЧИЕ ЧЕРТЕЖИ КОНСТРУКЦИЙ УНИФИЦИРОВЯННЫХ

ПВУХЪЯРУСНЫХ ЭСТАКАП ПОП ТЕХНОЛОГИЧЕСКИЕ ТРУ-БОПРОВОДЫ, СЕРИЯ З.015-3, РАЗРАБОТАНЫ В СООТВЕТОТ-

ВИИ С ТЕХНИЧЕСКИМИ РЕШЕНИЯМИ УТВЕРЭЮДЕННЫМИ

FOCCTPOEM COCP (PROTOKUMM OT 20/11-19701), A TAKSHE B

ЭСТАКАДЫ ТИПОВ I÷ VIII РАЗРАБОТАНЫ В СЕРИИ 3.015-2 ОДНОЯРУСНЫХ ЭСТЯКАД ПО Д. ТЕХНОЛОГИЧЕСКИЕ ТРУБОПРОВОДЫ. ГАБАРИТНЫЕ СХЕМЫ ПОПЕРЕЧНЫХ СЕЧЕНИЙ ПВУХВ -APYCHUX GCTAKAD U BEPTUKANDHUE TEXHONOTUYECKUE HATPYSKU HA NOTOHHIIN METP SCHAKAQII NPUBEQEHII HA AUCTE 1. 4. МАРКИРОВКА КОНСТРУКЦИЙ ЭСТАКАД ПРИНЯТА БУКВА-MH H LHPPAMH (HANPHMEP KI-1, KI-2, PI, KI, ONI). BYKBU ОБОЗНАЧАЮТ ОТДЕЛЬНЫЕ ЭЛЕМЕНТЫ ЭСТАКАДЫ - КОЛОН-HU, PEPMU, KOHCONU, ONOPU, AND SKENEZOBETOHHUX KOHCTPYKLINK NEPBAR LIMPPA COOTBETCTBYET NOPROKOBOMY HOMERY TUNOPASMEPA, BTOPAS - HECYWEN CHOCO 5 -НОСТИ ЭЛЕМЕНТА. ДЛЯ МЕТАЛЛОКОНСТРУКЦИЙ ПЕРВАЯ LHTPA ONPEDENSET ODHOBPEMEHHO HOPSOKOBWH HO-MEP TUNOPA 3MEPA H HECYWYHO CHOCOBHOCTH GAEMEHTA. 5. PABOUNE UEPTESKU KONCTPYKUNU DBYXBAPYCHЫХ ЭСТА-KAD DONYCKAETCA NPUMEHATO DAS OBSEKTOB, CTPOS-WHICH & PRUOHAX C PACYETHOU TEMPLEPATYPOU BO3-QYXA IO-40°C APH HOPMATH8HOM HATTOPE BETPA QO 55 KF/M2

TK

Пояснительная Записка

3.015-3

6. Конструкции двухъярусных эстакад рассчитаны HA PHIMEHEHHE B PHHOHAX C CEHCMUHHOCTOHO DO 8 BANNOB BKNHOYUTENDHO. 7. УниФицированные двухлярусные эстякады предняз--НЯЧЕНЫ ДЛЯ ПРИМЕНЕНИЯ В ОБЫЧНОЙ, СЛЯБО-И СРЕДНЕ-APPECCUBHON PRIORBY CPERRY, BRUNTHWE MEPONPHRITHR 8 KASHEROM KOHKPETHOM CAYYAE ROASHU BUTG PASPA BOTAHW & COCTABE PAGOVETO TIPOEKTA & COOTBETCTBUN

C DEÚCTBYHUMU HOPMATHBHOIMH

"Указаниями по применению типовых экследобетон-

HUX KOHCTPYKLINÁ NHOWEHEPHUX COOPYSKEHNÁ 8 RIPECCUB-

DOKYMEHTAMU, A TAKHE

HWX TA308WX CPEDAX" CEPUA 3.400-1. T. KOHCTPYKTUBHWE PEWEHUS В. НЕСУЩАЯ СПОСОБНОСТЬ КОНСТРУКЦИЙ УНИФИЦИРОВАНных двухъярусных Эстакад, разработанных в данной CEPUU, DONYCKAET NPUMEHEHUE UX 8 TEMNEPATYPHЫX BAOKAX DAUHOA: DAS GETAKAD THIOB IN U. X - OT 63.0M DO 102.0 M

DAS SCIRKAG THIOS XI - XIII - 07 63.0M DO 138.0 M.

В СЛУЧИЕ, КОГДА ДЛИНА ТЕМПЕРАТУРНОГО БЛОЖЯ ОТЛИ-YRETCA OT YKABAHHON HA MOHTAHHON CXEMAX DAHHON СЕРИИ, НАГРУЗКА НА КОЛОННЫ ОПРЕДЕЛЯЕТСЯ В КАЖ-

ЩЕЙСЯ НОМЕНКЛАТУРЫ С COOTBETCTBYHOUEN HECYЩЕЙ способностью. 9. Температурные Блоки эстаКад Запроектированы без HETOQBHOCHON "AHKEPHON" OTOPH U BCE HATPYSKH BOOM OCH TPACCHI NEPELAHOTOA HA BCE KONOHHHI TEMNEPATYPHOTO БЛОКА ПРОПОРЦИОНАЛЬНО ИХ ПОГОННЫМ ЖЕСТКОСТЯМ. PACCTORHUE MEDICAY CMEDICHUMU TEMPLEPATUPHUMU 610-KAMH PRELYCMOTPEHO 3.0 M 4 6.0 M. MOHTA JIGHIE CXE-

MU TEMPEPATYPHUX BAOKOB PUBEREHU HA AUCTAX 546.

YFONDHOPO CEVEHUA, MAPKU UX ROQUAPAPOTCA B BABUCH-

DOM KOHKPETHOM. CAYARE, A CEYEHUE RODENPAETCA US UMERO-

IO. WAR KONOHH QBYXBAPYCHЫХ ЭСТАКАД ПРИНЯТ 18M, ВЫСОТА OT MARHUPOSOYHOÙ OTMETKU BENNU DO BEPKA HUBGHEÙ TPABEPCH - 5,4M; 6.0M; 6.6M; 7,2M; 7,8M H 8.4M. II, WAS TOABEPC DAS BOEX THIOB DBUXSSPYCHUX SCTAKAD ПРИНЯТ 3.0 И 6.0 M. 12. KONOHHU BANPOEKTUPOBAHU SKENEBOSETOHHUMU NAMO-

MOCTH OT PABAPHTOB H DEHCTBYHOUHX HAPPYSOK NO TAG-AHUAM HA AHCTAX 7÷ // BUNYCKA I. 13. B MECTAX OTBETBAEHHÁ TEXHONOFHYECKUX TPYBORPO-BOGOB YCTAHABAHBAHOTCA KONOHHЫ, PACCYUTAHHЫE

NOSCHUTEABHRS

TK 1974

14. ПРОЛЕТНЫЕ СТРОЕНИЯ ЗЯПРОЕКТИРОВЯНЫ ИЗ ПРОСТРАНСТВЕННЫХ МЕТЯЛЛИЧЕСКИХ КОНСТРУКЦИЙ, СОСТОЯЩИХ ИЗ
ДВУХ ВЕРТИКАЛЬНЫХ ФЕРМ ДЛИНОЙ 18.0 М, СОЕДИНЕННЫХ
МЕЖДУ СОБОЙ СВЯЗЯМИ ПО ВЕРХНЕМУ И НИЖНЕМУ
ПОЯСУ. ТРАВЕРСЫ ПО ФЕРМЯМ ПРИНЯТЫ МЕТЯЛЛИЧЕСКИМИ И СЛУЖАТ ЭЛЕМЕНТЯМИ СВЯЗЕЙ ПО ВЕРХНЕМУ И
НИЖНЕМУ ПОЯСУ.

БИРАЮТСЯ В ЗАВИСИМОСТИ ОТ ГАБАРИТОВ И НАГРУЗОК ПО ТАБЛИЦАМ НА ЛИСТЕ 12 ВЫПУСКА I. 15. МЕТАЛИЧЕСКИЕ ФЕРМЫ И ГОРИЗОНТАЛЬНЫЕ СВЯЗИ ВЫПОТ-

HAHOTCA H3 ORHHOUHBY YOAKOB.

ТРЯВЕРСЫ ВЫПОЛНЕНЫ ИЗ ОДИНОЧНЫХ ПРОЖАТНЫХ ШВЕЛЛЕ-РОВ, Я ТЯКЭКЕ В ВИДЕ КОРОБЧЯТЫХ СЕЧЕНИЙ ИЗ ДВУХ-ПРОКЯТНЫХ ШВЕЛЛЕРОВ. ПРЕДУСМОТРЕН ВЯРИЯНТ МЕТЯЛ-ЛИЧЕСКИХ ТРЯВЕРС ИЗ ГНУТОСВЯРНЫХ КОРОБЧЯТЫХ

MAPKH PEPM, TPABEPC, CBABEH H HARKONOHHUKOB NOG-

QONDAHUTEABHO MA COPH3OHTRABHYPO COCPEQOTOYEHHYPO NOCEPEYHYPO HACPYSKY OT OTBOQOB TPY5OCPOBOQOB.

лических грновов из гизгосвирных коробчитых сечений.

16. Уклон труболроводов на эстакаде достигается за счет изменения отметки верхнего обреза РУНДЯМЕН-

TR NO OTHOWEHHIO K MARHIPOBOYHON OTMETKE BEMMI

и рязличных длин Колонн.

III. НАГРУЗКИ И РАСЧЕТ КОНСТРУКЦИЙ

ГТ. НЯГРУЗКИ НЯ КОНСТРУКЦИИ ДВУХВЯРУСНЫХ ЭСТЯКЯД ПРИ-НЯТЫ В СООТВЕТСТВИИ С "РЕКОМЕНДЯЦИЯМИ ПО ОПРЕДЕЛЕНИЮ НЯГРУЗОК НЯ ОТДЕЛЬНО СТОЯЩИЕ ОПОРЫ И ЭСТЯКЯДЫ ПОД ТРУБОПРОВОДЫ," РЯЗРЯБОТАННЫМИ ЦЕНТРЯЛЬНЫМ НЯЧУНО -ИССЛЕДОВЯТЕЛЬСКИМ ИНСТИТУТОМ СТРОИТЕЛЬНЫХ КОНСТРУК-ЦИЙ ИМЕНИ В.Я. К.УЧЕРЕНКО. 18. ЗА ИСХОДНЫЕ НЯГРУЗКИ ПРИ РЯСЧЕТЕ КОНСТРУКЦИЙ ДВУХВ-

ЯРУСНЫХ ЭСТЯКАЙ ПРИНЯТЫ ВЕРТИКАЛЬНЫЕ НЯГРУЗКИ ОТ ТЕХНОЛОГИЧЕСКИХ ТРУБОПРОВОЙОВ НЯ ПОГОННЫЙ МЕТР ЭСТЯКАЙЫ: $A_1 = A_2 + A_3 + A_4 +$

НЯГРУЗКЯ ОТ ХОДОВОГО МООТИКЯ И СНЕГОВЯЯ НЯГРУЗКА

ВХОДЯТ В ОБЩУЮ НОРМЯТИВНУЮ ВЕРТИКАЛЬНУЮ НЯГРУЗКУ.

19. ГОРИЗОНТАЛЬНЫЕ ТЕХНОЛОГИЧЕСКИЕ НЯГРУЗКИ ВДОЛЬ ТРЯССЫ,
ДЕЙСТВУГОЩИЕ НЯ ТЕМПЕРЯТУРНЫЙ БЛОК ЭСТЯКАДЫ, ВОСПРИНИМЯНОТСЯ ВСЕМИ КОЛОННЯМИ ТЕМПЕРЯТУРНОГО БЛОКА.
ГОРИЗОНТАЛЬНЫЕ ТЕХНОЛОГИЧЕСКИЕ НЯГРУЗКИ ВДОЛЬ ТРЯССЫ
СОСТОЯТ ИЗ УСИЛИЙ ТРЕНИЯ ТРУБОПРОВОДОВ ПО РЯДОВЫМ

ТРАВЕРСАМ, УПРУГИХ РЕАКЦИЙ КОМПЕНСАТОРОВ, ДАВЛЕНИЙ

TK

PK HOOLI ПОЯСНИТЕЛЬНАЯ ЗАПИСКА 3.015-3

HA BALAYWKU U PABHO : DAS PROMESKYTOYHOLO TEMPEPATYPHORO BAOKA - "29", AAA KOHYEBORO BAOKA - "49", THE "9" - BEPTHKAABHAA HATPYSKA HA NOTOHHUIÚ META ЭСТАКАДЫ. ГОРИЗОНТАЛЬНАЯ НАГРУЗКА "2g" ИЛИ "4g" ПЕРЕ -"QAETCA HA BEPXHUÚ APYC (60%) U HUHKHUÚ APYC (40%) ЭСТАКАДЫ. 20. BEAUTHHA COCPEDITOYEHHOÙ TOPHBOHTAABHOÙ CHABI OT OTBOROS TPYSONPOBOROS, RENCTBY FOWAR NEPNEH-[HKYNAPHO OCH TPACCH, PABHA "19". 21. BETPOBRA HAIPY3KA NON PACYETE KOHCTPYKций эстакад принята 35 кг/м2 и 55 кг/м2. BEAUGUHA BETPOBON HARPYSKU HA NOTOHHDIN METP GCTAKAQUI ONPEGENAETCA UCXOGA H3 BUCOTUI PEP-MU MAHOC 1,0 M. BETPOBRA HAIPYSKA PACAPEDENAETCA HA BEPXHUH ЯРУС 60% НА НИЗВЕНИЙ ЯРУС 40% ОТ ОБЩЕЙ НАГРУЗКИ. 2. A SPOQUHAMUYECKHU KOSPPHUHEHT . ANS BETPOBOU HASPYSKH SPHHAT 14. 23 TEMPEPATYPHUE BAHAHHA HA KONOHHU GCTAKAD NPUHATU OT HOPMATHEHORO NEPENADA TEMNEPATYP PABHOTO 50°C. 24. РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ПРОИЗВЕДЕН В COOTBETCTBUH CO CHUIT IT-B 1-62". PAEMENTIN KONOHH PROCYNTAHU HA KOCOE BHELLEHTPEHHOE COMPATHE

25 PACYET METRANHYECKUX KOHCTPYKUHU BUNONHEH B COOTBET-

СТВИН СО СНИЛ IT-8.3-72. КОНСТРУКЦИИ ФЕРМ РАССЧИТАНЫ KAK CTEP HEBBIE KOHCTPYKUUH HA BEPTHKAABHBIE H TOPHBOHTAN BH WE TEXHONOTHYECKHE HATPYBKM, DEMOTBYFO-WHE BOOMS H MONEPEK TPACCH. KOHCTPYKLINH TPRBEPC PROCYNTAHЫ HA HBI'HE B 2 IMOC -KOCTAX OT BEPTHKANGHOIX H (OPH3OHTANGHOIX TEXHONO -ГИЧЕСКИХ НЯГРУЗОК, ПРИЛОЭЮЕННЫХ К ВЕРХНЕЙ ГРАНИ КОНСТРУКЦИИ. T. YKABAHUA NO NPUMEHEHUHO. 26. TPH PASPA BOTKE NO MATEPHANAM DAHHON CEPHN CTPONTEABHON YACTU KOHKPETHOTO TOPOEKTA DBYX89PYC-HUX GCTAKAL TOO TEXHONOTHYECKHE TPY50NPOBORUS PEKO-МЕНДУЕТСЯ СЛЕДУЮЩИЙ ПОРЯДОК РАБОТЫ: O) OPPEDENUTS TO TEXHONOPHYECKOMY SADAHUHO THE SCIAKA-IN B BABUCHMOCTH OT THERPHTHUX CXEM H BEPTHKANG-HOK TEXHONOCHYECKON HAPPYSKN HA NOTOHHINN METP ЭСТЯКАДЫ; B) COCTABUTE MONTH SIGHLIE CXEMBI ABYX89 RYCHUX SCTAKAA; B) NO TREAMURM, NOUBEQUEHHAM & BUNYCKE I HA AUCTAX 7:12 POH3BECTU POGEOP SAEMEHTOB SEEAE305ETOHHUX KONONH И СТЯЛЬНЫХ КОНСТРУКЦИЙ ФЕРМ, ТРЯВЕРС И СВЯЗЕЙ; 2) POOKSBECTH PACYET IN SAKOHOTPYUPOBATE PYHJAMEHTW TO HATPYSKAM THUBEDEHHUM HA MICTAX 15 4 16 HACTOS-WEFO BUTTYCKA.

ПОЯСНИТЕЛЬНЯЯ ЗЯПИСКА

ICKA

3.0/5-3 Bunyad Ayar 27. [INS [BYX89PYCHUX GCTAKAD, OTANYHUX NO FABAPUTAM W НАГРУЭКАМ ОТ РАЗРАБОТАННЫХ В НАСТОЯЩЕЙ СЕРИИ, ВОЗ-MOGRHOCTO PRIMEHEHUA TUNOBUX KOHCTPYKLLHÚ CEPUH 3.015-3 DONSEHA BUTH THOBEPEHA PACHETOM. T. MOHTAGE KOHCTPYKUHÚ

28. МОНТЯ ЖЕ КОНСТРУКЦИЙ ДВУХВЯРУСНЫХ ЭСТАКАД ПРОИЗВО-CHTCA MOCAE OKOHYAHUA PAGOT HYAEBORO LINKAR 8 COOTBET-CTBHH C STPOEKTOM OPFAHHBRIJHH CTPOHTEABHBY PREST H CXE-MAMU MOHTA WEA OTGENEHBIX KOHCTPYKLIHU PASPABATUBAE-

МЫМИ В КОНКРЕТНОМ ПРОЕКТЕ, МОНТЯЖ КОНСТРУКЦИЙ PPOH380QUTO 8 COOTBETCTBUH C " HHCTPYKLUVEN TO MONTRONEY СБОРНЫХ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ПРОМЫШЛЕННЫХ ЗДАНИЙ И СООРУЖЕНИЙ." СНЗ/9-65 И "ПРАВИЛАМИ ИЗГОТОВ-NEHUR, MOHTACIGA U TIPHEMICH CTANBHBIX KOHCTPYKLHH"

CHM17 IIT- B. 5-62.* 29.K MOHTA Ж.У ЖЕЛЕЗОБЕТОННЫХ КОЛОНН ДОЛУСКАЕТСЯ ПРИСТУПАТЬ ТОЛЬКО ПОСЛЕ ПОДГОТОВКИ ДНЯ СТАКАНА

И ОБРАТНОЙ ЗАСЫЛКИ ЛАЗУХ РУНДАМЕНТА. ПОДГОТОВКА

KOHCTPYKLINU HECMBIBAEMON KPACKON TON HECHMMET-

PHYHOM RPMUPOBRHUH HAH HECHMMETPHYHOM CEYE-

дня стякана Фундамента производится путем выравни-BRHUA ETO ALECTICOÁ PACTBOPHOÁ UNH SETOHHOÁ CMECGIO КОНСИСТЕНЦИИ ВЛЯЖНОЙ ЗЕМЛИ. 30 TOU MONTANE KONONN CAEQUET OFFITHTS BHUMAHUE HR WX OPHEHTHPOBICY. OCS KONOHHII, HRHECEHHRA HR

HAM, DONGERR SUITS MADAINENGER OCH TPROCESS. 31. BPEMEHHOE BAKPENNEHME KONOHH B CTAKAHE PEKO-

KANHBEB, POCAE 3AKPERAEHUA KOAOHHU HEOEXOQUMO MPOUSBECTU OKOHYATEABHYHO EE BBIBEPKY U BAMOHOAU-ЧИВАНИЕ СТЫКА КОЛОННЫ С ФУНДАМЕНТОМ. Зямоноличивание стыка колонны с Фундаментом произво-DUTCA SETONHOÙ CMECSIO MARKU HE HUXEE 200, C BODOUEMENT-HUM OTHOWEHHEM & TPEDEARX 0.4-0.5. 32. Приготовление БЕТОННОЙ СМЕСИ ДЛЯ ЗЯМОНОЛИЧИВАНИЯ

MEHRYETCA POUSBOUNTS PAN POMOWN KOHRYKTOPOB WAN

KONOHH & CTAKAHE OCYMECTBARETCA & COOTBETCTBHH CO CHUNTI -B. 1-70 , BETONNOE N OBENESOBETONNOE KONCTPYKUNN MOHONHTHUE. PABUNA PROUBBOACTBA W PRIEMKH PAGOT! 33. KOHQYKTOPU MOTYT FUTL CHRTH MOCAE 3AMOHOAHYHBAHHA ПРИ ДОСТИЖЕНИИ БЕТОНОМ ПРОЕКТНОЙ ПРОЧНОСТИ.

34. METRANUYECKUE PEPMU, TPRBEPCU, FOPUSOHTRABHUE CBRBU YKPYIT-HAPOTCA HA MECTE MONTAGEA & PROCTEMENTE ENORM И УСТЯНЯВЛИВАЮТСЯ НЯ ЖЕЛЕЗОБЕТОННЫЕ КОЛОННЫ. 35. Свярку конструкций производить электродями Э42 и 942A NO FOCTY 9467-60.

AND CBAPKH KOHCTPYKLIHH H3 CTANU MAPKU IOXHAN NPUMEHATA ЭЛЕКТРОДЫ ЯН-ХТ ИЛИ Э-138/2011 ТИПЯ Э50Я-Ф ПО ГОСТУ 9467-60. 36. Количество и дияметр Болтов, Высоты и длины свярных WBOB ORPEDENAIOTCA RAW PRISPASOTICE DETRANPOSOUNDIX VEPTE-ЖЕЙ СТЯЛЬНЫХ КОНСТРУКЦИЙ, В СООТВЕТСТВИИ С ДЕТАЛЯМИ

Y3108, PANBELEHHUMU 8 ARHHOM BUTTYCKE N B COOTBETCTBHN

C PACHETHUMU YCHNUAMU, YKABAHHIIMU B TABNULAX CEYE-

TK

Пояснительная 3ANHCKA

ний и усилий выпуска III листы 1÷6.

3.0/5-3 BUNYCK AHC:

13048-01

XAPEKOBEKNÍ IPOMETPOMMINDEKT FXAPEKOB

PREPRIETHE COMMENTE IN BEPTUKRAIBHBIE TEXHOAOTUYECKUE HATPYSKU HA NOFOHHUU METP SCHARAD TUNOB IX + XIII

Тип		HOPMATUBHAA BEPTUKANISHAA TESCHO NOTUYECKAA HATPYSKA		BHBIE MEPBI	
ЭСТАКА- ДЫ	FREAPHTHAA CXEMA	HR NOTOHHWA METP SCTACADW (T/M)	b (mm)	C (MM)	ПРИМЕЧЯНИЯ
<u>IX</u>	L COMETKA BEP	1.0; 1.5	4.800	2.400	
X	OTMETKA BET HEYER ASTA HAN HETO APPEA	10.15	6.000	3.600	ЗА ОТМЕТКУ ВЕРХА ЯРУСОВ ЭСТАКАДЫ ПРИНЯТА ВЕРХНЯЯ ГРАНЬ ТРАВЕРСЫ. КОНСТРУКЦИИ КОЛОНН ВЫПОЛНЯЮТСЯ В ЭКЕЛЕЗОБЕТОН
<u>XI</u>	0018 '008. 2009' 0009 1804' 8100'	2.0; 3.0	6.000	3.600	КОНСТРУКЦИЮ МЕТЯЛЛИЧЕСКИХ ТРЯВЕРС И ПРОЛЕТНО СТРОЕНИЯ СМОТРИТЕ В ВЫПУСКЕ [[]. КОНСТРУКЦИЮ ЖЕЛЕЗОБЕТОННЫХ КОЛОНН СМОТРИТО В ВЫПУСКЯХ []-1 И []-2.
XII	C Reminipology	2.0; 3.0	7.800	4.800	
XIII		5.0	7.800	4.800	

ЛОГИЧЕСКИЕ НАГРУЗКИ НА ПОГОННЫЙ МЕТР $\overline{\mathcal{B}}$ ЫПУСК ЛИСТ ЭСТАКАД ТИПОВ $\overline{\mathcal{U}}$ $+\overline{\mathcal{X}}$ $\overline{\mathcal{U}}$ 13048-01

TABRPUTHUE COCEMU U BEPTUKANAHUE TEXHO- 3.015-3

HUMEHOBRHUE .	0	CEYE	HHE	Длиня	
ОНСТРУКЦИЙ	ЭСКИЗ КОНСТРУКЦИИ	a (mm)	(mm)	(mm)	ПРИМЕЧЯНИЯ
		400	400	5100 6300 6900 1500	
	/	500	400	5700 6300 6300 7500 8100 8100	
Солонны	e 1/	500	500	7500 8100 8700	
	a	600	400	5700 6300 6900 7500	
	<u>1-1</u>	600	500	5700 6300 6900 7500 8100 8100	

MAPKA		PACXXXI I HA OQHY	МЯТЕРНЯЛОЕ КОЛОННУ	ВЕС КОЛОННЫ	MAPKA	MAPKA	РЯСЖОД НА ОДНУ	KONOHHY	BEC	MAPICA	MAPKA	PACXOA M HA OQHY ,	ATEPHANO KONOHHY	BEC
CONOHHBI	<i>БЕТОНЯ</i>	BETOH M³	CTRNb Kr.	T	КОЛОННЫ	БЕТОНЯ	БЕТОН M ³	CTANI6 ICT.	КОЛОННЫ Т	КОПОННЫ	6ETOHA	BETOH M ³	CTRIII KI.	KANOI
K1-1	200	0.91	140.3	2.3	K5-5	300	1.38	337.9	3.5	K12-4	300	2.18	394.5	5.5
K1-2	200	0.91	198.7	2.3	K5-6	400	1.38	249.3	3.5	K12-5	300	2.18	527,4	5.5
K1-3	300	0.91	179.2	2.3	K6-1	300	1.20	286.3	3.0	K12-6	400	2.18	426.4	5.5
K1-4	400	0.91	224.1	23	K7-1	300	1.50	368.3	3.8	K12-7	400	2.18	511.6	5.5
K1-5	300	0.91	149.1	2.3	K7-2	300	1.50	299.4	3.8	K /3-/	200	1.14	210.7	2.5
K 1-6	300	0.91	219.5	2.3	K8-1	200	1.88	326.4	4.7	K13-2	200	1.14	235.6	2.
K1-7	300	0.91	248.4	2.3	K8-2	300	1.88	310.0	4.7	K13-3	200	1.14	299.4	2.
K2-1	200	1.01	270.1	2.5	K8-3	300	1.88	373.7	4.7	K13-4	300	1.14	145.9	2.
K2-2	300	1.01	224.7	2,5	K8-4	400	1.88	428.8	4.7	K13-5	300	1.14	195.1	2.
K2-3	300	1.01	278.1	2.5	K8-5	300	1.88	341.7	4.7	K13-6	400	1.14	240.5	2.
K3-/	300	1.26	201.2	3.2	K8-6	400	1.88	497.8	4.7	K13-7	400	114	267.5	2.
K3-2	300	1.26	250.6	3.2	K8-7	200	188	219.1	4.7	K13-8	300	1.14	220.2	2.
K3-3	300	1.26	262.0	3.2	K9-1	300	1.62	266.9	4./	K14-1	300	1.8	238.4	4
K3-4	300	1.26	165.0	3.2	K9-2	300	1.62	3/7.5	4./	K14-2	300	1.8	303.0	4.
K3-5	400	1.26	253.6	3.2	K10-1	300	2.03	314.1	5./	K14-3	400	1.8	346.7	4
K3-6	400	1.26	283.5	3.2	. K10-2	300	2.03	336.9	5./	K14-4	400	1.8	394.6	4.
K3-7	300	1.26	311.2	3.2	K10-3	300	2.03	396.0	5./	K14-5	400	1.8	430.7	4.
K3-8	400	1.26	230.8	3.2	K10-4	400	2.03	461.6	5.1	K14-6	300	1.8	470.0	4.
K4-1	200	1.10	290.5	2.8	K10-5	300	2.03	395.3	5./	K15-1	200	2.43	525.2	6.
K4-2	300	1.10	243.2	2.8	K11-1	300	1.74	282.6	4.4	K15-2	200	2.43	535.2	6.
K4-3	300	1.10	300.5	2.8	K11-2	300	1.74	338.6	4.4	K15-3	200	2.43	406.7	6.
K5-1	300	1.38	215.6	3.5	K12-1	300	2.18	330.7	5.5	K15-4	200	2.43	367.4	6.1
K5-2	300	1.38	178.0	3.5	K12-2	200	2.18	379.5	5.5	K15-5	300 .	2.43	422.4	6.1
K5-3	400	1.38	274.8	3.5	K12-3	300	2.18	360.6	5.5	K15-6	300	2.43	573.1	6.
K5-4	400	1.38	308.0	3.5	, , , , , , , , , , , , , , , , , , ,								70.7	T "
	,		TPHMEY	<i>В</i> НИЯ	-									:

1. FICXUIL CITUM INFOELER TO STEIDIT BEAR SHIKIIAIIHBIC BETAREK 2. NOKASATEJN PROCODA MATEPURADO HA ODHY MERIESOSETOAHYIO KONOHHY NPUBEREHBI HA NUCTAX 3 U 4.

1974

TK POKASATENH PACKODA MATEPHANOB HA ODHY CONOHHY KONOHHY

3.015-3 BUNYCK SINCT

ПОКАЗАТЕЛИ РАСХОДА МАТЕРИАЛОВ НА ОДНУ ЖЕЛЕЗОБЕТОННУЮ КОЛОННУ

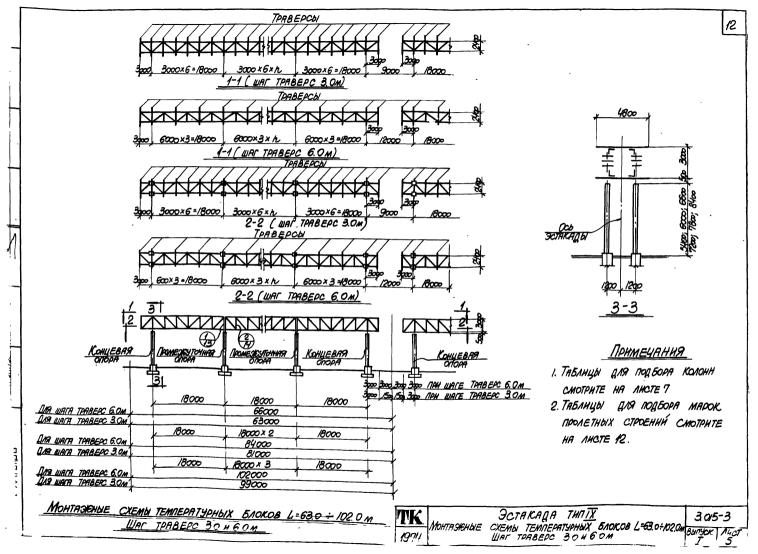
MAPICA	MAPKA	PACXOD I HA ODHY	MATEPHANOS KONOHHY	BEC	MAPICA	MAPKA	РАСЖОД М. НА ОДНУ	RTEPHANOS KONOHHY	BEC	MAPKA	MAPKA	PACKOR M HA ODHY	ATEPHANOS KONOHHY	<i>BE</i> C
колонны	BETOHR	BETOH M3	CTRAIS	колонны	колонны	<i>EETOHR</i>	БЕТОН M³	CTANIB KT.	колонны	колонны	BETOHR	BETOH M³	CTANЬ KT.	колонны
K15-7	200	2.43	447.6	6./	K17-1	200	1.51	316.6	3.8	K18-5	300	1.66	341.6	4.2
K15-8	400	2.43	476.6	6.1	K17-2	200	1.51	200.3	3.8	K18-6	300	1.66	258./	4.2
K15-9	300	2.43	429.2	6.1	K/7-3	400	1.51	261.3	3.8	K18-7	400	1.66	355.9	4.2
K 15-10	300	2.43	377.8	6.1	K17-4	300	1.51	3/4.4	3.8	K18-8	300	1.66	373.6	4.2
K15-11	400	2.43	633.5	6./	K17-5	300	1.51	238.1	3.8	K18-9	300	1.66	3/4.3	4.2
K16-1	200	2.61	580.1	6.5	K17-6	400	1.51	321.6	3.8	K19-1	200	1.37	265,4	3.4
K16-2	200	2.61	434.0	6.5	K/7-7	400	1.51	283,3	3.8	K19-2	200	1.37	318.4	3.4
K16-3	200	2.61 .	390.3	6.5	K/7-8	300	1.51	349.8	3.8	K20-1	400	1.71	229.9	4.3
K16-4	300	2.61	615.7	6.5	K17-9	300	1.51	288.3	3.8	K21-1	300	1.89	399.7	4.7
K16-5	200	2.61	486.5	6.5	K18-1	200	1.66	340.1	4.2	K22-1	300	2.07	425.6	5.2
K16-6	400	2.61	539.8	6.5	K18-2	200	1.66	225,9	4.2	K23-1	400	2.25	475.2	5.6
KK-7	300	2.61	4584	6.5	K18-3	400	1.66	284.0	4.2					
K16-8	400	2.61	672.9	6.5	K18-4	400	1.66	317.8	4.2					

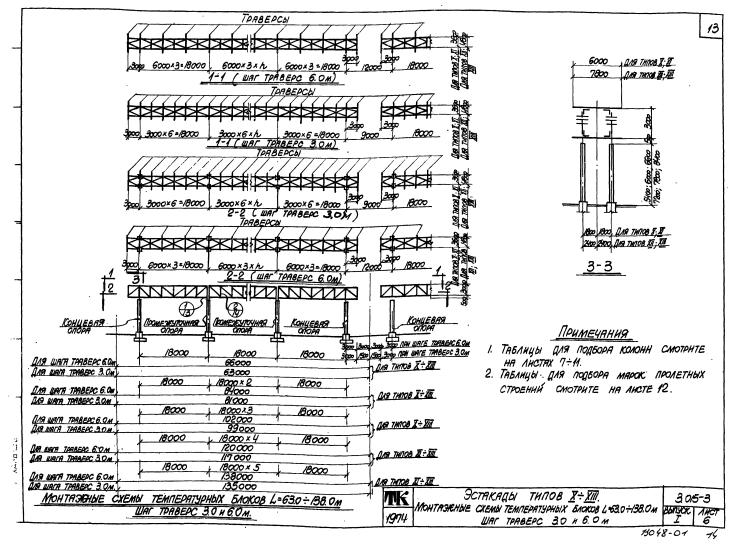
<u>Поснзятели РАСХОДА МАТЕРИКЛОВ НА ОДНУ МЕТАЛИЧЕСКУЮ ФЕРМУ, НАЦЕКОЛОННИК, ТРАВЕРСУ, СВЯЗЬ</u>

	141-1101110	11// / //000	~
	APKA MEHTA	BEC KT.	ĺ
/	<i>\$</i> 1	1050	
PEPMB /	<i>\$</i> 2	1143	
\$	ф3 Ф4	1312	
	<i>\$</i> 4	1790	
фЕРМ ОНСОЛИ	K/	175	
13a INC	K2 K3	188	
₹.	K3	237	ŀ

	PPICA 1EHTA	BEC KT.
	001	993
Ÿ	0112	1043
HH	0113	1081
to#	0114	1144
KON	0115	12.49
TIMT.	0116	1419
`	007	1399

MA. STEP	PKA 1EHTA	BEC Kr.
ioni	0118	1824
TH DE	0119	2462
	7/	10.4
19:	T2	14. <u>2</u> 12. 8
TPABEPC61	<i>T3</i>	20.8 20.4
PAI	<i>T4</i>	24.6 23.5
7	<i>T5</i>	28.4


CKA EHTA	BEC KI
T6	<u>36.8</u> 35.3
CXEMA 1	269
CXEMA 2	324
CXEMA 3	244
CICEMA 4	383
CXEMA 5	267
CXEMA 6	471
	EHTH TG CXEMA 1 CXEMA 2 CXEMA 3 CXEMA 4 CXEMA 5


<u>ПРИМЕЧАНИЯ</u> 1. РАСХОД СТАЛИ ПРИВЕДЕН С УЧЕТОМ ВЕСА ЗАКЛАДНЫХ ДЕТАЛЕЙ. 2. ДЛЯ МЕТАЛЛИЧЕСКИХ ТРАВЕРС ДАН ВЕС 1 ПОГОННОГО МЕТРА.

TOKAPATENI PACKODA MATEPUANDO HA ODHY MENESO-BETOHHYO KONOHHY II HA ODHY METANNIYECKYHO Y PRENIY, HA KONOHHIK, TOPABEPCY, CBABO.

3.015-3 BUNYCK NHCT I 4

Тил Эстакады	HAMMEHOBA-	l <i>ot bepxh</i>			01101036	EHME K	DAOHH I	MAPKH		PROME HOTOY		
HATPYSKA HA MOTOHHWA	OMTHOUGH	APYCA 3CTA- KADU 10	L=66.0M H	1PHb/M 510K L=63.0 m	TEMMEPATS L=84.0m H	IPHOH BAOK L=81.0 m.	TEMPE L=102. 0		5.10K 9.0 m.	OTIOPE 8 MECHAL MORE RELIVERY OTION AND TRUBONOC		
METP T/M		NAÄHUPÕBOY- HON OTMETKU SEMAN M.	POTESKESMOOT! RAH RAONO	Концевая Опора	POMESKY- TOYHA R ONOPA	Концевня Опоря	TOYHAA TOYHAA ONOPA	JEOME WASTONE COOLING TO MA OT CEPESUTHO TO CEPESUTHO	KOHUEBARA OROPA	T <i>BODON TUBITA</i>		
	1 4 g)		BETPOBAS HATOY3 KA 35 KI/M2									
	36 8	5.4	K1-1	K1-2	K1-1	K1-2	K1-1	K1-2.	K1-2	K1-3		
	ОЧНЫЕ Н ЕМПЕРАТ ЛОКИ НЯГРУЭКА	6.0	K2-1	K2-1	K2-1	K2-1	K2-1	K2-1	K2-1	K3-1		
	MACK MOCK HAID	6.6	K4-1	K4-1	K4-1	K4-1	K4-1	K4-1	K4-1	K5-1		
	SACY FARA	7.2	K6-1	K6-1	K6-1	K6-1	K6-1	K6-1	K6-1	K7-2		
Tun <u>t</u> xuX	Medicines (Indicated)	7.8	K9-1	K9-1	K9-1	K9-1	K9-1	K9-1	K9-1	K9-2		
9=1.0; 1.57m.	<u> </u>	8.4	K11-1	K11-1	K11-1	K11-1	K11-1	K4-1	KH-1	K11-2		
	04- 01E 11 (9)			BETP	08 A A	HATPS	13KA	55 KV/M2				
	3000	5.4	K1-3	K1-3	K1-3	K1-3	K1-3	K1-3	K1-3	K1-4		
	12 2 B	6.0	K3-1	K3-1	K3-1	K3-1	K3-1	K3-1	K3-1	K3-2		
	OYHD TEMI TOK HRP	6.6	K5-1	K5-1	K5-1	K5-1	K5-1	K5-1	K5-1	K5-3		
	HRS I	7.2	K8-1	K8-1	K8-1	K8-1	K8-1	K8-1	K8-1	KB-2		
	ПРОДОЛЬНЯЯ НЯГРУ БИОХА 1940-1948 НЕГОЗА 1940-1941 НЕГОЗА	7.8	K10-5	K10-1	K10-5	K10-1	K 10-5	K10-1	K10-1	K.10-5		
	2 8	8.4	K12-6	K/2-1	K12-6	K12-1	K/2-6	K12-1	K12-1	K12-6		

Примечания

- I. MOHTROCHULE CXEMUI OCTAKAQ THOOS IX N X CM. HA NUCTAX 5.6.
- 2. KASKAAA OROPA COCTOUT HB DBYX KONOHH, MARKH KOTOPHX YKABAHU 8 TABANYAX.

TK 1974

ТАБЛИЦА ДЛЯ ПОДБОРА КОЛОНН ПРОМЕЖЕТОЧНЫХ И КОНЦЕВЫХ БЛОКОВ ДВУХВЯРУСНЫХ ЭСТАКАД ТИПОВ ТИХ

<u>БЛОКОВ ДВУХЪЯРУСНЫХ ЭСТАКАД ТИПОВ XI И XII.</u>

TIAN ЭСТАКАДЫ Н НАГРУЗІКА НА ПОГОННЫЙ МЕТР			TEMNEPA 67 L=68.0M	TYPHBIÁ 10K U L=63.0m	TEMNEPI BA L=84.0m	ATYPHDIÚ OK U L*81.0m	TEMME L=102	PATYPHUL OM u L	Ú BNOK	TEMA	MAPKA PATYPHU OM UL	H FAOK	7e.	MITEPATY 138. O M	IPH 614 61 u L = 135	10K.	IPOMENSYTOR HUE W KOHYL BUE OROPA MECTRY NOTIC PEYHUY OTBO (108 TPUEOTP
T/M	<i>3.10.10</i> 7	OTMETICH BENNN	NPOMESIES- TOYHASI ONOPA	Кънцевяя опора	RAHLYOT RAHLYOT PAONO	Кону <u>ев</u> дя Опора	TIPOMEDICS TOUHAS OTOPA		KOHYEBAA ONOPA	TROMEDICS TOVINA OTOPA		KOHYEBRA ONOPA		TOTAL BOOK MALL		KOHYEBAR OTOPA	DOS TRUCOR BODOS INF TEMPLEATUR HUX ENOKO L=63.m+ +L=/38.m
		BETPOBRA HATPY3KA 35 KT/M2															7 4 -130 M
	БЛОК	5.4	K1-2	K1-5	K/-2	K1-5	K1-2	K1-2	K1-5	K1-2	K1-5	K1-3	K1-2	K/-2	K1-5	V 1-2	W 12-1
		6.0	K2-2	K2-3	K2-2	K2-3	K2-2	K2-2	K2-3	K2-2	K2-3	K2-3	K2-2	K2-2	K2-3	K1-3 K2-3	K13-1
	29)	6.6	K4-2	K4-3	K4-2	K4-3	K4-2	K4-2	K4-3	K4-2	K4-3	K4-3	K4-2	K4-2	K4-3	K4-3	K3-3 K5-3
	ТЕМПЕРАТУРНИ НЯГРУЗКА 29	7.2.	K7-2	K7-1	K7-2	K7-1	K7-2	K1-2	K7-1	K7-2	K7-2	K7-1	K7-2	K7-2	K7-1	K7-1	KB-4
<i>XI,XII</i>	NOEL	7.8	K10-2	K10-5	K10-2	K10-5	K10-2	K10-5	K10-5	K10-2	K10-5	K10-5	K10-2	K10-2	K10-5	K/0-5	K.5-2
9=2.07/M	_	8.4	KR-3	K12-6	K12-3	K12-6	K12-2		K12-6	K12-2	K12-4			K/2-2	K12-6	K12-6	K16-1
9=3.07M	ЧНЫЙ БНЯЯ			,				BET	POBAS	HA	rpy3KA	55 K	7/M2				<u> </u>
,	точны И БНЯЯ	5,4	K13-4	K/3-2	K/3-4	K13-2	KB-4	K13-2	K/3-2	K/3-4	K/3-2	K/3-3	K13-4	13-2	K13-2	K13-3	K13-6
	Проме же у то (продоль	6.0	K 3-1	K3-2	K3-1	K3-2	K3-1-	£3-2	K3-2	R3-1	K3-2	K32	 €3÷/	K3-1	K3-2	K3-2	K3-6
,	ME:	6.6	K5-1	K5-3	K5-1	K5-3	K5-1	K5-3	K5-3	£5-7	£5-3	153	K5-1	K5-/	K5-3	K5-3	R5-4
	00[]	7.2	K8-3	K8-3	K8-3	K8-3	K8-1	K8-3	K8-3	K8-1	K8-3	K8-3	K8-1	K8-3	K8-3	K8-3	K8-4
		7.8	K10-5	K10-5	K10-5	K10-5	K10-5	K10-5	K10-5	K10-5	K10-5	K10-5	K10-5	KN-5	KM-5	KN-5	K15-2
		8.4	K12-6	K12-6	K12-6	K12-6	K12-6	K12-6	K12-6	K12-6	K/2-6	K12-6	K12-6	K12-6	K/2-6	K12-6	10.16-1

<u>Примечения</u>

1. МОНТЯЗЕНЫЕ СХЕМЫ ЭСТЯКАЯ ТИПОВ XTИ XTT СМ. НА ЛИСТЯХ 5,6 2. КАЗКДАЯ ОПОРА СОСТОИТ ИЗ ДВУХ КОЛОНН, МЯРКИ КОТО-РЫХ УКАЗАНЫ В ТЯБЛИЦЕ.

TK

ТАБЛИЦА ДЛЯ ПОДБОРА КОЛОНН ПРОМЕЖЕЧТОЧНЫХ ТЕМПЕРАТУРНЫХ БЛОКОВ ДВУКВЯРУСНЫХ ЭСТАКАД ТИПОВ XI И XII

3.015-3 BUNYCK / //MC7

ТАБЛИЦА ДЛЯ ПОДБОРА КОЛОНН КОНЦЕВЫХ ТЕМПЕ-

PATYPHUX BAOKOB ABYXBAPYCHUX ЭСТАКАД ТИПОВ XI XII

TWN ЭСТАКАДЫ И НАГРУЗКА	HAUMEHO- BAHUE	HHSHEHEFO					положе	EHHE I	Колонн	H MA	PKH						KOHUEBWE OTOPW B
HA NOTOH-	TEMNEPA- TYPHORO BAOKA	BOYHON	L=65.0M	49.7494.614 1016 11 L =63.0m	L=84.0m A	rL=81.0m	L=102.	OMUL		L=120.0	ATYPHDIÚ Dm u L°	117.OM	l L	NEPATY. = 138.0 M	W L=135	NOK. OM	NOMUEBBUE OTOPN B MECTAX TOTE PEUMBX OTE 100 TEMORE TEMOREPHISH HUX 5AOKO L=63.0m÷ ÷L=138.0m
'/**		OTMETKH BEMAU	MACMESICY TOYHBA ONOPA	Konyebag Onopa	TOVHÁŘ TOVHÁŘ OTOPA	Kohyebra Otopa	TOUHAR TOUHAR OTOPR	HA PARESAN LINU BAOKA	Kohyebra - Onopa	TPOMESKY TOYHASI ONOPR	ARCHAIN SAOKA	Концевая Опора	TIPOMENIA TOYHAYI ONOPA		ALTERNATION OF THE PROPERTY OF	Концевая Опора	HUX BAOKO 4=63.9m + + L=138.0m
		DETPOBRY HATPYBKA 35KJM2															
	, L	54	K/3-4	K13-4	K/3-4	K13-4	K1-5	K1-3	K1-6	K1-5	K1-3	K1-6	K1-5	K/-3	K1-6	K1-6	K/3-7
	510K).	6.0	K3-1	K3-2	K3-1	K3-2	K3-4	K3-/	K3-2	K3-4	K3-/	K3-2	K3-4	K3-1	K3-1	K3-2	K3-5
הע עם	4.7	66	K5-1	K5-3	K5-1	K5-3	K5-2	K5-1	K5-3	K5-2	K5-1	K5-3	K5-2	K5-/	K5-1	K5-3	K5-3
<u>XI, XII</u> 9=2.07m	PHD	7.2	K8-1	K8-3	KB-1	K8-3	K8-1	K8-1	K8-3	K8-1	K8-1	K8-3	K8-7	K8-/	K8-1	K8-3	K8-3
Q=3.07/m	.ТЕМПЕРЯТУРНЫЙ ЯЯ НЯГРУЗКА Ч	7.8	K10-2	K10-1	K10-2	K10-1	K10-2	K10-2	K10-1	K10-2	K10-2	K10-1	K10-2	K10-2	K10-2	K10-1	K15-1
/	INE P	8.4	K12-3	K12-4	K12-3	K12-4	K/2-3	K12-3	K12-4	K12-3	K/2-3	K12-4	K12-3	K12-3	K12-3	K12-4	K16-7
	.TEA 19		т —			<u> 8</u>	TPOB	A9	HATPYS	KA 5	5 KF/M2						
	7	5.4	K13-4	K13-5	K13-4	K/3-5	K13-4	KB-5	KB-5	KB-4	K13-5	K13-5	K/3-4	K13-5	K13-5	K13-5	K/3-7
	IEBC POGO	6.0	K17-1	K17-1	K17-1	K17-1	K17-2	K17-1	K17-1	K17-2	K17-1	K17-1	K17-2	K17-1	K17-1	K17-1	K17-3
	Концевой (прадоль	6.6	K18-1	K18-1	K18-1	K18-1	K18-2	K18-1	KB-1	K18-2	K18-1	K18-1	K18-2	K18-1	K18-1	K18-1	K18-3
	,	7.2	K14-2	K14-3	K14-2	KN-3	K14-1	K14-1	KH-3	K14-1	KH-1	KM-3	K14-1	KK-1	K14-1	K.14-3	K14-3
		7,8	K15-3	K15-3	K15-4	K15-3	K15-4	K15-4	K15-3	K154	K15-4	K15-3	K15-4	K15-4	K15-4	K.15-3	K15-5
		8.4	K16-2	K16-2	K16-3	KK-2	K16-3	KK-3	K16-2	K16-3	K16-3	K16-2	K16-3	K16-3	K16-3	K16-2	K16-7

<u> Примечания</u>

1. МОНТЯЗІЄНЫЕ СХЕМЫ ЭСТЯКАД ТИПОВ \overline{M} СМ. НА ЛИСТАХ 5,6 2. КАЗКДЯЯ ОПОРА СОСТОИТ ИЗ ДВУХ КОЛОНИ, МЯРКИ КОТО - РЫХ УКАЗАНЫ В ТЯБЛИЦЕ.

i	TK	Ι.
	1974	'

ТАБЛИЦЯ ДЛЯ ПОДБОРЯ КОЛОНН КОНЦЕВЫХ ТЕМПЕРАТУРНЫХ БЛОКОВ ДВУХВЯРУСНЫХ ЭСТЯКАД ТИПОВ <u>ХІ</u>И <u>ХІ</u>Г.

TABNULA ДЛЯ ПОДБОРЯ КОЛОНН POME HEY-

TOYHUIX TEMNEPATYPHUX BAOKOB ABYXBAPYCHIX SCTAKAL THINA XIII

Тип Эстакады и нагрузка на погон- ный метр Т/м	HAUMEHO	PACCTORNUE OT BEPXA HHYKHEFO					MECT	гополож	EHUE	Колон	H U M	<i>АРКИ</i>					PROPERTION OF BOTH THE PROPERTY OF THE PRO
	TEMNEPA-	NAHHPOBOY	.L=65.0m u L=63.0m		TEMNERATYPHNÍ GAOK L=84.0m u L=81.0m.		TEMNEH L=102.0	ТЕМПЕРАТУРНЫЙ БЛОК. L=102.0 м и L=99.0 м		TEMNE 4=120.0	ТЕМПЕРАТУРНЫЙ БЛОК =120.0m и L=117.0 м			ТЕМПЕРЯТУРНЫЙ БЛОК. L=138.0м и L=135.0м			
		нои отмет Ки Земли	TOMENCY TOMHASI OTOPA	Концевня Опора	POMEHOJ- TOYHASI ONOPA	Концевая Опора	NPOMESKY TOVHAR ONOPA	POMERUTOU- HAD OTTOPA HAD OTTOPA HAM STONES EDEGINOS	Концевня Опора	POMEDES TOUHAA OTOPA	UIPOME 368- TOYHAA OTOPA YHA AAOSOHH: 36.0M OT CEPE	KOHYEBRA ONOPA	PROMEDIO REHIVOT AGONO	-/FOME ACU- TOVINE OCCUPA WA PACTORIA 27.0m orces	MOME XETOME OTOMAT HE PAC- CTOMATH 45 OM OT CEPEDIAND ENORT	KOHIZEBAA ONOPA	PATŸPH BI BNOKOB L = 63 0 ÷L =/38.
	بد	BETPOBAS HAIPY3KA 35NT/M2															
	ТЕМПЕРАТУРНЫЙ БЛОК НЯГРУЗКА 29/)	5.4	K1-3	K1-7	K1-3	K1-7	K1-3	K1-6	K1-7	K1-3	K1-6	K1-7	K1-3	K1-6	K1-7	K1-7	K/3-
		6.0	K3-5	K3-5	K3-5	K3-5	K3-4	K3-5	K3-5	K3-4	K3-5	K3-5	K3-4	K3-1	K3-5	K3-5	K/7-
		6.6	K5-3	K5-3	K5-3	K5-3	K5-2	K5-3	K5-3	K5-2	K5-3	K5-3	K5-2	K5-1	K5-3	K5-3	K/8-
	Емператур НАГРУЗКА	7.2	K7-1	K7-1	K7-1	K7-1	K7-2	K7-1	K4-1	K7-2	K7-1	K7-1	K7-2	K7-1	K7-1	K7-1	K14-4
<u>XIII</u> Q=5.07/m	EMO	7.8	K10-3	K10-3	K10-3	K10-3	KN-3	K10-3	K10-3	K10-2	K10-3	K10-3	K10-2	K10-2	K10-3	K.10-3	K15-
Y-3.07M		8.4	K12-6	K12-6	K12-6	K/2-6	K12-6	K/2-6	K12-6	K/2-3	K12-6	K12-6	K12-3	K/2-3	K12-6	K12-6	K16-
	4Hb	BETPOBAS HAPPY3KA 55 KT/M2															
	е жуточный продольняя	5.4	K/3-4	K/3-8	K13-4	K13-8	K/3-4	K/3-5	K13-8	K13-4	K13-5	K13-8	K13-4	K13-5	K13-5	K13-8	K/3-
	Проме жуточный (лээдольняя	6.0	K3-7	K3-8	K3-7	K3-8	K3-2	K3-7	K3-8	K3-2	K3-7	K3-8	K3-2	K3-7	K3-7	K3-8	K17-
	Ø.	6.6	K5-5	K5-6	K5-5	K5-6	K5-3	K5-5	K5-6	K5-3	K5-5	K5-6	K5-3	K5-5	K5-5	K5-6	K18-
		7.2	K8-5	K8-5	K8-5	K8-5	K8-5	K8-5	K8-5	K8-5	K8-5	K8-3	K8-5	K8-5	K8-5	K8-3	K8-
		7.8	KN-3	K10-4	K.10-3	K10-4	K10-3	K10-3	K10-4	K10-3	K10-5	K10-4		K10-3	K10-5	K10-4	K/5-
		8.4	K12-6	K12-7	K12-6	K12-7	K/2-6	K12-6	K12-7	K/2-6	K12-5	K12-7	K12-6	K12-6	K12-5	K12-7	K/6-

N<u>PUMEYAHUЯ</u>

LINE (FUNIORII)

^{2.} Каясдая опора состоит из двух колони, марки кото-POX YKABAHO B TAGAHUE.

^{1.} MOHTANEHUE CXEMU SCTAKAO THIR XIII CM. HA AUCTAX 5,6

ТАБЛИЦЯ ДЛЯ ПОДБОРА КОЛОНН КОНЦЕВЫХ

ТЕМПЕРАТУРНЫХ БЛОКОВ ДВУХВЯРУСНЫХ ЭСТАКАД ТИПА 📶 .

Тип Эстакады		PACCTORHUE OT BEPXA HASHANETO				MECTON	0103KE	HHE K	OAOHH ,	MAPK	'H						Концевые
HAFPYSKA HA NOTOH- HUN METP	HOBAHNE TEMPEPA- TYPHOTO	HUSETETO SPYCH SCH KARL DO NAHUNGO- BOUHON OTMETKN	L=65.0m	94:64 540K U L=63.0m	L=84.0M	1 L=31.0m	L =/02.	ON H L=	5лок 99.0м		PATYPHOIP Om U L		TEM L=136	NEPATYPH OM U L	1614 BAOK 5=135.0 M		CHOPU B MEC THX NOTEPEY! HUX OTBOROS
T/M	Блакя	ЗЕИЛИ	TIPOMERIS TOYNASI OTOPA	Kahyebra Onopa	(190WE3DY TOUHASI ONOPA	Концевіт. Опсря	NYCARENESI TOYHAR ONOPA	NOT OF STATE	Kohyeera OTOPA	TPOMESON TOHHAS ONOPA		Конуевая Опора	NPOMESSY TOYHASI ONOPA		IDMERSTONERS OTOUR (HA BAC ORGANIA VS.OM OT GEOEGMHU OTOURS	KOHUEBAA ONOPA	TPYBOTPOBO- AOB ANT TEM- TEORTYPHIAX 5AOKOB L=63.Qu=L=125
			,		-	·	BETP		HATP	Y3KA.	35 KS/M2	?		BACKA)	CAOKA)		V =63.0m 1 138
	40%	54	K13-5	K/3-8	K/3-5	K13-8	K13-5	K/3-5	K13-8	K13-5	K13-5	K/3-8	K13-5	K13-5	K13-5	K/3-8	1.03-2
	400	6.0	K17-4	K17-4	K17-5	K17-4	K17-5	K17-4	K17-4	K17-5	K17-4	K17-4	K17-5	K17-4	K17-4	K17-4	K17-6
	S HOI	6.6	K18-5	KB-5	K18-6	K18-5	K.18-6	K18-5	K18-5	K18-6	K/8-5	K18-5	KB-6	K18-5	K18-5	K18-5	K18-7
	рятурнь груз кя	7.2	K14-5	K.14:5	K14-6	K14-5	KH-3	KM-6	K14-4	IC14-2	K14-6	K14-4	K14-2	KN-3	K.44-6	K14-4	K23-1
XIII	HA	7.8	K15-9	K15-9	K15-9	K15-9	K15-9	K15-9	K15-9	K15-7	K15-7	K15-9	K 15-7	K15-7	K15-7	K15-9	K15-8
9=5.0т/м.	7EA 19	8.4	K16-7	K16-7	K16-7	K16-7	K16-7	K16-7	K16-7	K16-5	K/6-5	K.16-7	K 16-5	K16.5	K16-5	K.16-7	K/6-6
	04 16#		BETPOBAR HAPPYBKA 55 KI/M2														,
	4E8 700/	5.4	K19-1	K19-2	K19-1	K19-2	K19-1	K19-1	K19-2	K19-1	K19-1	K19-2	K19-1	K19-1	K 19-1	K19-2	K20-1
	Концевой Те (продольняя	6.0	K17-8	K.17-8	K17-9	K17-8	K17-5	K/7-9	K17-8	KM-5	K17-9	K17-8	K/17-5	K17-9	K17-9	K17-8	K21-1
		6.6	K18-8	K18-8	K18-9	K18-8	K18-6	K18-9	K18-8	K 18-6	KB-9	K18-8	K18-6	K/8-9	K18-9	K/8-8	K22-1
	-	7.2	KN-6	KH-5	K14-3	K14-4	K.M-3	K14-6	K14-4	K14-3	KK-6	K14-4	K14-3	K14-3	K.14-6	K14-4	K23-1
		7.8	K15-9	K15-9	K15-9	K15-9	K15-9	K 15-9	K15-9	K15-10	K15-9	KJ5-9	K15-10	K15-10	K15-9	K15-9	K15-11
		8.4	K16-7	K16-7	K16-7	K16-7	R16-7	K16-7	K16-7	K16-7	K16-7	K16-7	K16-7	K/6-7	K16-7	K.15-7	K.16-8

PHME4AHUA

1. MOHTANCHUE CXEMU ICTAKAD THAA METAX 5,6 2. KANGRAA OAOPA COCTOUT HIS DEUX KONOHH, MAPKH KOTOPUX YKAIRHUB B TAENHUE.

/IK

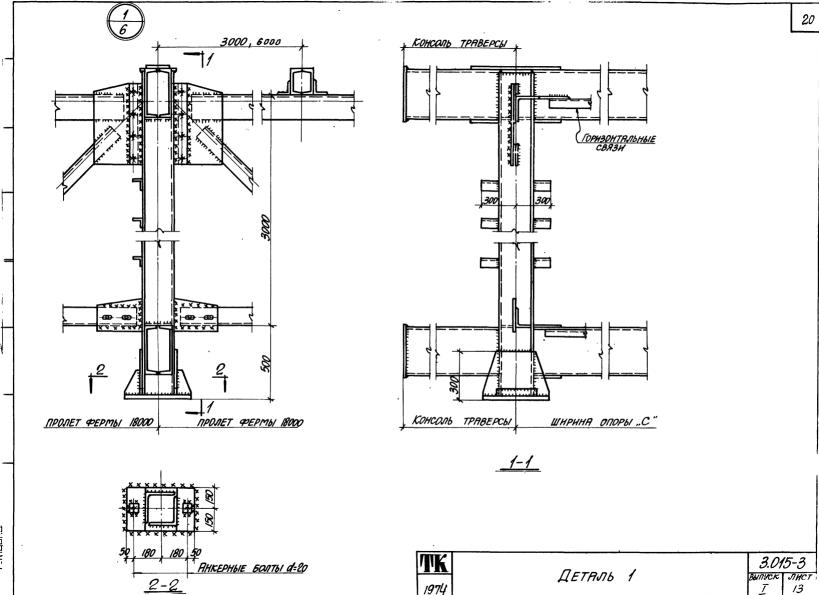
ТАБЛИЦА ДЛЯ ПОДБОРА КОЛОНИ КОНЦЕВЫХ ТЕМПЕРАТУРНЫХ БЛОКОВ ДВУХЗЯРУСНЫХ ЭСТАКАД ТИПА <u>ХІІІ</u>

3.0/5-3

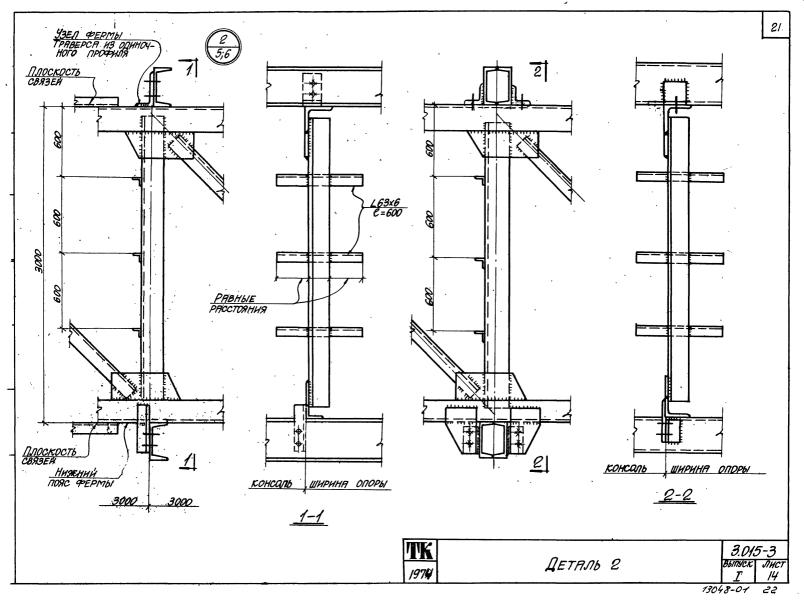
ТАБЛИЦЯ ДЛЯ ПОДБОРА МЕТЯЛЛИЧЕСКИХ ТРАВЕРС, ФЕРМ, НАДКОЛОННИКОВ, CBR3EH DBYXTAR PYCHUX OCTAKAD THOOB TX + XIII

Тип Эстякады	HOPMATHBHAA CYMMAPHAA HAFPYSKA HA NOTOHHIIN	ДЛИНА TPABEPC	ШАГ	MAPICA T	PABEPCH	N COCE (DPU30HTANISH	Mbi CBASEH		Консольные	НАДКОЛОН-	
	METP ICTAKADU T/M	M	TPABEPC	ВЕРЭСНИЙ ЯРУС	Нижний ярус	ВЕРОСНИЙ ЯРУС	Н н ж н н н ЯРУС	PEPMЫ	PEPMU	НИКИ	
	1.0		3.000	T/	TI	. /				001	
<u> </u>	1.0	4.800	6.000	73	73	2	2	491	_	-001	
_	1.5	,	3.000	T2	TI	/	1	Φl		002	
	1		6.000	73	73	2	2	72	K/	UIIZ	
	1.0		3.000	72	TL	3	3	ΦI	"	003	
<u>x</u>	"		6.000	Т3.	Т3	4	4	Τ/	4	0115	
	1.5		3.000	73	72	3	3	#2		074	
	<u> </u>	6.000	6.000	T4	T4.	4	4 .	7 2			
	2.0		3.000	73	. 73	3	3	<i>\$</i> 93	K2	0015	
<u> </u>	2.0		6.000	74	74	4	4	,,,	ļ	ļ	
_	3.0		3.000	73	73	3	3	<i>\$</i> 3	K2	006	
			6,000	74	74	4	4	/ 5	1,72		
	2.0		3.000	· 74	74	5	5	<i>\$</i> 3	KZ	007	
· <u>X</u> //			6.000	75	75	6	6	75	N2	0117	
	3.0	7.800	3,000	T4	<i>T4</i>	5	5	<i>\$</i> 3	KE	008	
951			6.000	75	75	6	6				
<u> </u>	5.0	-	3.000	T4	75	5	5	904	K3	019	
			6.000	76	76	6 .	6	1	""	413	

ПРИМЕЧЯНИЕ


ПРИ РАССТОЯНИИ 12.0 м. МЕЖДУ КОНЦЕВЫМИ ОПОРАМИ ТЕМПЕРЯТУРНЫХ БЛОКОВ МЯРКИ ТРАВЕРС ДЛЯ КОНСОЛЬНЫХ ФЕРМ ПРИНЯТЬ ПО МНРКЯМ ТРЯВЕРС С ШНГОМ 6.0 м.

TABNULA DAR TODBOFA METANAHYEKKA


TPABEPC, PEPM, HADKONOHHUKOB, CB93EN BOWLS BACT ДВУХЪЯРУСНЫХ ЭСТЯКАД ТИПОВ ТК÷ XIII.

19348-01

3015-3

.

TAGANUЫ HARPYSOK HA ФУНДАМЕНТЫ

Марка Колонны			VE HA PEBE 9		
CONONNO	Nr	Mx TM	My TM	HX	HY T
K1-1	22.9	35	9.9	0.75	1.9
K1-2	35.9	6.1	9.9	/.3	1.9
K1-3	24.5	9.4	15.6	2.0	3.0
K1-4	25.7	9.9	19.5	2.1	3.7
K1-5	35.9	9.4	9.9	2.0	1.9
K1-6	56.4	9.4	9.9	2.0	1.9
K1-7	56.4	13.1	9.9	2.8	1.9
K2-1	23.8	6.4	11.0	1.2	1.9
K2-2	36,3	6.4	11.0	1.2	1.9
K2-3	<i>3</i> 6.3	8.0	11.0	1.5	1.9
K3-1	37.4	4.3	17.4	0.8	3.0
.K3-2	58.3	4.3	17.4	0.8	3.0
K3-3	38.3	101	19.7	1.9	34
K3-4	57.4	4.3	11.0	0.8	1.9
K3-5	41.0	12.2	19.8	2.3	3.4
K3-6	39.6	10.1	26.8	1.9	46
K3-7	58.4	9.0	17.4	1.7	3.0
K3-8	58.4	10.6	17.4	2.0	30
K4-1	23.4	7./	12.1	1.2	19

Мяркя		ARTHBHE HEM O		РУЗКН ФУНДАМ	
Колонны	Nr	MX TM	MY	Hx	Hy T
K4-2	36,5	6.9	12.1	12	1.9
K4-3	<i>36.5</i>	8.9	12.1	1.5	1.9
K5-1	38.0	4.7	192	0.8	3.0
K5-2	57.4	4.7	12.2	<i>QB</i>	1.9
K5-3	38,6	13.6	2/,8	2.3	3.4
K5-4	36.4	11.0	29.4	1.9	4.6
K5-5	58.3	10.0	19.2	1.7	3.0
K5-6	58.3	11.0	19.2	2.0	3.0
K6-1	23.7	4.9	13.3	0.75	1.9
K7-1	58.0	11.1	13.3	1.7	19
K7-2	58.0	5.2	13.3	0.8	1.9
K8-1	39.0	3.3	21.0	0.5	3.0
K8-2	27.8	11.7	25.8	1.8	3.7
K8-3	59.5	17.6	24.0	2.7	3.0
K8-4	40.8	20.6	32.4	3.2	4.6
K8-5	59.5	15.6	21.0	2.4	30
K8-6	61.3	19.4	38.4	3.0	5.5
K8-7.	38.1	4.9	/33	0.75	1.9
K9-1	24.6	5.3	14.4	0.75	1.9

MAPKA		IRTHBHЫ IEM 08						
Колонны	Νr.	Mx TM	M.U TM	Hx T	HY T			
K9-2	25,3	53	20.6	0.75	2.7			
K10-1	27.5	9.9	22,8	1.4	30			
K10-2	<i>38.8</i>	9.9	14.4.	1.4	19			
K10-3	39.9	12.1	22,8	1.7	30			
K10-4	57.4	13.8	22.8	1.95	3.0			
K/0-5	57.4	7.1	22.8	1.0	30			
K11-1	24.G	58	15.6	0.75	19			
K11-2	26.Q	5.8	22.2	0.75	2.7			
K12-1	27.5	10.7	24.6	1.4	30			
K12-2.	38.8	6.2	15.6	0.8	19			
K12-3	38.8	12.4	156	16	1.9			
K12-4	38.8	15.4	156	20	19			
K12-5	60.4	7.7	244	1.0	3.0			
K12-6	60.4	10.0	24.4	1,3	30			
K/2-7	60.4	150	24.4	1.95	30			
	٠,٠	1. 1.			1			
K13-1	37.9	7.4	17.7	16	34			

PHMEYAHU9

1. В ТЯБЛИЦЕ ПРИВЕДЕНЫ НОРМЯТИВНЫЕ НЯГРУЗКИ НЯ УРОВНЕ ВЕРХНЕГО ОБРЕ-ЗЯ ФУНДЯМЕНТЯ ПОД ОДНУ КОЛОННУ ОПОРЫ

2. Нагрявки с индексом, Х" действуют Вдоль оси Эстакады, с индексом, у" перпендикупарно оси Эстакады.

Схема натрязок на фунцамент

ТАБЛИЦЫ НАГРУЗОК НА ФУНДАМЕНТЫ

3.0/5-3 Abityck | Auct

ТАБЛИЦЫ НАГРУЗОК НА ФУНДАМЕНТЫ

МАРКА Колонны	HOPE BEP	HEM O	BIE HAI BPE3E 9	РУНДЯМ	HA EHTA	Марка.	BEPAHEM OBPESE PSHUMENIA						HOPM BEPXI	ATHBHЫ YEM OF	E HAT PEBE P	РУЗКИ УНДАМЕЛ	HA YTA
	NT MX MY HX HY	КОЛОННЫ	NT	Mx TM	MY	Hx T	Hy	КОЛОННЫ	NT	Mx TM	MY	. Hx	Hy				
K13-2	<i>3</i> 7.2	//.3	15.6	2.4	3.0	K15-7	60.0	15.6	/4.5	2.2	1.9	K17-7	60.6	7.9	32.0	1.5	5.5
K/3-3	37.2	2.40	15.6	Q 5	3.0	K15-8	62.0	22.7	<i>33.5</i>	3.2	4.4	K17-8	58.7	17.5	17.4	3.3	3.0
K13-4	37.2	7.1	15.6	1.5	30	IC/5-9	61.0	22.0	22.8	3./	3.0	K17-9	58.7	10.6	17.4	2.0	30
K/3-5	37.2	16.4	15.6	35	30	K15-10	61.0	10.7	22.8	1.5	3.0	K18-1	38.6	12.4	19.1	21	30
K/3-6	59.0	17.8	22.9	3.8	4.4	K15-11	63.0	22.8	42.0	3.2	5.5	K/8-2	38.6	5.9	19.1	1.0	30
K/3-7	59.0	17.0	28.8	3.6	5.5	IC16-1	42.5	15.4	36.8	2.0	4.5	1018-3	40.5	14.2	29.4	2.4	4.6
K13-8	<i>58.0</i>	15,6	15.6	3.3	3.0	IC16-2	40.9.	11.6	24.6	1.5	30	K18-4	60.0	18.3	28./	3./	4.4
K14-1	39.4	9.7	23.8	1.5	3.4	K/6-3	40.9	7.7	24.6	1.0	3.0	K18-5	57.9	18.9	12.1	3.2	1.5
KH-2	39.4	9.7	21.0	/.5	30	K/6-4	630	9.3	45,0	1.2	5.5	K.18-6	57.9	11.8	12.1	2.0	1.5
K14-3	40.5	₽.5	32.2	1.3	4.6	K16-5	60.4	17.0	15.6	2.2	19	K18-7	60.0	20.0	28.1	3.4	4.4
K14-4	60.4	17.3	30.7	2.7	4.4	K16-6	62.0	24.8	36.0	3.2	4.4	K/8-8	59.0	19.5	19.2	3.3	3.0
K14-5	<i>5</i> 9.3	20.0	21.0	3./	3.0	K16-7	61.2	23.8	24.5	3./	3.0	K18-9	59.0	11.8	19.2	2.0	3.0
K14-6	59.3	16.2	21.0	2.5	3.0	K16-8	63.0	24.6	45.0	3.2	5.5	K19-1	58.2	11.6	15.6	2.5	3.0
K15-1	60.4	19.8	14.4	28	1.9	K17-1	38,6	11.1	17.4	2./	3.0	K19-2	58.2	18.7	15.6	4.0	3.0
K15-2	41.9	14.2	35,0	2.0	4.6	K17-2	38.6	5.3	12.4	1.0	30	K20-1	59.9	23.0	22.8	4.9	4.4
K15-3	40.9	10.6	22.8	1.5	3.0	K/7-3	40.1	12.7	26.8	2.4	46	K21-1	61.4	29.0	31.8	5.5	5.5
K15-4	40.9	7./	22.8	1.0	3.0	K17-4	57.9	17.0	11.1	3.2	19	K22-1	62.0	32.8	35./	5.5 5.5	5.5
K 15-5	42.2	11.4	35.0	1.6	4.6	K/7-5	56.2	10.6	11.1	20	19	K23-/	62.0	25.4	38.4	3.9	55
K15-6	62.7	8.5	41.8	1.2	5.5	K17-6	59.6	18.0	25.5	34	4.4	1000 /	-	4.4	30.9	3,3	1 33
OTMETKA	±Mx	N ±My		18	ΠΡΝ	MEYRHUS		====		<u> </u>	لــــــــــــــــــــــــــــــــــــــ	<u></u>	L				Ь

1.8 ТАБЛИЦЕ ПРИВЕДЕНЫ НОРМЯТИВ-НЫЕ НЯГРУЗКИ НА УРОВИЕ ВЕРХНЕГО ОБРЕЗЯ ФУНДЯМЕНТА ПОД ОДНУ КОЛОННУ ОПОРЫ.

2. Нагрузки с индексом "Х" зействуют вдоль оси эстакады, с индексом "У"

ПЕРПЕНДИКУЛЯРНО ОСИ ЭСТАКАДЫ. ВЕНТ

Таблицы нагрузок на Фундаменты

3.015-3 Bunyak 149

CXEMA: HALLYGOK HA PSHQAMEHT

OBDESA PUHDAMEN

ЦЕНТРАЛЬНЫЙ ИНСТИТУТ ТИПОВОГО ПРОЕКТИРОВАНИЯ госстроя СССР

Москва, А-445, Смольная ул., 22

Сдано в печать

1974 года

3akas No 1248 Tupam 6.000 aks.