4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАТОРЫ

ОПРЕДЕЛЕНИЕ ОСТАТОЧНЫХ КОЛИЧЕСТВ ПЕСТИЦИДОВ В ПИЩЕВЫХ ПРОДУКТАХ, СЕЛЬСКОХОЗЯЙСТВЕННОМ СЫРЬЕ И ОБЪЕКТАХ ОКРУЖАЮЩЕЙ СРЕДЫ

Сборник методических указаний

МУК 4.1.2162-4.1.2176-07

Издание официальное

ББК 51.21 О37

- О37 Определение остаточных количеств пестицидов в пищевых продуктах, сельскохозяйственном сырье и объектах окружающей среды: Сбортик методических указаний.—М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2009 221с.
 - 1. Сборник подготовлен Федеральным научным центром гигиены им. Ф. Ф. Эрисмана (академик РАМН, проф. В. Н. Ракитский, проф. Т. В. Юдина); при участии специалистов Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека. Разработчики методов указаны в каждом из них.
 - 2. Рекомендованы к утверждению Комиссией по государственному санитарно-эпидемическому нормированию при Федеральной службе по надзору в сфере защиты прав потребителей и благополучия человека.
 - 3. Утверждены Главным государственным санитарным врачом Российской Федерации, Первым заместителем Министра здравоохранения Российской Федерации, академиком РАМН Г. Г. Онищенко.
 - 4. Введены впервые.

ББК 51.21

Формат 60х88/16 Печ. л. 14

Тираж 100 экз.

Тиражировано отделом издательского обеспечения Федерального центра гигиены и эпидемиологии Роспотребнадзора 117105, Москва, Варшавское ш., 19а Отделение реализации, тел./факс 952-50-89

Содержание

1. Offpedenenne detatornak komureeta 2,4-24 B. Mache kykypysa metodom katinibikphon
газожидкостной хроматографии. МУК 4.1.2162-074
2. Определение остаточных количеств галоксифопа-р-метила и галоксифопа-р в воде,
галоксифопа-р в почве, зеленой массе растений, клубнях картофеля, корнеплодах
сахарной, кормовой и столовой свеклы, семенах и масле льна, рапса, сои,
подсолнечника методом газожидкостной хроматографии. МУК 4.1.2163-0717
3. Определение остаточных количеств дифеноконазола в картофеле, моркови и томатах
методом капиллярной газожидкостной хроматографии. МУК 4.1.2164-0742
4. Определение остаточных количеств зета-циперметрина в семенах рапса, масле
рапса (горчицы) методом капиллярной газожидкостной хроматографии.
МУК 4.1.2165-0756
5. Определение остаточных количеств ипродиона в огурцах и томатах методом
высокоэффективной жидкостной хроматографии. МУК 4.1.2166-0769
6. Определение остаточных количеств каптана и фолпета в воде, почве, каптана в
яблоках, фолпета в клубнях картофеля и винограде методом газожидкостной
хроматографии. МУК 4.1.2167-0783
7. Определение остаточных количеств клопиралида в капусте, семенах и масле
рапса методом капиллярной газожидкостной хроматографии. МУК 4.1.2168-0799
8. Определение остаточных количеств метамитрона в ботве и корнеплодах столовой
и кормовой свеклы методом газожидкостной хроматографии. МУК 4.1.2169-07113
9. Определение остаточных количеств прометрина в семенах кориандра методом
газожидкостной хроматографии. MУК 4.1.2170-07125
10. Определение остаточных количеств римсульфурона в клубнях картофеля
методом высокоэффективной жидкостной хроматографии. МУК 4.1.2171-07138
11. Определение остаточных количеств тау-флувалината в зерне и соломе зерновых
культур, в ягодах и соке винограда, зеленой массе пастбищных трав, семенах и масле
рапса, сои методом капиллярной газожидкостной хроматографии.
MYK 4.1.2172-07147
12. Определение остаточных количеств тиаметоксама в луке, ягодах и соке
винограда методом высокоэффективной жидкостной хроматографии.
MYK 4.1.2173-07163
13. Определение остаточных количеств фамоксадона в плодах томатов, ягодах
винограда, зеленой массе, семенах и масле подсолнечника методом
высокоэффективной жидкостной хроматографии. МУК 4.1.2174-07178
14. Определение остаточных количеств цимоксанила в томатах, винограде,
зеленой массе, семенах и масле подсолнечника методом газожидкостной
хроматографии. МУК 4.1.2175-07198
15. Измеренне концентраций 2,4 D этилгексилового эфира в атмосферном воздухе
населенных мест методом газожидкостной хроматографии. МУК 4.1.2176-07212

УТВЕРЖДАЮ

Главный государственный санитарный врач Российской Федерации, Руководитель Федеральной службы по надразульное защиты прав потрабительной айман ополучия человека

Г.Г. Онищенко

Дата введення с. 1 мая 2007

4.1. МЕТОЛЫ КОНТРОЛЯ.ХИМИЧЕСКИЕ ФАКТОРЫ

ОПРЕДЕЛЕНИЕ ОСТАТОЧНЫХ КОЛИЧЕСТВ ДИФЕНОКОНАЗОЛА В КАРТОФЕЛЕ, МОРКОВИ И ТОМАТАХ МЕТОДОМ КАПИЛЛЯРНОЙ ГАЗОЖИДКОСТНОЙ ХРОМАТОГРАФИИ

Методические указания МУК 4.1.244-07

Настоящие методические указания устанавливают метод капиллярной газожидкостной хроматографии для определения массовой концентрации дифеноконазола в клубиях картофеля, корнеплодах моркови и плодах томата в диапазоне 0,02-0,2 мг/кг.

Дифеноконазол – действующее вещество гербицила Скор, КЭ (250 г/л), фирма производитель Сингента Кроп Протекши АГ (Швейцария).

4-хлорфениловый эфир cis,trans-3-хлор-4-[4-метил-2-(1H-1,2,4-триазол-1-нлметил)-1,3-диоксолан-2-ил]фенила (ИЮПАК)

1-[2-[4-(4-хлорфенокси)-2-хлорфения]-4-метия-1,3-диоксолан-2-ияметия]-1H-1,2,4-триазоя (С.А.)

C₁₉H₁₇Cl₂N₃O₃

Мол. масса: 406,3

Кристаллическое вещество от белого до светло-бежевого цвета. Температура плавления: 78,6°C. Давление паров при 25°C: 3,3 х 10⁻⁵ мПа. Коэффициент

распределения н-октанол/вода: Kow log P = 4,20. Растворимость (г/дм³) при 25°C: этанол – 330, ацетон – 610, толуол – 490, н-гексан – < 3,4, н-октанол – 95, вода – 0,015.

Вещество устойчиво к гидролизу и фотолизу (при естественном солнечном свете DT_{50} =145 дней).

Дифеноконазол быстро сорбируется почвой и медленно разрушается.

Краткая токсикологическая характеристика

Острая пероральная токсичность (LD₅₀) для крыс – 1453, для мышей – >2000 мг/кг; острая дермальная токсичность (LD₅₀) для кроликов - >2010 мг/кг; острая ингаляционная токсичность (LC₅₀) для крыс - > 3300 мг/м³ воздуха. LC₅₀ для рыб 0,8-1,2 мг/дм³ (96 час.). Фунгицид нетоксичен для птиц, пчел и дождевых червей.

Гигиенические регламенты применения дифеноконазола: ОДК в почве -0.1 мг/кг; ПДК в воде водоемов -0.001 мг/дм³; МДУ в свекле сахарной, яблоках и грушах -0.1 мг/кг, в зерне хлебных злаков - не допускается в пределах чувствительности метода контроля. ВМДУ в картофеле, моркови и томатах -0.1 мг/кг.

Область применения препарата

Дифеноконазол — системный фунгицид и протравитель семян. Обладает длительным защитным и лечебным действием против широкого круга растительных патогенов из классов аскомицетов, базидиомицетов, дейтеромицетов, включая возбудителей альтернариоза, септориоза, церкоспороза, парши, антракноза, ржавчины, мучнистой росы, а также некоторых патогенов, обитающих на семенах пшеницы, сахарной свеклы, картофеля, семечковых плодовых и овощных культур.

Зарегистрирован в России под торговым названием Скор, КЭ (250 г/л) в качестве средства борьбы с возбудителями парши, мучнистой росы и церкоспороза на посадках яблони, группи и посевах сахарной свеклы с нормой расхода препарата 0,15-0,4 кг/га. В настоящее время препарат проходит регистрационные испытания в качестве фунгицида на посадках картофеля и томатов, посевах моркови.

1. Метрологические характеристики метода

При соблюдении всех регламентированных условий проведения анализа в точном соответствии с данной методикой погрешность (и ее составляющие) результатов измерений при доверительной вероятности Р≈0,95 не превышает значений, приведенных в таблице 1, для соответствующих диапазонов концентраций.

Анализируе- мый объект	Диапазон определя- емых кон- центраций мг/дм³, мг/кг	Показатель точности (граница относительной погрешности), ±8, % P=0,95	Стандартное отклонение повторяемо- сти ст, %	Предел повто- ряемости, г, %	Предел воспроизво- димости, R, %
Картофель	от 0,02 до 0,1 вкл.	50	3,5	9,8	15,2
	более 0,1 до 0,2	25	1,5	4,2	6,6
Морковь	от 0,02 до 0,1 вкл.	50	2,4	6,7	10,5
	более 0,1 до 0,2	25	1,7	4,8	7,5
Томаты	от 0,02 до 0,1 вкл.	50	3,4	9,5	14,5
	более 0,1 до 0,2	25	2,2	6,2	9,5

Полнота извлечения вещества, стандартное отклонение, доверительный интервал среднего результата для полного диапазона концентраций (n=20) приведены в таблице 2.

Таблица 2 Полнота извлечения вещества, стандартное отклонение, доверительный интервал среднего результата для n=20, P = 0,95

	Метрологические параметры, P = 0,95, n = 20				
	Предел об-	Диапазон	Среднее	Стандартное	Довери-
Анализируе- мый объект	наружения,	определяемых .	значение	отклонение,	тельный
	Mr/kr	концентраций	определения	S, %	интервал
	i i	MI/KI	%		среднего
					результата, ± %
Картофель	0,02	0,02-0,2	83,0	2,7	±2,6
Морковь	0,02	0,02-0,2	83,8	3,1	±2,9
Томаты	0,02	0,02-0,2	84,5	3,5	±3,3

2. Метод измерений

Методика основана на определении вещества с помощью капиллярной газожидкостной хроматографии (ГЖХ) с электронозахватным детектором (ЭЗД). Контроль дифенохоназола в матрицах осуществляется по содержанию вещества после экстракции его из растительного материала ацетоном, очистки экстракта перераспределением в системе несмешивающихся растворителей, а также на колопке с силикагелем и концентрирующем патроне Диапак-диол.

Количественное определение проводится методом абсолютной калибровки.

3. Средства измерений, вспомогательные устройства,

реактивы и материалы

3.1. Средства измерений

Газовый хроматограф «Кристалл 2000М» с ЭЗД	Номер Госреестра
(СКБ «Хроматэк», Россия)	№ 14516-95
Весы аналитические ВЛА-200	FOCT 24104
Весы лабораторные общего назначения с наибольщим	ΓΟCT 7328
пределом взвешивания до 500 г и пределом допустимой	
погрешности +/- 0,036 г	
Колбы мерные вместимостью 2-100-2, 2-1000-2	FOCT 1770
Меры массы	FOCT 7328
Пипетки градуированные 2-го класса точности	ΓΟCT 29227
вместимостью 1,0; 2,0; 5,0; 10 см ³	
Пробирки градуированные с пришлифованной пробкой	ΓΟCT 1770
вместимостью 5 см ³	
Цилиндры мерные 2-го класса точности вместимостью	FOCT 1770
25, 50, 100, 500 и 1000 см ³	

Допускается использование средств измерения с аналогичными или лучшими характеристиками.

3.2. Реактивы

Дифеноконазол, аналитический стандарт фирмы Сингента (Швейцария) с содержанием д.в. 99,5%

Ацетон, чда	FOCT 2603-79
Вода бидистиллированная или денонизованная	ΓΟCT 7602
н-Гексан, хч	TY 6-09-3375
Натрий сернокислый, безводный, хч	ГОСТ 4166

Натрий хлористый, хч	ΓΟCT 4233
Этиловый эфир уксусной кислоты, ч	ГОСТ 22300
Эфир диэтиловый медицинский	FOCT 6265

Допускается использование реактивов иных производителей с аналогичной или более высокой квалификацией.

3.3. Вспомогательные устройства, материалы

Азот газообразный (баллон), осч	FOCT 9293			
Ванна ультразвуковая, модель D-50, фирма Branson Instr. Co. (США)				
Воронка Бюхнера	ΓΟCT 0147			
Воронки делительные вместимостью 100 и 250 см ³	ΓΟCT 25336			
Воронки конусные диаметром 30-37 и 60 мм	FOCT 25336			
Гомогенизатор	MРТУ 42-1505			
Дефлегматор елочный	FOCT 9737			
Колба Бунзена	FOCT 5614			
Колбы плоскодонные вместимостью 250 см ³	FOCT 9737			
Колбы круглодонные на шлифе вместимостью 25 и 100 см ³	FOCT 9737			
Колонка кварцевая капиллярная HP-1 (типа SE-30), длиной	5 м,			
внутренним диаметром 0,53 мм, толщина пленки 0,88 мкм,				
фирма Хьюлетт-Паккард (США) или аналогичная				
Колонка хроматографическая стеклянная, длиной 25 см,	FOCT 9737			
внутренним диаметром 8-10 мм				
Насос водоструйный вакуумный	ΓΟCT 10696			
Патроны концентрирующие Диапак-диол (0,6 г) ТУ 4215-0	01-05451931-94			
(ЗАО "БиоХимМак СТ", Москва)				
Ротационный вакуумный испаритель ИР-1M или	ТУ 25-11-917			
ротационный вакуумный испаритель B-169 фирмы Buchi (Ш	вейцария)			
Силикагель для адсорбционной хроматографии				
(Вельм, Германия) I степени активности				
Стаканы химические вместимостью 100 и 500 см ³	FOCT 25336			
Стекловата				
Установка для перегонки растворителей				
Фильтры бумажные «красная лента», обеззоленные Т	У 6-09-2678-77			
или фильтры из хроматографической бумаги Ватман ЗММ				
Шприц для ввода образцов для газового хроматографа				

вместимостью 1 - 10 мм³ (Hamilton, США)

Допускается применение другого оборудования с аналогичными или лучшими характеристиками.

4. Требования безопасности

- 4.1. При выполнении измерений необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007, требования электробезопасности при работе с электроустановками по ГОСТ 12.1.019, а также требования, изложенные в технической документации на газовый хроматограф.
- 4.2. Помещение должно соответствовать требованиям пожаробезопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009. Содержание вредных веществ в воздухе не должно превышать норм, установленных ГН 2.2.5.1313-03 «Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны». Организация обучения работников безопасности труда по ГОСТ 12.0.004.

5. Требования к квалификации операторов

К выполнению измерений допускают специалистов, имеющих квалификацию не ниже лаборанта-исследователя с опытом работы на газовом хроматографе.

К проведению пробоподготовки допускают оператора с квалификацией «лаборант», имеющего опыт работы в химической лаборатории.

6. Условия измерений

При выполнении измерений соблюдают следующие условия:

- процессы приготовления растворов и подготовки проб к анализу проводят при температуре воздуха (20+5)⁰С и относительной влажности не более 80%.
- выполнение измерений на газовом хроматографе проводят в условиях, рекомендованных технической документацией к прибору.

7. Подготовка к выполнению измерений

Измерениям предшествуют следующие операции: очистка органических растворителей (при необходимости), приготовление растворов, кондиционирование хроматографической колонки, установление градуировочной характеристики, подготовка колонки с силикагелем и концентрирующих патронов Диапак-диол.

7.1. Очистка органических растворителей

7.1.1. Очистка н-гексана

Растворитель последовательно промывают порциями концентрированной серной кислоты до прекращения окращивания последней в желтый цвет, затем водой до нейтральной реакции промывных вод, перегоняют над поташом.

7.1.2. Очистка этилацетата

Этилацетат промывают последовательно 5%-ным водным раствором карбоната натрия, насыщенным раствором хлористого кальция, сущат над безводным карбонатом калия и перегоняют.

7.1.3, Очистка ацетона

Ацетон перегоняют над перманганатом калия и поташом (на 1 л ацетона 10 г $KMnO_4$ и 2 г K_2CO_3).

7.1.4. Очистка силикагеля

Силикагель I степени активности встряхивают с двойным объемом очищенного ацетона и затем фильтруют на воронке Бюхнера через бумажный фильтр. Силикагель на фильтре промывают 1,5 объемом ацетона и затем высушивают при температуре 130^{0} С в течение 3 часов.

7.2. Подготовка колонки с силикагелем и концентрирующего патрона Диапак-диол для очистки экстракта

Нижнюю часть стеклянной колонки длиной 25 см и внутренним диаметром 8-10 мм уплотняют тампоном из стекловаты, медленно выливают в колонку (при открытом кране) суспензию 3 г силикателя I степени активности в 15 см³ гексана. Дают растворителю стечь до верхнего края сорбента и помещают на него слой безводного сульфата натрия высотой 1 см. Колонку промывают 15 см³ смеси гексан-этилацетат (7:3, по объему) со скоростью 1-2 капли в сек., после чего она готова к работе.

Концентрирующий патрон Диапак-диол промывают последовательно с помощью медицинского шприца 10 см³ ацетона и 6 см³ смеси гексан-ацетон (8:2, по объему) со скоростью 5 см³/мин.

7.3. Проверка хроматографического поведения дифеноконазола на колонке с силикагелем

В круглодонную колбу вместимостью 10 см³ помещают 0,2 см³ градуировочного раствора № 1 дифеноконазола с концентрацией 2 мкг/см³ в смеси гексан-ацетон (8:2, по объему) (п. 7.5.2). Отдувают растворитель током теплого воздуха, остаток растворяют в 2 см³ смеси гексан-этилацетат (7:3, по объему), помещая в ультразвуковую ванну на 1 мин. Раствор наносят на колонку с силикагелем, подготовленную по п. 7.2. Промывают колонку 30 см³ смеси гексан-этилацетат (1:1, по объему) со скоростью 1-2 капли в сек., элюат отбрасывают. Затем колонку с силикагелем промывают 40 см³ смеси гексан-этилацетат (3:7, по объему). Фракционно (по 5 см³) отбирают элюат, упаривают, остатки растворяют в 1 см³ смеси гексан-ацетон (8:2, по объему), помещая в

ультразвуковую ванну на 1 мин., и анализируют на содержание дифеноконазола по п.9.5.

7.4. Подготовка и кондиционирование хроматографической колонки

Капиллярную кварцевую колонку HP-1 (типа SE-30) устанавливают в термостат хроматографа и, не подсоединяя к детектору, кондиционируют при температуре 280⁰С и скорости газа-носителя 2 см³/мин в течение 8-10 часов.

7.5. Приготовление градуировочных растворов

7.5.1. Исходный раствор дифеноконазола для градуировки (концентрация 100 мкг/см³). В мерную колбу вместимостью 100 см³ помещают 0,010 г дифеноконазола, растворяют в 40-50 см³ смеси гексан-ацетон (8:2, по объему), доводят объем раствора этой же смесью до метки, тщательно перемешивают.

Раствор хранят в морозильной камере при температуре не выше -18° С в течение 3-х месяцев.

7.5.2. Раствор дифеноконазола №1 для градуировки (концентрация 2 мкг/см³).

В мерную колбу вместимостью 100 см³ помещают 2 см³ исходного раствора дифеноконазола с концентрацией 100 мкг/см³ (п.7.6.1.), разбавляют смесью гексанацетон (8:2, по объему) до метки. Этот раствор используют для приготовления рабочих градуировочных растворов №№ 2-5,

Для приготовления проб плодов и корнеплодов с внесением при оценке полноты извлечения дифеноконазола из исследуемых образцов используют ацетоновый раствор дифеноконазола с концентрацией 1 мкг/см³.

Градуировочный раствор № 1 и ацетоновый раствор дифеноконазола хранят в морозильной камере при температуре не выше -18° С в течение месяца.

7.5.3. Рабочие растворы №№ 2-5 дифеноконазола для градуировки (концентрация 0,02-0,2 мкг/см 3).

В 4 мерные колбы вместимостью 100 см³ помещают 1.0, 2.0, 5.0 и 10.0 см³ градуировочного раствора № 1 дифеноконазола с концентрацией 2 мкг/см³ (п.7.5.2), доводят до метки смесью гексан-ацетон (8:2, по объему), тщательно перемешивают, получают рабочие растворы №№ 2-5 с концентрацией дифеноконазола 0.02, 0.04, 0.1 и 0.2 мкг/см³, соответственно.

Растворы готовят непосредственно перед использованием.

7.6. Установление градуировочной характеристики

Градуировочную характеристику, выражающую зависимость площади пика (мВ*с) от концентрации дифеноконазола в растворе (мкг/см³), устанавливают методом абсолютной калибровки по 4 растворам для градуировки.

В инжектор хроматографа вводят по 1 мм³ каждого градуировочного раствора (п.7.5.3) и анализируют в условиях хроматографирования по п. 9.5. Осуществляют не менее 3-х параллельных измерений.

8. Отбор и хранение проб

Отбор проб производится в соответствии с «Унифицированными правидами отбора проб сельскохозяйственной продукции, продуктов питания и объектов окружающей среды для определения микроколичеств пестицидов» (№ 2051-79 от 21.08.79 г.) и правилами, определенными ГОСТами 1725-85 «Томаты свежие», 1721-85 «Морковь столовая, свежая, заготавливаемая и поставляемая. Технические условия», 51808-2001 «Картофель свежий продовольственный, реализуемый в розничной Торговой сети. Технические условия», 7176-85 «Картофель свежий. продовольственный, заготовляемый и поставляемый. Технические условия», 26832-86 «Картофель свежий для переработки на продукты питания. Технические условия», 6014-68 «Картофель свежий для переработки. Технические условия».

Пробы клубней картофеля, корнеплодов моркови и плодов томата хранят в стеклянной или полиэтиленовой таре в холодильнике не более одного дня; для длительного хранения пробы замораживают и хранят при температуре –18°C до анализа.

Перед анализом образцы измельчают ножом или на терке.

9. Выполнение определения

9.1. Экстракция дифеноконазола

9.1.1. Плоды, корнеплоды, клубни. Образец измельченного растительного материала массой 25 г помещают в стакан гомогенизатора вместимостью 500 см³, добавляют 100 см³ ацетона и гомогенизируют 3 мин. при 10000 об/мин. Раствор (с осадком) фильтруют под вакуумом на воронке Бюхнера через бумажный фильтр в колбу вместимостью 250 см³. Осадок на фильтре промывают 50 см³ ацетона. Экстракт и промывную жидкость переносят в химический стакан, перемешивают, измеряют объем раствора. Отбирают 1/5 объема экстракта (эквивалентна 5 г образца), переносят в круглодонную колбу вместимостью 100 см³ и добавляют 30 см³ денонизованной воды. Далее проводят очистку экстракта по п. 9.2.

9.2. Очистка экстракта перераспределением в системе несмешивающихся растворителей

Экстракт, полученный по пп. 9.1.1. и помещенный в круглодонную колбу, упаривают на ротационном вакуумном испарителе до водного остатка (10-20 см³) при температуре не выше 40°C. К водному остатку прибавляют 10 см³ денонизованной воды, 15 см³ насыщенного раствора хлорида натрия, перемешивают и переносят в делительную воронку вместимостью 100 см³. В воронку вносят 30 см³ смеси гександиэтиловый эфир (4:1, по объему), интенсивно встряхивают в течение 2-х мин. После разделения фаз верхний органический слой фильтруют через слой безводного сульфата натрия в круглодонную колбу вместимостью 150 см³. Операцию экстракции водной фазы повторяют еще дважды, используя по 25 см³ смеси гексан-диэтиловый эфир (4:1). Объединенную органическую фазу, пропущенную через слой сульфата натрия, упаривают досуха на ротационном вакуумном испарителе при температуре 30°C и подвергают дополнительной очистке на колонке с силикагелем по п.9.3. и концентрирующем патроне Диапак-диол по п.9.4.

9.3. Очистка экстракта на колонке с силикагелем

Сухой остаток в круглодонной колбе, полученный по п. 9.2., растворяют в 0,9 см³ этилацетата, помещая в ультразвуковую ванну на 1 мин., добавляют 2,1 см³ гексана, перемешивают, вновь помещают в ультразвуковую ванну на 1 мин. Раствор наносят на колонку, подготовленную по п. 7.2. Колбу обмывают 2 см³ смеси гексан-этилацетат (7:3, по объему), которые также наносят на колонку. Промывают колонку 30 см³ смеси гексан-этилацетат (1:1, по объему) со скоростью 1-2 капли в сек., элюат отбрасывают. Дифеноконазол элюируют с колонки 35 см³ смеси гексан-этилацетат (3:7, по объему), собирая элюат непосредственно в круглодонную колбу вместимостью 100 см³. Раствор упаривают досуха на ротационном вакуумном испарителе при температуре 30°С. Сухой остаток экстракта клубней картофеля и плодов томата растворяют в 5 см³ смеси гексан-ацетон (8:2, по объему), помещая в ультразвуковую ванну на 1 мин., и анализируют на содержание дифеноконазола по п. 9.5. Экстракт корнеплодов моркови дополнительно очищают с помощью концентрирующего патрона Диапак-диол.

9.4. Очистка экстракта на концентрирующем патроне Диапак-диол

Сухой остаток экстракта корнеплодов моркови в круглодонной колбе, полученный по п.9.3., растворяют при помощи ультразвуковой ванны в 2 см³ смеси гексан-ацетон (8:2, по объему) и переносят в подготовленный концентрирующий патрон Диапак-диол (п. 7.3.). Патрон промывают 2,5 см³ смеси гексан-ацетон (8:2, по

объему), элюат отбрасывают. Дифеноконазол элюируют 9 см³ смеси гексан-ацетон (7:3, по объему) в круглодонную колбу вместимостью 25 см³. Раствор упаривают досуха на роторном испарителе при температуре 30°C. Остаток в колбе растворяют в 5 см³ смеси гексан-ацетон (8:2, по объему), помещая в ультразвуковую ванну на 1 мин., и анализируют на содержание дифеноконазола по п.9.5.

9.5. Условил хроматографирования

Газовый хроматограф «Кристалл 2000М» с электронозахватным детектором с пределом детектирования не выше 8.2х10⁻¹⁵ г/см³.

Колонка капиллярная кварцевая HP-1(типа SE-30), длина 5 м, внутренний диаметр 0,53 мм, толщина пленки 0,88 мкм, фирма Хьюлетт-Паккард (США)

Температура термостата испарителя – 270° С, детектора – 320° С, термостата колонки – 245° С

Расход газов: газа-носителя (азот) — 2,5 см 3 /мин; поддувочного газа через детектор — 25 см 3 /мин

Деление потока: 1:2

Время удерживания дифеноконазола: 3 мин.35 сек

Объем вводимой пробы: 1 мм³.

Линейный диапазон детектирования: 0,02 - 0,4 нг.

Каждую анализируемую пробу вводят 3 раза и вычисляют среднюю площадь хроматографического пика дифеноконазола.

Образцы, дающие пики большие, чем стандартный раствор с концентрацией 2,0 мкг/см³, разбавляют смесью гексан-ацетон (8:2).

10. Обработка результатов анализа

Содержание дифеноконазола рассчитывают методом абсолютной калибровки по формуле:

Х - содержание дифеноконазола в пробе, мг/кг;

Н1 - площадь пика образца, мВ*с;

Но - площадь пика стандарта, мВ*с:

А - концентрация стандартного раствора дифеноконазола, мкг/см³;

V - объем экстракта, подготовленного для хроматографирования, см³;

m - масса анализируемой части образца (г) / для корнеплодов, плодов, клубней - 5 г/.

11. Проверка приемлемости результатов параллельных определений

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, расхождение между которыми не превышает предела повторяемости (1):

$$\frac{2 \cdot |X_1 - X_2| \cdot 100}{(X_1 + X_2)} \le r \tag{1},$$

где X_1, X_2 - результаты параллельных определений, мг/кг (дм³);

r- значение предела повторяемости (таблица 1), при этом $r = 2.8\sigma_r$.

При невыполнении условия (1) выясняют причины превышения предела повторяемости, устраняют их и вновь выполняют анализ.

12. Оформление результатов

Результат анализа представляют в виде:

$$(\overline{X} \pm \Delta)$$
 мг/кг (дм³) при вероятности Р= 0.95,

где \overline{X} - среднее арифметическое результатов определений, признанных приемлемыми, мг/кг (дм 3);

 Δ - граница абсолютной погрешности, мг/кг (дм³);

$$\Delta = \delta * X / 100.$$

 δ - граница относительной погрешности методики (показатель точности в соответствии с диапазоном концентраций, таблица 1), %.

В случае, если содержание компонента менее нижней границы диапазона определяемых концентраций, результат анализа представляют в виде:

"содержание вещества в пробе «менее нижней границы определения» менее 0,02 мг/кг для корнеплодов, плодов и клубней*.

* - 0.02 мг/кг - предел обнаружения для корнеплодов, плодов и клубней.

13. Контроль качества результатов измерений

Оперативный контроль погрешности и воспроизводимости измерений осуществляется в соответствии с ГОСТ Р ИСО 5725-1-6-2002 « Точность (правильность и прецизионность) методов и результатов измерений».

13.1. Стабильность результатов измерений контролируют перед проведением измерений, анализируя один из градуировочных растворов.

13.2. Плановый внутрилабораторный оперативный контроль процедуры выполнения анализа проводится с применением метода добавок.

Величина добавки C_a должна удовлетворять условию:

$$C_{a} = \Delta_{a,\overline{X}} + \Delta_{a,\overline{X}},$$

где $\pm \Delta_{s,\overline{s}}(\pm \Delta_{s,\overline{s'}})$ — характеристика погрешности (абсолютная погрешность) результатов анализа, соответствующая содержанию компонента в испытуемом образце (расчетному значению содержания компонента в образце с добавкой соответственно) мг/кг (дм³), при этом:

$$\Delta_n = \pm 0.84 \Delta$$

где Δ- граница абсолютной погрешности, мг/кг (дм³);

$$\Delta = \delta * X / 100,$$

 δ - граница относительной погрешности методики (показатель точности в соответствии с диапазоном концентраций, таблица 1), %.

Результат контроля процедуры К, рассчитывают по формуле:

$$K_{x} = \overline{X'} - \overline{X} - C_{A}$$

где \overline{X}' , \overline{X} , C_{δ} - среднее арифметическое результатов параллельных определений (признанных приемлемыми по п.11) содержания компонента в образце с добавкой, испытуемом образце, концентрация добавки, соответственно, мг/кг (дм³);

Норматив контроля К рассчитывают по формуле

$$K = \sqrt{\Delta_{a,\overline{X'}}^2 + \Delta_{a,\overline{X'}}^2}$$

Проводят сопоставление результата контроля процедуры (K_k) с нормативом контроля (K).

Если результат контроля процедуры удовлетворяет условию

$$|K_{\pi}| \leq K$$
. (2)

процедуру анализа признают удовлетворительной.

При невыполнении условия (2) процедуру контроля повторяют. При повторном невыполнении условия (2) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

13.3. Проверка приемлемости результатов измерений, полученных в условиях воспроизводимости:

Расхождение между результатами измерений, выполненных в двух разных лабораториях, не должно превышать предела воспроизводимости (R)

$$\frac{2 \cdot |X_1 - X_2| \cdot 100}{(X_1 + X_2)} \le R \tag{3}$$

где X_1, X_2 — результаты измерений в двух разных лабораториях, мг/кг (дм³);

R – предел воспроизводимости (в соответствии с диапазоном концентраций, таблица 1), %.

14. Разработчики

Дубовая Л.В., науч. сотр.; Макеев А.М., зав. лаб., канд. биол. наук.

ГНУ ВНИИ фитопатологии, 143050, Московская обл., п/о Большие Вяземы, тел.

592-92-20.

Подпись руки Дубовой Л.В. и Макеева, А. М. заверяю

Банюлис Г.Г.)