ТИПОВЫЕ КОНСТРУКЦИИ, ИЗДЕЛИЯ И УЗЛЫ ЗДАНИЙ И СООРУЖЕНИЙ

СЕРИЯ 3.501.1—150

ОПОРЫ УНИФИЦИРОВАННЫЕ ЖЕЛЕЗНОДОРОЖНЫХ МОСТОВ

С ПРИМЕНЕНИЕМ ИЗДЕЛИЙ ЗАВОДСКОГО ИЗГОТОВЛЕНИЯ.

выпуск оз.

ОПОРЫ СТОЛБЧАТЫЕ. МАТЕРИАЛЫ ДЛЯ ПРОЕКТИРОВАНИЯ.

PA3PABOTAH M **VEHENUBOLDAHONOCTOM** Минтрансствоя

Главный инженер института

Начальник отдела TUROBORO RPOEKTUPOBAHHA

Главный инженер проекта

A.K.BACHH C.C. TKAYEHKO

А.И. СЕРЕБРЯНСКИЙ

Утверждены YKA3AHHEM

Введены в действие

Обозначен ие документов	НаименОвание	Cmp	0603начения документо
3,501.1-150. 0-3.00,113	Пояснительная записка	7	
3.501.1- 150 . 0-3. 00. 01	Номенклатура сборных элементов		3.501.1-150.0-3
3.501, 1- 150 .0-3. 00, 02	0		
	D		3,501.1 - 150 , 0-0
	1.4 0073	75	3,501.1 - 150 .0-3
	The state of the s	14	3.501.1-150 .0-
3.501.1- 150 .0-3.00.05	Yemoù nod nonvember emprevire	-77	3,001, 130 ,0
	DAUHOU 13.5 y 16.5m (Crema?)	16	3.501.1-150 .0-3
3.501.1- 150 .0-3.00.06		76	2,001,1 130 ,03
	The special confidence	10	3,501.1-150 .0-3
3.501.1- 150 .0-3, 00.07	PROME * Umpilya B. DRODA FOR SALESTING		9,307.7-130 .0-3
	Connection during 92 ull 5. (Constant		3.501.1-150 .0-3
3.501.1-150 .0-3.00.08		اعد	3.301.1 130 100
		24	3.501.1-150 .0-3
3.501.1- 150 . 0-3. 00.09			
	10-11-11-11-11-11-11-11-11-11-11-11-11-1		
		25	
3.501.1-150.0-3.00.10	Насадко монолитная знуми	27	
3.501,1-150.0-3.00.11		33	
		36	
3.501.1-150.0-3.00.13	YHACTEH MONOGUTHER V. Q. U. IO	37	
		38	
	1,0) 4 36662	استسلنيم	
			Hay, or a Traveriko
			TA.COES MIZABAIAN
			HI KONTE MUDONCE
	3.501.1-150.0-3.00.03 3.501.1-150.0-3.00.05 3.501.1-150.0-3.00.05 3.501.1-150.0-3.00.05 3.501.1-150.0-3.00.05 3.501.1-150.0-3.00.05 3.501.1-150.0-3.00.06 3.501.1-150.0-3.00.06 3.501.1-150.0-3.00.07 3.501.1-150.0-3.00.09 3.501.1-150.0-3.00.09 3.501.1-150.0-3.00.09 3.501.1-150.0-3.00.10 3.501.1-150.0-3.00.10 3.501.1-150.0-3.00.10 3.501.1-150.0-3.00.10 3.501.1-150.0-3.00.10	3.501.1- 150 .0-3.00.05 Пояснительная записка 3.501.1- 150 .0-3.00.01 Номсиклатура сборных элементов 3.501.1- 150 .0-3.00.02 Облость применения 3.501.1- 150 .0-3.00.05 Раскод ветона на опору 3.501.1- 150 .0-3.00.05 Устой подпролетные строения длиной 3.501.1- 150 .0-3.00.05 Устой подпролетные строения длиной 13.5 у 16.5 м (Схема 2) 3.501.1- 150 .0-3.00.06 Устой под пролетные строения длиной 23.6; 21.6 и 34, 2м (Скема 3) 3.501.1- 150 .0-3.00.08 Промежуточная опора под пролетные строения длиной 9.3 и 11.5 м (Схема 1) 3.501.1- 150 .0-3.00.08 Промежуточная опора под пролетные строения длиной 11.5, 13.5 и 16.5 м (Скема 3) 3.501.1- 150 .0-3.00.08 Промежуточная опора под пролетные строения длиной 11.5, 13.5 и 16.5 м (Скема 3)	ЗОКУМЕНТОВ 3.501.1-150. 0-3.00.03 ПОЯСНИТЕЛЬНИЯ ЗОПИСКА 3.501.1-150. 0-3.00.01 НОМСИКЛАТУРА СБОРНЫХ ЭЛЕМЕНТОВ 3.501.1-150. 0-3.00.02 ОБЛОСТВ ПРИМЕНЕНИЯ 3.501.1-150. 0-3.00.03 РОСКОВ БЕТОНА НА ОПОРУ 3.501.1-150. 0-3.00.05 УСТОЙ ПОВ ПРОМЕТНЫЕ СТРОЕНИЯ ОМИНОЙ 3.501.1-150. 0-3.00.05 УСТОЙ ПОВ ПРОМЕТНЫЕ СТРОЕНИЯ 3.501.1-150. 0-3.00.05 УСТОЙ ПОВ ПРОМЕТНЫЕ СТРОЕНИЯ 3.501.1-150. 0-3.00.05 УСТОЙ ПОВ ПРОМЕТНЫЕ СТРОЕНИЯ 3.501.1-150. 0-3.00.06 УСТОЙ ПОВ ПРОМЕТНЫЕ СТРОЕНИЯ 3.501.1-150. 0-3.00.06 УСТОЙ ПОВ ПРОМЕТНЫЕ СТРОЕНИЯ 3.501.1-150. 0-3.00.07 Промежуточная опора под прометные СТРОЕНИЯ ДЛИНОЙ 9,3 и11.5м (Схема 1) 3.501.1-150. 0-3.00.08 Промежуточная опора под прометные СТРОЕНИЯ ДЛИНОЙ 11.5, 13,5 и16,5м (СКЕМА2) 4.501.1-150. 0-3.00.09 Пример расчета опоры. Промежуточная опора под прометные СТРОЕНИЕ ДЛИНОЙ 11.5 (СКЕМА 1) 3.501.1-150. 0-3.00.10 Насадка монолитная ЗНУм 1 3.501.1-150. 0-3.00.11 Насадка монолитная ЗНУм 1 3.501.1-150. 0-3.00.12 УЧЛСТКИ МОНОЛИТНЫЕ УТ 9; УТ 10 3.501.1-150. 0-3.00.14 УЗЕЛ А 3.501.1-150. 0-3.00.15 УЗЛЫ Б; Г

0603начение документов	Наименование	1
3.501.1-150.0-3.00.17		
3,501.1 - 150 , 0-3.00.18.	Заделки стольов в грунт основания	L
3,501.1 - 130 . 0-3, 00, 79	Грофики неснијей способности столбов по прочности	ŀ
3.501.1-150 .0-3.00.20	Графики несящей способности	
	столбов устоев по выносливости (Р= 0,1) Графики несущей способности столбов	-
	промежуточных опор по выносливости (P=-1) Графики несущей способности сталбов	-
3.501.1-150 .0-3.00,23	TIO TREUSUHOCTOÚKOCTU DOU Acz= 0,01cm	
3.501.1-150 .0-3, 00, 24	πο πρειциностойκος πιν πρι Δcz=0,015 εκ. Γραφυκή μεσημεί σποιοδησιστί στοιδοδ	1
	по трещиностойкости при 4 с z = 0,02 см	L

(L

Hay. ord Tedushiko Julie 3, 501. 1-150 .0-3. 00

A. COLE MISTRAMAY JULIE

H. KONIT OF LEPTOMACION

PUT SP PANGESS LOC

CODE P ACOHUE

SENSUIPOTPAHLANCE

LENGUIPOTPAHLANCE

- I.I. Настоящий выпуск 0-3 "Опоры столбчатые. Материалы для проектирования, содержат схемы столочатых опор, рекомендуемую область их применения, указания по расчету, примеры расчета опор, графики несущей способности столбов по материалу, номенклатуру изделий заводского изготовления, конструкцию стыков сборных элементов, указания по устройству различных дополнительных обустройств и их конструкцию, требования к материалам для изготовления конструкций.
- 1.2. Технологические правила монтажа и омоноличивания сборных элементов опор приводятся в выпуске 0-5 "Технологические схемы сооружения опор мостов" разработанном институтом Гипростроймост.

2. СХЕМН ОПОР И ОБЛАСТЬ ПРИМЕНЕНИЯ

2.1. Столбчатие опоры (устои и промежуточные опоры) по настоящему выпуску предназначены для применения в однопутных мостах под железнув дорогу на прямых участках пути и на кривых радиусом 300м и более, в суровых и особо суровых климатических условиях, в несейсмических районах и в районах с расчетной сейсмичностью 7, 8 и 9 баллов. Допускается применение столочатых опор и в умеренных климатических условиях при соответствующем технико-экономическом обосновании.

Преимущественная область применения столочатых опор - вечномерэлые грунты, используемые как по принципу І, так и по принципу П. При использовании грунтов по принципу I (грунты оснований сохраняются в мерзлом состоянии в течение всего периода эксплуатации сооружения) столбы заделиваются в толще вечномерзлых грунтов, по принципу П (допускается оттаивание грунтов) - столбы заделываются в скальные грунты.

Применение опор на оттаивающих мерэлых грунтах и талых грунтах. должно быть обосновано технико-экономическим сравнением с другими вариантами опор.

Применение опор в районах с расчетной сейсмичностью 7, 8 и 9 бал-

на оттаивающих грунтах: - водонасыщенных пылеватых песках, мягкопластичных глинах и суглинках, пластичных супесях,-проектом не предусмотрено и должно рассматриваться в индивидуальном порядке.

- 2.2. Промежуточные опоры могут применяться на периодически и постоянно действующих водотоках при отсутствии ледохода, а также при условии расположения опор вне меженнего русла и обязательной фиксации русла соответствующим укреплением.
- 2.3. Опоры предназначены под балочные разрезные пролетные строения длиной от 9,3 до 34,2м по действующей типовой документации:
- серии 3.501J-146 "Пролетные строения сборные железобетонные длиной от 2,95 до 16,5м для железнодорожных мостов":
- серии 3.50I-9I "Сборные пролетные строения из предварительно напряженного железобетона длиной 16,5-27,6м для железнодорожных мостов", инв.№ 556: -
- -шифр 102РЧ "Пролетные строения из предварительно напряженного железобетона длиной 18,7; 23,6 и 27,6м для железнодорожных мостов в Северном исполнении", проект Ленгипротрансмоста:

"Сварные пролетные строения под один ж.д. путь с ездой поверху пролетами 18,2+33,6м (обычное и северное исполнение). инв.№ 821-ИИ

- серии 3.501-49 "Металлические железнодорожные пролетные строения с ездой поверху на балласте пролетами 18,2455, Ом в обычном и северном исполнении", инв. № 739:
- серии 3.501.2-143 "Пролетные строения железнодорожных мостов с ездой поверху пролетами 33,6; 45; 55м металлические коробчатого сечения с балластным корытом из коррозийно-стойкой стали с вариантом в са-

	-07	 3.501.I-150 0-3.00 N3			
Мисонова Гкаленко	gener.	ПОЯСНИТЕЛЬНАЯ ЗАПИСКА	CTAANS P	Auct 1	Листов 6
серебрянский Длябьева	Pay-		Ленгиг	porpa	номост

верном исполнении", инв.№ 1298.

- 2.4. Предельная высота столбчатых опор по рекомендуемой области применения (см. 3.501.1-150.0-3 02) составляет:
 - для устоев 6.0м (высота насыпи);
- для промежуточных опор 5,0м (от уровня теоретического размыва грунта до верха насадки).
 - 2.5. Разработаны следующие схемы опор.

2.5.І. Устои:

- схема I, под пролетные строения длиной 9,3 и II,5м (3.501.1-146) на 4 столбах:
- схема 2, под пролетные строения длиной 13,5 и 16,5м (3:500-146)

на 4 столбах:

No noda. Nodance M para

- схема 3, под пролетные строения длиной 23,6; 27,6 и 34,2м (инв. № 821414.739; 1298, шифр 102РЧ) на 6 столбах.
 - 2.5.2. Промежуточные опоры:
- схема I, под пролетные строения длиной 9,3 и II,5м (3.50/1-146) на 2 столбах:
- схема 2, под пролетные строения длиной 9,3; II,5; I3,5 и I6,5м (3:504-146) на 4 столбах.
- 2.6. Рекомендуемые области применения по высотам опор и длинам примыкающих пролетных строении приведенных в проекте схем столочатых опор, в зависимости от условия их использования, см. 3.501.1-150,0-3 02.

3. ОСНОВНЫЕ ПОЛОЖЕНИЯ ПРОЕКТИРОВАНИЯ.

- 3.1. Типовая проектная документация разработана в соответствии с действующими нормами и техническими условиями, основными из которых являются:
- СНиП 2.05.03-84. Мосты и трубы.
- СНиП 2.02.03-85. Свайные фундаменты.
- CHиП П-7-8I. Строительство в сейсмических районах.
- СНиП Ш-43-75. Мости и труби. Правила производства и приемки работ.
- CHull II-18-76. Основания и фундаменти на вечномерзлых грунтах.

- СНиП Ш-16-80. Бетонные и железобетонные конструкции сборные.
 - Правила производства и приемки работ.
- СНиП Ш-15-76. Бетонные и железобетонные конструкции монолитные. Правила производства и приемки работ.
- Инструкция по проектированию малых и средних мостов - BCH 187-76 . БАМ.
 - 3.2. Временная нагрузка С-14.
 - 3.3. Монтажная масса блоков не превышает 30 тонн.
- 3.4. Минимальный радиус кривых определен условиями применения пролетных строений.

4.КОНСТРУКЦИЯ ОПОР

- 4. Г. Столочатые опоры состоят из следующих основных соорных элементов:
 - железобетонных столбов диаметром 80см;
 - насадок для устоев и промежуточных опор;
- шкафных блоков, закладных щитов, тротуарных консолей и тротуарных плит для устоев.
- 4.2. Сборные элементы опор, разработанные в настоящих рабочих чертежах, изготовляются по ТУ 35-
- 4.3. Маркировка блоков принята по ГОСТ 23009-72 и определяет тип блока и условия его применения. Характеристики бетона блоков, зависящие от климатических условий их использования и от степени агрессивности среды, отражены дополнительным индексом в марке блока в соответствии с табл. I п.5.2.

Примеры маркировки блоков:

СІ40-3-І де

- С столб диаметром 80см,
- 140 длина столба в дециметрах,

3.50I.I-150 0-3.00 N3

в Nenogn Подпись и дата Взамина. Ne

- 3 тип армирования,
- I класс бетона по прочности ВЗО, марки: по морозостойкости F 200, по водонепроницаемости W 6.

3H-3, где

- Н насадка промежуточной опоры,
- 3 блок опоры под пролетные строения длиной 9,3...16,5м,
- 3 класс бетона по прочности ВЗО, марки: по морозостойкости F 300, по водонепроницаемости W8.
- 4.5. Заделка столбов в насадках осуществляется омоноличиванием отверстий в последних, при этом в качестве арматуры используются выпуски арматуры столбов.
- 4.6. Стыки сборных элементов насадок и шкафных блоков выполняются сомоноличиванием сопрягающихся без сварки выпусков арматуры с нахлесткой по длине, равной 20 диаметрам стержней.
- 4.7. Крепление шкафных блоков к насадкам осуществляется на болтах, которые размещаются под боковыми стенками шкафных блоков.

Ниши образуются установкой специальных закладных деталей при изготовлении элементов.

Крепление щитов к шкафным блокам осуществляется болтами, для чего в блоках предусмотрены закладные детали.

- 4.8. Гидроизоляция элементов предусмотрена оклеечной для мягкого въезда шкафних блоков устоев, обмазочной - для всех остальных засыпаемых грунтом поверхностей (см.выпуск 3).
- 4.9. Тротуарные консоли приняты по типовой документации серии 3.501.I-146.
- 4.10. При расчетной сейсмичности 9 баллов пролетные строения металлические и сталежелезобетонные закрепляются на опорах с помощью антисейсмических устройств, конструкция которых приведена в чертежах проектной документации соответствующей серии пролетных строений.

Для железобетонных пролетных строений предусматривается использование сейсмостойких опорных частей.

5. МАТЕРИАЛЫ

5.1. Бетон.

5.1.1. Во всех элементах опор используется тяжелый бетон в соответствии с ГОСТ 26633-85, характеристики которого назначаются при привязке проекта и должны быть не менее величин, приведенных в табл. І.

Марки бетона по морозостойкости и водонепроницаемости фиксируртся дополнительным индексом в марке элемента опоры в соответствии с табл. І.

Таблица І

Наимено- вание элемента	Климати- ческие условия	Класс бетона по прочности		оС пидневки, подной из- поочее ко- поочее к	Марка бе- тона по водоне- проницае- мости	Дополни— тельный индекс в марке элемента
Шкафные	уме ренные и суровые		минус 40 и выше		W 6	I
блоки, насадки,	суровые	B 30		ниже минус		2 ·
столбы	суровие особо		F300	40	8 W	3
Плиты	умеренные и суровые		F 200	_	W 4	_
тротуар-			F 300			

5.1.2. Для получения бетона омоноличивания требуемой морозостойкости и водонепроницаемости следует применять комплексные пластифицирурщие, воздухововлекающие, газообразующие добавки в соответствии с указаниями СНиП Ш-43-75 с изменениями и дополнениями, утвержденными Госстроем СССР постановлением от 31 декабря 1980г. № 219).

Количество добавок устанавливается лабораторией при подборе состава бетона с учетом требуемой прочности бетона, подвижности бетонной смеси и расхода цемента.

5.1.3. Заполнители, применяемые для бетона омоноличивания, должны соответствовать требованиям ГОСТ 10268-80.

 5.І.4. В качестве вяжущего материала для бетона омоноличивания применяртся цементы, отвечающие ГОСТ IOI78-85.

5.1.5. Цементный раствор для подливки и для заделки стиков вкафных блоков с насадками-прочностью на 28 день не ниже 29,4МПа (300 кгс см2). портландиемента по ГОСТ 10178-80 43.5 изготавливается

В качестве заполнителя применяется промытый песок крупностью зерен не более 3мм по ГОСТ 8736-85.

5.2. Арматура.

5.2.1. Для армирования эдементов опор используется арматурная сталь классов Ас-П и А-І по ГОСТ 5781-82.

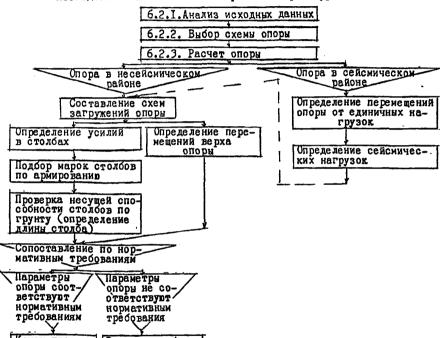
принимается по табл.29 СНиП 2.05.03-84 Марка арматурной стали элементов, требурщих расчета в зависимости от условий применения на виносливость.

Для строповочных петель принимается арматура классов Ac-II и A-I.

5.3. Стальной прокат закладных деталей.

Аля закладных деталей в зависимости от средней температуры наружно... го воздуха наиболее холодной пятидневки в районе строительства используется стальной прокат в соответствии с ГОСТ 19281-73. ГОСТ 380-71.

6. УКАЗАНИЯ ПО РАСЧЕТУ И КОНСТРУИРОВАНИЮ ОПОР.


б.І. При выборе схем опор для конкретных условий следует руководствоваться рекомендуемой областью их применения по предельным высотам

ГОСТ 6713-75; марки стали принимаются по указаниям табл. 30 СНиП 2.05.03.84

(см. 3.50I.I-150 0-3 02), а также рекомендациями и указаниями ВСН 187-76. 6.2. Проектирование столбчатых опор следует выполнять в последовательности, приведенной на схеме "Последовательность основных проектных процедур".

CXEMA

Последовательность основных проектных процедур

Конец проект-Замена столбчаных процедур -опо ноопо котар рой другого типа

3.50I.I-150.0-3.00 N3

MUCT

MIGT

Перечень исходных данных, источники их получения, использование в проектинх процедурах приведени в табл.3

		Таблица 3,
Проектная процедура	Используемые исходные данные	Источник информации
I. Определение высоты опоры, выбор схемы	I.I. Отметка головки рель-	-Схема моста, продольный профиль дороги
опоры	I.2. Длина и строительная висота пролетных строений	Выпуск 0-0
	I.3. Отметки характерных уровней воды	Гидравлические расчеты, расчеты отверстия моста
	Т.4. Отметки поверхности грунта с учетом срезки, подсыпки, общего и местного размывов	Поперечный профиль мостового перехода, расчеты отверстия
	f.5. Рекомендуемые области применения различных схем опор	3.50I.I-150 0-3 00 02
	I.6. Усилия по низу наса- док от сочетаний нагрузок на опору	Выпуск 0-0
2. Назначение марок столбов	2.І. Геологические разре- зы, характеристики грун- тов, глубина промерзания и т.д.	Материалы геологических изыскании; СНиП П-18-76; СНиП 2.02.03-85
	2.2. Усилия по низу наса- док от сочетаний нагрузок на опору	Выпуск 0-0
3. Назначение харак- теристик материалов для элементов опор	3.I. Расчетные температу- ры наружного воздуха	Климатические характеристики района стройтельства материалы изысканий; СНиП 2.0I.0I-82
	3.2. Наличие агрессивных сред. вид и степень аг-	Материалы изысканий; CHull 2.03.II-85

DECCUBHOCTH

0°C-

При назначении марок столбов используртся графики несущей способности столоов по материалу, см. докум. 3.501.1-10-30016... 3.501.1-150 .0-3 00 21. Принято четыре типа армирования столбов.

Графики по трещиностойкости построены для следующих предельных значений раскрытия поперечных трещин: для столбов опор, находящихся в зоне переменного горизонта воды в условиях воздействия переменного замораживания и оттаивания при числе циклов в год 50 и более -0. Імм. до 50 - 0,15 мм; для столбов опор, расположениих вне зони переменного горизонта воды - 0,2мм. Число циклов замораживания и оттаивания опреде-

дяется, как количество переходов температуры наружного воздуха через

Для опор в сейсмических районах следует учесть сейсмические нагрузки, которые определяются по соответсвующим нормативным документам,

с использованием програмы ЭВМ; при этом должны быть учтены податливость основания и пространственная работа опоры.

Характеристики материалов элементов опор назначаются в соответствии с указаниями раздела 5. На основе анализа исходных данных назначается схема опоры.

При несоответствии выбранной схемы столбчатой опоры нормативным требованиям ее следует заменить опорой другого типа.

Такой опорой может быть стоечная или сборно-монолитная, а также комбинированная (промежуточная) опора на столбчатом основании.

- 6.3. В проекте приведен примеры конструирования столочатой опоры. CM. 3.50I. I-150 0-3 00 08.
 - 7. ТЕХНОЛОГИЧЕСКИЕ ТРЕБОВАНИЯ

7.1. Сборные элементы опор изготавливаются в соответствии с трё бованиями ТУ 35в неталлической опалубке. При бетонировании должны быть приняты технологические меры, обеспечивающие высокое качество наружных поверхностей блоков и точность положения закладных деталей.

7.2. Отклонения от проектных размеров изготовленных блоков и их положения при монтаже опор не должны превышать величин, приведенных в СНиП 11-43-75 и в технических условиях на изготовление блоков ТУ 35-

Допускаемые отклонения верха столба от проектного положения по высоте + 50мм, в плане 30мм.

- 7.3. В бетоне столбов, насадок и шкафных блоков, поставляемых потребителю, трещины не допускаются.
- 7.4. Бетонирование стыков должно производиться непрерывно с тщательным вибрированием. Бетонирование стыков в зимних условиях производится в соответствии с требованиями СНиП 11-43-75.
- 7.5. Проект организации строительства конкретного объекта должен быть разработан с учетом местных условий, при этом следует руководствоваться указаниями ВСН 187-76.

Методы строительства и технологическое оборудование должны обеспечивать сохранение температурного режима мерэлых грунтов в районе строительства в соответствии с принципом их использования.

7.6. Требования к технологии бурения скважин и заделки столбов в грунт основания - в соответствии о ВСН 187-76.

8. ОХРАНА ТРУДА И ЗАШИТА ОКРУЖАЮШЕЙ СРЕДН

Все работы по сооружению опор должны выполняться в соответствии с требованиями, изложенными в действующих нормативных и руководящих документах по охране труда, основными из которых являются: СНиП Ш-43-75; СНиП Ш-4-80, "Правила техники безопасности и производственной санитарии при сооружении мостов и труб", "Правила устройства и безопасной эксплуатации грузоподъемных кранов, система стандартов безопасности труда. Проекты организации строительства конкретных объектов должны содержать мероприятия по охране труда и защите окружающей среди.

Приложение

СОСТАВ РАБОЧИХ ЧЕРТЕЖЕЙ

Рабочие чертежи унифицированных опор включают в себя следующие выпуски:

- Выпуск 0-0. Общие указания.
- Выпуск О-І. Опоры свайные. Материалы для проектирования.
- Выпуск 0-2. Опоры стоечные. Материалы для проектирования.
- Выпуск 0-3. Опоры столочатые. Материалы для проектирования.
- Выпуск 0-4. Опоры массивные. Материалы для проектирования.
- Выпуск 0-5. Технологические схемы сооружения опор. Материалы для проектирования
- Стойки и столбы опор. Рабочие чертежи. - Выпуск I.
- Насадки опор. Рабочие чертежи. - Выпуск 2.
- Шкафине блоки, щиты, плиты тротуарные опор. Рабочие - Выпуск 3. чертежи.
- Выпуск 4. Фундаментные блоки стоечных опор. Рабочие чертежи.
- Выпуск 5. Контурные блоки массивных опор. Рабочие чертежи.
- Изделия закладные и соединительные. Рабочие чертежи. - Выпуск б.

Эскиз	Марка	Расх матер бетэн,	Cmans,	Macca
ULAUS	7,1	NB NB	Kr	m
3250 4900	1111	7,9	1790	19,8
3250 4900	1UK	8,2	1798	20,5
3250 4900	JUIKH	8,2	1798	20,5
3250 4900	201	8,9	1928:	22,3
3250 4900	2ШК	9,1	1936.	22,8
3250 4900	2UIK#	9,1	1936	22,8
5600 2035 P	ЗШн	11,0	1433	27,5

Эскиз	Марка	Pacxo	U01106 \	Массо	
	7 7 7 1 1 1	deinon,	CITICAL,	m	
5600 10,2435	3111	11,0	1433 1216	27,5	
3600	ЗШК,,	11,1	1453. - 13 ₈₇	27,8	
\$600 No. 2435	3U.IK	11,1	1453 -1389	27,8	
5040 3400	21191	11,3	16:44	28,2	
5040 3400	2HYI-13	11,3	1627	28,3	
\$600 3400	2HYI-16	11.2	1641	27,9	

Hayord Travence of the 3.501.1-150 .0-3.0001

H.KOIME PLOONOR ILL.

A. HOMEHK NAMYPA

Pik. 20 Annibello Book

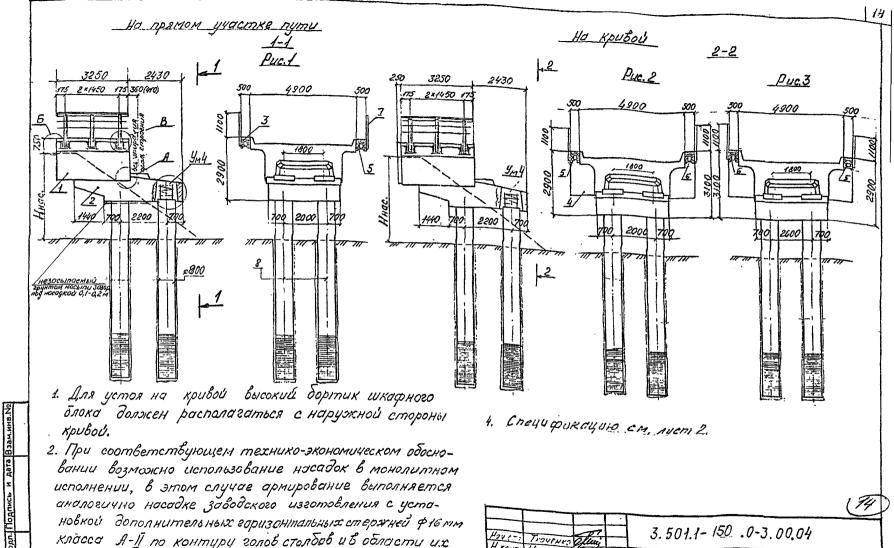
Typologia Ulando Ulando

Typologia Ulando

Typ

Эскиз	Марка :	E MM	Раса матер бетон м.э	cmans	Macca m.	Эскиз	Марка	в,	Расж матер бетон м ³		Macco m
	3HYI	1930	10,6	1501,3	26,6		1771	1620	0,06	15,2	0,15
	3 HY1H	1930	10,6	1501,3	26,6	8 470		/550	7,,,	,0,2	5,7.0
	3H.Y1-1	2000	10,7	1504,3	26,8		.71*	1430	0,05	12,3	0,13
	3HY14-1	2000	10,7	1504,3	26,8	8 470	- "	1700	9,00	المراجعة المراجعة	0,70
6700 1550	<i>3HY1-2</i> 7	1530	10,1	1493,0	25,1	8	77*	2080	0,08	18,3	0,2
	3HY14-27	1530	10,1	1493,0	25,1	6 470		2000		70,0	
C UHBERCOM "H"	3HY1-27-1	1960	10,7	1500,5	26,6	显上生 6%。	KT1 *	_		44.8	
1550	3HY1x-27-1	1960	10,7	1500,5	26,6	The state of the s	K72 *			53,4	1.083
	3HY1-34	1440	9,9	1485,6	24,7	9	24	2100	0,6	91,5	1,8
	3HY1H-34	1440	9,9	1485,6	24,7	1450 250 10	24KH	2300	0,64	94,0	1,9
	3HY1-34-1	1460	10,0	1489,3	24,9		34 39 ₄	2100	0,64	95,6	21
	3HY41-34-1	1460	10,0	1489,3	24,9	1560 200, 480	34K 34Kn	2300	0,64	95,6 101,1	2,1
2000	3.H	690	3,5	783	8,8	*) Серия 3,501,1-146. Про	METHBIE C	троен	49 68	орные.	22
3400 20001						मृत्या अस्तर है जिस्सान स्थापन स् स्थापन स्थापन	u om 2,4 10cm o 8,	o 90.16.	. IM GAN	ą	

3.501.1-150 .0-3.0001

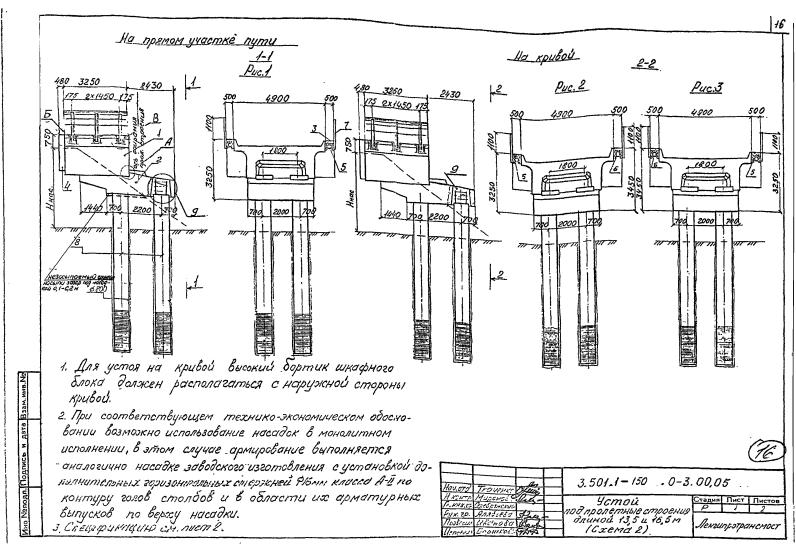

			·				70.3				
Эскиз	Марка	E,		cod conanob conano Kr.	Macce, m.	Эскиз	ПРОДОЛЖЕ Марка	B,	Расхо	cmans	Macco
	C60-1	6000	3,0	805	7,5		C60-3	6000	3,0	1218	7,5
	C70-1	7000	3,5	898	8,8		C70-3	7000	3,5	1374	8,8
	C80-1	8000	4,0	1018	10.0		C80-3	5000	4,0	1556	10,0
	C90-1	9000	4,5	1111	11,3		C90-3	9000	4,5	1712	11,3
	C100-1	10000	5,0	1247	12,6			10000	5,0	1911	12,6
		11000	5,5	1340	13,8	+ 1111		11000	5,5	2067	13,8
0	C120-1	12000		1460	15,1		C120-3		6,0	2249	15,1
		13000		1553	16,3		C130-3		<u> </u>	2405	16,3
00	C140-1	14000		1673	17,6	90	C140-3			2387	17,6
		15000		1766	18,8		C150-3	15000	7,5		18,8
	C60-2	6000	3,0	1040	7,5		C60-4	6000	3,0	1396	7,5
	C70-2	7000	3,5	1154	8,8		C70-4	7000	3,5	1578	
	C80-2 C90-2	8000	4,0	1325	10,0		C80-4	8000	4,0	1788	8,8
		9000	4,5	1455	11,3		C90-4	9000	4,5	1969	10,0
Ø 80		10000	5,0	1626	12,6	100	C100-4	10000			11,3
	C120-2	11000 12000	5,5	1757	13,8	(800	C110-4			2196	12,6
	C130-2		6,0	1911	15,1		C120-4	12000	ļ	2377	13,8
		13000 14000		2041	16,3		C130-4	-		2588	15,1
		15000	7,5	2196 2326	17,6		C140-4			2769	16,3
	10,00 2	70000	1,0	2320	18,8		C150-4		7	29.79	17,6
							15.00	10000	1,0	3160	18,8
						97)	. 3.501.1-1		7-3 00		

1	Pociem.	1 1	ANUNO NOUNSI			<u> </u>	אטתם מבואר	на етол	1508 l., 1	M		
Bud	11510.	Cresso	uning	Sonsexveras bear	रागाय क्रास्कृताम	TREWHH O, 1 MIN	A NEKOENON GEN	WWWHO DOCKONTIN	8 MERIN O.15 VI	Monunera hea	иличина раскрытия	э грещин 0,2м
angasi	1 .1	1 1	1700 neme	Расчетноя сейси	uuvucens? 76as;;*6	, Pocvernos ectic. .s.v.чнэсть 8,95	Росчетная сейс	413440CTB< 750410B	Porveniras ceicura NOCTO 8,9801108	Вечетноя сейс	уличность < <i>Тве</i> тьев	रिरुप्रेशामता द्रश्टेम भूमाम 8,9 ह्यार
'	<u> </u>	<u> </u>	EHUS, M	∞>R>2000M	2000xXR>300M	∞>R>300M		2000MJR>300M			1	
,	'	1			0,85 1,85	0,851,85	0,85 1,85	0,85 1,85	0,85 1,85	0,85 1,85	0,851,85	0.85 1,85
,	1	2		0,5 2,5.	0,5 1,5	.0,5 1,5	0,5 2,5	0,5 2,5	0,5 2,5	95 25	0,5 25	0,5 25
	,	3	23,6	1,1 1, 2,5	1,1, m 2,1	1,1 2,1	1,1 2,1	1,1 2,1	1,1 2,1	1,1 2,1		1,1 2,1
, S.	<u> </u>			1,12,1			1,1 2,1			1,1 21		
Yomoŭ	'	1		0,85 2,85	0,852,85	0,85 2,85	0,85285	0,85 1,85	0,85 1,85	0,851,85	0,85 1,85	0,851,85
7	2	2	-	0,5 2,5	0,5 2,5	0,52,5	05 2,5	0,5 2,5	9525	0,5 2,5	0,5 2,5	0,5 2,5
ı		.3	23,6	1,1 2,1	1,1 ,12,1	1,1 2,1	1,1 m 21	1,1 2,1	1,1 2,1	1,1 2,1	1,1 2,1	112,1.
	 	-	27,6;34,2		1,1	1,1	1,1,,,21	1,1	1,1	1,1 2,1	1,1	1,1
		1	9,3	1,1			1,1			1,1		
D			11,5	1,1		<u>:-</u>	1,1			1,1		
pclauo	1		11.5	1,83,8	1,83,8	1,8 3,8	1,8 3,8	1,83,8	1,83,8	1,83,8	1,83,8	1,8,,,3,8,
t		2.	13,5	9,8,,,3,8	0,8,,,3,8	0,8 3,8	98 3,8	0,83,8	0,8 3,8	981113,8	0,8 3,8	. 0,8 3,8
74/16			16,5	9838	.0,8 38	98 38	98 3,8	9838	0,83,8	9838		
0111		1	9,3	41			1,1	 		1,1		+
2363	2		11,5	-		_	1,1			1,1		+
Трамежчточноя	2		11,5		1,838	1,8 3,8	1,838	1,8 3,8	1,838	1.8138	1.83,8	1,83,
1		2	13,5		983,8	0,83,8	983,8	0,83,8				0,83.
			16,5	9811.38	9838	983,8	0,83,8	0,3 3,8				
The second secon					• "	12) Fran Pvr. Visco	and, Travenco d mag begancos e p Instracta A sesua tanun Jabun (C	BZ Obno	501.1 - 150 гость приме	, 0:3.00 02 енения Р	

Cxe	Md	Количество	Объем								
0110	P61	CTOAGOS	GETOHO		прямой д	IYACTOK NYIU	KPUBUA				
		в опоре	CTON 508,	AUTHOFO	сборного	всего	сборногв	ВСЕГО			
	1	4	20,12	3,0	39,52	42,52	41,12	44,12			
Устой	2	4	20,12	3.0	41,82	44,82	42,02	45,02			
1)	3	6	30,18	6.2 (30.6)	74.98 (53.78)	.81.18 (84.38)	75.18 (53.98)	81.38 (84.58			
6X3-	1	2	10,06	33	13,58	16,88	13.58	16,58			
Apomexy rownos onopa	2	4	20,12	11,6	20,12	31,72	20,12	31,72			
* C U48	TOM OF	емо бетон	O CTON SOB			•	***************************************	l			

В скобках-адлем_ветана на опору поо прол. строение с= 53,6 м.

3.501.1-150	0-3 00 03
Расход	У Пенгипротрансност

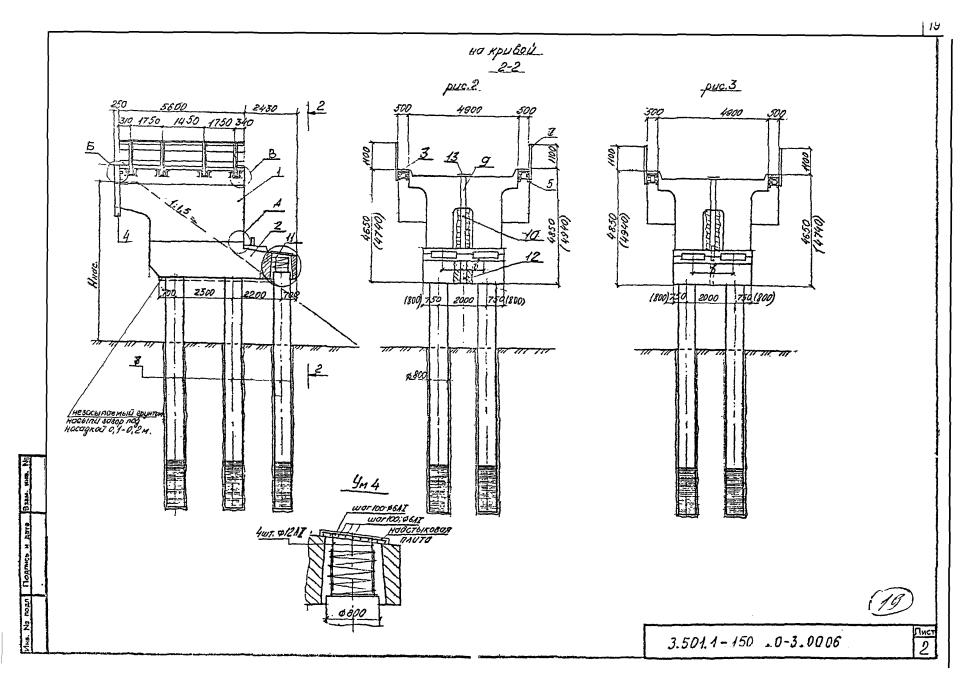

Стадия Пист Пистов

Пенгипротрансмост

						UUA HA YEMOU				0526	мы рабо	ממכ	на у	ıcmoü		
703.	Наименование	MOII.	951 97 2-360	neu 2	= //5; R= 300	Обозначение документа	Macca es, m.		Hain	еново	יווער	Изм.		cmed nod 3 m	прол.стр.	длиной, 5 м
-1	Блок шкафной		1200	<u> </u>	1800				110 611	124000	MUC	C93,47.		3051200		30012
1	1111	1	_	1	-	3.501.1-150.3 111.100.00	19.8		5108	Беглон KI	acca B 30	243	7,9	8,2	7,9	8,2
-	1418	_	1	-	1	3.501.1-150.3 1111 00.00		Ì	WARTHOU	Сталь	класса А-[[.	Kr	1564,2	1564,2	1564,2	1564,
	IUK#)	_	1	 -	1	3.501.1-150.3 1UI 00.00					KNaccd A-T	KF	105,6	112,9	105,6	112,5
7	Насадка устоя	_	l-	├	 			13		-	acca 830		11,3.	11,3	11,2	11/2
2	2441:	-	1	+	-	3.501.1-150.2 2HY100.00	280	170	Насадка	l	класса А- <u>II</u> класса А-Т	KI	1330,4	13304	1327,4	1327
۷		7	7	+	-			сборный	1-	-	nacca B25	M3	305,5	305,5	305,5	305,
_	2441-16	_	厂	1	1	3.501.1-150.2.2119100.00	21,9	1	Digina	-	классаА-11	KI	44,8	44,8	44,8	44,8
	Плита тротуарная	_	<u> </u>	-	 .	707/00 00		НОП	арная	арматурна;		Kr	16,0	16,0	16,0	16,0
3	ŊΤ	4	4	4	4	3.501.1-150.3/171.00.00	0,15	67.			deca 830	143	-	1.24	-	1,24
	. Ulum yemon	·		_				140	1 1	Сталь	класса А-Д	Kr	-	126,8	-	126,8
4	24	-	1	-	1	3.501.1-150.32400.00	1.8	1630		арматурная	vnacen A-Ī	RT	_	6,3	-	6,3
	24*	-	1	T-	1	3.501.1-150.32400.00	1,8	Ken		Бетон		M3	19,4	21,0	19,3	20,5
	2 <i>YK</i>	_	1	-	1	3.501.1-150.3 2400.00		1,2	Umoro	Сталь	класса А-11	Kr	2939,0	3066	2936	3063
	24K#	-	1	1_	1	3.50!.1-150.3 2400.00		-		/	класса А-Т	KT	427,1	440,7	427,10	440,
	Консоль тротуарная	 	ŕ	\vdash	+-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1"	ber			Knacca B35		3,0	3,0	3,0	3,0
5	KT1	6	3	6	1	3.501.1-46.3 KT1KT2000	10045	1,	,	арнатурная	KAGCOGA-II.	Kr	42,0	548	42,0	51,0
_	KT2	0	3	+		3.501.1-146.3 KT KT2 00.01		14	manb	npok	класса А-І	Kr	37,9	37,9	37,9	37,9
<i>6</i>		<u> </u>	12	╀	12		-				.ie प ³ हेशात्र	Kr	479,5	547,9	479,5	547,9
<u> </u>	Перила	-	١,	├	+,	3.501.1-150.0-3.0016	0,16	\vdash			оклеециая	MZ	20 6	20 6	20	20
8	Crnoso	4	14	14	4	3.501.1-150 .1 = 194	-	1 8	2идроиз і	ОЛЯЦИЯ	обмазочная	M ²	38	38	38	38
	Участох монолитный Ун4		14	14	14	3.501.1-150.0 - 3.00.06 (Aucto			25- 642	Tamaria		-				
3. 53. 43. *)	5061 KPENNEHUR A 501.1-150.0-3:0014 u en "B" npubeden b	3.50 100	ol. I	-150 -150 ene	<i>.</i> 0-	3.0015 epuu 3.501.1-146	er æ (bennyen	3)	<i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>		cmonco.	v .c	19. J. I	v7. I - D		10.05
3. 430 *)	501.1-150.0-3:0014 u 501.1-150.0-3:0014 u en "B" npubeden b cm. puc 2	3.50 100	ol./	-150 <n€< td=""><td>10-</td><td>16600161 HA XUEM 3.0015 Tepuu 3.501.1- 146</td><td>er ze (bomycz</td><td>3)</td><td>,,,,,,,</td><td></td><td>(3)</td><td>J .E</td><td>P9 V, V</td><td>V9. 1 - 120</td><td>(, (</td><td>100</td></n€<>	10-	16600161 HA XUEM 3.0015 Tepuu 3.501.1- 146	er ze (bomycz	3)	,,,,,,,		(3)	J .E	P9 V, V	V9. 1 - 120	(, (100

L-длина пролетного строения.

3.501.1-150 .0-3.0004


63.	Наименование	Kon.	ИО. 135	rome rouge	165.	Обозначение документа	Macca	Г	,,	0			Кол.на у			
+	Блок шкафной	P100	1243	₽±00	1200	<i>J.</i>	еа, т.		Haum	енова	HUE	Изм.		3 m 3051200	16	300.
1	2Ш	1	_	1	_	3.501.1-150.32U1.00.00	22.3	-	Блок	Бетон кл	acca B 30	м³	8,9	9,1	8,9	300. G
	2 UIK	-	1	_	1	3.501.1-150.32W.00.00			изгок шкарной		класса А-[].	K	1696,9	1696,9	1696,9	16
	2IUKH	_	1	_	1	3.501.1-150.3 211. 00.00					класса А-І	K	110,8	118,1	110,8	1
	Насадка устоя							сборный		-	acca 830 wacea A-T	M3	11,3	11.3.	11,2 1327,4	1
2	2HY1-13	1	1	_	-	3.501.1-150.22491.00.00	28,3	Hd	Насадка		класса А.Т	K	305,5	305,5	305,5	
	2 HY1-16	-	-	1	1	3.501.1-150.22HY1.00.00	27.9	coc	Thuma	Бетон К	nacca B25	MЗ	0,24	0,24	0,24	0
	Плита тротуарная							HO	mpomy-	Сталь	KNOCOTA!	Kr	44,8	44,8	44,8	1
3	77	4	4	4	4	3.501.1-150.3NT100.00	0,15	eme	орная		knacca A-I nacca B30	Kr M ³	16,0	16,0	16,0	1
4	Ulum yémos 3y**	7	1	-	/	3.501.1-1503 34.00.00	0/	00	Wum			KF	124,2	129,5	124,2	
4	39#	7	7	7	1	3.501.1-13.3 34.00.00	2,1	18		орнатурная	класса А-І	Kr	14,6	14,8	14,6	1
	39K**	-	1	Ξ	1	3.501.1-150,3 34.00.00	2,2	Scene 306		Бетон		M3	21,7	21,9	21,6	1
	34K#	<u> </u>	1	-	1	3.501.1-150.3 34.00.00	2,2	1,3	Итого	1	масса А <u>-I</u> класса А-I	Kr	3179	3184	3/93	3
	Консоль тротуарная		L		L			Sen			класа ВЗ5	KI M3	<i>446,9</i> <i>3,0</i>	454,4 3,0	3.0	4
5	KT1	5	3.	6	3	3.501.1-146.3 KT1KT2 00.00	0,045	F	10/1 (0/10//	арматурная		Kr	51,8	51,8	51,8	۲,
6	KT2	_	3	-	3	3.501,1-146.3 KT.1KT200.01	0,053	C	ndsb	/ "	клосса А-І	Kr	37,9	37,9	37,9	
7	Перила		_	L	_	3,501.1-10.0-3.0016	0,16	1		אספת	वाग अंट पउरीटापत्र	Kr	522,1	547,9	522,1	5
8	Cmon8	-	 ,	Ļ	ļ.,	3.501.1-150 .1-194		-			оклеечная	MZ	6	<i>20</i>	20	+
	Участок монолитный Ум 4		4	4	4	3.501.1-150 .0-3.0006		1 2	идроиз	оляция	об мазочная	M2		40	40	1
3. 3.	3161 KPENNEHUR ". 501.1 - 150:0-3.0014" (150 MB POUBEDEN 6	1 3	50	1. 1 · 0 æ .	150	' 0 - 3, 0015 ;	7. 75 .	, 0	бъем	бетона	столбо.	6 c	M. 3.50	01.1-150.		

1 - длина примыкоющего пролетного строения

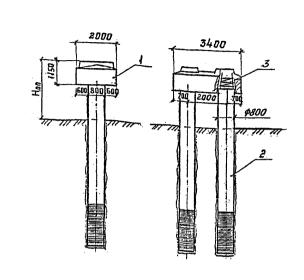
а. № подп. Подпись и дета Взам, ине. №

17

Cherry Charles

63	Наименование	1		,		204				7		7700		10		7	12	1	3	Обозначение документа	Mocco
۵.	пиинтеноочние	puc.	puc.	avc.	14°C	puc.	AIC.	puc	puc.	puç.	pijc.	pyc	pyc.	puc.	pyć.	BUC.	12 pvc. 1	pic.	ρις.	оокачение облугить	eð., m.
	Блок шкафной	-	-	-	-	-	-	_	-	-	-	-		-	-	-	-	-	-	_	-
/	314	1	1	-	1	1	_	1	1	1	1	1	-	1	1		1	1		3.501.1-150 . 3 3111.00.00	27,5
	ЗШн	1	_	1	1	_	1	1	1	1	1	-	1	1	-	1	1	-	1	3.501.1-150 .3 311.00.00	27,5
	3WK	1-	-	1	-	1	1	-	-	-	-	-	1	_	-	1	-	-	1	3.501.1-150.3 3111.00.00	27,0
T	ЗШК н	T-	1	-	-	1	-	-	-	-	1	1	•	-	1	-	-	1	_	3.501.1-150 .3 . 311.00.00	27,0
7	Насадка устоя	1-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		_
?	3HY1	1	1	1	-	1	-	-	-	_	-	-		_	-	-	-	_	-	3.501.1-150 .2 3441 00.00	26,6
1	3HY1#	1	1.	1	-	-	-	-	_	-	-	_	_	-	-	-	-	_	-	3.501.1-150 . 2 3.441 00.00	26,6
7	3441-27	T-	-	-	1	1	1	_	-	_	_	-		-	-	-	-	_	-	3.501.1-150 .2 3441 00.00	25,
1	3HY1H-27	1-	-	-	1	1	1	-	_	_		_		-	-	_	-	_	_	3501.1-150 .2 3441 00.00	25,
1	3HY1-1	T-	-	-	-	-	-	1	-	-	-	-		-	_	-	-	_	-	3.501.1-150 .2 3HY4 00.00	26,
1	3H41a-1	1-	-	=	-	-	-	1	_	_	-	-	_	-	-	-	-	_	-	3501.1-150 .2 3HY10000	26,
1	3 HY1-27-1	1-	-	-	_	_	-	-	1	_	-	-	-	-	-	-	-	_	_	3.501.1-150 .2 3HY1 00.00	26,0
1	3HY14-27-1	1-	-	-	-	-	÷	-	1	_	_	_	-	-	=	-	_	_	_	3.501.1-150 -2 3441 00.00	26,
	3HY1-34-1	T-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	3501.1- 150-2 3HY1 00.00	24,5
	3HY1w-34-1.	-	-	 -	-	-	-	-	_	1	-	_		-	-	-	-	_	_	3.501.1-150.2 3491 00.00	24,5
	3HY1:-34	1-	1-	-	-	-	-	_	-	_	1	1	1	-	-	-	-	_	_	3,501.1-150.2 3114100.00	24,7
	3HY1H-34 .	1-	-	1-	-	-	-	-	_	-	1	1	1	Ι=	-	Ι-	-	_	_	3.501.1-150.2 3HY1 00.00	24,7
	3HY1m-34-2	1-	<u> </u> -	-	-	-	_	-	_	_	-	-	-	1	1	1	-	_	-	35011-150.0-3.00.10	_
	3HY111-34-2C	_	1-	T-	_	-	<u> </u>	1-	_	_	-	-	_	_	-	-	1	1	1	3.501.1-150.0-3.00,10	-

(do)


3.501.1-150 .0-3.0006

Лист 3

Анв. Na подп. Подпись и дата Взам. инв. N

3.501.1- 150 .0-3.0006

						4ecin60 501-91				NENTHO V 821-1	e cripo	Cepuu 3.			A T # =
	Hai	именово	THUE	Изм.	mug	P 102 P4	, dauho	1, M.		длино	U, M.	funb. N 739)), длиноцм.	Серии 3.5 (инв. N1298)), 2 AUH
						3,6	27,		23,6	27,6	34,2		4,2	34,8	
- c	1				прямая	кривая	прямая	кривая		рямая			кривая	прямая	Kpus
, , ,	NOK		acca 830	M3	22,0	22,1	22,0	22,1	22,0	22,0	22,0	22,0	22,1	22,0	22
i	Kago-	Сталь	KNACCO A-II	Kr	2568	2584	2568	2584	2568	2568	2568	2568	2584	2568	250
3 140	04	арматурная	класса Д-[Kr	134,2	138,6	134,2	138,6	134,2	134,2	134,2	134,2	138,6	134,2	13
	numa	бетон кл	acca B 25	M ³	0,42	0,42	0,42	0.42	0,42	0,42	0,42	0,42	0,42	0,42	0,4
2 /	20my	Cmd16	класса А-1	KΓ	77,6	77,6	77,6	77,6	77,6	77,6	77,6	77,6	77.6	77.6	77
3 9	HOR	арматурная	KNACCA A-I	KF	20,2	20,2	20,2	20,2	20,2	20,2	20,2	202	20,2	20.2	20
3	,,	Бетон Кла	acca B30	M3	1,2	1,24	1,2	1,24	1.2	1,2	12	1,2	1,24	1,2	1,
Dem	Sum	Сталь	классаЯ-[[Kr	124,4	126.8	124.4	126,8	124,4	124,4	124,4	124,4	126,8	124,4	12
20.	_	арматурн ая	Kracca A-I	Kr	6,2	6,3	6.2	6,3	6,2	6,2	6,2	6,2	6,3	6,2	6,
263		Бетон кла	он класса В30		21,2	212	20.2	20,2	21,4	21,4	19,8	20,0	20.0	-	
3 Ha	садха	Сталь арматурная	KNACCAA-11;	Kr	2297,4	2297.4	2280.8	2280,8	2303,4	2295,8	2273,4	2266,0	2266,0		┼──
2	}	арматурная	Knacca A-T	Kr	667.4	667,4	667,4	667.4	667.4	667,4	667.4	667.4	667.4		
-		Бетон		M3	44,8.	45,0	43,8.	44.0	45.0	45,0	43,4	43,6	43,8	23,6	2
4.	mozo		Knaccast.	KI	5067	5086	5051	5076	5073	5066	5043	5036	5054	2770	27
		арматурная		Kr	828 ;	833	828	833	828	828	828		833	161	-
_		Frman KA	acca 825	M3	6.2	6,2	62	62	6,2	6,2	6,2	828 6,2	6,2		16.
3 2 Cr	16IKU	Сталь	Kidcca A-il	4		121	121	121		121	121			0,5	0,3
18 3	1	арматурная		KF	121	121		121	121			121	121	.21	21
\$ 5 -		Бетон	7074-00- 37 1	M ³	7	1 .	1	1	1.	1	1			1	1
3 5 1/	באלטפו		Knacca A-II	4-								(83	<u>, </u>	30,1	30,
200		армотирная	класса А-Т	Kr	-							+213	<u> </u>	2552	255
	*	<u></u>	Knacca A-II	KT	52,6	52,6	52.6	52,6		62.6	521	52.6		706	70
Cma	104	арм ат ур ная	класса А-І	Kr	89,9	89.9	89,9	89.9	32,6	<i>52,6</i> 89,9	52,6 89,9	52,6 89,9	52, 6 89, 9	54,0 89,9	85
J, u.	3.0	пракат		KF	786.1	820,5	786,1	820,5	786,1	786,1	786.1	786.1	820,5	786,1	820
		Крепёжсны	е изделия	KF	25	25	25	25	25	25	25	25	25	25	2
2идро	430-	обмазочн		MZ	63	63	63	63	63	63	63	63	63	63	6.
រាំនប	1	оклеечна.		ME	1.5	15 03cmb a B mui cenuu.:	15	1.5	15	15	15	15	15	15 - 130 0-3	1

DEBEMBI DODOM

Haum	енова	HUE	Изм	Кол.	
Menezobe-	Бетон к	NACCR B 25	м3	3.52	
насарки тон сборный	Сшаль	киасса У ∏У <u>€</u> Ё	SH	758	
~	-четриче- РВН	класса А-І	HS	25	
Бетон омон	เอภขนบธิละ	ия класса взо	МЗ	3.3	

Cheuncoukauna

<i>103</i> .	Наименование	Kon.	Обозначение документа	Macca, m.
1	Насадка ЗН	1	3,501.1- 150 -2 34 0000	8,8
2	CMONE C	2	3501.1-1501-2	
3.	Участок монолитный УМ н	1	3.501.1-150.0-3.0006	

1. Марки столбовопределяются расчетами по мите-

риалу и грунту при привязне проекта. 2. При соответствующем технико- экономическом обоснованиц возможно использование насадки в монолитном исполнении. В этом случае армирование выполняется акалогично армированию сборной насадки с установкой доролнительных гори-ЗОНТАЛЬНЫХ СТЕРЭЖНЕЙ диап. 16 мм класса А-П по конту-

ру голоб свай и в области их арматурных выпусков по верху насадки.

3.501.1-150 . 0-3.0007 Hay omd Trayenko office H HOHME MUPOHOBA Led

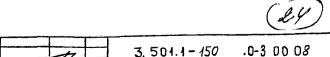
ГАЛИКИСЛЕ СЕРЕБРЯНСКИИ

RPOBERUN Ersk

АКЗНОВАА Испрания Сердюк

อุกับหญ่ม 9,3; 11,5 M (CIEMA I)

Cmagus Jucm JucmoB Промежениотная опора под пролешные строения :Ле нгипротрансмост


Спецификация

703.	Наименование	Kon.	Обозначени с документа
1	Hacadka Hm	7	3,501,1-150,0-3 00 11.
2.	Cmono C	4	3,501.1-150.1-2

Объемы работ

Наимен	нован	n 6	Цзм	Кол,	
Henezoōe-	бетан кл	пясса В 25	м3	11,6	
мон моноли т н,	Cmanb	RAACCAA-IA-II	КS	1391	
ווויטרושַאנוו	ная.	K VHCCH Y-T	КS	410	1

Морки столбов определяются расчетами по материалу и грунту при привязке проекта.

Адч. стд Ткоч снко виде Никонтр Миронова виде Галинае пр Серебрянски: В Рук. 2Р Алябьева В

Провени Брук Исполнил Сердюк Промежчточная опора под прохетные строения длиной 11.5; 13.5и 16.5м (Сфемя 2)

0-3 00 08 Decree 3 Decree 4

Р 1 Ленгипротраномост

Опора предназначена под железобетонные пролетные строения длиной 4,5м. по типовой дохументации серии 3,501.5-146, расположена на кривой радиусом 600м. в суровых. климатических условиях. Вечнотерзлые грунты используются в оттаявшем состоянии (принцип)!), столбы забуриваются в скальный 2044111.

2. Расчеты выполнены в соответствии с нормативными документами: CHUT 2.05.03-84, CHUT 2.02.03.85 CHUTE-18-76 U BCH 187-76.

Apolepka necywed cnocobnocmu emonoob no narepuany определяет тип армирования, па грунту - длину погружения столбоб. Длина столба: 0,1+1,85+6,0+23=1025, с округлением в большую сторону - 11. , парка

стелба принята СНО-1.

Прочность, выносливость. -mpeuuhocmoukocmb Marepudid

Перемещение BEDIA DOOPH

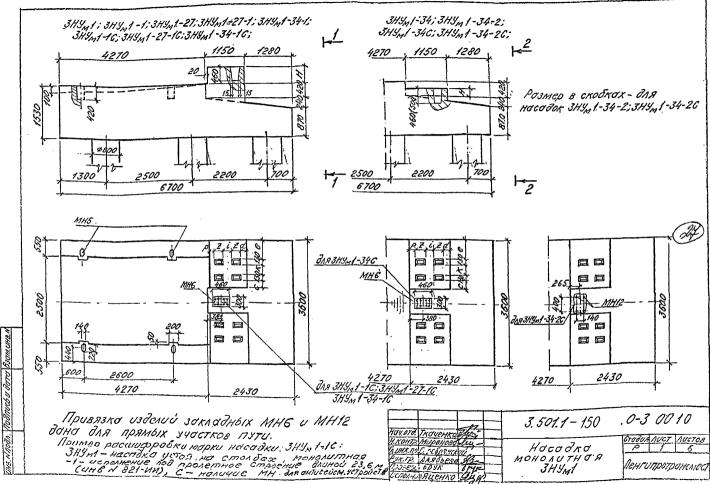
_}				
B cm	UA DAGE	Tun	_llo:	≤Up
N MH TC	M MH.M TC·M	apriupo Bahug emonoob	llu	Up cn
<u>0,198</u> 20,15	0,065		0,3	2,5
0,156	0/37	1 (14932,40)	
0,104	0,093 9,48		•	
	N MH 72 0.198 20,15	MH nH-m 7E rc·m 0.198 0.065 20,15 6,62 0,156 0,137 15,94 14,00	N M Bahug M M Bahug MH MH MA MA MA MA MA MA	N M dopropo Eddug M MH MH MH MM MM MM MM

Характеристики грунтовоснования

N CAOS	Грунты	MA/H TC/M3	R MH/H ² TC/M ²	٤	Rem HH/M2 TC/M2
1	Торф хорошо разланившийся, мерэпый, при эттаивании насьященный бодой	-	1.	1	-
2	CYSNUMOK MEDINDIÓ POJCCU ÓNOÙ MEKCMYPY PPU OMMAUBAKUU MYEONACCMUNKUL	2.0	0,015 1,5	-	-
3	TECOK HERKUS, MEANIND MACCUSHOS TEKTIF D APU OMM AUBAHUU MANOSMOMNISIA	0,019	0,025 2,5	0,056	-
4	Граниты трещинобатые :	0,024 2.4	0.05 5.0	-	-
5	Граниты сяабо трещиноватые	26	-	-	0.98

TRAYEMKO

Angoseba


Н. КОНТА МИДОНОВ

TALLANCE DE CEPESBONCEUE

3.501.1- 150 .0-3.00 09 Пример расчета опоры Стадия Пист Пистов Промежијточная опора под пролетное строение Ленгипротрансмост длиной 11,5 m. (схема 2)

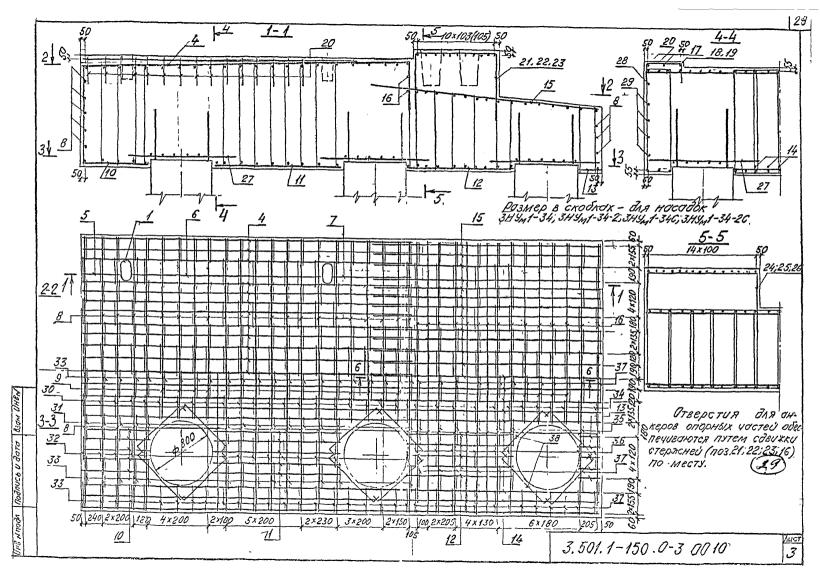
одл. Подпись и дата Взам.инв.№

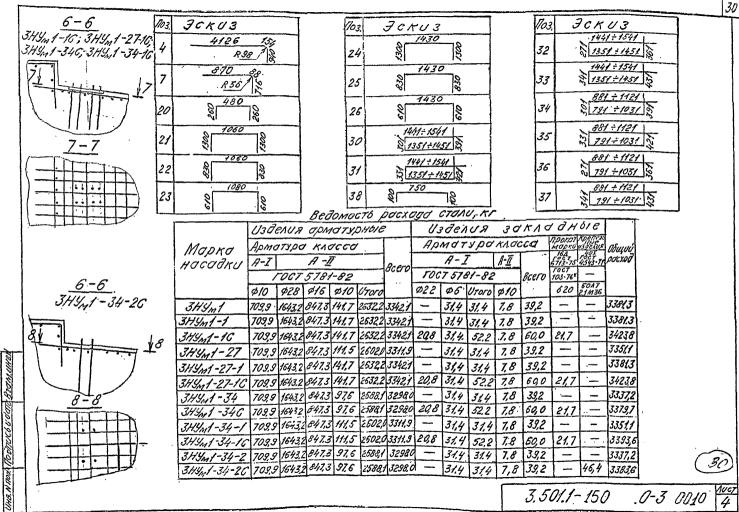
	T	700	4610			Pacsem_no				TO OCHODO!	UA CMOSÓ	y HO	CAPONNOVO.	परपुभा मस्य	DYSKY.	
m _o	Ke	Ma	K	Kn	KeH				Vmax +	G € Mo,	0					
1	0,17	3	0,7	1	1	Nmax	Qh	Mh	G	Nmux+G	Rem	F ₃	1/4	max''	Ke	Red 0,4 03.
						MH TC	MH TC	MHM	MH	MH TC	MH/M2 TG/M2	,	M ²	M ST. D.		本 Me Me Me 14,57.6
						1,89	0,021 2,1	0,22	0,11	2,00 204	3,81 1000			7,126 .	0,98	6,53 666
			Pac	4em	по не	cyuseti c	пособы	ocmu z	рунта	मय हैकार्वेह	эгиваю	щую	нагр	43K4	Nmin + G	≤moP3
					HA F	сдвиг 13 = K3 M3.	Reuhs		HÖ	сусатие.				,	T.	
				u,	столо спесча Заполн (К.• п	δα πο κομπιαι Νο-цегιεμιπμο ιμτειεμ οκβακι 13 = 0,06)	(M) 2man60 IM HUM 30 KOHMA (HO) 1006epg	e necyano- inonnumene kiny e ookse voen wo ekêl	SOME SECTION DOK	pyr eman P3 = 4 [(d	скальной ба : +2hstgy	- <i>nop</i> u)²- de	оды З] R .	Vmin	G	W. C
			,	М	RE MH/A TC/M	P3	R	e F	d to	Ψ	R	,	ρ_{3}			Nmin + G
			-							MH/ 7c/A		1/M2 -/M2	MH mc	MH TC	M H TC	
				2, 5	1 <u>9,</u> 200					466 20	· -	73	2,00 204	0, <u>040</u> -4,1	9,0	8 0 <u>.048</u> 4,9
	Po bo	acuei Inyuu	т по Вани	не 19	yuşeü	cnocoбно nn Qn ≤ K	cmu zp	yuma u + n, Ni"	d CUNGI,	морэзного	==	<u>-</u>		<u> </u>	_1	
	2	г—Н -		→ e∂.	$Q_n''=K_nK_{cn}$	D.	Q"=1,4	i	H 17, /	V"= on A	"- KM.	2"+				
		$\frac{1/M^2}{/M^2}$	1	M ²	MH	MH	MH	M/ mc	=0,9 M.	N" = 1,2 Q MH TC	1 + 1, 1 M	4				
	1.	1 <u>18</u> 2	10	7	121		1,4			15 1,42 3 142						
			i		1	1	1 101	44	9 1 72	3 145	14	~		1	1.1- 150	

Т

1-1 3600 1500 500, 1500
800 2000 600
2-2 3600 , 1500 , 500, 1500

800 2000 800


POCYETHOR PO3MEP61, MM Насадка пременяться ий. Объем MODKO CEÚCMUYdetono HOCOOKU HOCTS, SOAAOB M3 229 3.561-146; N556 7:8:9 3H4m1 520 510 210 303 250 250 75 490 34,97 23.0 H821- HH 7:8; 3H4m1-1 2 520 410 310 435 130 370 65 560 3523 3 9 3H4M1-16 7:8:9 25,93,501.1-146 3H9m1-27 520 510 210 285 270 230 75 90 33,61 5 7:8 3441-27-1 270 821-44 520 410 310 435 130 370 65 520 35,09 9 6 3HYM1-27-16 7:8 3H9m1-34 7 3.501-49 N739 520 41 0 310 325 240 260 85 290 32.85 9 3H4m1-34G 8 7:8 343/1-34-1 9 520 410 310 435 130 370 65 20 3337 N821-UU 34447-34-10 9 10 3119,1-34-2 11 336 3.501.2-145 610 215 415 255 310 190 85 200 32,54 12 9 3HYm 1-34-2C N1298

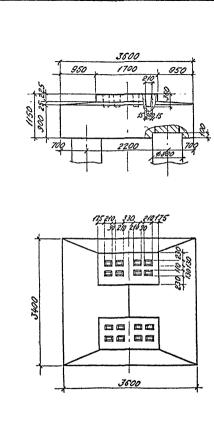

Спецификацию элементов на насаку ст. на листах 5и в.

3.501.1-150 .0-3 0010

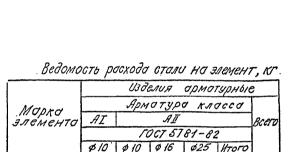
инампода. Поблись и дотавзо

<i>1103</i> ;	0003HOU	'eHUE .	Ноименование	/	2	3										~
			Coppy HOLE exukuso	7	2	-	7	3	6	7	8	9	10	11	12	TPUMEY
1	3.501.1-150	6 MHSOO	Usdenue soknadhoemus.		4	4	4	4	4	4	-	-				
2	" UNE N 821-		MH6	-		1	_	=	1	7	4	4	4	4	4	
3	3.501.2-143-1-1-K		MH12	_	1_	-	_	_	<u>-</u>	_	/	-	_	-	_	
	107771	17,0718,177200	Детали .	_			_		_		-	-	-	_	4	
4	 	···	\$28 A-11 [OCT5 781-826-5720	25	25	25	25	25	25	25	25	25				
5	1		\$16A-110075781-826=480	2	2	2	2	2	2	2	20	20	25	25		25,21KF
6			C=2400					2	-	وع	2	2	2	2	2	0.76KF
7			C=1680	2	2	2	2	2	2	2	2	2	2	2	2	3,79xr
8			C=3560	56	56	56	56	56	58	56	52	600	2	2	2	2,65xr
9			€=1200	12	12	12	12	12	12	12	12	12	06	36	2 56 12	5,62KF
10			l=860	10	10	10	10	10		10	10	10	12	10	12	1,9KF
11			l=1620	10	10	10	10	10	10	10	10	10	10	10	10	1,36KF
12			e=1350	10	10	10	10	10	10	10	10	10	10	10	10	2,56KI
13			€=250	10	10	10	10	10	10	10			10	10	-	2,13Kr
14	J		\$28A- [] [DCT5781-82 C=6660	20	20	20	20	20		20	20	20	20	20	10	0,40Kr
15	<u> </u>		L=3060	25	25	25	25	25	25	25	25	25	20	25	-	32,17Kr
16			\$16A-\$10C75781-828-3560	7		17	17	17	17	17	17	17	17	100	25	14,78KI
17			l=2900	-	4	4	4	4	4	4	4	4	1	1.	17	5,62x1
18			<i>l-490</i>	2	2	2	2	2	2	2	2		2	7	4	4,58KF
19			C=2420					2	2	2			2	2	12	QTTKT
20			\$104-11 FOCT5781-828=1000	30	30	30	30	30	30	30		30	-	2	2	3.82K
21			l=3660	30	30	30	-	30	30	_	-	-	30	50	30	0.62KI
,										-		-		_	二	2,27k1

<u>31</u>


3.5011-150 0 7

liss Noods, Itadinuc**s u dars** Ssan ans d

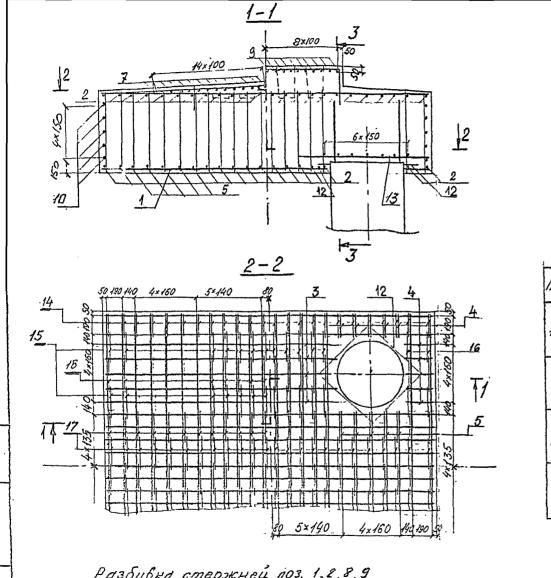


12%

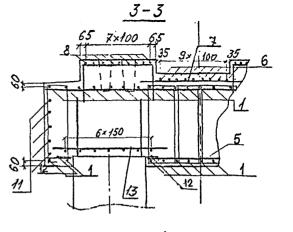
3.501.1- 150 .0-3 00 10 6

noda. Vlodnucé u ótra Baga unem

409,8


HM

3400


385, 830

| 33 | 1 | 150, 0-3 00.11 | 150, 0-3 00

326,4 987,9 1391.0 1800,8

Разбивна стержней поз. 1,2,8,9 уточняется по месту при образовании гнезд под анкера опорных частей.

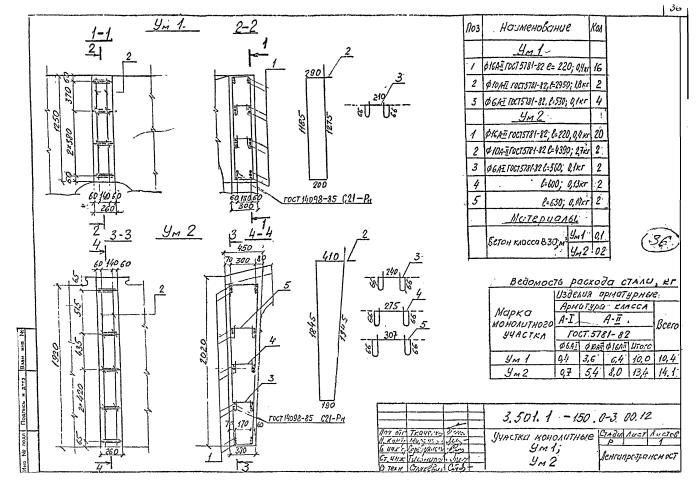
ведомость деталей

703.	3cku3	<i>1703</i> .	Эскиз
15	1060	6	1550 30 30
16	1160	8	1640 054
17	1160	9	740 93 94
18	1160	12	2 750 ° 2

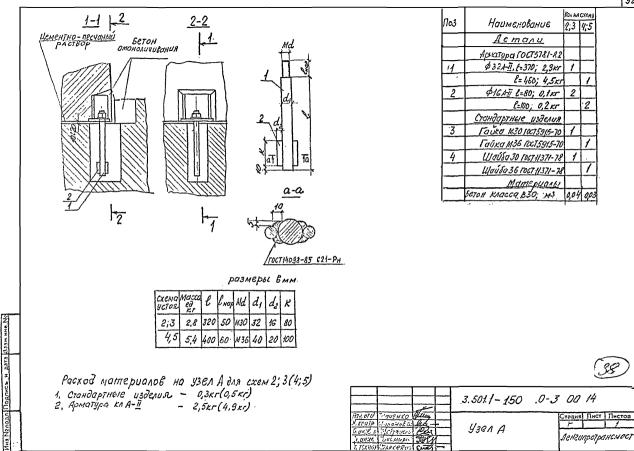
34

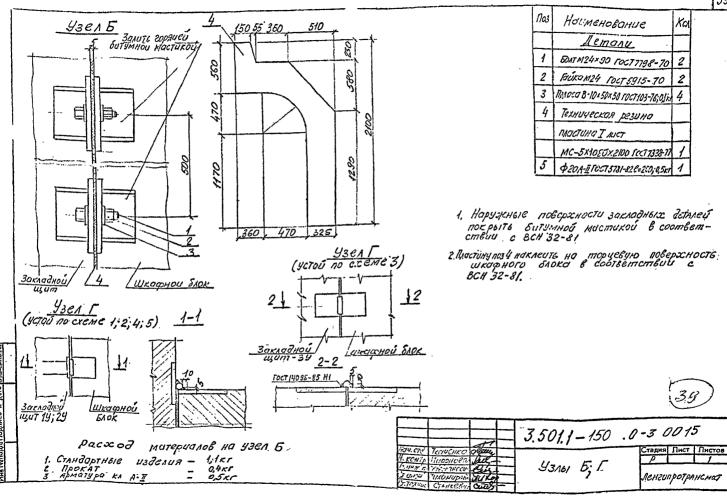
3,501.1 - 150 .0-3 00.11

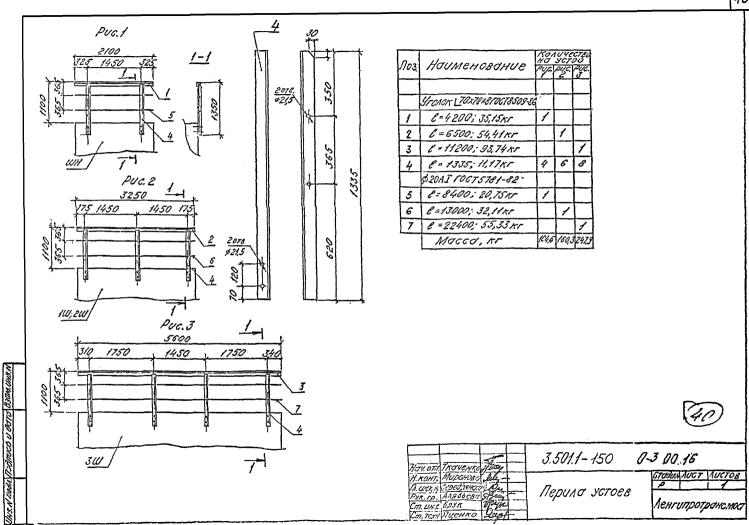
MUCT


Специфи	KAUUA	элементов на нас	a d	eg Hm
	1703.	Наименование	Kon	Прим
		Aemanu		
	1	\$ 25A- <u>11</u> FOCT 5781-82		
		l= 3570	36	13,74 K
	2	l= 3370	38	12.97x
	3	\$16A-11 \(\text{FOCT 5781-82}\)		
		C=1600	10	2.53.
	4	l= 270	40	0,43*1
	5	l= 1120	10	1.77 Kr
	6	\$10A-TIFOCT 5781-82 &-3100	10	1.92 kr
	7	l=1420	17	0.88KF
	8	l= 2540	16	1.57xr
	9	l= 1640	20	1.02 Kr
	10	\$16A-11 TOCT 5781-82 &=3370	10	5,32x1
	11	l-3570	10	5.64x1
	12	l= 950	16	1,5 KF
	13	l= 1500	56	2.37 Kr
	14	\$10A-I \(\tag{0}\)(1 5781-82 &-276	48	1.7 KT
	15	l-2980	56	1.840
	16	l = 3020	28	1.86x1
	17	l= 2920	96	1.8xr
		Материалы		
		Бетон класса В30	11,6	M3

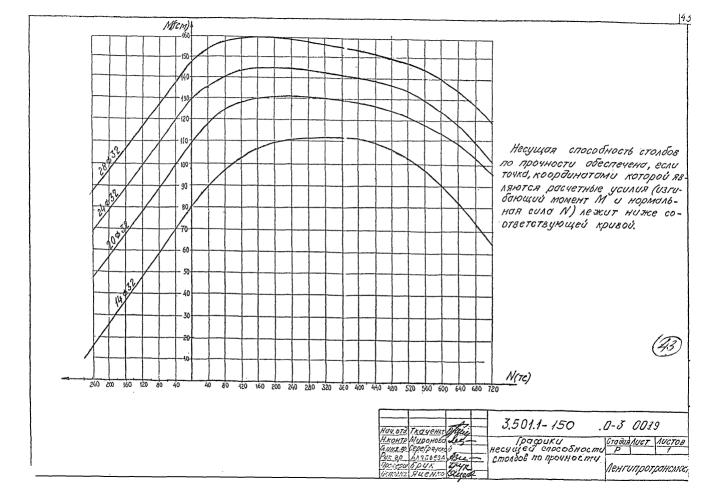
Пребования к материалам приведены в пояснительной Записке

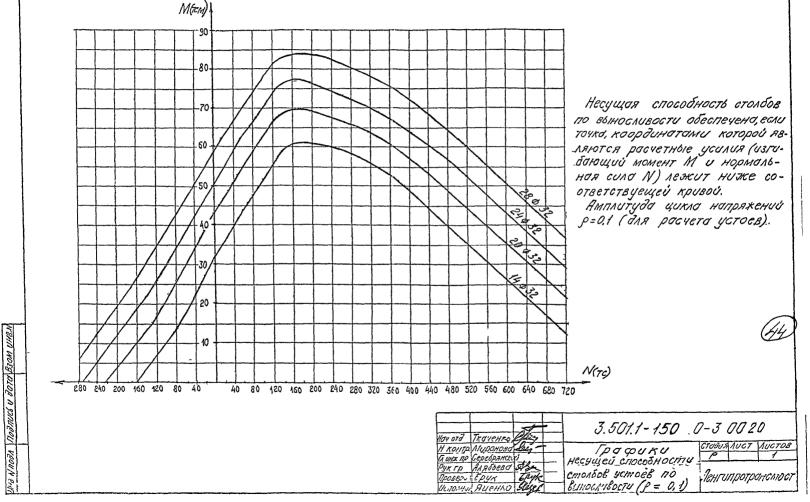

(35)

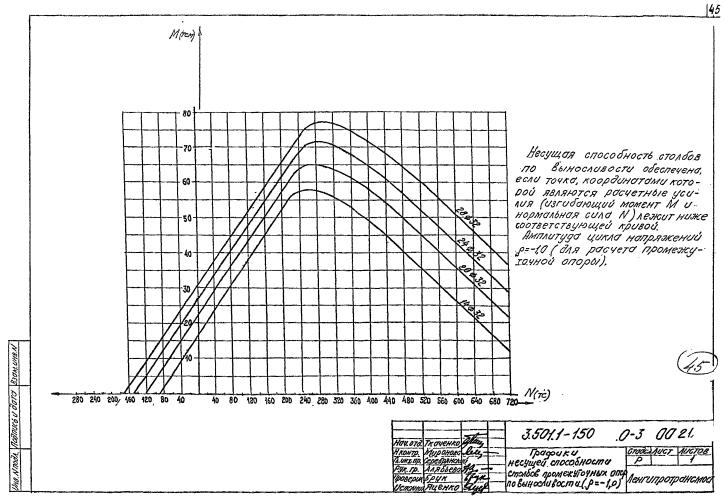

00.44


3.501.1-150 0-3 0011

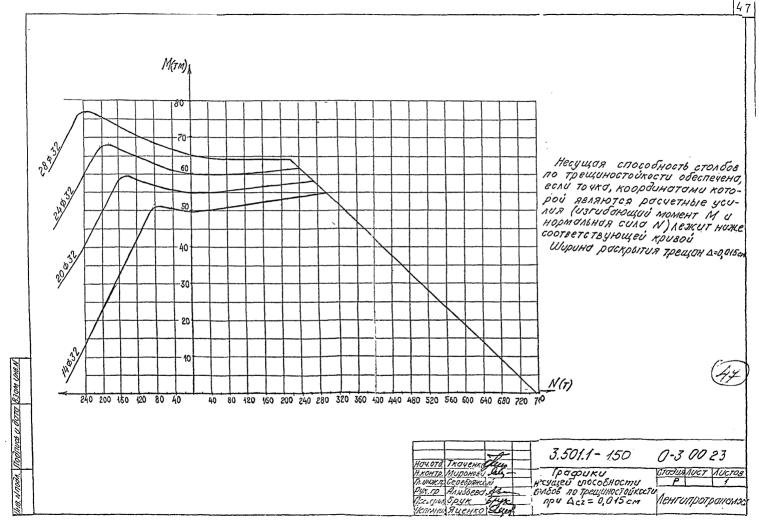
37


	CXEM	Anung npumbika Payero nponethoo crpoemun, m	lo M	DAD CTONDOS	DONYCKOEMOR BEAU YUHO POCKAN TUR TPEWUH-0,1; 0,15; 0,2 MM						
					 				2000MPR>300M PAGYETHAR CEUCMUYHOCIO		
>					POCYETHOIÚ CAYYOÚ						
					1	2	1	2	7	2	
	1	9,8; 11,5	0,85	1	14932		14932	14ø32	14032		
				2	14032	14932	14Ø32	14ø32	14\$32	14032	
			1,85	1	14032	14032	14032	14\$32	14032	14ø32	
				2	14032	14\$32	14032	14932	14032	14032	
			2,85	1	20032	. j ø32	14032	14ø32	_	1	
				2	14032	14032	14932	14032	-		
	2	13,5; 16,5	0,5	1	14032	14ø32	14932	14032	14\$32	14932	
В				2	14032	14032	14032	14\$32	14932	14032	
			1,5	1			 		14932		
				2_	14032	14032	14032	14032	14032	14032	
0			2,5	1	20\$32	14032	14032	14032			
\ \				2	14032	14032	14032	14 ø 32			
0	3	23,6 27,6; 34,2	1,1	1.	14 Ø 32	 	 		20Ø32		
1			2,1	2:3					14 \$32		
				1		 		 	24932	 	
				2;3		 	1	·	14932		
				1	 	1	+	+	20032	 	
				2:3		 	1	1	14932	+	
			2,1	7					24932	 	
18			<u> </u>	2:3	20002	14932	20032	14932	24432	20032	
чной от	1	9.3; 11.5	1,1	_		14 032					
рамежуточной отры	2	11,5÷ 16,5	98÷ 38	-	14 \$ 32						


UHB, NIDON, TOGITUCS UTOTO B3CM, UHX


EXEMBI YETOEB N1.2 1/3 PAT 12 РЯТ 3.501.1-150 .0-3 0017 HOU OTT, TROUGHS. Jun.
HINOHTO, MUDONOSS. JUN.
A. WART SEDESPENCY.
PYR. TP. ANNOSEED JUN.
HIDOSOEU F. PYR.
VERTHUN FUCHKO JUN. Cradus AUCT AUCTOS TUNGI

OPMUPOBOHUR CTONTOB


Пенгипротранстос



UHB. N TIODA, V TOUTTUK S. U DUTT B3CH1 UHB M

