Государственное санитарно-эпидемиологическое пормирование Российской Федерации

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАТОРЫ

ОПРЕДЕЛЕНИЕ ОСТАТОЧНЫХ КОЛИЧЕСТВ ПЕСТИЦИДОВ В ПИЩЕВЫХ ПРОДУКТАХ, СЕЛЬСКОХОЗЯЙСТВЕННОМ СЫРЬЕ И ОБЪЕКТАХ ОКРУЖАЮЩЕЙ СРЕДЫ

Сборник методических указаний

MYK 4.1.1941-4.1.1954-05

Издание официальное

ББК 51.21 О37

- О37 Определение остаточных количеств пестицидов в пищевых продуктах, сельскохозяйственном сырье и объектах окружающей среды: Сборник методических указаний.——М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2009—140 с.
 - 1. Сборник подготовлен Федеральным научным центром гигиены им. Ф. Ф. Эрисмана (академик РАМН, проф. В. Н. Ракитский, проф. Т. В. Юдина); при участии специалистов Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека. Разработчики методов указаны в каждом из них.
 - 2. Рекомендованы к утверждению Комиссией по государственному санитарно-эпидемическому нормированию при Федеральной службе по надзору в сфере защиты прав потребителей и благополучия человека.
 - 3. Утверждены Главным государственным санитарным врачом Российской Федерации, Первым заместителем Министра здравоохранения Российской Федерации, академиком РАМН Г. Г. Онищенко.
 - 4. Введены впервые.

ББК 51.21

Формат 60х88/16 Печ. л. 8.75

Тираж 100 экз.

Тиражировано отделом издательского обеспечения Федерального центра гигиены и эпидемиологии Роспотребнадзора 117105, Москва, Варшавское ш., 19а Отделение реализации, тел./факс 952-50-89

УТВЕРЖЛАЮ

Главный государственный санитарный врач Российской Федерации,

Руководитель Федеральной службы по надзору в сфере защить прав потребителей и благополучить и добака

Г.Г. Онищенко

МУК 4.1. Дата введения:

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

но измерению концентраций хизалофоп-П-этила в атмосферном воздухе населенных мест методом высокоэффективной жидкостной хроматографии

Настоящие методические указания устанавливают метод высокоэффективной жидкостной хроматографии для определения в атмосферном воздухе массовой концентрации хизалофоп-П-этила в диапазоне 0,004 – 0,04 мг/м³.

Хизалофол-П-этил - действующее вещество препарата МИУРА, КЭ, (125 г/л) производитель ЗАО Фирма «Август».

(R)-2-[4-(6-хлорхиноксалин-2-илокси)фенокси] пропионовой кислоты этиловый эфир (IUPAC)

C19H17CIN2O4

Мол. масса 372.8

Бесцветное или светло-бежевое кристаллическое вещество без запаха. Температура плавления $76,1-77,1^{\circ}$ С. Давление паров при 20° С: $1,1\times10^{-4}$ мПа. Растворимость в органических растворителях (г/дм³): ацетон, этилацетат, ксилол — более 250; 1,2-дихлорэтан — более 1000 (при 22-23°С); метанол — 34,87; н-гептан — 7,17 (при 20° С). Растворимость в воде при 20° С — 0,61 мг/дм³.

Хизалофоп-П-этил стабилен в водной нейтральной и кислой средах, не стабилен в щелочной среде: DT50 - менее 1 суток (pH 9), устойчив к нагреванию, а также в органических растворителях.

Агрегатное состояние в воздухе - аэрозоль.

Краткая токсикологическая характеристика:

Острая пероральная токсичность (LD 50) для крыс - 1182-1210 мг/кг; для мышей 1753-1805.

Область применения препарата

МИУРА, КЭ - послевсходовый гербицид для борьбы с однолетними и многолетними злаковыми сорными растениями.

Ориентировочный безопасный уровень воздействия (ОБУВ) хизалофоп- Π -этила в атмосферном воздухе - 0,01 мг/м³.

1. Погрешность измерений

Методика обеспечивает выполнение измерений с погрешностью (δ), не превышающей \pm 25%, при доверительной вероятности 0.95.

2. Метод измерения

Измерения концентраций хизалофоп-П-этила выполняют методом высокоэффективной жидкостной хроматографии (ВЭЖХ) на обращенной фазе с ультрафиолетовым детектором.

Концентрирование хизалофоп-П-этила из воздуха осуществляют на бумажные фильтры "синяя лента", экстракцию с фильтра проводят этанолом.

Нижний предел измерения в анализируемом объеме пробы - 1 нг.

Определению не мещают компоненты препаративной формы.

3. Средства измерений, вспомогательные устройства, реактивы и материалы

3.1. Средства измерений

Жидкостной хроматограф с ультрафиолетовым Номер в Государственном детектором с переменной длиной волны (фирмы Waters, реестре средств измерений США)

15311-02

Весы аналитические ВЛА-200 ГОСТ 24104

Пробоотборное устройство ОП-442ТЦ (ЗАО "ОПТЭК", г.

Санкт-Петербург) или аспирационное устройство ЭА-1 TY 25-11-1414-78

Барометр-анероид М-67 TY 2504-1797-75

Термометр лабораторный шкальный ТЛ-2, цена деления ТУ 215-73Е

1°С, пределы измерения 0 - 55°С

Колбы мерные вместимостью 100 и 1000 см³ **FOCT 1770**

Пипетки градуированные 2-ro точности ГОСТ 29227 класса

вместимостью 1,0, 2,0, 5,0, 10 см³

Пробирки градуированные вместимостью 5 или 10 см3 **FOCT 1770**

Цилиндры мерные 2-го класса точности вместимостью ГОСТ 1770

50. 500 и 1000 см³

Допускается использование средств измерения с аналогичными или лучшими характеристиками.

3.2. Реактивы

Хизалофоп-П-этил с содержанием действующего

вещества не менее 98,3% (ВНИИХСЗР, Россия)

Вода бидистиллированная, деионизованная или ГОСТ 6709

перегнанная над КМпО4

ТУ 6-09-4326-76 Ацетонитрил для хроматографии, хч ГОСТ Р 51652 или Спирт этиловый ректификованный

ΓΟCT 18300

Допускается использование реактивов иных производителей с аналогичной или более высокой квалификацией.

3.3. Вспомогательные устройства, материалы

Бумажные фильтры "синяя лента", обеззоленные	ТУ 6-09-2678-77
Воронки конусные диаметром 30-37 мм	ΓΟCT 25336
Груша резиновая	
Колбы грушевидные на шлифе вместимостью 100 см ³	ΓΟCT 10394
Мембранные фильтры капроновые, диаметром 47 мм	
Насос водоструйный	ΓΟCT 10696
Пробирки центрифужные	ΓΟCT 25336

Ротационный вакуумный испаритель ИР-1М или ТУ 25-11-917-74 ротационный вакуумный испаритель В-169 фирмы Buchi,

Швейцария

Стаканы химические, вместимостью 100 см3

FOCT 25336

Стекловата

Стеклянные палочки

Набор для фильтрации растворителей через мембрану

Установка для перегонки растворителей

Хроматографическая колонка стальная, длиной 150 мм, внутренним диаметром 4,6 мм, содержащая Symmetry® C18, зернением 5 мкм

Шприц для ввода образцов для жидкостного хроматографа вместимостью 50 – 100 мм³

Допускается применение хроматографических колонок и другого оборудования с аналогичными или лучшими техническими характеристиками.

4. Требования безопасности

- 4.1. При работе с реактивами соблюдают требования безопасности, установленные для работ с токсичными, едкими, легковоспламеняющимися веществами по ГОСТу 12.1005.
- 4.2. При выполнении измерений с использованием жидкостного хроматографа соблюдают правила электробезопасности в соответствии с ГОСТом 12.1.019 и инструкцией по эксплуатации прибора.

5. Требования к квалификации операторов

К выполнению измерений допускают специалистов, имеющих квалификацию не ниже лаборанта-исследователя, с опытом работы на жидкостном хроматографе.

6. Условия измерений

При выполнении измерений соблюдают следующие условия:

- процессы приготовления растворов и подготовки проб к анализу проводят при температуре воздуха (20±5) ⁰С и относительной влажности не более 80%;
- выполнение измерений на жидкостном хроматографе проводят в условиях, рекомендованных технической документацией к прибору.

7. Подготовка к выполнению измерений

Перед выполнением измерений проводят очистку ацетонитрила (при необходимости), подготовку подвижной фазы для ВЭЖХ, приготовление растворов, кондиционирование хроматографической колонки, установление градуировочной характеристики, отбор проб.

7.1. Очистка ацетонитрила

7.1.2. Очистка ацетонитрила

Ацетонитрил кипятят с обратным холодильником над пентоксидом фосфора не менее 1 часа, после чего перегоняют, непосредственно перед употреблением ацетонитрил повторно перегоняют над прокаленным карбонатом калия.

7.2. Подготовка подвижной фазы для ВЭЖХ

В мерную колбу вместимостью 1000 см³ помещают 300 см³ бидистиллированной воды, добавляют 700 см³ ацетонитрила, перемешивают, фильтруют и дегазируют.

7.3. Кондиционирование хроматографической колонки

Промывают колонку подвижной фазой (п. 7.2.) при скорости подачи растворителя 1 см³/мин до установления стабильной базовой линии.

7.4. Приготовление градуировочных растворов

7.4.1. Исходный раствор хизалофоп-П-этила для градуировки (концентрация 1 мг/см³)

В мерную колбу вместимостью 100 см³ помещают 0,1 г хизалофоп-П-этила доводят до метки ацетонитрилом, тщательно перемешивают. Раствор хранится в холодильнике в течение 3-х месяцев.

Растворы № 1-5 готовят объемным методом путем последовательного разбавления исходного стандартного раствора.

7.4.2. Раствор № 1 хизалофоп-П-этила для градуировки (концентрация 10 мкг/см³)
В мерную колбу вместимостью 100 см³ помещают 1 см³ исходного стандартного раствора хизалофоп-П-этила с концентрацией 1 мг/см³ (п. 7.4.1.), разбавляют ацетонитрилом до метки. Раствор хранится в холодильнике в течение 3-х месяцев.

7.4.3. Рабочие растворы № 2-4 хизалофоп-П-этила для градуировки (концентрация 0.05 - 0.5 мкг/см³) В 4 мерные колбы вместимостью 100 см³ помещают по 0.5, 1.0, 2.5 и 5.0 см³ стандартного раствора №1 с концентрацией 10 мкг/см³ (п. 7.4.2.), доводят до метки подвижной фазой (приготовленной по п. 7.2), тщательно перемешивают, получают рабочие растворы №№ 2 - 5 с концентрацией хизалофоп-П-этила 0.05, 0.1, 0.25 и 0.5 мкг/см³, соответственно.

Растворы хранятся в холодильнике в течение 3-х суток.

7.5. Om6op npo6

Отбор проб атмосферного воздуха проводят в соответствии с требованиями ГОСТ 17.2.4.02-81 "ОПА. Общие требования к методам определения загрязняющих веществ в воздухе населенных мест". Воздух со скоростью 2 - 5 дм³/мин аспирируют через бумажный фильтр "синяя лента", помещенный в фильтродержатель.

Для измерения концентрации хизалофоп-П-этила на уровне 0,8 ОБУВ атмосферного воздуха необходимо отобрать 12,5 дм³ воздуха.

Срок хранения отобранных проб, помещенных в полиэтиленовые пакеты. в холодильной камере при +4 0 C - 5 дней.

7.6. Установление градуировочной характеристики

Градуировочную характеристику, выражающую зависимость площади пика (отн. единицы) от концентрации хизалофоп-П-этила в растворе (мкг/см³), устанавливают методом абсолютной калибровки по 4-м растворам для градуировки №№ 2 - 5.

В инжектор хроматографа вводят по 20 мм³ каждого градуировочного раствора и анализируют в условиях хроматографирования по п. 7.6.1. Осуществляют не менее 3-х параллельных измерений. Устанавливают площадь пика хизалофоп-П-этила.

7.6.1. Условия хроматографирования

Измерения выполняют при следующих режимных параметрах:

Жидкостной хроматограф «Вгееze» с ультрафиолетовым детектором (фирма Waters, США)

Колонка стальная длиной 150 мм, внутренним диаметром 4,6 мм, содержащая Symmetry® C18, зернением 5 мкм

Температура колонки: комнатная

Подвижная фаза: ацетонитрил – вода (7:3, по объему)

Скорость потока элюента: 1 см3/мин

Рабочая длина волны: 236 нм

Чувствительность: 0,005 ед. абсорбции на шкалу

Объем вводимой пробы: 20 мм³

Ориентировочное время выхода хизалофоп-П-этила: 8,5 - 8,8 мин

Линейный диапазон детектирования: 1 - 10 иг

Образцы, дающие пики большие, чем градуировочный раствор хизалофоп-Пэтила с концентрацией 0.5 мкг/см³, разбавляют подвижной фазой (п. 7.2.).

Градуировочный график проверяют ежедневно по анализу 2-х стандартных растворов различной концентрации. Если значения площади отличаются более, чем на 5 % от данных, заложенных в градуировочную характеристику, ее строят заново, используя свежеприготовленные рабочие градуировочные растворы.

8. Выполнение измерений

Фильтр с отобранной пробой переносят в химический стакан вместимостью 100 см³, заливают 10 см³ этанола, оставляют на 4 - 5 минут, периодически перемешивая. Растворитель сливают, фильтр еще дважды обрабатывают новыми порциями этанола объемом 10 см³.

Объединенный экстракт упаривают в грушевидной колбе на ротационном вакуумном испарителе при температуре бани не выше 35°С почти досуха, оставшийся растворитель отдувают потоком теплого воздуха, остаток растворяют в 2-х см³ подвижной фазы (п. 7.2) и анализируют при условиях хроматографирования, указанных в п. 7.6.1.

Пробу вводят в инжектор хроматографа не менее двух раз. Устанавливают площадь пика, с помощью градуировочного графика определяют концентрацию хизалофоп-П-этила в хроматографируемом растворе.

Перед анализом опытной пробы проводят хроматографирование холостой (контрольной) пробы - экстракта неэкспонированного фильтра.

9. Обработка результатов измерений

Массовую концентрацию хизалофоп- Π -этила в пробе воздуха рабочей зоны (X, мг/м³) рассчитывают по формуле:

$$X = C \cdot W/V_0$$
, где

С - концентрация хизалофоп-П-этила в хроматографируемом растворе, найденная по градуировочному графику в соответствии с величиной площади хроматографического пика, мкг/см³;

W - объем экстракта, подготовленного для хроматографирования, см³;

 V_0 - объем пробы воздуха, отобранный для анализа, приведенный к нормальным условиям (давление 760 мм рт.ст., температура 0° C), дм³.

$$V_0 = 0.357 *P* ut/(273+T),$$

где Т - температура воздуха при отборе пробы (на входе в аспиратор), град.С,

Р - атмосферное давление при отборе пробы, мм рт.ст.

u - расход воздуха при отборе пробы, дм³/мин,

t - длительность отбора пробы, мин.

Примечание: Идентификация и расчет концентрации хизалофол-П-этила в пробах могут быть проведены с помощью программ обработки хроматографических данных с применением компьютера, включенного в аналитическую систему.

10. Оформление результатов измерений

За результат анализа (\overline{X}) принимается среднее арифметическое результатов двух параллельных определений X_1 и X_2 ($\overline{X}=(X_1+X_2)/2$), расхождение между которыми не превышает значений норматива оперативного контроля сходимости (d): $|X_1-X_2| \le d$.

$$d = d_{ork} * \overline{X}/100, Mr/M^3,$$

где d -норматив оперативного контроля сходимости, мг/м³;

d _{отн.}-норматив оперативного контроля сходимости, % (равен 10%).

Результат количественного анализа представляют в виде:

• результат анализа \overline{X} (мг/м³), характеристика погрешности δ , %, P = 0.95 или $\overline{X} \pm \Delta$ мг/м³, P = 0.95, где

$$\Delta = \frac{\delta \cdot \overline{X}}{100} , \text{ MI/M}^3$$

Результат измерений должен иметь тот же десятичный разряд, что и погрешность.

11. Контроль погрешности измерений

Оперативный контроль погрешности и воспроизводимости измерений осуществляется в соответствии с ГОСТ ИСО 5725-1-6. 2002 «Точность (правильность и прецизионность) методов и результатов измерений».

12. Разработчики

Юдина Т.В., Федорова Н.Е., Волкова В.Н. (Федеральный научный центр гигиены им. Ф.Ф. Эрисмана, г. Мытищи Московской обл.);