ГОСУДАРСТВЕННЫЙ КОМИТЕТ СОВЕТА МИ ІИСТРОВ СССР ПО ДЕЛАМ СТРОИТЕЛЬСТВА

госстрой ссср

типовые конструкции и детали зданий и сооружений

СЕРИЯ 3.006 - 2

СБОРНЫЕ ЖЕЛЕЗОБЕТОННЫЕ КАНАЛЫ И ТОННЕЛИ ИЗ ЛОТКОВЫХ ЭЛЕМЕНТОВ

выпуск

материалы для проектирования

ЦЕНТРАЛЬНЫЙ ИНСТИТУТ ТИПОВОГО ПРОЕКТИРОВАНИЯ ГОССТРОЯ СССР

Москва, А-445, Смольная ул., 22

Сдано в печать — 7 1983 года Заказ № 649 Тираж 1350 экз

госупарственный комитет совета министров СССР по делам строительства госстрой ссср типовые конструкции и детали зданий и сооружений СЕРИЯ 3.006 - 2 СБОРНЫЕ ЖЕЛЕЗОБЕТОННЫЕ КАНАЛЫ И ТОННЕЛИ ИЗ ЛОТКОВЫХ ЭЛЕМЕНТОВ выпуск І МАТЕРИАЛЫ ДЛЯ ПРОЕКТИРОВАНИЯ **УТВЕРЖДЕНЫ** РАЗРАБОТАНЫ и введены в действие госстроем ссер с 1.01.1979 г. **ИНСТИТУТОМ ХАРЬКОВСКИЙ ПРОМСТРОЙНИИПРОЕКТ** постановление Nº 190 от 2 октября 1978 г. СОВМЕСТНО С ЦНИИПРОМЗДАНИЙ при участии ниижь госстроя СССР

<u>CODEP MAHUE</u>

Ли	CT CTP.	, since the same of the same o	uct	Ст
ПОЯСНИТЕЛЬНАЯ ЗЯПИСКА ЭКВИВЯЛЕНТНЫЕ ВЕРТИКАЛЬНЫЕ РЯСЧЕТНЫЕ НЯГРУЗКИ ДЛЯ	2-10	ТАВЛИЦЫ ДЛЯ ПОДБОРА СБОРНЫХ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ И РАСХОД МЯТЕРИАЛОВ НА 6 П.М.		
КАНАЛОВ, ПРОКЛАДЫВАЕМЫХ ВНЕ ЗДАНИЙ.	//	КАНАЛОВ МАРОК КЛ И КЛП (ПРОДОЛЖЕНИЕ)	0	40
PKBUBANEHTHIE BEPTUKANIHIE PACYETHIE HAIPYSKH	•	продолжение)31		4/
HA BHYTPULEXOBUE KAHRANI.	12	(продолжение)32	?	42
KBHBRAEHTHISE BEPTUKRAIBHISE PROYETHISE HATPYSKY		(OKOHYRHUE)33	3	43
ПЯ ТОННЕЛЕЙ, ПРОКЛАДЫВАЕМЫХ ВНЕ ЗДАНИЙ	13	ТАБЛИЦЫ ДЛЯ ПОДБОРА ПЛИТ ПЕРЕКРЫТИЯ ВНУТРИЦЕХОВЫХ И ПОЛУПОДЗЕМНЫХ КАНАЛОВ И ПОДКЛАДОК, ПРИМЕНЯЕМЫХ ПРИ		
A BHYTPUYEXOBЫE TOHHENU	14	СТРОИТЕЛЬСТВЕ В ОСОБЫХ УСЛОВИЯХ		44
U TOHHENU	15	И РАСХОД МАТЕРИАЛОВ НА 6 П.М. КАНАЛОВ МАРКИ КЛС 35		45
ABAPHTHISE CXEMIN KAHANOB	16	(ОКОНЧАНИЕ) 36	5	46
ABRPUTHBIE CXEMBI TOHHENEU	17	ТАБЛИЦЫ ДЛЯ ПОДБОРА СБОРНЫХ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕН-	_	
ОМЕНКЛЯТУРЯ СБОРНЫХ ЖЕЛЕЗОБЕТОННЫХ ЛОТКОВЫХ		TOB H PACKOD MATEPHANOS HA GO.M. TOHHENEH MAPKH "TJO"37	7	47
MEMEHTOB KAHANOB H TONHENEH. PACTOD MATEPHANOB		(ПРОДОЛЖЕНИЕ)38	9	48
ИЯ ОДНО ИЗДЕЛИЕ	18		,	49
"(ПРОДОЛЖЕНИЕ)9	19			50
((TPODOOWEHUE)	20			51
TPODONKE HUE)	21			52
	22	(OKOHYRHUE)(43		53
	23	Монтажные схемы односекционных каналов44		54
(NPOQONXEHHE)	24	TOTAL HALL HOLD COLUMN MADIOCEKLUDHHIAC KAHANOB		55
——————————————————————————————————————	25	MOHTAWHUE COCEMU TOHMENEU. 46	;	56
(NPODONWEHHE)	26	УЗЛЫ "1" ÷ "8"	7	57
(TPOQONXEHUE)	27	УЗЛЫ "9"÷ "II". ДЕФОРМАЦИОННЫЕ ШВЫ48	9	58
(продолжение)18	28	МОНТАЖНЫЕ СЖЕМЫ ПОЛУПОДЗЕМНЫХ КАНАЛОВ. ДЕТАЛЬ		
"(ПРОДОЛЖЕНИЕ)	29	ПРОТИВОПОЖАРНОЙ ПЕРЕМЫЧКИ	9	59
(ПРОДОЛЖЕНИЕ)20	30	BHYTPULEXOBUE KAHANU C NEPEKPUTUEM HA		
(ПРОДОЛЖЕНИЕ)	3/	OTMETKE ±0.0. 50	,	60
(ОКОНЧАНИЕ)22		АСФАЛЬТОВАЯ ГИДРОИЗОЛЯЦИЯ ТОННЕЛЕЙ И КАНАЛОВ		61
ОМЕНКЛЯТУРЯ СБОРНЫХ ЖЕЛЕЗОБЕТОННЫХ ПЛИТ ЯНЯЛОВ И РЯСХОД МЯТЕРИЯЛОВ НА ОДНО		ОКЛЕЕЧНАЯ ГИДРОИЗОЛЯЦИЯ ТОННЕЛЕЙ И КАНАЛОВ51 ДЕФОРМАЦИОННЫЙ ШОВ В КАНАЛАХ ПРИ АСФАЛЬТОВОЙ	?	62
IBAENUE	33	ГИДРОИЗОЛЯЦИИ	3	63
	34	ДЕФОРМАЦИОННЫЙ ШОВ В КАНАЛАХ ПРИ ОКЛЕЕЧНОЙ		
		ГИДРОИЗОЛЯЦИИ	1	64
(ПРОДОЛЖЕНИЕ)26	36	ДЕТЯЛИ ДЕФОРМЯЦИОННЫХ ШВОВ В ТОННЕЛЯХ	5	65
(ОКОНЧАНИЕ)27	37	KAHANU U TOHHENU HA NPOCADOYHUX PPYHTAX U B		
БЛИЦЫ ДЛЯ ПОДБОРА СБОРНЫХ ЖЕЛЕЗОБЕТОННЫХ		СЕЙСМИЧЕСКИХ РАЙОНАХ	;	66
EMEHTOB U PACKOD MATEPHANOB HA 6 N.M.		CXEMBI YCTAHOBKU ONOPHBIX NODYWEK U YKNADKU CTANBHBIX.		
PHANOB MAPOK KN H KN n	38	FRANK, TREAULR DAR DOORDER DOOLUIEK DOO CKONLAGUUE DOOLU 57	7	67
	<i>39</i>	PHUIUIU ЖЕНИЕ ЗИКЛИЦНЫХ ПЕТИЛЕЙ В КАНАЛАХ И РОННЕЛОХ		
····		DETANG YCTAHOBKU MOHOPENGCA B TOHHENAX. 58	•	68

1. Общая часть.

1. НЯСТОЯЩЯЯ СЕРИЯ СОДЕРЖИТ РЯБОЧИЕ ЧЕРТЕЖИ СБОРНЫХ ЖЕЛЕЗОБЕТОН-НЫХ КАНЯЛОВ И ТОННЕЛЕЙ ИЗ ЛОТКОВЫХ ЭЛЕМЕНТОВ, ПРЕДНАЗНАЧЕННЫХ ДЛЯ ПРОКЛАДКИ ТРУБОПРОВОДОВ РАЗЛИЧНОГО НАЗНАЧЕНИЯ, ЭЛЕКТРОКАБЕЛЕЙ И ЭЛЕКТРОШИН.

PEDYCMATPHBAETCA TAKME APHMEHEHUE TOHHEJEH B KAVECTBE ADDSEMHUX ТРЯНСПОРТЕРНЫХ ГАЛЕРЕЙ И ПЕШЕХОДНЫХ ПЕРЕХОДОВ.

ПРИМЕНЕНИЕ КАНАЛОВ И ТОННЕЛЕЙ ДЛЯ НЕПОСРЕДСТВЕННОЙ ТРАНСПОРТИРОВКИ NO HUM HUNGKOCTEH HE RPERYCMOTPEHO.

СЕРИЯ 3.006-2 СОСТОИТ ИЗ СЛЕДУЮЩИЯ ВЫПУСКОВ:

Выпуск І. МАТЕРИАЛЫ ДЛЯ ПРОЕКТИРОВЯНИЯ.

Выпуск Ії-1. Рабочие чертежи железобетонных изделий (JOTKOBLIE JAEMEHTW).

Выпуск [Î-2. Рабочие чертежи железобетонных изделий (ПЛИТЫ, ОПОРНЫЕ ПОДУШКИ)

Выпуск Ії-3. Рабочие чертежи прмптурных изделий и BAKNAQHUX DEMEHTOB (NOTKOBUE DIEMEHTU),

Выпуск 11-4. Рабочие чертежи приптурных изделий и 3AKJAQHЫX MEMEHTOB (ПЛИТЫ. ОПОРНЫЕ ПОДУШКИ).

BURYCK III-1. PREOYUE YEPTEMU Y3108 TPACC.

IPDMCTFD/AHAVIPDEKT

Выпуск ії-2. Рябочие чертежи железобетонных изделий для Y3,008 TPACC (DOTKOBBLE SIEMEHTE M NINTE C OTBEPCTURMU, BANKU).

Выпуск 11-3. РАБОЧИЕ ЧЕРТЕЖИ АРМАТУРНЫХ ИЗДЕЛИЙ И ЗАКЛАДНЫХ STEMENTOB (NOTKOBLIE STEMENTU IN INTIN C OTBEPCTUAMU , SANKU).

В настоящем выпуске І помещены материалы для проектирования. KOTOPHE BKANOVANOT: HAPPY3KU U PACYETHHE CXEMH, PARAPHTHHE CXEMH, ТЯБЛИЦЫ ДЛЯ ПОДБОРА СБОРНЫХ ЖЕЛЕЗОБЕТОННЫХ ИЭДЕЛИЙ И ПОКАЗАТЕЛИ РАСХОДА МАТЕРИАЛОВ, ОБЩИЕ ЧЕРТЕЖИ КАНАЛОВ И ТОННЕЛЕЙ, ПРОКЛА-ДЫВАЕМЫХ В РАЗЛИЧНЫХ ГРУНТОВЫХ УСЛОВИЯХ.

2. УЗЛЫ ТРАСС КАНАЛОВ И ТОННЕЛЕЙ ДЛЯ ПРОКЛАДОК КОММУНИКАЦИЙ (В ТОМ ЧИСЛЕ, ТЕПЛОВЫХ СЕТЕЙ И КАБЕЛЕЙ) ПРИВЕДЕНЫ В ВЫПУСКЕ <u> III-1 НАСТОЯЩЕЙ СЕРИИ И ВКЛЮЧАЮТ:</u>

YEAR TOBOPOTOB, OTBETBAEHUA, KOMMEHCATOPHHE HUWU U YWUPEHUA, MOHTAWHIE APOEMIN H BUXOON H3 TOHHEREN, REPEKPUTUA KAMEP,

ПРИЯМКИ ДЛЯ СБОРА ВОДЫ УЧАСТКИ КАНАЛОВ В МЕСТАХ РАСПОЛОЖЕНИЯ НЕПОПВИЖНЫХ ОПОР И ДР.

- 3. РАЗРАБОТАННЫЕ В НАСТОЯЩЕЙ СЕРИИ ПОДЗЕМНЫЕ СООРУЖЕНИЯ ПРИ ВЫСО-TE B YUCTOTE DO 1500 MM BKAHVUTEABHO OTHECEHBI K KAHRARM . R NPU BUCOTE B YUCTOTE 1800 MM U GONEE - K TOHHENAM.
- 4. КАНАЛЫ И ТОННЕЛИ ЗАПРОЕКТИРОВАНЫ ДЛЯ ПРИМЕНЕНИЯ:
 - -В ОБЫЧНЫХ ГРУНТОВЫХ УСЛОВИЯХ ПРИ ОТСУТСТВИИ ПРОСАДОЧНОСТИ. ГРУНТОВЫХ ВОД И СЕЙСМИЧЕСКИХ ВОЗДЕЙСТВИЙ:
 - НП ПРОСПДОЧНЫХ ГРУНТАХ:
 - ПРИ НАЛИЧИИ ГРУНТОВЫХ ВОД;
 - В РАЙОНАХ С СЕЙСМИЧНОСТЬЮ ДО 9 БЯЛЛОВ ВКЛЮЧИТЕЛЬНО;
 - ПРИ ПРОКЛАДКЕ ПОД АВТОМОБИЛЬНЫМИ ДОРОГАМИ С ЗАГЛУБЛЕНИЕМ OT BEPXA QOPOWHOU ODEWAN AO BEPXA DEPEKANTUA OT 0,5 DO GM;
 - ПРИ ПРОКЛАДКЕ ПОД ЖЕЛЕЗНЫМИ ДОРОГАМИ С ЗАГЛУБЛЕНИЕМ ОТ НИЗА WIRTH DO BEPTER NEPEKPLITUS OF 1 DO 4 M:
 - ПРИ ПРОКЛАДКЕ ВНЕ ДОРОГ С ЗАГЛУБЛЕНИЕМ ВЕРХА ПЕРЕКРЫТИЯ OT 0.5 40 6m;
 - ПРИ ВНУТРИЦЕХОВОЙ ПРОКЛАДКЕ С МИНИМАЛЬНЫМ ЗАГЛУБЛЕНИ-EM OT YPOBHA NONA DO BEPXA NEPEKPUTUA O.OOM (DAA КЯНЯЛОВ) И 0.3 M (ДЛЯ ТОННЕЛЕЙ):
 - ПРИ ПОЛУПОДЗЕМНОЙ ПРОКЛЯДКЕ С ПЕРЕКРЫТИЕМ, ВЕРХ КОТОРОГО PACNOJOWEH HA 200:400 MM BUWE MARHUPOBOYHOTO YPOBHA ЗЕМЛИ (ДЛЯ КАНАЛОВ).
- 5. Маркировка каналов и тоннелей принята буквами и цифрами. ОПРЕДЕЛЯЮЩИМИ ВИД КОНСТРУКЦИЙ, ГЕОМЕТРИЧЕСКИЕ РАЗМЕРЫ И ВЕЛИЧИНУ РАСЧЕТНОЙ ВЕРТИКАЛЬНОЙ РАВНОМЕРНО - РАСПРЕДЕЛЕННОЙ ЭКВИВПЛЕНТНОЙ НЯГРУЗКИ 8 УРОВНЕ ПЕРЕКРЫТИЯ. БУКВЯМИ "КЛ" ОБОЗНЯЧЕНЫ КЯНЯЛЫ ИЗ ЛОТКОВЫХ ЭЛЕМЕНТОВ, ПЕРЕ-

KPHBREMHIX NAUTAMH; BYKBAMH "KANO" - KAHAAH H3 AOTKOBHIX ЭЛЕМЕНТОВ, ОПИРАЮЩИХСЯ НА ПЛИТЫ; БУКВАМИ "КЛС" - СОСТАВНЫЕ KAHANЫ ИЗ ВЕРХНИХ И НИЖНИХ ЛОТКОВЫХ ЭЛЕМЕНТОВ; БУКВАМИ "ТЛ" - ТОННЕЛИ ИЗ ЛОТКОВЫХ ЭЛЕМЕНТОВ.

ДЛЯ МНОГОСЕКЦИОННЫХ КАНАЛОВ И ТОННЕЛЕЙ, ЦИФРА ЛЕРЕД БУКВА-МИ ОПРЕДЕЛЯЕТ КОЛИЧЕСТВО СЕКЦИЙ.

ПРИМЕРЫ МАРКИРОВКИ:

КЛ 90×60-8 — ОДНОСЕКЦИОННЫЙ КАНАЛ ИЗ ЛОТКОВЫХ ЭЛЕМЕНТОВ. REPEKPLIBAEMLIX RAUTAMH; WHPHHA B YUCTOTE - 90 cm, BLICOTA

TK	СБОРНЫЕ Ж	CENE306ETOHHBIE	КАНАЛЫ	И	ТОННЕЛИ	И3	лотковых	INEMEHTOB	СЕРИЯ 3.006 - 2
1976		Поя	CHUTES	7 <i>b H</i>	1 <i>A A</i>	3 <i>A N</i>	ИСКЯ		BUNYCK SUCT

B YUCTOTE - 60 cm; 3 KBUBAJEHTHAS HAIPY3KA - 8 TC/m^2 .

2TЛ 210 × 180-5 — ДВУЖСЕКЦИОННЫЙ ТОННЕЛЬ ИЗ ЛОТКОВЫХ ЭЛЕМЕНТОВ; ШИРИНЯ В ЧИСТОТЕ - 210 cm , ВЫСОТА В ЧИСТОТЕ - 180 cm; ЭКВИВЯЛЕНТ-HAA HARPYSKA - $5\pi c/m^2$.

МПРКИРОВКА ЖЕЛЕЗОБЕТОННЫХ ИЗДЕЛИЙ ДАНА В СООТВЕТСТВУЮШИХ АЛЬБОМАХ РАБОЧИХ ЧЕРТЕЖЕЙ ИЗДЕЛИЙ.

П. Конструктивные РЕШЕНИЯ.

- 6. KRHRADI MAPKU "KA" SANPOEKTUPOBRHDI US AOTKOBDIX SAEMEHTOB, REPEKPDI-ВАЕМЫХ ПЛОСКИМИ СЪЕМНЫМИ ПЛИТАМИ.
- 7. КАНАЛЫ МАРКИ "КЛА" ЗАПРОЕКТИРОВАНЫ ИЗ ЛОТКОВЫХ ЭЛЕМЕНТОВ. ОПИРАЮЩИХСЯ НА ПЛИТЫ.
- 8. КАНЯЛЫ МАРКИ "КЛС" ЗАПРОЕКТИРОВЯНЫ ИЗ НИЖНИХ И ВЕРХНИХ ЛОТКОВЫХ ЭЛЕМЕНТОВ, СОЕДИНЯЕМЫХ С ПОМОЩЬЮ КОРОТЫШЕЙ ИЗ ШВЕЛЛЕРОВ, КОТО-РЫЕ ЗАКЛАДЫВАЮТСЯ В ПРОДОЛЬНЫЕ ШВЫ. 9. Тоннели марки "ТЛ" запроектированы из нижних и верхних лотковых
- ЭЛЕМЕНТОВ, СОЕДИНЯЕМЫХ С ПОМОЩЬЮ КОРОТЫШЕЙ ИЗ ШВЕЛЛЕРОВ, КОТОРЫЕ КРЕПЯТСЯ НА СВЯРКЕ К ЗЯКЛАДНЫМ ЧАСТЯМ В СТЕНКАХ НИЖНИХ SOTKOB. Установка лотковых элементов тоннелей предусматривается с

ВЫСОТ НИЖНИХ И ВЕРХНИХ ЛОТКОВ МОГУТ ПРИНИМАТЬСЯ РЯЗЛИЧНЫМИ, В ЗАВИСИМОСТИ ОТ ВИДЯ И УСЛОВИЙ МОНТАЖА КОМ-МУНИКАЦИЙ. 10. МНОГОСЕКЦИОННЫЕ КЯНЯЛЫ И ТОННЕЛИ ОБРЯЗУЮТСЯ ИЗ ПАРАЛЛЕЛЬНО

УСТАНАВЛИВЯЕМЫХ ОДНОСЕКЦИОННЫХ КАНАЛОВ И ТОННЕЛЕЙ. II. РАЗРАБОТАННЫЕ КОНСТРУКЦИИ КАНАЛОВ И ТОННЕЛЕЙ МОГУТ ЛРИМЕ-НЯТЬСЯ ДЛЯ НЯРУЖНЫХ И ВНУТРИЦЕХОВЫХ ПРОКЛЯДОК.

DAR BHYTPHUEXOBUX KAHANOB C REPEKPUTHEM HA OTMETKE ± 0.000 ПРИМЕНЯЮТСЯ КАНАЛЫ МАРКИ "КЛ." 12. НОМЕНКЛАТУРА СБОРНЫХ ЖЕЛЕЗОБЕТОННЫХ ИЗДЕЛИЙ КАНАЛОВ И ТОН-НЕЛЕЙ СОСТОИТ ИЗ ЛОТКОВЫХ ЭЛЕМЕНТОВ И ПЛОСКИХ ПЛИТ. TREAPUTHUE PASMEPU NOTKOB NO WUPHHE PPUHATU OT 420 DO

ТЕЛЬНО. ПРИ ГАБАРИТЕ ПО ШИРИНЕ, НЕ ПРЕВЫШАЮЩЕМ 2400 ММ И МАССЕ 9.3 т включительно, лотки приняты длиной 5970 мм.

4000 мм ВКЛЮЧИТЕЛЬНО, ПО ВЫСОТЕ — ОТ 360 ДО 1700 мм ВКЛЮЧИ-

DONYCKRETCA USFOTOBNEHUE STUX NOTKOB DNUHOU 2970 MM NO YEPTEжам серии 3.006-2 с соответствующим укорочением.

В ОСТАЛЬНЫХ СЛУЧНЯХ ЛОТКИ ПРИНЯТЫ ДЛИНОЙ 2970 ММ ПРИ НАИ-БОЛЬШЕЙ МАССЕ 9.4 Т.

ПЛОСКИЕ ПЛИТЫ, ИСПОЛЬЗУЕМЫЕ ДЛЯ ПЕРЕКРЫТИЙ КАНАЛОВ МАРКИ "КЛ" И ДНИЩА КАНАЛОВ МАРКИ "КЛП", ИМЕЮТ ДЛИНУ 2990 ММ, ЗА ИСКЛЮЧЕНИЕМ ПЛИТ ДЛЯ КАНАЛОВ ШИРИНОЙ В ЧИСТОТЕ 300 И 450 мм, ДЛИНА КОТОРЫХ ПРИНЯТА 740ММ.

В НОМЕНКЛАТУРУ ИЗДЕЛИЙ ВКЛЮЧЕНЫ ДОБОРНЫЕ ЛОТКИ ВСЕХ РАЗМЕ-РОВ, ИМЕЮЩИЕ ДЛИНУ 720 ММ, И ДОБОРНЫЕ ПЛИТЫ ДЛИНОЙ 740 ММ.

13. ПЛИТЫ ПЕРЕКРЫТИЯ ПОЛУПОДЗЕМНЫХ КАНАЛОВ ЗАПРОЕКТИРОВАНЫ ТРЕХСЛОЙНЫМИ, УТЕПЛЕННЫМИ. В КАЧЕСТВЕ УТЕПЛИТЕЛЯ ПРИМЕНЕНЫ ВКЛАДЫШИ ИЗ ПЕНОБЕТОНА С

OBTEMHUM BECOM 500 Kr/m3. ПЛИТЫ ПЕРЕКРЫТИЯ ВНУТРИЦЕХОВЫХ КАНАЛОВ, РАСПОЛОЭКЕННЫЕ В УРОВНЕ NOAR LIEXA, MOTYT BUNDAHATUCA C PAKTYPHUM CAOEM B COOTBETCTBING C APH-

МЕРОМ РЕШЕНИЯ ПРИВЕДЕННЫМ В ВЫПУСКЕ 11-2. 14. Подготовка под каналы и тоннели при отсутствии грунтовых вод при-НЯТА ПЕСЧАНАЯ, ТОЛЩИНОЙ 100 мм. ДЛЯ ДРУГИХ ГРУНТОВЫХ УСЛОВИЙ ПОД-ГОТОВКА ПРИНИМАЕТСЯ В СООТВЕТСТВИИ С РЕКОМЕНДАЦИЯМИ, ПРИВЕДЕННЫМИ В РАЗДЕЛЕ 🗓 НАСТОЯЩЕЙ ЗАПИСКИ.

15. Для отводя случайных вод днишу каналов и тоннелей придается про-ДОЛЬНЫЙ УКЛОН Lmin = 0.002. ВОДЯ ОТВОДИТСЯ В ПРИЯМКИ, РАСПОЛЯГАЕМЫЕ В КЯМЕРЯХ , МЕСТЯХ УШИРЕНИЙ , ЛИБО НЯ ЛИНЕЙНЫХ УЧЯСТКАХ ТРАССЫ. РАССТОЯ-НИЕ МЕЖДУ ПРИЯМКЯМИ НЕ ДОЛЖНО ПРЕВЫШЯТЬ 100÷150 М. ВОДЯ НЗ ПРИЯМКОВ ОТВОДИТСЯ В КАНАЛИЗАЦИЮ.

16. Перекрытия кабельных и шинных тоннелей для защиты от попадания случайных вод должны выполняться с гидроизоляцией в соответствии с "Указания. МИ ПО ПРОЕКТИРОВАНИЮ ГИДРОИЗОЛЯЦИИ ПОДЗЕМНЫХ ЧАСТЕЙ ЭДАНИЙ И СООРУжений "- CH 301-65 *

Подготовка под гидроизоляцию должна иметь поперечный уклон 4%. 17. B NODBEMHUX KAHANAX U TOHHENAX HE GONEE YEM YEPEB 50M DONMHU УСТРЯИВЯТЬСЯ ДЕФОРМАЦИОННЫЕ ШВЫ. В ПОЛУПОДЗЕМНЫХ КАНАЛЯХ РАССТОЯ-HUE MEMAY DEPOPMALUOHHUMU WBAMU HE DOJMHO DPEBUWATU 30 M. ДЕТАЛИ ДЕФОРМАЦИОННЫХ ШВОВ ПРИВЕДЕНЫ В НАСТОЯЩЕМ ЕЫПУСКЕ. ДЕФОРМАЦИОННЫЕ ШВЫ РЕКОМЕНДУЕТСЯ УСТРАИВАТЬ:

PARMENTOB

TK CEOPHBIE *PRESIEBOBETOHHUE* 1976

ПЕРЕВЯЗКОЙ ВЕРТИКАЛЬНЫХ ШВОВ.

КАНАЛЫ И ТОННЕЛИ ИЗ

3 A N 4 C K A

NOTKOB bix

CEPUR

3.006-2

BUNYCK JUCT

ПОЯСНИТЕЛЬНАЯ

-					
11 / 11/2/17	DETPYCEHKO	5 POWCKHI!	Шнейими	Dongk	
1	11.00	hai	collera	Mar -	
	HAY. OTREAR	TO KONCTPYAT.	PYK. rpynnbi	Ст. ИНЖЕНЕР	
222100210	המחםר ענוג	TADOO O NININA INCOL			
× / / /	< ×	לכםר	5		-

APPKOBE

- В МЕСТЯХ ПРИМЫКАНИЯ КАНАЛОВ И ТОННЕЛЕЙ К КАМЕРАМ И УШИРЕНИЯМ;
- —— на границах участкоз РЕЗКОГО ИЗМЕНЕНИЯ НЕСУШЕЙ СПОСОБНОСТИ ОСНОВАНИЯ.
- 18. д ТОННЕЛЯХ НЕОБХОДИМО ПРЕДУСМАТРИВАТЬ ВЫХОДЫ И МОНТАЖНЫЕ NPOEMЫ.
 - Расстояния между выходами принимаются:
 - --- В ШИННЫХ И КАБЕЛЬНЫХ ТОННЕЛЯХ НЕ БОЛЕЕ 150 m :
 - --- THE THE THE THE THE SOME 100 M: --- TPH TPOKARAKE BODAHHAX TETATOBHIX CETEN - HE BOARE 200 M.
- КОНСТРУКТИЗНЫЕ РЕШЕНИЯ ВЫХОДОВ ИЗ ТОННЕЛЕЙ И МОНТЯЖНЫХ ПРОЕМОВ ПРИВЕДЕНЫ В ВЫПУСКЕ Ш-1 НАСТОЯШЕЙ СЕРИИ.
- 19. Опирание подвижных опор трубопроводов тепловых сетей преду-СМОТРЕНО НА ЖЕЛЕЗОБЕТОННЫЕ ПОДУШКИ, РАЗРАБОТАННЫЕ В НАСТОЯ-
- ЩЕЙ СЕРИИ ДЛЯ ТРУБ ДИАМЕТРОМ ОТ 25 ДО 1400 ММ ВКЛЮЧИТЕЛЬНО. 20. Для крепления трубопроводов , кабелей и другух коммуникаций преду-СМОТРЕНЫ ЗАКЛАДНЫЕ ЭЛЕМЕНТЫ ПРИМЕРЫ РАСПОЛОЖЕНИЯ КОТОРЫХ ПРИВЕДЕНЫ В HACTORIJEM BEINYCKE, A PREOYUE YEPTEMEN-B BEINYCKE 11-3 ARHHOÙ CEPUN. Ling prohabolicibal montrixhbix u pemonthbix pasot b tohnenax moryt ycthhaboubrib-
- CA MOHOPERISCHI [PY300003eMH0CTH0 Q=4 auC. etaEtral Kpenaehua mohoperisca opubereha b hactdallem 21. ВЕНТИЛЯЦИЯ ТОННЕЛЕЙ РЕШВЕТСЯ В КАЖДОМ КОНКРЕТНОМ СЛУЧЯЕ В ЗАВИСИМОСТИ ОТ ИХ НАЗНАЧЕНИЯ И КОЛИЧЕСТВЯ ТЕПЛОВЫДЕЛЕНИЙ.
- 🔟 НАГРУЗКИ И РАСЧЕТ КОНСТРУКЦИЙ. 22. Для РАСЧЕТА КАНАЛОВ И ТОННЕЛЕЙ УСТАНОВЛЕН СЛЕДУЮЩИЙ РЯД BEPTUKANAHUX 3KBUBANEHTHUX PRCUETHUX HAIPY3OK HA YPOBHE BEPICA REPEKPLITUS:
 - 3; 5; 8; 11 (12); 15 TC/M2.

НАГРУЗКА 12 ТС/М2 ПРИНЯТА ПРИМЕНИТЕЛЬНО К ЖЕЛЕЗНОДОРОЖНЫМ HATPY3KAM.

Эквивалентные нагрузки приняты с учетом постоянных (за ИСКЛЮЧЕНИЕМ COSCTBEHHOTO BECR KOHCTPYKUUÚ) И ВРЕМЕННЫХ НЯГ-РУЗОК, ДЕЙСТВУЮЩИХ НА КАНАЛЫ И ТОННЕЛИ, ОБЛАСТЬ ПРИМЕНЕния которых указана в п. 4 настоящей записки. Значения эквивалентных нагрузок для различных случаев про-КЛАДКИ КАНАЛОВ И ТОННЕЛЕЙ ПРИВЕДЕНЫ НА ЛИСТАХ 1÷4 НАСТОЯ-

ЩЕГО ВЫПУСКА. Расчетные схеты каналов и тоннелей даны на листе 5. 23. ПРИ ОПРЕДЕЛЕНИИ НЯГРУЗОК НА КАНАЛЫ И ТОННЕЛИ ПРИНЯТЫ СЛЕ-**ДУЮЩИЕ** ЖАРАКТЕРИСТИКИ ГРУНТОВ:

HOPMATUBHIN OF DEMHIN BEC IT = 1.8 TC/M3; PACYETHLIÚ YIDA BHYTPEHHEID TPEHUG $\Upsilon_P = 30^\circ$;

PACYETHOE YREALHOE CHERNEHUE Cp = 0; Ep = 150 Krc/cm2. РАСЧЕТНЫЙ МОДУЛЬ ДЕФОРМАЦИИ

24. ГРУНТЫ ОСНОВЯНИЯ ДОЛЖНЫ ДОПУСКАТЬ СРЕДНЕЕ РЯСЧЕТНОЕ ДАВЛЕНИЕ NOR RHUMEM HE MEHEE 1.5 KIC/CM2.

Определение расчетного давления на основание должно произ-BOQUITECS B KRIMOM KOHKPETHOM CAYURE C YYETOM HAPPYSOK ОТ СОБСТВЕННОГО ВЕСЯ КОММУНИКАЦИЙ.

25. НОРМЯТИВНОЕ ВЕРТИКАЛЬНОЕ ДАВЛЕНИЕ ГРУНТА НА ПЕРЕКРЫТИЯ КАНАЛОВ JU TOHHENEN ONPERENEHO OT BECH BEPTUKRABHOTO CTOAGA PSHTOSON SPCIA KH HAD DEPEKPHTHEM. ПРИ РАСПОЛОЖЕНИИ КАНАЛОВ И ТОННЕЛЕЙ В НАСЫПИ ВЕЛИЧИНА ДАВЛЕНИЯ ГРУНТА ДОЛЖНА ПРИНИМЯТЬСЯ В СООТВЕТСТВИИ С УКАЗАНИЯМИ ГЛАВЫ

- 26. ПРИ ОПРЕДЕЛЕНИИ НОРМЯТИВНОЙ ВЕРТИКАЛЬНОЙ НАГРУЗКИ ОТ ВЕСА ДОРОЖНОГО ПОКРЫТИЯ ТОЛЩИНА ДОРОЖНОЙ ОДЕЖДЫ ПРИНЯТА РЯВНОЙ 300 mm, OBBEMHBIL' BEC - 2.4 TC/M3.
- 27. B KAYECTBE BPEMEHHIX HAPPY30K OT TPAHCHOPTA HPHHATH:

CHU II " MOCTЫ И ТРУБЫ".

- —НАГРУЗКИ ОТ ОДНОЙ МЯШИНЫ НК-80, ЛИБО 2[™] КОЛОНН АВТОМОБИЛЕЙ Н-30-ДЛЯ СЛУЧАЕВ ПРОКЛАДКИ ПОД АВТОДОРОГАМИ;
 - ЖЕЛЕЗНОДОРОЖНАЯ НАГРУЗКА КЛАССА K=14 ДЛЯ СЛУЧАЕВ ПРОКЛАДКИ TOD MENESHUMU DOPOLAMU;
 - HAPPY3KA OT ODHOTO HOPMANIHOTO PPY3OBUKA H-10 DAS CAYYREB ПРОКЛАДКИ ВНЕ ДОРОГ И ВНУТРИ ЦЕХОВ;
 - НАГРУЗКИ ОТ ЭЛЕКТРОКАР ГРУЗОПОДЪЕМНОСТЬЮ 2 И 3Т , ЯККУМУЛЯТОР-НОГО ПОГРУЗЧИКА ГРУЗОПОДЪЕМНОСТЬЮ 1.5 Г И АВТОПОГРУЗЧИКОВ PYSONOQ BEMHOCTHO 3 4 5T - QAR CAYYAEB NPOKARAKU BHYTPU ЦЕХОВ.
- 28. Для подземных каналов и тоннелей, прокладываемых вне зданий, MUHUMANDHAR HOPMATUBHAR BPEMEHHAR BEPTUKANDHAR HAIPY3KA, QEUствующяя в уровне перекрытия, принимяется 1 тс/m2.
- 29. HOPMATUBHAA BPEMEHHAA BEPTUKANBHAA HAIPYIKA HA DEPEKPUTUA полуподземных каналов принята 400 кгс/м2.

. I										
	TK	СБОРНЫЕ	ЖЕЛЕ 30 БЕТОННЫЕ	КАНАЛЫ	И	ТОННЕЛИ	нз	ЛОТКОВЫХ	ЭЛЕМЕНТОВ	СЕРИЯ 3.006-2
	1976		Поя	снит	E Si	BHAA		3 A N H C K A		BUNYCK NUCT

PUNC TPDÝHNNI PDEKT

30. ДЛЯ ВНУТРИЦЕХОВЫХ КАНАЛОВ И ТОННЕЛЕЙ, РАССЧИТАННЫХ НА ВЕРТИКАЛЬ-HUE SKBUBRAEHTHUE PACYETHUE HAPPYSKU 3 4 5 TC/M2, APHHATO, YTO BEPTUKANAHAE PACAPERENEHHAE HATPYSKU B YPOBHE NONA LIEXA H HALPYSKU OT BHYTPHUEXOBOLO TPAHCHOPTA HE MOLYT DEHCTBOBATE ОДНОВРЕМЕННО. 31. PACAPEDENEHUE BEPTUKANSHOLO DABNEHUA OT NOOBHIMCHIX HALPYSOK ПРИНЯТО В ПРЕДЕЛЯХ ДОРОЖНОЙ ОДЕЖДЫ И ТОЛЩИНЫ ПОЛЯ ЦЕХЯ TOOL YELDOM 45°, B SPYHTE - TOOL YELDOM 30° K BEPTHERAU. HCXCOLR US STOTO, OPPEDENEHUE DABNEHUR OT HATPYSKU HK-80 OPH SAT-ПУБЛЕНИИ ВЕРХА ПЕРЕКРЫТИЯ БОЛЕЕ 1M ПРОИЗВОДИЛОСЬ ПО ФОРМУЛЕ: $p = \frac{77}{3.2 + H}$, ΓDE P-HOPMATUBHAR BEPTUKANDHAR BPEMEHHAR HARPYSKA HA DEPEKADITHE КАНАЛОВ И ТОННЕЛЕЙ: H- BUICOTA SACUINKU OT BEPXA DEPEKADITUA DO BEPXA DOPOMHOTO покрытия. 32. ПРИ PACYETE KOHCTPYKLINI KAHANOB U TOHHENEN HA HACPYSKU OT

ТРАНСПОРТА КОЭФФИЦИЕНТ ДИНЯМИЧНОСТИ ПРИНИМАЛСЯ РАВНЫМ 1, ЗА ИСКЛЮЧЕНИЕМ ПЕРЕКРЫТИЙ ВНУТРИЦЕЖОВЫХ КАНАЛОВ, РАСПОЛОЖЕН-НЫХ НА OTMETKE ± 0.00 , КОТОРЫЕ РАССЧИТЫВЯЛИСЬ С КОЭФФИЦИЕНТОМ ДИНЯМИЧНОСТИ 1.2 В COOTBETCTBUH C ГЛЯВОЙ CHUN II-6-74 "НЯГРУЗКИ И ВОЗДЕЙСТВИЯ".

33. ПРИ РАСЧЕТЕ КАНАЛОВ И ТОМНЕЛЕЙ ПРИНЯТЫ СЛЕДУЮЩИЕ КОЭФФИ-ЦИЕНТЫ ПЕРЕГРУЗКИ: ОТ СОБСТВЕННОГО ВЕСЯ КОНСТРУКЦИЙ K= 1.1 OT FUAPOCTATUYEC-ОТ ДАВЛЕНИЯ *FPYHTR* K=1.2 KOTO DABNEHUA ОТ ВЕСЯ ДОРОЖНОЙ ОДЕЖДЫ K=1.5 BOA61 K=1.1 OT KONECHOÙ HATPY3KU HK-80 K=1.1

K=1.4

OT BECA TPYBONPOBOROB K=1.1 34. КАНАЛЫ И ТОННЕЛИ ПРИ ШИРИНЕ 1500 ММ И БОЛЕЕ РАССЧИТАНЫ КАК РАМЫ НА УПРУГОМ ОСНОВАНИИ. ДЛЯ КАНАЛОВ МЕНЬШЕЙ ШИРИНЫ ОТПОР ГРУНТЯ НЯ ДНИЩЕ ПРИНЯТ ПРЯМОЛИНЕЙНЫМ. При ОДНОСТОРОННЕЙ ВРЕМЕННОЙ НЯГРУЗКЕ В РЯСЧЕТЕ УЧТЕНО ВОЗможное смещение верха стен. Усилия при этом определены C YYETOM YACTUYHOFO OTNOPA FPYHTA, NPUHATOFO B PR3MEPE 50%

ОТ ЯВТОМОБИЛЬНОЙ НЯГРУЗКИ Н-30, Н-10

ОТ ЖЕЛЕЗНОДОРОЖНОЙ НЯГРУЗКИ

OT BHYTPHUEXOBBIX HATPY30K

CEOPHUE

ВНЕ ЗДВНИЙ)

(DIR KAHANOB U TOHHENEU NPOKNADUBAEMUX

ВРЕМЕННОЙ ГОРИЗОНТЯЛЬНОЙ НЯГРУЗКИ, СЛУЧЯЙ ОДНОСТОРОННЕЙ OTPHBEU FPYHTA PACYETOM HE APERYCMOTPEH. 35. NOTKOBЫЕ ЭЛЕМЕНТЫ ПРИ ВЫСОТЕ СТЕНОК ДО 600 ММ ВКЛЮЧИТЕЛЬНО А ТАКЖЕ ВСЕ ЛОТКОВЫЕ ЭЛЕМЕНТЫ, ПРИМЕНЯЮЩИЕСЯ ДЛЯ ВНУТРИ-ЦЕХОВЫХ КЯНЯЛОВ И ТОННЕЛЕЙ С ПЕРЕКРЫТИЕМ, ЗЯГЛУБЛЕННЫМ ДО 0.5м

ВКЛЮЧИТЕЛЬНО, ПРОВЕРЕНЫ ПО КОНСОЛЬНОЙ СХЕМЕ (ПРИ ОТСУТСТВИИ ПЕРЕКРЫТИЯ) НА ПОЛНУЮ ВЕЛИЧИНУ ГОРИЗОНТАЛЬНОЙ РАСЧЕТНОЙ НА-ГРУЗКИ. NOTKOBLIE PREMEHTLI RPH BUCOTE CTEHOK 900 MM H BOREE, RPHMEHREMLE ДЛЯ КАНАЛОВ И ТОННЕЛЕЙ, ПРОКЛАДЫВАЕМЫХ ВНЕ ЗДАНИЙ, ПРОВЕРЕНЫ ПО КОНСОЛЬНОЙ СХЕМЕ (ПРИ ОТСУТСТВИИ ПЛИТ ПЕРЕКРЫТИЯ ИЛИ ВЕРХНИХ NOTKOB) HA GOKOBOE QABNEHHE FRYHTA GES YYETA BPEMEHHOÙ HA-

ГРУЗКИ. 36. AONONHUTENBHUE YKABAHUR NO PACYETY KAHANDB U TOHHENEU, BOBBOQUмых в особых условиях, приведены в разделе $\widetilde{v_i}$ настоящей ЗППИСКИ. 37. Расчет конструкций произведен в соответствии с главой СНи П 🗓 В. 1-62

"БЕТОННЫЕ И ЖЕЛЕЗОБЕТОННЫЕ КОНСТРУКЦИИ. НОРМЫ ПРОЕКТИРОВАНИЯ."

IV. УКАЗАНИЯ ПО ПРИМЕНЕНИЮ. 38. ПРИ РАЗРАБОТКЕ ПО МАТЕРИАЛАМ ДАННОЙ СЕРИИ ПРОЕКТОВ КАНАЛОВ И ТОННЕЛЕЙ РЕКОМЕНДУЕТСЯ СЛЕДУЮЩИЙ ПОРЯДОК РАБОТЫ: A) HR OCHOBRHUU TEXHONOTUYECKOTO BADAHUA NO TAGNULAM SKBUBANEHTHUX PACYETHUX HAPPY30K (NUCTU 1:4) U PAGA-PUTHLIX CXEM (NUCTLI 6,7) ONPEDENAINTCA MAPKU KAHAлов и тоннелей:

ПРОИЗВОДИТСЯ ПО МЯТЕРИЯЛЯМ, ПРИВЕДЕННЫМ В НЯСТОЯЩЕМ ВЫПИСКЕ. УЧЯСТКИ ТРЯССЫ МЕЖДУ ДЕФОРМАЦИОННЫМИ ШВАМИ РЕКОМЕНДУЕТ-CA HASHAYATE KPATHEIMU 750 MM; в) приводятся общие виды изделий с расположением закляд-HUX SIEMEHTOB B COOTBETCTBUU C PUMEPAMU, PRUBEREHHU-MU B HACTORWEM BUNYCKE. 39. РАБОЧИЕ ЧЕРТЕЖИ УЗЛОВ ТРАСС РАЗРАБАТЫВАЮТСЯ В СООТВЕТСТВИИ С МАТЕРИАЛАМИ, ПРИВЕДЕННЫМИ В ВЫПУСКЕ III-1 HACTORWEU

ЭЛЕМЕНТОВ

б) составляются монтажные схемы конструкций, подбор которых

DOTKOBLIX

3.006 - 2

TK

1976. Пояснительная

WENE306ETOHHЫE

3 A N 4 C K A

KAHANSI U TOHHENU

СЕРИИ.

Выпуск

CEPUS

SHCT

JOTKOBHX

ЗЯПИСКЯ

ЭЛЕМЕНТОВ

СБОРНЫЕ ЖЕЛЕЗОБЕТОННЫЕ КПНПЛЫ И ТОННЕЛИ ИЗ

Пояснительная

TK

1976

Выпуск JUCT

СЕРИЯ 3.006-2

HA OTMETKE NAAHUPOBKU- SEMAU. NPU SAKAYBAEHUU BEPXR NEPEKPIITUR BOAEE 4.5M НЯИВЫСШИЙ УРОВЕНЬ ГРУНТОВЫХ ВОД МОЖЕТ НЯХОДИТЬСЯ НЯ ОТМЕТКЕ BEPXR NEPEKPUTUS KAHRAOB.

56. And tohheney c satinybrehuem bepar repekabitur do 4.5 m bkahoyuterbно наивысший уровень грунтовых вод принят на 1 м ни-

ЖЕ ОТМЕТКИ ПЛАНИРОВКИ ЗЕМЛИ. ПРИ ЗАГЛУБЛЕНИИ ВЕРХА ПЕРЕ-KPHITUR GONEE 4.5 M HRUBLICWHU YPOBEHL PPYHTOBLIX BOD MO HET HAXOQUITSCA HE MEHEE YEM HA IM HUME BEP-

XA NEPEKPHITUS *TOHHENEU. 57. Значения эквивалентных нагрузок для различных слу-

ЧАЕВ ПРОКЛАДКИ КАНАЛОВ И ТОННЕЛЕЙ ПРИ НАЛИЧИИ ГРУН-TOBBIX SOR TPUBEREHUI HA SUCTAX 1 4 3 HACTORWETO ВЫПУСКА. 58. ПРИ ДЕЙСТВИИ ГИДРОСТЯТИЧЕСКОГО НЯПОРА КОНСТРУКЦИИ КАНЯМОВ И ТОННЕЛЕЙ ДОЛЖНЫ БЫТЬ ПРОВЕРЕНЫ НА УСТОЙЧИВОСТЬ ПРОТИВ

гидроизоляции: а) АСФАЛЬТОВОЙ ХОЛОДНОЙ б) псфпльтовой горячей в) ОКЛЕЕЧНОЙ БИТУМНОЙ.

ИЗОЛЯЦИИ ПРОИЗВОДИТСЯ В СООТВЕТСТВИИ С "УКПЗЯНИЯМИ ПО ПРОЕК-ТИРОВЯНИЮ ГИДРОИЗОЛЯЦИИ ПОДЗЕМНЫХ ЧЯСТЕЙ ЗДЯНИЙ И СООРУЖЕ-

59. ПРЕПУСМАТРИВАЕТСЯ ПРИМЕНЕНИЕ

всплывания,

НИЙ " CH 301-65 * (П. 2.1) И ТРЕБОВЯНИЯМИ ГЛЯВЫ СНИ П 🗓-28-73 "ЗЯЩИТА СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ ОТ КОРРОЗИИ" (ПРИ ЯГРЕССИВном воздействии воды - среды). 60. ПРОТИВОНЯПОРНУЮ ГИДРОИЗОЛЯЦИЮ СТЕН НЕОБЖОДИМО ПРЕДУСМЯТРИВЯТЬ

BUWE MAKCUMANGHOLO YPOBHA PPYHTOBURC BOO HE MEHEE YEM HA 0.5 M. BHWE STORD YPOBHA PULLPOUSONALUA BHITONHAETCA B COOT-ВЕТСТВИИ С П. 1.12 CH-301-65* 61. ПО ТРЕЩИНОСТОЙКОСТИ ИЗОЛИРУЕМЫЕ ЖЕЛЕЗОБЕТОННЫЕ КОНСТРУКЦИИ КАНАЛОВ И ТОННЕЛЕЙ ОТНЕСЕНЫ К ГРУППЕ КОНСТРУКЦИЙ, РАССЧИ-THBREMHIX TORKO HA RPOYHOCTH (PYRRA III B COOTBETCTBUN с п. 2.3 CH 301-657.

по подготовке из БЕТОНА МАРКИ 100 ТОЛЩИНОЙ 100 ММ, АРМИ-РОВАННОЙ ПО КРАЯМ СЕТКАМИ (СМ. ЛИСТЫ 151,52). ПРИ ЯГРЕССИВНОМ ВОЗДЕЙСТВИИ ГРУНТОВЫХ ВОД ПОДГОТОВКУ СЛЕ-ВЫПОЛНЯТЬ ИЗ БЕТОНА ПОВЫШЕННОЙ ПЛОТНОСТИ (МАРКИ НЕ НИЖЕ B-6 ПО ВОДОНЕПРОНИЦПЕМОСТИ), ЛИБО ИЗ ВТРЯМБОВЯННОГО В ГРУНТ ЩЕБНЯ ТОЛЩИНОЙ 100 ММ С ПРОЛИВКОЙ БИТУМОМ ДО ПОЛ-НОГО НАСЫШЕНИЯ.

64. ДЕТЯЛИ ПРОПУСКА ЧЕРЕЗ ГИДРОИЗОЛЯЦИЮ ТРУБ, КАБЕЛЕЙ ИТ.П.

66. МАТЕРИАЛЫ ДЛЯ ПРОЕКТИРОВАНИЯ КАНАЛОВ И ТОННЕЛЕЙ НА ПРО-

62. СБОРНЫЕ ЭЛЕМЕНТЫ КАНАЛОВ И ТОННЕЛЕЙ ДОЛЖНЫ МОНТИРОВАТЬСЯ

63. Узлы гидроизоляции, деформационные швы и защитные ограж-ДЕНИЯ ДОЛЖНЫ ВЫПОЛНЯТЬСЯ В COOTBETCTBUH C CH 301-65* и ПРОЕКТНЫМИ МАТЕРИАЛАМИ, ПРИВЕДЕННЫМИ НА ЛИСТАХ 5/÷55 НАСТОЯЩЕГО ВЫПУСКА.

PASPAGATUBAHOTOR B KOHKPETHOM NPOEKTE B COOTBETCTBUU C П. 1.20 CH-301-65*. 65. ПРОИЗВОДСТВО РАБОТ ПО ГИДРОИЗОЛЯЦИИ ДОЛЖНО ВЕСТИСЬ В COOTBETCTBHH C TPEБOBAHHAMH ГЛАВЫ CH и П III-20-14 "КРОВЛЯ, ГИДРОИЗОЛЯЦИЯ , ПАРОИЗОЛЯЦИЯ И ТЕПЛОИЗОЛЯЦИЯ .. Б. КАНАЛЫ И ТОННЕЛИ НА ПРОСАДОЧНЫХ ГРУНТАХ.

СЯДОЧНЫХ ГРУНТЯХ РЯЗРАБОТЯНЫ НА ОСНОВАНИИ ГЛАВ СН и ПП-15-74 "Основания зданий и сооружений" и главы CH H NIT-36-73 TENNOBHE CETH. Выбор того или иного типа, толщины и количества слоев гидео- 67. Трассы каналов и тоннелей необжодимо назначать таким ОБРАЗОМ, ЧТОБЫ БЫЛ ОБЕСПЕЧЕН БЕСПРЕПЯТСТВЕННЫЙ СТОК ЯТМОсферных (поверхностных) вод. Поверхностные воды должны OTBOQUITECA KAK B NEPHOQ CTPOUTENECTBA, TAK H B NPOYECCE ЭКСПЛУЯТЯЦИИ ЧЕРЕЗ ПОСТОЯННО ДЕЙСТВУЮЩУЮ ЛИВНЕВУЮ СЕТЬ ИЛИ HENOCPEDCTBEHHO ПО СПЛАНИРОВАННОЙ ПОВЕРЖНОСТИ ЗА ПРЕДЕ-ЛЫ ПЛОЩАДКИ.

68. Конструкции каналов и тоннелей, возводимых на просадочных ГРУНТЯХ Î ТИПА С УЧЕТОМ УКАЗАНИЙ П. 67 НАСТОЯЩЕЙ ЗАПИСКИ, PPHHUMAIOTCA TAKUMU THE, KAK B OSLIVHLIX PPYHTOBLIX YCHOBUAX. 69. ПРИ ВОЗВЕДЕНИИ КАНАЛОВ И ТОННЕЛЕЙ НА ПРОСАДОЧНЫХ ГРУНТАХ 🗓 типа дополнительно надлежит руководствоваться следующим: a) PACCTORHUR B CBETY MEMCLY KAHANAMU (TOHHENAMU) U

БЛИЖАЙШИМИ БЕСКАНАЛЬНЫМИ КОММУНИКАЦИЯМИ, СОДЕРЖА-

3NEMEHTOB

СЛЕДУЮЩИЖ ТИПОВ

НИЯМИ ГЛАВЫ СНИ П. II-36-73. б). Основание каналов и тоннелей при величине просядки до 40 cm. Donmho Bunonhatbea e ynnothehuem ppyhtob ha TAYBUHY HE MEHEE 0.3M. (AAR KAHAAOB), 0.4M. (AAR TOHHEAEH) И 1М (ДЛЯ КАМЕР ТЕПЛОВЫХ СЕТЕЙ). В).ПРИ ВЕЛИЧИНЕ ПРОСАДКИ БОЛЕЕ 40CM ДЛЯ КАНАЛОВ И ТОННЕЛЕЙ. СОДЕРЖАЩИХ ТРУБОПРОВОДЫ С ВОДОЙ ИЛИ ВОДНЫМИ РАСТВОРА-МИ, КРОМЕ УПЛОТНЕНИЯ ГРУНТА ПО П. .. Б," СЛЕДУЕТ ПРЕДУСМАТРИВАТЬ DONONHUTEALHO YKARDKY B OCHOBAHUU CAOA CYTAUHUCTOTO TPYHTA, ОБРАБОТАННОГО БИТУМАМИ ИЛИ ДЕГТЯРНЫМИ МАТЕРИАЛАМИ ТОЛЩИНОЙ HE MEHEE 100 MM HA BCH WUPHHY TPAHWEH. $z)\mathcal{B}$ стыках между сборными элементами каналов необходимо PPERYCMATPUBATE THE SHERE SOBETOHHE PROCKUE PORKAADKU C SAMUB-KOH ШВОВ В ДНИЩЕ БИТУМОМ (СМ. ЛИСТ 56 НАСТОЯЩЕГО ВЫПУСКА). PODLOLOBKA UOD LOHHENA HEOEXODAMO BPILOVIHALP NA PELDHA МАРКИ 100 ТОЛЩИНОЙ 100 ММ, АРМИРОВАННОГО СЕТКАМИ ИЗ ПРОДОЛЬ-HUX CTEPHCHEH ΦΙΟΑΙ, WAT 150 H HONEPEYHUX - Φ6ΑΙ, WAT 200. WBW В ДНИЩЕ ТОННЕЛЕЙ ТАКЖЕ ЗАПОЛНЯЮТСЯ БИТУМОМ. Я). В процессе строительства и эксплуатации следует осуществлять НАДЗОР ЗА ВОЗМОЖНОЙ УТЕЧКОЙ ВОДЫ ИЗ ТРУБОПРОВОДОВ С ПРИ-MEHEHUEM KOHTPONGHUX YCTPOUCTB. ДНИЩЕ КАНЯЛОВ И ТОННЕЛЕЙ СЛЕДЧЕТ ВЫПОЛНЯТЬ С УКЛОНАМИ $(i=0.003 \div 0.005)$ к выпускам аварийной воды самотеком в KAHANUSALUHO UNU HRUBONEE HUSKOE MECTO NO PENBERY SA NPE-ДЕЛЯМИ ЗЯСТРАИВЯЕМОЙ ТЕРРИТОРИИ. В. КАНАЛЫ И ТОННЕЛИ В РАЙОНАХ С СЕЙСМИЧНОСТЬЮ 7,8 H 9 5ANNOB 70. НАСТОЯЩИЙ РАЗДЕЛ РАЗРАБОТАН ПРИМЕНИТЕЛЬНО К КАНАЛАМ И

ЩИМИ ВОДУ, ДОЛЖНЫ ПРИНИМАТЬСЯ В СООТВЕТСТВИИ С ТРЕБОВА-

ЖЕЛЕЗОБЕТОННЫЕ KAHANЫ И ТОННЕЛИ

Пояснительная

ТОННЕЛЯМ, ПРЕДНЯЗНЯЧЕННЫМ ДЛЯ ПРОКЛЯДКИ КОММУНИКАЦИЙ В сейсмических районах. ТОННЕЛИ, В КОТОРЫХ ВОЗМОЖНО ПРЕБЫВАНИЕ БОЛЬШОГО КОЛИЧЕСТ-BA SHOREL (HANPHMEP, NORSEMHLIE NEWEXORHLIE NEPEXORLI) DONHны возводиться с применением дополнительных антисейсми-ЧЕСКИХ МЕРОПРИЯТИЙ ПО СПЕЦИЯЛЬНЫМ ПРОЕКТЯМ.

CEOPHE

"Строительство в сейсмических районах." 72. КОНСТРУКЦИИ КАНАЛОВ ДЛЯ СТРОИТЕЛЬСТВА В РАЙОНАХ С СЕЙСМИЧ-HOCTEN TH 8 BRIJIOB PHHUMANTCA TAKUMU SKE, KAK QIA HE-СЕЙСМИЧЕСКИХ РЯЙОНОВ. В РАЙОНАХ С СЕЙСМИЧНОСТЬЮ 9 БАЛЛОВ СТЫКИ СБОРНЫХ ЭЛЕ-MEHTOB YCUNUBAHOTCA NAOCKUMU NOQKNAQKAMU, NPUMEHEHUE KOTOPHIX PPERYCMOTPEHO TAKKE U DAS PROCADONHHIX PRYHTOB (CM. JUCT 56 HACTORWETO BUNYCKA), 73. РАСЧЕТНЯЯ СЕЙСМИЧНОСТЬ ТОННЕЛЕЙ ПРИНЯТА В СООТВЕТСТВИИ СО СЛЕДУЮЩЕЙ ТАБЛИЦЕЙ:

71. МАТЕРИАЛЫ ДЛЯ ПРОЕКТИРОВАНИЯ КАНАЛОВ И ТОННЕЛЕЙ В СЕЙСМИЧЕС-

КИХ РАЙОНАХ РАЗРАБОТАНЫ НА ОСНОВАНИИ ГЛАВЫ СНИ П<u>Г</u>-А.12-69*

Наименование		TA CTPOHTENSCTS	
СООРУЖЕНИЯ	7	8	9
ТОННЕЛЬ ДЛЯ ПРОКЛАДКИ КОММУНИКАЦИЙ	6	7	7

(NYHKT 41) FARBU CHUN II-R.12-69.* 74. ПРИ РЯСЧЕТЕ ТОННЕЛЕЙ С УЧЕТОМ СЕЙСМИЧЕСКИХ ВОЗДЕЙСТВИЙ УЧТЕНЫ: а).Вертикальное давление грунта (двет) и собственный вес

КОНСТРУКЦИЙ ТОННЕЛЯ; б), горизонтяльное активное сейсмическое давление грунтя,

ONPEDENEHHOE NO POPMYNE: 9c=[1+Keta(45°+ \frac{4}{2})]P

ГДЕ Р-АКТИВНОЕ ДЯВЛЕНИЕ ГРУНТЯ БЕЗ УЧЕТЯ СЕЙСМИЧЕСКО-ГО ВОЗДЕЙСТВИЯ:

У- УГОЛ ВНУТРЕННЕГО ТРЕНИЯ ГРУНТЯ, ПРИНЯТЫЙ

KC-KO3PPULLUEHT CEHCMUNHOCTU, PABHIN 0.025 (CM. TABA. 2 TAABBI CHHTII-A. 12-69*) E) TOPHSOHTRALHAR CEHCMUYECKAR CHAR B YPOBHE REPEKPUTUR

TOHHEAA, ORPEDEAEHHAA RO POPMYAE:

3 A N H C K A

 $S\kappa = Q\kappa \cdot Kc$

PRBHMM 30°:

THE QK-BEC TPYHTH HAD TOHHENEM U COECTBEHHUU BEC

H3 NOTKOBBIX PREMEHTOB

BUNYCK JUCT 15744 10

CEPHA

3.006-2

IPDMCTPDAHNNIPDEKT

TK

XAPEKUBLKM

СЕРИЯ 3.006-9

BURYCK JHCT

В ряйонях с сейсмичностью 7 и 8 вяллов полготовкя

D. BACLITIKA THRYX U HAD TOHHEDAMU DODOKHA TROUBBODUTICA

в) швы межлу сборными железобетонными элементями

DONNOHU TWATENUM SAYEKAHUBATUCA LEMENTHUM PACTBO-

POM MAPKH 50 (DAR PAHOHOB C CEHCMUNHOCTOR 7 BRANOB)

И МЯРКИ 100 (ДЛЯ РЯЙОНОВ С СЕЙСМИЧНОСТЬЮ 8 И 9 БЯЛЛОВ). ДЕФОРМАЦИОННЫЕ ШВЫ ВЫПОЛНЯЮТСЯ ТАК ЖЕ, КАК ДЛЯ

элементов

Выполняется непрмированной:

HECENCHUYECKUX PRÍJOHOB.

из лотковых

ЗЯПИСКЯ

C TWATENEHUM NOCNOWHUM YNNOTHEHUEM:

ПЕРЕКРЫТИЯ И СТЕН; KC - CM. BUILE. PACYET PAME TOHHEMA

YECKUX BOBDEHCTBUH HE YYUTUBRETCA.

ДЕН ПО СЛЕДУЮЩЕЙ РАСЧЕТНОЙ СОСЕМЕ:

НА ДЕЙСТВИЕ СИЛЫ ЯК ПРОИЗВОДИТСЯ

a geept.

GEPT.

К ВЕЛИЧИНАМ РАСЧЕТНЫХ НАГРУЗОК ВВЕДЕН КОЭФФИЦИЕНТ COYETHHUR - 0.9 (CM. 11.2.2 INABH CHUTT-R. 12-69*). 76. РАСЧЕТЯМИ ТОННЕЛЕЙ С УЧЕТОМ СЕЙСМИЧЕСКИХ ВОЗДЕЙСТВИЙ. ПРИВЕДЕННЫХ В П.74 НАСТОЯЩЕЙ ЗАПИСКИ, УСТАНОВЛЕНА ВОЗ-МОЖНОСТЬ ПРИМЕНЕНИЯ СЕЧЕНИЙ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕН-TOB. ПРИНЯТЫХ В ВЫПУСКАХ \overline{II} -1 И \overline{II} -2 НАСТОЯЩЕЙ СЕРИИ. ПРИ ВОЗВЕДЕНИИ ТОННЕЛЕЙ НЯДЛЕЖИТ РУКОВОДСТВОВЯТЬСЯ

> а) в РЯЙОНЯХ С СЕЙСМИЧНОСТЬЮ 9 БЯЛЛОВ ПОДГОТОВКЯ BUTTOTHAETCA US APMUPOBAHHOED BETOHA MAPKU 100

АРМИРОВАНИЕ ПРОИЗВОДИТСЯ СЕТКАМИ ИЗ ПРОДОЛЬНЫХ СТЕРЖНЕЙ ФIORI. WAR 150 H ПОПЕРЕЧНЫХ -Ф6RI WAR 200.

₩ENE305ETOHHЫE

Пояснительная

75. В РАСЧЕТЕ ПРИНЯТЫ СЛЕДУЮЩИЕ КОЭФФИЦИЕНТЫ ПЕРЕГРУЗКИ: OT COECTBEHHOFO BECA KOHCTPYKLINH K=1,1; OT BEPTHKANSHOLD DABNEHHA LEATH K=1.2:

C YYETOM BO3MOXHOFO CMEWEHUR BEPOR CTEH.

BPEMEHHAA NOQBUNKHAA HAIPYSKA NPU PACYETE C YYETOM CEKCMI-

РАСЧЕТ ТОННЕЛЕЙ С УЧЕТОМ СЕЙСМИЧЕСКИХ ВОЗПЕЙСТВИЙ ПРОИЗВЕ-

КАНАЛЫ И ТОННЕЛИ

TK

1976

следующим:

толшиной 100 мм.

CEOPHNE

		ЗАГЛУБЛЕНИЕ	L	Ширина		ВИВАЛЕН					PRCYE	тные	HRCF	РУЗКИ	TC/M	2	
	ОБЛАСТЬ ПРИМЕНЕНИЯ	ВЕРХА ПЕРЕКРЫТИЯ		КПНАЛА В ЧИСТОТЕ	PYHTO YPOBEI OTME1	BHE BOL HB	IN OT FOBBLIX PXA D	CYTCTB. BOD H EPEKPL	YHOT I E NPEB ITHR	INH WWRET	ГРУН	TOBbie	ВОДЬ	HA O	TM ±0		ПРИМЕЧАНИЯ
+		М	TPAHCNOPTA	A mm	3	5	8	//	12	15	3	5	8	//	12	15	1
	Под	0.5÷2.2	H-30				+								+		ЭКВИВ ПЛЕНТНЫЕ НЯГРУЗКИ ОПРЕДЕЛЕНЫ ДЛЯ НАИБОЛЕЕ
+	ЯВТОДОРОГАМИ	2.21 ÷ 4.0	HK-80					+								+	НЕБЛЯГОПРИЯТНЫХ СОЧЕТЯНИЙ СООТВЕТСТВУЮЩИХ ЭЯГЛУБ
		4.01 ÷ 6.0		300÷3000						+						,	ЛЕНИЯМ ВЕРХА ПЕРЕКРЫТИЯ 0.5; 4.0; 6.0 м
\blacksquare	ПОД ЖЕЛЕ ЗНЫМИ	1.0 ÷ 2.0	K=14	300÷3000					+							+	29
Шненатан Поляк	дорогами	2.01÷4.0								+		. –					1.0; 4.0 m
Пол		0.5÷1.5		300÷900			+							+			
	Вне	0.5 - 1.5		1200 ÷ 3000		+							+				
	дорог	1.51÷3.0	H-10				+								+		0.5; 3.0; 4.5; 6.0 m
CEHEP		3.01÷4.5		300÷3000				+								+	
уК. ГРУ 7. ИНЖ		4,51÷6.0					,			+							
STATE OF THE STATE	1. Эквивплен лотков пол проекте в 2. Плиты пере вертикпльну	УПОДЗЕМНЫ: ЗПВИСИМОО КРЫТИЙ ПО	X КАНАЛОЕ СПИ ОТ УС ОЛУПОДЗЕМН	в ОПРЕДЕЛЯ 1908ИЙ ПРО 1610С КАНАЛ	ЮТСЯ ОКЛАДІ ОВ РА	в Кон Ки КПІ Оссчитн	IKPETH YRJOB	IOM	A		I	<u> </u>					I.
	K	С50рны		E306ETOHI		КАН	ЭЛЫ	И	ТОНН		И3	ЛОТК	086190		EMEH	TOB	\$ CEP. 3.00
19	76 Эквиві	<i>РЛЕНТНЫЕ</i>	BEPT	<i>КАЛЬНЫВ</i>	. PI												ВНЕ ЗДЯНИЙ Выпуск Т

ЗЯГЛУБЛЕНИЕ ВЕРЖА ПЕРЕКРЫТИЯ	RUD BUUTOUUS ARRIVE H	(DCDU3FI)	Ширина канала В чистоте				BEP1 PY3KA			Примечания
M	Вид внутрицеховой н	HI P Y 3 K. U	A MM	3	5	8	//	12	15	TIPHI'LE YITIMA
	Рявномерно-распреде нагрузки на пол	ГЛЕННЫ Е ЦЕХА		+	+					ЭКВИВАЛЕНТНАЯ НАГРУЗКА ПРИНИ- МАЕТСЯ В ЗАВИСИМОСТИ ОТ ВЕЛ ЧИНЫ НЯГРУЗКИ НА ПОЛ ЦЕХА
	Электрокары	Q=27	300 ÷ 3000	+						
,		Q=3r	7 9000		+					При нягрузкях от внутрицехо
	Яккумуляторный погрузц	IUK Q=1,5 T.			+					ВОГО ТРАНСПОРТА НА КАНАЛЫ С ПЕРЕКРЫТИЕМ, ЗАГЛУБЛЕННЫЙ
		Q=3 _T	300 ÷ 900			+				МЕНЕЕ ЧЕМ НА 0,3 М, ЭКВИВА- ЛЕНТНЫЕ НАГРУЭКИ УКАЗАНЫ Д
0.0 ÷ 0.5	ABTOROCOUZUUR	Q=37	1200 ÷ 3000		+					ОПРЕДЕЛЕНИЯ НЕСУЩЕЙ СПОСОБ НОСТИ ЛОТКОВЫХ ЭЛЕМЕНТОВ
,			300 ÷ 600			+	+			ВЕЛИЧИНЫ СОСРЕДОТОЧЕННЫЯ НАГРУЗОК НА ПЛИТЫ ПЕРЕКРЫТИ
		Q=5r	900 ÷ 1200			+				ОТ ВНУТРИЧЕХОВОГО ТРЯНСПОРТ. ПРИ УКАЗАННЫХ ЗАГЛУБЛЕНИИ
	Автомашина H-10		1500 ÷ 3000		+					ПРИВЕДЕНЫ НА ЛИСТЕ 5, ТАБЛИЦА ДЛЯ ПОДБОРА ПЛИ
			300 ÷ 900			+				ПЕРЕКРЫТИЯ - НА ЛИСТЕ 34.
			1200 ÷ 3000		+					

1. NPH PACHETAX BHYTPHYEXOBBIX KAHAMOB NPHHATO, YTO BPEMEHHUE PABHOMEPHO- PACAPEQEAEHHUE HATPY3KH HA AOA ТРАНСПОРТА ОДНОВРЕМЕННО ДЕЙСТВОВАТЬ НЕ МОГУТ. ТА КОНСТРУКЦИЯ ПОЛА ПРИНЯТА С ЖЕСТКИМ ПОПСТИ-**ЛЯЮЩИМ** СЛОЕМ.

ЖЕЛЕЗОБЕТОННЫЕ

BEPTUKANBHBIE

CEOPHNE

Эквивплентные

HOMETPONHUMINIPOEKT VII AUK. 1916.

1976

З. ПРИ ЗАГЛУБЛЕНИИ ВЕРХА ПЕРЕКРЫТИЯ ВНУТРИЦЕХОВЫХ KAHAJOB BOJEE 0.5 M PKBHBANEHTHWE HASPY3KH YEXA U COCPEDOTOYEHHIE HAIPY3KU OT BHYTPULEXOBOTO должны приниматься по таблице на листе 1. 2. ПРИ ОПРЕДЕЛЕНИИ НЯГРУЗОК ОТ ВНУТРИЦЕЖОВОГО ТРАНСПОР-

H TOHHENH

PACYETHLE HATPYSKU

КАНАЛЫ

ЭЛЕМЕНТОВ

HA BHYTPHYEXOBBIE KAHANDI

JOTKOB bix

СЕРИЯ 3.006-2

BUNYCK JUCT

	Область применения	ЗАГЛУБЛЕНИЕ ВЕРХЯ ПЕРЕКРЫТИЯ	1 4				HBIE I TCTBYIO HUXLE B			YPOBE!	CYETHI HB	нтовых	BOO B	A IM	Williams	Примечания
1			ОТ ТРАНСПОРТА	3	5	8	//	/2	15	3	5	8	//	12	15	
		0.5 ÷ 2.2	H-30			+								+		ЭКВИВАЛЕНТНЫЕ НЯГРУЗКИ ОПРЕДЕЛЕНЫ ДЛЯ НЯИБОЛЕЗ
	Под явтодорогами	2.21 ÷ 4.0	HK-80				+								+	НЕБЛЯГОПРИЯТНЫХ СОЧЕТАНИЙ, СООТВЕТСТВУЮЩИХ ЗЯГЛУБЛЕ-
		4.01÷6.0	<u> </u>						+							НИЯМ ВЕРХЯ ПЕРЕКРЫТИЯ 0.5; 4.0; 6.0 м
	Под	1.0 ÷ 2.0	44.					+							+	
4	ЖЕЛЕЗНЫМИ ДОРОГАМИ	2.01 ÷ 4.0	K=14						+							1.0 ; 4.0 m
V PAIN		0.5 ÷ 1, 5			+							+				
1	ВНЕ ДОРОГ	1.51 ÷ 3.0	H-10			+								+		
	7 0,0,0	3.01÷ 4.5] ","				+								+	0.5; 3.0; 4.5; 6.0m
		4.51÷6.0							+							-
. инженер			***************************************	!			· · · · · · · · · · · · · · · · · · ·	-	L	<u> </u>	L	L	L	L	<u> </u>	1
23																

CEOPHBIE TK **ЖЕЛЕЗОБЕТОННЫЕ** KRHANЫ И ТОННЕЛИ H3 NOTKOBOIX СЕРИЯ 3.006-2 **ЭЛЕМЕНТОВ** Эквивплентные BUNYCK JUCT 7 ВЕРТИКАЛЬНЫЕ PACHETHLIE НЯГРУЗКИ ДЛЯ ТОННЕЛЕЙ, ПРОКЛАДЫВАЕМЫХ ВНЕ ЗДЯНИЙ

XAFEKOBCKNV TERSINDENT SERVINDENT SERVINDENT

ЗЯГЛУБЛЕНИЕ	Ruo all'Italiusmoni	nd uprovenu	PRC4	UBANET ETH bie	HTHЫE	BEPT PY3KH	THKANE TC/	Примечания		
ВЕРХА ПЕРЕКРЫТИЯ М	Вид внутрицехово	и нпі РУЭКИ	3	5	8	//	12	15	ПРИМЕЧНИЯ	
	РАВНОМЕРНО- РАСПРЕД НЯ ПОЛ ЦЕХЯ	ЕЛЕННЫЕ НЯГРУЗКИ	+	+					ЭКВИВАЛЕНТНАЯ НАГРУЗКА ПРИНИМАЕТСЯ В ЗАВИСИМОСТИ ОТ ВЕЛИЧИНЫ НАГРУЗ КИ НА ПОЛ ЦЕХА	
		Q=2 r	+							
	Электрокары 0,3÷0,5 Пккумуляторный	Q=37		+					JKBUBANEHTHЫЕ НАГРУЗКИ ОПРЕДЕ-	
0,3 ÷ 0,5	Яккумуляторный	ПОГРУЗЧИК Q=1.57		+					ЛЕНЫ ДЛЯ НЯИБОЛЕЕ НЕБЛЯГОПРИЯТ- НЫХ СОЧЕТАНИЙ, СООТВЕТСТВУЮЩИХ ЗЯГЛУБЛЕНИЮ ВЕРХЯ ПЕРЕКРЫТИЯ	
	НККУМУЛЯТОРНЫЙ ————————————————————————————————————	Q=3T		+					0.3 m.	
	HOIOHUIPYSYAK	Q = 5 T		+						
	Явтомашина	H-10		+						

ВНУТРИЧЕХОВОГО ТРЯНСПОРТЯ ОДНОВРЕМЕННО ДЕЙСТВО-BATH HE MOTYT.

приниматься по таблице на листе 3.

покин Проверно Северский Боярский

2. ПРИ ОПРЕДЕЛЕНИИ НЯГРУЗОК ОТ ВНУТРИЦЕЖОВОГО ТРЯН-СПОРТА КОНСТРУКЦИЯ ПОЛА ПРИНЯТА С ЖЕСТКИМ подстилающим слоем.

CEOPHBIE ЖЕЛЕЗОБЕТОННЫЕ КАНАЛЫ И ТОННЕЛИ ИЗ ЛОТКОВЫХ

ПРОМСТРОЙНИИПРОЕКТ <u>Рук. ГРУПЛИ</u> ΤK 1976

PREUBRACHTHUE BEPTUKAABHUE PRCYETHUSE

ЭЛЕМЕНТОВ HATPY3KH HA BHYTPHUEXOBNE TOHHENH

,	Расчетные схемы каналов и тоннелей	/5
Поляк	p ^{sep} (11111) p ^{sep}	q ^{ser} g ^{ror} p, ^{rop}
TROMET POMINING CONTROL OF SPORT OF SPO	ΘΕΕ Ι 3 5 8 II I2 I5 HR KAHAJA B YPOBHE PRCYETHLIE HAFPY3KU HA KAHAJALU U TOHHEJU TC M² HA KAHAJALU U TOHHEJU TC M² B YPOBHE 0.3 Q.5 Q.5 Q.5 Q.5 Q.5 Q.65 L.01 2.9 4.6 0.53 N° N° </td <td>РВСЧЕТНОВ ПЛОЩИДЬЯ ДВЬВЕНИЕ ПЕРЕДВУИ ОТ КОЛЕСЯ ДВЬВЕНИЯ ТС. Д×В; см. КАРЫ Q=2т 1.25 8×7 — Q=3т 1.90 8×7 ОРНЫЙ Q=1.5т 2.45 8×7 ЗЧИК Q=3т 5.2 30×20 — Q=5т 7.35 40×20 НА Q=10т 5.4 30×20 УЕН. РЕГРУЗКИ СПОРТА, ТЯЛЬНЫЕ</td>	РВСЧЕТНОВ ПЛОЩИДЬЯ ДВЬВЕНИЕ ПЕРЕДВУИ ОТ КОЛЕСЯ ДВЬВЕНИЯ ТС. Д×В; см. КАРЫ Q=2т 1.25 8×7 — Q=3т 1.90 8×7 ОРНЫЙ Q=1.5т 2.45 8×7 ЗЧИК Q=3т 5.2 30×20 — Q=5т 7.35 40×20 НА Q=10т 5.4 30×20 УЕН. РЕГРУЗКИ СПОРТА, ТЯЛЬНЫЕ
AFEK JMCTP	ТК Сборные железобетонные каналы и тоннели из лотковых элементов	СЕРИЯ 3.006-2
NE.	1976 РАСЧЕТНЫЕ СЖЕМЫ И НАГРУЗКИ НА КАНАЛЫ И ТОННЕЛИ	3.000-2 Выпуск Лист <u>I</u> 5

'

600

450

600

900

16

BUCOTA NOTKO-BUX ENEMENTOB

450

600

450

600

600

	ГЯБЯРИТНЫЕ	MAPKA		PHTH AJOB	[ABRPUTH 6] E	MAPKA	ΓЯБЯ. KAH	PUTЫ ANOB
	СХЕМЫ КАНАЛОВ	КАНАЛА	AMM	H	СХЕМЫ КАНАЛОВ	КАНАЛА	Am	HM
		KA(KAn) 30 x 30	300	300		KAC 90×90		900
		KA(KAn) 45×30	450	300	K . K . C		900	
	Vauss market Va	KA (KAn) 60 × 30		300	<u>КАНАЛ МАРКИ КЛе</u>	KAC 90×120		1200
.	<u>КАНАЛ МАРКИ КЛ</u>	KA (KAN) 60×45	600	450	1	K.T.C. 120x90	l	900
		KN(KNn) 60×60		600		7,000	1	
	n h	KA(KAn) 90×45		450		KNC 120×120	1200	1200
	11 11	KA(KAA) 90x60	900	600		KAC 120×150		1500
		KA (KAA) 90×90		900			1	222
		KA (KAn) 90×120		1200		КЛС 150×90	1500	900
	│├───┤	KA (KAA) 120×45	l	450		KAC 150×120	(" "	1200
	4-4-4	KA (KAn) 120×60 KA (KAn) 120×90	1200	600		100 100 100		(0.00
	\mathcal{H}	KA (KAA) 120×120		900	1	КЛС 180×120	1800	1200
		KA(KAA) 150×45	<u> </u>	1200 450		KAC 210x120	2100	1200
	<i>K</i>	KA (KAA) 150×60	ĺ	600			<u> </u>	<u></u>
	КАНАЛ МАРКИ КЛП	KA (KAA) 150×90	1500	900				
		KA (KAA) 150 × 120	1	1200	1. Эквивплентные нягру	ЗКИ В МЯРКИ	OORFE	KAHAI
		KA (KAn) 150×150	1	1500	YCNOBHO HE NPOCTABNE		UDKL	101111111
		KA (KAn) 180×60		600	2. MAPKU U TAGAPUTU I		ATH DE	יוסא ס
*		KA(KAA) 180×90	1800	900	PR3MEPRM.			
		KA (KAn) 180×120	1000	1200	2			
		KA (KAn) 180×150		1500				
3		KA (KAN) 210×60		600				
	A	KA (KAA) 210×90	2100	900				
		KA (KAA) 210×120	1 -/	1200				
		KA (KAA) 210×150		1500				
		КЛ(КЛП) 240×90	2400	900				
		KA (KAA) 240×120	2400	1200				
1		KA(KAA) 240×150 KA(KAA) 300×90		1500				
		KI (KIII) 300×90	3000	900				
		KA (KAA) 300 × 150	1 3000	1200				
╽┕		MI (MIII) JOU ATOU	<u> </u>	/500				
TK	СБОРНЫЕ	железо <i>бетонн</i> и	 b/E	КАНАЛЫ	И ТОННЕЛИ ИЗ ЛОТК	ОВЫХ ЭЛЕМЬ	HTOR	
						JUILIIL		

CREMBI

TABAPUTH WE

IPCIMETPOIÁHMITPOEKTI*M KOHGTPYKTOP* P<u>WK. TPYNDÁ</u> OT KUMETER

1976

450 450 600 600 600 600 600 600

ANOB

ОМИНАЛЬНЫМ

СЕРИЯ 3.006-2

6 I

BUNYCK JHCT

KAHANOB

ИЗ ЛОТКОВЫХ *IJJEMEHTOB*

Nonsk

ПРОВЕРИЛ

AALDNUOLWW

			UCH	10BHb			MEHI								150PH			PEMEL	4 T61			
Эскиз	Mapka Daemehta		1	MAPKA BETOHA	БЕТОН	CXOD CTAN FOCT KARCE R III		ATEPI TANGANA TANGANA TANGANA KANCENTE TOTOT CHET-534		Итого	ЛИСТ ВЫП. ії́-1 СЕРИИ	Марка элемента		MACCA T	MRPKA GETOHA	PAC BETOH M ³	OCO Q CTANI FOCT 5 KARCC PIÙ	78 -75 R . KC	TEPHI TEPHI THYTH I THYTH I THYTH I THYTHIS TEPHI TEPH	OPOPHAS HAR CTANS DO FOCT	Итого	SHC BHN.ÎÎ CEPH
300	AI-8	5970*	0.90	200	0.34	9.5	1.4	4.6	-	15.5		Stg-8	720	0.11	200	0.041	1.3	0.7	0.5	_	2.5	50
60 300 60 420	A1-15					16.8	1.4	4.6	_	22.8		119-15		0.11	200	0.041	2.2	0.7	0,5	_	3.4	
40 49 00%	A2-8	5970*	0.90	200	0.38	11.5	14	4.6	-	17.5	2	Л2 g -8		.,,	200	0.040	1.5	0.7	0.5		2.7	56
60, 450 60	J1 2-15	J310	0.30	300	0.50	20.2	1.4	4.6	-	26.2		Л2g-15	720	0.11	300	0.048	2.8	0.7	0.5	-	4.0	
30E	Л3-8	5970*	150	200	0.00	14.6	2.4	5.8	_	22.8	3	1139-8	720	0,19	200	0.095	2.0	0.7	0.6	_	3.3	5
80, 620, 80, 780	Л3-15	יטו פני	1.30	300	0.60	25.7	2.4	5.8	_	33.9	9	113g-15		0,19	300	0,015	3.5	0.7	0.6	_	4.8	
1 054	14-8	cano		200	250	25.5	2.4	6.4	-	34.3	. 4	114g-8		444	200	222	3.4	0.7	0.7	1	4.8	
80, 620, 80, 780	Л4-15	5970 *	1.80	300	0.72	29.3	2.4	6.4	-	38.1	4	N4g-15	720	0,23	300	0.09	3.9	0.7	0.7	1	5.3	58
\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$	N5-8	5970*	205	200	0.00	29.0	3,6	6.9	_	39.5		Л5д-8	720	000	200	0.11	3.9	0.7	0.7	_	5.3	
90 600 90	A 5~15	J310"	2.23	300	0.88	32.8	3.6	6.9	_	43.3	5	1159-15		0.28	300	0.11	4.4	0.7	0.7	_	5.8	59
	60РНЫ ЕНКЛЯТУ		КЕЛЕ	306E1	ОНН	IE.	KAI	НАЛЫ	' И	TOF	НЕЛИ	и из	NOTK	OBbi:		DEME						CEP 3.000 TYCK

	<u> </u>		, , , , , , , , , , , , , , , , , , , 	HOBH			MEHT	0/				-		40	50PHE	1/6	91	TEME!	4761			********
Эскиз	Mapka Gaemehta	Длина М М		Mapka Betoha	BETOH	CXOA CTAMB FOCT 57 KNACC	181-75	TEPUA YONODHO TRHYTAS IIPOBUNOS KABECA	TPOPURE HRA CTARE 90 FOCT	Итого	Лист Вып.∐-1 СЕРИИ	MAPKA SNEMEHTA	Длина мм	Mrcca T	Mapka Getoha	РА Бетон м ³	exon	MI	TEPMI XONO BHO- TRHYTHS IN CONORS KAISCA BINO 19CH 6727-53**	9108 ПРОФИЛЬ НЯЯ СТАЛЬ	1.	Лис Вып.
60						A Ū.	AI	BI norder	380-91* KC			 			<u>, </u>		AII	ЯI	8 I no roci 6727-33# Kr	380-7/* Kr	Итого	CEP
60	111-3			200		72.8	7.9	9,9		90.6		S119-3			200		9.7	1.1	1,1	-	11.9	\top
/ not	111-5			200		118.6	7.9	9.9		136.4		1119-5			200		15.8	1.1	1.1	-	18.0	1
009	111-8	5970	3.60	300	1.44	132,8	16.0	7.7		156.5	11	1119-8	720	0,45	300	0.18	17.6	1.9	0.8	_	20,3	1.
\$	111-11			300		161.6	35.6	2.1		199,3		111g - 11			300		21.6	3.7	*	_	25,3	76
1480 100	111-15			400		210.8	52.6	2.1		265,5		S119-15			400		28.2	3.7		_	31.9	٦.
•																			·			-
50	112-3			200		107.0	11.6	15.7	_	134.3		112g-3			200		14.3	1.1	2.0		17.4	╄
n at	112-5			200		117.0	11.6	15.7		144,3		1129-5			200		15.6	1.1	2.0	-	18.7	1
006	112-8	5970	4.80	200	1.92	157.6	11.6	15.7		184,9		A12g-8	720	0.60	200	0.24	21.0	1.1	2,0	-	24.1	1
0	112-11			300		157.6	11.6	15.7		184.9	12	N12g-11			300		21.0	1.1	2.0	_	24.1	16
1240 120	112-12			300		206.6		13.5		254.0		S129-12			300		27.4	2.9	0.7	_	31.0	1
1480	112-15			400		222.6	33.9	18.5		275.0		112g-15			400		29.6	2.9	0.7	,	33.2	1
? <u>fo</u>	1/3.3			200		117.9	15,4	17.9	_	151.2		1139-3			200		15.9			-		_
	113-5			200		125.2	15.4	17.9	-	158,5		1139-5			200		16.9	1.6	2.1	-	19.6	-
\	1/3-8	5970	6.30	200	2,52	168.8	15.4	17.9	_	202.1		1/39-8	720	0.80	200	0.00	18.2	1.6 1.6	2.1		20.6	-
	113-11			300		168.8	15.4	17,9		202.1	13	1139-11	1,20	0.00	300	0.32	22.6	1.6	2.1	-	21.9 26.3	16
1200 140	A13-15			300		221.0	38,4	10.3		269.7		1139-15			300		29.8	4.1	1.1		35.0	-1
1480																					00.0	1
7.0	Л14-3			000		40.5.4	10.0	10.5		1000												1
11	114-5			200		105.6		10.5		126.9		1149-3			200		14.0	1.1	1.2	-	16.3	
1 20	114-8	5970	4.65	200 300	1.86	123.0	19.9 19.9	7.9	-	150.8	1	1149-5 1149-8	700		200		16.3	2.0	0.8	-	19.1	
	114-11			300		190.6	26.6	8.4	_	225.6	14	1149-8 1149-11	720	0.58	300	0.23	16.3	2.0	0.8		19.1	1 6
20 1600 120	114-15			400		245.4	44.4	3.0		292.8	'	1149-15			<i>300</i> <i>400</i>		25.4	2.0	0.8		28.2	
1840						270.7	,,,,,,					a13-13			700		32.8	3.8			36,6	+
											1 1				-							-

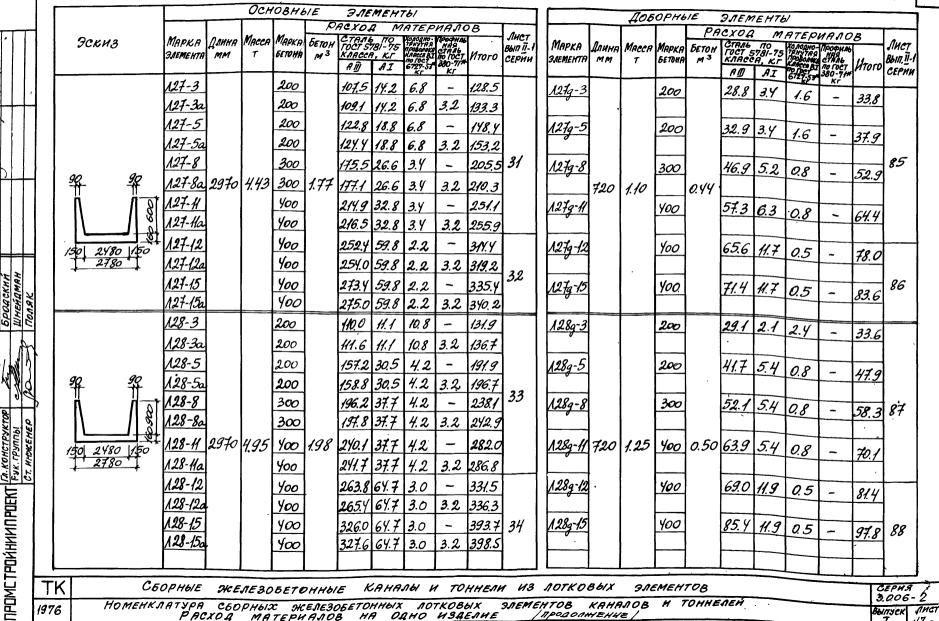
TK	COPHUE WENE 306ETOHHUE KAHANU II TOHHENI II NOTKOBUX GAEMEHTOB	3.006-9
1976	НОМЕНКЛАТУРА СБОРНЫХ ЖЕЛЕЗОБЕТОННЫХ ЛОТКОВЫХ ЭЛЕМЕНТОВ КАНАЛОВ И ТОННЕЛЕЙ РАСХОД МАТЕРИАЛОВ НА ОДНО ИЗДЕЛИЕ. I ПРОДОЛЖЕНИЕ!	BUNYER SUCT 10

ı					Осн	ОВНЬ	IE.	3 NE	MEHT	61]			A05	OPH6	IE	31EM	EHTE	»/			
-		!			2017		P	exol	2 M	ATEP			Suct						CXOA			MANO		ЛИСТ
	Эскиз		МАРКА ЭЛЕМЕНТА		Macca T	Mapka Getoha	Бетон м ³	CTRAB FOCT S' KARCEI A III	781-75 9, KI AI	KONOANO- TRNYTAU NPOBOMOKA KAACCA BI NO [OCT 6727-53*	TPOPMS HAA CTAAS TO FOCT 380-7/* Kr	Итого	ВЫП.]]- СЕРИИ	Mapka Memehta	Длина ММ	Macca T	Mapka. Betoha	BETOH M ³	CTAAL FOCT S KARCE A [j]	110 181-15 R, K.C A.I	XONOAHO- TAMYTAA NPOBONOKA KNACCABI TIO FOCT 6727-53*	ПРОФИЛЬ МЯЯ СТЯЛЬ ЛО ГОСТ 380-7/*	Итого	ВЫП.]]- СЕРНИ
			115-3			200		111.2	10.8	10.5	1	132.5		115g-3			200		14.8	1.6	1.2	1	17.6	
╫			115-3a			200		112.0	10.8	10.5	2.4	135.7												
			115-5			200		<i>138.6</i>	10.8	10.5	-	159.9		115g-5			200		18.4	1.6	1.2		21.2	
			115-5a			200			10.8	10.5	2.4	163.1												
) ₇₂	da	115-8		ł	300			19.9			183.8		115g-8			300		20.7	2.5	0.8	-	24.0	
	19	登	115-8a	5970	4.95	300	1.98		19.9		2.4	187.0	15		720	0.63		0.25						69
		8	115-11			300			44.4	—		<i>255.6</i>		115g-11			300		27.8	4.3	-	_	32.1	
			115-11a	4		300			44.4		2.4	258.8												
\dashv	120 1600		115-15	1		400			56.4		-	327.8		115g-15			400		35.8	4.3		-	40.1	
	1 1840	2	115-150			400		269.2	56.4	3.0	2.4	<i>331.0</i>	Ì	 -										
TONAK									<u> </u>					-										
500			116-3			200		110 6	15.0	16.2		(50.0		116ā3			200		15.6	10		-		
8										16.3	·	150.0		1110g 3			200		12.6	1.6	2.1		19.3	
			116-3a	1		200	-			16.3	2.9	153.2		1169-5			200		23.6	16				
a	70	40	116-5 116-5a			200	1		15.2	16.3	2.4	209.1		1116g 3			200		20.0	1.6	2.1		27.3	
4		7-	116-8	1		200	1		47.5		2.7	288.2		1169-8		ı	200		31.1	4.7	07		,	
d3,		1 8	116-80	5970	6.30		2.52		47.5		 		16	7.1.57	720	0.80		0.32		1.7	0.7	<u> </u>	36.5	70
KEH	70: 170	-18	116-11	1		300			47.5		_	288.2		1169-11			300		31.1	4.7	0.7		20 =	70
. MH.	130 1580		116-11a			300	1		47.5		2.4	291.4		7.7						7.7	$\mathcal{O}{\mathcal{T}}$		36.5	
C7.	·	•	116-12	1		300			67.8	 	_	395.1		1/69-12			300		42.6	25	2.9		1/0 =	
l			116-120	a		300			67.8	+	2.4	398.3								2.2	2.5		48.0	
			116-15			400]	319.8	67.8	1.5	_	395.1	.	1169-15			400		42.6	2.5	2.9		48.0	
Í			116-150	2		400	1	320.6	67.8	7.5	2.4	398.3									2.5		70.0	
			1	L	<u> </u>	<u> </u>	L			<u> </u>														
	TK		OPHBIE											NOTKO			MEH						1	ЕРИЯ
	1976 HO	DMEHKI	PATYPA	C60 204	PHO!	C HO	ENESC	OBETO	HHOIX	10	TKORI) O C M C	TEOLOAH	KAHE	NOB	H 7	OHHE	NEH					006-

OCHOB HOIE GNEMEHTH! 1060PH61E **GREMEHTH** PACKOD MATEPHAJOB PACKOR MATEPUASOB Suct Лист CTAND NO FOCT 5781 - 75 KNACCA, Kr PARAMO TIPODHAL AMERICAN TO THE TIPOTH AMERICAN CHARLES TO THE TO THE TOTAL AMERICAN TO THE TOTAL AMERICAN TO THE TOTAL AMERICAN TOTAL AMERIC CTANG NO XORANO TOPOPHILIFO TO TO TO THE TOPOPHILIFO TO THE TOPOPHILIPO TO THE TOPOPHILIP ЭСКИЗ MAPKA | DANHA MARCA MAPKA BETOH MAPKA MACCA MAPKA БЕТОН Длина Bb11.17-1 M 3 **SAEMEHTA** T BETOHR MM PREMEHTA MM T БЕТОНЯ СЕРИИ AI 117-3 136.7 18.2 200 15.4 16.7 22.0 168.8 1179-3 200 1.6 2.2 117-3a 200 137,5 15.4 16.7 172.0 117-5 200 24.9 186.1 15.4 16.7 218.2 1170-5 2.2 27.1 1.6 200 117-5a 200 186.9 15.4 221.4 117-8 4.9 40.6 200 507 34.9 0.8 261.8 8.9 1179-8 321.4 200 117-8a 5970 7.50 200 3.00 262.6 50.7 41 0.38 8.9 324.6 720 0.95 117-11 34.9 300 261.8 50.7 8.9 49 0.8 40.6 1179-11 *321.*4 300 MT-Ha 300 262.6 50.7 2.4 8.9 324.6 117-12 *300* 444 4.9 0.8 50.1 3330 730 94 415.4 1179 12 *300* 1540 117-12 333.8 73.0 300 9.4 2.4 418.6 N17-15 Y00 333.0 73.0 50.1 9.4 44.4 4.9 0.8 1174-15 400 415.4 117-15 400 333.8 73.0 9.4 2.4 418.6 25.2 118-3 2.6 200 156.3 24.0 20.9 20.6 2.0 201.2 1180-3 200 118-30 200 157.1 24.0 2.4 20.9 20Y. Y 32.5 118-5 2.6 210.7 24.0 27.9 2.0 200 20,9 2556 1189-5 200 118-5a 200 211.5 24.0 2.4 20.9 258.8 42.8 118-8 1.4 200 53.6 4.8 275.0 200 36.6 13.1 1189-8 118-8a 5970 9.30 200 3.72 275.8 53.6 13.1 0.47 344.9 720 1.18 118-11 42.8 300 275.0 53.6 13.1 36.6 4.8 1.4 341.7 1184-11 300 149 1500 110 1840 118-Ha 275.8 53.6 13.1 *30*0 2.4 344.9 118-12 53.2 *300* 57 1.0 350.0 80.3 1189-1 300 46.2 10.5 440.8 118-12 300 350.8 80.3 2.4 10.5 444.0 118-15 53.2 400 350.0 80.3 1.0 46.2 5.7 10.5 440 R 118a-13 400 118-150 400 350.8 80.3 10.5 444.0

CEPH9 3.006-2 CEOPHOLE OKENE 30 SET OHHUE KAHANU U TOHHENU UZ NOTKOBUX SAEMEHTOB HOMEHKARTYPA COOPHOIC OKENESOGETOHHOIX JOTKOBOX SAEMEHTOB KAHANOB H TOHHEREH SUCT BUTYCK 1976 PACKOR MATEPHANOB HA ORHO MIRENHE INPOADAHEHHE

NPOMETPOMHMUNPOEKT KAKATA CT. MM



-		·		OCH	OBHL		31E	MEHT							405	0 P H 6	/E	INE M	EHTE	,			
	Эскиз	Mapka Gaemehta	Длина мм	Macca T	Марка Бетона		CTAAL CTAAL FOCT 5' KAACEA A Ū		ATEPI TUNITAGE TUNITA	TRADO TRAPO CTARL TO FOCT 380-7/#	з <i>Итог</i> о	SUCT BUN.IJ-1 CEPUU	MAPKA MEMEHTA	Данна м м	Масса		PP	CXOA CTRAB FOCT 5 KAACE AM	M	OTEO	MA NO	В Итого	AUCT BUN. I-
		119-3			200		125.7	16.0	12.3	<u> </u>	154.0		1199-3			200		AU 16.7	2.0	1.5	Kr -	1	
1		119-3a			200		126.5	16.0	12.3	2.4	157.2		71139			200		70.7		7.5		20.2	
		119-5			200		176.2	26.5	9.2	-	211.9		1199-5			200		23.5	31	1.0		040	
	,	119-5a			200		177.0	26.5	9.2	2.4	215.1			1		200						27.6	
ĺ	80 80	119-8	*		300		234.8	<i>55.3</i>	3.4	_	293.5		1199-8]		300		31.4	5,3	-	-	36.7	
		119-8a	5970	6.30	300	2.52	235.6	<i>55.3</i>	3.4	2.4	296.7	19		720	0.80		0.32					55.7	<i>‡3</i>
		119-11			300	ļ	261.6			_	320.3		1199-11]		300		35.0	5.3	-	-	40.3	10
		119-Ha			300		262.4	55.3	3.4	2.4	323.5											7070	
	120 1920 120	119-15			400		365.2		4.4		440.7		1199-15			400		48.7	6.1		- ,	54.8	
	* ~~~	119-15a			400	{	366.0	71.1	4.4	2.4	443.9				ļ								
				•		1	<u> </u>	ļ	ļ		<u> </u>				•								
í		120-3			200		1501	100 -	100.0				-										-
Ь		120-30				1	159.1			-	194.0		120-3	1		200		21.1	2.0	2.2	-	25.3	
		120-5			200	l	159.9		1		197.2	1	100 5	}									
	80 80	120-50			200	ļ	214.8	27.5		2.4	256 3		120g-5			200		28.5	3.1	1.7	-	33.3	
)	I H H	120-11		•	300		279.8		8.4	2.7	259,5 347,3		120g-H	1		2		37.2	5.5	07	_		
	86	120-Ha	5910	7.50	300	3.00	280,6		8.4	2.4	350.5	20	120g-11	1	0.95	300	0.38	27.2	3.3	0.7		43.4	411
	NO 1880 140	120-15	-		400		384.0				470.7		1209-15	1	0.55	400	0.50	51.2	55	0.7		EYI	74.
	2/60	120-150		·	400		384.8		9.6	2.4			11209 15	1		100		21.2	3.0	0.7	<u> </u>	57.4	
i									1	2.,	775.5					٠.							
										,			-	İ									
l						1]									
						1																	
-	1/					<u> </u>	<u> </u>	<u> </u>			L				<u> </u>								
	K CEC	PHOLE	HE.	1E30	6E T C	HHE	EK	AHAS	161 H	101	HEAN	1 413	SOTKO	BHIX	201	MEH	TOB						ЕРИЯ 206-

																								L
		T		Och	OBHE	F/E	ЭЛE	MEHT	61						Dos	O PH6	IE	3JEM	EHT6	,				ī
	Í			T			ACXO	2 M	ATEP	MANO	В				400			CXOA	M	ATEP	4900	R		1
\prod	ЭСКИЗ	Mapka Memehta		Macca T	Марка Бетона		CTRACE FOCT S KARCE	, 170 181-75 9, KI AI	XONOGHO- TRHYTH R NPOBOROKE KRACCA BT NO [OCT 6727-53*	TPOPMAG HAG CTAAL NO FOCT 380-71#	Итого	SUCT BURIT-1 CEPUU	Марка Элемента	Linha mm		MAPKA GETOHA		CTANG FOCT 5 KNACO	781-75 A, Kr	XONORHO- TRHYTHA THYTHA THOBOROKA KARECABI TO COCT 6727-33#	TIPOPUNG HAS CTANG NO FOCT 380-71*	И _{то} со	SUR. II- BUN. II- CEPUN	1
11		121-3			200				20.3	<u> </u>	205.1		1219-3			200		21.5	2.0	2.5	- KF	26.0		1
		121-3a]		200			23.8	20.3	2.4	208.3]]	79-											
		121-5			200		238.0	34.3	17.0	_	289.3		1219-5			200		31.7	3.1	2.0	-	36,8		ı
11		121-5a	5970	8.85	200	3.54	238.8	34.3	17.0	2.4	292,5	21		720	1.10		0.44						75	j
		121-11]	ĺ	300		308.4	69.1	9.8	-	387.3		1219-11			300		41.2	5,9	0.8		47.9		l
+	解 架	121-11a			300		309.2	69.1	9.8	2.4	390.5		,									C07		
		121-15		ł	400		389.6	1	1.2		490.1		1219-15			400		52.0	5,9	0.8		58.7		
	2	121-15a			400		<i>390.</i> 4	89.3	11.2	2.4	493,3		-					<u> </u>						
Ш	160 1840 160																	ļ						
	2160			•																				
2					-			<u> </u>		<u> </u>	 													
8001		122-3		-	200	•	90.3	13.5	11.4	_	115.2		1229-3			200		23.9	2.0	2.9		28.8		1
		122-3a			200		91.1	13.5			118.4													
M.		122-5			200		121.0	13.5	11.4		145.9		1229-5			200		32.1	2.0	2.9	-	37.0		١
g	黎 黎	122-50			200		121.8	13.5	11.4	2.4	149.1													١
	l h h	122-8			300		131.3	18.1	9.4	7	158.8		1229-8			300		34.9	3.1	2.4	-	40.4		
ЧЕР		122-8a	2970	5.18		2.07	132.1		9.4	2.4	162.0	22		720	1.30		0.52	ļ					76	
HOKE	180 1800 180	122-11			300			34.5			207.5		1229-11			300	!	45.0	6.1	1.0	_	52.1		
CT. M	2160	122-Ha			300			<i>34.5</i>		2.4	210.7									12		120		
		122-15			400			44.3	3.6	~	261.3		122975			400		56.8	6.1	1.0		63.9		
Ст. инженер		122-15	}		400		214.2	199.3	3.6	2.4	264.5													
												}												
		·								· · ·														
1	K Coe	PHBIE	W.F.I	0E30	5ETN	HHbI	- N	AHP	24/				20TVC5	24/2									ЕРИЯ 006 -	
	-	- :		NHL/X									JOTKOE			MEHT U TO		NEÁ					YCK 1	NH
										112,	DUE	4121461	חספחחת	NEHL	/E/			_						14

				<u> </u>																			L
				UCH	OBHE			MEHT							LOE	OPHE		3NEM		,			$\overline{}$
htt	2040	Manya	n	M	44		PCXOA	79	ATE PY	AAOE	3	Лист					PA	CXOL	M	ATEPI	URSOL	В	Лист
2	Эскиз	МАРКА Элемента	Qauha Mm		ІЧАРКА БЕТФИА	DETOH M ³	CTANG FOCT SI KARCCI A III	181-75 7, KI AI	XOMAQUO TRIESTA A PPOBLIMACA MARCAGEST NO COCT 6727-534 KT	17049116 1789 1789 100 1007 380-77#	Итого	ВЫП.]]-1 СЕРИИ	MAPKA SAEMENTA		Mrcen T	MAPKA 6£70HA	БЕТОН M ³	CTANS TOCT S KARCE A W	781-95 A,KI	XONO NHO THIN THE PI THOUSO AREA KAMEEN BT NO TOCY 6727-53*	ПРОФИЛЬ 17876 10 10 Ст 380-71* КГ	Итого	BLIN. IJ-1 CEPHH
800		123-3			200	İ	146.9	16.0	18.2	1	181.1		1239-3	,		200		19.7	2.0	2.1	-	23.8	\Box
		123-3a	1	1	200	1	147.7	16.0	18.2	2.4	184.3			1	}					~			1 1
M W		123-5	ļ		200		222.6	35.9	14.7	_	273.2		1239-5	7		200		29.8	3.2	1.6	_	34.6	1
		123-5a	ľ	1	200		223.4	35. <i>9</i>	14.7	2.4	276.4		7.										1 1
2		123-8		j	300	1	283.0	54.7	9.3	_	347.0	23	1239-8	1	İ	300		37.9	5.0	0.8	-	43.7	77
 	一条 祭	123-8a	5970	7.10	300	2.84	283.8	54.7	9.3	2.4	350.2			720	0.90		0.36						l" l
VIIIa	1 1 1 2	123-11]		400]	35Y.2	55,9	10.0	,	420.1		1239-11	1		400		47.4	5.9	0.8	-	54.1	1 1
1380	3	123-Ha		l	400		355.0	55.9	10.0	24	423.3			1	ł							7.7	
100	No. 2.180 196	123-12			400		40.8	101.0	7.7	~	519.5		1235-12			400		55.0	10.8	0.5	-	66.3	
	2460	123-120	•	l	400		411.6	101.0	7.7	2.4	522.7	1										00.5	
THE		123-15		l	400		444.8	113.4	7.7	_	565,9	24	1239-13	1		400		59.6	10.8	0.5	_	70.9	78
SAGE SAGE		123-15a		<u></u> .	400		445.6	H3.Y	7.7	2.4	569.1			1								70.0	
100		124-3		1	200		172.5	22.6	21.0	1	216.1		1249-3			200		23.1	2.0	2.3	-	27.4	
		124-3a			200		173.3	22.6	21.0	2.4	219.3	Ì		1								27.1	
[LL LL LL LL LL LL LL LL LL LL LL LL LL	!	124-5		l	200		253.2	42.5	17.5	-	313.2		1249-5	1		200		33.8	3.2	1.8	_	38.8	1 1
MANA 9	84 84	124.5a		l	200	1	254.0	42.5	17.5	2.4	316.4	ì		1								20.0	79
190	tan h	124-8	*		300		3/8.0	65.3	11.1	1	394.4	25	1249-8	1		300		42.7	5.4	0.8	-	48.9	13
18/		124-8a	5970	8.10	300	3.24	318.8	<i>65.3</i>	11.1	2.4	397.6	~		720	1.03		0.41					70.0	1 1
OTAEAR CHCTPYKI C FPYNAB HHYKEHE	NO 2180 NO	124-11		l	400		352.2	66.5	11.8	_	430,5		1249-4	·		400		47.2	5.4	0.8	-	<i>53.</i> Y	
131491	2460	124-11a			400	1	353.0	66.5	11.8	2.4	433.7			1	-						ī	00. /	1
हिल्ल		124-12			400		386.2	H0.4	8.8	-	505.4		1249-12		1	400		51.7	11.2	0.5	_	63.Y	$\vdash \vdash \vdash$
F		124-12a	ļ	1	400]	387.0	110.4	8.8	2.4	508.6		7.7	1		7,40			71	<u></u>		<i>63.</i> Y	
		124-15			400		427.4	124.4	8.8	1	560.6	26	12/9-15	1		400		57.1	11.2	0.5	-	68.8	80
		124-150	<u> </u>		400		128.2	124.4	8.8	2.4	563.8		8	1								00.0	
冒 暑	* AONYCKAETCA W	1310708.	NEHUE	SOT	KOB.	длин	OH 29	70 M	И,														1 1
A A PERUBEL KNN TPOMETPOMHNNIPOEKT	TK Coo	PHUE	ЖЕ	SE30	BETE	DHHBI	E K	AHA	161 U	1 70	HHEAL	ı u3	SOTKO	861X	31	EMEH	70B					7	CEPHA
	976 HOMEHKA	ATYPA	C60	PHOIS	oc oc	ENE30	SETO	нных	10	runn			4708				TOHHE	SEH					DOG - S
	7,0	PAC	XO4	MA	IEPH	HJO	B HI	4 04	THO	H3A	ENUE		продо	AHE H	WE /							نــــــــــــــــــــــــــــــــــــــ	I /2

			UCH	OBHE		JAE	MEHT							#00	OPHE			EHTE		1000		
Эскиз	MAPKA GRENTA		Macca T	Mapka 6ETOHA	BETOH M3	CTABL CTABL FOCT 5 KARCCA		ATEP XORDENS TEMPTAR	MAAO	Итого	ЛИСТ ВЫП. []-1	MAPKA SAEMEHTA			M _{APKA} 6ETOHA	BETOH M3	CXOD CTAAL FOCT S KAACO A III	110 110 1181-75 18, K.C	ATEPI XONOQHO- TAHYTASI IPOBABAK KARCCABI	TIPOPHAL HAS CTABL TO TOCT	Нтого	SINC BHU. CEPI
			<u> </u>			·Aij	AI	6727-53	380-7/*	,,,,,,,	СЕРИН	JAIL PIERT I	1414						P .	380-71* Kr		-
	125-3			200		102.7	10.9	12.5		126.1		125g-3		İ	200		27.5	2.0	2.6		32.1	
	125-3a			200		103.5	10.9	12.5	2.4	129.3								-		`	//	
	125-5			200		I	26.3	 	<u> -</u>	176.7		125g-5	1		200		38.8	5.6	1.1	-	45.5	
	125-50		Ì	200			26.3		2.4	179.9	1								-		110.1	
- 80	125-8	000		300			30.3		-	194.2	27	125g-8			300		42.4	5.6	1.1	<u> </u>	49,1	81
帮 丁	125-8a	2970	4.73		1.89		30.3	T	2.4	197.4		105 (720	1.18	-	0.47	50.0	-			50.0	
l \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	125-11	1]	400			38.7		-	241.8		125g-11		,	400		52,9	5.6	1.1		59.6	
11	125-110		İ	400			38.7		2.4	245.0		105 10	}				cal	""	00		012	├
160 2140 160	125-12	-		400		262.2		3.8		328.7		125g-12			400		69.1	11.9	0.8		81.3	
2460	125-15	1		400		263.0		3.8	2.4	331.9	28	105 16			400		171	,,,,	00		89.3	82
	125-15	1		400		<i>292.4</i> <i>293</i> .2		3.8	2.4	358.9 362.1		125g-15			700		77.1	11.4	0.8		103.3	
	126-3	Ĭ	_	200		117.1	10.9	13.2	2.7	141.2		1269-3			200		30.3	20	3.0		35.3	-
	126-30	1		200		117.9	10.9	13.2	2.4	144.4		1209-3	İ		1		90,9	2.0	3.0		32,3	
	126-5	1	٠ ا	200			26.3		2.7	195.6		1269-5	Ì		200	1	42.2	58	1.3		49.3	
<i>80 80</i>	126-50	1		200			26.3	6.3	2.4	198.8	29	1129 3	1		1		12.2	0.0	1		13.5	
1 1 8	126-8			300	1		-	6.3	-	213.1	25	1269-8			300		45.8	5.8	1.3	_	52,9	83
	126-80	2970	5.48	300	2.19	177.3	30.3	6.3	2.4	216.3			720	1.38		0.55						1
180 2100 180	126-11	ļ.		400		219.9	38.7	6.3	_	264.9		1269-11	1		400		56.9	5.8	1.3	_	64.0	1
180 2100 180	126-Ha			400		220.7	38.7	6.3	2.4	268.1			1			١.						1
,	126-12			400		261.9	58.7	4.5	_	325.1		1269-12			400		68.9	11.6	1.0	-	<i>19.5</i>	
	126-12		}	400		262.7	58.7	4.5	2.4	328.3]				30,5				7.5.0	
	126-15			400		297.9	58.7	4.5	_	361.1	30	1269-15	1		400		75.9	11.6	1.0	-	88.5	84
	126-150	4		400	1	298.7	58.7	4.5	2.4	364.3			1									1
	<u></u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u></u>	<u> </u>		<u> </u>		L	<u> </u>	<u> </u>	<u> </u>	<u> </u>						
1	OPHOLE											SOTKO			EMEH							CEP
HOMEHK	DATYPA PAC	C50	PH61.	x se	ENE30	DETO	HHOI	x AO	TKOB	6/X	0 45 44	HTOO	VOU		~	TOULE	acis					NYCK

MONAK

POBEPHA

בייבר בייוווי

こく

	Γ				OCH	OBHL			MEHT							405	OPHE	IE :	ONE M	FHT	21			
\forall	- 1	00	840	0	Manag	MAPKA		CTAAL	70	A TEP	TIPOPUNG	<u> </u>	SHCT	Magyn	0			PA	CXOD	M	OTER	ANOB	. Т	
		Эскиз	Mapka Saementa			ETOHA	M 3	CTAAL TOCT 57 KARCCA A 🗓	81-75 , Kr AI	TPOBOJOKA KARCEA BI NO FOCT 6727-53 Kr	TIPOPUAL NAS CTASE TO FOCT 380-7/*	Итого	ВЫЛ.]]- { СЕРИ И	MAPKA GAEMEHTA	<i>ММ</i>	MACCA T	Mapka Betoha	BETOH M ³	CTANG 10CT 5 KARCO A III	781-75 18, K.F	XOROGHO- TANYTHA TPOBONERA KANCTUBI TO TOCT G727-53**	TPOPHAL MAS CTABL TO FOCT 380 - 7/#	Итого	Shirt Bbin.¶- Cephn
			129-3 129-3a			200		121.0 122.6	11.1	12.2		144.3		129g-3			200		32,3	2.7	2.7		37.7	
			<u>129-5а</u> 129-5			200		122.6 155.9	21.7	12.2 10.8		149.1 188.4		1299-5			200		41.6	CII	//			
			129-5a			200			21.7	10.8		193.2		100			~0		·	6.4	1.1	-	49.1	
4		90 90	129-8 129-8a	2970	570	300	228	213.6 215.2	-	<i>5.0 5.0</i>	3.2	258.7 263.5	35	129g-8	700	,,,,	300		56.9	6.4	1.1	-	64.4	89
		1 / 3	129-11	,-	5.70	400	2.20	261.3	40.1	5.0		306.Y		1299-11	720	1.43	400	0.57	69.7	6.4	1.1		77.0	
			129-11a 129-12			400 400		262,9 285.0		<i>5.0 3.8</i>		34.2	-	100.10							<u>'''</u>		77.2	
4		170 2440 170	129-120	1		400			66.9	 		355.7 360.5	1 1	129g-12			400		74.8	12.9	0.8	_	88.5	
٤			129-15 129-150			400 400		316.8		3.8	-	387.5	- 1	1299-15			400		83.2	12.9	0.8	-	96.9	90
110/13			130-3			200		318.Y 157.Y	66.9 26.1		3.2	392.3 191.8	1-	1309-3			200		1110	6.2	10			
1	١.		130-3a			200		159.0	1	8.3	3.2	196.6]	71-72			200		41.9	5.3	1.9	-	49.1	
d		90 90	130-5 130-5a			200		198.9 200.5	+	<i>5.7 5.7</i>		245. 9 250 7	1	130g-5			200		53.0	6:6	1.3	-	60.9	
7		1205	130-8 130-8a			300		263.6	45.9	5.7	=	315.2	3+	130g-8	<u> </u>		300		70.3	6.6	1.3	-	78.2	91
MECTE		190 2400 190	130-11	1	6.45	300 400	2.58	265.2 318.9	45,9	1	3.2	320.0 370.5	1	120.	705		-							
C7. 7/		2780	130-11a			400			459	† -	 	375.3	- i	130g-11	120	1.63	700	0,65	85.1	6.6	1.3	-	93.0	
			130-12 130-12	1		400			72.9	_	20	418.4		1309-12	2		400	1	90.2	13.1	1.0	-	104.3	
			130-15			400			72.9	+	3.2	423.2 457.4	1	1309-15			400	1	100 6	15.3	1.0	_	116.9	92
			130-150			400		381.6	72.9	4.5	3.2	462.2	1 1		1			1	755,0	,,,,,	1.0		110,9	
	TI		OPHUE		NE30	BETC	PHHOI	E K	AHA	161 1	1 70,	HHEAI	H H3	ΛΟΤΚΟ	8612	9.2			<u> </u>	<u></u>	<u> </u>	<u> </u>		ЕРИЗ
	1976	6 HOMEHKI	PAC	C60 200	PH61; MA	X HO TEPH	ENES	OBETO B H	HHOIX	10	TKOBE	WX E O W E	31EME	HTOB	KAH	ANOB	MEH	TOHHE	DEH				3.0	VOG

Nonsk	Эскиз					0		MEHT								OPHB		GAEM!					
NONSK	Эскиз					P	9CXO4	M	ATEP	HANO	В	Лист					PA	CXOA	MA	TEPH	ANOB		0
000		?JEMEHTA	ДЛИНА ММ	Macca T	Mapka Betoha	БЕ ТОН М	CTANG TOCT 5: KNACCI A M	181-75 9, Kr A I	XOTOTHO TANYTAA TPOBUMEN XAACCABI TO (DCT G727-5#	TPOPHAL HRA CTRAL ROTOCT 380-718 Kr	Итого	Вып,¶-1 СЕРИИ	MAPKA GAEMEHTA	ДЛИНА ММ		Mapka Betohr	бетон м ³	CTAAB FOCT 5: KAACC	70 781-75 R, KC A I	XONO GHO- TRHY TA A TRHOSO MOKA KARCO BI TO FOCT 6727-58	POPENE HAA CTANE TO TOCT 380-7/#	Итого	ЯИСТ ВЫЛ. <u>П</u> -1 СЕРИИ
		131-3			200		144.1	25.3	7.7	-	177.1		1319-3			200		38.7	4.3	1.8	-	44.8	
		131-3a			200		145.7	25.3	7.7	3.2	181.9		19					7				1,1,5	
		131-5			200		206.9	34.3	3.7	_	244.9		1319-5]		200		55.4	6.5	0:8	-	62.7	
		131-5a			200		208.5	<i>3</i> 4.3	3.7	3.2	249.7	39											93
8		131-8			300		277.2	41.5	3.7	_	322.4		1319-8			300		74.2	7.9	0.8	-	82.9	
	90 90	131-8a			300		278.8	41.5	3.7	3.2	327.2												
ond	n /1 8	131-11	2970	5.63	400	2.25	327.4	<i>45.0</i>	2.2		404.6		1319-11	720	1.40	400	0.56	85.8	13.8	0.5		100.1	
ПРОВЕРИ		131-11a			400	}	329.0	75.0	2.2	3.2	409.4		L°							-			
du	150 3080 150	131-12			400		376.6	86,2	2.2	-	465.0	40	1319-12			400		98.5	16.6	0.5	_	115.6	94
Z Z	3380	131-12a			400		378.2	86.2	2.2	3.2	469.8	10											
БРОДСКИЙ ШнЕЙДМЯН ПОЛЯК		131-15			400		457.5	86.2	2.2	_	<i>545.9</i>		1319-15			400		119.7	18.0	0.5	-	138.2	
200 200 76 1/4 1/4		131-15a			400		459.1	86.2	2.2	3.2	<i>550.</i> 7												
11 11 10 0		132-3		ĺ	200		141.1	23.1	9.1	_	143.3		1329-3			200		37.5	4.9	1.8		44.2	
		132-3a			200		142.7	23.1	9.1	3.2	178.1												
ANN I		132-5			200		201.7	38.9	4.5		245.1	41	1329-5			200		53.7	7.3	0.8	-	61.8	95
1 1/1/2	90 90 †† ††	132-5a	}		200	ļ	203.3	38.9	4.5	3.2	249.9	11											90
2 0	1 / 8	132-8			300		302.8		4.5	~	354.4		132g-8	4		300		80.8	8.7	0.8	_	90.3	
EHE SHE	860	132-8a			300	}	304.4	471	4.5	3.2	359.2		ļ										
HRV. OTGEA (A.KOHCTPYK PYK. CPYNI CT. WHWEH	159 3080 150	132-11	2970	6.15	400	2.46	381.4	 	3.0		465.2		132g-H	720	1.55	400	0.62	99.6	15.2	0.5	_	115.3	
FRU. KE	3380	132-Ha			400		383.Q	1	3.0	3.2	470.0												
		132-12			400		414.2		3.0	-	498.0	42	132g-12			400		108.4	17.0	0.5	_	1259	
		132-12a			400		415.8	80.8	3.0	3.2	502.8	72	ļ										96
		132-15	i i		400		463.4	920			558.4		132g-15			400		121.1	19.8	0.5	-	141.4	
		132-15a	1		400		465.0	92.0	3.0	3.2	5632		}	1									
			<u></u>	<u></u>	<u></u>		<u></u>	<u></u>	<u></u>	<u></u>		ليييا						<u> </u>					-, .
		OPHOLE			DETE								SOTKO	<u> </u>		MEH	TOB TOHHE	DEÑ	· · · · · ·				ЕРИЯ 006- 2
₹ 197.6	HOMEHKI	PAC	X O A	MA	TEPH	ANC	B H	A O	aHO	TKOBE U3A	ENHE	FIEME	HT08 1	KAHA		и .				-		86	TYPEK JIH

				OCH	OBHE	IE.	3AE.	MEHT	6/					_	A06	OPHO		FIEM		,			
		-		1	T		exol	2 M	ATEP	HANO	В	2.425					PA	CXOA		TEPH	PAOE	3	Auc
	Эскиз	MAPKA BAEMEHTA	Длина Мм	Maeca T	Марка БЕТОНА	БЕТОН М ³	CTA 16 FOCT 5: KARCC A NJ	70 781-75 A, KT	XO, TO, TO, TO, TO, TO, TO, TO, TO, TO, T	TPOP UNI HAS CTANL TO TOCE 380-71	ИТОГО	ЛИСТ ВЫП, !! -1 СЕРИИ	MAPKA ЭЛЕМЕНТА	A suha m m	Macèr T	Mapka Betoka	БЕТОН М ³	CTANG FOCT 5 KARCO A IÑ	781-75 R. Kr AI	XO NORHO- TRHYTHA MOBONOKA MARCHBI NO FOCT 6727-53	TIPO PUBLICA HAS CTAINS TO FOCT 380-7/ M	Итого	ВЫП. СЕРІ
İ		133-3			200		152.3		10.5	-	185,9		1339-3			200		40,7	4.9	2.3		47.9	
ı		133-3a			200		153.9	23.1	10.5	3.2	190,7												
		133-5			200		215.7	40.3	5.3		261.3	43	133g-5			200		57.7	7.5	1.1		66.3	۔ ا
1		133-5a			200		217.3	40.3	5.3	3.2	266.1							700	~ -		 		97
1	90 00	133-8			300		298.5	49.5	5.3	-	<i>353.3</i>		133g-8			300		79.8	7.5	1.1	-	88.4	
١	*	133-8a	2970	6.90	300	2.76	300.1	49.5	5.3	3.2	358.1			720	1.73		0.69						
ŀ	1 3	133-H			400			82.2		-	450.8		133g-11			400		95.8	15.4	0.8		112.0	
ı	2	133-11a			400			82.2	1	3.2	455.6					1/00		1/7.0	17.0				
1	3380	<u>133-12</u>		İ	400			82.2			531.6	44	133g-12			400		117.0	17.6	0,8	_	135.4	20
	* 2300	133-120	ŀ		,400			82.2		3.2	<i>536.</i> 4		1222(400		129.7	20 V	0			98
		133-15 133-15a			400				3.8	3.2	592.0 596.8	}	1339-15			700		123.1	20.7	0.8	<u> </u>	150,9	
٦		134-3			200			<i>93.4 35.4</i>		9.2	224.7	-	1349-3			200		46.6	6.3	2.1			
		134-3a		i	200	۱ ۱		35.4	-	3.2	229.5		71319 5						-	2.7	<u> </u>	55.0	
		134-5			200	ŀ		58.5	+	9.2	310.1		1349-5			200		64.3	7.9	1.3	_		
l	90 99	134-5a		•	200			58.5		3.2	314.9	45	71279	•						<i>X</i> 3	_	73.5	99
-	tan h	134-8			300			58.5	+	-	389.9	1	1349-8			300		85.6	7.9	1.3	_		
-		134-8a	2970	7.73		3.09		58.5		3.2	394.7			720	1.93		0.77					94.8	
	190 3000 180	134-11			400		388.2	92.0	4.9	_	485.1		1349-11			400		102.8	15.8	1.0	_	110	-
1	1 3380 1	134-Ha			400		389.8	92.0	4.9	3.2	489.9								ļ			119.6	
		134-12			400		473.6	92.0	4.9	_	570.7	1,,,	13/9-12			400		125.4	18.2	1.0	_	IIII	
1		134-12a			400		475.2	92.0	4.9	3.2	<i>575.5</i>	46								/		144.6	100
-		134-15			400			103.2			631.1		1349-15	,		400		138.1	21.0	1.0	_	160.1	
		1341Sa			400		<i>524.6</i>	103.2	4.9	3.2	6 <u>35,9</u>											700.7	
Tr				<u> </u>	<u></u>	<u> </u>							<u></u>					<u> </u>					
976		PHHE	SKC €	SE 30	BETO	OH Hbl.	E K	CAHA	161 V	1 10	HHEAI	4 43	NOTKO	861X	311	EMEH	70B					- 0	EP!

																							l
				Осн	10846			MEHT							ДОЕ	OPHE		BNEM					
	Эскиз	МАРКА ЭЛЕМЕНТА	Длина мм		M _{APKA} BETOHA		PCXOL CTANG FOCT 5! KAACE A-IIJ	781-75 9. Kr	A TEP XOJIQAHO- TRINYTAR IPOBONON KNOCER BI NO FOCT 6727-53*	TPOCHAL HAS CTASE	Vizoro	ЛИСТ ВЫП []-1 СЕРИИ	MAPKA ЭЛЕМЕНТА	Дяина м м	Macca T	Mapka Setoha	БЕТОН	CXO G CTANIL TOCT S KNACO A III	70 781-75 9, Kr	ATEPI XONOQHO- TÄHYTAS NPOBONOKA KANCCABI TO FOST 6727-534 KI	1 A SIO L POPULAL POPULAL PO FOCT 380-71*	3 Итого	ЛИСТ ВЫП <u>П</u> -1 СЕРИИ
		135-3	1 .		200			31.4	8.0		230,4		135g-3			200		50.9		1.8	<u></u>	58.0	
		135-30	<u> </u>		200			31.4	 	3.2	235.2 288.6	47	/20 0					•					101
		135-5		<u> </u>	200		249.2 250.8		8.0	3.2	288.6 293.4		135g-5			200		66.Y	6.9	1.8		75.1	
		135-8]		300			63.0	+	_	437.7		1359-8			300		95.4	12.7	1.5	-	109.6	
	1 4 4	135-80	2970	7.20	300	2.88	369.5	63.0	6.8	3.2	442.5			720	1.80		0.72						
	\	135-11			400			107.2	 	-	583.6		135g-H			400		123.1	23.1	0.5	_	146.7	
	/60 3680 V60	135-12	2		400			107.2		3.2	588.4 700.1	48	1359-12			400		151.8	921	0.5		175.4	102
HB.	160, 3680 160	135-12			400			115.6	<u> </u>	3.2	704.9		1309 12			100		121.0	20.7	0,5		170.7	
MARK		135-15	1		400			115.6		-	754.5		1359-15			400		165.4	23.1	0.5		189.0	
MHE		135-15a 136-3	4		200			115.6		3.2	759.3		126 2					2114					
Fr.		136-30			200			<i>37.6 37.6</i>	1	32	253.4 258.2		136g-3			200		54. F	5.3	2.0		62.0	
		136-5			200			37.6	 	-	281.3	49	1369-5			200		62.1	5.3	2.0		69.4	10.3
12/2	1 9 9	136-50	4		200			37.6		3.2	286.1	79											103
197		136-8 136-8a	2970	773	300	1	366.5 368.1			3.2	437.5 442.3		136g-8	720	1.93	300	0.77	97.3	9.5	0.8		107.6	
H7KE	160 3680 160	136-11		1.72	400	1	463.9				582.5		1369-11	120	7. 5.5	400	0.77	120.6	217	0.5		142.8	
CT	4000	136-Ha			400		465.5	115.6	3.0	3.2	587.3					, , ,							
지 조		136-12 136-12	1		400			115.6			678.8	50	136g-12			400		145.7	23.3	0.5	_	169.5	104
를		136-15	-		400		561.8 666.3	115.6			683.6 793.3		1364-15			400		173.0	233	05		196.8	
TPOMC T PONHNNII PDEKT		136-150	1		400			124.0	+		798.1		11 504 10			100		115.0	-0.0	<i></i>		,,,,,,	
Ī L				<u> </u>			<u> </u>		<u></u>														
	, , , ,	60PH61E						AHA	161 H	700	HHENN		NOTKO E			MEH		0515				3.	EPH 9 006 -

		<u> </u>		OCH	OBHE			MEHT							105	OPHE	b/E	3 NEM	FUT				
11	Эc _{киз}	MARKA				P	ACXO	9 M	ATEP	MASIC	В	Лист			1	T	PA	CXOL	2 00	OTER			
		MAPKA FACEMENTA	City	Macca T	MAPKA BETOHA	БЕТОН М ³	CTRAL FOCTS KARCC A III	781-75 A, KI AI	XONOUNO- TAMYTA A IPOBONOKO KIRCCA BI ITO (OCT 6727-53*	1100 4 MA 110 10 10 10 10 10 10 10 10 10 10 10 10	Итого	861П 1]-{ СЕРИИ	MAPKA ЭЛЕМЕНТА	Длина тт		MAPKA БЕТОНА	БЕТОН М ³	CTANG FOCT S KARC R III	78-75 CA, KT	ATEP XO JICAM TRANTA G IPOBUJON KARCERB TO TOTI G 727-33	POPPHAR TRAPA CTANE TOTOCT 380-71	HTORG	Soin (CE PM)
		137-3 137-3a	4		200		217.4 219.0	38.0	10.8	3,2	266,2 271.0		137g-3			200		57.9	5.3	2.5	=	65.7	
		137-5			200		271.3		5.0	-	327.3	51	1379-5			200		72.3	8.3	1.1	_	81.7	100
+	100	137-5a 137-8			200 300			51.0	5.0	3.2	332.1 457.9		137g-8			200					-	110.1	105
	100	137-8a			300			69.6			462.7		NOTO 0			300		102.1	9.9	1.1		113.1	
	2/30	137-11 137-11a	2970	8.55	400 400	3.42		102.4			596.1 600 9		137g-H	720	2.15	400	0.86	126.6	181	0.8	-	147.5	
1	180 3640 180	137-12			400		584.2	118.4	3.8	_	706.4	52	1379-12			400		152.7	23.7	0.8	-	177.2	106
ONSK		<u>137-12a</u> 137-15			400 400			118.4		3.2	7112 747.6	22	1379-15			400		163.7	26.1	08	-	1906	1
7		137-15a 138-3			400		627.0	118.4	3.8		752.4												
		138-3a			200		211.2 212.8	45.5 45.5			262.9 267.7		1385-3			200		56.2	10.0	1.4		67.6	
2	\$ 10	138-5 138-5a			200	•			6.2	_	388.9	53	1389-5			200		85.3	10.0	1.4	-	96.7	107
KEHEP	138	138-8 138-8a			300		320.9 387.8	63.4	6.2 6.2		393.7 457.4		1389-8			300		103.2	11.6	4.4	-	16.2	
97. WHS	200 3600 200	138-11	2970	9.38	300 400	<i>3,75</i>	389.4 488.0	1046	<i>6.2 5.0</i>		462.2 597.6		1389-11	190	2 25	400	094	1280	100	11	_	149.1	
		138-11a			400		489.6	1096	5.0	-	602.4	-			a.50	700	1	*					
		138-12 138-12a			400			120.6 120.6		- 3.2	735.8 740.6	54	138g-12			400		159.7	25.4	1.1	-	186.2	108
		138-15 138-15a			400 400]	734.0	135.0 135.0	5.0	-	874.0		1389-15			400	Ì	192.7	28.0	1.1	_	221.8	
	K C						,55.0	22,0	2.0	J. &	0 + 0.8												
_	Univ.	PHOLE	KEN	E30	6E70	HHELE	EETO	AHAM	161 H	70 A	HENH	из .	NOTKOB	3 <i>61X</i>	DIE.	MEHT	08	0EH				3. Buil	EPH 9 006 - 14CK J

	-		<u></u>			Deur	ופטו	/E	2051	MEHT	·6/			_)											L_
			OCHOBHLIE PREMEHTLI PROXOD MATEPHRAOB DUST																							
пилип		Эскиз	МАРКА ЭЛЕМЕНТА	h mm	в mm	L MM		Марка Бетона	BETOH M³		181-75 A KI		Итого	ЛИСТ ВЫП.]Ī-2 СЕРИИ												
1111	ſ		ΠI-8	50			0.04	200	0.02	0.6	0.3	0.2	1.1													
1			171-8a	50			0.04	200	0.02	0.6	0.3	0.2	1.1	/ /												
$\{1, 1, 1, 1, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,$			N2-15	100	420	740	0.08	200	0.03	0.6	0.3	0.2	1.1													
			П2-15а	100	7 7 7	170	0.08	2.08 200	0.03	0.6	0.3	0.2	1.1	\sqcup												
1			NI-158	50			0.04 3	300	0.02	1,4	0.3	0.3	2.0	2												
			112-158	100			0.08	300	0.03	1.4	0.3	0.8	2.5	Ш												
111			ПЗ-8	50		740	0.05	300	0.02	2.02 1.4 0	0.3	0.2	1.9													
			П3-8а	50			0.05	300	0.02	1.4	0.3	0.2	1.9	3			7	7050	PHbl	· E	201	MEH	761			
		191	114-15	100	570		0.11	300	0.04	1.4	0.3	0.2	1.9			h 6	$-\hat{\mathbf{i}}$	1	1101		ЭЛЕМЕН Расход		МАТЕРИЯЛОВ		08	$\overline{}$
			114-15a	100			0.11	300	0.04	1.4	0,3		1.9		MAPKA		6		Macca T	MRPKR GETOHR						ЛИСТ
<u>;</u>			173-158	50			0.05		0.08	2.0	0.3	0.3	2.6	4	3NEMEHTA	MM .	MM				BETOH		91-75 7 , Kr.	TONDOHO- TXNYTHA APOSONOK NASKA BI	Итого	BHN.Ü-2 CEPHH
# #	1	n +	114-158	100			0.11	300	0.04	2.6	0,8	0.6	4.0				\dashv				M ³	A₩	АĨ	Adrica Bi Aproct S121-934	Kr.	CEPM
БРОДСКИЙ ШНЕЙДМЯН ПОЛЯК		9	175-8	70		2990	0.41	200	200 0.16	7.0	0.7	1.2	8.9	5	N5g-8	70	- 1	780 74 <i>0</i>	0.10	200	0.04	1.8	0.3	0.3	2.4	
322			115-8a	70	1		0.41	200		7.0	0,7	1.2	8,9		П5д-8а	70	ı		0.10	200	0.04	1.8	0.3	0.3	2.4	3/
9. 9. 1.	- 1		116-15	120	780		0.70		0.28	7.0	1.0	1.2	9.2		116g-15	120			0.17	300	0.07	1.8	0.3	0.3	2.4	"
DEO	1	+	116-15a	120	,50		0.70	300		7.0	1.0	1,2	9.2		1169-15a	120	780		0.17	300	0.07	1.8	0.3	0,3	2.4	
	l		N5-85	70				300	0.16	7.0	1.0	4.8	12.8		N59-88	70			0.10	300	0.04	1.8	0.3	1.2	3.3	32
111	1		116-158	120				300	0.28	13.8	3.6	3.6	21.0	ĽЩ	1169-158	120			0.17	300	0.07	4.2	0.9	0.9	6.0	32
	-		<i>117-3</i>	70			0,61	200	0.24	10.6	0,7	1.4	12.7		179-3	70				200	0.06	_	0.3	0.3	3.4	
1 32	1		177-3a	70	4		0.61	200	0.24	10.6	0.7	1.4	12.7	7 7 1	179-3a	70	l		0.15	200	0.06	2.8	0,3	0.3	3.4	33
8	٤		117-5	70		1	0.61	200	0.24	20.7	4.0	[=_	24.7		N7g-5	70	j		0.15	200	0.06	5.6	1.1		6.7	95
HEP YEL	1		177-5a	70			0.61	200	0.24	20.7	4.0		24.7		1779-5a	70	ı		0.15	200	0.06	5,6	1.1		6.7	
Гл. КОНСТРУКТОР РУК. ГРУППЫ СТ. ИНЖЕНЕР	- }		Π8-8	100		1	0.87		0,35		1.2	2.3	18.7	ļ	П89-8	100	J		0.21	200	0.09	4.1	0.3	0.5	4.9	
第二級			118-8a	100	1160	2990			0,35		1.2	2.3	18.7	9	N89-8a		160	<i>740</i>	0.21	200	0.09		0.3	0.5	4.9	
232			118-11	100		l	0.87		0.35				25.2		1789-11	100	- 1		0.21	300	0.09		1.1		6.7	35
			178-11a	100			0.87		0.35		1	=	25.2		1189-11a		1		0.21	300	0.09		1.1	_	6.7	55
			119-15	120			1.04	300	0.42		6.8		33.8	10	179g-15	120	1		0.26	300	0.10	7.3	1,7	_	9.0	
日日			179-15a		i '		1.04	300	0.42	27.0	6.8	-	33.8	\vdash	1799-15a	120	1		0.26	300	0.10	7.3	1.7	-	9.0	
\leq	- 1		77-58		ł		0.61	300	0.24	20.7			29.9 38.7	8	1779-58	70 120	ł		0.15 0.26	300	0.06	5.6 7.3	1.7	1.2	7.9 10.2	34
圣	L		119-158	120	L	L	1.04	300	0.42	27.0	6.8	4.9	20.7		<u> 199-158</u>	120			U, Z.6	300	0.10	1.5	1.7	1, 7	10.6	
日																										
	ΤK		Със	PHB	l E	же	SE30	OBET	ОННЬ)E	KA	наль	н н	TO	ЭННЕЛИ	ИЗ	лот	KOBE	1X	ÐNEI	MEHT	ОВ			3.1	ЕРИЯ 006-2
핃	1976	Номеня	CARTYPA	c.	БОРН	161X	ЖЕ	nE30l	SETOR	146/20	תח	UT A	САНАЛ	0B I	и РАСХОД	MATE	РИЯ.	ЛОВ	HA C	ДНО	из,	ДЕЛИ	ε	1574	I	2:

15744

плит

КАНАЛОВ И

BUNYCK JHCT

15744

24

PACXOD MATEPHANOB HA ODHO UBLETINE

СБОРНЫЯ

железобетонных

BUNYCK SHCT T 25

	1	Γ						OCH	ОВН	S/E	ЭNE!	MEHT.	6/							2050	PHILE		ЛЕМЕ	HTAI				
	П		24		Magya	4	,				Pac			ТЕРИП	лов		440000	,	ı.	1000				cxoa		ЕРИЯ.	208	$\overline{}$
Стятивин			Эскиз		МАРКА ЭЛЕМЕНТА	h MM	6 MM	MM		MAPKA BETOHA	БЕТОН М ³	CTAN POCT 5 KAINCCA A III	781-75		ИТОГО	ЛИСТ ВЫО. <u>П</u> -2 СЕРИИ	MAPKA ƏNEMEHTA	// MM	6 MM	MM	Macca T		БЕТОН М ³	CTANI FOCT S KARCCA R III		_	Итого	SHCT BWR. IJ-2 CEPHH
c_1					Π17-3	120			1.94	300	0.78	38.8	6.8	=	45.6	14	11/79-3	120			0,48	300	0.19	10.4	1.7		12.1	
4	٦				17/7-3a	120			1.94	300	0.78	38,8	6.8		45.6	"	1717g-3a				0.48	300	0.19	10.4	1.7	-	12.1	
3					П18-5 П18-5a	150 150	ı		2.42	300	0.97	50.7	12.1	_	62.8	1	1718g-5	150			0.60	300	0.24	13.6	2.7		16.3	
ام		- 1			1718-8	150			2.42 2.42	<i>300</i> <i>300</i>	0.97 0.97	50.7 64.2	12.1 12.1	-	62.8	19	17189-5a				0.60	300	0.24	13.6	2.7		16.3	41
2	1	- 1			1718-8a	150	İ		2.42	300	0.97	64.2	12.1	=	76.3 76.3		1718g-8 1718g-8a	150 150	1		0.60 0.60	<i>300</i>	0.24	17.2	2.7		19.9	
	\dashv	ı		l	Π19-II	250	2160	2990	4.04	300	1.61	50.7	13.2	_	63.9		11199-11		2160	740	1.00		0.40	13.6	3.0	\equiv	19.9 16.6	
0					1719-11a	250			4.04	300	1.61	50.7	13.2	-	63.9	ا ۔ ا	11/9q-1/a		2,00	טרו	1.00	300	0.40	13.6	3.0	_	16.6	i 1
TPOSEPUN		- 1			17 <i>19-15</i>	250]		4.04	300	1.61	64.2	13.2	-	77.4	20	11199-15		1		1.00		0.40	/7.2	3.0	_	20.2	43
10E		- 1		12	1119-15a	250	l		4.04	300	1.6/	64.2	13.2	_	77.4		1199-15a				1.00	300	0,40	17.2			20.2	
	-	- 1			N17-38	120	į		1.94	300	0.78	38.8	8.0	8.5	55.3	IR	1119-38	120			0.48	300	0.19	10.4	17	2.2	14.3	
	7	- 1.			N18-88	150			2.42	300	0.97	64.2	12.1	8.5	84.8	"	N189-88	150			0.60	300	0.24	17.2	2.7	2.2	22.1	42
БРОВСКИЙ БРОВСКИЙ ИНЕИВМВН	-				/720-3	140		•	2.57	300	1.03	44.3	8.7		53.0	21	1720g-3	140			0.64	300	0.25	11.9	1.9	_	13.8	
223	¥				П20-За	140			2.57	300	1.03	44.3	8.7	_	53.0	"	17204-3a	140			0.64	300	0.25	11.9	1.9		13.8	. 1
2023	3	- 11	,		П2І-5	160			2.94	300	1.18	57.8	13.3	_	71.1		1219-5	160	1		0.73	300	0.29		3.0		18.5	
西宮	2	1	- h	*	1121-5a	160			2.94	300	1.18	57.8	13.3	_	71.1		11219-5a	160	1 1		0.73	300	0.29	15.5	30		18.5	44
	λ.				П21-8	160			2.94	300	1.18	90.4	13.3	_	103.7	23	17219-8	160				300	0.29		3.0	_	27.2	. 1
لر ارا .	7				1121-8a	160	2460	2990	2.94	300	1.18	90.4		_	103.7		11219-8a		2460	740	0.73		0,29	24.2	3.0	_	27.2	. 1.
	1	- 1			N22-11	250	'		4.60	300	1.84	73.2	15.9	_	89.1		17229-11	250	1		1.14	300	0.46	19.6	3.9		23.5	
1/1/2	þ				1722-11a	250		İ	4.60	300	1.84	73.2	15.9	_	89.1	24	17229-11a				1.14	300	0.46	19.6	3.9	_	22.5	
ĹĹĹ	1	ı			П22- <i>15</i>	250			4.60	300	1.84	90.4	15.9		106.3	li	11229-15	250			1,14	300	0.46	24.2	3.9	_	28.1	46
20/2	ᆈ	-			1722-15a	250	_		4.60	300	1.84	90.4	15.9		106.3		17229-15a	250			1.14	300	0.46	24.2	3.9	_	28.1	
2 × 2	H.				1720-3 E			Ì	2.57	300	1.03	44.3	8.7	9.7	62.7	22	1720g-38	140			0.64	300	0.25	11.9	1.9	2.5	16.3	""
<u> </u>	инженер	L			N21-58	160			2.94	300	1.18	57.8	13.3	9.7	80.8		11219-58	160			0.73	300	0.29	15,5	3.3	2.5	21.3	45
KAT ON LOLL MINT TROMET PUMHMINDEKT <i>Grandburge</i>	C7. H		Плиты в оппл	,		REKCA HOBHI		"а" , ПЛН1		- ~ <i>из</i>	rotre	<i>ያብଧ8ብ</i>	но тся	9														
b H	<u> </u>	F1/	T																									
	L	<u> </u>			C50P	HbIE		ЖЕ	1E30	6ETO	HHbIE	- /	CAHA	71161	H T	OHHE	пи из	ло	TKOB	61X	91	PEME.	HTOB				3	<i>ЕРИЯ</i> 006-2
< 뜬	1/	976	Hom	EHK	CARTYP	A C	260PI	ных	24	ЕЛЕЗ	OSETI	ЭННЫ	x	กภมา	T KA	нало	B H PAC	схоп	MF	ТЕРИ	АЛОВ	HA	ОПНО	H30	TF.DUF		BUNY	CK JHO

WENE 30 BETOHH WIX NAUT KAHANOB U PACKOD MATERUANOB HA ODHO UBDENUE

XALDNOOLKMA

Номенклятура сборных

			00	HOB	HBIE		PNEM	EHTB								<u>Добо</u>	OPHBIE	9	NEME	HTbl				
Эскиз	MAPKA	h	B	/	Mecco	MAPKA				ЕРИЯ.		ЛИСТ	MAPKA	h	В	L	MACCAM	IAPKA	PAC	xoa,	MATEP	u An	ОВ	
	ANEMEHTA	MM	MM	MM		BETOHA	БЕТОН М ^З	CTAN POCT 57 KARCCI PILI	ПО 81-75 1, КГ. Р <u>Т</u>	TONOGHO- THHSTAG NOOSONOKA KARCCABI NO FOCT	HTOFO KF.	<i>в</i> ип. <u>ії</u> -2 СЕРИН	ЭЛЕМЕНТЯ	MM	MM	MM	7 5	ЕтонпЕ	SETOH Z	CTAAS OCI 5781 DRCCA, I	70 X045	AND A	HTORO	SIHR BNA <u>I</u> CEPH
	П23-3	160			3.33	300		50.1	10.5	ILFSS		-	П239-3	160			100				AI WA	53.5	KT.	
	1123-34	160			3.33		1.33	50.1			60.6 60.6	21	11239-3 17239-3a				-				2.4 -	_	15.7	٠
	1724-5	180			3.74		1.50	65.4	15.6		81.0		11249-5	180							2,4 -	_	15.7	
	П24-5а	180			3.74	300	1,50	65.4	15.6		81.0	26	11249-5a								3.6 -		21.0	47
	N24-8	180			3.74	300	1.50	102.3	15.6		117.9	26	17249-8	180			-	_			3.6 -		21.0 30.8	
	П24-8а	180			3.74	300	1.50	102.3	15.6	_	1/7.9		1724g-8a	180									30.8	
	1725-11	250	2780	2990	5.20		2.08	102.3	19.3		121.6		17259-11	250	2780	740							31.4	
	1725-1/a	250			5.20	300	2.08	102.3	19.3		121.6	27	17259-11a	250							4.2 -		31.4	
	1725-15	250			5.20	300	2.08	159.4	25.8	<u> - </u>	185.2	21	1725g-15				1.29	300	0.51	42.4	5.7 -		48.1	49
The second	7.00				5.20	300	2.08	159.4	25.8		185.2		1725g-15a	250			1.29	300	0,51	42.4	5.7 -	-	48.1	
	П23-35	160			3.33	300	1.33	50.1	12.0	10.9	73.0	25	17239-38	160			0.82	300	0.33	13.3	2.4 2	2.8	18.5	48
	1724-58	180			3.74	300	1.50	65.4	17.1	10.9	93,4		11249-58	180			0.93	300	0.37	17.4	1.2 2	.8	24.4	70
	1726-3	200			5.05	300	2.02	79.6	19.4		99.0		17269-3	2.00			1.25	300	0.50	21.2	4.7 -	-1	25.9	
"	1726-3a	200			5.05	300	2.02	79.6	19.4		99.0	00	1726g-3a	200			1.25	300	0.50	21.2	77 -		25,9	
,	1726-5	200			5,05	300	2.02	100.8	19.4		120.2	28	1726g-5	200			1.25	300	0.50	26.8 4	47 -	-T.	31.5	
£ 2	1726-5a	200			5.05	300	2.02	100.8	19.4	_	120.2		1726g-5a	200			1.25	300	0.50	26.8 4	77 -	- [31,5	50
	1727-8	250	3380	2990	6.32	300	2.53	124.5	21.6	-	146.1	29	17279-8	250	3380	740					7.2 -		38.3	
	1127-8a	250			6.32			124.5			146.1	29	11279-80	250							7.2 -		38.3	
	1728-11	300			7,58	300	3.03	150.2		-	181.7		17289-11	300							7/ -	7	47.0	
	1728-11a	300			7,58	300	3.03	150.2	31.5	-	181.7	30	1728g-11a	300							7./ -		47.0	
	1728-15	300			7.58	300	3.03	194.0	31.5		225.5		11289-15	300			1.88				7/ -	- 1	58.7	51
	1728-15a	300			7.58	300	3.03	194.0	31.5	_	225.5		17289-15a	300			1.88	300	0.75	51.6 1	7./ -	- [58.7	
	1726-38	200			5.05	300	2.02	79.6	19.4	13.3	112.3	25	17269-38	200			1.25	300	0.50	21.2 4	17 3.	4	29.3	48

TK	CEOPH	161E ЖEI	DE30BETOHHUIE	КАНАЛЫ	Н	тоннел	И ИЗ	ЛОТКОВЫХ	ЭЛЕМЕНТОВ	
1976	Номенклятуря	СБОРНЫХ	ЖЕЛЕЗОБЕТОННЫХ	חחוד	KAHA.	NVB H	РАСХОД	МАТЕРИАЛОВ	HA OAHO	ИЗДЕЛИЕ

,					0	СНОВ	Hbl	E	ЭЛЕМ	EHTH					L			Д05	OPH	SIE		NEME						_
Эск	V113	MAPK	- 0	h	ا ر	,	Maaa		PAC	xog	MR	TEPH	<i>ПЛОВ</i>	1.3	1	MAPKA I	, I	8	4	ПССП		PACXO,			PHA			1.
JCX	(115	PREMER	1	MM	в мм	MM	Macci T	REHO- SETOH F=500 M3	BETOH M-300 M ³	27.4.76 10 10CT 5781-75	CIPALS CARCORPIO OF FOCT	CTAN6 NO FOCT	BCETO	DHCI BBIO. II- CEPHH		NEMEHTA M	M r	M V	M	τ	FETOH FETOH F=500	БЕТОН М-300 М ³	RABCG RI	KERES DE	5.81-75 CTA48 KIRCA 87	10 CCT	BCETO KT.	JHC
\$ <u></u>	ಬರ್ಚಿತ್ರಾ	nr/	1	140	900		0.60			1.8	1.2	9.1	12.1	52	-	TTIg 14	_	00	-		0.03	0.06	=	2.	4 2	2.5	4.9	5
<u> </u>		7772		140	1300		0.85	5 0.25	0.29	2.4	1.2	12.2			\vdash	NT2g 14		00	-	2.23	0.05	0.08	_	2.		3.4	6.2	5
an .		7773	-	140	1600	2990	1.04	0.32	0.35	3.0	3.4	14.9		+	-	$\Pi T 3g \mid I$			-	_	0.07	0.10	=	3.		1.3	7.5	5
1	/	1774		140	1900		1.22	2 0.38	0.41	5.7	3.4	17.5		+		NT49 14		_	-		0.08	0.12	<u> </u>	3.6	1	5.0	8.6	-
*	~	175		140	2500		1.56	0.52	0.52	7.4	3.4	22.7	33.5	5 56	L	$\Pi T 5g \mid 14$	0 2	50d		7.44	0.11	0.15		4.	2 6.	.6	10.8	6
				0c	HOB	HBIE	•	3NE/	MEHT	5/								0	сно	ВНЬ	/E	эле	MEH	ITHI				
ЭСКИ.	(2 1	/22//2		Π.	T .	1		PACA	COQ M	TATEP	нало	18	2			Марка	h	В	T		MACC A	PAC	αoa	MA	TEP	HASI	28	Ţ,
JUNA.		iapka Imehta	h MM	E MM	MA	l	CCA HOLLS	77 200 77 30	10 70 70 70 70 70 70 70 70 70 70 70 70 70	181.13 1800.00 1900.00 1900.00 1900.00	POKAT NO FOCT 380-714	ВСЕГО	ЛИСІ ВКІП. Ц- СЕРИН	Эски	(3	элемента	ММ	MM	M			SETOH M-320	20 10 St	Section 2	1600	11.0KP	всего	DHC
	7	177			64	0 0.			1.2 0.6		_	2.0		~	<u> </u>	011	90	200	2	o	0.01	0.004	0.1	三	Ξ	0.6	0.7	T
*:T_	2 /	7/12			79				.4 0.6	1	_	2.2	63			0/12	90	200	31	no	0.013	0.005	0.1	_	-	0.6	+	6
	1	703			100	0 0.	10 0	0.04 1	1.8 0.6	0.2		2.6				0113	90	400	+		0.015		0.1	_	0.5	1.3	1.9	1"
-	<u> </u>	704			138	0 0.	15 0	0.06 2	2.4 0.6	0.6	_	3.6				074	140	500	1	_	0,035		0.2	=	0.7	1.8	2.7	├
	4	7.75	100	400	170	0 0.	18 0	2.07 3	3.0 0.6	0.6	_	4.2	64		_	0175	140	1	+	\neg		0.13		2.2		2.8		؍ ا
1 1/2	1	1116			206	0 0.	20 0	2.08 3	3.6 0.6	0.8	_	5.0		1 2		006	140	750	+-	-+		0.18	0.2	6.8	1	2.8	T	6
	1.	707			238	0.	25 0	0.10 4	1.2 0.6	+	_		65			007	1	850	+	+		0.23		12.4	-	5.7	26.1	-
	/	708			268	80 0.1	27 4		1.8 0.6	1		6.4				008	290	1350	 			0.65	1.0	17.6	-		37.9	6
ł	1	7179			300	-	30 0		5.2 0.6	- T		7.0	66			009	290	1236	///		2.45	1.13	1.0	29.4		1,5	31.3	Ì
		7/7/10		f	360	$n \mid n$	35 0	0,14 6	4 0.6	1.4		8.4	- 11			1	l	1	1	- 1	- 1						<u></u>	<u>_</u>

XAFEKEELKE

Марка	MAPK	A A	<i>ЧЗДЕЛНІ</i>		E	ETOR	I, M				6 , Kr.			MAP		ИЗДЕЛ			Бет	OH , r				76 , KI	
KAHAJA	SIOTA		NAUTU NEPEKPU U QHU	THR YR		OPH 6.			CTRAI KARCCR R III	CTRAIS Karcca Pī	ZONOQHO TXHYT PLA TPOBOMIKI		Мяркя Кянала	ЛОТК	KH	ПЛНТ ПЕРЕКРІ И ДНИ	TGT SITHA YYA	ce	50PH	ый		CTRAB KARCCA PIŪ IN FOCT	CTRAB KARCCA A <u>T</u>	XONOQHO IXIHYTAA IPOBANOKI	
	Mapka	Кол. ШТ.	MRPKA	KON. WT.	МАРКИ 200	MAPKU 300	MRPKH 400	BCETO	A 🖟 no FOCT 5781-75	00 TOCT 5781-75	KAACCA B.T. NO FOCT 6727-534	Bc€ro		Марка	Кол. шт.	Марка	KON. WT.	MAPKU 200	MAPKU 300	МАРКИ 400	BCETO	no l'OCT 5781-75	5781-75	KIIHOCH BĪ No FOCT 6727-53	BCEI
KA 30×30-3 KAN 30×30-3	11-8	1	11-8 11-8a	8	0,50	_	_	0.50	14.3	3.8	6.2	24.3	KJI 60× 45-3 KJIn 60× 45-3	J4-8	1	115-8 115-8a	2	1.04	_	_	1.04	39.5	4.4	8.8	52.
KA 30 x 30 - 5 KAA 30 x 30 - 5	11-8	1	11-8 11-8a	8	0.50	_	_	0.50	14.3	3.8	6.2	24.3	KN 60x45-5 KNN 60x45-5	14-8	1	N5-8 N5-8a	2	1.04	_	_	1.04	39.5	4.4	8.8	52.
KA 30×30-8 KAN 30×30-8	11-8	1	П-8 П-8a		0.50	_	_	0,50	14.3	3.8	6.2	24.3	KN 60× 45-8 KNn 60× 45-8	14-8	1	115-8 115-8a	2	1.04	_	_	1.04	39.5	4.4	8.8	52
KN 30×30-11 KNN 30×30-11	NI-15	1	N2-15 N2-15a	8	0.58	_	_	0.58	21.6	3.8	6.2	31.6	KA 60×45-11 KAN 60×45-11	14-15	1	NG-15 NG-15a	2	_	1.30	_	1.30	43.3	4.4	8.8	56
KA 30×30-12 KAN 30×30-12	Al-15	/	П2-15 П2-15а	8	0.58	_	_	0.58	21.6	3.8	6.2	31.6	KA 60x 45-12 KAN 60 x 45-12	14-15	7	П6-15 П6-15а	2	_	1.30	_	1.30	43.3	4.4	8.8	56
KAA 30×30-12 KA 30×30-15 KAA 30×30-15	11-15	1	112-15 112-15a	8	0.58		_	0.58	21.6	3.8	6.2	31.6	KJ) 60 × 45-15 KJn 60 × 45-15	14-15	1	116-15 116-15a	2	_	1.30	_	1.30	43.3	4.4	8.8	56
KA 45×30-3 KAN 45×30-3	12-8	1	173-8 173-8a	8	0.38	0.16	-	0.54	22.7	3.8	6.2	32.7	KN 60×60-3 KNn 60×60-3	115-8	1	175-8 115-8a	2	1.20	_	_	1.20	43.0	5.6	9.3	57
KA 45×30-5 KAN 45×30-5	12-8	1	П3-8 П3-8а		0.38	0.16	_	0.54	22.7	3.8	6.2	32.7	KA 60×60-5 KAA 60×60-5	JI5-8	1	115-8 115-8a		1.20	_	_	1.20	43.0	5.6	9.3	57
KN 45×30-8 KNN 45×30-8	12-8	1	113-8 113-8a	8	0.38	0.16	_	0.54	22.7	3.8	6.2	32.7	KAN 60×60-8 KAN 60×60-8	115-8	7	115-8 115-8a		1.20	_	_	1.20	43.0	5.6	9.3	5%
KA 45 x 30-11 KAN 45 x 30-11	112-15	1	114-15 114-15a		0.38	0.32	_	0.70	31.4	3.8	6.2	41.4	KA 60×60-11 KA 60×60-11	N5-15	1	NG-15 NG-15a	_	_	1.44	_	1.44	46.8	5.6	9.3	61.
KAN 45 x 30-12 KAN 45 x 30-12	12-15	1	114-15 114-15a	8	0.38	0.32	_	0.70	31.4	3.8	6.2	41.4	KA 60×60-12 KAN 60×60-12	J15-15	1	116-15 116-15a	_		1.44	_	1.44	46.8	5.6	9.3	61.
KN 45 x 30-15 KNN 45 x 30-15	12-15	1	114-15 114-15a	8		0.32	_	0.70	31.4	3.8	6.2	41.4	KA 60×60-15 KAA 60×60-15	15-15		П6-15 П6-15а			1.44	_	1.44	46.8	5.6	9.3	61.
			.,,,,,,										100111 00 200 73		T	110-154	Ť				<u> </u>				
KA 60 × 30-3 KAA 60×30-3	<i>Л3-8</i>	1	П5-8 П5-8а	2	0.92	_		0.92	28.6	4.4	8.2	41.2	KA 90× 45-3 KAn 90× 45-3	Л6-5	1	17-3 17-3a	2	1,38	_		1.38	59.6	5.0	9.7	74
KA 60×30-5 KAN 60×30-5	13-8	1	115-8 115-8a		0.92	_	-	0.92	28.6	4.4	8.2	41.2	KA 90 x 45-5 KAN 90 x 45-5	116-5	1	17-5 17-5a		1.38	_	_	1.38	79.8	5,0	13.5	98
KA 60×30-8 KAA 60×30-8	13-8	1	115-8 115-8a		0.92	_	_	0.92	28.6	4.4	8.2	41.2	KN 90×45-8 KNn 90×45-8	16-8	1	118-8 118-8a			0.90	_	1.60	90.5	6.0	11.5	100
KJI 60×30-11 KJI 60×30-11	13-15	1	П6-15 П6-15a		_	1.16	_	1.16	39.7	4.4		52.3	KA 90×45-11 KAA 90×45-11	N6-15	1	118-11 118-11a			0.70	—	1.60	127.7	6.0	13.5	147
KA 60×30-12 KAA 60×30-12	13-15	1	116-15 116-15a		_	1.16	_	1.16	39.7	4.4	8.2	<i>52.</i> 3	KJ 90x 45-12 KJI 90x 45-12	16-15	1	119-15 119-15a		_		0,90		140.3	5.6	18.5	164
KA 60×30-15 KAN 60×30-15	13-15	1	116-15 116-15a	1	_	1.16	_	1.16	39.7	4.4	8.2	52.3	K.N. 90 x 45-15 K.N. 90 x 45-15	Л6-I5	1	119-15 119-15a		_		0.90		140.3	5.6	18.5	164
			1	1												113-134	- ا				<u> </u>			<u></u>	T

СЕРИЯ 3.006-2 TK CEOPHUE ЖЕЛЕЗОБЕТОННЫЕ КАНАЛЫ И ТОННЕЛИ ИЗ ЛОТКОВЫХ *MEMEHTOB* ТЯБЛИЦЫ ДЛЯ ПОДБОРА СБОРНЫХ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ МАТЕРИАЛОВ НА GO.M. КАНАЛОВ МАРОК КЛ И КЛП. BUNYCK NHCT н РАСХОД 1976

MAPKA	MAPKI	9 H	<i>13ДЕЛИ</i>			БЕТО	H; M	3	•	CTAN	6 , KT.		Марка	MAPK	R I	ИЗДЕЛИ Попит			BETO				CTAN	•	
KRHAJA	Лотк	И	NAHT NEPEKPI N DHN	тия	C5	ОРНЬ	1 th		CTAAL KAROCA	CTRAIL Karcca R 7	TONOQHO THY THY DPOBONOW		КАНАЛА	ЛОТК	си	ПЛИТО ПЕРЕКРЫ И ДНИЦ	THA H H	C5	ОРН	หน่		CTRAD KARCER A TII NO TOCT 5781-15	CTANS KAHOCA AI	KANULIH TAHYTAR TPORMAK KAROPPA	
	MAPKA	Кал.			МАРКИ 200		мпркц 400	BCETO	CI MING KARCCA RIII MITOCT 5781-75	no'l TOCT 5781-75	KARCCA BI QUI DCT	BCETO		MAPKA	Kon. шт.	МЯРКЯ	Кол. ш т.	MAPKH 200	MAPKU 300	марки 400	BCEF0	5781-75	5781-75	MITUUM BT NOTŌCT 6727-53	B
KN 90×60-3 KN 190×60-3 KN 90×60-5	J17-5	/	17-3 17-34	2	1.54	_		1.54	63.1	5.0	10,3	78.4	KA 120×45+3 KAN 120×45-3	110-3	1	110-3 110-3a	2	1.32	0.62	_	1.94	101.6	7.4	13.5	
190 x 60-5	J17-5	,	17-5 17-54	2	1.54	_		1.54	83.3	5.0	14.1	102.4	KA 120 × 45-5 KAN 120 × 45-5	110-5	1	110-5 110-5a	2	1.32	0,62	_	1,94	153.6	7.4	22./	1
90×60-5 90×60-8 1 90×60-8	117-8	,	П8-8		1.06	0.70		1.76	96.0	6.0	12./	114.1	KA 120×45-8 KAN 120×45-8	110-8	1	NII-8 NII-8a	2	_	2.2	_	2.2	151.6	23.3	5.9	·T
60-11 60-11 60-12	17-15	<i>,</i>	118-8a 118-11		1.06				135.7	6.0	14.1	155.8	KA 120×45-11 KAN 120×45-11	110-11	1	112-11 112-11a	2	-	2.74	_	2.74	171.3	16.9	/3.7	1
	17-15	7	П8-[/a П9-15 П9-15a			0.70		1.76			19.1	173.0	KA 120×45-12 KAN 120×45-12	A10-15	7	N12-15 N12-15a		_	1.42	1.32	2.74			15.9	1
2-12 - 15 0-15	17-15	 	119-15a 119-15 119-15a	2	1.06	0.84 0.84		1.90	148.3		19.1	173.0	KM 120 x 45-15 KM 120 x 45-15	110-15	-	1112-15 1112-15a		_	1,42	1,32				15,9	-+
		-]/y-15a	-	1.06	V.04		1,30	170.5	0.0	-		Kam ital a re ita			1									1
0×90-3 10×90-3	J18-5	7	77-3	0	2.04			2.04	67.2	7.5	12.1	86.8	KA120×60-3 KA120×60-3	<i>ЛІІ-3</i>	1	NIO-3	2	1,44	0.62		2.06	1/1.6	9.9	15.3	
0-5 0-5	18-5	'	П7-3a П7-5	T		<u> </u>			+				KA 120 x 60-5	111-5	 	110-5		1.44	0.62	_	2.06	187.8	9.9	23.9	_
90-8 90-8	118-8	 	П7-5a П8-8 П8-8a		2.04		_	2.04	87.4	7.5	15,9	127.3	KAN 120×60-5 KAN 120×60-8 KAN 120×60-8	111-8	7	1110-5a 1111-8 1111-8a			2.32		2.32			15.5	-
7	1	H.	118-8a 118-11		2.26	_	_	2.26	!	8.5	13.9		KJ 120×60-11	111-11	1,	1112-11			2.86		2,86	2/4,6		9.9	
11/2	118-11	<u>'</u>	118-11a 119-15	j —	_	2.26	_	2.26			15.9	140,3	KAN 120×60-11 KAN 120×60-12		 '.	1712-11a 1712-15			-	,,,,,					
90-12 90-15	118-15	<u> </u>	119-15a			2.88		2.88	162.6		.9.3	191.6	KAA 120 x 60-12 KA 120 x 60-15	1) - 5		1712-15a 1712-15			1.42	1,44	2.86		1	16.1	_
0-15	118-15	/	П9-15 П9-15a	2		2.88	_	2.88	162,6	19.7	9.3	191.6	KAN 120×60-15	111-15	-	112-15a	2	_	1.42	1.44	2.86	280.0	56.0	16.1	
0×120-3 0×120-3	119-5	/	117-3 117-3a	2	2.48		-	2.48	101,4	10.2	13.3	124.9	KN 120×90-3 KNA 120×90-3	J12-3	1	110-3 1110-3a	2	192	0.62	_	2.54	145.8	13.6	21.1	,
0×120-5	119-5	'	П7-5				_	 	1		17.1	148.9	KA 120×90-5 KAN 120×90-5	112-5	†	110-5		1.92	0.62	_	2.54	186.2	13,6		
× 120-5 × 120-8	119-3	/	177-5a 118-8	2	2.48		_	2.48	121.6		15.1	174.0	KA 120×30-3 KA 120×90-8 KAN 120×90-8	112-8	',	1710-5a		1.92		_	2.80	210.6	 	15.7	_
0× 120-8 0× 120-11	119-0	/	118-8a 118-11	12	2.74			-	-		17.1	187.0	KA 120 × 90-11	112-11	1	[] -8a [2-		1,76	2.80		2.80	210.6	22.8	15.7	
10×120-11 10×120-12	 	<u>'</u>	П8-I/a П9-I5			2.74		2.74	158.7		22.1	211.9	KAN 120×90-11 KA 120×90-12		├	1112-11a 1112-15				100			 	-	
90×120-12 10×120-15	119-15	-	119-15a 119-15	12		2.88	_	2.88	+				K.II.n 120 x 90-12 K.II. 120 x 90-15	112-12		112-15a 112-15				1.92	3.34	291.8		32.5 32,5	-
90×120-15	119-15	/	119-15a	2		2.88	_	2.88	179.0	10.8	22.1	211.9	KAN 120×90-15	1112-15	-	1712-15a	2		1.42	1.92	3.34	291.8	37.3	32.,0	
	<u> </u>			<u>L</u>	<u></u>		<u> </u>	L	<u> </u>	<u> </u>	L				<u> </u>	<u> </u>			L				<u> </u>	L_	

ТЯБЛИЦЫ ДЛЯ ПОДБОРА СБОРНЫХ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ И РАСХОД МЯТЕРИЯЛОВ НА 6 П.М. КАНАЛОВ МАРОК КЛ И КЛЛ (ПРОДОЛЖЕНИЕ)

CPDMCTPDATAZEDEK XAPBABBCAZ

1976

Выпуск Лист <u>Т</u> 29

15744

9						, 1					f				ſ		,											
ФОМИЧЕВ		MAPKA			13ДЕЛИЙ ПЛИТЬ			БЕТО	/H , M				b , KI		ĺ	MAPKA	MRPA	CA	ИЗДЕЛІ			5 ETC	DH, I				6 , KT.	
do		KAHAAA	SOTK	CH	ПЕРЕКРЫ И ДНИЦ	THA YA		DPHbl		_	CTRAB KARCCA FI-III	KARCA RI	TRIHYTAS RPOBOACE		ļ	КАНАЛА	JOTK	Н	ПЛИ1 ПЕРЕКРЬ И ДНІ	ITUR	CB	ОРН	614		CTANI KNACCA A M	CTANI KANCKA A I	KONQQHO TAHYTTAR NPOBONOKI	
Y			МАРКА	Кол. шт.	Manual				MAPKU 400	DCETO	no l'ÔCT 5781-15	no roct	BĪ	Всего			MAPKA	Кол. шт.	MAPKA		MAPKU. 200		MRP101 400	BCETO	no FOCT 5 781-7 5	no FOCT 5781-75	XONDAHO TAHYTAA NPOBONOKI KARCCA BT NO FOCT	BCETO
d l		KA 120×120-3 KAN 120×120-3	113-3	1	П10-3 П10-3а	2	2.52	0.62	_	3.14	156.7		23.3	197.4		KA 150×90-3 KAN 150×90-3	116-3	,	ЛУ-3 ПУ-3а	-	$\vdash \vdash \vdash$	1.0	-	3.52	184.5	H	6727-53 25.5	
3		KNA 120×120-3 KN 120×120-3 KN 120×120-5 KN 120×120-8 KNA 120×120-8	A13-5	1	010-5	2	2.52	0.62	_	3./4	194.4	17.4	31.9	243.7	ļ	KN 150×90-5 KN 150×90-5	116-5	1	115-5 115-5a			1.32		3.84	243.6		25.5	
-+-	-	KAT 120×120-8 KATA 120×120-8	A13-8	/		2	2.52	0.88	_]	3.40	221.8	17.4	25.7	264.9	F	KJ 150×90-8	116-8	1.	115-8 115-80	2	2,52				342.4		23.7	
		KA 120×120-11 KAN 120×120-11	N13-11	/	N12-11 N12-11 a	2	_	3.94	_	3.94	221.8	18.8	25.7	266.3	Ī	KAN 150×90-8 KAN 150×90-11 KAN 150×90-11	116-11	1	1716-11 1716-11a	2	-	4.50	_	4.50	319.4	69.3	7.5	396.2
ПРОВЕРИЛ		KA 120 × 120-12 KAA 120×120-12 KA 120×120-15	N13-15	1		2	_	3.94	_	3.94	290,2	-	24.3	356.3	ŀ	KA 150 × 90-12 KAA 150 × 90-12 KA 150 × 90-15	116-12	/	116-15 116-15a	2	_	4.50	-	4.50	429.0	89.6	7.5	526.1
nan		KAN 120×120-15	S13-15	-	M2-15 M2-15a	2	=	3.94	_	3.94	290.2	41.8	24.3	<i>356.3</i>	ļ	KJI 150 x 90-15 KJI a 150 x 90-15	116-15	/	116-15 116-15a	2		1.98	2,52	4.50	429.0	89.6	7.5	526.1
_	٦.	KA 150×45-3	0111.2		N14-3	$\frac{1}{2}$	100	(2)	_	0.00		#1.0	40.0	200	ŀ	KA 150× 120-3		-	N4-3	<u> </u>			-					
SAN		KAN 150x 45-3 KAN 150x 45&5	Л14-3 Л14-5	 	015-5		1.86	1.0		2.86	171.6	14.2	19.7	205,5	I	KAN 150×120-3 KAN 150×120-5	Л17-3 Л17-5	 	114-3a 115-5		3.0	1.0		4.00	202.7	18.8	25.9	
	<i>X X X X X X X X X X</i>	KAIN 150x 45-5 KAI 150x 45-8 KAIN 150x 45-8	114-8	/	A/A A	2	1.86	1.32 3.18	\exists	3.18 3.18	<i>189.0</i> 232.2		31.9	229.2 279.4	-	KAN 150× 120-5 KAN 150× 120-8	111-5	/	NI5-5a NI5-8	Γ_{α}	<i>3.0 3.0</i>	1.32 1.32	-	4.32 4.32	252.1 371.0	18.6 53.9	25.9 25.1	450.0
инефамян Шнефамян	*	KAN 150× 45-11 KAN 150× 45-11	114-11		010 11	2	_	3.84		3.84	276.8		8.4	336.6	ļ	KAN 150 x 120 - 8 KAN 150 x 120 - 11	117-11	7	1115-8a 1116-11	_	3.0	1.52 4.98		4.98	348.0			429.4
	# .	KA 150 × 45-12 KAN 150 × 45-12	114-15	,	010 15	2			1.86	3.84	354.6		3.0	423.8	,	KAN 150×120-11 KA 150×120-12 KAN 150×120-12	117-12	7	NI6-11 a NI6-15 NI6-15a			4.98		4.98	4422	94.8		546.4
A A A	⟨	KJI 150 x 45-15 KJIn 150 x 45-15	114-15		DIC IS	2	_						3.0	423.8		KJ11 150 × 120-12 KJ1 150 × 120-15 KJ11 150 × 120-15	117-15	1	1116-15a 1116-15a		_		3.00	4.98	442.2	94.8		546.4
13	3	·													f	MIN 170 × 120-10			1770-124				0,00					
1 1	TR.	KAN 150 x 60-3 KAN 150 x 60-3	A15-3	1		2	1.98	1.0	_	2.98	177.2	14.2	19.7	2/1./	[KA 150 × 150-3 KAA 150 × 150-3	118-3	1	ПУ-3 ПУ-За	2	3.72	1.0		4.72	222.3	27.4	30./	279.8
Pyk. FPynnsi	7	KA 150×60-5 KA 150×60-5	115-5			2	1.98	1.32	_	3.30	204.6	14.0	19.7	238.3	ŀ	KA 150×150-5 KAA 150×150-5	118-5	1	П15-5 П15-5а		3.72	1.32	_	5.04	276.7	27.2	30.1	334.0
20	3	KAN 150×60-5 KAN 150×60-8 KAN 150×60-8	115-8	/	010 11	2	_	3.30	_	3.30	265.2	23.1	24.1	312.4	ŀ	KAA 150×150-5 KA 150×150-8 KAA 150×150-8 KAA 150×150-11	118-8	1	1715-8 1715-8a	2		1,32	_	5.04	384.2			470.3
7	<u> </u>	KJI 150 × 60-11 KJIN 150 × 60-11 KJI 150 × 60-12	N15-11	\sqcup	116-11a	2	_	3.96	_	3.96	294.4		3.0	363.6	ļ	KAN 150×150-11 KAN 150×150-11 KA 150×150-12	J18-11	/	1716-11 1716-11a 1716-15		-	5,70	_	5.70	361.2			449.7
<u> </u>	1	KAO 150×60-12	A15-15	/	116-15a	2	_	1.98	1.98	3.96	377.6		3.0	458.8	ļ	KJIn 150x 150-12	118-12	/	N16-15a	2		5.70		5.70	459.2	102.1		571.8
	1	KJI 150×60-15 KJIn 150×60-15	N15-15	\vdash	П16-15a	2	_	1.98	1.98	3.96	377.6	18.2	3.0	458.8	Ī	KN 150×150-15 KNA 150×150-15	118-15	/	П16-15 П16-15a	2		1,98	3.72	5.70	459.2	102.1	10.5	571.8
TPOMETPONE TROPER	`		1										<u> </u>	L	1		ــــــــــــــــــــــــــــــــــــــ		l	<u> </u>						LI		
麦																												
뫁																								,			C.E	DIJ9
¥	П	Κ	c	60	PHIE					TOHE			AHA		Н				ОВЫХ				ITOB	3			3.00 Выпуск	РИЯ 26-2 : ЛИСТ
르_	19	76			TABNI	ИЦЫ МЯТЦ	ДІ <u>ЕРНІ</u>	าя ๆ <i>ภ08</i>		50PA 4A (С1 <u>5 п.м.</u>	50PH (<u>KR</u>				ОБЕТОННЫХ ВРОК КЛ И К	PNEME! CNN (710 1100	В ДОЛЖ	H EHI	PRC: (E)	сод					I	30

		Марка	MAP	KA	ИЗДЕЛ			БЕТ	OH,			CTAN			ſ				MAP	KA	ИЗДЕЛ			БЕТ	он,				76 , KI	
	1	KAHANA	NOTE	СИ	ПЛИТ ПЕРЕКРЬ И ДНИ	THA ITHA IYA	cı	5 <i>0</i> PH	ыц		CTAN 6 KUNNCCA A M	CTAAb Kracca HĪ	Konogek IXNYTAA IIPOBORO	BCETO			APKA HAN		Лот	СИ	ПЛИТ ПЕРЕКРЫ И ДНИ	ITUS	Cl	50РН	614		CTRAID KARCCR FIM NO FOCT	CTANI KARCEA A I	TARODHO TRHYTHA DPOBAROK KORCTA	
			Mapka	Kan. ur.	Mapka	Kon. WT.	марки 200	MAPKU 300	MAPKH 400	BCEFO	00 FUCT 5701-75	90 LOCT 5781-75	KINACCA BI NO FOCT 6727-534	BCETO	ĺ				I'INPLA	Кол. Шт.	Mapka	Kon. UT.	MRPKU 200	1990 300	MAPKH 400	BCETO	110 (OCT 5781-75	E9991 9E	BŢ NO (OCT 6727-53	
E	<u>K</u>	N 180×60-3 Nn 180×60-3	ЛI9-3	1	П/7-3 П/7-3a	2	2.52	1,56	_	4.08	203.3				Ī	KAn	80 × 15 180 × 1	50-3	A22-3	2	<u>П17-3</u> П17-3а		4.14	1.56		5.70	258.2			321.
E	K	N 180×60-5 Nn 180×60-5	119-5	1	П18-5 П18-5а	2	2.52	1.94	_	4.46	277.6	50.7	9.2	337.5	-	KA I KAN	80 × 1: 180 × 1:	50-5 50-5	A22-5	2	П18-5 П18-5a	2	4.14	1,94	_	6.08	343.4	51.2	22.8	4/7.
L.	<u>K</u>	N 180×60-8 Nn 180×60-8	J19-8	1	1118-8 1118-8a	2	_	4.46	_	4.46	363.2	79.5	3.4	446.1		KA I	180×1: 180×1	50-8 50-8	J122-8	2	118-8 118-8a	2	1	6.08	_	6.08	391.0	60.4	18.8	470.
	2	N 180×60-11 Nn 180×60-11	J19-11	1	1119-11 1119-11a	2	_	5.74	_	5.74	363.2	81.7	3.4	448.1		KIN 1	80×15 180×15	50~ 50~	122-11		N19-11 N19-11a		1	7.36	_	7.36	440.2	95.4	7. 2	542.
	Ļ	N 180×60-12 Nn 180×60-12	119-15	1	1719-15 1719-15a	2	_	3.22	2.52	5.74	493.6	97.5	4.4	595.5		KAN	80 x 15 180× 15	50-/2	A22-15	2	N19-15 N19-15a	2	-	322	4.14	7.36	555.2	115.0	7.2	677.
F	K	NN 180×60-12 N 180×60-15 NN 180×60-15	A19-15	1	1119-15 1119-15a	2	_	3.22	2.52	5.74	493.6	97.5	4.4	595,5		KA I	90×15 180×15	0-15 0-15	A 22-15	2	N 19-15 N 19-15a	2	_	3.22	4.14	7.36	555,2	1/5.0	7.2	677.
\perp	V	A 180×90-3			İ																							~.		
þ	K	No 180x90-3	1120-3	1	1117-3 1117-3a		3.00	1.56	_	4.56	236.7	30.6	17.9	285.2		Ksn	210×60 210×60	0-3	Л23- 3	1	П20-3 П20-3а	2	2.84	2.0	_	4.84	235.5	33.4	18.2	287.
	ĸ	N 180×90-5 Nn 180×90-5	120-5	1	1118-5 1118-5a	2	3.00	1.94	_	4.94	315.4	51.7	14.8	381.9		KAn	210×60 210×6	0-5	Л23-5	1	П21-5 П21-54	2	2.84	2.36	_	5.20	338.2	62.5	14.7	415.4
	,	A 180×90-8 An 180×90-8 A 180×90-11	120-11	1	1110-8 1116-8 a	2	_	4.94	_	4.94	408.2	83.3	8.4	499.9		KJI 1	210 × 60 210 × 60	0-8 2-8	S123-8	1	N21-8 N21-8a	2	1	5,20		5.20	463.8	81.3	9.3	554
E	K	NA 180× 90-11	J120-11	1	119-11 119-11a	2	_	6.22	_	6.22	381.2	85.5	8.4	475.1		KAN	10×60 210×6	10-11	Л23-11	1	1122-11 1122-110	2	_	3.68	2.84	6.52	500.6	87.7	10.0	598.
	K,	N 180× 90-12 Nn 180× 90-12	120-15	1	1119-15 1119-15a	ן צ	_	3.22	3.00	6.22	512.4	103.5	9.6	625.5		KAn	10×60 210×6	0-12	Л23-12	1	1122-15 1122-15a	2	_	3.68	2.84	6.52	591.6	132.8	7.7	732.
Z		A 180×90-15 Aa 180×90-15	Л20-15	1	1119-15 1119-154	2	=	3.22	3.00	6.22	512.4	103.5	9.6	625,5		KJ 2	10 × 60 210×60	<i>?~ 5</i>	J123-15	/	<u> 1122-15</u> 1122-150	2	L	3.68	2.84	6.52	625.6	145.2	7.7	778.
þ	Ķ	A 180 × 120-3 An 180 × 120-3	121-3	/	<u>П</u> 17-3	2	3.54	1,56	 _	5.10	238.6	27 U	20.2	00C 2		KNZ	10×90	2-3	Л24-3	/	<u> 120-3</u> 120-3а	2	3.24	2.0		5.24	261.1	40.0	21.0	322
F	K.	N 180× 120-5 Nn 180× 120-5	121-5	1	1717-3a 1718-5	1	 	1.94	_		339.4		i —	414.9		K.N 2	210×9 10×90	2-5	J124-5		N21-5 N21-5 N21-54					5.60	368.8	69.1	17.5	455
F	K.	n 180×120-8 An 180×120-8	121-11	1	118-5a 118-8 118-8a	2	3.54	5.48	_		436.8		9.8	539.9		KA	210×91 210×91 210×9	0-3 0-8	J124-8	'	1121-59 1121-8 1121-8a	2	J.L 1	5.60	_	5.60	498.8	91.9	//./	601.0
F	K	A 180×120-11 An 180×120-11	121-11	1	1118-82 1719-11 1719-112	2	 	6,76	<u> </u>	6.76	409.8	-	9.8	515.1		KA	210×90 210×90 210×9	0-11 2-11	124-11	<u> </u>	1122-11 1122-11	2		-	3.24	6.92	498.6	98.3	11.8	608
F	K	1 180 x 120-12	121-15	1	1119-114 1119-15 1119-15a	2		├	3.54		 			644.9		κ_{J}	210×90 210×90 210×91	0-12	J124-12	,	1122-114 1122-15 1122-15a		_		3.24	6.92	567.0		8.8	7/8
F	K.	N 180 x 120-15 Nn 180 x 120-15	121-15	ا	1119-15a 1119-15a	2			<u> </u>		518.0		11.2	644.9		KAS	210×9 210×9	0-15	124-15		1122-130 1122-15 1122-150		_	-	3.24	6.92	608.2	156.2	8.8	773
				+-	11113-124	Ë		-	-	-			<u> </u>			Karii	LIVA ZI	v,v		-	11 <i>EE</i> -154	1			<i>5,-,</i>					<u> </u>

ТЯБЛИЦЫ ДЛЯ МАТЕРИАЛОВ

ПОДБОРЯ НА 6 П.М.

CEOPH 6/X KRHR JOB

: ЖЕЛЕЗОБЕТОННЫХ МАРОК КЛ И КЛП (

С ЭЛЕМЕНТОВ И РАСХОД (ПРОДОЛЖЕНИЕ)

1976

BUNDER DUCT 31

	MAJOK		138814		٠ ـ		4, M	3			,KI:		1,,	MODK	_	13000				2H, 1	M3	0	ngs	6 , K	γ <u>.</u>
MODKO	Som	W	PSEKOL U ONU	16/ VILDI VILDI	CST)	DHB	Ų		CTBAB KABICIB RITT	LTANS UNILLA DT	TANUTTI TANUTTI TANUTTI TANUTTI		Majoka Kahana	Попки		PPPEKOS U PHUL	6/ 1741.9 16.0	(60 _f	OHBI	w'		CITANIB KADICID DITI	KIDITO KIDITO A I	70,000 1000000 1000000000000000000000000	2
KONONO	Мороко	1/20	MOJOKO	1601.	Маржа 200	Наржи	40,040	80.820	98 FOCT 5784-75	10 10C1 5781-75	1010C1 6727-53	Brezo	KUNUNU	Марка	KDA. UT.			Majani 200			Biezo	CMUAB KAOCCO A <u>M</u> 10/10/1 5781.75	90 FOCT 5781-75	00 10 27 10 10 27 1727-53	
NE10 x 120-3 Nn 210 x 120-3	125-3	2	120-3 120-30		378			5.84	294.0	39.2	0.25	358.2	KN240x90-3 KNn240x90-3	128-3	ص	123-3 123-30	ع	3. <i>96</i>	2.66	_	8.62				
ב מפנ צמוכחים	N25-5		1121-5 1121-50	1	3.78			6.14	405,2	79.2	H.2	4956	KAR240×90-5 KAR240×90-5	N28-5		124-5 124-50					5.96	445.2	وجو	8.4	54
1210×120-8	N25-8	مے	121-8 121-80	ص	_	5.14	-	5.14	497.4	87.2	ح.ببر	595,8	KA 240×90-8 KAN 240×90-8	N28-8	ع	124-80 124-80	وے	-	5.95	_	6.98	597.0	108.8	8.4	7/1
וו מבוצחובח	125-11	1 1	122-H	امے	_	3.68	3,78	7.45	541.4	109.2	11.2	68%8	KAR40×90-11 KAA240×90-11	128-11	2	125-11 125-40	ے	-	4.15	<i>3.96</i>	8.12	<i>584.8</i>	114.0	8.4	82
11 210×120-12 11 0210×120-12	125-1E	حے	122-15 1122-150	حے	-	3.58	3.78	7.46	105.2	157.2	7.6	870.0	KAR 240 x 90-12	128-12	ي	12545 125450	2	_	4.15	3.96	812	846.4	181.0	6.0	10.
N 210 x 120-15 N n 210 x 120-15	N25-15	١. ١	122-15 122-150	1	_	3.68	3,78	7.45	765.6	157.2	7.6	9309	KN240×90-15 KNN240×90-15	N28-15	ع	125-15 125-15p	فے	-	4.15	<i>398</i>	812	970.8	181.0	6.0	1/2
N210×150-3 Nn 210×150-3	N26-3	ر مے	1120-3 1120-3 0	وے	4.38	2.05	_	5.44	322.8	39.2	26.4	3884	KN240x120-3 KN1240x120-3	N29.3	و	123-3 123-30	و	4.58	2.68	_	7,22	340,2	43,2	24.4	42
1111	N26.5	1 1	N21-50	1 1				5.74	441.6	حيور	12.6	533,4	KN240 x 120-5 KN n 240 x 120-5	129.5		124-5 124-50		4.58	3.00	_	7.58	442.6	74.6	ي برج	S
1210 x150-8 10210x150-8			N21-80			6.74		5.74	533.8	87.2	12.6	633.6	KN240x120-8 KNn240x120-8	129.8	حے	124.80 124.80	حے	-	7.56		7.56	63/-8	111.4	10.0	25
DE10×150-11	126-11		N22-14 N22-14	1 . 1	_	3.68	4.38	8.06	586.2	109.2	12.5	708.0	KN 240×120-11	129-11	يے	125-HJ 125-HJ	وے	-	4.15	4.56	8.72	ברשו	118.8	10.0	R
1210×150-12 11210×150-12	126-12	وے	122-19 122-190	وے	_	3.68	4.38	8.06	704.6	149.2	9.0	862.8	KAR240 x120-12 KAR240 x120-12	129.12	ص	125-15 125-15y	و	-	4.16	4.58	8.72	888.8	185.4	7.6	Ż
12/0×150-15 10210×150-15	126-15	ع	122-15 122-150	بے	_	3.68	4.38	8.06	776.S	149.2	9.0	934.8	ו איינו או איינו או איינו או איינו איינו איינו	120 15	١.	125-15 125-150	مے	-	4.15	4.56	8.72	952.4	185.4	2.6	1
				Ш						<u> </u>		Ш			L	<u></u>	L				<u> </u>		<u> </u>		1_

ΤΚ <u>Εδορμόνε Χεελεβοδεπομμώνε καμαλών υπομμέλυ υβ λοπκοβών βλεμεμποβ.</u>
1976 Ταδλυμώ σλη ποσδορά εδορμών Χεελεβοδεπομμών βλεμεμποβ με ράζνος
μαπερυσλόβ μα δηλ. κομολοβ μάροκ κλυκλή (προσολικέμα)

15744- 43

																											<u> </u>
89			Маркі	A K	ІЗДЕЛИ		E	ETOI	Η, Μ	,3		CTAI	76 , K	г.	ſ		MAP	CA	НЗДЕЛНИ	T	BET	OH . P	13		CTA.	Nb , K	75
ноля к Фомичев		Марка Канала	Лотк	и	NAHA NEPEKPE H QHH	SITUS WA	Ċ	50РН	ыģ		CTAAI KAACCA	CTAA 6 KAACCA	ZON O QHA TRHYTRA APCEANON	BCETO		Mapka Kahaja	Лотк	и	NAUTH NEPEKPHITH U QHUUH	18 C	БОРН	<u> </u>		CTRAIS KARCCR	CTON	Хоподно Гянутая проволях	
1	-		Марка	Kan. UT.	MRPKR	Kan. Шт.	МАРК Н 200	мярки 300	МЯРКИ 400	Всего	17 <u>III</u> 10 (70C) 5781-75	A <u>[</u> ao (7007 5781-75	KARCCA BĪ 10 FOCT 6727-534	BCETO			MAPKA	Kan		ומפות וע	MAPKI 0 300	MAPKH 400	BCETO	19 <u>III</u> 110 [OCT	A <u>I</u> no FOCT	KARCER BI	BCETO
		KJ 240×150-3 KJn 240×150-3	A30-3	2	П23-3 П23-3a	2	5.16	2.66	_			73.2		504.8	F	KA 300× 120-3 KAN 300× 120-3	Л33-3	2	П26-3 П26-3a	5,5	2 4.04	_			5781-75 85.0		569.8
0.5		K.N 240×150-5 K.Nn 240×150-5	Л30-5	2	П24-5 П24-5a	2	5.16	3.00	_	8.16	528.6	113.8	11.4	653.8	ļ	KA 300 x 120-5 KAN 300 x 120-5	Л33-5		796-5	5.5	2 4.04	1_		633.0			763.0
U	1	· K.Ji 240×150-8 K.Jin 240×150-8	Л30-8	2	П24-8 П24-8a	2	-	8.16	_	8.16	731.8	123.0	11.4	866.2		KAN 300×120-8 KAN 300×120-8	133-8	2	1127-8 1127-8a	+-	10.56	-			142.2		998.8
ПРОВЕРИЛ ПРОВЕРИЛ		K.A 240×150-11 K.Aa 240×150-11	J130-11	2	N25-11 N25-11a		_	4.16	5.16	9.32	842.4	130.4	11.4	984.2		KA 300×120-11 KAN 300×120-11	A33-11	0	1121-64 1128-11 1128-114	+-	6.06	 	 		227.4		1265.0
		K.N 240×150-12 K.Nn 240×150-12	1130-12	2	П25-/5 П25-/5a	2.	-	4.16	5.16	9.32	1000.8	197.4	9.0	1207.2		KAN 300×120-12 KAN 300×120-12	N 33-12	•	1128-15 1128-15a	_	+	 	-		227,4	-	1514.2
БРОДСКИЙ БРОДСКИЙ ШНЕЧДМЯН		K.N 240×150-15 K.Nn 240×150-15	N30-15	2	1725-15 1725-15a	0		4.16	5.16	9.32	1078.8	197.4	9.0	1285.2		KA 300×120-15 KAN 300×120-15	A 33-15		1728-15a 1728-15a	+	_	├			249.8		1635.0
POAC! POAC! HEAL					,,,,,,,											KATH JUU-12				\dagger	1						
997	1	KA 300×90-3 KA a 300×90-3	л32-3	2	П26-3 П26-3a	2	4.92	4.04	_	8.96	441.4	85.0	18.2	544.6		KA 300×150-3 KAN 300×150-3	134-3	2	1126-3 1126-3a	6.1	8 4.04	_	10 22	51R 6	109 6	19.2	GUTU
14/41/		KJI 300×90-5 KJII 300×90-5	Л32-5	2	П26-5 П26-5a		4.92	4.04	_	8.96	605,6	116.6	9.0	730.6	ļ	KAN 300×150-5 KAN 300×150-5	J34-5	0	726-5	6.10	1	†		ا ا	-	12.8	
14/5		KA 300×90-8 KA 0 300×90-8	N32-8	2	П27-8 П27-8a	2	_	9.98	_	9.98	854.6	137.4	9.0	1001.0	F	KA 300×150-8 KA 300×150-8	Л34-8	2	1126-3a 1127-8 1127-8a	+	11.24	┼	 	-		12.8	
HPY. OTDEAR I.A. KOHCTPUKTOP PYK. FPYANDI		V.0.300+90-11	J132-11	2	П28-11 П28-11a	2	_	6.06	4.92	10.98	1063.2	224.6	6.0	1293.8	F	KA 300×150-11	N34-II	•	1121-6a 1128-11 1128-11a	†=	6.06	6.18	 	-		9.8	
ОТДЕ. ОНСТРВ ГРУП		K 0 200 - 00 - 12	л32-12	2	П28-15 П28-15a			6.06	4.92	10.98	1216.4	224.6	6.0	1447.0		KAI 300×150-12 KAI 300×150-12	J34-12	•	1128-11a 1128-15 1128-15a	1-	+	<u> </u>				9.8	
T GAK		V0 300 400 15	J132-15	2	1128-15 1128-15 1128-15a	2	_	6.06	4.92	10.98	1314.8	247.0	6.0	1567.8		V 11 200 - 150 - 15	134-15		1128-13a 1128-15 1128-15a	1_	+	-	├	-	269.4	├	1713.2
		700-70-70			1120-134										ı	K4111 300 X130-13			//28-15a	\dagger	†						
<u>\$</u>	•											<u> </u>	L	L	_				L		1	L	<u> </u>				
TPCIME TPOMHNUTIPOEKT	L																										
I I	_	K	.C5(IBIE					HHbi			НАЛ	-		ОННЕЛИ ИЗ			Вых		EME					3.0	РИЯ 106-2
트	19	76		117	БЛИЦ 	ы ЧА1	дл ЕРИ	Я <u>ПЛО</u>	ПОД В	60PF HR		260P		70B		30БЕТОННЫХ POK KN H K	ING (MEI	HTOB P PHYRHH	e)	icx0g	<u>'</u>				Выпус <u>Т</u>	# ЛИСТ 33

СЕРИЯ 3.006-2

BUNYCK JHCT

34

4EXOBb/A	C KAHI	<i>9108</i>	ДБОРА ПЛІ ПРИ ЗАГЛУ	БЛЕНИН Т	BEPXA	NEPEKPUTHA	<i>B</i> 0005	ДЛЯ ПОДБОІ МЫХ ПРИ СТІ ЫХ УСЛОВІ	PA NODKNADOK, POUTENBETBE VAX	ТАБЛИЦА ПЕРЕКРЫТ		ОРЯ ПЛИТ ПОДЗЕМНЫХ
ШИРИНЯ КЯНЯЛЯ В ЧИСТОТЕ	Mi	ЭРКИ		PEKPUTHA	···	Лист	WHPHHA KAHANA HAU TÜHHEMA B YHCTOTE A, MM	Мярка подклядки	ЛИСТ ВЫПУСКА <u>Т</u> -2 СЕРИИ	WUPUHA KAHANA B YUCTOTE A. MM	MAPKA NAUTH	ЛИСТ ВЫПУСКЯ <u>П</u> -2 СЕРНИ
A, MM	<u>грузоподъе</u> Е т	3 T	AKKYMY- ABTO ARTOPHBIA TPY30 NOTPY34UK 31	<u> 5 τ</u>	НВТО- РМАШИНА Н-10	СЕРИН	300	nnı	63	600	NT/	52
300	ΠI-15 δ			П2-15 в	•	2	450	กกะ		900	nr2	53
	02-IE S	<u> </u>				//	600	nns.		1200	nt3	54
450	113-158			Π4-15 Γ		4	900	nn4	64	1500	NT4	55
600	115-88			N6-158		6	1200	ΠΠ5		2100	<i>ПТ 5</i>	56
900	177-58)	119-158		8	1500	ппв	-,,-			
1200		1710-58		N13-116		12	1800	חחז	65			
1500		1714-35		N15-85	.	15	2100	ппв				
1800			N17-35	N18-88		18	2400	ППЭ	66			
2100			П20-3 s	1121-58	1120-38	22	3000	סוחח				
2400		•	П 23-38	N24-58	Л23-38	. 25						
3000			П26	-38		25						

ЖЕЛЕЗОБЕТОННЫЕ КАНПЛЫ И ТОННЕЛИ

CTPOHTENBCTBE

MAPKU QOEOPHUX NAUT NEPEKPUTUA COOTBETCTBYHOT МАРКАМ ОСНОВНЫХ ПЛИТ.

ТАБЛИЦЫ ДЛЯ ПОДБОРА ПЛИТ ПЕРЕКРЫТИЯ ПОДКЛАДОК, ПРИМЕНЯЕМЫХ ПРИ СТРОИТ

C50PH 61E

ЭЛЕМЕНТОВ

УСЛОВИЯХ.

ИЗ ЛОТКОВЫХ

B OCOBBIX

ВНУТРИЦЕЖОВЫХ И ПОЛУПОДЗЕМНЫХ

KAHANOB H

15744

EBH	Γ		МАРКА ИЗДЕЛИИ		Γ_	5ET	OH, M	y 3			TAN6	Kr.		Γ		МПРКП ИЗДЕЛИ			6ETO		y ³		Cī	TAND,	Kr.	
ТЕРЕНТЬЕВЯ		Mapka Kahaja	ЛОТКИ	4	СБ	ОРНЬ	514	T	CTAN B KAROCA A jiji	CTAAb	Хоподна	CTAAL	П		Марка Канала	NOTK	·u		50РНЬ			1 <i>A ii</i> 1	07 1	TONODHO- TRHYTAR APOBONOKA KARCCR BI	HA9 I	
f_{\parallel}			MAPKA	Kog. UT.	. MAPKU 200	МЯРКИ 300	MRPKU 400	BCEFO	A III NO TOCT 5781-75	no l'OCI 5781-75	KARCCA BI NO FOCT 6787-53	100T 380-71	BCETO			MRPKR	KON. WT.	MAPKU 200	MAPKU 300	1990 1900	BCERO	ao FOCT 5781-75	5781-75	BÎ 00 FOCT 6727-534	380-714	1
"Maru L.		KAc 90×90-3	116-5	2	1.80			1.80	76.8	7.2	13.8		109.4		Ksic 120×120-3	NII-3	2	2.88		<u> </u>	2.88	145.6	15.8	19.8	11.6	192.8
	L	KAC 90×90-5	Л6-5	2	1.80			1.80	76.8	7.2	13.8	11.6	109.4	L	K.I.c 120×120-5	NII-5	2	2.88		<u> </u>	2.88	237.2	15.8	19.8		284,4
##		KAC 90×90-8	16-8	2	_	1.80		1.80	120.2	7.2	13.8	11.6	152.8		KAC 120×120-8	SII-8	2	!	2.88	<u> </u>	2.88	265.6	32.0	15.4	11.6	324.6
		KAC 90x 90-11	J16-15	2	1-1	_	1.80	1.80	172.6	7.2	13.8	11.6	205.2	L	KJic 120×120-11	JII-11	2	!	2.88	'	2.88	323.2	7/.2	4.2	11.6	410.2
Ž.		KAC 90×90-12	116-15	2			1.80	1.80	172.6	7.2	13.8	11.6	205.2	L	KAC 120×120-12	NII-15	2	_		2.88	2.88	421.6	105.2	4.2	11.6	542.6
ПМВЕРИЛ		KAC 90×90-15	N6-15	2			1.80	1.80	172.6	7.2	13.8	11.6	205.2		. K.I.c 120×120-15	NII-15	2	!		2.88	2.88	421.6	105.2	4.2	11.6	542.6
\dashv			<u> </u>	ot'	$oxed{oxed}$	\square'	<u> </u>	<u> </u>	<u>'</u>	<u> </u>	<u> </u>	<u> </u>	$ldsymbol{ldsymbol{ldsymbol{eta}}}$				Ļ	!	\Box	لــــا	<u> </u>			\sqcup		<u> </u>
ШИЕ ИДМЯН Поляк	L	KAc 90×120-3	J17-5	2	2.12	<u> </u>	['	2.12	83.8	7.2	15.0	11.6	117.6	/ L	. KAC 120×150-3	III-3 II2-3	/	3.36		<u> </u>	3.36	179.8	19.5	25.6	11.6	235,
2 3		KAC 90×120-5	J17-5	2	2.12	[-1]	[-!	2.12	83.8	7.2	15.0	11.6	117.6		KAC 120×150-5	111-5 112-5	//	3,36			3.36	235.6	19.5	25.6	11.6	292.
PER		KAC 90×120-8	17-8	2	-	2./2	-	2./2	131.2	7.2	15.0	11.6	165.0		KAC 120×150-8	A11-8 A12-8	\mathcal{L}	1.92	1.44		3.36	290.4	27.6	23.4	11.6	353.
30	· L	KAC 90×120-11	A7-15	2	-		2.12	2./2	188.6	7.2	15.0	11.6	222.4		KAc 120×15Q-11	III- II2-	/	!	3.36	1_'	3.36	319.2	47.2	17.8	11.6	395.
M	۱,	KAC 90×120-12	177-15	2			2.12	2.12	188.6	7.2	15.0	11.6	222.4		KAc 120×150-12	ภ//-/5 ภ/2-/2	7		1.92	1.44	3.36	4/7.4	86.5	15.6	11.6	531.
	Ϋ́ F	KAC 90×120-15	17-15	2	-		2.12	2.12	188.6	7.2	15.0	11.6	222.4		K.Ac 120×150-15	111-15 1112-15	//	* .	<i>₽</i> □	3.36	3.36	433.4	86.5	20.6	11.6	552.
193																									,	
] ر	KAC 120×90-3	ЛIO-3	2	2.64		-	2.64	125.6	10.8	16.2	11.6	164.2	ſΓ	KAC 150×90-3	Л/4-3	2	3.72	<u> </u>		3.72	211.2	21.6	21.0	14.0	267.
РУК. ГРУЛЛЫ СТ. ИНЖЕНЕР	Ī	KAC 120×90-5	A10-5	2	2.64			2.64	1	1	16.2	11.6	207.4	Ι. Γ	KAC 150×90-5	A14-5	2	3.72			3.72	246.0	39.8	15.8	14.0	315,0
34.E		KATC 120×90-8	110-8	2	_	2.64	-	2.64		27.0	1 1	—	247.6		KAC 150×90-8	114-8	2	I = I	3.72		3.72	246.0	39.8	15.8	14.0	3/5.4
7 X		КЛС 120×90-11	110-11	2	_	2.64		2.64	236.6			11.6	287.0		K.Ne 150x 90-11	J14-11	2		3.72	\Box	3.72	381.2	53.2	16.8	14.0	465
00		KAC 120×90-12	110-15	2	-	-	2.64	2.64	3/6.0	63.6	3.8	11.6	395.0		KAc 150×90-12	J14-15	2			3.72	3.72	490.8	88.8	6.0	14.0	39
되		KAC 120×90-15	J110-15	2			2.64	2.64			1	11.6	395.0		KAC 150×90-15	A14-15	2	-1	[-]	3.72	3.72	490.8	88.8	6.0	14.0	599,
ヹ	L														}											
		 1						,															<u> </u>		CEP	duğ
볽	丄	K	C501					305E				HAN			ТОННЕЛИ ИЗ				7	EMEH	1TOB			\longrightarrow	3.00	16-2
三丨	197	76	7	TA 51	лицы		7JJA PTED	NOQ5	OPA	C50	OPHE		HE AH A J		BETOHHЫX ЭЛ МАРКИ К.	NEMEHTO No	2B	И	PACA	ход				ľ	выпус Т	× 1.7

		1 2///	7 AV	T											1 4000	·N									
	1 44	USDEN	14	50	MOH	MS		Γ.	Cmo	16, K	·/:		ll		USOEN	14	50	mon	Y, M.	3			106,		
$\parallel \perp \downarrow$	Mapka	Some	4	250	046	Ü		CT (M 6 KNOW)	TON B ENGLYD	CONTROL THEY OR	MONE POKO			MODKO	Some	4	08	OPHE	14		WANAAA	$\nu m m m$	KANDOKA TRHUTUK POSOANUK	MANUM	
	KOHONO	Марка	KON UT.	200 Наркц	Mapu 300	400 400	BCBZO	100 1007 1781-15	7007 7007 5784-75	10000000 10007 1007 1007 1007 1007	1007 1007 180-71	Beezo		KUHUNU	Марка	Kan. Um.	НФОКО 200	Марки 300	Марки 400	BCEZU	100 T 5781-75	1000	NO 10 C 7 80 10 C 7 8127-53	VOCT.	Brero
	KAC 150x120-3	1	1	3.96	l			بإجع				285.0		KNC 180×120-11	119-11	مے	_	5.04	_	5.04	ح چیح	110.5	5.8	-	640.6
	KSC 150×120.5	115.5	ع	3.96	-	_	398	ج,ررح	21.6	24.0	_	310.8		KAC 180 × 120-12	119.15	مے	_	_	5.04	5.04	730.4	1422	8.8	-	881.4
	KAC150x120-2	P 115-8	ھے	_	3.96	_	3.98	312.0	39.8	15.8	_	367.6		KNC 180x 120-15	119-15	مے	_	_	5.04	5.04	730.4	1422	8.8	-	881.4
178	KAC150×120-1	4 115-11	2	_	3.96	_	3.96°	46.4	88.8	5.0	_	5H, 2				L			_	<u> </u>					Ш
1000 A	KAC 150 X 120-12	N15-15	مے	<u> </u>	_	3.96	<i>3.96</i>	538.8	112.8	6.0	_	655,6		KNC 210 x 120-3	N23-3	في	5,68	-	_	5.68	293,8	32.0	36.4	_	3622
7000	KAC 150 × 120 - 13	5 115-15	حے	_	<u> </u>	3.98	3.96	536.8	112.8	6.0	_	955.6	ŀ	KAC 210 x 120-5	123-5	مے	5,68	_	_	5.68	445,2	71.8	29.4	_	548.4
			_	-	_					ļ		Ш		KACEIOXIEO-8	N23-8	ص		5.68	_	5.68	566.0	109.4	18.6		034.0
	KAC180x120-3	19.3	2	5.04	-	_	5.04	251.4	32.0	24.8	_	3080		KNC 210×120-11	123-11	حے	_	_	5,58	5.68	708.4	105.8	20.0	1	834.2
$\parallel \perp \downarrow$	KAC 180x 120-3	N9-5	2	5.04	_	_	5.04	3524	53.0	18.4	_	123.8		KNC210×120-12	SE3-12	2	_		_	-	821.5			-	1039.0
900	KAC180 X120-2	9 119.8	مے	_	5.04		5.04	469.6	110.6	6.8		587.0		KAC210x120-15	123-15	2	_	_	5.68	5.68	889.6	226.8	15.4	_	1131.8
SHOW S																									
200																									
adul.																									
UHU																									
I POMET POUHUUMPBUK	mid	C501	Hb	10	жe	2003	1050	emo	HH	5/8	KOH	016	1 4	TOHHEAU	U3 1	ama	1080	1/1	318	ME	4MO	8.		200 3.00	048 26-2
Som	TK			TUGA			A.A.	×100	300	gog	20	OPH	6/X	MODKU K	TOHKS	18.	RICH	PHI	708	4	PACX	00		golpy.	VA TUCI
	1976				^	19111	PHE	ي ص رس	/ /1	0/	1.14	KUM	14016	A DAUDEL V		~0/1	74/1	- 6/.	15	744	47	7			100

МАРКА ИЗДЕЛИЯ БЕТОН, МЗ СТАЛЬ, КГ. МАРКА ТОННЕЛЯ ЛОТКИ СБОРНЫЙ В 1 1 16-3 1 5.04 — 5.04 237.8 30.4 32.6 316.8 7.1150×210-3 1 1.15-3 1 1.17-5 1 1.17-5 1	0/27-53# 0/25#	Всего
МЯРКЯ ТОННЕЛЯ 1 ПОТКИ СБОРНЫЙ 1 ПОТКИ ТОННЕЛЯ ТОННЕЛЯ ТОННЕЛЯ ПОТКИ ТОННЕЛЯ ПОТКИ ТОННЕЛЯ ПОТКИ ТОННЕЛЯ ПОТКИ ТОННЕЛЯ ПОТКИ		BCELO
TATISON 180-3 TATISON 180-		80
7.11.50×180-3	1 16.0 35	
T71/50×180-3	9 16.0 33	-
117-3a / 115-3 / 1 504 504 3560 304 326 4350 7050 205 1 57 57 57 57 57 57 57 57 57 57 57 57 57		70.5
7/1/50×180-5 1/1/5-5a 1/1/17-5 1/1/5-5 1/1/5-5a 1/1/17-5 1/1/5-5a		
37 5 1 27 5 1 498 — 498 325.5 26.2 27.2 16.0 394.9	1 16.0 43	32.3
117-5a / 1/5-5 / 3.72 / 1/5-5 / 3.72 / 1/5-8a /		
$\frac{1}{ a } = \frac{1}{ a } + \frac{1}$	0 16.0 54	42.3
3.00 1.98 - 4.98 418.6 70.6 16.0 522.0 715-114 718-11 1		ヿ
1/17-8a 1/1/5-8	' <i>16.0</i> <i>61</i>	14.1
TA150×180-11 A15-11a A17-11 4.98 - 4.98 470.8 95.1 11.9 16.0 593.8 TA150×210×12 115-15a A18-12 370 198. 5.7 518.9 126.8 126.	++	ᅱ
$\frac{1}{3.5} \frac{1}{3.5}	5 <i>16.0</i> 78	85.4
TIN 150×180-12 1/16-12 1 - 3.04 - 3.04 640.4 133.6 13.0 00.10 105-15a / 1.18-15 /	++	ᅱ
$\frac{1}{\sqrt{1/7-12a}} \frac{1}{\sqrt{1/5-15}} \frac{1}{\sqrt{1-12a}} \frac{1}{\sqrt{1/5-15}} \frac{1}{\sqrt{1-12a}} $	5 16.0 78	85.4
135.6 15.0 807.0 15.0 16-15a 1 16-15 1 - 5.04 5.04 640.4 135.6 15.0 807.0	+-+	\dashv
13 13 13 13 13 13 13 13 13 13 13 13 13 1		
COVETHUR JOTKOB DOKASHIN B	Щ.	1
1. h = h = 900		
日		
TK CEOPHEE WENESOGETONHEE KAHANE IN TONHENU US NOTKOBEIX SNEMENTOB	CECUI	
СЛЕДУЮЩЕЙ ПОСЛЕДОВАТЕЛЬНОСТИ: ДЛЯ ТОННЕЛЕЙ МАРКИ ТЛІ50×180 ДЛЯ ТОННЕЛЕЙ МАРКИ ТЛІ50×210 1. hw = hg = 900 2. hw = 600; hg = 1200 3. hw = 1200; hg = 600 TK C50PHSIE ЖЕЛЕЗОБЕТОННЫЕ КАНАЛЫ И ТОННЕЛИ ИЗ ЛОТКОВЫХ ЭЛЕМЕНТОВ 1976 ТАБЛИЦЫ ДЛЯ ПОДБОРА СБОРНЫХ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ И РАСХОД МЯТЕРИЯЛОВ НЯ 6 п.м. ТОННЕЛЕЙ МАРКИ "ТЛ"	СЕГИЯ 3.006-	л -2 Лист

СЕРИЯ 3.006-2

Выпуск лист <u>I</u> 38

}	MAPK	A H	издели.	18		ETOH				<i>CTH</i> .	706,	K.I.		——'	1			ИЗДЕЛ И			SETOH			1		AND,			Г
МАРКА ТОННЕЛЯ	1	ЛОТІ	KH	,	C	CEOPH		- 1	9 A MI	er fil	2CA A 0CT 75	SCA B	F867 -6/*	ا ۾ ان	МАРКА ТОННЕЛЯ		Ло:	ткн			БОРН	ІЫЙ		8 B III	CB P	7. 75	2CR B. 7-53*	7.887 1.007 1.61*	Acero
· - · · · ·	Нижние	00-80 IIIT.	ВЕРХНИЕ		. марк и 200	1 MAPKU 300	МАРКИ 400	BCETC	19000 100 FC 5781-	KJACCA 100 FOC 5781-	100 100 578	100 F 6727	380	BCETO		Нижние Л19-3a	Kan-80 WT.	ВЕРХНИ	Kan-80 WT.	MRPKH 200	МПРКН 300	MRPKU 400	BCEFT	1812 10 00 578	100 F 100 F 578	578	KOH 00 672	700 100 380	Ļ
	Л20-3а	. 7	120-3	1	6.0		_	6.0	3/9.0		34.0	35.8	<u> </u>	404.8	Ta (80 - 0/0)	J119-3a	4/	J22-3	2					307./		43.0	35.1	16.0	40
TN 180×180-3	N19-3a	. 1	J21-3	1	6.06			6.06	287.5	ا ا	39.8	32.6	16.0	375.9	1311001210-3	122-3a	1	1	1	6.66	-		6.66		1	15		32.0	4/
	Л21-3а	. /	119-3		0.00	L'	_	6.00	201.0		\downarrow		ļ	<u> </u> '			+	1	+	H	\vdash	\vdash	-	[]				16.0	5%
	Л20-5а	4/	Л20-5	1	6.0		_	6.0	428.8	1 '	55.0	29.6		529,4	TA 180 x 210-5				\top	6.66	_	1-	6.66			53.5	32.0		╁
TJI 180×180-5	Л19-5a	1	Л21-5		6.06			coc	4/5.0	1	60.8	26.2	16.0	518.0		1122-5a	2	J19-5	1	<u>_</u> '		1'		419.8	1		\vdash	32.0	-
	Л2I-5a	4	Л19-5		0.00	<u> </u>		0.00	413.0	'		<u> </u>		<u> </u>	1 1	N19-8a	1	122-8	2			\Box		498.2		91.5		16.0	62
		-		_	<u> </u>	'	Ĺ			<u> </u>		<u>—</u> '	<u> </u>	<u>↓</u> _′]]	Л22-8a	2 2	119-8	, ,'	1-1	6.66	1-1	6.66	499.0	1 1	,,,,		32.0	64
TN 180×180-8	Л19-Ва	1	J21-11	1	_	6.06		6.06	544.0	┧ ′	124.4	13.2	16.0	695.6		 	+	+	+	\vdash	\vdash	-	-	-	\Box	\neg		16.0	7
	121-1/a	1/	J119-8	1	L'	0.00		0.00	777.0						T.N180×210-11	1719-11a	1/	J122-11	21	↓ _ [↓]	6.66	1_'	6.66	601.2	H	124.3			t
1	Л20-11a	2/	J120-11	1/	<u>[=</u>	6.0		6.0	560.4	∫ '	118.2	16.8		7/1.4		J122-11a	2	119-11	11	1 1	0.00	1 '		602.0			\sqcup	32.0	76
TJ 180×180-11	N19-11a	2 /	121-11	1	.	6.06		606	570,8	a '	124.4	13.2	16.0	724.4	TN 180×210-12	1 19-15	a /	122-1	5 2	\bigcap				792.8		1.22		16.0	98
	Л2I-IIa	4/	119-11	1	_'		<u>L</u>	'		<u> </u> '		_	_	<u> </u> '	TJ1 180× 210-15		+	+	+	[-]	1-1	6.66	6.66	793.6	1 1	159.7	11.6	32.0	99
ТЛ 180×180-12	1120-15a	2 /	120-15	<i>i</i> /		<u>_</u> _'	6.0	6.0	768.8	₫ '	154.2	19.2		958.2	<u> </u>		+	3,,,,,,	+	H	\vdash	 '		1	厂		\Box	$\overline{}$	
TA180×180-15		,	,	<i>i</i> /			60	600	5 755.6	'	IGOL	156	150	947.6	1		⊬′		+	\vdash	\vdash	<u>—</u> ′	<u> </u>	-	H		\Box	\sqcap	\vdash
	1121-15a	1	119-15	1			0.00	0.00	/20,0	<u> </u>	100,7	15.0	16.0	341.0		<u> </u>	\perp		\perp '	\Box'		<u>L</u> '							L
ДЛЯ ТОК 1, hн	ННЕЛЕЙ = hg = 9 = 600 ;	CS1 14 1 900	2	ОЩЕ	ΕĤ	noc	ЛЕД	OBA	ЭТЕЛЬ	1.	TH: HENEH !. hh=	= 600	0; hB	1 T.I 18 3 = 1500 8 = 600	80×210				_										

	1. TH = hg = 900 2. hH = 600; hB = 120 3. hH = 1200; hB = 600
	

TK

CEOPHUE ЖЕЛЕЗОБЕТОННЫЕ КАНАЛЫ И ТОННЕЛИ ИЗ ЛОТКОВЫ $oldsymbol{x}$ *ЭЛЕМЕНТОВ* ТЯБЛИЦЫ ДЛЯ ПОДБОРА СБОРНЫХ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ И РЯСХОД МЯТЕРИЯЛОВ НЯ 6 П.М. ТОННЕЛЯ МАРКИ "ТЛ" (ПРОДОЛЖЕНИЕ)

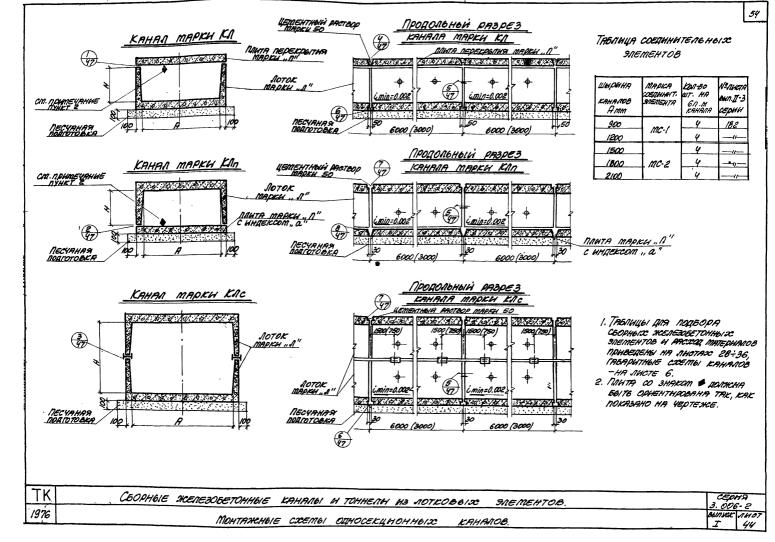
50

15744

The part The part	ŀ	MAPICA	H3,	REAH	9	-	FTOH				CTP	16	<i>#</i> .				MAPKA	9 11.	BREAH	9	50	E 70 A	M	3		Cr.	9116	K	
1240×180 - 3 127-34 2 127-3 2	MAPKA TOHHENA		1.		Τ.	<u> </u>				202 202	15 P. Z.	50.2	* 96%		8		. 1	OTK	ч		4	50p.	H614	j	D-6	7	7 *	124	
12400180 - 3 127-3 2 194		HUNCHWE	200	BEPACHA	8.10	MAPKH 200	MAPIKU 300	MAPKU YOO	Beero) OU GOUIN	5019 5010	1000 0000 0000 0000 0000 0000 0000 000		BEE.	TOHHENA	HINCHHE	KON-80	Верхине	Mr. 80	МАРКИ 200	МЯРКИ 300	MAPKH 400	BOE/10	100000 10000 181-2	(2 - 182 (202) (202)	120-121 120-00 120-00	13-08 30/00 60/00	
172 - 30 2 177 - 3 2 177 - 3 2 172 -															569.2	TN 240×210-3	130-3а	2	127-3	2								(Sec. 11.5)	\dashv
127-56 2 127-5 2 1932 — 7.92 1936 806 23.6 38.4 183.2 182-5a 2 182-5 2		129-30	2	127-3	2	7.92			7.92	460.2	50.6	38.0	384		587.2						0,10			07.0	993. W	80.6	30.E	38.4	6
127-56 2 127-5 2 1932 — 7.92 1936 806 23.6 38.4 183.2 182-5a 2 182-5 2															809.2	TN240x210-5	130-5a	2	127-5	2	87.0			870	cur c	120.0	45.0	40.	
1121-1161-1161 1121-1161 1						7.92		_	7.92	560.6	80.6	23.6	38.4		703.2		1	ı	1	1				01.0	076.0	120.2	25.0	38.4	
1240×180-14 2 121-16	TN240×180-8				_	_	7.00									TN 240×210-8	1	1	l	1		870	_	8.70	881.4	145.0	18.2	38.4	
1240x180-17 127-14a 2 129-17 2 - 7.92 7.92 855.6 175.8 16.8 38.4 1105.6 129-14a 2 129-17 2 - 7.92 7.92 855.6 175.8 16.8 38.4 1105.6 129-14a 2 129-17 2 - 7.92 7.92 855.6 175.8 16.8 38.4 1105.6 129-14a 2 129-17 2 - 7.92 7.92 1076 025.4 12.0 38.4 120.0 129-14a 2 129-17 2 - 7.92 7.92 1076 025.4 12.0 38.4 120.0 129-14a 2 129-17 2 - 8.70 8.70 109.0 265.4 13.4 38.4 120.0 129-14a 2 129-15 2 - 7.92 7.92 1076 025.4 12.0 38.4 120.0 129-14a 2 129-15 2 - 8.70 8.70 600.0 265.4 13.4 38.4 120.0 129-14a 2 129-15 2 - 8.70 8.70 600.0 265.4 13.4 38.4 120.0 129-14a 2 129-15 2 - 8.70 8.70 600.0 265.4 13.4 38.4 120.0 129-14a 2 129-15 2 - 8.70 8.70 600.0 265.4 13.4 38.4 120.0 129-14a 2 129-15 2 - 8.70 8.70 600.0 265.4 13.4 38.4 120.0 129-14a 2 129-15 2 - 8.70 8.70 600.0 265.4 13.4 38.4 120.0 129-14a 2 129-15 2 - 8.70 8.70 600.0 265.4 13.4 38.4 120.0 129-14a 2 129-15 2 - 8.70 8.70 600.0 265.4 13.4 38.4 120.0 129-14a 2 129-15 2 - 8.70 8.70 600.0 265.4 13.4 38.4 120.0 129-14a 2 129-15 2 - 8.70 8.70 600.0 265.4 13.4 38.4 120.0 129-14a 2 129-15 2 - 8.70 8.70 600.0 265.4 13.4 38.4 120.0 129-14a 2 129-15 2 - 8.70 8.70 600.0 265.4 13.4 38.4 120.0 129-14a 2 129-15 2 - 8.70 8.70 600.0 265.4 13.4 38.4 120.0 129-14a 2 129-15 2 - 8.70 8.70 600.0 265.4 13.4 38.4 120.0 120							1.32)		1.92	7 81.4	133.4	16.8	38.4		970.0		i	1		_				_	<u> </u>				
1240×180-12 128-12 2 128-12 2 - 292 7.92 1078.0253.4 12.0 38.4 1081.8 10240×180-12 130-128 2 127-12 2 - 8.70 8.70 198.0 265.4 13.4 38.4 1071-128 2 128-12 2 - 8.70 8.70 198.0 265.4 13.4 38.4 1071-128 2 128-12 2 - 8.70 8.70 198.0 265.4 13.4 38.4 1071-128 2 128-12 2 - 8.70 8.70 198.0 265.4 13.4 38.4 1071-128 2 128-12 2 - 8.70 8.70 198.0 265.4 13.4 38.4 1071-128 2 128-12 2 - 8.70 8.70 198.0 265.4 13.4 38.4 1071-128 2 128-12 2 - 8.70 8.70 198.0 265.4 13.4 38.4 1071-128 2 128-12 2 - 8.70 8.70 198.0 265.4 13.4 38.4 1071-128 2 128-12 2 - 8.70 8.70 198.0 265.4 13.4 38.4 1071-128 2 128-12 2 - 8.70 8.70 198.0 265.4 13.4 38.4 1071-128 2 128-128 2 128-12 2 - 8.70 8.70 198.0 265.4 13.4 38.4 1071-128 2 128-128 2 128-12 2 - 8.70 8.70 198.0 265.4 13.4 38.4 1071-128 2 128-128 2 128-12 2 - 8.70 8.70 198.0 265.4 13.4 38.4 1071-128 2 128-128 2 128-12 2 - 8.70 8.70 198.0 265.4 13.4 38.4 1071-128 2 128-128 2 128-12 2 - 8.70 8.70 198.0 265.4 13.4 38.4 1071-128 2 128-128 2 128-12 2 - 8.70 8.70 198.0 265.4 13.4 38.4 1071-128 2 128-128 2 128-12 2 - 8.70 8.70 198.0 265.4 13.4 38.4 1071-128 2 128-128 2 128-12 2 - 8.70 8.70 198.0 265.4 13.4 38.4 1071-128 2 128-128 2 128-12 2 - 8.70 8.70 198.0 265.4 13.4 38.4 1071-128 2 128-128 2 128-12 2 - 8.70 8.70 198.0 265.4 13.4 38.4 1071-128 2 128-128 2 128-12 2 - 8.70 8.70 198.0 265.4 13.4 38.4 1071-128 2 128-128 2 128-12 2 - 8.70 8.70 198.0 265.4 13.4 38.4 1071-128 2 128-128 2 128-12 2 - 8.70 8.70 198.0 265.4 13.4 38.4 1071-128 2 128-128 2 1	TA240×180-11							7.00							1169.6	TN 240×210-11	1				-	-	8.70	8.70	1070.8	157.4	18.2	38.4	1
124 180 180 180 180 180 180 180 180 180 180					_			1.92	7.92	4 55 .6	145.8	16.8	38.4		1196.6	# 2 01/0× 0/0 /	1	1		Т		-		-	-	-	-	\vdash	-
128-15a 2 128-15 2	TA 240×180-12	1			- 1	1						1			1367.6	11/2400210-12	1	1	1	1		_	8.70	8.70	1190.0	265.4	13.4	38.4	1
П240×180-15 128-15a 2 129-15 2 — 7.92 7.92 485.6 253.4 12.0 38.4 487.9 129-15a 2 129-15 2 — 7.92 7.92 485.6 253.4 12.0 38.4 487.9 129-15a 2 129-15 2 — 7.92 7.92 485.6 253.4 12.0 38.4 487.9 129-15a 2 129-15 2 — 7.92 7.92 485.6 253.4 12.0 38.4 487.9 129-15a 2 129-15a 2 129-15 2 — 7.92 7.92 485.6 253.4 12.0 38.4 487.9 129-15a 2 129-15a 2 129-15a 2 — 7.92 7.92 485.6 253.4 12.0 38.4 487.9 129-15a 2 129-15a 2 129-15a 2 — 7.92 7.92 485.6 253.4 12.0 38.4 487.9 129-15a 2 129-15a 2 129-15a 2 — 7.92 7.92 485.6 253.4 12.0 38.4 487.9 129-15a 2 129-15a 2 129-15a 2 — 7.92 7.92 485.6 253.4 12.0 38.4 487.9 129-15a 2 129-15a 2 129-15a 2 — 7.92 7.92 485.6 253.4 12.0 38.4 487.9 129-15a 2 129-15a 2 129-15a 2 — 7.92 7.92 485.6 253.4 12.0 38.4 487.9 129-15a 2 129-15a 2 129-15a 2 — 7.92 7.92 485.6 253.4 12.0 38.4 487.9 129-15a 2 129-15a 2 129-15a 2 — 7.92 7.92 485.6 253.4 12.0 38.4 487.9 129-15a 2 129-15a 2 129-15a 2 — 7.92 7.92 485.6 253.4 12.0 38.4 487.9 129-15a 2 129		i			_	1		7.92	7.92	1078.0	253.4	12.0	38.4		1381.8	TA 2404210-15	130-150	2	127-15	2			8.70	8.70	30.0	265.4	130	200	
121-150 2 121-15 2 129 125	TN 240×180-16														1616.9		127-150	2	130-15	2	_	_		_				30.7	
COVETAHUM NOTICOS NOCIDARIOS B CREAJONIMES NOCICOSATENOCOTA: RARA TOHMENES MARRIA TARVOXIBO ARRA TOHHENES MARRIA TARVOXIBO I. $h_{ij} = 1600$; $h_{ij} = 600$ 2. $h_{ij} = 600$ 3. $h_{ij} = 1200$; $h_{ij} = 600$ 2. $h_{ij} = 600$ 3. $h_{ij} = 1200$; $h_{ij} = 600$ CODHIGE MENEROUSE TOHHOSE MARRIAS IN TOHHENH H3 NOTICOBOX REMEHTOS. THOSOMY RARA NORDORA CODENSIS WESTERNESS TOHHOSE RESIDENCE.			1		_	-	_	7.92	7.92	1185.6	253.4	12.0	38.4		1987.4			╁	+-	╀				ŀ					
RAIR TOHHEREN MARKH TALYOXIBO ANA TOHHEREN MARKH TALYOXIDO 1. $h_0 = 16 = 900$ 2. $h_1 = 600$; $h_2 = 1200$ 3. $h_1 = 1200$; $h_2 = 600$ 2. $h_1 = 600$ 3. $h_1 = 1200$; $h_2 = 600$ CODHERE WELLESUSE TOHHERE KAHARIN II TOHHERH HS NOTKOBELC SIEMEHTOB. CEPTURE THERMAN AND NORDORS CEPTURES TO HAR TO SECUENCE TO SECUENCE TO HAR TO SECUENCE TO		Cove	= 719	HHA		OTK	08	non	A3A	1161	8	L	<u> </u>			L	<u> </u>	L	L	L	<u> </u>		L		<u> </u>				
1. $h_{H} = 16 = 900$ 2. $h_{H} = 600$; $h_{g} = 1200$ 3. $h_{H} = 1200$; $h_{g} = 600$ 2. $h_{H} = 600$ 3. $h_{H} = 1200$; $h_{g} = 600$ 4. $h_{H} = 600$ 4. $h_{H} = 600$ 6. $h_{g} = 1200$ 6. $h_{g} = 1200$ 6. $h_{g} = 1200$ 7	ANA TO								1164			DHHE	ENE LA	ma	KU.	TN 240×210													
3. hr = 1200; he=600 COUPHUE WENESUBETOMMUS KAHANGI U TOHHENH H3 NOTKOBGIX SIEMEHTOB. CEPTOMIQUE AND NORDOPA CEOPHGIX SUELESCRETOMUCK SIEMEHTOB.						,					1. 1	e u = L	500	: be =	600														
TREMULU AND NORDORD CEOPHEIX WERE POSE TO HUGIT DESCRIPTION OF STREET OF STR											4. M	, = 6	00	he =	1500														
TREMULU AND NORDORD CEOPHEIX WERE POSE TO HUGIT DESCRIPTION OF STREET OF STR	KT			(°E	100		2/05		160																				
MATERIAGE HA 6 n.m. TOLHEAR MARKET TA" (MORROMENTE)	6			TABI	1614	61 H	199 1	1040	UNH	- 4	'50P/	4612	• :	HENE	3050	ETOHH612C	90EME	477	08	7	2001	NEHT	08.		 ,				CEPH 006

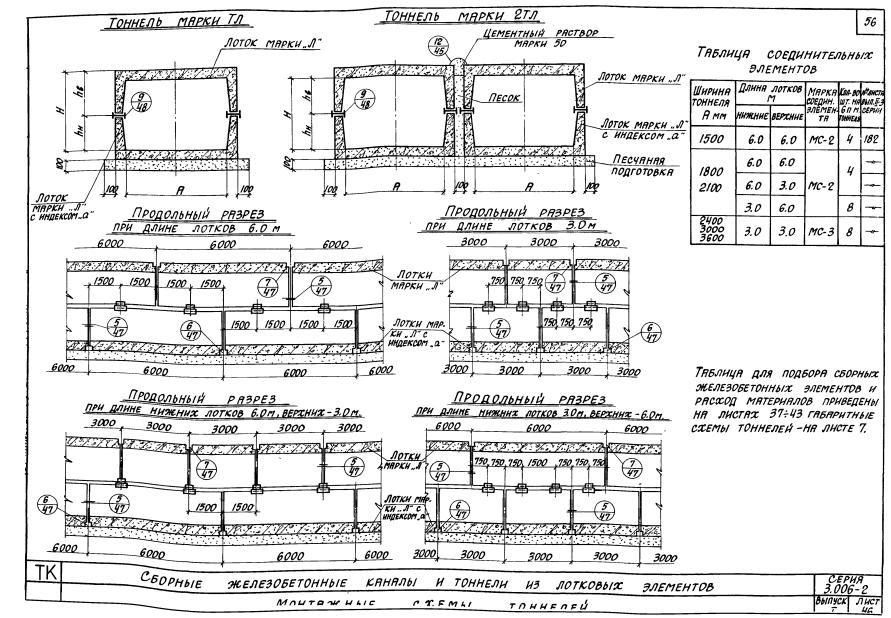
_																													_	_
		MAPKA	HU.	делия				m	. ' [CT.	216	KI	***************************************	1		MAPICA	H3.	AEN	19	50	ETOR	M	3			STA 11 6	K		
83	MAPKA TOHHENSI	1	OTE	И				4614		99.00 13.00 10.00	7.45	4 ×	2.6.3		a	MAPEA	1	OTA	.u		4	600	14616	ú	2.5	13	N +			4
PONING PONING	701,1101111	HUKHUE	12N 80	Верение		МЯРКИ (200 .			kero	5000 1000 5000	2000	2000	10 5 %		BOEN	TOHHEAR	HINCHHE	tal-80	Вергени	08-162 11.7.11	MAPKH 200	MAPKH 300	MAPKH SOO	220	10 COC 10 COC 5781-12	10 000 cm	100 FOCT	20 -08E		805.0
	10240×240-3	129-30	2	S29-3	2	9.12	_	_	9.12	186.2	44.4	48.8	38.4		518.8	TA 300x 180 - 3	132-3a	2	132-3	8	9.84	_					36.4			
	ta 240×240 - 5	129-50	2	129-5	2	9.12	=	-	9.12	626.8	86.0	20.0	38.4		771.8	781 900X 160° 9	<i>1131-3a</i> 1133-3a	1 1		1	10.02	-	-	10.02	595.9	96.8	36.4	38.4	1 1	234.8
130	<u> 11 240 x 240 - 8</u>	129-80	2	A 29-8	2	-	9.12	-	9.12	857.6	160.4	20.0	38.4		076.4		132-5a			T	9.84	_		9.84	810.0	/55.6	18.0	38 4	-	767.6
	TD 240×240-11		П			=	- 1	- 1			ŀ		38.4		267.2	TN300 x 180-5	N31-5a				10.02	_				Ι. Τ	18.0	1		1022.0
BÉPH BÉPH	TA 240x240-12						- 1	- 1			i		38.4		1469.4		133:50. 132-80			\top	-	0.00	-		Interior	100 .	100	-		1054.0
	to 240×240-15	A29-15a	2	N29-15	2			9.12	9.12	1270.4	267.6	15.2	38.4	-	994.6	TA 300×180-8	131-8a	. 1		1-		9.84				1	18.0	T	-	N59.2
11. 11.			H		Н							<u> </u>	\vdash	\vdash			<u>1133-82</u>	1			<u> </u>						1	30.4		13930
	T0240x300-3		П				=	- 1			1		38.4		808.8	TN 300× 180-11	1132-Ha 1131-Ha				-	-				1	2 12.0	-	1	19024
2010	Ta 240×300-5		П									1	38.4		025.2		1139-11a			_	_	-	paoz	10.02	1387.0	319.4	12.0	38.4		1752.9
Phil	IN 240×300-8						10.32					T	38.9		302.4	T11300x180-12	132-120	, ,		_		_	9.84	9.84	1660.	323.2	2 12.0	38.4		20316
14/1/3	TA 240×300-11											Γ	38.4		523.6 M/S 0		<u>131-12a</u> 133-12a				-	_	10.02	10.02	1697.6	336.8	12.0	38.4		2034.8
2 2	TA 240×300-15												38.4		715. L 1871. L	TN 300×180-15	132-150			_			9.89	9.84	1856.6	3680	12.0	38.4	-	82.75.2
	77.272.32							20.02	W.JG	1767.6	27.0	10.00	7		0/1.6	V11300×100-13	131-15a			4-	-	-	10.02	10.02	1901.6	359.2	120	38.4	.1	2317.4
O. HELD		COY	ETR	HHN OUE H		OTICO	DB - 704	DOR	CP31	9.46							1133-150	12	<u> </u>	512	ــــــــــــــــــــــــــــــــــــــ	1	<u> </u>	ł		.l	<u> </u>	Ι΄_	<u> </u>	
景			9	TOHHEN	eh	me																								
РОМСТРОЙНИИПР				l. h _H = l. h _H =			1200																							
леом <u>стро</u> йнии перект			3	. hH = 1	200	i he =	600																							
MET	TK		- (COOPH	616	же	THE.	30 <i>5</i> E	= TO F	HH61E		KAH	19116	1 4	70	HHEAH I	13 10	TE	0861	x	9116	EMET	HTOE	 B					3.006	
呈	1976		7	TABNU	461	ANG PTE L	7 M	1950 108	PA	A E	OP HE	1.2°	HHE OHHE	7.1E30 7.99	MA	PHIY612C 911 PACH "TN"	EMEH (npoqi	70E	EE HE	15	PACA							`		141
																												15	744	F7

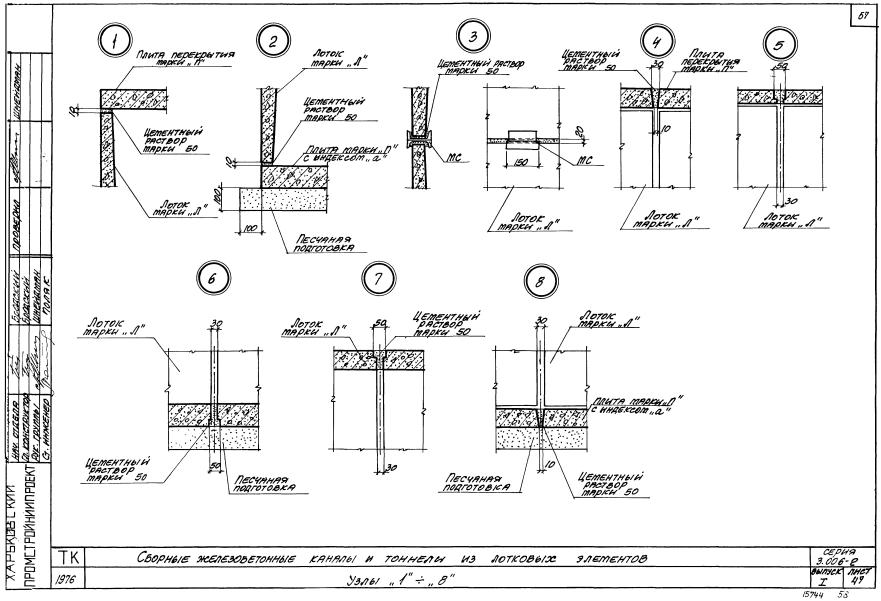
	MAPE	9 11	BAENUS	'	50	E 701	y M	3		a	A116	KP				MAPICA	9 48,	ДЕЛИЯ		5	E 70 F	y M	,3		CTF	2016	<i>r</i> 0	 _
MAPKA TOHHENSI	Л	OTE	u		<i>C.</i>	60P	46101	i	19-47-11 15-11	7-4-T 75-T 75-T	7-8	*			MAPKA TOHHENSI	ли	TKO	4	1		ОРН			Z-1	7.	7	1	_
TOTACITA	никние	09-MZ	верхские	12. ES	марки <i>200</i>				1825 21 011 13061121	100 C	Jours 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 0	2000		BOSTO	TOHHENS	Ниж ни є	09.100	верхние			18PKU 300		BLETO	EAPACS I NO FOC. 5781-7	367	1907 OS 1007 OS 1807 OS	1000kg) 1000kg) 180-61	
TN 300 x210-3	131-3a	e	134-3	2	10.68	_	_	10.68	650.8	21.4	34.6	38.4		845.2	ta 300 x 240 - 3	133-32	2							_	_	-	38.4	2
	11 34-3 2	2	131-3	2		_	_								TN 300× 240-5	133:50	2	133-5	2	11.04	_	- 1		866.0		l	1 1	
TN 300×210-5	131-50	2	134-5	2	10.68	_	_	10.68	907.4	185.6	20.2	38.4		1151.6	TN 300 × 240 - 8	133-8a	2	133-8	2	_	11.09	- 1		1197.2		i		Į
	134-5a	2	131-5	2		_	<u> </u>		<u> </u>					1,0,10	TA 300x240-H	1133-Ha	2	133-11	2	_				1462.4			1 1	V
TN 300+210-8	131-8a	2	1134-8	2		10.68	-	10.68	1207.6	200.0	20.2	38.4		1466.2	TN 300 x 240-12	133-120	2	133-12	2	_	_	11.09	11.09	1785.6	328.8	15.2	38.4	 ļ
	1134-8a	2	131-B	2		<u> </u>	_	-		_	<u> </u>				TO 300 x 240-15	133-150	2	N33-15	2	-	_	1109	11.09	1 98 2.4	372.6	15.2	38.4	 ļ
TA 300 x210-11	131-Ha	2	<u> 134-11</u>	2	-	-	10.68	10.68	1434.6	334.0	14.2	38.4		1821.2			┞		Н									 ł
	134-На	2	131-11	2		-	-	┞	<u> </u>	_					TA 300×300-3	134-32	2	134-3	2	12.36		_	12.36	722.0	141.6	38.4	38.4	 ŀ
TA 300 ×210-12	131-Ra	2	134-12	2		_	10.68	10.68	1709,0	356.4	14.2	38.9		2113.0	TN 300×30-5	134-50	2	134-5	2	12.36			12.36	987.0	2.34.0	25.6	38,4	 I
	134-12a	2	<u> 131-12</u>	2		_	_	<u> </u>		_			_		<i>TD 300x 300 x 8</i>	134-80	2	1134-8	2	_	12.36	_	12.36	1303.2	234.0	25.6	38.4	l
TA 300 x210-15	131-15a	2	134-15	2	 	_	10.68	10.68	1964. 2	378.8	14.2	38.4		2395.6	TA 300 × 300-11	134-11a	2	134-11	2	_	_	12.36	12.36	1556.0	368.0	19.6	38.4	 ۱
	134-15a	2	131-15	2				<u> </u>		<u> </u>		<u> </u>			T11300×300-12	134-12	2	134-12	2	=		12.36	12.36	1897.6	368.0	19.6	38.4	 į
									1						TA 300 x 300-15	134-15	2	134-15	2	_		12.36	12.36	2095.2	412.8	19.6	38.4	į

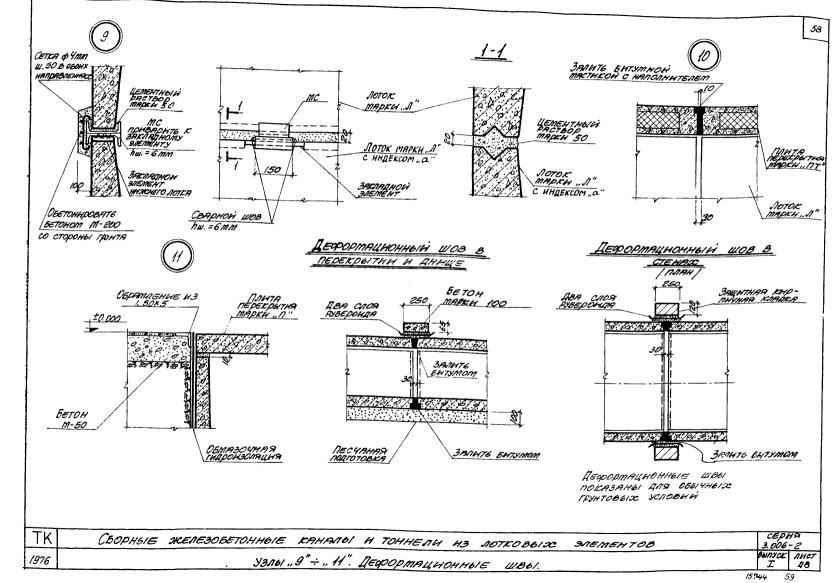

CONSTANUA NOTICO B NORA SANGI B CREGNO WEN NOCHEJOBATE NO CTU: для тоннелей марки ТЛ 300 к210

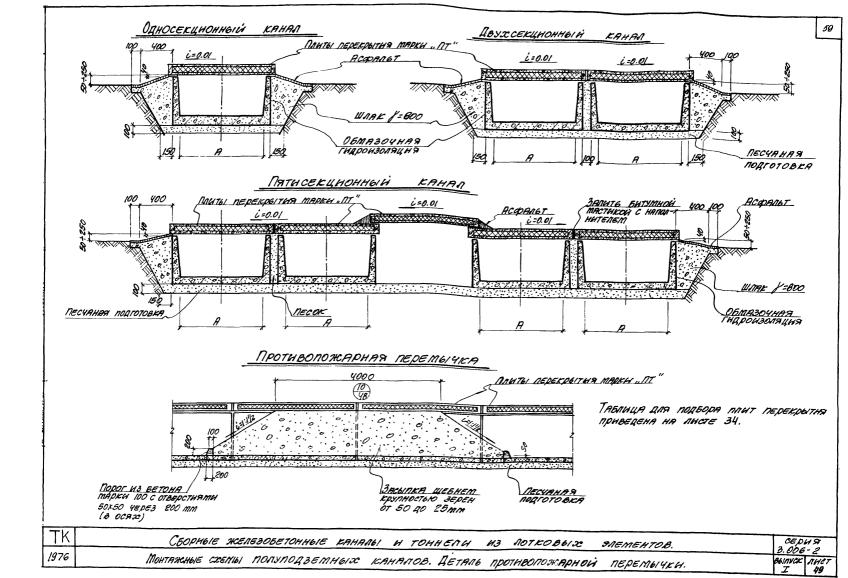
1. h. = 600; h = 1500

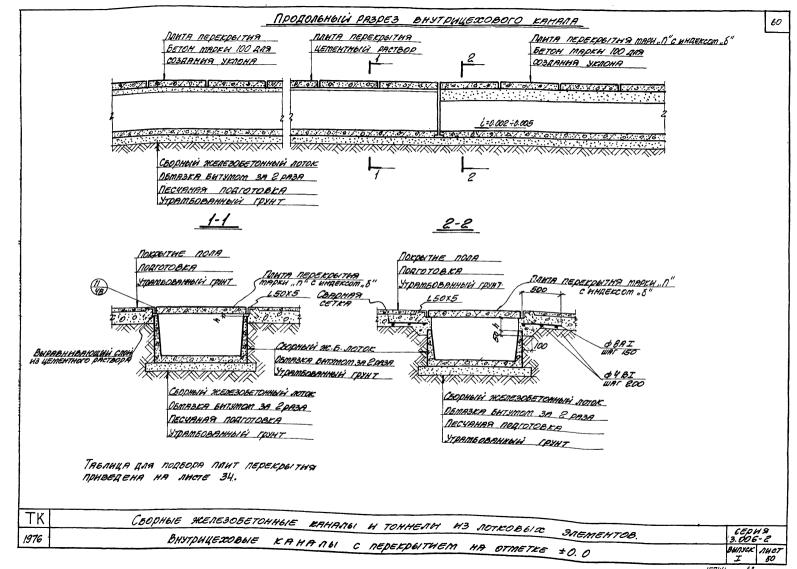
1. nH	= 600,	ng=	150
2. hr =	1500; h	s = 60	20

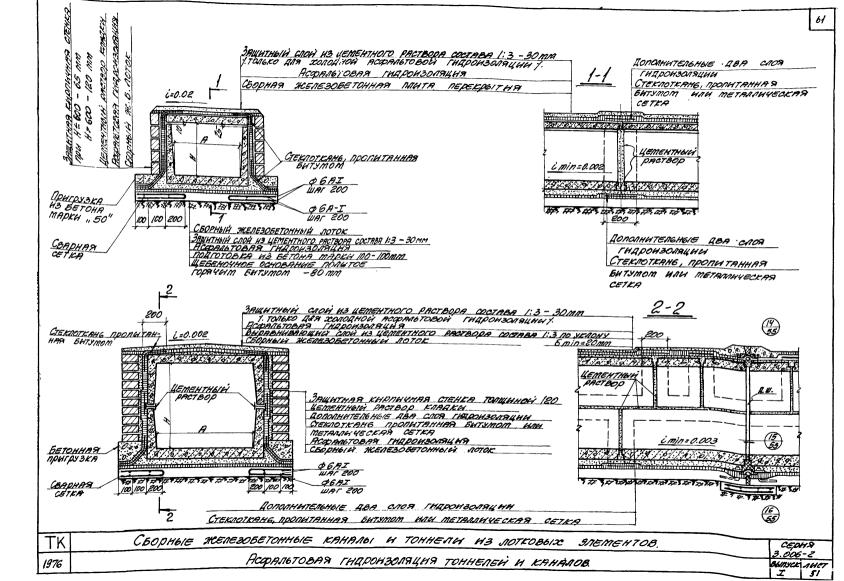

TK CEOPHOIE	ACENE 305 ETO HH61E ICAHANGI H TOYHENU H3 NOTICO B612C MEMEHTOB	3.006 - 2
1976 TASAHUGI	RATA NOREOPA CEOPHOIX ACENESOSETOHHEIX SAEMENTOS U PARXOR MATE PURAOS HA 6 N. M. TOHHENA MAPKH "TO" (NOORON HEEHHE)	BUNYET NHET I 42
	- In This of Actine	157/4 52

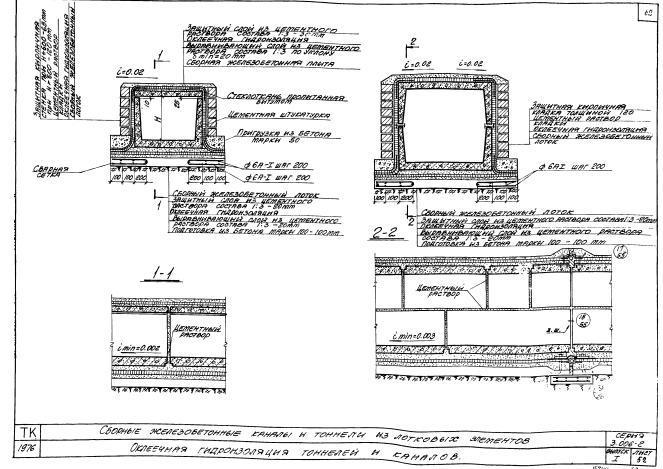

4	1	MAP	C7 1	H3A	ENHA	<u> </u>	6E TO	H M	3		CT.	P/16	KI				MAPICA .	H34	TENHA	6	Em	4 n ³	\top				
	MAPEA TOHHEAS		1074	ru		6	50p.	H614		₩-8-6 25	7-4-52 25-4-1	₹ \$ £	3.			MAJOKA	10			_	_	1616	-	<u>C.</u>	TAMB	Kr s	
	, , , , , , ,	Инжние	1201-BO	B972	HUE T	MRPKU 200	марки 300	МЯРКИ 400	<i>80210</i>	-1815 110 (12) 2181-	15/19/CC 100 (70/2) 578/-	010 CE 010 CE 0727-3	20 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	BOE	3	ТОННЕЛЯ	HAXENNE			MAPK4,	MAPKH 300		no coep	1 On 1	5781-75 10 70 27 10 70 27	0000	
П	TA 360x180-3	1						_	12.36	828.8	150.4	37.6	38.4	1055	52		135-3a	2	738-3 2						T .		
-	TA 360 × 180-					1	-	_	12.36	990,4	150.4	37.6	38.4	//66	:8	TN 360x210-3	1138-32				_	<u> </u>	26 807.	6 153.	8 28.4]	102
1	TA 360 x 180-	1	1	ı		 —	1236	-	12 36	1469.2	267.2	16.8	38.4	1791	6				137-3 2	3.02	_	_ 13	.02 850.	0 151	42.4	38.4	va
4	TA 360×180-1			1	- 1		-	1 1		18.58.8	1	ſ		237	6		137-32		136-3 2 138-5 2	+	-						
	TA 360 X 180-1	1	1		1	-	-	1 1	Į.	2244.0	1	1		2756	8		138-5a			V2.26	-	- 13	26 1190.	2 189.	6 28.4		133
1	TA 360x (80-L	136-150	2	136	:15 2	-	┝	12.36	12.3€	2668.4	196.0	12.0	38.4	3214.				- 1	137-5 2	-				╁-	+-	38.4	-
	T0 0 Ca 11 0/40		t	-		 	-	-		-	-		\vdash		4	<u> </u>	137:5a			1		- /2	OZ 1094.	477.	28.8		123
뒥	TA 360 x 240-2	,		,			}=	1		872.8	l			1106.	:4		1358a			-	13.26	- 13	26 1519	1 000	8 26 0	1	
	TN 360 x 240-	ŀ	1	1		1	=	1		1088.4	l			1350	2.8	TA 360 x 210 - 8	138-8a		1	+-	_			o ax	120.0	38.4	183
BK	TA 360 x 240~ 1	1		-		T	13.66	T		1536.4			T	1873	3.2		Л36-ва Л37-ва			1-	13.02	- 3	02 502	9 272.0	8 18.4		182
2			T		7-11 2		┝▀	1		1962.8	l	l .		242			135-Ha			†		7 .	_	+-	+	┼	\vdash
Ŋ	7/1 360x 240-		_				╁═╴			2340.0	j j	1		286/	- 1	TN 360×210-11	138-11a	2	135-11 2		_	13.26 13	. 26 V927.	6 823.	6 14.4	١	290
{	TA 360x240-1	113/-150	12	VI 27	-15 2	╁═	┝═	13.68	13.68	2504.B	473.6	15.2	38.4	303,	2.0		136-11a			1_		3.02 13	02 1910	8 436	0 136	38.4	1
Ó	Ta acorago	110 1	1	000		1,-	 	 			-		\vdash	+	┥		137-11a			-				1	1.5.0		2.3
7	TA 360 K300 -	1			1	1				848.0		1	1 1	1099		1	135-12a	- 1	1	-	_	13.26 13.	26 2385	3 472	4 19.4	1	29
d	TI 360 x 300-		1 .			1	15.0			1280.4				1597		TA 360×210-12	138-l2a 136-l2a			+	-			+	+	38.9	-
330	TA 360 x 300-1	1	1				19.0			1559.4			1 ł	1871	П		137-120			1-	-	13.02 13	.02 2292	0 468.	0 13.6		284
1	TA 360×300×	1			1 -					1955.2 2444.0	1 .			2432	_		135-152	2	138-15 2			13.26 13.	01 2700	6501	2 1111		
7	TA 360 x 300-1	1		ı		1				2939.2	1			2989		TN 360x 210-15	1.38-150	2	135:15 2	_		15.20 13.	26 2/77		17.7	38.4	32
-						1		בינעון.	2,2	2.5	270.0	20.0	20,7	3537.	6		136-15a			4_	-	13.02 13	.02 258	6 484.	0 13.6	12.7	312
	COYETAI	ामन गट	TKE	8	A	39 H 6 NA = 600 = 1500	TOH	HENC	54	MAP	h	TN 900	16,000 360 x 6 16 = 12 16 = 90	210	NO	DOTH:	137-15a	2 L	<u> 136-15 2</u>	1	l			1	1	<u> </u>	Lſ
ſ	TK			C50	PH6/	= 4	CENE	5308	E 10	HH6	IE .	KBH	A 1/4/	4 77	244	HERU H3	207100	-	em a								CEPHS
t	1976		7.	ABI	14461	208	no	250	09		PHOI						NOTICO. EMEHT			NEM	EHT						3.006 - 86/NEX 11

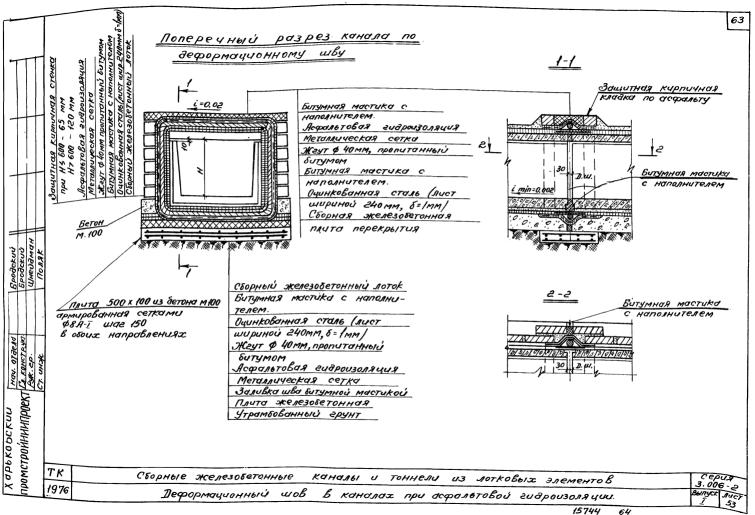


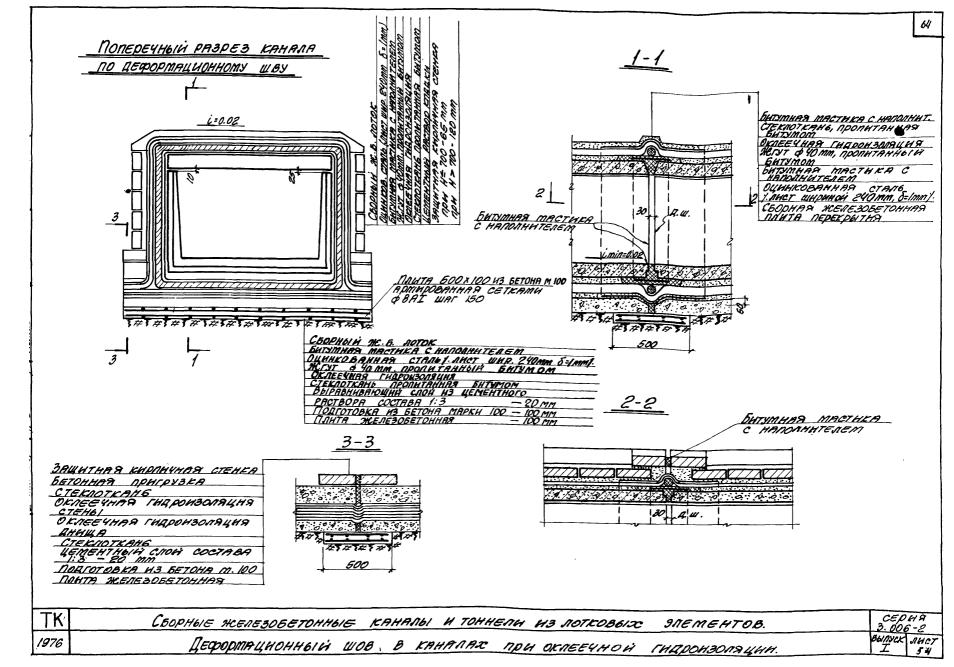

KAHANOE.

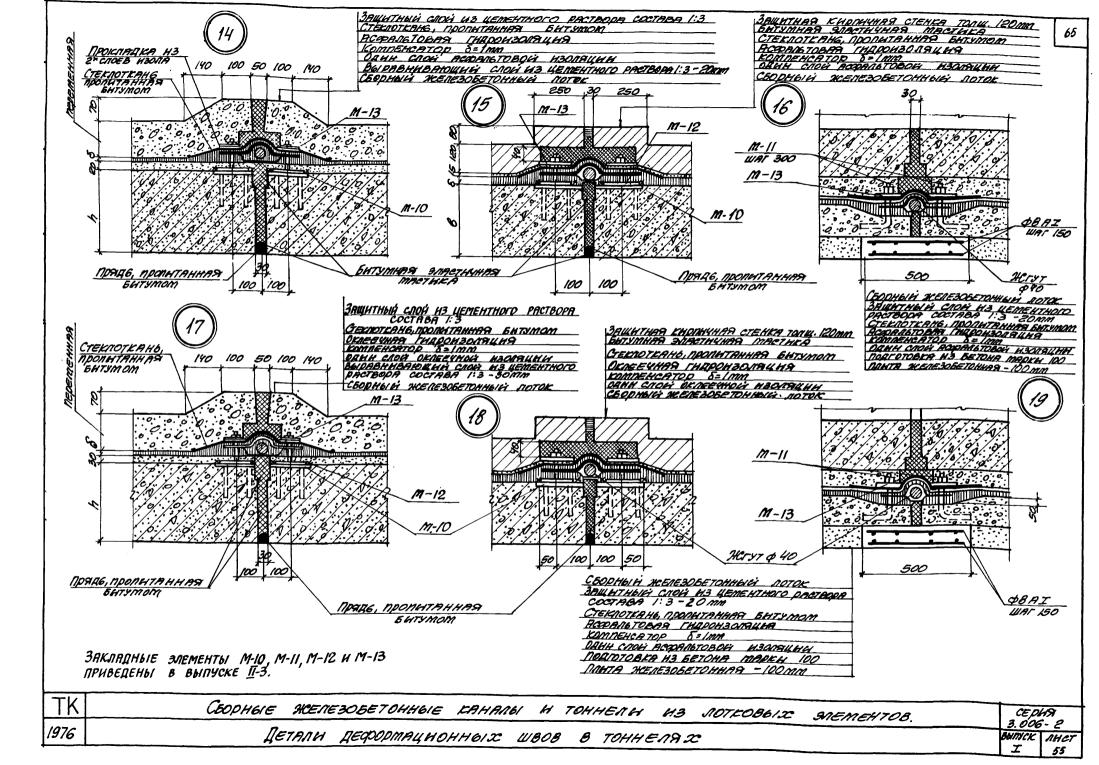

BUNYCK MHCT

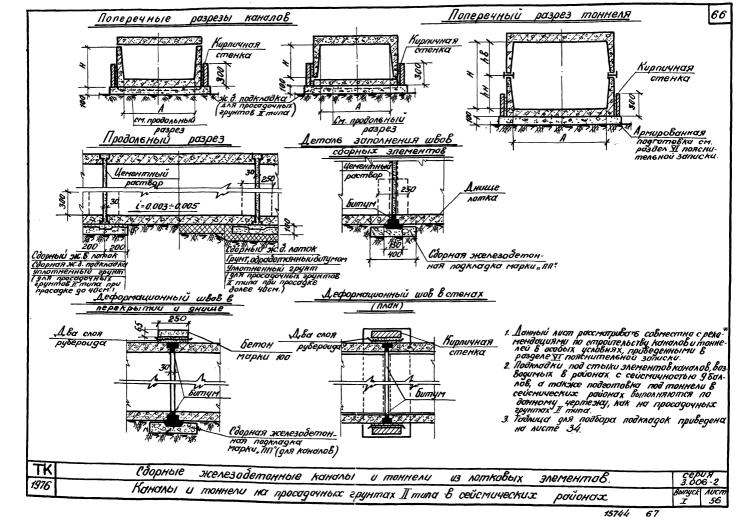


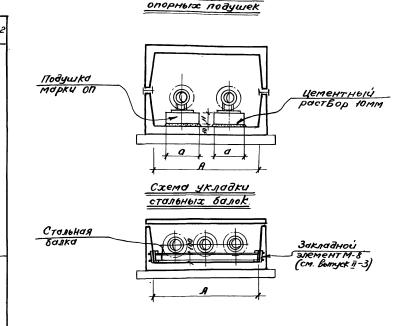












Tabnua Ans modboda propular moduliek

011	Марка подушки	<i><u>auameth</u></i>	Максимальное расстаяние межаў подуш	Manufard	Размеры М	ทอฮิปูเปหน 1	AUCT
0014		TPYS MM	KOMU M	TPYOOLB KIC	axB		Bernyckaří cep u u
001		25	1.7	21.6			
0012		_ 32	2.0	24.8	1		
000	un1	40	2.5	27.4	200×200	•	
80 3.5 50.5 400 4.5 70.0 425 4.5 84.0 200×300 90 67 150 5.0 105.5 200 6.0 164.7 250 7.0 204.1 300 8.0 263.9 0014 350 8.0 329.0 400 8.5 388.7 500×500 400 8.5 388.7 500×500 0015 450 9.0 420.4 500 40.0 541.9 0016 600 40.0 680.9 650×750 0017 700 10.0 834.0 750×250 800 10.0 1044.0 0018 900 10.0 120.0 850×650 1000 10.0 1320.0 850×650 0019 1200 10.0 1890.0 1550×350		50	3.0	32.6			
0012		65	3.0	42.6			
002		80	3.5	<i>50</i> .5			1
0113		100	4.5	70.0	1		
200 6.0 164.7 250 7.0 204.1 300 8.0 263.9 004 350 8.0 329.0 400 8.5 388.7 005 450 9.0 420.4 500 10.0 541.9 006 600 10.0 680.9 650×750 007 700 10.0 1210.0 800 10.0 1220.0 1000 10.0 1320.0 009 1200 10.0 1890.0 150×350	0112	125	4.5	84.0	200x300	90	67
003		150	5.0	105.5			İ
300 8.0 263.9 400x400 0014 350 8.0 329.0 500x500 400 8.5 388.7 500x500 0015 450 9.0 420.4 550x650 140 0016 600 10.0 680.9 650x750 0017 700 10.0 334.0 750x350 0018 900 10.0 1210.0 850x1050 1000 10.0 1320.0 850x1050 0019 1200 10.0 1890.0 150x1350		200	6.0	164.7			
0014 350 8.0 263.9 400 8.5 388.7 0015 450 9.0 420.4 500 40.0 541.9 0016 600 40.0 680.9 650×750 0017 700 40.0 834.0 750×850 0018 900 40.0 420.0 850×650 1000 40.0 1320.0 850×650 1000 40.0 1890.0 450×1350	0113	250	7.0	204.1	400x 400		
007 400 8.5 388.7 500×500 005 450 9.0 420.4 550×650 006 600 10.0 680.9 650×750 007 700 10.0 834.0 750×250 008 900 10.0 1210.0 850×650 1000 10.0 1320.0 850×650 009 1200 10.0 1890.0 150×350		300	8.0	263.9]/00. /00 }		
000 400 8.5 388.7 400 450.4 550x650 440 500 680 40.0 680.9 650x750 680 680 40.0 4044.0 680 40.0 4044.0 680 40.0 4044.0 680 40.0 4044.0 680 40.0 4044.0 680 40.0 4044.0 680 40.0 4044.0 680 40.0 4044.0 680 40.0 4044.0 680 4000 40.0 4000 4000 4000 4000 4000 40	0114	350	8.0	329.0	500,4500]
000 10.0 511.9 550x650 140 000 600 10.0 680.9 650x750 000 700 10.0 834.0 750x850 000 10.0 1044.0 000 10.0 1320.0 850x650 000 1200 10.0 1890.0 150x1350		400	8:5	388.7	טעכאטטכן		L
000 10.0 511.9 000 10.0 680.9 650×750 000 700 10.0 834.0 750×250 000 10.0 1044.0 000 10.0 1240.0 850×6050 1000 10.0 1320.0 850×6050 1000 10.0 1890.0 150×350	0N5	450	9.0	420.4	650× 660	llea	
007 700 10.0 834.0 750x 250 800 10.0 1044.0 008 900 10.0 1210.0 850x 6050 1000 10.0 1320.0 850x 6050 009 1200 10.0 1890.0 150x 1350		500	10.0	511.9	9501850	140	
007 700 10.0 834.0 750×350 008 900 10.0 1210.0 850×1050 1000 10.0 1320.0 850×1050 009 1200 10.0 1890.0 1150×1350	0116	600	10.0	680.9	650×750		68
017 8 900 10.0 1044.0 850×1050 10.0 1320.0 850×1050 290 69	<i>0</i> 17	700	10.0	834.0	750 x 950		
0119 1000 10.0 1320.0 850×1050 0119 1200 10.0 1890.0 1150×1350		800	10.0	1044.0	130.1300		
000 10.0 1320.0 0000000 009 1200 10.0 1890.0 1150x1350	0118	900	10.0	1210.0	PE 0. /050		
0/19 1200 10.0 1890.0 1/50x/350		1000	10.0	1320.0	BOUNHUOU	-00	-
1400 10.0 2420.0 1130×13.50	0119	1200	10.0	1890.0	1150×1250	290	69
		1400	10.0	2420.0	עכו אטכוון		

CXEMO YCTOHOBKU

1. В нагрузку на вп.м. трубы включены, кроме сабственного веса трубы, вес воды и изоляционный слой C actouementhoù wykarypkoù no cerke.

2. Стальные балки предназначены для укладки техно-логических трубопроводов максимальным диметром Мим Сечение и шаг балок назначаются в конкретном проекте в зависимости от диаметров трубопроводов и нагрузок на балки

		Cepus
TK	Сборные железобетонные каналы и таннели из лотковых элементов.	3.006-2 Burryck Aust
1000	TOTAL PLANT TO THE PARTY OF A VEROCITY CTONOHOLX OUT ON.	I 57
1370	СЖЕМЫ УСТАНОВКО СПОРНЫХ ПОВУШЕХ ПОВ СКОЛЬЗЯЩИЕ ОПОРЫ. Таблица для подбора подушек под скользящие опоры. 15744 68	

<u>РАСПОЛОЖЕНИЕ ЗАКЛАДНЫХ ДЕТАЛЕЙ В КАНАЛАХ И ТОННЕЛАХ</u> <u>М-4 или М-6 при \$=80÷200</u> м-9 при \$=100÷200 м-3 при \$<80	ТАБЛИЦА РАСЧЕТНЫХ НАГРУЗОК НА ЗАКЛАДНЫЕ ДЕТАЛИ												
M-3 NPU \$ < 80 M-4 NPU \$ > 80	МАРКА	РАЗМЕРЫ ДЕТАЛИ	N TC	Qx TC	Qy	Mx							
M-5 ΩΡΗ δ < 80 M-6 ΩΡΗ δ > 80	M-3	100 × 80	0.1	_	0,3								
	M-4		0.3	_	1.0	_							
M-6 nou \$ > 80 22 23 24 25 26 27 28 28 28 28 28 28 28 28 28	M-5		0.1		0.2								
M-5 nou 8 < 80	M-6		0.3		0.5								
	M-7 150(120) M-6 11PH 8 > 80 M-7 120 x 30			2.0		0.5							
М-7 ТОЛЬКО ПРИ В >100		120 × 300		4.2		_							
			3.0	0.6		_							
ДЕТЯЛЬ УСТЯНОВКИ МОНОРЕЛЬСЯ В ТОННЕЛЯХ М-8 ПРИ 6=80÷200	M-8	120×150	0.3	_	1.0								
AETHER JOHNOOKA PHOTOPENSON B TOTALDING			0.3	0.5	_								
100 100 БОЛТЫ d=16 СХЕМА НАГРУЗОК НА ЗАКЛАДНУЮ ДЕТАЛЬ		100×80	0.8	0.4		_							
CTANAHAIE N/Qy	M-9			0.9									
TPYBELL C = 3/4" RODBECKA Q× MX A NORBECKA													
$\frac{\mu_3}{\rho_1\mu_2\tau_8}\frac{\rho_2\tau_8}{\delta}$ $\frac{1}{\delta}$ $\frac{\delta}{\rho}$ $\frac{\delta}{\rho}$ $\frac{1}{\delta}$ $\frac{\delta}{\rho}$ \frac													
								$Q \leqslant 1\tau c$ 2. РАЗБИВКА ЗАКЛАДНЫХ ДЕТАЛИЙ ДАЕТСЯ В КОНКРЕТНОМ ПРОЕКТЕ ПО ЗАДАНИЯМ ТЕХНОЛОГОВ.					
							3. Если нягрузки	HR 3RKARA	ные детали	ПРЕВЫШЯ	HOT YKASI	AHHDE B	!
ТАБЛИЦЕ, В РАБОЧЕМ ПРОЕКТЕ ДОЛЖНА БЫТЬ РАЗРАБОТАНА ИНДИ- ВИДУАЛЬНАЯ ЗАКЛАДНАЯ ДЕТАЛЬ. 4. МАРКА ЗАКЛАДНОЙ ДЕТАЛИ НАЗНАЧАЕТСЯ В КОНКРЕТНОМ ПРОЕКТЕ В ЗАВИСИМОСТИ ОТ ТОЛЩИНЫ СТЕНКИ КАНАЛА ИЛИ ТОННЕЛЯ Я ТАКЖЕ ОТ ВЕЛИЧИНЫ НАГРУЗКИ, КОТОРУЮ ДЕТАЛЬ ДОЛЖНА ВОСПРИ- НИМАТЬ. 5. В ТАБЛИЦЕ РАСЧЕТНЫХ НАГРУЗОК НА ЗАКЛАДНЫЕ ДЕТАЛИ $\mathbb Q$ Х И МХ НАПРАВЛЕНЫ ВДОЛЬ ДЛИННОЙ СТОРОНЫ ПЛАСТИНЫ, Я $\mathbb Q$ У — ВДОЛЬ КОРОТКОЙ СТОРОНЫ. 6. ЗАКЛАДНЫЕ ЭЛЕМЕНТЫ МАРКИ "М" ДАНЫ В ВЫПУСКЕ $\overline{\mathbb Q}$ —3.													
							MOHOPENEC Q ≤1TC						
							1002						
							ТК СБОРНЫЕ ЖЕЛЕЗОБЕТОННЫЕ КАНАЛЫ И ТОННЕЛИ	из ЛОТК	ОВЫХ ЭЛЕГ	MEHTOR		ŢĢ	ЕРИЯ 006-2
							1976 PROPOSOCIOUS CONSESSION OF A PROPOSOCI M TONHEDSX. DETRAD YCTRHOSKY MOHOPEACO S TONHEDSX BURY NUCT						
							1576 РАСПОЛОЖЕНИЕ ЗАКЛЯДНЫХ ДЕТАЛЕЙ В КАННИКУ						