Федеральная служба по гидрометеорологии и мониторингу окружающей среды

РУКОВОДЯЩИЙ ДОКУМЕНТ

МАССОВАЯ КОНЦЕНТРАЦИЯ КРЕМНИЯ В ПОВЕРХНОСТНЫХ ВОДАХ СУШИ. МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ ФОТОМЕТРИЧЕСКИМ МЕТОДОМ В ВИДЕ СИНЕЙ (ВОССТАНОВЛЕННОЙ) ФОРМЫ МОЛИБДОКРЕМНИЕВОЙ КИСЛОТЫ

Ростов-на-Дону 2005

Предисловие

- 1 РАЗРАБОТАН ГУ «Гидрохимический институт».
- 2 РАЗРАБОТЧИКИ Л.В. Боева, канд. хим. наук, А.А.Назарова, канд. хим. наук, Т.С. Евдокимова.
- 3 УТВЕРЖДЕН Заместителем руководителя Росгидромета 15.06.2005 г.
- 4 СВИДЕТЕЛЬСТВО ОБ АТТЕСТАЦИИ МВИ Выдано ГУ «Гидрохимический институт» 30.12.2004 г. N 86.24-2004
- 5 ЗАРЕГИСТРИРОВАН ГУ ЦКБ ГМП за номером РД 52.24.432-2005 от 30.06.2005 г.

Внесен в Федеральный реестр методик выполнения измерений, применяемых в сферах распространения государственного метрологического контроля и надзора за номером ФР. 1.31.2005.01905.

6 ВЗАМЕН РД 52.24.432-95 "Методические указания. Методика выполнения измерений массовой концентрации кремния в поверхностных водах суши фотометрическим методом в виде синей (восстановленной) формы молибдокремниевой кислоты".

Введение

Кремний является одним из самых распространенных элементов земной коры и входит в состав большого числа природных минералов, вследствие чего он постоянно присутствует в природных водах.

Кремний относится к биогенным элементам, он участвует в формировании тел живых организмов (главным образом, в построении скелета).

Основным источником соединений кремния в поверхностных водах являются процессы химического выветривания и растворения минералов, содержащих кремний. Существенное количество кремния поступает в воду в результате отмирания водных растений (главным образом, диатомовых водорослей), а также с атмосферными осадками. Немаловажным источником кремния в поверхностных водах являются сточные воды предприятий, производящих керамические, цементные и стеклянные изделия, силикатные краски, вяжущие материалы, а также кремнийорганические соединения. В речных и озёрных водах содержание кремния колеблется обычно от 1 до 20 мг/дм³, в морских от 0,5 до 3,0 мг/дм³, в подземных водах его содержание может превышать 1000 мг/дм³. Содержание кремния в слабо загрязненных поверхностных водах подвержено заметным сезонным колебаниям. Важнейшими факторами, определяющими его режим, являются меняющиеся соотношения между поверхностным и подземным стоком, интенсивность процессов биологического потребления кремния водными организмами, либо отмирания последних.

По мере накопления растворенных форм кремния они могут частично коагулировать и выпадать в осадок. Понижение содержания кремния может быть также связано с потреблением их водными организмами, особенно в период интенсивного развития диатомовых водорослей.

В поверхностных водах соединения кремния находятся в растворённом, взвешенном и коллоидном состояниях, соотношения между которыми определяются составом вод, температурой, рН раствора и другими факторами.

Растворённые формы кремния представлены, главным образом, кремниевой кислотой, продуктами её диссоциации и ассоциации, а также кремнийорганическими соединениями. Соотношение форм кремниевой кислоты существенно зависит от рН. В таблице 1 приведены величины мольных долей недиссоциированной кислоты и силикат-ионов в зависимости от рН при температуре 25 °C, рассчитанные исходя из первой константы диссоциации кремниевой кислоты $K_1 = 1,3\cdot10^{10}$. Вторая и последующая ступень диссоциации на формы существования кремниевой кислоты в природных водах практически влияния не оказывают из-за очень низких значений соответствующих констант.

Величина К₁ зависит от температуры в соответствии с уравнением

$$pK_1 = 3405,9/T - 6,368 + 0,016346 T,$$
 (1)

где рК₁ - отрицательный логарифм константы первой ступени диссоциации кремниевой кислоты;

Т -абсолютная температура, К.

Таблица 1 - Мольные доли, %, кремниевой кислоты и силикат-иона в воде в зависимости от величины рН (без учета коэффициентов активности силикат-иона)

Форма	pH					
	7,0	8,0	8,5	9,0	9,5	10
H ₄ SiO ₄	99,9	98,7	96,0	88,5	70,9	43,5
H ₃ SiO ₄ (H ₂ SiO ₃)	0,1	1,3	4,0	11,5	29.1	56,5

При 25 °C растворимость мономерно-димерной формы кремниевой кислоты в воде составляет примерно 6-8 мг/дм³.

Поликремниевые кислоты имеют переменный состав, описываемый общей формулой $mSiO_2$ nH_2O . Увеличению степени полимеризации способствует увеличение концентрации, понижение pH и температуры.

В зависимости от цели исследования в воде определяют растворенные мономерно-димерные формы кремния или сумму мономерно-димерных и поликремниевых кислот, а также растворенные органические соединения кремния, либо взвешенный и валовый кремний, используя различные способы пробоподготовки.

Обычно концентрация кремния не лимитирует развитие водных организмов, однако изменения ее представляют интерес при проведении различных гидробиологических, а также гидро- и геохимических исследований.

Концентрация кремния ограничивается в воде, используемой рядом производств. Весьма жесткие требования предъявляются к водам, питающим паросиловые установки, поскольку кремний образует очень прочную накипь. ПДК его в воде водных объектов хозяйственно-питьевого и культурно-бытового назначения составляет 10 мг/дм³.

РУКОВОДЯЩИЙ ДОКУМЕНТ

МАССОВАЯ КОНЦЕНТРАЦИЯ КРЕМНИЯ В ПОВЕРХНОСТНЫХ ВОДАХ СУШИ. МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ ФОТОМЕТРИЧЕСКИМ МЕТОДОМ В ВИДЕ СИНЕЙ (ВОССТАНОВЛЕННОЙ) ФОРМЫ МОЛИБДОКРЕМНИЕВОЙ КИСЛОТЫ

Дата введения 2005-07-01

1 Область применения

Настоящий руководящий документ устанавливает методику выполнения измерений (далее - методика) массовой концентрации силикатов и всех форм кремниевой кислоты в пробах поверхностных вод суши в диапазоне от 0,10 до 2,00 мг/дм³ в пересчете на кремний фотометрическим методом.

При анализе проб воды с массовой концентрацией кремния, превышающей $2{,}00~{\rm Mr/дm}^3$, допускается выполнение измерений после соответствующего разбавления пробы дистиллированной водой.

В зависимости от цели исследований выполняют измерение массовой концентрации растворенного или валового кремния. В последнем случае проводят анализ нефильтрованной пробы.

2 Характеристики погрешности измерения

2.1 При соблюдении всех регламентируемых методикой условий проведения измерений характеристики погрешности результата измерения с вероятностью 0,95 не должны превышать значений, приведенных в таблице 2.

При выполнении измерений в пробах с массовой концентрацией кремния свыше 2,0 мг/дм 3 после соответствующего разбавления погрешность измерения не превышает величины $\Delta \cdot$ η , где Δ - погрешность измерения концентрации кремния в разбавленной пробе; η - степень разбавления.

Таблица 2 – Диапазон измерений, значения характеристик погрешности и ее составляющих (P=0,95)

Диапазон измерений массовой концентрации кремния X, мг/дм ³	Показатель повторяемости (среднеквадратическое отклонение повторяемости) от 3	Показатель воспроизводимости (среднеквадратическое отклонение воспроизводи-	Показатель правильности (границы систематической погрешности при вероятности $P=0,95$) $\pm \Delta_c$, мг/дм ³	Показатель точности (границы погрешности при вероятности $P=0,95$) $\pm \Delta$, мг/дм ³
От 0,10 до 2,00 включ.	мг/дм ³ 0,02	мости) _{ок, мг/дм³} 0,02+0,018·X	0,032·X	0,05+0,045· X

Предел обнаружения кремния фотометрическим методом в виде синей формы молибдокремниевой кислоты равен 0,02 мг/дм³.

- 2.2 Значения показателя точности методики используют при:
- оформлении результатов измерений, выдаваемых лабораторией;
- оценке деятельности лабораторий на качество проведения измерений:
- оценке возможности использования результатов измерений при реализации методики в конкретной лаборатории.

3 Средства измерений, вспомогательные устройства, реактивы, материалы

- 3.1 При выполнении измерений применяют следующие средства измерений и вспомогательные устройства
- 3.1.1 Фотометр или спектрофотометр любого типа (КФК-3, КФК-2, СФ-46, СФ-56 и др.)
 - 3.1.2 Весы аналитические 2 класса точности по ГОСТ 24104-2001.
- 3.1.3 Весы технические лабораторные 4 класса точности по ГОСТ 24104-2001 с пределом взвешивания 200 г.

3.1.4 Государственный стандартный образец состава водных растворов ионов кремния ГСО 2298-89 П. 3.1.5 Колбы мерные не ниже 2 класса точности по ГОСТ 1770-74 $25 \text{ cm}^3 - 10 \text{ mr}.$ вместимостью: 50 см³ - 2 шт. $100 \text{ см}^3 - 1 \text{ шт.}$ $250 \text{ см}^3 - 2 \text{ шт.}$ 3.1.6 Пипетки градуированные не ниже 2 класса точности по $1 \text{ cm}^3 - 5 \text{ m}\text{T}$. ГОСТ 29227-91 вместимостью: $2 \text{ cm}^3 - 1 \text{ шт.}$ $5 \text{ cm}^3 - 4 \text{ шт.}$ $10 \text{ cm}^3 - 2 \text{ m}$ 3.1.7 Пипетки с одной отметкой не ниже 2 класса точности по ГОСТ 29169-91 вместимостью: $5 \text{ см}^3 - 1 \text{ шт.}$ $10 \text{ cm}^3 - 1 \text{ urt.}$ 25 cm³ - 2 urt. 3.1.8 Цилиндры мерные по ГОСТ 1770-74 вместимостью: 50 см³ - 1 шт. $100 \text{ см}^3 - 2 \text{ шт.}$ $250 \text{ cm}^3 - 2 \text{ IIIT.}$ $500 \text{ cm}^3 - 1 \text{ IIIT.}$ 3.1.9 Колбы конические или стаканы полипропиленовые $50 \text{ см}^3 - 10 \text{ шт.}$ вместимостью: 3.1.10 Колба коническая или плоскодонная с притертой пробкой по $250 \, \text{см}^3 - 1 \, \text{шт.}$ ГОСТ 25336-82 вместимостью: 3.1.11 Воронка лабораторная полипропиленовая или стеклянная по ГОСТ 25336-82 диаметром 56 мм - 1 шт. 75 MM - 4 IIIT. 3.1.12 Стаканы химические по ГОСТ 25336-82 вместимостью: 250 см³ - 2 шт. 500 см³ - 1 шт. $250 \, \text{см}^3 - 4 \, \text{шт}$ 3.1.13 Стаканы полипропиленовые вместимостью 3.1.14 Стаканчики для взвешивания (бюксы) по ГОСТ 25336-82 - 4 шт. 3.1.15 Палочка стеклянная - 1 шт. 3.1.16 Тигли и чашки платиновые. 3.1.17 Тигли стеклоуглеродные. 3.1.18 Промывалка. 3.1.19 Шкаф сушильный общелабораторного назначения.

- 3.1.20 Плитка электрическая с закрытой спиралью по ГОСТ 14919-83.
- 3.1.21 Баня водяная.
- 3.1.22 Печь муфельная по ТУ 79 РСФСР 337-82.
- 3.1.23 Щипцы муфельные.
- 3.1.24 Посуда полиэтиленовая или полипропиленовая для хранения растворов вместимостью 500, 250 и 100 см³.
- 3.1.25 Устройство для фильтрования проб с использованием мембранных фильтров.

Допускается использование других типов средств измерений, посуды и вспомогательного оборудования, в том числе импортных, с характеристиками не хуже, чем у приведенных в 3.1.

- 3.2 При выполнении измерений применяют следующие реактивы и материалы
- 3.2.1 Кремний (IV) оксид (кремния диоксид) по ГОСТ 9428-73, ч.д.а. (при отсутствии ГСО).
- 3.2.2 Аммоний молибденовокислый 4-водный (молибдат аммония), по ГОСТ 3765-78, ч.д.а.
- 3.2.3 Натрий углекислый (карбонат натрия), безводный по ГОСТ 83-79, ч.д.а.
- 3.2.4 Натрий тетраборнокислый 10-водный (тетраборат натрия), по ГОСТ 4199-76, ч.д.а.
 - 3.2.5 Натрия гидроокись (гидроксид натрия) по ГОСТ 4328-77, ч.д.а.
 - 3.2.6 Кислота соляная по ГОСТ 3118-77, ч.д.а.
 - 3.2.7 Кислота винная по ГОСТ 5817-77, ч.д.а.
- 3.2.8 Натрий сернистокислый (сульфит натрия) безводный по ГОСТ 195-77, ч.д.а.
 - 3.2.9 Метол (4-метиламинофенол сульфат) по ГОСТ 25664-83, ч.д.а.
 - 3.2.10 Бумага индикаторная универсальная по ТУ 6-09-1181-76.
 - 3.2.11 Вода дистиллированная по ГОСТ 6709-72.
- 3.2.12 Фильтры бумажные обеззоленные "красная лента" и "белая лента" по ТУ 6-09-1678-86.
- 3.2.13 Фильтры мембранные "Владипор МФАС-ОС-2", 0,45 мкм, по ТУ 6-55-221-1-29-89 или другого типа, равноценные по характеристикам.

Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных, с квалификацией не ниже указанной в 3.2.

4 Метод измерений

Определение массовой концентрации кремния фотометрическим методом основано на взаимодействии мономерно-димерной формы кремниевой кислоты и силикатов с молибдатом аммония в кислой среде с образованием молибдокремниевой гетерополикислоты, которая при действии восстановителей образует окрашенную в синий цвет форму за счёт частичного перехода атомов Mo(VI) в Mo(V). Максимум в спектре поглощения образовавшегося соединения наблюдается при 815 нм.

5 Требования безопасности, охраны окружающей среды

- 5.1 При выполнении измерений массовой концентрации кремния в пробах природных и очищенных сточных вод соблюдают требования безопасности, установленные в государственных стандартах и соответствующих нормативных документах.
- 5.2 По степени воздействия на организм вредные вещества, используемые при выполнении измерений, относятся ко 2, 3 классам опасности по ГОСТ 12.1.007-76.
- 5.3 Содержание используемых вредных веществ в воздухе рабочей зоны не должно превышать установленных предельно допустимых концентраций в соответствии с ГОСТ 12.1.005-88.
- 5.4 Вреднодействующие вещества подлежат сбору и утилизации в соответствии с установленными правилами.
- 5.5 Дополнительных требований по экологической безопасности не предъявляется.

6 Требования к квалификации операторов

К выполнению измерений и обработке их результатов допускаются лица со средним профессиональным образованием или без профессионального образования, но имеющие стаж работы в лаборатории не менее года, освоившие методику. Приготовление аттестованных растворов из диоксида кремния могут выполнять только лица, имеющие профессиональное образование.

7 Условия выполнения измерений

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

- температура воздуха (22±5) °С;
- атмосферное давление от 84,0 до 106,7 кПа (от 630 до 800 мм рт. ст.);
- влажность воздуха не более 80 % при 25 °C:
- напряжение в сети (220±10) В;
- частота переменного тока (50±1) Гц.

8 Отбор и хранение проб

Отбор проб воды для определения кремния производится в соответствии с ГОСТ 17.1.5.05-85 и ГОСТ Р 51592-2000. Оборудование для отбора проб должно соответствовать ГОСТ 17.1.5.04-81 и ГОСТ Р 51592-2000. Пробы помещают в полиэтиленовую (полипропиленовую) посуду. Кремний является биохимически нестойким компонентом, поэтому анализ пробы должен быть проведен как можно быстрее после отбора пробы. При охлаждении до 3-5 °С допускается хранение проб в течение 5-7 суток. Более длительное хранение возможно при замораживании проб при температуре минус 20° С. Замороженные пробы после размораживания должны до анализа не менее 10 часов находиться при комнатной температуре.

Подкисление проб с целью консервации недопустимо.

При определении растворенных форм кремния непосредственно после отбора пробы фильтруют через мембранный фильтр 0,45 мкм, очищенный кипячением в дистиллированной воде. Первую порцию фильтрата следует отбросить. Чистые фильтры хранят в плотно закрытом бюксе.

9 Подготовка к выполнению измерений

- 9.1 Приготовление растворов и реактивов
- 9.1.1 Раствор молибдата аммония, 5 %
- 5,0 г молибдата аммония (NH_4)₆ Mo_7O_{24} · $4H_2O$ растворяют в 95 см³ дистиллированной воды. Если соль растворяется медленно, раствор можно слегка подогреть. При необходимости раствор фильтруют через бумажный обеззоленный фильтр "белая лента". Хранят в полиэтиленовой посуде не более 1 мес.

- 9.1.2 Раствор винной кислоты, 10 %
- 10 г винной кислоты переносят в стакан, растворяют в 90 см³ дистиллированной воды. Раствор хранят в полиэтиленовой посуде не более 1 мес.
 - 9.1.3 Раствор восстановителя (метол-сульфитная смесь)
- 3,25 г сульфита натрия (Na₂SO₃) и 5,0 г метола помещают в колбу с притертой пробкой вместимостью 250 см³, добавляют 100 см³ дистиллированной воды и несколько минут встряхивают содержимое колбы. Затем фильтруют полученный раствор через бумажный фильтр "красная лента" в полиэтиленовую посуду, добавляют к фильтрату еще 150 см³ дистиллированной воды и перемешивают. Раствор хранят в холодильнике до потемнения, но не более 5 суток.
 - 9.1.4 Раствор соляной кислоты, 5 моль/дм³.
- К 58 см³ дистиллированной воды приливают 42 см³ концентрированной соляной кислоты и перемешивают. Раствор хранят в полиэтиленовой посуде.
 - 9.1.5 Раствор соляной кислоты, 0.5 моль/дм³

К 480 см³ дистиллированной воды приливают 21 см³ концентрированной соляной кислоты и перемешивают. Раствор хранят в полиэтиленовой посуде.

- 9.1.6 Раствор гидроксида натрия, 0,5 моль/дм³
 2 г гидроксида натрия растворяют в 100 см³ дистиллированной воды. Хранят раствор в полиэтиленовой посуде.
 - 9.2 Приготовление градуировочного раствора
- 9.2.1 Градуировочный раствор готовят из стандартного образца (ГСО) с массовой концентрацией кремния 1,00 мг/см³.

Отбирают 1,0 см³ образца с помощью пипетки вместимостью 1 см³ и переносят в мерную колбу вместимостью 100 см³. Доводят объем в колбе до метки дистиллированной водой и перемешивают. Массовая концентрация кремния в градуировочном растворе составляет 10.0 мг/дм3. Раствор переносят в полиэтиленовую (полипропиленовую) посуду и хранят плотно закрытым не более 3 мес.

9.2.2 При отсутствии ГСО допускается использовать аттестованный раствор, приготовленный из диоксида кремния. Методика приготовления аттестованного раствора приведена в приложении А.

9.3 Установление градуировочной зависимости

Для приготовления образцов для градуировки в мерные колбы вместимостью 25 см³ градуированными пипетками вместимостью 1 и 5 см³ вносят 0; 0,25; 0,5; 1,0; 1,5; 2,0; 3,0; 4,0; 5,0 см³ градуировочного раствора с массовой концентрацией кремния 10,0 мг/дм³, доводят объём растворов до меток дистиллированной водой и тщательно перемешивают. Массовые концентрации кремния в полученных образцах равны соответственно 0; 0,10; 0,20; 0,40; 0,60; 0,80; 1,20; 1,60; 2,00 мг/дм³. Содержимое каждой колбы переносят в полипропиленовые конические колбы или стаканы вместимостью 50 см³ и далее выполняют определение в соответствии с разделом 10. Значение оптической плотности холостого опыта (раствора, не содержащего кремния) вычитают из оптической плотности растворов, содержащих кремний.

Градуировочную зависимость оптической плотности от массовой концентрации кремния рассчитывают методом наименьших квадратов.

Градуировочную зависимость устанавливают один раз в год, а также при замене измерительного прибора.

9.4. Контроль стабильности градуировочной характеристики

9.4.1 Контроль стабильности градуировочной характеристики проводят при приготовлении новых растворов молибдата аммония и восстановителя. Средствами контроля являются образцы, используемые для установления градуировочной зависимости по 9.3 (не менее 3 образцов). Градуировочная характеристика считается стабильной при выполнении следующих условий:

$$\mid X-C \mid \leq \sigma_R$$
, (2)

- где X результат контрольного измерения массовой концентрации кремния в образце, мг/дм³;
 - С приписанное значение массовой концентрации кремния в образце, мг/дм³;
 - σ_R показатель воспроизводимости для концентрации C, мг/дм³ (таблица 2).

Если условие стабильности не выполняется для одного образца для градуировки, необходимо выполнить повторное измерение этого образца для исключения результата, содержащего грубую погрешность. При повторном невыполнении условия, выясняют причины нестабильности, устраняют их и повторяют измерение с использованием других образцов, предусмотренных методикой. Если градуировочная характеристика вновь не будет удовлетворять условию (2), устанавливают новую градуировочную зависимость.

9.4.2 При выполнении условия (2) учитывают знак разности между измеренными и приписанными значениями массовой концентрации кремния в образцах. Эта разность должна иметь как положительное, так и отрицательное значение, если же все значения имеют один знак, это говорит о наличии систематического отклонения. В таком случае требуется установить новую градуировочную зависимость.

10 Выполнение измерений

10.1 В реакцию с молибдатом аммония вступают, главным образом, неорганические мономерно-димерные формы кремния. Формы с более высокой степенью полимеризации, а также неорганические комплексные соединения кремния переводят в мономерное состояние кипячени-ем воды с гидроксидом натрия.

Для перевода в мономерную форму ряда наиболее высокополимеризованных форм кремниевой кислоты, а также разрушения элементорганических соединений, то есть для определения общего содержания РД 52.24.432-2005 кремния в воде, требуется сплавление выпаренной пробы со смесью карбоната и тетрабората натрия.

10.2 Выполнение измерений массовой концентрации мономернодимерных форм кремния

В две сухие полипропиленовые конические колбы или стаканы вместимостью 50 см³ отмеривают по 25 см³ тщательно перемешанной пробы воды. К каждой аликвоте добавляют 1 см³ раствора соляной кислоты 5 моль/дм³, 2,5 см³ раствора молибдата аммония (не допуская перерыва), перемешивают и оставляют на 10 мин. Затем добавляют 2,5 см³ раствора винной кислоты, перемешивают и через 2 мин приливают 10 см³ восстановительной метол-сульфитной смеси.

Раствор перемешивают и через 10 мин измеряют оптическую плотность на спектрофотометре или фотометре с непрерывной разверткой спектра при $\lambda=815$ нм в кюветах длиной 1 см или на фотометре, снабженном светофильтрами ($\lambda=670\text{-}750$ нм) в кюветах длиной 2 см относительно дистиллированной воды. Окраска устойчива в течение 12 ч (при хранении в темноте).

Одновременно выполняют два параллельных измерения оптической плотности холостых проб, в качестве которых используют 25 см³ дистиллированной воды.

Если измеренная оптическая плотность пробы выше таковой для последней точки градуировочной зависимости, повторяют определение, предварительно разбавив исходную пробу воды дистиллированной водой. Для этого отбирают пипеткой такой объем анализируемой воды, чтобы при разбавлении в мерной колбе вместимостью 25 см³ полученная концентрация кремния находилась в пределах от 1,0 до 2,0 мг/дм³.

10.3 Выполнение измерений массовой концентрации растворенных полимерных форм кремния деполимеризацией кипячением в щелочном растворе

Две аликвоты по 25 см³ анализируемой воды помещают в платиновые или стеклоуглеродные тигли (чашки), добавляют по 2,8 см³ раствора гидроксида натрия 0,5 моль/дм³, закрывают крышкой или часовым стеклом и кипятят на водяной бане 30 мин. После охлаждения пробу нейтрализуют раствором соляной кислоты 0,5 моль/дм³ по универсальной индикаторной бумаге, количественно переносят в мерную колбу вместимостью 50 см³ и доводят до метки дистиллированной водой. Далее проводят определение кремния в соответствии с 10.2. После нейтрализации деполимеризованных проб не следует допускать перерыва в работе, сразу же необходимо закончить анализ.

Одновременно выполняют анализ двух холостых проб, в качестве которых используют 25 см³ дистиллированной воды.

Тигли или чашки перед использованием для анализа очищают нагреванием на водяной бане 30-40 мин с дистиллированной водой, к которой добавлено 3-4 см³ раствора гидроксида натрия 0,5 моль/дм³, затем промывают дистиллированной водой.

10.4 Выполнение измерений массовой концентрации растворенных полимерных форм и валового содержания кремния деполимеризацией сплавлением со смесью тетрабората и карбоната натрия

Аликвоту анализируемой воды объемом 250 см³ или менее (в зависимости от содержания кремния) помещают в платиновую чашку и упаривают до 10-20 см³, затем переносят количественно в платиновый тигель, два-три раза обмывая чашку горячей дистиллированной водой. При определении валового содержания пробу перед отбором аликвоты тщательно перемешивают в течение 3-4 мин.

Упаривают пробу в тигле досуха, добавляют 0,5 г смеси безводного карбоната натрия и тетрабората натрия, взятых в соотношении 2:1 и сплавляют в муфельной печи, постепенно повышая температуру до 900 °C и выдерживая при температуре 900 °C 15-20 мин до получения прозрачного расплава.

После охлаждения тигель тщательно обмывают снаружи дистиллированной водой, помещают в полипропиленовый стакан, заливают 100-150 см³ горячей дистиллированной воды и оставляют на ночь. Полученный раствор нейтрализуют раствором соляной кислоты 5 моль/дм³ по универсальной индикаторной бумаге, количественно переносят в мерную колбу вместимостью 250 см³ и доводят до метки на колбе дистиллированной водой.

При определении валового содержания пробу при переносе в мерную колбу фильтруют через фильтр "белая лента", промытый горячей дистиллированной водой.

Далее проводят определение в соответствии с 10.2. После нейтрализации деполимеризованных проб не следует допускать перерыва в работе, сразу же необходимо закончить анализ.

Одновременно выполняют анализ холостой пробы, в качестве которой используют такой же объем дистиллированной воды.

Тигли или чашки перед использованием очищают как описано в 10.3.

10.5 Устранение мешающих влияний

Мешающее влияние на выполнение измерений массовой концентрации кремния могут оказать цветность, мутность, фосфаты, таннин, а

также высокие концентрации сульфидов и железа (более 20 мг/дм^3), которые маловероятны для поверхностных вод.

Влияние фосфатов и таннина устраняется в процессе анализа добавлением раствора винной кислоты. Влияние цветности устраняют компенсацией окраски во время фотометрирования. Для этого проводят измерение собственной оптической плотности анализируемой воды, к которой вместо растворов молибдата аммония и восстановителя добавлено 12,5 см³ дистиллированной воды. В том случае, когда пробу перед определением кремния разбавляли, цветность следует учитывать для воды, разбавленной в той же пропорции. Мутность устраняют фильтрованием.

Высокая минерализация вызывает понижение оптической плотности анализируемой пробы на 10-15 %, для устранения этого влияния устанавливают градуировочную зависимость, используя растворы с такой же величиной минерализации.

11 Вычисление и оформление результатов измерений

11.1 Вычисляют значение оптической плотности A_x , соответствующее концентрации мономерно-димерных форм кремния в пробе воды по формуле

$$A_{x} = A - A_{1} - A_{2}, (3)$$

где A - значение оптической плотности анализируемой пробы воды со всеми реактивами;

А₁ - значение собственной оптической плотности пробы;

 ${f A}_2$ - среднее арифметическое значение оптической плотности холостой пробы.

11.2 Массовую концентрацию кремния X, мг/дм³, присутствующего в анализируемой пробе в виде мономерно-димерных форм, находят по формуле

$$X = \frac{C \cdot 25}{V} \quad , \tag{4}$$

где C - массовая концентрация кремния, найденная по градуировочной зависимости, мг/дм 3 ;

V - объем аликвоты пробы, взятый для анализа, см³.

11.2 Суммарную массовую концентрацию кремния в анализируемой пробе X_n , мг/дм³, находят по формуле

$$X_n = \frac{X \cdot V_K}{V_n},\tag{5}$$

- где X массовая концентрация мономерно-димерных форм кремния в анализируемой пробе после деполимеризации, мг/дм³;
 - V_{κ} вместимость мерной колбы, в которую переносят пробу после деполимеризации, см³;
 - V_n объем аликвоты пробы, взятый для деполимеризации, см³.
- 11.3 Результат измерения в документах, предусматривающих его использование, представляют в виде:

$$\bar{X} \pm \Delta$$
, (P = 0,95), (6)

где \tilde{X} - среднее арифметическое значение двух результатов, разность

между которыми не превышает предела повторяемости г (2,77 σ_r), мг/дм³ . Значения σ_r приведены в таблице 2. При превышении предела повторяемости следует поступать в соответствии с 12.2 ;

- $\pm \Delta$ границы характеристик погрешности измерения для данной массовой концентрации кремния (таблица 2), мг/дм³.
- 11.4 Допустимо представлять результат в виде:

$$\bar{X} \pm \Delta_{\pi}$$
 (P=0,95) при условии $\Delta_{\pi} < \Delta$, (7)

где $\pm \Delta_n$ – границы характеристик погрешности результатов измерения, установленные при реализации методики в лаборатории и обеспечиваемые контролем стабильности результатов измерений, мг/дм 3 .

Примечание - Допустимо характеристику погрешности результатов измерений при внедрении методики в лаборатории устанавливать на основе выражения $\Delta_n = 0.84 \cdot \Delta$ с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов измерений.

12 Контроль качества результатов измерений при реализации методики в лаборатории

- 12.1 Контроль качества результатов измерений при реализации методики в лаборатории предусматривает:
- оперативный контроль исполнителем процедуры выполнения измерений (на основе оценки повторяемости и погрешности при реализации отдельно взятой контрольной процедуры);
- контроль стабильности результатов измерений (на основе контроля стабильности среднеквадратического отклонения повторяемости, внутрилабораторной прецизионности, погрешности).

12.2 Алгоритм оперативного контроля повторяемости

- 12.2.1 Контроль повторяемости осуществляют для каждого из результатов контрольных измерений, полученных в соответствии с методикой анализа. Для этого отобранную пробу воды делят на две части, и выполняют анализ в соответствии с разделом 10.
- 12.2.2 Результат контрольной процедуры r_{κ} мг/дм³, рассчитывают по формуле

$$\mathbf{r}_{\mathbf{k}} = \left| \mathbf{X}_1 - \mathbf{X}_2 \right|, \tag{8}$$

где X_1, X_2 – результаты контрольных измерений массовой концентрации кремния, мг/дм³.

12.2.3 Предел повторяемости г_п рассчитывают по формуле

$$\mathbf{r}_{n} = 2,77 \,\sigma_{r} \,, \tag{9}$$

где σ_r - показатель повторяемости методики, мг/дм³ (таблица 2).

12.2.4 Результат контрольной процедуры должен удовлетворять условию

$$\mathbf{r}_{\kappa} \le \mathbf{r}_{\mathrm{n}} \tag{10}$$

- 12.2.5 При несоблюдении условия (10) выполняют еще два измерения и сравнивают разницу между максимальным и минимальным результатами с нормативом контроля равным $3,6\cdot\sigma_r$. В случае повторного превышения предела повторяемости, поступают в соответствии с разделом 5 ГОСТ Р ИСО 5725-6-2002.
- 12.3 Алгоритм оперативного контроля процедуры выполнения измерений с использованием метода добавок
- 12.3.1 Контроль исполнителем процедуры выполнения измерений проводят путем сравнения результатов отдельно взятой контрольной процедуры K_{κ} с нормативом контроля K.
- 12.3.2 Результат контрольной процедуры K_{κ} , мг/дм³, рассчитывают по формуле

$$K_{\kappa} = |\bar{X}' - \bar{X} - C|, \qquad (11)$$

- где \tilde{X}' результат контрольного измерения массовой концентрации кремния в пробе с известной добавкой, мг/дм³;
 - \bar{X} результат контрольного измерения массовой концентрации кремния в рабочей пробе, мг/дм³;
 - С величина добавки, мг/дм3.
- 12.3.3 Норматив контроля погрешности K, мг/дм³, рассчитывают по формуле

$$K = 0.84 \sqrt{(\Delta_{X'})^2 + (\Delta_{X})^2}, \tag{12}$$

- где $\Delta_{X^{\circ}}$ значение погрешности методики соответствующее массовой концентрации кремния в пробе с добавкой, мг/дм³;
 - $\Delta_{\rm X}$ значение погрешности методики соответствующее массовой концентрации кремния в рабочей пробе, мг/дм 3 .
- 12.3.4 Если результат контрольной процедуры удовлетворяет условию

$$|K_{\kappa}| \leq K$$
, (13)

процедуру выполнения измерений признают удовлетворительной.

При невыполнении условия (13) контрольную процедуру повторяют. При повторном невыполнении условия (13), выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

12.4 Периодичность оперативного контроля исполнителем процедуры выполнения измерений, а также реализуемые процедуры контроля стабильности результатов выполняемых измерений регламентируются в Руководстве по качеству лаборатории.

13 Оценка приемлемости результатов, полученных в условиях воспроизводимости

Расхождение между результатами измерений, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата измерений и в качестве окончательного может быть использовано их общее среднее значение. Значение предела воспроизводимости рассчитывают по формуле

$$R = 2,77\sigma_R$$
 (14)

При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов измерений согласно разделу 5 ГОСТ Р ИСО 5725 -6 -2002.

Примечание — Оценка приемлемости проводится при необходимости сравнения результатов измерений, полученных двумя лабораториями

приложение а

(рекомендуемое)

Методика

приготовления аттестованных растворов кремния(IV) для установления градуировочных характеристик приборов и контроля точности измерений массовой концентрации кремния фотометрическим методом AP1-Si и AP3-Si

А.1 Назначение и область применения

Настоящая методика регламентирует процедуру приготовления аттестованного раствора кремния(IV), предназначенного для установления градуировочных зависимостей и контроля точности результатов измерений массовой концентрации кремния в поверхностных водах фотометрическим методом.

А.2 Метрологические характеристики

Метрологические характеристики аттестованных растворов приведены в таблице A.1.

Таблица А.1 - Метрологические характеристики аттестованных растворов кремния(IV)

Характеристика	Шифр аттестованного раствора		
	AP1- Si	AP3- Si	
Аттестованное значение концентрации кремния, мг/дм ³	200,0	10,00	
Предел возможных значений погрешности установления концентрации кремния (P=0,95), мг/дм ³	4,0	0,20	

А.3 Средства измерений, вспомогательные устройства, реактивы

- А.3.1 Весы аналитические не ниже 2 класса точности по ГОСТ 24104-2001.
- А.3.2 Колбы мерные не ниже 2 класса точности по ГОСТ 1770-74 вместимостью 250 см 3 и 100 см 3 .
- А.3.3 Пипетка с одной отметкой не ниже 2 класса точности по ГОСТ 29169-91 вместимостью 5 см 3 .
 - А.З.4 Стаканчики для взвешивания (бюксы) по ГОСТ 25336-82.
 - А.3.5 Тигель платиновый.
 - А.3.6 Воронка лабораторная по ГОСТ 25336-82 диаметром 56 мм.
 - A.3.7 Стакан химический по ГОСТ 25336-82 вместимостью 500 см³.
 - А.3.8 Промывалка.
 - А.3.9 Шкаф сушильный общелабораторного назначения.
 - А.3.10 Печь муфельная по ТУ 79 РСФСР 337-82.
 - А.3.11 Щипцы муфельные.
- А.3.12 Плитка электрическая с закрытой спиралью по ГОСТ 14919-83.
- А.3.13 Кремний(IV) оксид (кремния диоксид) по ГОСТ 9428-73, ч.д.а.
- А.3.14 Натрий углекислый (карбонат натрия), безводный по ГОСТ 83-79, ч.д.а.
- А.3.15 Натрий тетраборнокислый 10-водный (тетраборат натрия), по ГОСТ 4199-76, ч.д.а.
 - А.3.14 Вода дистиллированная по ГОСТ 6709-72.

А.4 Процедура приготовления аттестованных растворов кремния(IV)

А.4.1 Приготовление аттестованного раствора AP1-Si

На аналитических весах в платиновом тигле взвешивают с точностью до четвертого знака после запятой 0,107 г диоксида кремния, предварительно высушенного в течение 2 ч при 120 °С. Добавляют в тигель смесь из 2 г безводного карбоната натрия и 1 г безводного тетрабората натрия так, чтобы навеска кремния была полностью покрыта этой смесью. Тигель помещают в муфельную печь и сплавляют смесь,

постепенно повышая температуру до 900 °С и выдерживая при этой температуре в течение 15-30 мин до получения прозрачного сплава. При сплавлении следует следить за тем, чтобы при разложении карбоната не образовывались большие пузыри. Если они появляются, тигель следует слегка охладить и потом снова медленно нагреть.

По окончании сплавления тигель охлаждают, тщательно обмывают снаружи дистиллированной водой, помещают в полипропиленовый стакан, заливают 100-150 см³ горячей дистиллированной воды и оставляют на ночь. Полученный раствор количественно переносят в мерную колбу вместимостью 250 см³ и доводят до метки на колбе дистиллированной водой.

Полученному раствору приписывают массовую концентрацию кремния 200 мг/дм³.

А.4.2 Приготовление аттестованного раствора AP3-Si

Отбирают пипеткой с одной отметкой 5,0 см 3 раствора AP1-Si с массовой концентрацией кремния 200 мг/см 3 , помещают его в мерную колбу вместимостью $100~{\rm cm}^3$, доводят до метки дистиллированной водой и перемешивают.

Полученному раствору приписывают массовую концентрацию кремния 10.0 мг/дм^3 .

А.5 Расчет метрологических характеристик аттестованного раствора

А 5.1 Расчет метрологических характеристик аттестованного раствора AP1- Si

Аттестованное значение массовой концентрации кремния C_1 , мг/дм³, рассчитывают по формуле

$$C_1 = \frac{m \cdot 1000 \cdot 28,09 \cdot 1000}{V \cdot 60,09}$$
, (A. 1)

где т – масса навески диоксида кремния, г;

V - вместимость мерной колбы, см³.

28,09 и 60,09 - молярная масса кремния и диоксида кремния, г/моль, соответственно.

Расчет предела возможных значений погрешности приготовления аттестованного раствора AP1- Si выполняют по формуле

$$\Delta_1 = C_1 \cdot \sqrt{\left(\frac{\Delta\mu}{\mu}\right)^2 + \left(\frac{\Delta_m}{m}\right)^2 + \left(\frac{\Delta_V}{V}\right)^2}$$
 (A.2)

где C_1 — приписанное раствору AP1- Si значение массовой концентрации кремния, мг/дм³;

 μ — массовая доля основного вещества (SiO2) в реактиве, приписанная реактиву квалификации «ч.д.а.»;

 Δ_{μ} - предельное значение возможного отклонения массовой доли основного вещества в реактиве от приписанного значения μ ;

т - масса навески диоксида кремния, г;

 Δ_{m} - предельная возможная погрешность взвешивания, г;

V - вместимость мерной колбы, см³;

 Δ_V - предельное значение возможного отклонения вместимости мерной колбы от номинального значения, cm^3 .

Предел возможных значений погрешности приготовления аттестованного раствора AP1- Si

$$\Delta_1 = 200 \cdot \sqrt{(\frac{2}{100})^2 + (\frac{0,0002}{0,107})^2 + (\frac{0,30}{250})^2} = 4,0 \text{ MG/dm}^3$$

А 5.2 Расчет метрологических характеристик аттестованного раствора AP3-Si

Аттестованное значение массовой концентрации кремния C_2 , мг/дм³, рассчитывают по формуле

$$C_2 = \frac{C_1 \cdot V_1}{V_2} \tag{A.3}$$

где C_1 – приписанное раствору AP1-Si значение массовой концентрации кремния, мг/дм³;

 V_1 - объем раствора AP1- Si, отбираемый пипеткой, см³;

 V_2 - вместимость мерной колбы, см³.

Расчет предела возможных значений погрешности приготовления аттестованного раствора AP3- Si выполняют по формуле

$$\Delta_2 = C_2 \cdot \sqrt{(\frac{\Delta_1}{C_1})^2 + (\frac{\Delta_{V1}}{V_1})^2 + (\frac{\Delta_{V2}}{V_2})^2} \quad , \tag{A.4}$$

где C_1 – приписанное раствору AP1-Si значение массовой концентрации кремния, мг/дм³;

 $\Delta_{\rm I}$ - предел возможных значений погрешности приготовления аттестованного раствора AP1- Si, мг/дм³;

 V_1 - объем раствора AP1- Si, отбираемый пипеткой, см³;

 Δ_{V1} - предельное значение возможного отклонения объема V_1 от номинального значения, см³;

 V_2 - вместимость мерной колбы, см³;

 $\Delta_{\rm V2}$ - предельное значение возможного отклонения вместимости мерной колбы от номинального значения, см³.

Предел возможных значений погрешности приготовления аттестованного раствора AP3- Si

$$\Delta_2 = 10.0 \cdot \sqrt{(\frac{4.0}{200})^2 + (\frac{0.02}{5})^2 + (\frac{0.2}{100})^2} = 0.20 \text{ MeV/дм}^3$$

А.6 Требования безопасности

Необходимо соблюдать общие требования техники безопасности при работе в химических лабораториях.

А.7 Требования к квалификации операторов

Аттестованные растворы может готовить инженер или лаборант со средним специальным образованием, прошедший специальную подготовку и имеющий стаж работы в химической лаборатории не менее 6 мес.

А.8 Требования к маркировке

На склянки с аттестованными растворами должна быть наклеена этикетка с указанием массовой концентрации кремния, погрешности ее установления и даты приготовления.

А.9 Условия хранения

Аттестованный раствор AP1-Si устойчив в течение трех лет при хранении в герметично закрытой полиэтиленовой или полипропиленовой посуде.

Аттестованный раствор AP3-Si хранят не более трех месяцев в герметично закрытой полиэтиленовой или полипропиленовой посуде.

Федеральная служба по гидрометеорологии и мониторингу окружающей среды ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ «ГИДРОХИМИЧЕСКИЙ ИНСТИТУТ»

344090, г. Ростов-на-Дону пр. Стачки, 198

Факс: (8632) 22-44-70 Телефон (8632) 22-66-68 E-mail ghi@aaanet.ru

СВИДЕТЕЛЬСТВО N 86.24-2004

об аттестации методики выполнения измерений

МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ массовой концентрации кремния в поверхностных водах суши фотометрическим методом в виде синей формы молибдокремниевой кислоты.
Разработанная ГУ «Гидрохимический институт» (ГУ ГХИ)

Разработанная ГУ « <u>Гидрохимический институт» (ГУ ГХИ)</u> и регламентированная <u>РД 52.24.432-2005</u>

аттестована в соответствии с ГОСТ Р 8.563-96 с изменениями 2002 г. Аттестация осуществлена по результатам экспериментальных исследований

В результате аттестации установлено, что методика соответствует предъявляемым к ней метрологическим требованиям и обладает следующими основными метрологическими характеристиками:

1 Диапазон измеряемых концентраций, значения показателей точности и ее составляющих при доверительной вероятности Р=0,95

	Показатель	Показатель	Показатель	Показатель
Диапазон из-	повторяемо-	воспроизво-	правильности	точности
мерений мас-	сти (средне-	димости	(границы сис-	(границы
совой кон-	квадратиче-	(среднеквад-	тематической	погрешно-
центрации	ское отклоне-	ратическое	погрешности	сти при ве-
кремния	ние повто-	отклонение	при вероятно-	роятности
X, мг/дм ³	ряемости) σ,	воспроизво-	сти Р=0,95)	P=0,95)
	мг/дм³	димости)	$\pm \Delta_{\rm c}$, мг/дм ³	±∆, мг/дм³
	L	σ _R , мг/дм³		
От 0,10 до				
2,00 включ.	0,02	0,02+0,018·X	0,032·X	0,05+0,045·X

2 Диапазон измерений, значения пределов повторяемости и воспроизводимости при доверительной вероятности P=0,95

Диапазон измерений массовой концентрации кремния X, мг/дм ³	Предел повторяемости (для двух результатов параллельных определений) г, мг/дм ³	Предел воспроизводимости (значение допускаемого расхождения между двумя результатами измерений, полученными в разных лабораториях, при вероятности P=0,95) R, мг/дм ³		
От 0,10 до 2,00 включ.	0,06	0,06+0,05·X		

3 При реализации методики в лаборатории обеспечивают:

- оперативный контроль исполнителем процедуры выполнения измерений (на основе оценки повторяемости и погрешности при реализации отдельно взятой контрольной процедуры);
- контроль стабильности результатов измерений (на основе контроля стабильности среднеквадратического отклонения повторяемости, внутрилабораторной прецизионности, погрешности).

Алгоритм контроля исполнителем процедуры выполнения измерений приведен в РД 52.24.432-2005.

Периодичность оперативного контроля исполнителем процедуры выполнения измерений, а также реализуемые процедуры контроля стабильности результатов выполняемых измерений регламентируются в Руководстве по какеству лаборадории.

Дата выдачи свидетельства 30 декабря 2004 г.

Главный метролог ГУ ГХИ

A.A. Hasapoba