ТИПОВЫЕ СТРОИТЕЛЬНЫЕ КОНСТРУКЦИИ, ИЗДЕЛИЯ И УЗЛЫ

серия 3.503.9-84

КОНСТРУКЦИИ МОСТОВ НА ЛЕСОВОЗНЫХ АВТОМОБИЛЬНЫХ ДОРОГАХ ИЗ ИНВЕНТАОНЫХ МЕТАЛЛИЧЕСКИХ ПРОЛЕТНЫХ СТРОЕНИЙ ДЛИНОЙ 18,24 И 33 М НА ДЕРЕВЯННЫХ ОПОРАХ

8 PIUNCK 1

пролетные строения

чертежи км

СТРОЙТЕЛЬНЫЕ КОНСТРУКЦИИ ИЗДЕЛИЯ И УЗЛЫ TNUORPIE

СЕРИЯ 3.503.9-84

КОНСТРУКЦИИ МОСТОВ НА ЛЕСОВОЗНЫХ АВТОМОБИЛЬНЫХ NHEEHTAPHDIX METANNUHECKNX NPONETHDIX ДОРОГАХ ИЗ СТРОЕНИИ ДЛИНОЙ 18,24 И 33 М НА ДЕРЕВЯННЫХ ОПОРАХ

BOILINGER 4

пролетные строения

ЧЕРТЕЖИ КМ

Разработан Цнии Проектстальконструкцией

им. Мельникава

Директор инститита 2л. инженер института Зав. этделэм гл. канструктор отдела гл инженер правкта

В.В. Кузнецов В.В. Ларионов Н.Н. Стрелецкий

В.А. Тарнарцикий В.А. Тарнаруцкий Минлесбумпромам СССР

Протокол от 12 наября 1987г 1.º 181 Введены в действие с 20 наября 1987 г. письмо N 4-45-9306 от 20 наября 1987 г.

Ведущая организация гипропестрана

гл. инженер инститита exunt.

гл. инженер правкта

И.Д. Акимов - Перетц

[.	a	д	В	р	ж	<i>[</i>]	H U	<i>e</i>

D อ้ 03 ห ถ ุน <i>ย</i> ห	∪£	Наименование .					
3,503.9-64	1 - 00	Годержание	۾				
	- 01/13	Паяснительная записка	3				
	- a 2 n3	Пбщий вид пропетного строения вывы, Г-4,5 Основные данные	Б				
	- 0,3/13	Общий вид пролетного строгния С=18м, Г-8 Основные данные	7				
	-04113	Общий вид пролётного строения l=24m. Г-8. Основные данные	8				
	-05/13	Общий вид пропетного строения в=33м, Г-4.5. Основные данные	g				
	-06113	Общий вид пролетного строения l=33м, Г-8. Оснавные данные	10				
	-07/13	Јетали маставога полотна Спецификация месаматериала Спецификация метаплаизвелии	11				
	- 08 / 3	Мастовое польтно переходного пролета Спецификация песоматериала Спецификация металлоизделий	15				
	-0973	Мантаж пролётных строений надвижной	16				
	-10/13	расчетный лист	17				
•	-11KM		21				
	-12KM	our of the periods	22				
	-13KM		23				
1	- 14 KM	прафилей Свадная ведомовть мантажных Болтов, гаек и шайб	24				
	-15KM	Пролётное строение в=18м, г-45 (Себерное исполнение) Техническая спецификация металла ведомость металлоконструкций по видам грофилей Свадная ведомасть ман- пажных болтов, гаек и шайб	26				
	-16KM	Пралетнае строение С=18м, Г-8 Эбщий від металлаканструкций	28				
	-17KM	Пдальтнае стааение l=18м, Г-8 связи поперечные	29				
	-18KM	Пролетное строение С=18м, Г-8 Залка дамкратная	30				
	- 19KM	Прагетное строение С=18м, Г-8 (абычное ис- погнение) Техническая спецификация ме- тапла ведомость металлаконструкций по видам прафилей Сводная ведомость мантаж- ных болтов, гаек и шайв	31				
	-20KM	Пралетнае стравние l=18m, r-8 (севернае испалнение). Пехническая спецификация металла дедомость металлаконструкций пс видам поэфилей Свадная ведомость монтажных балтав, гаек и шайб.	33				
	-21KM	Пролетное строение С=24м, Г-8 Общий вид метаплоконструкций	35				
	- 22KW	Поэлетное строение С:24м, Г-8 Связи поперечные Стых монтожный	36				
	- 23KM	Пролетное строение С=24м, Г-8 Балка домкратная	37				
	- 24KM	Пролетное страение l=24m, Г-8 (абычное ис- полнение) Пехническая спецификация метал- па. ведомасть металлаконатрукций па ви- дам профилей. Сводная ведомасть мантаж- ных бастов, гаек и шайб	38				

<i>Пъ́пзначение</i>	Наименавание	Стр
3 503 9-84 i - 25KM	Пралетное строение в:24, Г-8 (вевечное испол- ненде) Техническая слецификация метапла ведэмасть метаплоканструкций па видам поафилей Сводная бединасть монтажных болтов, гаек и шайб	40
-26км	Пролетное строение С:33, Г-4,5 Общь: вид метаплананстаунций	42
- 27KM	Прэлетное строение в 33м, г 4,5 Связь поперечные	44
- 28км	Пропетное строение €=33м, 145 бил-а дамкратная Стык мантажный	45
- 29KM	Пролетное страение 2:33м, Г-4,5 (абычное исполнение) Пехническая спецификация металла ведамасть металлоконструкций по видам профилей Свадная ведамасть монтажных балтов, гаек и шайб	46
-30KM	Паслег-чае строение С*33», Г-4,5 (северное ис- палнение Пессническор спецификация ме- тапла ведомость метаплаханструкций по видом профилей Свадная ведомость ман- таркных болтов, гаек и шайб	48
-31KM	Поалетнае строение С=33м , Г-8 Одиций вид метаплоканструкций	50
-32KM	Пралетное строение l=33м, r-8 Сбрзи поперечные Узлы	5 2
-33KM	Пропетнов страение С=33м, Г 6 Билка дамкратная	53
-34RM	Пралётнае строение l=33м, Г-8 (абычное ис- полнение). Техническая спецификация ме- толла. Ведомость металлаканструкций по видам профулей. Сводная ведомость монтож- ных болтов, гоек и шайб	54
- <i>35KM</i>	Пралётнае страечие С=33м, F8 (севернае ис- папнение) Мехническая сарингингия ме-	55
-36KM		58
-37KM	Детали крепления опорных частей	5 D
-38KM	Перестодной пролёт. Общий вид метаплоконст- рукций	₽1
- 3 <u>9</u> KM	Переходной поолёт Г-4,5 (обычное испопнение) Пехническая спецификация металла деда- масть металоканстоукций по бидам поо- филей Свадная бедомасть мантажных бол- тов, гаек и шайв	63
-40км	Переходной пролет Г-4,5 (себерное исполне- ние. Пехническая метрила. Ведомость ме- таплоконструкций по бидам профилей Свод- ная бедомость монтожных болтов, гиек и шийб	64
-41KM	Переходнай пролет Г-8 (обычнае испапне- ние Техническая спецификация метаппа Ведомасть метаплоконструкций по видам про- филей Сводная ведомость мантажных бол- тов, гоеч и шайб	<i>65</i>
-42K11	Переходной пролёт Г-8 (северное испалнение). Мехническая спецификация металла ведо- мость метаплоканструкций по видам про- филей Сводная ведомость мантажных балтов, гоек и шайб.	66
	Временные мантажные стыки главных балок	

Нач. отд Стрепецкий вод.

Н. кантр. Стободчиков вод.

З. 503. 9-84.1-10

Клинж пр Тарнаруцкий вод.

Рук байе Кирковина гийн,
Проберин Цимбарг Исс. им

Испании Евланов С. ...

выпуск Г. Пралётные стравния в обычном и севернам испалнении "Д" разработаны институтом ЦНИИ правктствальнонструкция им Мельникова в соответствии с техническим заданиы ем на правктиравание, утверждённым институтом гипролестранс Минлесбумпрама СССР 22 января 1987г.

г Указания по применению

г.н. Пролетные строения предназначены для эксплуатации на лесавозных автомобильных дарогах в районах с рисчетной минимальной температурой воздуха (Тмин.): абычное исполнение-да минус 40°C включительно

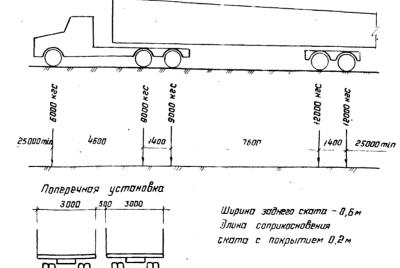
северное испалнение "А"-ниже минус 40°Сда минус 50°Свк почительно.

Зля стальных конструкций Тмин. принимается по графе (средняя температура наружного воздуха наиболее холодной пятидневки в районе строительства) табличы

СНиП 201-01-82 Страительная климаталогия и геофизика.

- з Нормативные дакументы
- 3.1.1 CHUN 2.05.03-84 Moombi u mpybbi.
- 3.12 СН и П 2.01.01-82 Страительная климатология и геофизика
- 3.1.3. СНи П 2.01.07-85. Нагрузки и воздействия
- з.14 СН и Л _]]-23-81. Стальные конструкции
- 3.1.5. СН и П. 2.03.11-85. Защита строительных канструкций от карразии
- з.16 СНи П 11-25-80 Деревянные конструкции
- 3.2 главы СНиЛ Часть З. Организация, производства и приёмка рабат
- 321 СНи П Л. -18-75. Металлические канструкции.
- 3.2.2. СНи П []]-43-75. Мосты и трубы.
- 3.23 [НиП 3.04.03-85. Защита строительных конструкций и сооружений от коррозии.
- 3.2.4.СНи П 3.06.07-86 Масты и трубы Правила обследаваний и испытаний
 - 3.3. Ведомственные нармы, инструкции и рекомендации.
- 33.1. ВСН 01-82. Инструкция по проектированию лесозавотовительных предприятий (Минлесбумпром).
- 3.3.2 BCH 169-80 Инструкция по технологии мехонизированнай и ручной сварки при заводском изготовлении стальных конструкций мастов (Минтрансстрай)

Серия саатветствует действующим нармам и правилам гл инженер праекта //- (Тарнаруцкий В.Я.) 3.3.3 вСН 188-78. Инструкция по механической обработке сбарных соединений в стальных канструкциях мостов (Минтранстрой)


334 ВСН 191-19 Инструкция па машинной кислородной резке праката из углеродистой и низналегированной стали при заготовке деталей мастовых конструкций (Минтрансстрой).

335. Провила технической эксплуатоции обтомобильных лесовозных дарог, 1980 (Минлесбумпром)

- 4 Истодные данные
- 4 н габарит проезжей части
- 4.1. Для пролётных строений длиной 18 и 33м габариты Г-4.5 и Г-8 с двумя тротуорами по 0,75м
- 4.12. Для пролётного строения длинай 24м габарит Г-8,0 с двумя тротцарами по 0,75м.
- 4.5 Временные нагрузки
- 421 Нармативная вертикальная нагрузка от подвижного состива автотранспартных средств в виде полос А8
- 4.22 Нормативная вертикальная нагрузка от тяжелой одиночной гусеничной нагрузки (одной мишины) HГ-60
- 4.23. Нармативная вертикальная наеруэка от лесовозного автопоезда на базе автомобиля Краз с нагрузкой на ови прицепа распуска по 12 тс

CIEME

нагрузки от лесовозного автоповъда на базе овтомовиля КряЗ (КряЗ 260 ЛС + ГКБ-93852)

4.2.4 Нармативная вертикальная равномерно распределенная нагрузка от толпы на тротуарах 300 кгс/м²

1920 | 1580 | 1920

5. Материалы

5.1 При изгатовлении метаплаканструкций принимаются стали, приведенные в таблице

	Марки ста	лей
Наим е нование элементов _. и сортамента металла	Обычное испалнение	себерное исполнение Я
I	2	3
I Основные элементы несущих комструкций: гарбыне балки, абокротные балки, ребра жёст-кости, стыновые накладки, фасанки прадольных (талько для пралета 18.24) связей, продольные связей, продольные связи (листовой пракат палщиной 8-25 мм)	Низколегированная конструкционная для мостостроения сталь и рки 15XCHД по ГОЕТ 6713-75	Низкалегированная конструкцианная для мастастраения старки 15%СНД-2 па ГВСТ 6713-75 С Вополни-тельными требованиями по п з примечания к табл]; п л 1 14, 1 16
2 Поперечное ребро в монтожных стыксх глав- ных балан, элементы паперечных связей для пролётов 18 и 24 м (ФССОННЫЙ прокат)	Сталь марки 15 3 СНД по ГОСТ 6713-75	Столь марки (SICKA) па ГОСТ 67/3-75
3 Элементы погеречных связей для пролета 33м (фасонный прохот)	Углеродистоя конструкционная для мостостроения сталь марки 16Д по ГОСТ 67/3-75	Сталь марки 15 ХСНД-2 по ГОСТ 6713-75
4 Элементы поперечных связей для пролета 33м (листавай промат)	Сталь марии 16Д по ГОСТ 6713-75	Еталь марки 15 ХСНД - 2 по ГОСТ 5713-75 с дополнительными требованиями пап. 3 при- мечания к тов. 1;п.п.1.4, 116
5. Угрлки элементав сматравых приспособ- лений	Углерадистая абыннабеннога на- чества столь марни вст3лс2 па гаст 380-71	Уелерадустая абыннавеннаго ка- чества сталь марки 8Ст3сп5 па ГОСТ 380-71
6. Швеллеры сматровых ходов	Сталь марки 8 Ст 3 сп 5 по ГОСТ 380-71	Сталь марки 15 ХСНД-2 na ГОСТ 6713-75
7 Круглая сталь для заполнения перил смат- равых ходав	Сталь марки ВСтЗкп	חם רסכד 380-71
8. Плиты под апорные части (листовай пракат)	Сталь марки 16Д па ГВСТ 6713-75	Столь марки 15.204Д-2 па ГАСТ 6713-75 с аппалиц- тельными требова- ниями па п 3 примен. к табл. 1; п.п. 1.14; 1.16
9 Элементы настила сматравых ходов	Сталь марки БСт Зкі	, <u>2</u>
ю. Монтажные болты", гайки и шайбы к ним	Материалы, регламен 22353-77, 22354-11, 2	тируемые ГОСТами: 2355-77, 22356-77
н. Сварочные материа- лы	Материалы, реглам ВСН 169-80 (Минтра	лентируемые нсстрой)

* Из стали 40Х "Селект

	Стрелецкий Ста д адчи н ой		3.503.9	- 84	.1- 🗆	1П3
п. констр	Парнаруцкий Парнаруцкий	41-		Стадия С	<i>Ливт</i> 1	Листов З
ук брцг.	Кирюжин о Цимбарг		 Паяснительная записка	.731.411.1111.12		JHISTOÄKITNO
сполнил	Василь ев а			UA	. Мельк	ιυκοδο

Формат Я2

- 5.3. Металлоизделия вля скрепления деревянных элементов (болты, штыри, скобы и т.п.) выполняются из стали марки ВСт3сп4 по ГОСТ380-71 для обычного исполнения и из стали 09Гг-6 по ГОСТ 19281-73 для северного исполнения, гвозди по ГОСТ4028-63.
 - Конструкция пролетных строений.
- 61. Пролетные строения в поперечном сечении имеют для еабарита Г-4,5-две, для еабарита Г-8-три сварные сплошностенчатые елавные балки, с расстоянием между ними 3,2 м, двутавровоео сечения с поясами переменного по длине пролета сечения и вертикальными стенкати постоянной высоты, равными 1200 мм для пролетов 18м и 24м, 1800 мм для пролета 33 м
- 62. Поперечные связи запроектированы в виде плоских ферм с треугольной решеткой (прикрепляемых к ребрам эксесткости главных . балок на монтаже):

сварных - в обычном исполнении.

на болтах нормальной точности из стали 40X "Селект," истанавливаемых на заводе-изготовителе в севернам исполнении.

63. Торизонтальные верхние инижние продольные связи треугольной системы расположены на расстоянии 187мм от верхних и 207мм от нижних поясов.

Диагонали связей запроектированы в виде сварных тавров.

- 64. Главные балки пролетных строений в северном и обычном исполнении разбиваются на монтажные блоки длиной от 7,55 до 13,45 м.
- 6.5. Из условия унификации конструктивных решении и удобства изготовления сортатент теталла на пролетные строения полностью унифицирован.
- 6.5. Заводские соединения металлоконструкции сварные и на болтах нормальной точности из стали 40х Селект. Монтажные соединения— на болтах нормальной точности из стали 40х "Селект Мгг. устанав-ливаемые в отверстия фгзмм. Денужится их многокизатные использавание за износа з пределах долукия денужится их многокизальные использавание за износа з пределах долукия строительного строительного строиниях, за счет переломов в монтажных стыках, главным балкам придается необходимый строительный подъем.
- 68. Пооезокая часть из брусчатых поперечин сечением 22×22 см уложена по металлическим главным балкам с расстоянием 0,5 м между осями. По поперечинам укладывается двойной дощатый настил: нижний рабочий-толщиной 10 см и верхний защитный-толщиной 5 см.

Крепление "поперечин к продольным балкам пролетного строе ния осуществляется лапчатыми болтами Ф2С мы

Стыкование элементов настила производится вразбежку с таким расчетом, чтобы в одном сечении стыки в ниженем настиле

назначались для кажедой третьей, а в верхнем - для каждой второй доски

Конструкция проезжей части на деревянных поперечинах с двойным дощатым настилом отвечает условиям ее применения в лесных районах, легка по весу и проста в изготовлении.

все деревянные элементы пролетных строений, кроме настила тротуаров и перил, подлежат обязательному антисептированию по способу пропитки в горяче-холодных ваннах маслянистыми антисептиками.

В местах, удаленных от пропиточных цехов, при использобании древесины с начальной влажностью свыше 40% антисептирование древесины допускается производить пастами с последующим гидроизоляционными покрытием, согласно СНи П II-19-76.

- 6.9. Опорные части
- **631.** Пролетные строения устанавливаются на опорные части типов Тіп, Тін, Тіп-мя, Тін-мя, Теп, Тен, Теп-мя и тен-мя.

серии 3.501.1-129 "Опорные части железобетонных пролетных строений длиной от 4,0 до 34,2 м для экспезнодорожных мостов" Ленгипротрансмоста 1982 г.

- 6.92. Для лучшего распределения опорного давления на конструкции деревянных опор под нижние балансиры опорных частей укладываются распределительные плиты.
- 6.3.3. Для крепления опорных частей к ниженим поясам главных балок пролетных строений следует в верхних балансирах опорных частей образовать четыре отверстия 4.27 мм под болты М24.
 - 6.10. Пережодной пролет
- 6.10.1. Пролетные строения могут опираться на деревянные, сваиные и ряжевые опоры
- 6.10.2. Сопряжение ввух пролетных строении над деревянной опорой на свайном основании осуществляется при помощи переходного блока из металлических сварных двутавровых сплошностенчатых балок длиной 1,6 м опирающихся на специальные столики на торцах главных балок (см. докум 08.13)
- 6.103. При деревянных ряжевых опорах расстояние между осями опорных поперечников двух пролетных строений составляет 700 мм. (см. докум. 07.113)
 - 7. Указания по изготовлению металлоконструкций
- 7.1. Озготовления монтажи и приемка констрикций должены производиться в соответствии с главой СНи П. 11-18-75 и "Инструкцией по технологии механизированной и ручной сварки при заводском изготовлении стальных конструкций мостов "ВСН 169-80 Минтрансстроя СССР, главой СНи П. 11-43-75 и в соответствии с требиваниями настоящей серии пролетных строений.
- 7.2. Качество свойодных или не полностью проплавляемых при сварке кромак и деталей конструкции элементов прэлетных страений

долэнсны удовлетворять требованиям табл. 40 главы СНиП III-18-75 и "Инструкции по машинной кислородной резке проката из углеродистой и низколегирован—ной стали при заготовке деталей мостовых канструкций ВСН191-79
Минтрансстроя СССР с учетом следующей разбивки кромок по категорият:

 \cite{L} категория – продольные кромки верхних и нижних поясов главных и дамкратных балок;

ії категория - все кромки фасонок и стыковых накладок, ії категория - кромки элементов, не перечисленных в саставе 7 и її категорий.

- 7.3. Перед сваркой главных балок все стыки горизонтальных и вертикальных листов должны быть сварены автоматом так чтобы изготовлен ные листы с учетом влияния усадки при сварке листов между собой и приварке ребер жесткости имели необходимые полные длины.
- 7.4. Начало и конец стыковых швов поясов и стенок главных балок надлежит выводить на планки, удаляемые после сварки, с тицательной зачисткой мест их установки абразивным кругом.
- 7.5. Сварные стыковые швы стенок, параллельные ребрам экссткости, должны выть удалены от них на расстояние не тенее 10 t w (обычное исполнение) и 20 t w (северное исполнение), где t w толщина стенки.
- 7.6 Сварные стыковые швы горизонтальных и вертикальных листов рекомендуется располагать вразбеську с расстоянием месьсду ними не менее 100 мм. Стыки в горизонтальных листах рекомендуется располагать на расстоянии не менее 100 мм от вертикальных ребер жесткости
- 7.7. Форма обработки кромок заводских стыков поясов, вертикальных стенок и других элементов пролетных строений должна выполняться в соответствии с ГОСТ8713-79 и ГОСТ5264-80 и по заводским нормалям.
- 7.8. Механическая обработка швов и околошовных зон должна быть выполнена в соответствии с "Инструкцией по механической обработке свар ных соединений в стальных конструкциях мостов" ВСН 188-78:

79. В соответствии с "Инструкцией ВСН 189-80 при изготовлении металлоконструкций пролетных строений применяются следующие виды сварки:

Автоматическая под флюсом по ГОСТ 11533-75: для стыковых соединений, свариваемых в нижнем положении, заводских стыков поясов и вертикальных стенок главных и домкратных балок;

для тавровых соединений в лодочку поясных швов, соединянощих горизонтальные листы главных и домкратных балок, диагоналей продольных связей.

угловых соединительных швов ребер жесткисти со стенками с применением двух дуговых автоматов.

Полуавтоматическая под флюсом по ГОСТ 11533-75:
для угловых тавровых соединений-швы приварки ребер жесткости к стенкам балок при отсутствии двух дуговых автоматов; нахлесточных соединений при приварке элементов решетки поперечных связей (обычное исполнение), соединительных планок и т.п.

Ручная сварна по ГОСТН534-75; для коротких швов (длиной менее 300мм) стыковых, табровых, угловых и нахлесточных соединений металла во всех пространственных положениях:

8. Распределение сварных швов по категориям прибедено в таблице

Категория по снил <u>і</u> ї - 18-75	xарактеристика шва
I	 Полеречные стыковые швы нижених полсов главных балок. Концевые участки поперечных стыковых швов стенок главных балок на протяжении 20% высоты стенки, считая от ниженего пояса, но не менее 200 мм
Į.	 Угловые поясные швы нискених поясов главных балок. Поперечные стыковые швы стенок балок в растянутой зоне-на участке протэжением 20% высоты стенки, примыкающем к концеваму участку (ст. поз. 2). Продольные стыковые швы вертикалов главных балок, расположенные в растянутой зоне в пределах 40% высоты стенки, считая от ниженего пояса
<u> </u>	5. Все остальные швы

- 9. Монтаж пролетных строений
- 9.1. Монтаж металлических конструкций пролетных строений и устройство проезжей части должны осуществляться по проекту про изводства работ, разработанному специализированной проектной организацией.
- 9.г. При монтаже надвижской в проекте производства работ следует произвести расчетную проверку прочности и устойчивости главных балок на реальные нагрузки и предусмотреть порядок разборки временных стыков.
- 93. Прибывшие на строитлощадку конструкции подвереднится укрупнительной сборке в пространственные монтажсные блаки, состоящие из двух (для Г-4,5) или трех (для Г-8) главных балок, соединенных поперечными и горизонтальными связями.
- 3.4. Дальнейший монтаж может осуществляться одним из следиющих способов:
- а) на суходоле установкой конструкций двумя кранами грузоподъемностью 25 т кажодый с земли;
- б) сборкой на берегу с последующей надвижкой без промежсуточных опор. Для этой цели пролетные строения по концам снадокаются отверстиями для сборки временных стыков между соседними надвигаемыми пролетными строениями:
- в) на реках с достаточной глубиной леревозкой и монтажом с помощью плавсредств.
 - 10. DKDACK**A**
- 10.1. Очистка, грунтовка и окраска стальных конструкций должна выполняться соответственно требованиям СНИП 111-18-75, СНИП 2.03.11-85, а также СНИП 111-43-75.
- 10.2. Окрашиваемые повержности должны быть тщательно очищены от рэкавчины, грязи, экирных пятен и других загрязнений а также от влаги, снега и льда. Очистку, следует вести преимущественно механизированным способом.
- 10.3. Грунтовку стальных конструкций гледует полизводить в Зва Слоя (один слой- на заводе-изготовителе и один слой- на строи пельной площадке).
 - 10.4. Окраску стальных конструкций следует выполнять
- по грунту XC-010 по ГОСТ9355-81 или Фл-034 по ГОСТ9109-81 пержлорвиниловыми эмалями XB-110 по ГОСТ18374-79 в два слоя или XB-1100 по ГОСТ6993-79 в три слоя;
- по грунту ЭП-057 по ТУ 6-10-1117-85 перслорвиниловыми эми лями ХВ-1100 по ТОСТ 6993-79 в три слоя или ХВ-125 серебристия по ГОСТ 10144-74 в три слоя.
- 10.5. Окраску следует выполнять при температуре воздуха не ниже + 15° C.

- н. Техника безопасности и охрана труда
- И.І. При изготовлении конструкции пролетных строении следует руко водствоваться "Правилами техники безопасности и производственной санитарии при электросбарочных работах" Оретрансстрой, МПС, Минтрансстрой, 1966г
- 11.2. К изготовлению конструкций пролетных строений должны допускаться специально обученные рабочие под руководством инженерно-технического персонала. Мастера, рабочие и другие специалисты должны допускаться к производству работ по изготовлению конструкции после сдачи экзаменов техминимума по технике безопасности по специальности, на которой будет занят работник.
- 41.3. При монтаже конструкций должены соблюдаться требования техники безопасности в соответствии с главами СНиП III-18-75, СНиП III-43-75, СНиП III-4-80 "Техника безопасности в строительстве", СНиП 3.04.03-85 и ГОСТ 12.3.016-87 "Антикоррозионные работы при строительстве. Техника безопасности".

Условные обозначения Указывается на схеме конструкций

Nº 43AD

_ № документ<u>а, на каторот данный узел разработон</u>

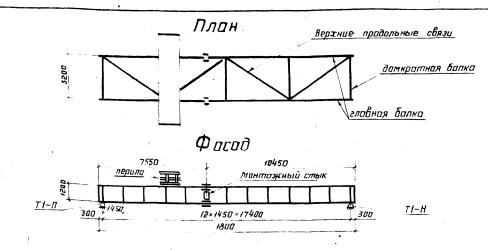
Указывается у разработанного узла

— Линия симметрии

- Болт нормальной точности

- Отверстие под болт

_____№ пункта


Механическая обработка с указанием пункта по ВСН 188-78.

г. Б. Ф4 > 120 — Гвозди

3.503.9-84.1-0103₃

Формат Аг

odnuce'u dama Boam unt V

Нижние прадольные связи 4 × 4350 = 17400

ат температуры

± 0,84

± 1.04

Μαδηυμα 1 Перемещения пролётного строения в см (для учёта при установке опарных частей)

примечания

нармативные кат бания ілемператур

reŭ)	🐪 Строительны	не высоп	761	
0,	ICCMDA HUA		Строиг бысс	пельная та, ми
	אָטחאָטוווטטוו	• .	обычное	северное
ат верха мастова га палатна по аси	до опорной плащадки	на апаре	1947	1951
משט שנו מאוועווועוניוו	ווווישווחמוזאמע מבווא מה	E nocaeme	1667	1667

Постаянная нагрузка на адну главную балку(нартавная)

Наименование	
металл пралётнага	строения
деревянная праезжая	часть
Umozo	

Распарка продальных связей

Поблица 2 Опорные реакции на одну опорную часть (от расчётной ногрузки)

	•
Наименавание нагрузки	R, TC
пастаянная нагрузка	10,1
временная нагрузка с динамикай	52.7
Umaza	6 2 .8.

ат временнай нагрузки

1,08

испалнение

обычнов

северное

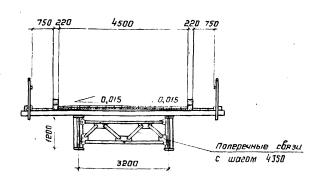
Опарные части *Μαδπυμα 3* (серии 3.501.1-129 Ленаипротрансмост, 1982г)

Исполнение	Пип опорной	Количества анкер - ных болтов на одну	* Высата алааной		Опарны х 7, мм	расстаяния между* анкерными болтоми,мм	
	40cmu	опарную часть, шт		מסבחים אמבלל שמבחים	поперек оси моста	вдаль оси маста	поперек осц моста
абычнае	TIN	4	260	6 O D	700	540	440
020141100	TIH	4	260	600	700	540	440
севернае	TIN-MA	4	264	50 0	700	540	440
G. G. PHUC	TIH-MA	4	264	600	700	540	440

*) высота опарной части и расстояние между анкерными болглами даны с учетам постоновки апорных плит пад апорные части.

Μαδπυμα 4

0,31


0,65 0,96

) Нагрузка, принятая при расчете *) Нагрузка, полученная по

0,26 0,65

чертежам КМ

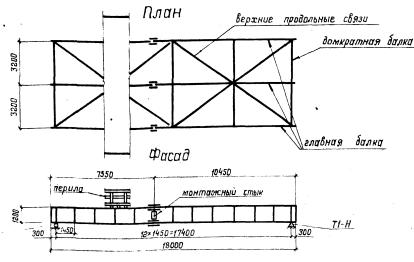
Паперечный разрез

Поблица в Поблица в Поблица 7 Основные конструктивные показатели Прогиб прапётного строения

, ,				, ,		·
Наименавание	E Ø.	Kon				с еред ине
на об от от мета маста мантаж-	τ	7,1		вид нагрузки	f npu.	nema f/ε
наибольшая длина монта ж - ного блока металлоконструкции	М	10,45		<i>Временная</i>	<i>СМ</i> 3.5	 1/497
			, ,		L	

ปิจิชยัพม อะหอชิหม่า ออจิอกา

Μαδπυμα8


. ,,		E∂	Каличества		
Наименование	Материал	Материал изм.		<i>исполнени</i> е	
мета	плаканстру	кции			
металл пралётного строения	CM. MEX-	T	10,8	10,9	
монтажные балты	ническую	T	0,3	0,4	
Breen: ·	кацию кацию	r	H,1	11,3	
апарные части серии 3.501.1-129		. T	. 0,7	0,9	
плиты пад апарные части		7	0,8	0,9	
маст	овое полог	. מאת			
песаматериал проезжей час- ти (пилёный)		м ³	33,/	<i>33,</i> /	
ποκοβκυ προεзχεεύ μαςτηυ		7	0,3	0,3	

	Стрепецкий Слобадчикова		3.503.9	- 84	r.1-□2	2013	
2л констр	<i>Тарнаруцкий</i> <i>Тарнаруцкий</i>	41-	Общий вид прапетнага страения в 18м г-4,5	ជិកាប់ពិបទ ប្រ	Лист	Листов	
рук бриг	Кирюжина	Muy	 строения стам 7-4,3. Основные данные.	ЩМИМпров	KICIRUPKO	нструкция	
	Цимбарг Евланов	Juneary			MENDHL		

Формат 2

B3am.ung. Nº		
падпись и дата		The second name of the second na
ign n	ا ان	1

распорка продольных Нижение продольные связи cชิดงย_ับ

Поперечный разрез < 0.015 ≥ 0.015 поперечные: связи с шагом 4350 3200 3200

Ταδπυμα δ

Таблица 7

Основные конструктивные показатели Наименование Kon. Наибольшая тасса монтажного блока металлоконструкции 11,1 Наибольшая длина монтажсного блока металлоконструкции 10,45

Прогиб пролетного строения Прогиб в середине пролета f/e Вид нагрузки CM

3,5

17,3

0,5

17,8

Q5

Количество

Объемы основных работ

Временная

Ταδπυμα 8

17,4

0,7

18,1

D,5

1/497

Наименование Материал Ед изм. одычнае себерное исполнение исполнение *теталлоконструкции* металя пролетного строения см, тежнимонтаженые долты ческую

BCE20:

ποκοδκα προεзοιτεύ части

опорные части серии 0,8 1,1 3.501 1-129 1,3 иторы занаропо бол итип тостовое полотно лесоматериал проезэнсей части (пиленый) M3 53,3 53,3

спецификацию

Строительные высоты

	Расстояния			ПЕЛЬНОЯ О, ММ
			Одычное	северное
	да опорнай площадки	на опоре	1972	1976
полотна по оси проезда	до низа конструкции	в пролете	1692	1892
	•		Tresamore 5	

Постоянная нагрузка на одну главную балку (нормативная)

Наименование	Принята ** ∵С/м	Получено*** тс/м
метал пролетного строения	0,28	D,35
деревянная проезжая часть	0,73	0,70
Цт ого: `	0,39	1,05

температур приняты: ±40°С (обычное испол.) ±50°С (севернае испол.) Ταδημμα 2

Ταδηυμαί

Опорные реакции на одну опорную часть (от расчетной нагрузки)

435C

Перемещения пролетного строения в см. (для утета при установки опорных частей)

±0,84

\$1,04

от температиры

диагональ продольных

от временной

нагрузки

108

*เช็ด*ร**ย**บ

Исполнение

эбычное

севернае

Наи ме нование на г рузки	R. TC
постоянная нагрузка	10,1
врем е нн ая нагрузка с динамикой	52,7
Umper:	52,8

Опорные части

примечания

нормативные колебания

Ταδπυμα 3

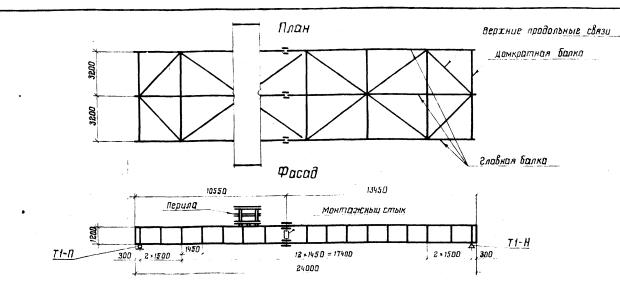
/ серии 3.5D1.1-129 Ленгипротрансмост, 1982 г.)

1 - 7 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2							
Исполнение	Тип опорнай	Количество анкерных болтов на одни	Высыта апарной*	размеры от плит,		анкерными с	между * Голтами, мм
	части	опорную часть, шт.	части, мм	вдоль оси маста	поперек оси моста	мост а	поперек оси моста
обычное	TIN	4	260	600	700	540	440
	אזד	4	250	600	700	540	440
северное	T1N-MA	4	264	600	700	540	440
cebepine	ТІН-МЯ	4	264	60D	700	540	400

4 × 4350 = 17400

*) Высота опорной части и расстаяние между анкерными болтами даны с учетом постановки опорных NAUM DOB ONO PHAIR YEETHA

Ταδρυμα 4


**) Нагрузка, принятая при расчете

**) Нагрузка, полученная по чертежам КМ

	Стрелецкий Спобойчикова		3 503 9	- 84	+.1-[]	3ПЗ
	Тарнаруцкий Тарнаруцкий		Общий вид пролетного	Стадия	flucm	Листав
Га инжеле	Тарнаруцкий	10	 строения в=18 м Т-8.	<u> </u>		1
Рук бриг	Кирножина	Alley	Основные данные	IIIIII	O/Trandi	Онстракц
Проверия	Цитбарг	Huerg	 уснооные одниые	LI INTINIPU	FULL I HULDL	INHEI HARTIA

Стадия Лист Листов **ЦНИЧ**проект с тальконструкция ит. тельникова

Формат А2

Поперечный разрез

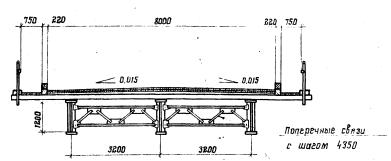


Таблица б Основные конструктивные показатели

Gonganate Konstripginingeriste institution				
Наименование	Ед. Изм.	Кол.		
Наибольщая масса монтажного блока металлоконструкции	т	14.57		
наибольшая длина монтажсного Фируу металлоканструкций	×	13.45		

Ταδπυμα 7 прогиб пролетного строения

вид нагрузки	Npozub B	середине пета
иши ниврузки	£ EM	f/B —
временная	5.94	1/394

Ταδημμα 8

Объемы основных работ

Наименование	материал	₽ð.	עתסא	чество		
		изм	204 402 948 4000	СЕВЕРНОЕ ИСПОЛНЕНИЕ		
металлоконструкции						
металл пролетного строенця	см.тежничес-	Т	26,8	27,1		
монтаженые болты	кую специ-	T	0,δ	1,0		
ceso :	фикацию	T	87,4	28,1		
опорные части серии 3,501 1-129		Τ	0,9	1,1		
плиты под опорны г части		τ	1,4	1,5		
мостовое полотно						
лесоматериал проезжеей части (пиленый)		м3	70,9	9,07		
поковки проезжеей		T	0,5	0,5		

Диагональ провольных связый Нижние продольные связи 4 × 4350 = 17400 *3000* Ταδηυμα 1

Ταδηυμα 4 Строительные высоты

Впропете

Строительная 8ысота, мм

северное

1985

1710

อชิธเนหอย

1981

1710

ремещения пролег	инэва строени	א ה בא. (טחא טאפודונ	при установке опорнызо
Исполнение	От временной нагрузки	Dт температуры	Примечание
абычнае	1,69	± 1.12	нормативные колебания температур приняты:
северное		± 1,40	± 40°C (обычное исполнение) ± 50°C (северное исполнение)

Таблица г Опорные реакции на одну опорную часть (от расчетной нагрузки)

, ,	
Наименованив нагрузки	R, TG
постоянная нагрузка	15.44
временная нагрузка с динамикои	58.2
umoeo :	73,7

Ταδημμα 5 Постоянная нагрузка на одну главную балку (нормативная)

Распорка продольных связей

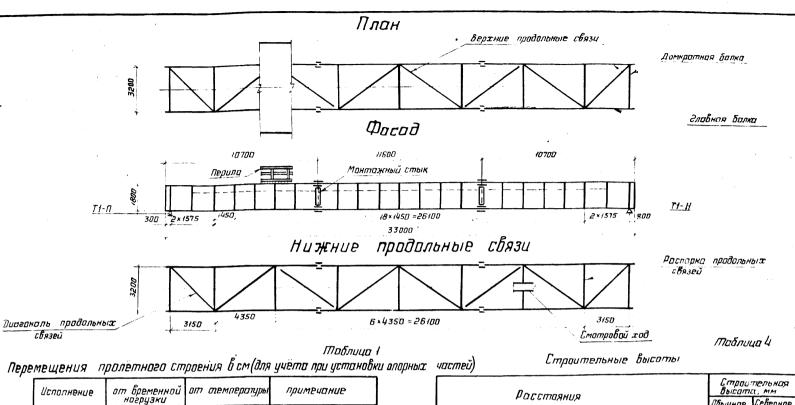
Расстояния

От верха мостово- до опорной площадки го попатна по оси проезда до низа конструкции

Наименование	Принято** ТС/м	Получен)*** ТС/М
металл пролетного строения	0.4	D. 3 <i>6</i>
деревянная проезжоля часть	0.73	0.70
: ดรดกาม	1,13	1.08

Опорные части

Ταδлица 3 (серии 3.501.1-129 Ленгипротрансмоста,1982 г)


<u> Исполненив</u>	Количество анкерных Тип опорной болтов на одну в		высота опорнац^	Размеры плит	, MM	Расстояния межоду* онкерными болтами.мм		
	части	опарнуно часть,шт.	части, мм	даоль оси Моста	Поперек оси моста	моста моста	Поперек оси мост о	
อธิมฯหอ2	Т1-П	4	£60	סמד	סמד	540	540	
	T1 - H _.	4	25 D	מסד	מסד	540	540	
севеаное	T1-N-MA	4	254	מסד	ספר	540	540	
	T1-H-MA	4	264	מסד	ממד	540	540	

🕈 высота опорной части и расстояние межеду анкерными болтами даны с учетом постановки опорных плит под опорные части

| Нагрузка, принятая в расчете *| Нагрузка полученная по чертежам КМ

Hay omd	Стрелецкий	Gunes	 3.503.9	- 84	1- Π	403	
Н контр	Спободчикова	13	0. 10. 0			,,,,	
Га. констр	Тарнаруцкий	6	อธิบบุน ชิบฮิ กออกรภาษอยอ	Стадия	JUEIT	Листав	
	Тарнаруцкий	17-	сторения 8=24m T-8.	Р		1	
Рук. бриг	Кир <i>ю</i> жина	others		HUUnone	ЦНКИ проект с тальконст рукция		
	цимбарг	Humog	GONES GAINIES	CHIMINIT OF	חסונאן בו וח	ת אשת ביו ויים	
ЦСЛОРНЦ П	Евланов	cur		им Мельниково			

Формат я 2

ροεεπ	Страительная высата, мм		
PULLIN	Обычное	Севернае	
00000000 00 00U	до апарной плащадки на сторе	2556	2560
	да низа канструкции в пралете	2285	2285
		ומתח	ב מווומ 5

пастаянная нагрузка на одну главную балку(нормативная).

. Наименавание	Принято** ТС/м	Получ ен О*** ГС/М
Металл пралётнаго страения	0,49	0,48
Деревянная проезжая часть	0.65	0,64
Итого:	1.14	1,12

 Высата, мм
 Сматровой ход
 7
 2,6
 2,6

 Всего:
 7
 30,8
 31,7

 2285
 2285
 Опарные части серии
 7
 0,9
 1,1

 3.501-129
 Плиты под опарные
 7
 1,0
 1,1

 2000-100
 1,0
 1,1
 1,1

Наименование

металл пралетнаев ставения

Μαδπυμα 6

Кал.

11.2

11.6

Ed. um

монтожные высокопрочны болты

Umaza.

Поперечный разрез

4500

_0,015 0,015 \

3200

Материал

EM MEX-

ническую

специфи.

KOUUKO

Объемы основных работ

ЕД ИЗМ.

металлоконструкции

220 750

Лалеречные связи

/Παδπυμα δ

Северное исполнение

27,5

1,0

285

Капичества

Обычное исполнение

27,4

0,8

28,2

с шагом 4350 Сматравай ход

мастовае палатно
песаматериал парезжей м³ 59,5 59,5
поковки праезжей т Q6 0,6

Опорные части — Паблица 3 (серии 3.501 /-129 Ленгипротрансмоста, 1982г)

		Количество анкерных Болтов на адну	*	Размеры апарных плит , мм		Росстаяния между * янкерными болтами, мі		
Vспапнение	Мип апарной части	апарную часть шт	высата опорной части, мм	вдаль аси маста	Лоперек оси маста	Вдоль оси моста	Поперек оси маста	
обычнае	T2- N	4 .	260	700	900	540	700	
00014/186	72-H	. 4	260	700	900	540	700	
севернае	Т2-П-МД	4	264	7 00	900	540	700	
сечерние	72-7 MA	4	264	700	900	540	700 ·	

нармативные калебания температур принять 14a°C (Вбынае испал.) ±50°C (Севернае испал.)

RITE

23.5

57.4

80.9

Μαδπυцα 2

± 1.56

± 1.94

Опорные реакции на одну опорную часть (от расчётной нагрузки)

2.23

нагрузка

Наименавание нагрузки

нагрузка с динамикой

Umaza.

Поблица 7 Прагиб пралетного строения

Оснавные канструктивные паказатели

Наименивание

допуратам магса маншажная Видка мышалоканструкции

Наибольшая длина мантажног блака металлоканструкции

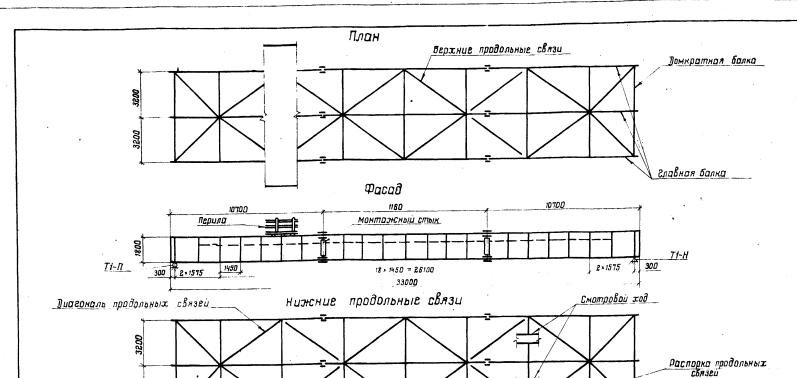
	Прагиб в середин пралёта				
вид нагрузки	f	1/2			
	EM				
Временная	7.3	1/444			

						анкерными	болтами	даны	с учетом
постонов	вки опорі	ныж плит	מסח ה	<i>опорны</i> 8	? ч а сти	1			

**) Нагрузка, принятая при расчете

Обычное

Севернае


пастоянная

бременная

н кантр	Стрелецкий Слабодчикава		3.5039			SN3	
гл. усни пЅ	Тарнаруцкий Тарнаруцкий	21- 21-	Общий вид пропётного строения в=33м Г-4,5.	<i>Стадия</i> р	Лист	ภมะเทอชั้ ใ	
Проберил	Кирюхина Евланов Евланов	Muns.	отроения сезам 1-4,5 Основные данные		им . мелькинструкцня		

^{***)} Нагрузка, полученная по чертежам КМ

6 × 4350 = 26100

Таблица 1 Перемещения пролетного строения в см.(для учета при установке опорных частей)

Исполненце	От временной на грузки	От температуры	Прим е чание
обычное	2.23	£ 1.30	нормативные колебания температур приняты:
северное	,,,,,,	± 1.94	±40°C (05614HDE UENDA) ±50°C(CEBEPHDE UENDA)

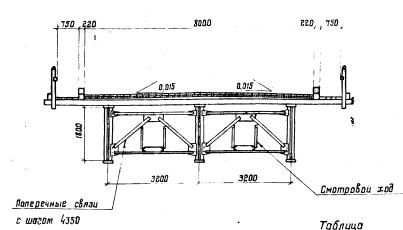
3150

Ταδπυμα 2

Опорные периции на одни опорнию часть (от расчетной нагрузки)

Наименование нагрузки	R,T£
постоянная нагрузка	23.5
временная нагрузка с динамикай	57.4
Umoro:	80.9

Ταδπυμα 3


(серии 3,501.1-129 Ленгипротрансмоста 1982г)

Исполнение	тип опорной части	количество анкер- ных болтов на одни опорнию часть	части, мм плипт , мм		ми, тилей имандзина мм, тилей жизач				
		шт.		880016 DCU MDCMID	поперек оси моста	88001 0CU 88001 0CU	Поперек осц мосто		
обычное	Т2-П		280	700	900	540	700		
	T2-H		260	700	900	540	ססד		
северное	T2-N-MA	•	264	700	900	540	ססד		
	TR-H-MA		254	מסד	900	540	מסד		

Опорные части

* высота опорной части и расстояние между анкерными болтами даны с учетом постоновки опарных плит под опорные части ** Нагрузка, принятая при расчете *** Нагрузка, полученная по чертежам КМ

Поперечный разрез

Объемы основных работ

количество Наименование Цзм. материал. DŌ 614 H D B UC TO J H B H L B Северное исполнение металлоконструкции металл пролетного стания 43,6 43.9 См. ПТЕЖНЦ монтажные вывоко прочные болты 1, 4 1,6 ческую специфи-45.0 45,5 umozo: кацию сматровай жад 5,1 5,1 : 05336 5 01 50,6 апорные части серии 3.501.1-189 1,3 Плиты под опорные части 1,6 1,7 мастовое полотно лесоматериал проезжсё части (пилёный) мЗ 97,3 97,3 покавки проезжеей част 0,8 0,8

Строительная высота, мм Обычнов Северное Расстояния 2585 до опорнои площадки на опоре 2581

от верха мостового עסט מת ומאותמתמת до низа конструкции в пролете 2310 проезда Таблица 5 Постоянная нагрузка на одну главную балку (нормативная)

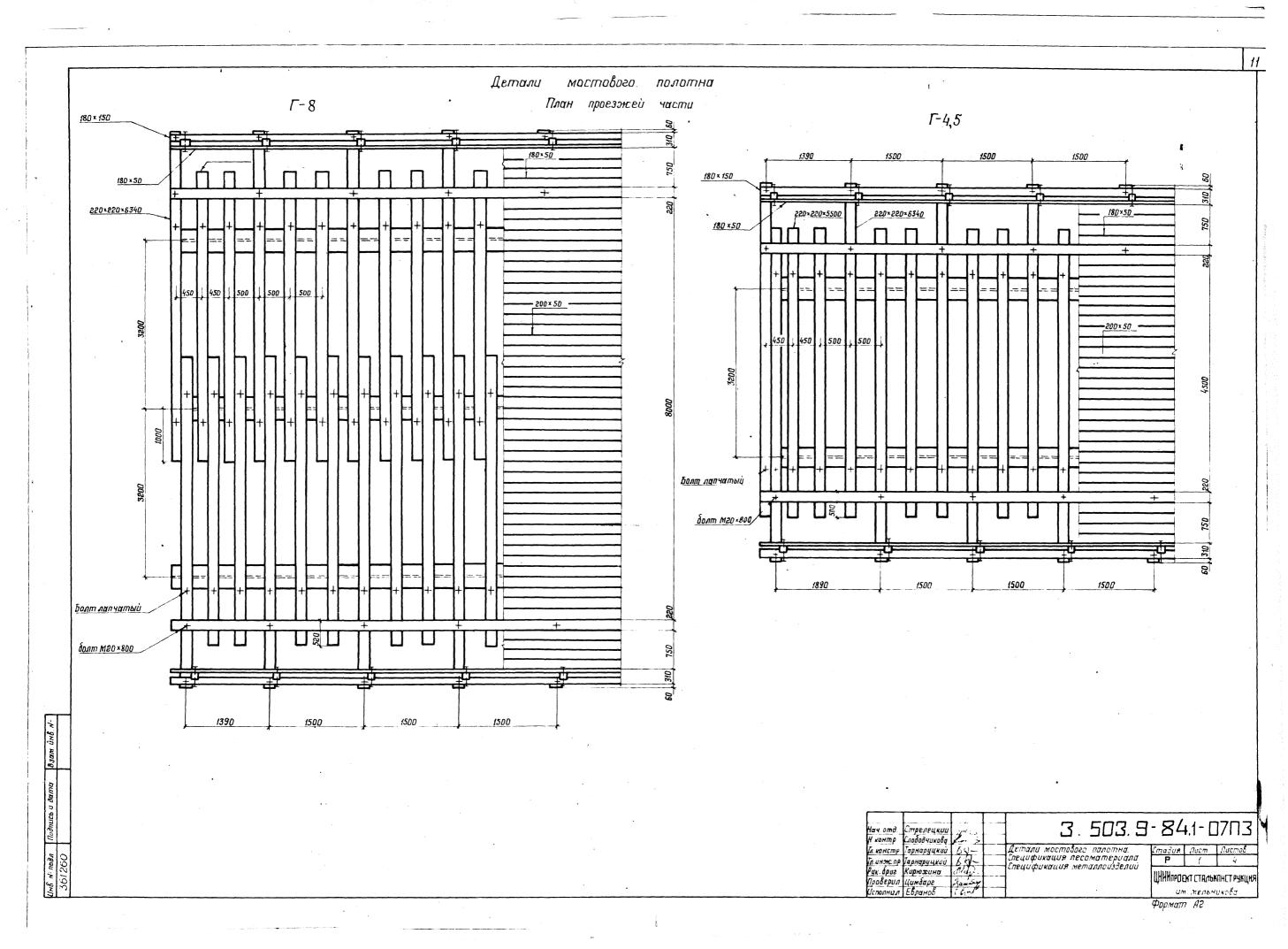
Строительные высоты

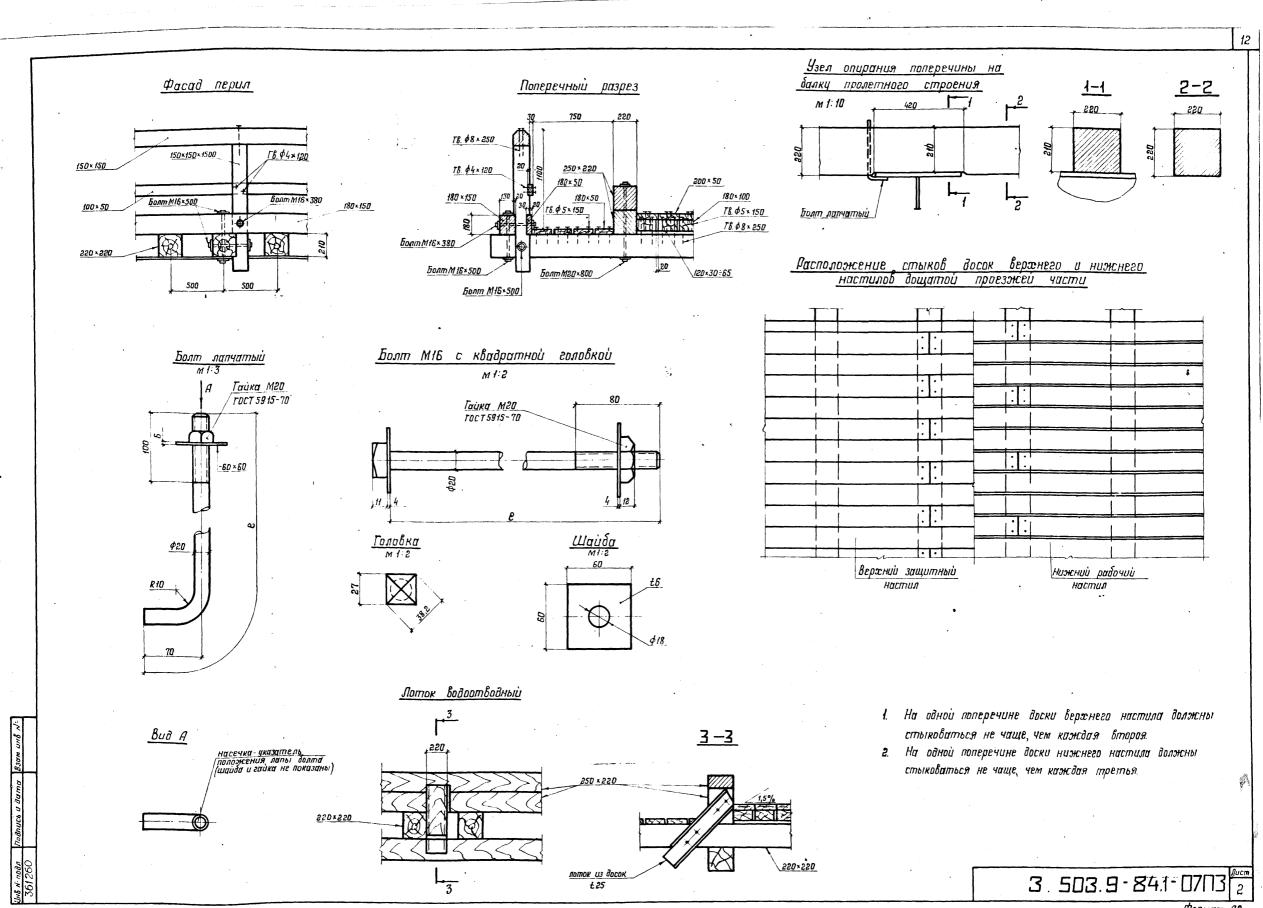
Лолучено*** ТС/М Принято ТС/м наименование металл пролетного строения 0.52 0.52 деревянная проезжая часть 0.73 0,70 : Оѕоти 1.25 1.22

исновные конструктовые г	ושצעאטיי	שוושוד
Наименование	ЕЭ. изм	KOA.
озана машаллоконструкцис Впака металлоконструкцис	T	5.81
Наибольщая длина монтажсного блока металлоконструкции	М	11 8

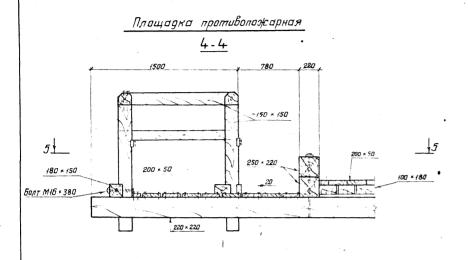
Ταδπυμα δ

Ταδπυμα 4

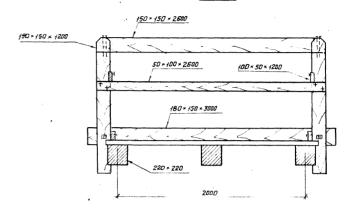

Ταδπυμα 7 Прогиб пролетного строгния

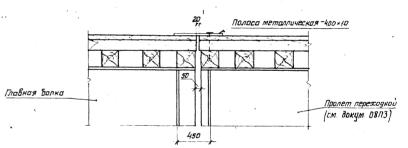

вив нагрузки	прогиб ц Ч	середине Салета
	f	1/2
	EM	-
<i>Временная</i>	7,3	1/444

Нач ота Стрепецкий Жими) Н.Констр Спабадчикова К 7	3.503.9	-84.1-0603
Га констр Тарнаруцкий [4]-	Общии вид пролетного	Ставия Лист Листов
Ги инж. пр. Тарнаруции Д/	- Строения С=33м Г-8.	P
Рук бриг Кирюжина Май.	CHIPDEHUA C OOM 7 G.	ЦНИКороентстальконструкция
Mosserun Kampape Kulasar	Основные данные	יייי איייייייייייייייייייייייייייייייי


Формат яг

Исполния Евланов


Формат А2


<u>5 - 5</u>


6-6

Сопряжение пролетных строений

Схема сопряжения опорных частей.

- <u>я Подвиженая апорная часть</u>
- Д— Неподвижная опорная часть
- l Расчетный пролет главных балок (17400 мм, 23400 мм, 32400 мм)

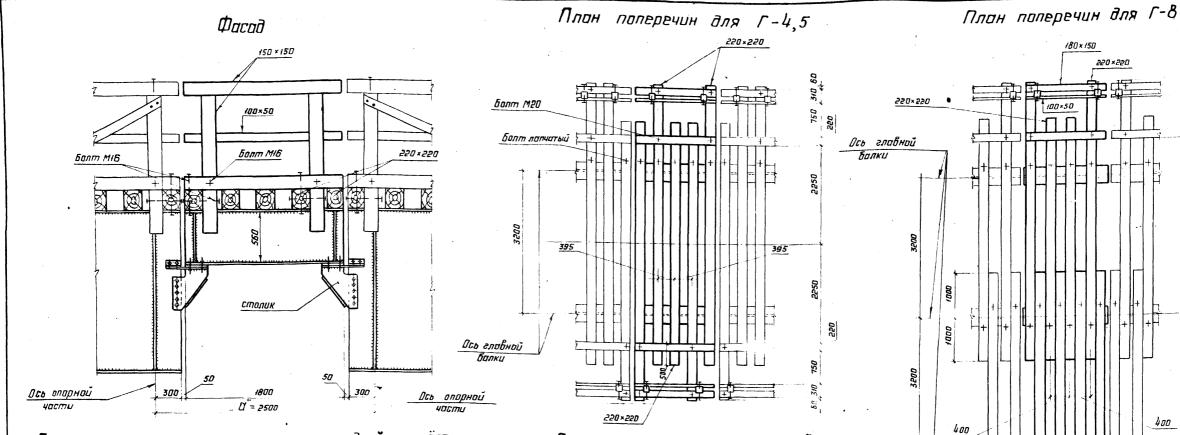
- 1. Размещение пративопажарных площадок на мосту решается в соответствии с ВСН ОТ-82.
- 2.Сопряжение при деревянных свайных опарах и размер "а"см. на докум. О8ПЗ.
- 3. Размер "О" при деревянных ряжевых опорах равен 700мм

3.503.9-84.1-07N3 3

Promotomonico	, apromamonua an	υM	anumanmuna	СППОВИЦЬ	สีลแมกม
Спецификация	песоматериала	ни	וויייושונטקוו	сприение	บงานหบน

0					18	Вм		ä	24M		3.	3 M	
Наименование	Сортамент	Сечение,	Длина,		4,5		-8		r-8		- 4,5		-8
элементов		мм	ММ	Кол., Шт.	0дъем, м ³	Кол., ШТ	Объем, м ³	Kon., ur	Одъем, м ³	Кол., ШТ.	0бъем, м³	Кол., ШТ	Odbem, M
		220×220	6340	26	7,9	26	7,9	34	10,4	46	14,0	46	14,0
Поперечины	Брусья по	220×220	5520			48	13,2	64	17,7			88	24,3
,	TDCT8486-86E	220×220	5500	13	3,5					23	8,1		
Доски рабочего	Бруски по	180 × 100	18000		8,1		14,4						
настила	TOCT8486-86E	180×100	24000						19,2				
		180 × 100	33 0 00								14,9		26,4
Доски защитного	Доски по	200×50	18000	•	4,1		7,2						
настила	TOCT 8486-86E	200×50	24000						9,5				
110011100110		200×50	33000								7,4		13,2
	Брусья по	220×250	18000	4	4,0	4	4,0						
Κοπετοοπιδοù	TOCT8486-86E	220×250	24000					4	5,3				
		220×250	33000							4	7,3	4	7,3
Стойки перильные	Брусья по гост 8486-86E	150×150	1500	28	0,9	26	0,9	34	1,2	46	1,8	46	1,5
Бру	Брусья по	150×150	18000	2	D, 8	2	0,8						
	TOCT 8486 - 86E	150×150	24000					2	1.1				
		150×150	33000							2	1,5	2	1,5
Заполнение	Бруски по	100×50	18000	2	0,2	2	0,2						
перипьное	10CT 8486-86E	100×50	24000					2	0,2		0,3		0,3
	106/8480-806	100×50	33000							2		2	
		180×100	18000	2	1,0	2	1,0						Ī
Брус крайний	Бруски по	180×100	24000					2	1,3	,			
,	TDCT8486-86E	180×100	33000							2	1,8	2	1,8
п ,	Бруски по	120×(30÷65)	2250	78	1,0					138	1,8		
Прокладки уклонные	TDCT8485-86E	120×/30:95)	4000			74	2,1	98	2,8			134	3,9
		180×50	18000	8	1,3	8	1,3						
Настил тротуара	LOCKU NO	180×50	24000					8	1.7				
	TOCT 8485-86E	180×50	33000							8	2,4	8	2,4
	Conut 20	180×50	18000	2	0,3	2	0,3						
Брус охранный	Доски по	18D×50	24000					2	0,4			1	
·	TDCT8486-88E	180×50	33000							2	0.5	2	C. 6
Umozo:					33,1		53,3		70,9		59.7		97,3

The state of the s	Спецификация	метал л оизделии	НД	пролетное	строение	<i>ชิภ</i> ขหอ่น
--	--------------	-------------------------	----	-----------	----------	------------------


ไซอ์กบนุต 2

Τσδηυμσ (

		Длина	18 m				241	и	33 M			
Наименование	Сечение, Длини		T-4,5		<i>T</i> -8		T.	<i>F-8</i>		-4,5	1	-8
·	мм		Kon.,	Macca, KT	Кол., шт.	Macca, Kr	Кол., шт.	Macca,	Кол., шт.	MOCCO,	Kon., WT.	Macca.
кой пталдор ройш чайнайрэр с san-	\$20	400	78	83	74	79	98	105	138	147	134	143
Παη ναπω ύ δολ π ε εσύ - Κού <i>U ωσύδο</i> ύ	Ф 20	450			74	89	98	117			134	160
Болт с гайкой и двумя шайдами	M 16	380	25	25	26	25	34	32	46	43	46	43
ចិត្តភា ្ត្រ ខ្លួច ខ ខ្លួច ខ្លួច ខ	M16	500	52	60	52	60	68	79	92	106	92	108
δολπ. C 2αὐκού υ δέγμη ωαὐδαμυ	M 2D	800	26	75	26	75	34	97	46	132	48	132
Гвозди	Γ8 Φ 4	120	52	1	52	1	68	111	92	1	92	1
Гвозди	TB \$5	15D	2300	51	4700	105	8200	139	4700	105	8100	181
<i>โ</i> ธือ3ชิบ	Γβ Φ8	250	52	5	52	5	83	7	92	9	92	g
Umoeo				300		439		577		543		775

180×150

100×50

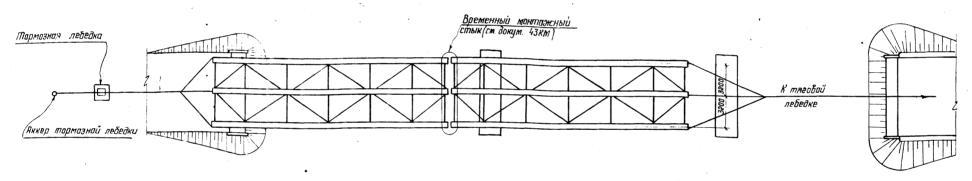
Спецификация песоматериала на переходной пролёт

., .			2	<i>r</i>	4,5	<i>/</i> -	8
Наименование	сортамент	CEYEHUE	Длина, мм	КОЛ. ШП.	OĐSËM,	אם א וחש	объём, м3
	δρίζερα πο		6300	4	1.2	4	1,2
палеречины	ract 8486-86E	220×220	5700			4	1.1
			5500	+	0,3		
Доски рабачего настила	БРУСКИ ПО ГОСТ 8486- 8 6E	180×100	1800		0,8		1,4
Доски защитного настила	DOCKU NO FOCT 8486-86E	200×50	1800		0,4		0,7
Колесовтбой	Брусья по гаст 8486- 8 6Е	220×250	1800	4	0,4	4	0,4
Стайки перильные	БРУСЬЯ ПО ГОСТ 8486-86E	150 × 150	1500	4	0, 1	4	0,1
Ларучень	Брусья па Гаст 8486-86E	150×150	1800	2	0,1	2	0,1
Заполнение перильнае	бруски по ГОСТ 8486-86E	100×50	1800	2	0,1	2	0,1
брус крайний	Брусья па ГОСТ 8485·86E	180×150	1800	5	<i>0,1</i>	Đ	0,1
discontinue of the second of t	брусья по	120×(30÷90)	400	5×2	0,1	8	0,2
Прокладки укланные	TÜÜT 8486-86E	120×(30÷65)	225	5×2	0,1	8	0,2
Настил тротуара	DOCKU NO FOLT 8486 86E	180×50	1800	8	0,1	8	0,1
брус охранный	ДОСКИ ПО ГОСТ 8486- 8 6E	₹80×50	1800	2	0.1	2	0,1
Итого:					3,9		5,8

Спецификация металлоизделий

Наименование	0	Длина,	7	-4,5	r	-8
пиименициние	Сечение, мм	MM .	Кол. шт.	Масса, кг	Кол. шт.	MOCEO
гайкой и шабдой С тидтатый с	Ф 20	400	10	H	8	8
รอบหอบ บ เมื่อกู้ 60กับ ชื่อมนม บันเลี้ยงกับ	Φ 20	450			8	10
болт с гийкой и двумя шойбоми	MIB	380	4	4	4	4
δοπη ε ε ούκο ύ υ δομη ε εούκού υ	M16	500	8	9	8	9
ភិព្វាកា ៩ ខិត្តប៉ុស្តែធំ ប វិសិទ្ធាន យុច្ចបំពីជាមប	M20	800	4	12	4	12
гвазди	φ4	120	8	,	8	1
г вазди	Φ5	150	475	11	840	19
гвозди	Φ7	250	8	1	8	1
Итого:		L		49		64

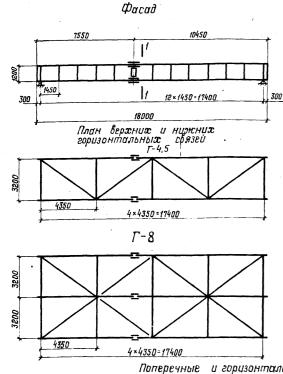
Работать совместна с докум. 38КМ


อิอภกา ภอกฯฮาษนั้

Болт M 20-800 }

3.503.9-841-0803 Нач.отд Стодия Лист Листов Мостобое палотна переход ного пралета. Спецификация лесоматериала. Специфика ция металлоизделий Торноручкий глинжла Тарнаруцкий им. Мельникова Валинальникова

Формат А2


План

Указания по монтажу металлоконструкций

- н На чертеже показана надвижка пролетного строения длиной 24м, надвижка пролетного строения длиной 18 и 33м праизводится аналогично
- г. Настоящие саображения по монтожу пролётных строений действительны при общей нагрузке не более 0,94т на пое м одной балки. В случае изменения условий мантажа или нагрузак канструкции должны быть проверены на прочность и устойчивасть, а так же должен быть пересчитан монтажный стык.
- 3. Сборка пролетных стравний и надвижка производится с одного из берегов.
- 4. Складирование и сварки метаплоконстрикций на насыли подходов следиет производить с ичётом последовательности надвижки Целесообразно на обочинах праизвадить сбарку отдельных элементав в влаки. Мантаж влаков праизвадится на клетках.
- 5. Приведенные саабдажения па мантажу не исключают неабходимасти састовления проекта производства работ.
- Б. Мантажный стык между пролётными строениями см. на дакум 43КМ.
- 7. На время мантажа апарные столики перехадного пролёта, мешающие образованию стыка между пролётными строениями, снимаются

	Стрелецкий Спаводчикова	1		3.503.9	- 87	+.1 - [1903
	Марнаруцкий		1		Стадия	Лист	Juemob
	Парнаруцкий		+	Мантаж пралетных			1
	Кирюжина	Mich	1	walkustrunii	(IMILIA		
Проберил	Кирюжина	Mic	1	compacinad incompanies	Transport of		HC16AKMA
Исполнил	васильеба	Beck	1		UM /	<i>Тельник</i>	gb q

• Расчет поперечин проезжеей части (Ru=160 krc)

Сечение	М Расч.	Эскиз сечения	W	G
	тсм	CM	€M ³	KTC/CM2
Пролет	2,19	الرائع ا	1775	124
Консоль	0,9	्र इंट	1775	51

Поперечные и горизонтальные связи; сталь марки 15 ХСНД p_y = 3000 $\frac{kTC}{cm^2}$

Связи	Наименование элемента	Эскиз сеч е ния	Состав сечения	A	7; 74	E _Y	Λ _× Λ _y	φ	<i>УА</i>	N	По устой- чивости G _N = N УЯ	Примеча- ние
	Swellie initia	ce remain	MM	EM 2	CM	CM			CM2	mc	KTC/CM2	
	·	, — y	1 1		2,44	128	53]				
ные	Пояс	8	2L80×8	24,5	3,62	320	89	0,83	15,5	29,4	1894	нор
Попереч	_	X *** X	· .		2,44	87,2	38					ا ده ا
/Jon	Раскос	1,9%	∠80×8	12,3	1,57	109	70	0,74	9,1	10	1102	на болтах точности
1		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1. 130×10		4,23	439	104					HI HVOT
a.	Циагональ	2	2. 180 × 10 Umozo:	31	3,96	351	89	0,38	11,8	5,5	563	יטני /
Горизонт ные					2,76	320	116					<i>Крепление</i> мальнои
Top.	Распорка	8	2L90×8	27,8	4,01	256	64	0,32	8,9	2 3 ,5	2643	Rpe

Домкратная балка Материал конструкций сталь марки 152СНД

				7 3,- 4	Ry	3000 Krc/	M ²	
Эскиз Сечения	Состав сеч е ния	А	J _x	W _x	æ	M	$G = \frac{M}{2EW}$	Примеча- нив
	мм	CW 5	EM 4	CM ³		тсм	KLC/CW 5	
T1	18.2.n.200 × 10				,			Крепление 9 болта -
2	2 B. n. 80 6 × 10	120,6	45,2×10 ³	1095	1,125	9,0	1540	ной точ- ности
3_	3 н.г.л. 200 × 10							M22

Опорные реакции на одну опорную часть

Напшенование	Нагрузк	Переме-	
нагрузки	норма- тивная	Расчет- ная	щение Д. см
Пос тоянния	8.5	10,1	∆ _t . = 0,9
Временн ая	33,8	52,7	1,2
Итого:	42,4	62,8	2.1
Давление под опорной плитой кг/см²		13,9	

Расчетные характеристики главных балок

Материал конструкций: сталь марки 15XCHД R_u =3000^{MT/c}m², д'=1,15; m=1

	Ī	Геомет	Геометрические жарактеристики сечения							Напряжения				
Сеченце	Усилие	tw	hw	A	Some	W	J	x	$G = \frac{M}{2EW}$	T = Q.Some	T= Q m hwtw	VG2+3tm2 ≧ ≤X'Rm		
	ITM, IT	СM	CM.	LW3.	CM ³	CM 3	CM 4		KTT/Cm2	KTC/CM2	KTC/CM2	KLC/CW 5		
Me/z	211	1,0	120	248		10×10 ³	51,8×10 4	1,084	1947					
Qon	62,8	1.0	120	248	58 9 1		61,8×104	1,079	_	538				
Q e/2	18,3	1,0	120	248	5691	10×10 ³	61,8×104	1.079	1947		153	1985		

Коэффициенты поперечной установки

	Γαδαρυπ							
Нагрузка	T-4,5	Γ-8						
Пчерузки	Крайняя балка	Крайняя балка	Средн яя					
<u> Г</u> случай	0,578	0.469	тележка 1,082 0.892 равномер. распр					
A8 [[случай	0,734	0,781						
Kp A3	0,734	0,781	1,0					
HT-80	0,810	0,857	0,594					
Толпа	1,389	1,436						

Іслучай-невыгодног размещение нагрузки А8 на проезжей части (в которую не входят полосы везопасности) й случай-при незагруженных тротуарах невыгодног размещение нагрузки А8 по всей ширине ездового полотна (в которое входят полосы везопасности)

Динамические коэффициенты

Пролет т	Нагрузка	1+ M=1+ 15 37,5+h
	A8	1,273
17,4	Кр АЗ	1,273
,	HF-60	1,100

Прогив главных балок

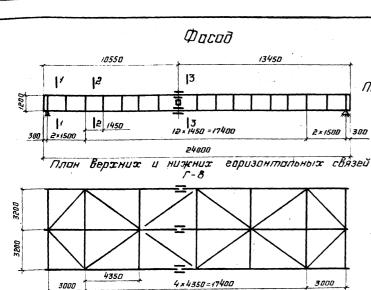
Наименование нагрузки	Npozuá f (cm)	$\frac{f}{\mathcal{E}}$
1.0т постоянной	0,9	
2. От временной НГ-60	3,5	$\frac{1}{497} < \frac{1}{400}$
Σ	4,4	

Постоянная нагрузка на одну главную балку

Пролет	Нагрузка	Габарит .					
M	mc/M	T-4,5	T-8				
	9 HOPM	0,91	0,986				
17,4	g Pact. max	1,07	1.18 0.89				

Проверка на устойчивость

Сечение	Коэффициент т
1-1	0,835


300 7250 10150 300

Сжема строительного подъема

	Стрелецкий Слободчикова		3.	503.9	-84	1.1-10	1П3
	Тарнаруикий		 		Стадия	Aucm	Листов
Та.инэю.пр.	Тарнаруцкий	17-	Расчетный	auem	P	1	4
Рук бриг.	Кирюжини	skills	1 40 10,,,,,,,,,	arden,	muu	107 F 7 8 4 1	ЮНЕТРУКЦИЯ
Праверия	Кирюжина	stall,			1	THE PROPE	•

Формат Аг

им. Мельникова

Поперечное сечение на опаре (Δομκραπικα Α δαπκα)

III.								
11001050105	0 1050 1050 1100							
3200	3200							

Расчетные характеристики главных балок

Материал конструкций: сталь марки 15 ХСНД $R_y = 3000^{RC}/cm^2$; $\gamma' = 1.15$; m = 1

2		2еимел	Сеаметрические характеристики сечения							Напряжения			
С'ечение	Усилие	$t_{\rm w}$	hw	A	Some	W	I	æ æ 2	G= M/EW	T= 2 Some	mhwtw	√62+322€ ≤γ'Rm	
	mm, m	CM	EΜ	EME	<i>ЕМ</i> З	CM3	EM 4		KIC/CMF	KITC/CM	KLC/CW5		
M _{l=4.35m}	215 .	1,2	120	272	_	10,5×10 ³	64,7×10 ⁴	1,084	1889	_			
Me/2	355	1,2	120	344	_	14.8×10 ³	92,3×10 4	1,056	227/	-	-		
Gon	73,7	1,2	120	272	6051	_	64,7×10 4	1.089	_	528	_		
Ql/2	20,8	1,2	120	344	8,285	14.8×10 ³	92,3×10	1,065	2271		144	2285	

Казффициенты поперечной установки

	<i>2αδυρυπ</i>				
Нагрузка	r-8				
, 5	Крайняя Балка	Ср едн яя балка			
. <u>Т</u> случай	0,469	1962 (1892) 1962 (1892) 1964 (1892)			
A8	0,781				
KpA3	D, 78 f	1,0			
H	0.657	0,594			
Малпа	1,436				

I случай - невыгаднае размещение нагрузки A8 на прагэжей части (в которую не входят полосы безопасности Ії случай - при незагруженных тратуарах невыгаднае размещение нагрузки Ав по всей ширине ездаваго полотна (в китарое вхадят паласы безапаскости)

Динамические каэффициенты

Пролёт м	Нагрузка	1+ ft = 1+ 15
	A8	1,246
23,4	KpA3	1,246
	HT-60	1,1

Постоянная нагрузка на одну гловную балку Прогиб главных балок

Пролёт	Нагрузка	<i></i> 2 α δ α ρυ <i>π</i>
M	mc/M	r-8
07.4	g MODM	1,13
23,4	g max	1,32

Проверка на устойчивасть

	Сечение	Козффициент Т
	1-1	0,34
	2-2	0,561
\$000	3-3	0.89

Поперечное сечение в пролёте

r-8	
	200
 	,
1600 1600 1600 1600	
3200 3200	
-	

חסחב	еречин	774 (R _u = 160 <u>krc</u>)			
Сечение	м ^{расч.}	Эскиз сечения		G	
	MICM	CM	EM 3	Krc/cm 2	
Пралёт	2,19	x x	1775	124	
Консоль	0,9	55	1775	51	• .

Эсниз

CEVENUR

Расчёт

*โชห*รม

HDIE

Наименование

элемента

MORC

Раскас

Диаганаль

Распорка

Поперечные и Ма

24,6

27.8

Состав

сечения

2 L 80 × 8

L 80×8

. /30 × 10

180×10

2190×8

гаризан	таль ные	Сбязи		
атериал	канструкц	បល្អ : ៤៧៧៧៦	марки	15 XCH

128

320

87,2

109

439

35/

320

256

 τ_y

2,44

3,62

2,44

1.57

4,23

3.96

2.76

401

ע ג

53

89

36

70

104

89

115

54

НД

15,5

9,1

11.8

8.9

0,63

0,74

0.38

0,32

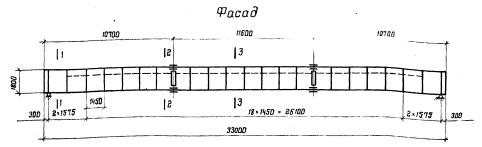
29,4

1D

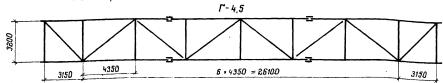
6,6

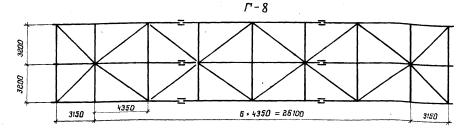
23,5

į	- 3000	/CM~	TIPOCOO CITABII	0,20	J/•	
	NO YEMOÙ 4UBOEMU ON- GA KIC/EMP	Приме- чание	Наименование нагрузки	Прогиб f (см)	$\frac{f}{\ell}$	7
		ż.	1.От постоянной	2,18		1
	1894	с нар м 23	2. От временной	5,82	402	_
		балтах асти м	Σ	8,0		
	1102	gar tacr	Схема стро	מאפתישות	on nnda	ÄMM
		но балт точнасти		- 9	מטפור טי	C//Q
	563	รหบย วบั ,				
	2643	Крепление мальной п	10	77		_
	~073	18 MD M	300 (0 250		13150	


Опарные реакции на адну апарнию часть

			•
Наименавание	Нагрузн	Переме	
наерузки	норма- тивная	расчёт- ная	щение Д (GM)
Постоянная	13,22	15,44	Δ _t ° = 1,2
Временная	<i>35,9</i>	58,2	1,9
Umae a :	49,1	73,7	3,1
Давление пад впорной плутой кг/см		13,2	


Дамкратная балка Материал канстаикиий сталь марки 15 ХСНД

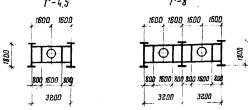

	,	,000.	,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Ry	=3000 KI	TEMP	
Эскиз сечения	Састав сечения	A	7,	W,	æ	М	6= <u>#</u>	Примеча ние
	MM	EME	EM4	EM3		PTTEM	KIC/CME	
T. /	1. B.z.n.200×10							Хрепления 9 болтоми
	2.B.n. 806×10	120.6	45.2×10 ³	1095	1.125	9.0	1540	ной ной тачнас-
1 3	3. H. P. N. 200×10			-				mu N22

3.503.5-84.1-10N3 5

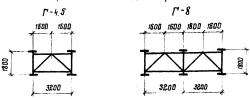
план верхних и нижних горизонтальных связей

главную балку главную балку

Пролет	Нагрузка	гав	арит
M	TIE /M	r-4.5	17-8
	д норм	2.14	1.25
32,4	g Pacu max	1,32 1.03	1,45


Расчет поперечин проезжей части $(R_u = 160 \frac{\kappa_{TE}}{\epsilon_{ME}})$

Сечение	M POC4	Эскиз 5848ния	W	б
	MICM	EM	CM 3	KTC/CM2
Пролет	2.19	x y	1775	124
Консоль	0,9	38,,	1775	51


Расчетные характеристики главных балок марки 15хснд материал конструкции: сталь марки 15хснд $R_y=3000$ м (y=1.15) , y=1.15

		Геометрические жарактеристики сечения					Напряжения					
Сечение Усилие	t _w	h _w	А	Some	W	J	2 22	$G = \frac{M}{2CW}$	T= Q · Some	"IN TW tw	√σ²+3τ²≤ ≤γ'Rπ	
	темт	CM	CM	SWS.	CM3	EM 3	SM4		KTE / CM B	KTC/CM2	KTC/EM2	KTC/EM2
M _{10,4 M}	498	1.2	180	344		17,9-103	163,9 · 104	1,097	2536			
M E/B	57 1	1.2	180	415	,	24,3 · 10 3	224,9·10 ⁴	1.084	2168	_		
Q _{on}	80,9	1.2	180	344	10871		163,9 · 104	1, 114		394		
D _{e/e}	88,3	1. 2	18D	416	13985	24.3·10 ³	224,9·10*	1.087	2168		103	B175

Поперечное сечение на опоре (Домкратная балка) Г-45

Поперечное сечение в пролете

Козффициенты поперечной установки

Γ		a	αδαρυπ	
H	агрузка	1-4.5	7	-8
l "	чорузка	Краиняя балка	Χραύ <i>Η</i> ЯЯ δαρκα	<i>ΓρεδΗΑΑ</i> δα Λ κα
A8	I случаù	0,578	0,469	теленска 1.062 0,896 равномерн
70	<u> по</u>	0,734	ס,781	
K	'ρ Я З	0,734	0.781	1.0
Н	r-60 ·	0,510	0,857	0,594
TO	מחתם	1.389	1,435	

т случай - невыгодное размещение нагрузки Ав на проезэнсей части (в которую не в ходят полосы безопасности)

<u>п</u> случай – при незагруженных тротуарах невыгодное размещение нагрузки яв по всей ширине ездового полотна (в которое вхадят полосы безопасности)

Поперечные и горизонтальные связи

поперечных связей сталь марки 16Д $R_y=2200~\frac{K\Gamma C}{CM^2}$ Материал конструкций: (обычное исполнение) горизонтальных связей сталь марки 15ХСНД $R_y=3000~\frac{K\Gamma C}{CM^2}$ (северное исполнение) сталь марки 15ХСНД $R_y=3000~\frac{K\Gamma C}{CM^2}$

Связи	Наименование злемента	Эскиз сечения	Состав сечения	А	7 _x	Ex Eu	Λ _x	y	УA	N	По устой - чивости б _н = <u>»</u>	Примечі Эцн
[337677677774	00 10/14/1	MM	EM 2	EM	EM			EME	mε	KIE/EM 2	
		$x - \int_{-\infty}^{y} x$			2.75	256	93					anp-
Паперечные	Пояс	8	8 7 30 × 8	27.8	4.01	320	80	0,61	16,95	15.4	965	нормаль- мав
ada		$x \longrightarrow y = x$			2.76	156	60					מב
Пап	Раскос	8	2 L 90 ×8	27.8	4.01	208	52	0,78	21.58	10,7	495	на болтах точности
2		1	1. 130×10		4.23	540	128					DH OM
горизонталь ныв	диагональ	2	2.180×10 Umoza:	31	3.98	432	109	0,276	8,55	11.7	1372	Крепление . ной
130H1 HDIE					2,78	320	116					enne
dos	ραςπορκα	8	2 ∠90×8	27,8	4.01	258	64	0,454	12,52	14.8	1173	κp

Домкратная балка Mamepuan конструкции : сталь марки 15XCHQ $R_y = 3000^{879}$ cm²

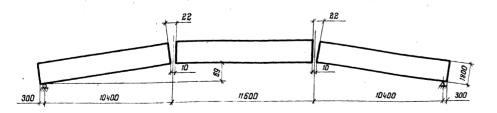
Эскиз сечения	Состав сечения	А	$J_{\mathbf{x}}$	₩ _x ₩ _x ω _x 3	x	M	G= M HEW	Примеча- ние
1	мм 1.8.г.п. 200×10	CM 2	CM4	LM 5		III CM	Krc/cm²	Крепление 16 балта - ми нар
2 3	2.8.n. 1406 × 10 3. H.Z.N. 200 × 10	180,6	43,2 × 10 ⁴	6.06×10 ³	1 · 159	£9,1	415	мольноц точности м 22
2 1 3 1 5 6	1. & 2.0. 200 × 10 2. & n. 24.6 × 10 3. 2. n. 120 × 10 4. 2. n. 120 × 10 5. & n. 440 × 10 6. N. 2. n. 200 × 10	132.5	41.7 - 10 4	5572 5148	1	22,4	<u>403</u> 365	

Опорные реакции на одну

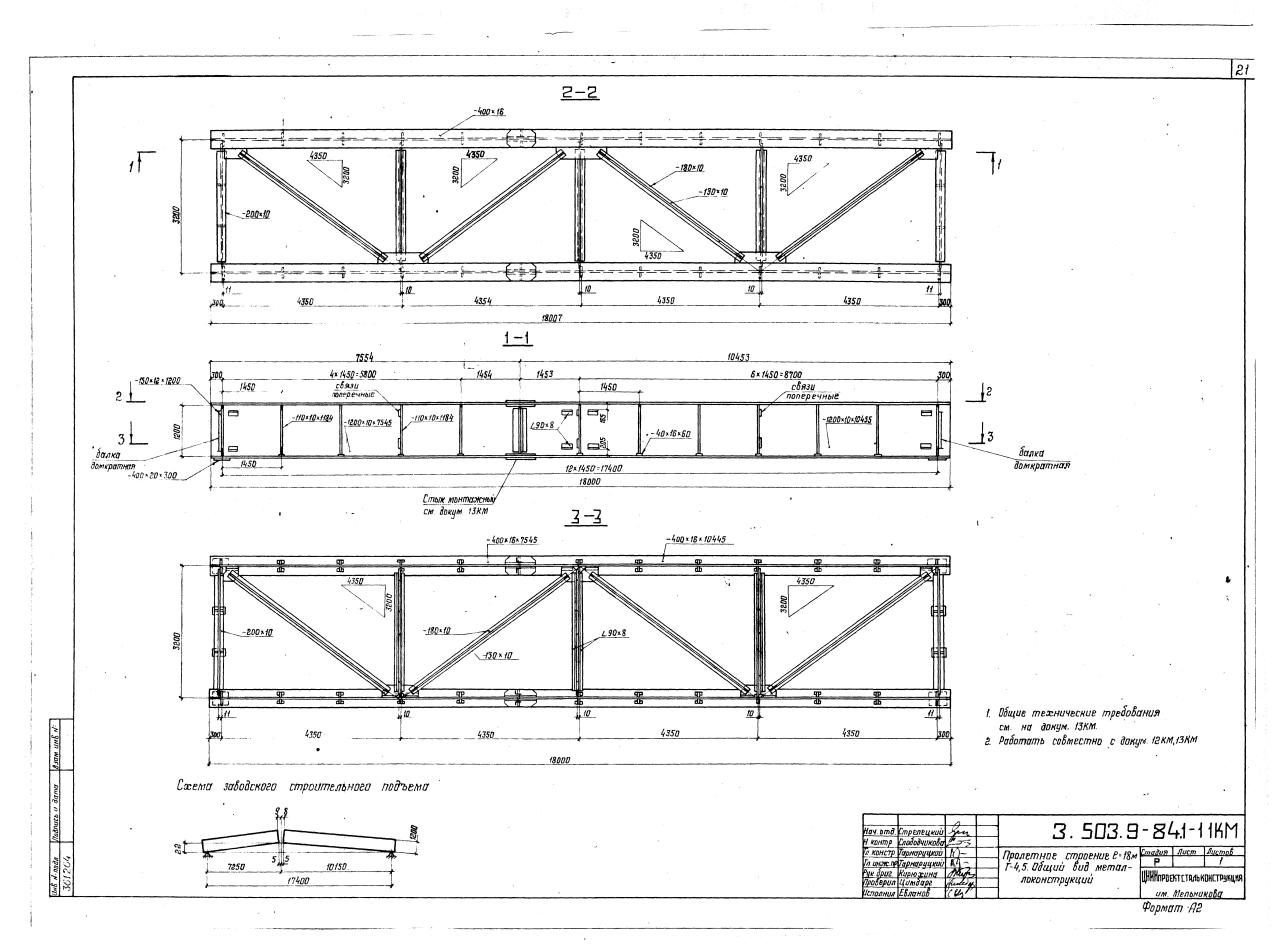
Наименавание	нагруз	нагрузка (тс)						
нагрузки	норма – тивная	Расчет - ная	Ф(сw) Ф(см)					
Постоянная	20,3	£3.5	$\Delta_{t^o} = 1.6$					
временная	39,4	57,4	2,2					
<i>បកាចខ</i> ០:	59,7	8D,9	3,8					
Давление пов опорной плитой кг/вме	_	13.8	_					

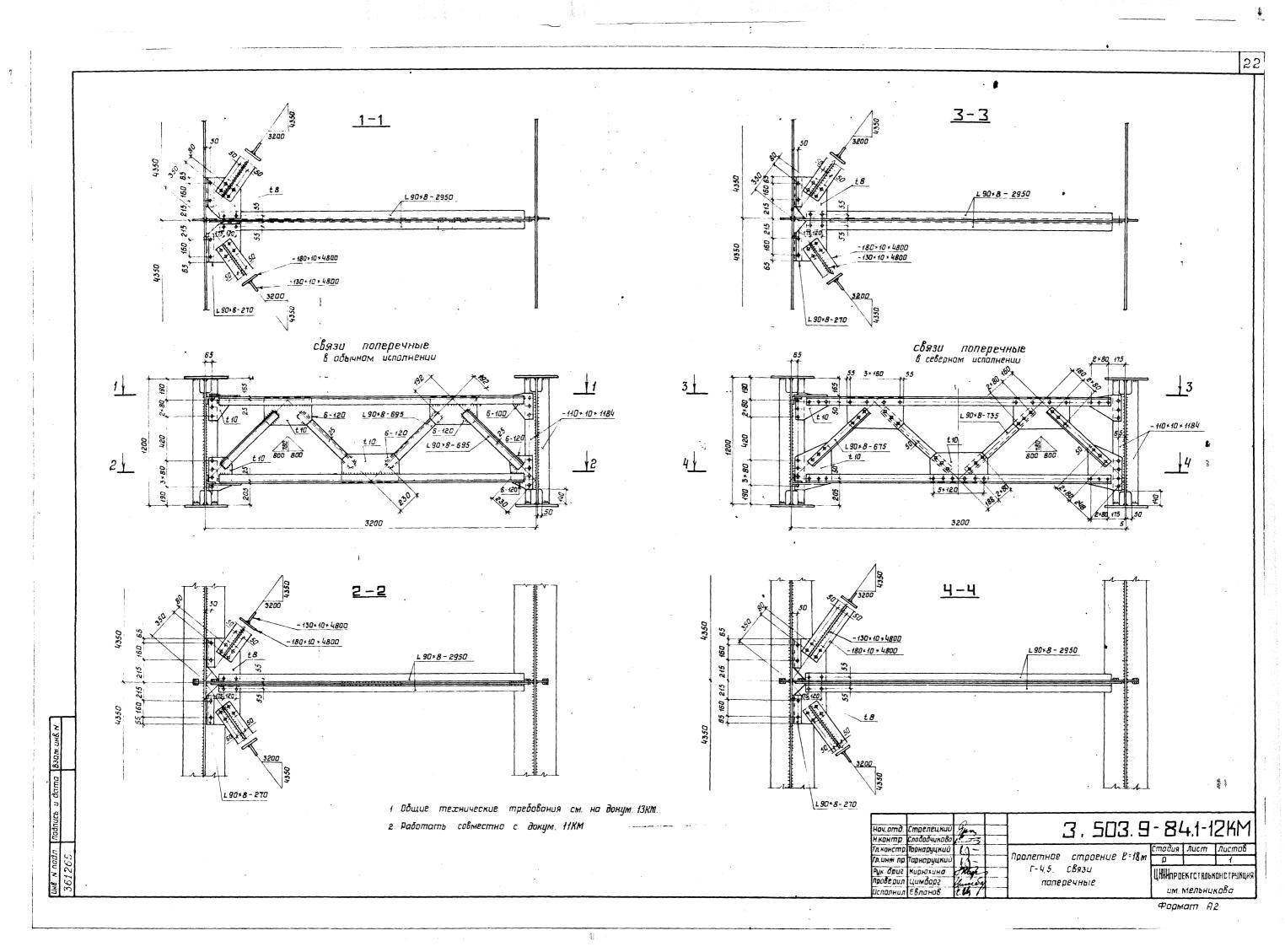
Прогиб главных балок

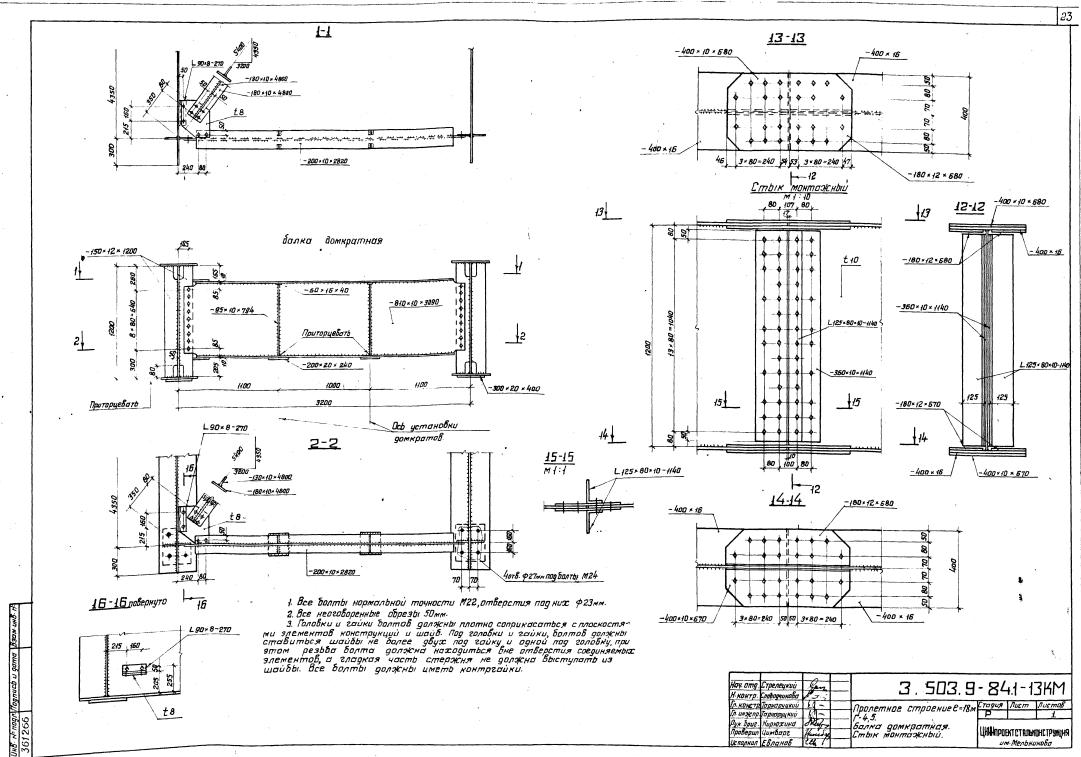
нагрузки нагрузки	Прогиб ƒ (СМ)	
ı. От постоянной	4.0	
2. От временной нг -60	7.3	$\frac{1}{444} < \frac{1}{400}$
Σ	11.3	


Проверка на устоичивость

	Козфф ици	іент П
Сечение	1 ⁸ пластинка	28 пластинка
1-1	0,258	0,322
2-2	D.98D	0.378
3-3	0.823	0,310


Динамические козффициенты


Пролет	наерузка	1+14=1 + 15 17,5+jt
	A 8	1, 215
32,8	КрЯЗ	1, 215
	HL-20	1.1


Сжема строительного подъема

3.503.9-84.1-1003 4

		я специфи. Г			00				,	<u> </u>					TS	Tab				
Вид профиля	Марка	Обозначение и	Νº		uy I		60,		ו משטעווין		70 3,12M		онструкц 1	עע, <i>ד.</i>	масса	B ME	man/	ie no	4 <i>0</i> 27 <i>U</i>	621
ע רסכד, דא	металла и ГОСТ	размер профиля, мм	р. п.	Марки металла	Buga npopuns	Размера профиля	Количеств шт.	Длина, мм.	Главные Балки	Поперечные Связи	Домжрат- ные Балки	Продальные связи	Плита под опорнъе части	Опорные части	<u>Общая та</u> 7	Khai	oma, ranus omobil T	TOM.		Заполняется
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15.	16	17	18	19	20	21
Уголки стальные горячекатаные равно- полочные	5XCHII FOCT 6713-75	L 90 × 8	1						0, 1	0,5			Mariana ras	VALUE	0,6					
roct 8509 - 86	Umoro		2						0,1	0,5		_			0,6					
Всего профиля			3		2/00				0.1	<i>q5</i>	_				0,5					
Уголки стальные горячекатаные неравно	{5ХСНД ГОСТ 6713-75	L125 × 80 × 10	4	•		2244			0,1						0,1		1	•		
полочные ГОСТ 8510-86	Итого		5						0,1						0,1					
Всего профиля	20 50		6	-	2200				0.1	- :					0,1					
	<i>{5 X С Н Д</i>	£8	7	<u> </u>					· · · · · · · · · · · · · · · · · · ·			0,2			0,2					
Προκαπ πυςποδού	FOCT 6713-75	± 10	8						4,1	0,3	0.7	1,0			6,1					
горячекатаный ГОСТ 19903-74	75275715 75	t 12	g						0,3	-	_		_		0.3					
	*	t 16	10						3,7	_					3,7					
•		t 20	#						0,2		0,1				0,3					
	Итого		12						8,3	0,3	α,8	1,2			10,6					
	16Д, ГОСТ БПЗ-75	± 60	13						Walter State of Control of Contro			-	0,8		D, 8					
	Итого		14	2443	l								0,8		0,8					
Всего профиля			15		740				8,3	0,3	0,8	1,2	0.8		11,4					
Итого масса металла			16						8,5	08	0.8	1.2	0.8		12,1					
Прокат листовой горячекатаный	16Д ГОСТ 6713-75									-5,5		-1.2	-,0		, , , , , , , , , , , , , , , , , , , ,					
roct 19903-74	Итого		17	2443										0,6	0,6					
Всего профиля			18		7/10							-	100000	0,5	0,6					
Сталь горячеката- ная круглая гост 2590 - 71	BEm 3cn 2 FOCT 38 0 -71																			
	Umara		19	1443			\vdash							Q.f	0,1	\vdash				
Всего прафиля	3111000		20	11770	1110				-0.114		2.03			<u>U,1</u>	0,1	\vdash		-+		
Всего масса металла			21	l .	1110				8,5	0,8	0,8	1,2	0,8	0.7	12,8	\Box		-		
В том числе по	<i>†5ХСНД</i>		22						8,5	0,8	0,8	1,2			11.3					
маркам	√БД	The second secon	1	2443					1				0.8	in.	0.8	J I				

								ĺ
	Стрелецкий Славодчикова	gue .	<u></u>	3 . 503.9	- 81	4.1-1 ^L	HKM	
M. KAHETP.	Тармаруц кий	49-	1	Пролетное строение 8=18м Г-4,5	Стадия	Лист	Листав	
Га инэус пр.	Тарнаруцкий	117-	<u> </u>	тртицирская спецификация ме ⁻	p	1	12	ĺ
צטקל.אעף.	Кирюжина	say.	L	толла ведомость металлокон - струкций до видам профилей,	Hilling	c T D 7 o 2 o		
	Тарқаруцкий	4-	L	свойная ведомость тонтажных болтов, гоек и шайв			КИДАНЕТ РЫКЦИЯ	ĺ
И спо лни л	Bacuntella	149		35,111130, 52 - 1	U/M	. Menon	ru Ka 5 d	ı

Тяблиця 2 Ведомость метнялоконструкций по видям профилей

HAUMEHOBAHUR KOH-	73		h					A C CA				M						Коли-	P
струкций по номен-	no TAH N	Nº≗ cznot	Kog	- 40a				BUGAN								В	C YYETOM		Cepun munoberx
Няименовяние кон- струкций по номен- клятуре прейску- рянтя 01-22	Nosuguu Apeûckgp	e i par	Код конструк- ции	Basea CMR Robermerro Roscakoù n Hocmu	балки И швел- перы	Шира копа почные двугав ры	крупна сорт- няя стяль	Средне Сорт- Няя стяль	Menka copm- HAR cmanb	Tancta- Tucta- Ban Cmanb Cytun	Универ сяль- ияя стяль	Tanka- Nyera- BRR emRNb t∠4nn	гнугыс и енуто свярны профи пи	Tpy- libi	//ρ0- 4υε	C 2 0	1% HR MRCCY MRNINAS METRII- IIA	l i	коне тру кций
+	2.	3	4	5	6	7	8	g	10	11	12	/5	14	15	16	17	18	19	20
Пралетное стросние		1	526422	11,3			0,7			11.4		-			0,7	12,8			
Umaea Eyyeman 3%, HAYMAYHEHUE MACCOIA YEDMEXERY KMD		2		11,6			0,7			11,7					0,7	13,1	13,2		
Итага с учетом от- ходов 3,7%		3		12,1			0,7			12,2					0,7	13.6			
Приведенняя к Обычным Профилям мясся с учегоя 5% ня уточнение мяссыб чертежна км] и 3.7% ня отходы		4					0,7			12,2					0,7	13,6			
Разниця приведенной и нятуральной массы		5														0			
Ряспределение мяссы метания по пределяния по пределяны перетом 3% метом и чистом в черпечать быть и 3,7% на потады		6	ΜΠ _Ω 1 185-235 325-345	19-24					• .		·					1,5 12,1			
Поиведенняя к стали угле- родистри обыкнобенного качества по 1001 380-11* нясся металля с учетан 3% ня уточнение няссы в чертежня КНВИЗ, 17, на отходы		7														17.0			
всего приведенняя мясся цеталяя с учетом 3% ня утачнение мяссы в черге- жях КМЛ из7% ня атхады		8														17,0			

Габлица З Сводная ведомость монтажных болтов, гаек и шайб

.,		Мяркя	Kon,	MAC	CA, KT	0
Няименовяние	roct	CMANU	um.	одной	Всех	Примечяния
Балгп N22-8g+80.110		40x	··160	0,34/	55	
Балтм22-8g×90.110	<i>100722356-77</i>	. Селект"	80	0.370	30	
Болт м.22-89+100.111	<u>'</u>		110	0,399	44	
Балт М22-8д+110.+10			30	0,428	13	
Umozo		,	380	-	142	
Trick # M22-7H.110	TOCT 22354 - 77 TOCT 22356 - 77	40x	760	0,108	82	
<i>ฟิลบิจิล</i> 22	FOCT 22355-77 FOCT 22356-77	8l75cn2	840	0,059	50	
Bceea					274	
В том числе		40Х"Селект			142	
по мпркам.		40X			82	
		BCm5cn2		1	50	

Техническая	спецификлция	MEMBANAA	HA MADANĖMHOL	строение.

TABAULA 1

Вид профиля	Мяркя	Обознячение	N°.	/	rag		60,		Мясся ,			MEHTAM	констру	jkuui, r		MAC	CA NO.	mped	HOCTU	
u roct, ty		ирязнер профиль		мярки метярля	видя профиля	рязмерн профиля	Konuwecmbu wm	Доиня, мм	Глявные бялки	Поперечные связи	Домкрятные Бялки	Продольные связи	Ллить) пад апарные чясти	Опарные чясти	Общяя нясея, т.	3A) U32	8 A P N 14 R O P 14 P O P O P O P O P O P O P O P O P O P	TRNA TEMTE	м я · пем),	Зяполня ется ВЦ
			Ļ	Z Z	9 1/1	90	├		2		Ao	90	4 90	0		I	I	皿	ĪŽ	
	e.	3	4	5	F	7	8	9	10	//	12	13	14	15	16	/7	18	19	20	21
Уголки стяльные горячекятяные рявно	15XCHA-2	L 9.0 . 8	1		ļ	ļ			0,1	0.5					0,6	ļ				
палачныг				ļ		ļ		ļ	 		 	ļ				┞—				
roct 850g-86	Umaea		2		ļ <u>.</u>	-			0,1	0,5	-	ļ —			0,5	↓	 	<u> </u>		
Всего прафиля			3		2100		L		0,1	0,5	ļ —				0,6	<u> </u>	L			
Угалки стяльные гарячекятяные нерявно	15XCHA-2 50CT6713-75	L 125180 · 10	4			2244	ļ		0,1	<u> </u>					∅,1	_				
палачные Гаст 8510-86	<i>Итого</i>		5						0, 1						0,1	├				
Всега прафиля	9,,,,,,		6	 	2200	l	 -		0,1						0,1	 	 	-		
	15,40,40	t 8	7	<u> </u>	~~00	<u> </u>			", '		 	0,2			0,7	\vdash				
Прокит листови	15 X С НД~ 2	t 10	8						4.1		0.7	1.0			5,8	İ	 			
гаряче кятяный Гаст 19903-74-	FOCT 67/3-75	t12	g						0.3	0,3	-				0,6					
		t 16	10						3.7					_	3.7					
		t 20	11					:	0.2	_	0,1				0.3					
•		t 32	12										0. g		0.9					
	Umaea		13						8 . 3	0,3	0.8	1.2	0.9	_	11.5					
Всееа прафиля			14		7110				8.3	0,3	0,8	1,2	0.9		11.5			Γ		
Итага нясся нетяілля			15						8.5	0,8	0.8	1,2	0,9		12.2					
Прокят `листовой гарячекятяный	15XCHA-2 10CT 6713-75		-					ļ								-	-			
FOCT 19903-74	Umozo		15											0.7	0.7			1		
Всего прафиля			17		7110						I —			0.7	0.7	T	T	T		
Стяль горячеката- ная круглая	09																			
FOCT 2590-71	Итого		18	2314						_				0.1	0.1					
Всега профиля			19		1110					_	<u> </u>			0.1	0.1	Π	Ī			
Всего мясся металля			20						8,5	4.8	0.8	1.2	0,9	0,8	13.0					
В тон числе по	15 XCHA-2		21						8,5	0,8	0.8	1.2	0,9		12.2					
мяркям																				

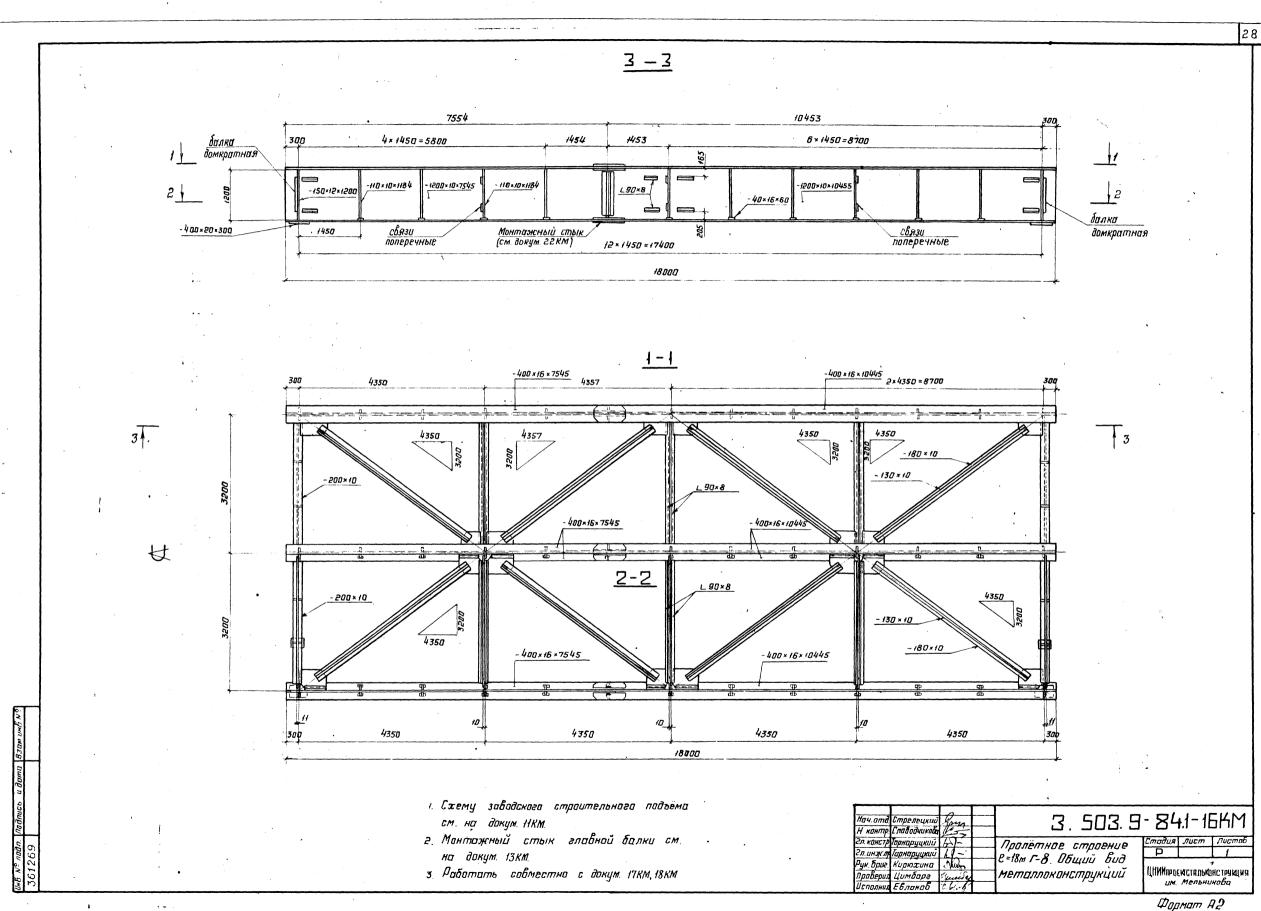
Фясонную стяль мярки 15XCHI толщиной Пмм и менее допускнется использовять без термической обряботки, при этом удярняя вязкасть при минус 70°C должня быть не менее 3 кгс м/сн² (сн п.б. примечяния к тяблице 4- ГОСТ 6713-75).

	f	T				
au omg.	Стрелецкий	Gres	3.503.9	- RL	+1-19	SKM"
контр	Спободчиков		 U U		• • • • •	
т.констр	Тярняручкий	11-	Пролетное строение 0=18м Г-4,5 (северно	ETRGU A	Лист	Листов
инаю пр	Тарнаруцки	(h) -	υς παπηθημίε). Τε χηυνες κάν `ς πείμι Φυκαμυν η Επάππα Βεσομος πο νε	þ	1	Z
	Кирюжиня		тяллаканетрикций павйаям прафи	minni	OUTT ING.	конструкция
	<i>Тярняруцк</i> ий		лей.Свадняя ведомость монтяж ных батов, енек, шяйб	บุกกฤเษย	EUILIMIP	RHUNETPSNUHH
сполнил	Вясильебя	BUS	HOISE GUINGO, ENER, WHOO.	UN. /	Иельни	KODA

Форнят А2

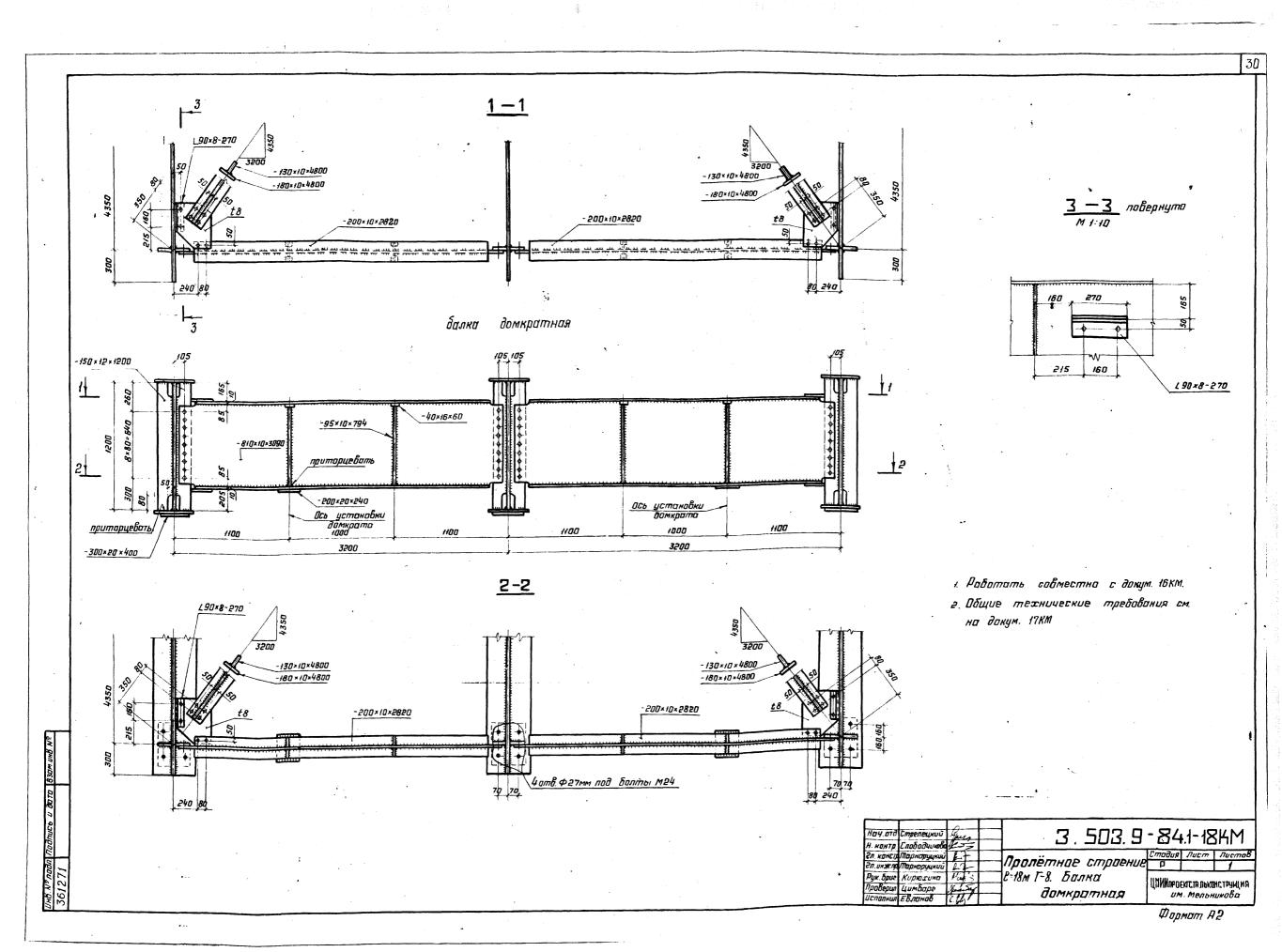
Тодп и дятя Взян инв М

561268


Таблица 2.


Ведамасть метяллоконструкций по видян профилей

Hamanafama tau	7						MA	CCA	конс	трук	yuu,	177						Konu-	_
Наиненовяния кон- струкций по номен-	5 4	A/e	Kag	יים של היים אינה היים של היים אינה היים של היים			па Ви	IGAH	пра	филе	ù.					В	Всего сучетоп	UPP m.	Серия ,
струкций по номен- клятуре прейску- рянтя 01—22	Παзωμυσ πρ ε ύς κυρ	СТРОД	конструк ции	DCESO CITI NOSSILLEHH SONCONOU N HOC MU.	Бялки швел леры	Wupo- Kuno- Novimi Gbyrnb- Pbi	רווון שי	СОРТО:	СОРМ- НЯЯ	BAR	HAA CTAJb	DIUSIU-	Гнутыв изнуто евпрны префи- ли	Тру- бы	При- чи е	C 2 0	1% MA MACCY MANNIDO MEMBA NA	Wm.	конструкций
1	2	3	4	5	6	7	8	g	10	11	12	13	14	15	16	/7	18	19	
Пролетн ое страени е		1	526422	12,2	_	_	0.7	_	_	11.5		_	_		0,8	12.2			
Umara c yyeman 3% yr ymounenue naccoi 6 yepmesic as xna		2		12,6	_		0.7			11,8	_		_		0.8	13,3			
итого с учетон отго- 908 3.7%		3		13,0		_	0.7			12.3		-	_		0,8	13,8			•
Приведенняя кабычным профилян пясся с учегон 3% ня упачнение няссы в чертежях КНЭ и 3,7% на втосады		4				_	0,7			12,3					0,8	13,8			
Пязниця приведенной и нятуряльной мяссы		5					-									q			
Ряспределение мяссы метялля по пределенат, пекучести с учетом 37, ня уточнение мяссы в чертежение мяссы в чертежение мяссы в ня итходы		6	MNa 1	33-35		•					·					13.0			
Привъдення в кстяли угле- родистри обыкновенного качества ПОТССТ 380-77 г.нс. ся негялля С УЧЕПОМ 37% ня уточнение глясь в цер те- жена кМДи 3.77% ня Отходы. Всего Привед внияя мякя	1	7													; 	16.6			
HEMRIAR C YYEMON 3% HR YMOYNEHUE NACCO BYEATE YMAX KHYJ U 3,7% HAOMXOGU		8														18,6	· ·		


Габлица3 Свадная ведамость мантажных болтов, гаск и шайб

	~	Mapka	Kos,	MACC	A, KI	
Няиненовяние	ract	<i>ចភាគរាប</i>	พฑ่	09 Hair	всех	Принечяния
БалтM22-8g+80.110 хлі	FOCT22353-77	40X	240	0.34/	82	
Балт M22-8g* 90. 110. х.Л.1	<i>FOCT22356-77</i>	"Cenekm"	160	0,370	60	•
הממו של איני או או או או או איני או או או האמר האמר האמר האמריים איני או איני איני איני איני איני איני א			110	0,399	44	
Болт 1422-89×110.110.х.л.1			30	0,428	13	
Umoen			-/ :	ļ		
- '			540		19g	
TRÛKA MZZTH. 110.XJI	[00722354~ 14 [00722356 - 77		1080	0,108	117	
<i>ปเคนิจิส 22</i>	TOCT 223 55-79 TOCT 2235 6-77	8275cn2	1160	0,059	69	
Bceea					385	
В тан числе		40x,Cenekt*			199	
NO MAPKAM		40x			117	
		Bl7.5 cn2			69	

Формат Аг

Техническая спецификация металла на пролетное строение масса металла по элементам конструкции , т вид профиля масса металла по элементам конструкции , т кварталле по кварталле по кварталле по кварталле по																				
Bud กอดสมภ ร	Марка	Обозначение и	N۶		אמא				Масса м	emanna i	по злемен	אמא אום אום	струкци	ü,T	l a	Maci B mei	מת ומת תנים	пребн Сп	ທີ່ມີການ ໂ	1 1
и ГОСТ , ТУ	металла и Гост	размер профиля, мм	π.Π.	марки металла	вида профиля	размера профиля	Количество, шт.	Элина, мм	Главные балки	Поперечные связи	Домкротные балки	Продольные связи	Плиты под опорные части	Опорные части	Общая масса, т	មន្ត្រ (30n (35c	атар выпа Зато Т	л <u>а</u> м ется ител	em),	Заполняется Вц
			ļ.,											ļ	↓	I	Ī	Ш	ĪV	
уголки стальные Уголки стальные	2	3	4	5	- 6	7	8	g	10	11	12	13	14	15	16	17	18	19	80	21
зголка сладовные равно- полочные	15XCHД ГОСТ 6713-75	£ 90 ×8	1						D.1	1,0					1.1					
10104461E 10CT 8509~86	Пшого		2						D.1	1,0		_		_	1.1					
Всего профиля			3	. 1907	2100				0.1	1.0			-		1,1					
Уголки стальные Зарячека таны е	15XCHA FOCT 6713-75	L 125×80×10	4			2244			0.2						0.2					
неравнополочные ГОСТ 8510-86	Umpeo		5		<u> </u>		-		0.2						3,0	 	l	-	-	
Всего прафиля			б		2200				0,2	 					5,0	1		<u> </u>	<u> </u>	
Прокат листовой	15ХСНД	t 8	7						1	1.		0.3			0,3					
горячекатаный	FOCT 6713-75	. t10	8						6.1	0.5	1.3	1.9			9,8	1				
roct 19903-74	7887 3773 70	t 12	9	<u> </u>			l		0.4						0,4	1		ļ		
·		t 16	10						5,5						5.5					
	·	t 20	11						0,3		D.1		_		0.4		 -		<u> </u>	
	Отого		12						12,3	0.5	1.4	3,3			15.4				 -	
•	18 A FOCT 6713-75	£ 60	13	·									1,2		1.2					
	<u>итого</u>		14	2443						1			1.2	·	1.8	1		-		
Всего профиля			15		7110		 		12.3	0.5	1,4	2,2	1.2		17.5	 	-		 	\vdash
Итого масса металла			16				È		12.6	1.5	1.4	2.2	1.2		18.9		_	-	 	
Прокат листовои горячекатаный	16.A FOCT 6713-75														10,5					
rogt 19903-74	Озоти		17	2443	 	ļ			<u> </u>	 	-	ļ		0.8	0.8	-	<u> </u>	 	 	
всего профиля	ambob		18	LPPG	7110	ļ	 	 	 _					D.8	0.8	-	-	-		
Бталь горячекатаная круглая гост 2590-ті	8673612 FOCT 380-71		70											<i>U</i> .0	0,6					
	итого		19	1443	 				=	<u> </u>	<u> </u>	<u> </u>		0,1	0,1	1			<u> </u>	$\vdash \vdash \vdash$
всего профиля			20		1110			l —	-			-	_	0,1	D.1					
всего масса металла			21						12,5	1.5	1.4	2.2	1.2	0.9	19,8					
םת שתפער אמחל פ	15хснд		22						12,6	1.5	14	2.2		_	17,7					
маркам.	16 Д		23	2443	l				1=				1,2	_	1,2	1		 		\vdash

одпись и дата Вэам инв н

361272

			2		- /		7464
нач. отд	Стрепецкий	6	m	1 3 503.9	- X4	1-11	4KM
н. контр	Спободчикова	R	55	D. 200.0			
Гл. констр	Тарнаруцкий	ħ.	_		Стадия	Sucm	Aucmaß
Гл. цэнн, пр	Тарнаруцкий	U	7-	Г-8 (обычное йсполнение) Техническая спецификация метал-	P	1	2
рук бриг.	Кирмажина	M	4/2	ла. Ведомость металлоконструкции	HHHHpppr	VTDT4D: V	מטרד פטעווטס

Формат я 2

Ведомость метяллоконструкций по видям профилей

]				M	ACCA	Kanc	труі	tyvů,	m						Ka m.	Γ
Няименовяние кон- струкций по номен- клятуре прейску- рянтя 01-22	Тазыции по прейскурянту	№ строк	Код конструк ции	Breed CMAJIU Posicienie Hou u Golcokou Apou- Hacmu	Pag	Шира- копа- лочных двутяв	no f	2100A	A 17 m	neth tu	neii	Tanka- nyemo ban emanb t<4mm	гнутые изнуто свярные профи	Пру- бы	Пра- чие	8 C L 2 0	Всего с учетон 1% на мяссу , няпляв. метял- ля	ШТ	Серия типовых конструкций
ļ	21/2 24/2	3	4	5	5	7	8	g	10	//	12	13	14	15	16	17	18	19	20
Пралетнае	~_	,	526422	17.7		_	1,3			17.6				_	a,g	19,8	<u> </u>		
строение Итаео с ччетон 3% на				18,2	_		1,3		-	18,1	_			-	0,9	20,3	20,5		
Итаго с учетон 3%, ня уточнение няссы в чертежня КНД Итого с учетон от-		.2		18,9	_	_	1.4	_		18,8			-		1,0	21,2			٠
хадов 3.7% Приведенняя к абычным прафилян мясся с учетая 3% ня уточнение мяссы в чертемеят КМВ и 3.7% ня атходы.		4		-			1,4			18,8		, 1			1,0	21,2			
Дязниця приведенной и нятуряльной мяссы		5													<u> </u>	0			
Вяспределение мяссы нетялля по пределян темялля по пределян темя учести дучетом 3% ня уточнение мяссы бчет тежем КМД и 3.7% ня атасоды.		Б	МПа. К 185-235 325-345													2.3 18,9			
Приведення в к стали угле- додистой обыкновенного качества по/001 380 - Тачас- ка металля с учедтом 3°ын уточнение мясы в черте- зках КМО и 37°, на отходы		7														26,5			
Всего прибеденняя мясся метялля с учетон 3% ня уточнение няссы в черте- жах КМЈи 3,7% ня отходы		8														26,5			

Таблица 3 • Сводная ведомость монтажных болтов, гагк и шайб.

Няименовяние	COST	Mapka	Kası,	MACC	A, KT	
<i>пнименоояние</i>	ract	ะกา่ส ผน	นก่	одной	всех	Примечяния
5anmM22-8g>80.110	TOCT22353-77		320	0,34/	109	•
Болт М22-8д з 90.110	TOCT22356-17	"Селект"	120	0,370	45	
Балт М22-89 : 100.110			160	0,399	64	
Балт М22-89×110.110			50	0,428	22	
				1		
Umoeo			650		240	
HUNA MER-IH. 110	TOCT 22:354-17 FOCT 22:356-17	40x	/300	0 108	141	
พ ศนิชิศ 22	TOCT 22355 - 77 TOCT 22356 - 77	Bl+5cn2	1300	0,059	77	
Beeeo				+	458	
В там числе		40X,Cenekt		+	240	
NO MAPKAN		40x		+		
		ВСт5сп2			141	

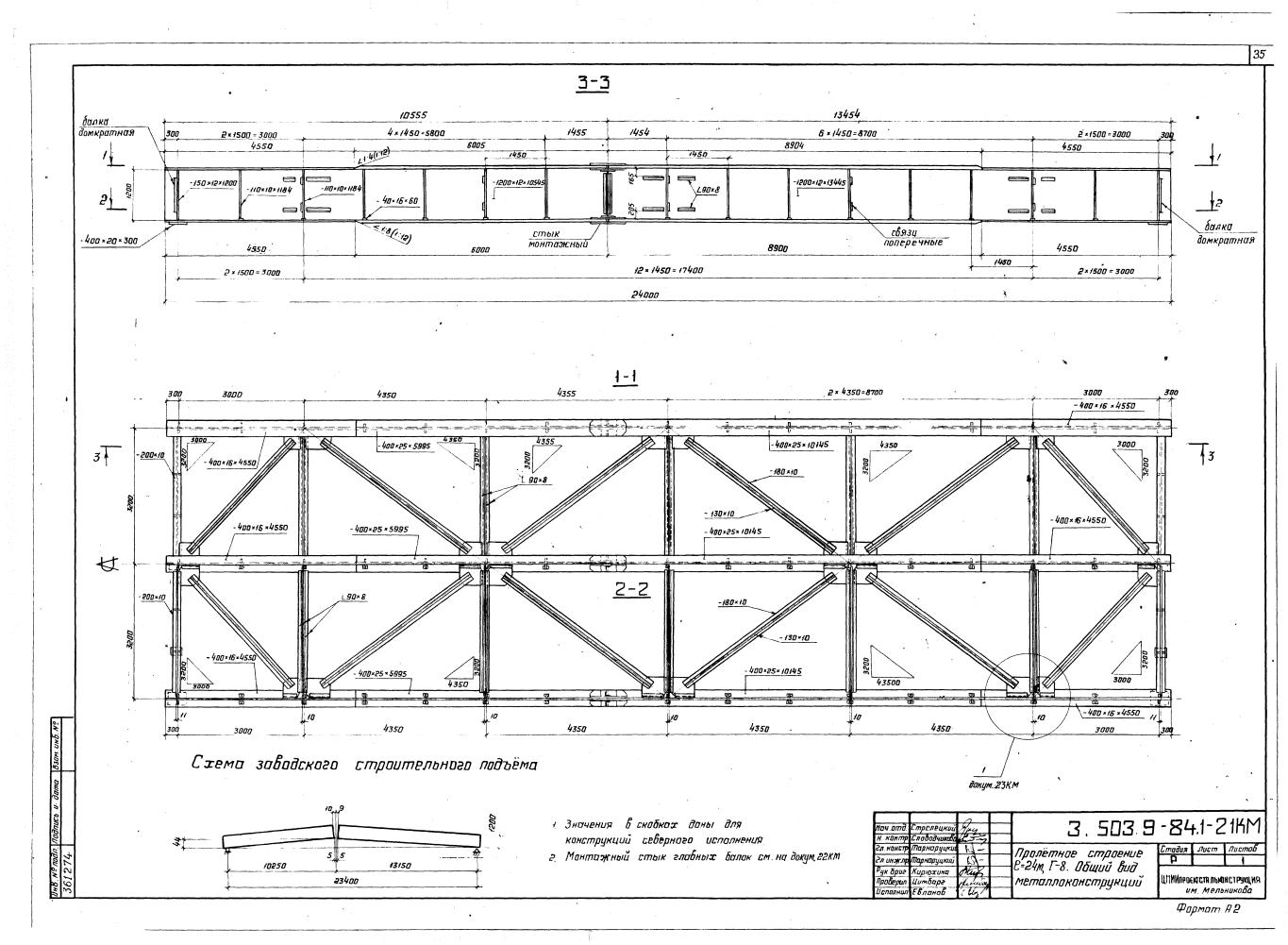
Техническая спецификация металла на пролетное страени	TEXHILLECKAR	спенификличя	MEMAJJA	HA	пролет ное	страения
---	--------------	--------------	---------	----	------------	----------

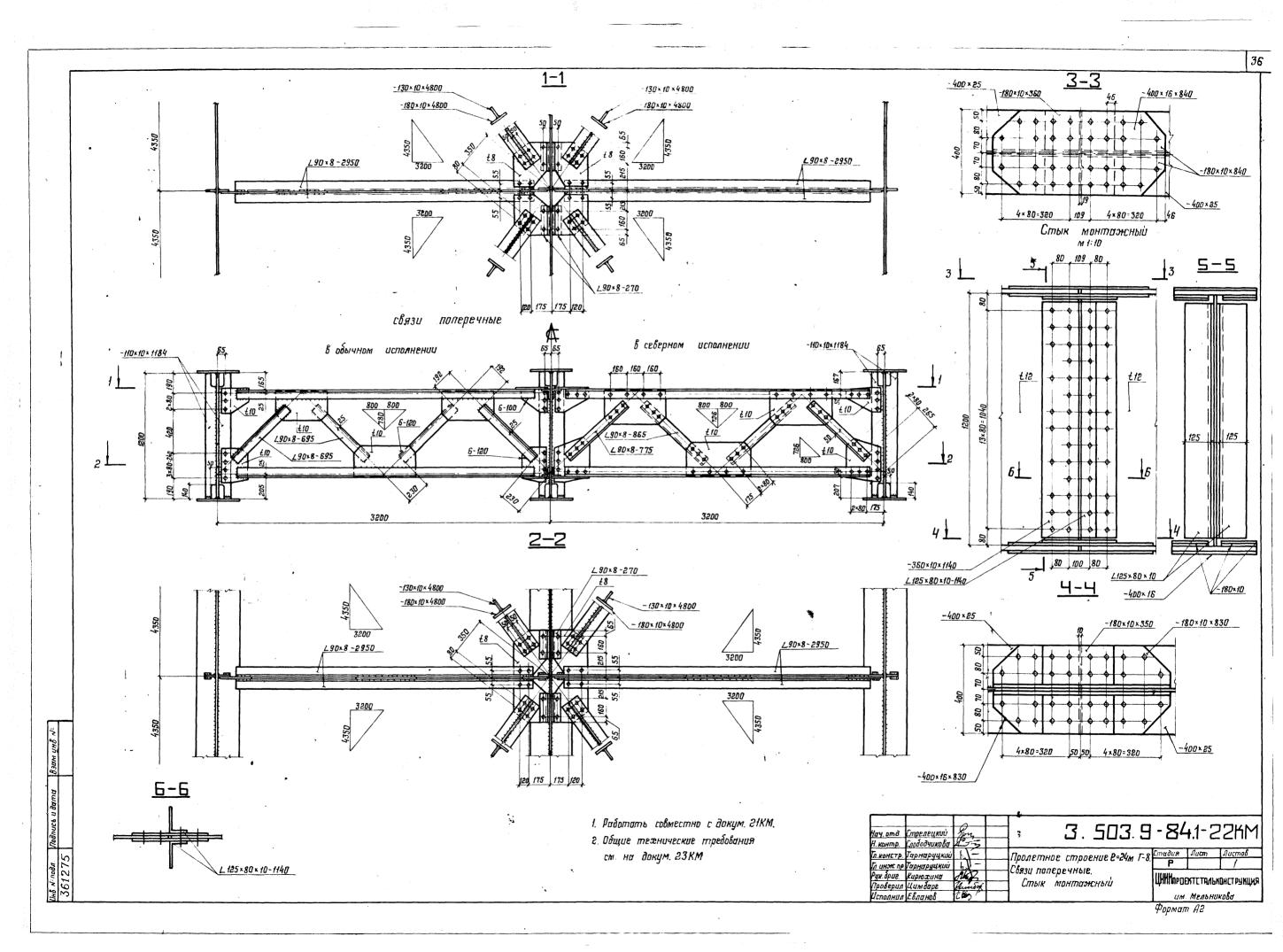
7	¬ _P	8.	n	2/	u	A	1	

Вид прафиля	Mapka	Обознячение	Nº	,	rag		ба,		MRCCH I	<i>ዛይጠ </i>			констру	kuvi, r	C.B.	MACC R MA	:A ៧០) លាក់នា	mpeð	HOC 7U	æ
υ ΓΟΣΤ, ΤΥ	•	и рязмер профиля, мм	п. п.	мврки метноля	видя Вигфоди	рязмеря профиля	Каличеств шт	Anuin,	Tnabuble Óanku	Поперечные сбязи	Донкрятные бялки	Прадольные с вязи	Плиты под опорные цясти	Опорные чясти	Общяя мясся, т	K6 3R1	Apm nanh, amol	គ <i>ាគ</i> ខ្ពសា	И	Зяполняется Вц
1	ڪ	3	4	5	6	7	8	g	10	11	12	/3	14	15	16	17	18	19	20	21
Уеалки стяльные горячекятяные рявно- полочные	15XC H A -2 FOCT 6713-75	L 90 x 8	1						0,1	1,0					1,1					
FOCT 8509-86	Umuzo		2						Q./	1.0	I —				- 1,1					1
Всего прафиля			3		2100				0.1	1.0					1,1	T				
Уголки стяльные гарячекатаные неравно- полочные	15XCHA-2 FOCT 6713-75	L 125 × 80 × 10	4			2244			0,2			_			0.2					
FOCT 8510-86	Umoeo		5						0.2						0,2					
Всего профиля			Б		2200				0.2		Ī —				0,2		T			
Прокят листовай	15XCHA-2	t8	7						_		_	0,3			0.3		Ī			
горяче к ятяный ГПСТ 19903-74	TOCT 6713 - 75	t 10	8						6.1	0,6	1,3	1,9			<i>g, g</i>					
1001 19905-74		t 12	g						0,4						0.4					
i i		t 16	10						5,5						5,5					
		t 20	1/						0,3		0.1				2.4				·	
•		t 32	12										13		1.3	1				
•	<i>ปฑอยง</i>		<i>†</i> 3						12.3	Q,6	1.4	2.2	1,3	·	17.8					
Всего прафиля			14		7/10		L		-12.3	0.6	1,4	2.2	1.3		17.8					
Umoeo масса металла			15						12.6	1,6	1,4	2.2	1,3		19.1					
Прокят листовой 20рячекятяный	15X C HA -2 FOCT 6713 75																-	_		<u> </u>
r'oct +9903-74	Umoeo		18											1.0	1,0					
Всего профиля			17		7110				Ī —	T				1.0	1.0					
Сталь гарячеката- ная круглая	09															-	-			
FOCT 2590-71	<i>Утага</i>		18	2314					T —			_		0,1	Q. +	T				
Всеев прафиля			19		1110									0,+	0.1					
Всего мнсся метялля			20						12,6	1.6	1,4	2.2	1,3	1,1	20.2					
В там числе По мяркям	15XCH Д −2		21						12.6	1.6	1,4	2.2	1,3		19.1					

Фясонную стяль мярки 15XCHД толщинои 11мм и менее допускяе тся использовять без термической обряботки, при этом удярняя вязкость при минус 70°С должня быть не ненее 3 krc.м/см² (п.Б. принечяния к тяблице 4 гост 6713-15).

	Стрелецкий			3 503.9	- 84	.1-2	OKM
	Слобадчикава Тарнаручкий		-			Лист	Листов
	<i>Тярняруцкий</i>			ώς παημεκύς) Τε жκυчες και εκτυάτω και 4 υα Μεταίλη α. Βεσακύς ποι πετίαλης. 4	Р		Z
Проверил	Тярняруцкий	Mays.		конструкций по бидям профилей Сбооная Веоомасть монтижных			конструкция
Цепалнил.	Вясильевя	Buy		อันภักานซ์, ยักะห บ เบลบ์ชั	UM.	Иельни	K067


Форнят Я2


Тяблиця г Ведомасть метяллаконструкций по видям профилей

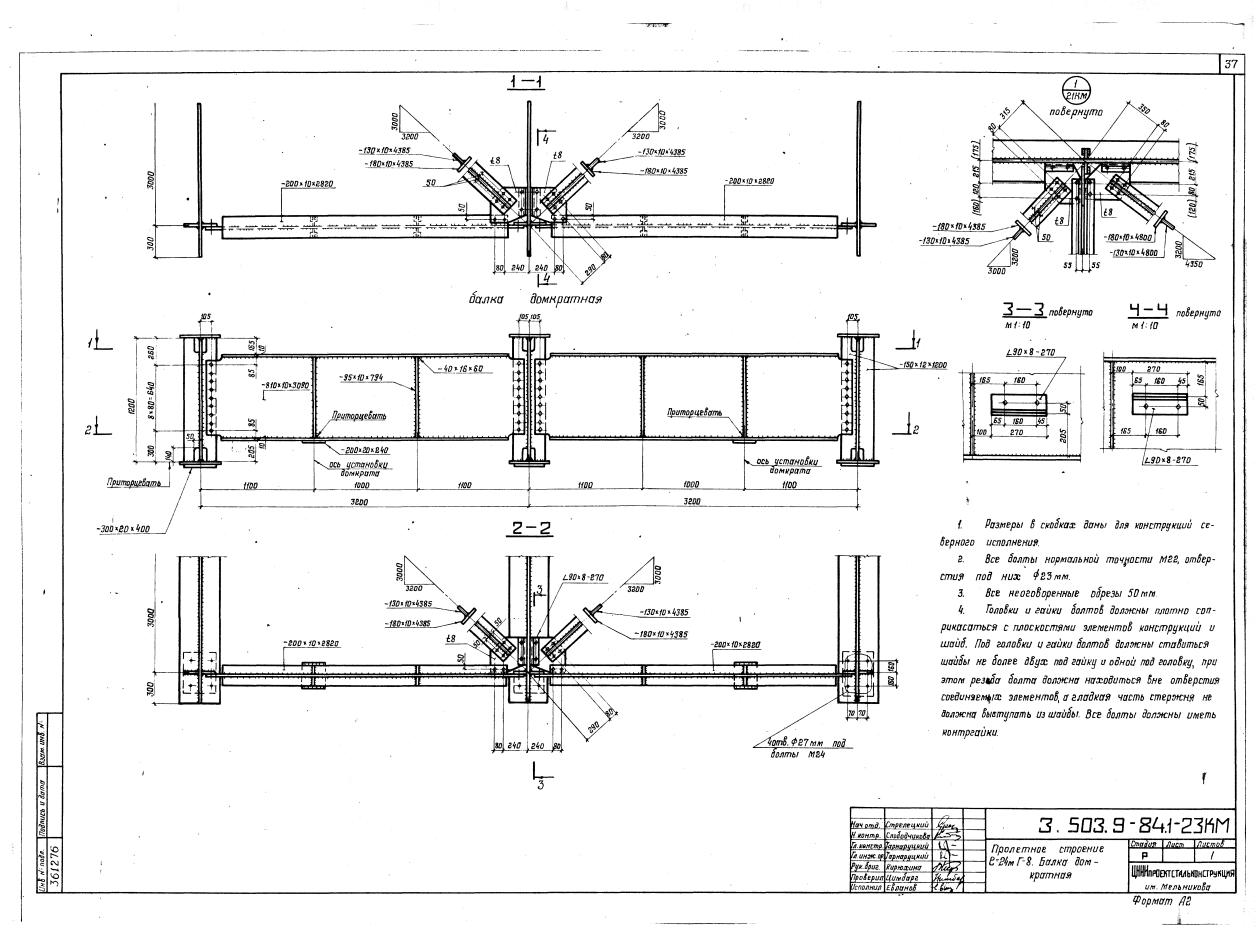

HAUNEHORAHUE KOH-	36		A							mpyk		M						Konu	<i>p</i>
Няименовяние кон- струкций по номен- клятуре прейску- рянтя 01-22	PDECCRYDHAH ETPOK	μύυ	Всего стяпи повышенной и высокой проч- ности	Бялки У швел- леры	Шира- копа- пачные двугя 6- ры	Крупно- сорт- няя СТЯЛЬ	Средне- сорт- няя стяль	Menko copm- HRR ctrnb	COUNTED- JONCTO- NUCMO- BAR ETANA TYUMM	УниВер сяль-	TOHKO AUCMO- BAR ET ANG LL YAH	110	Tpy-	Про- чие	8 c e e e	Breed Cyveton I % HA MACCY HAN MA META N-	4ec/71- Rn	Серия типовых канструкций	
.1.	2	3	4	5	Б	7_	8	9	10	11	12	13	14	15	16	17 .	18	19	20
Пралетное строение		1	526422	19,1			1.3			17,8					1.1	20,2			
Umozo с учётом 3% ня уточисние мяссы в чертежсях кму		2		19.7			1.3			18,3				-	1,1	20,7	20 9		·
Umaea c yyeman om-		3		20,4		_	1,4			19,2					1,2	21.6			
Приведенняя к обычным профилям мясся с учегом 3% ня уточнение мяссы б чертежать КМД и 3,7% ня отходы		4					1,4		-	19,0					1,2	21.6			
Рнэмиця при веденной и нятуряльной массы		5														0			
Ряспределение мяссы метяля по пределя на переделя на пределя на пределя на пределя на пределя в на пределя жиз в пределя на пределя		Б	ΜΠα. * 325-345	,		·		-								20,4			
Проведенняя к стяли угле- родистой обыкновенного книества по 1007 380-т ² тнас- ся метялля с дуетам 3% на уточнение мяссы ь черте- жях КМ] и 3,77-ня отходы		7						-		,						26,1			
Всего приведенняя нясся метялля с учетом 3% ня уточнение пяссы в четв- зеях КМЗи 37,76 ня отходы		В														26,1			

Таблица 3 Сводная ведомость монтажных болтов, гаек и шайб.

ıı D		Mapka	Kan.,	MACCA	, Kr			
HAUMEHOBAHUE	roct	cmคภบ	wm′ ·	одной	beex	Примечяния		
Болп М22-89 #80 ИОХЛН	FOCT 22353-77	40X	480	0,341	154			
60nm M22-8g • 90.110.111	NUT22356-77	, Селект"	270	0,370	100			
50.1m M22-89*10C 110.xN1			160	0.399	64			
Боятм22-89×110.110.хл)			50	0,428	22			
<i>ป</i> .mo20			g60		350			
	FACT 22354 - 17 FACT 22356 - 77	40x	1920	0,108	207			
ปมคบิชิศ 22	TOCT 22355-77 TOCT 22356-77	BCm5cn2	2080	0,059	123	<u> </u>		
Beezo					680			
B MOM YUCHE		40Х"Селект" 40Х			350			
NO MAPKAH					207			
		BCm5cn2			123			

Техниче	CKAA CN	ецификяци	ЯЛ	18 117	A N N	A H	Ħ								Тябл			 ,		
Вид прафиля	Mapka	Обозначение	N⁵		Kog	T	20,		Масса ме	emanna ne			трукций	m	.c.R.	6 M	תתחת	IJIE I	5 н ОСТИ ПО	d C
ע דמפד, דא	металла и ГОСТ	и рязнер профиля, мм		Мяркя метялля	видя профиля	рязмеря профиля	Ē	Длиня, мн	Глявные Бялки	Поперечные связи	Дом Крятные Бялки	Продальные связи	Плитя пад опорные чясти	Опорные чясти	Общяя нясся, т.	(3A) U32	ה א המר א המחים די די		и ися елем) <u>Т</u>	Знполняется ВЦ
1.	2	3	4	5	5	7	8	9	10	1/	12	/3	14	15	16	17	-	19	20	2/
Угалки стальные горячекатяные равно-	15 x C H A, FOCT 67/3 - 75	L 9018	1						0,2	1,6					1,8			Ĥ		
ПОЛОЧНЫЕ ГОСТ 8509-86	Umaea		2						0,2	1,6					1.8					
Всего профиля Уголки стяльные ,	15хснд	L125×80×10	3		2/00	2244			0,2	1,6	-				1.8					
горячек ятяные нерядно- полочные	TOCT 6713-75	Lizorosiio				~~ / -									U, L					· ·
TOET 8510-86	Umaea	<u> </u>	5		2 5 00				0,2						0,2					*
Всего профиля	15 X C H IL	t 8	6		2200	-		 	0,2		\vdash	0.4			0.2 0,4				 	
Прокат лиетовой горячекатаный	19XEHA 100T 6713-75	t 10	8						1.2	0.7	1.3	2.7			0,4 5,9					
FOCT 19903-74		t 12	g						8.5						8.5					
		£ 16	10						2.9						2.9					
		t 20	11					ļ	0,3		D, 1				0,4				<u> </u>	
		t 25	12					L	7,0						7.0	-			<u> </u>	
	Итага		13						19.9	0.7	1,4	3,1			25,1	1	!			
	16A TOCT 6713-75	t 60	14	· · · · · ·									1.4		1,4					
	Umoeo		15	2443									1,4		1,4					
Всего прафиля			16		7110				19,9	0.7	1.4	3./	1,4		26,5					
Umora мясся метялля			17						20,3	2.3	1.4	3.1	. 1,4	<u> </u>	28,5					
Пракнт листовой гирячек нтяный	I&A, FOCT 6713-75																			
[OCT 19903-74	Итаго		18	2443					T		 		<u> </u>	0.8	17.8			T		
Всего профиля			19		7/10						·			0.8	0,8			<u> </u>		
Стяль горячекятяння кругляя	BCr3cn2 [OCT 380-7]																	\vdash	_	
ſΌĽΤ 2590-71	Umozo		20	+443										0,/	0,1	 	 	t	 	<u> </u>
Всега профиля			21		1110									0,1	0,1	t		1	†	
																-	+			Ļ

20,3

20.3

2.3

2.3

3./

3.1

0,9

29,4

27.1

Няц атд. Стрепецький выска 3.5039-841-24КМ Н. контр Спородикова в 52 городние Себия Г. В Голина принаручный город в 1 город в принаручный город в город в принаручный город в город в город в город в город в

Фарнят Яг

л. Подп. и дята Вэям инвл

Всеео мясся метялля

В тон числе по

MAPKAM

15XCHA

16 A

23 24 2443

361277

Тяблиця 2 Ведомость метяллоконструкций по видям профилеи.

Наименование кон-	, hu						MI	9CC#	коне	mpy	t <i>ų ui</i> ,	M						Коли	Cepus
струкций по намен-	, <i>ח</i> כ		KOG	nodu nomh ninomh			па в	ugan	npo	<i>ф</i> или	eŮ.					В	WEMAN		เรายการ เกาบกอย เ คาระ
струкций по номен- клятуре прейску- рянтя 01-22	Nasvyvu npeúcky	строк	конструк- ЦИИ	Breed cm. Posokalim Pysokal Pysokal	Балки Ивел- перы			Средне сврт няя стняь	Нелко сорт- няя стяль	10 де 10 ЛИС 70 - В н н СПІ н л ь СПІ т	универ е яль - н я я стяль	TOHKO- ITUEMO- BAA EMAIIB E~44M	гі угыс. ц гнуго- свярные прафи- ли	Tpy- ō6i	Mpa- Yue	С В О	1% HA MRCCY, HARDAG NETRA-	Um.	конструкций
1	2	3	4	5	6	7	8	9	10	11	12	+3	14	15	16	17	+8	+9	20
Пролетное строение		1	526422	27.1	_		2,0			26,5		_			0,9	29,4			
Umozo c yyemon 3% HA Ymoyne HUE MACCO 6 YEDWE HCAX KMJ		2		27,9			2,1			27.3	_	_		_	0,9	30,3	30.6		
Umoro c yyemon om- xogob3.7%		3		29,0	_	_	2,2		_	28,3	-	_	-		1,0	31.5			
Прибеденняя к обычным прифилям мясся с учетом 3% на уточнение мяссы в чертежение купи 3,7%, на отноды.		4					2.2		_	28,3					1,0	31,5			
Разница приведенной и натуральной нассы		5														0			
Пяспределение мяссы метялля па пределям, текучести е учетом 3% ня уточнение мяссы бчер тежях КМЭ и 3,7% ня отходы	·	б	МП _Ф 185-235 325-345		1											2,5 29,0			•
Прибеденняя к отн ли углерадистру обы кнавенного кнуествя по ГОСТ 380-718 мнс. Сн. Нетпля с учетон 7-м на уточнение мяссы очертакта кл. Д. и 3,7% на от 20ды.		7							1							39,5			
Всего приведенняя мясся метялля с учетан 37. ня эточнение мяссы в черте жях кну и 3.7% ня отходы		8														39,5			

Таблица 3 Иводная ведомость монтажных болтов, гаек и шайб.

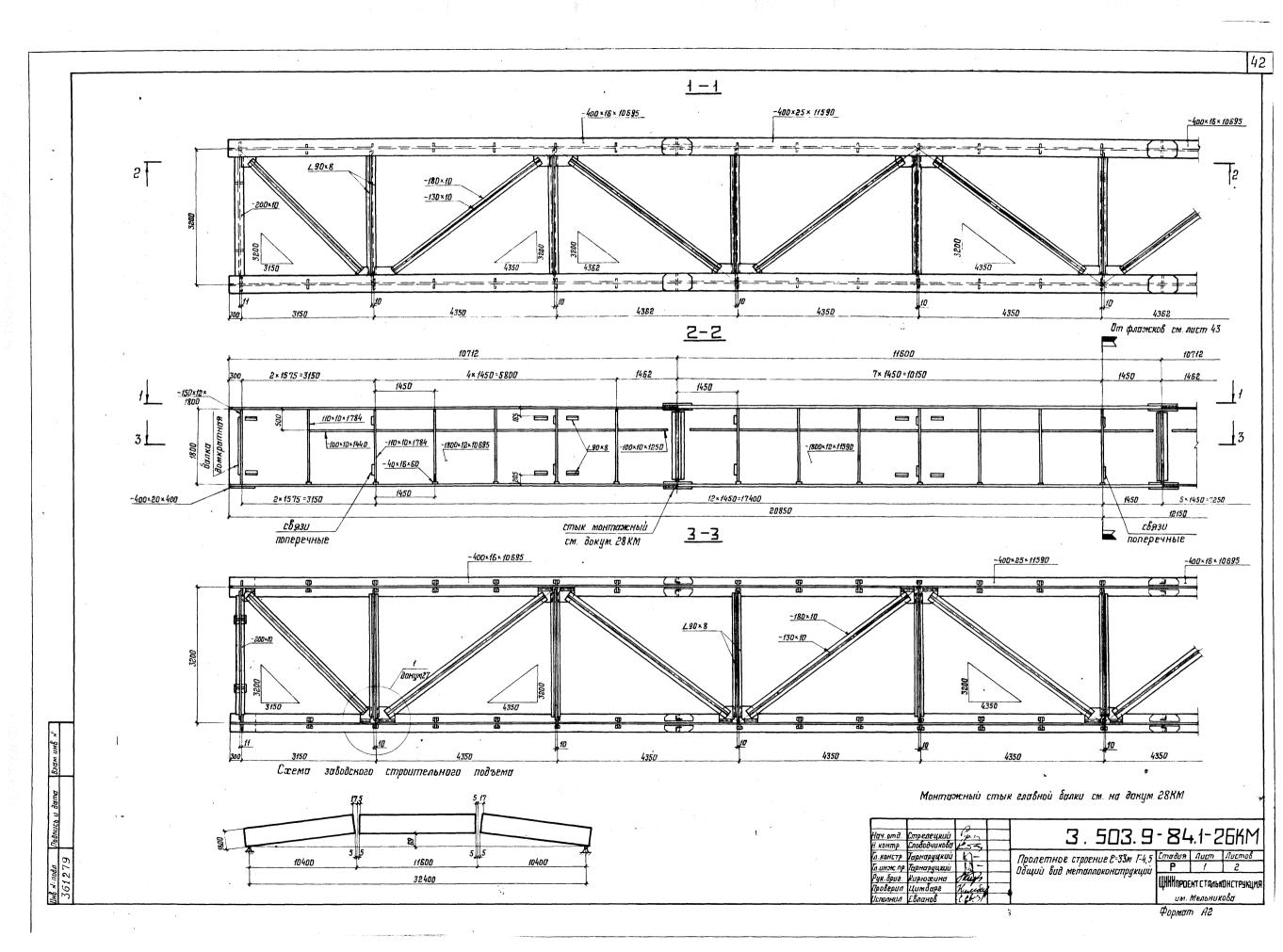
			4.4	MRCC	a + c	
HAUMEHOBAHUE	ract	Mapka cmanu	Kon,			1 puneurhur
		CINHING	ШП	одной	всех.	POMETHIA
Балт М22-8ул80. 110	TOCT22355-77	40 X	450	9,34/	154	
Болт М22 8дх90 но	FOLT 22356-77		120	0.370	- 45	
60.0 M N 22-89 × 110. 110			160	0,428	69	
60.0m N.22-8q×120.110	,			+		
			50	0,457	23	
Umozo			784		291	
TAUKA M22.7H.110	[UCT 22354 - 77 [UCT 22356-77	40x	1560	0,108	169	
<i>Шяйбя 22</i>	FOCT 22355-77 FOCT 22356-77	BCT5cn2	1660	0,059	98	
Bceea	e'				558	
В тон числе		40x Cenekt		†	29/	
na Mapkam		40x		1		1
					169	`
		8 <i>Cm5cn2</i>			98	·

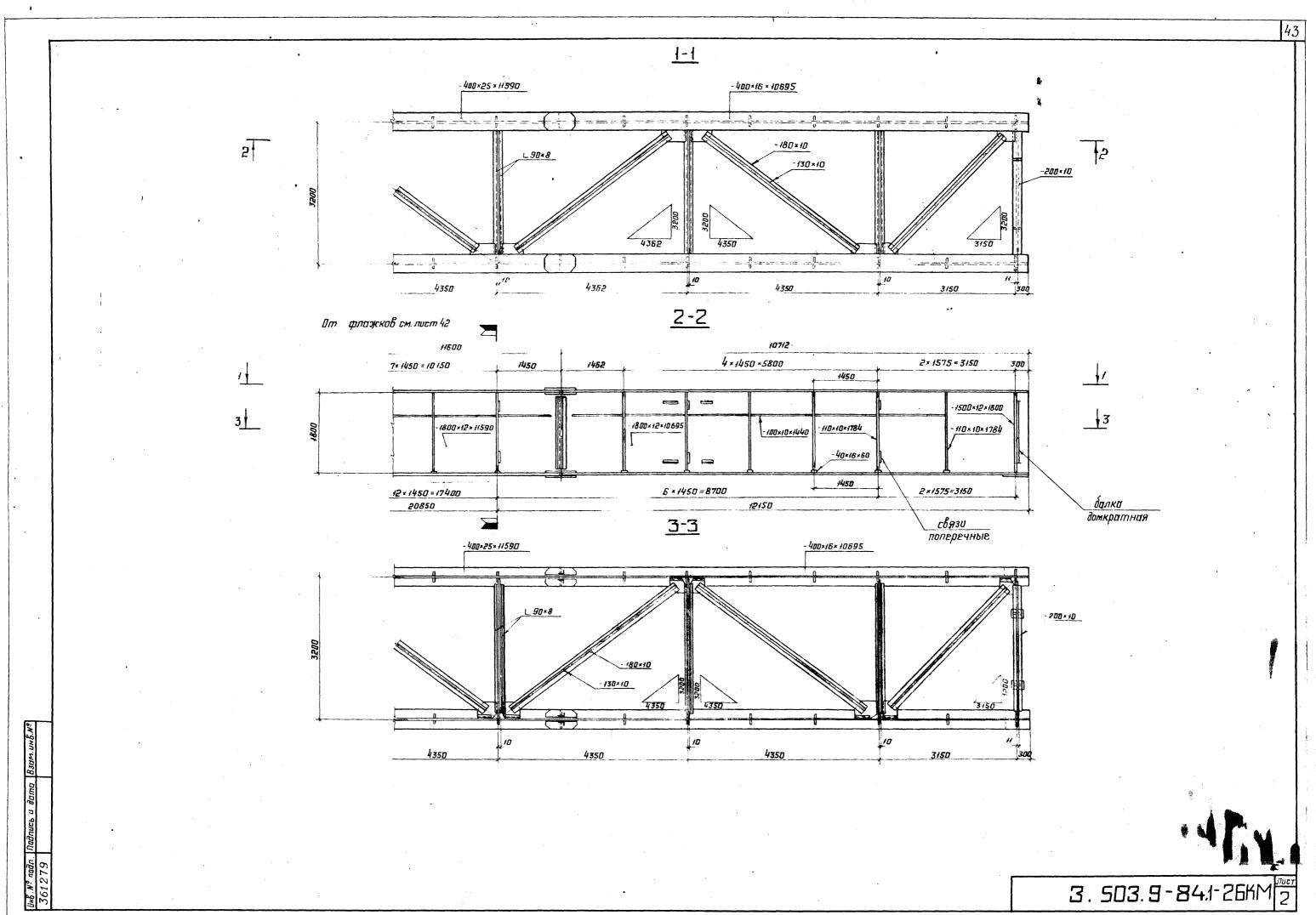
Техническая спецификация металла на пролетное строение

TABAUGA 1

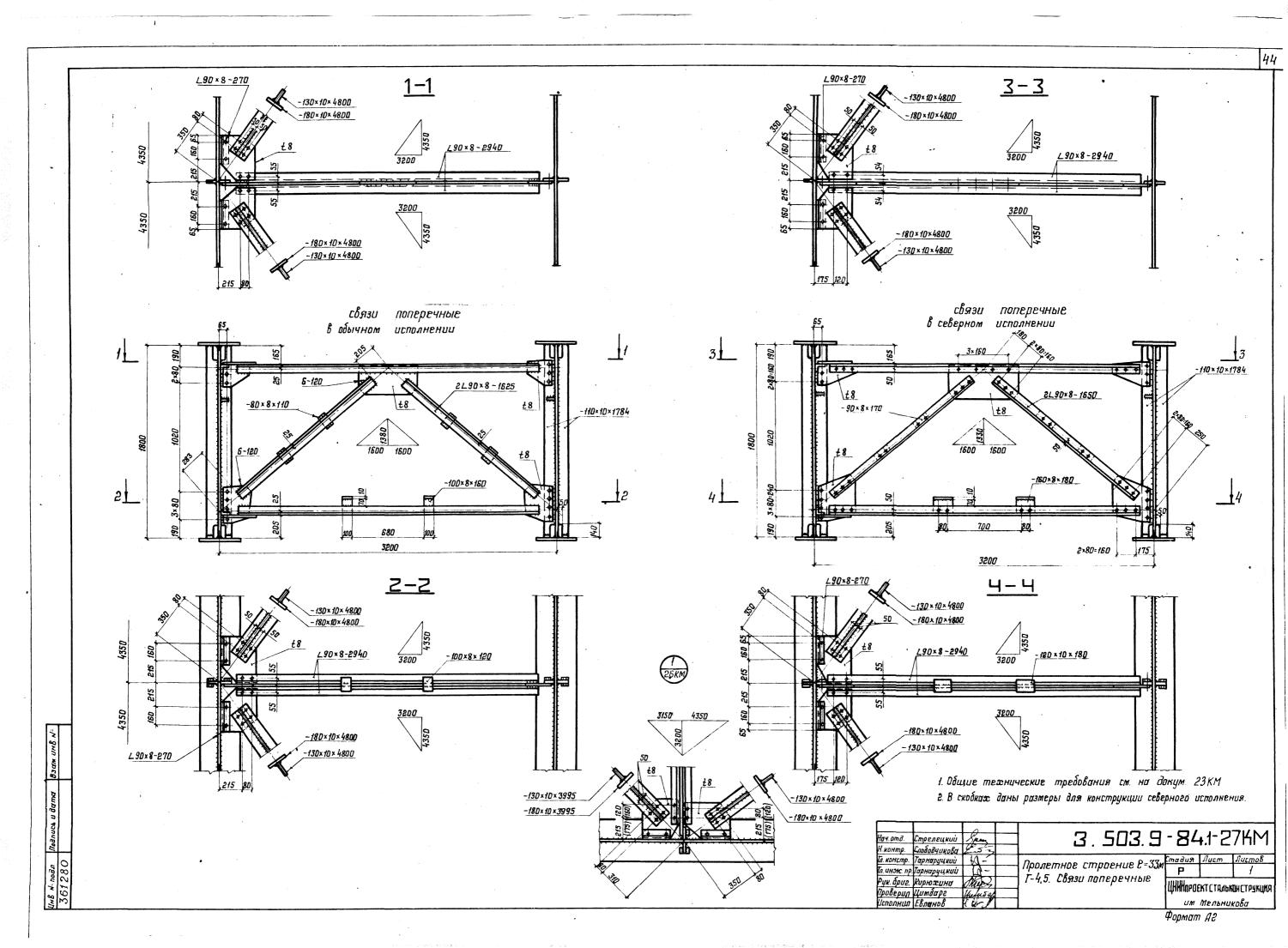
		и прикний я Обозначение			09.				MHEGA M	<i>етплл</i>			констру	kuui, r	4.	MACE 8 ME	CA /10/	тре.в 131 е 1	HOCTU 70	OK.
Вид профиля и ГОСТ, ТУ	i '	ирязнер профи- пя мы			видя профиля	рвзмеря прафиля	Количеетбо, шт	A SUHR,	Глябные бялки	Паперечные связи	Донкрятные бялки	Прадальные связи	Плитя пад апарные чясти	Опорные 4 ясти	Общяя мясся, Т	(3AT	и ЛН	ANA REMI SUME	nen)	Зяпалняется вц
				\$ \$	30				10	11	18	<u>"</u>	14	15	16			19	20	21
//25 ab., a = a ab., b. 8	2	3	4	5	6	7	8	9			12	13	14	1 /3	<u> </u>	 	10	73	20	
Уголки стяльные горячекятяные рябно полочные	15 X C H A - 2 FOCT 67 13 - 75	L 90×8	/						4,2	/.7	-				1,9					
	Umoeo		2						0,2	1,7					1,9					
Всего профиля			3	<u> </u>	2/00				0,2	1.7					1,9					L
Угалки стяльные гарячекнтяные нерявная	15 X CH A - 2 [OCT 6713 - 75	L125,80,10	4			2244			0,2						0.2	-				
ЛОЧНЫЕ ГОСТ8510-86	Umozo		5						0,2						0,2					
Всего профиля			б	•	2200				0.2						02					
Прокят листовой	15 X C H A - 2	£8	7									0,4			0,4	<u> </u>				L
га рячек ятяный	10016713-75	t10	8						1,2	0.9	1,3	2.7			6,1	<u>L</u>				
FOCT 19903-74	10070775 75	t12	9						8.5		_				8.5					
	,	£16	10						2.9		_				2,9	L				L
		t 20	11						Q.3		0,1				0,4	L				Ĺ
		t 25	12						7.0		_				7.0					Ĺ
÷		t 32	13								_		1.5		1.5	l				
	Umoeo		14		7110	<u> </u>			19,9	0.9	1,4	3, /	1.5		26.8					
Всего профиля			15			1			19.9	0.9	1,4	3,1	1.5		25,8					1
Umara мясся метялля	•		16						20.3	2.6	1,4	3.1	1.5		28.9					ĺ
Прокат листовой 20 рячекатяный	15XCHA-2 FOCT 8713-75		-																	
FOCT 19903-74	Итага		17	 		 	<u> </u>		<u> </u>	 				1.0	1,0					•
Всего профиля			18		7/10	 	-		 	-	-			1.0	1,0			-		- 3
Сталь горячекатаная круглая ГОСТ 2590-11	09 12 C 10 CT 19281 - 73	,					_							1.0	,,,					
FOCT 2590 - 71	Umoea		19	2314		 		l	 	-				0.1	0.1		-	-		
Всего профиля			20		1110	1			 					0.1	0.1					
Всего мясся ме тялля			21	 -	1,,,,	-			20.3	2,6	1,4	3.1	1,5	1,1	30,0				\vdash	
В том числе	15X CHA -2		22			 			20,3	2.6			1,5		28,9				-	
па маркам			<u>-</u>						, LU, 3	2,0	1,4	3.1	1,5		~ 0,0	<u> </u>				

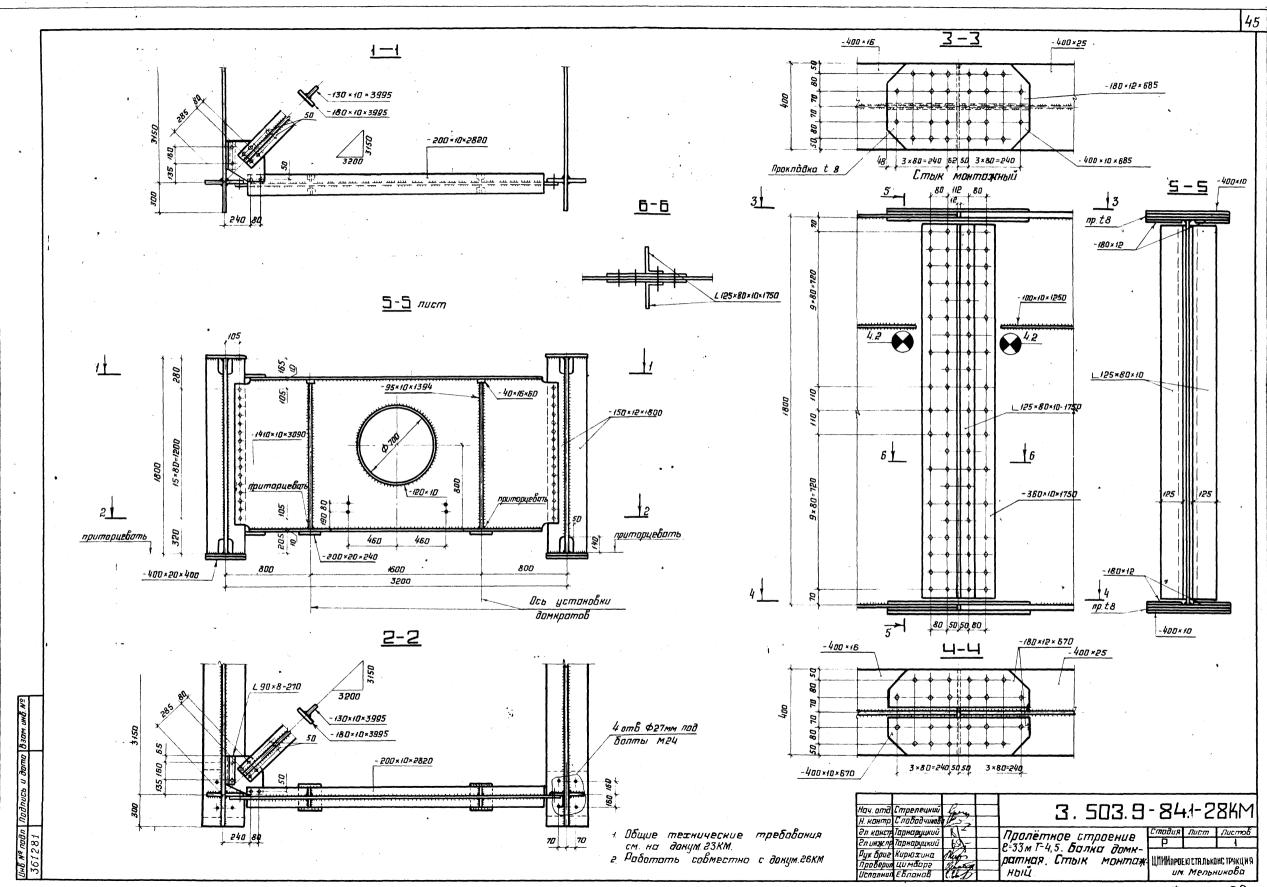
Фясонную стяль мярки 15XCHД толщиной 11 мм и менее допускяется использовять без термической обряботки, при этом удярняя вязкость при минус 70°С должня быть не менее 3 кгс. м/см² (см. п. в примечяния к тяблице 4 гост 6713-75).


				G 500 D		, ,	751/84
HA4. Omg.	Стрелецкий	4/11/2		3 503.9	- 24	+.1 ⁻ C	ויואכי
н. кинтр. Іп конста	Слабодчикова Тарня руцкий	15		Пролетное строение С-24м Т-8 (себерное испол	Prianua	fuca.	Nuc m 4 B
	Тарнаруцкий Тарнаруцкий		-	нение).Техническая спецификация.	l o	1	2
Рук.бриг.	Кирюхиня	Must		металла ведоность неталлоконст- рикции по видам профилей.	IIIIIII		
Праверия	Цинопре	Bushe		Прадняя веданость нонтаженых.	цлинне	EK IC I HAID	конструкция


												·							
Наименавание конст-	ЯЩ	٧º	Код					acca				m					Breen c	Кали - чества	C
рукции по номенклату -	55	אממדה	אוינ <i>סדודסדו</i> ט.	200 200 200 200 200				ชื่นชิน)				·			T=	1	учетом	Ì	типовыж.
ρε πρεύσκγρακιπο 01-22	позиции прейску	, , , , ,	Код конструк- ции	ACCATU BAICOXOU TOBBILLEAN TOBBILLEAN TOBBILLEAN TOBBILLEAN TOBBILLEAN	Балкц ч швел- леры	Широ - копо - яруные двутав. Ды	Крупно- сорт - ная стаяь	Средне- сарт сталь	н ая	листи- Вия	сшаль саль саль- янпвер-	Тонко- листо Воя столь ѣ<4мм	гнутые ценуто свар - ные профи- ли	Пру- бы	Про- чив	дсево	1% НО МОССУ НОППОВ МЕППАЛ- ЛО	шт.	конструкций
1	ß	3	4	5	δ	7	8	9	10	11	18	13	14	15	16	17	18	19	20
Пролетног строение		1	526422	28.9		_	2.1		-	25.8	_	_	-		1,1	28.9			
ИПО ВО С УЧЕТОМ 3% На уПОЧНЕНИЕ МАССЫ 8 ЧЕРПЕНАХ КМД		ß		29,8	1	_	2,2	-	_	27.6	_			_	1.1	29,8	30,1		
Итого с учеттом от ходов 3.7%		3		30,9	1	_	2,3	-	_	28.6	_				1.2	3D,9			
Приведенная к обычным профилям масса с учетом 3% на упочнение массы в черпежат кМВ и 3.7% на отовы	,	4		_	1	1	2.3	1		28.6	-		-	_	1.8	30,9			
Разница приведенной и натуральной массы		5														٥			
Распределение массы металла по пределам то пределам то дуетом 3% на уточнение массы в чертежах КМП и 3.7% на отходы		б	мПа кі 325-345	T/MM ² 33·35												30.9			
Приведенная к стали уеле- родистой одыкновенного качества по ГОСТ 380-11 мас- са металла с учетам 3% на уточнение массь в чертегнсях км у и 37% на отходы		7														39,6			
бсего приведенная масса метала с учетом 3% на уточнение массы в четте- жат масти в 37% на отходы		8		·												39,8			

Ταδηυμα 3


Сводная ведомость монтаженых болтов, гаек и шайб


		Марка	Кoл.	Macci	א, ני	_
Н <u>а</u> именаванив	דסטיז	cmasu	шт.	ขยหมน	всех	Примечания
501M M22-8g ×80. 110.x111	FOET 22353-77	40X	מוד	0,341	242	
Болт M22-8g × 90. 110.XIII	FOCT 22356-77	្ត Cenexm"	38D	0,370	141	
Болт M22- 8 g×110,110,XIII			160	0,428	69	·
50am MBB-8g×120.110 XN1			50	D, 457	23	
						•
Озоти			1300		475	
Гайка м22-7н.110. хл1	FOCT 22354-77	'40X	2600	0,108	281	·
កាជាចុច 55	FOET 22355 -77 FOET 22356-7 7	BCT 5 cn 8	2700	0,059	150	
05\$38					916	
Втом числе		40X Cenekt			475	
אסאק מא פח	·	40 X			281	
		86⊤5 cn 2			160	

Формат А2

Техниче	ская специ	іфикация мег	π α 1 .	กต	нα	прол	етн	90	ст рое н	ue	•	*								ица	
Вид профиля	Марка	Обозначение и	N:		Код				Масса	метал	ла по эл	пемента	IM KOHC	трукциѝ,	T	j,	Marce B me	ca noi emani	треді пе пі	40CMU 0	
υ τος τ, τΥ	Memanna u TOCT	размер профиля, мм		марки мета ал а	вида профиля	размера профиля	Количество, шт.	Длина, мт	Главные бапки	Поперечные связи	Домкратные бапки	Продольные связи	Смотровой <i>ж</i> од	Плита под апорные час т и	Опорные части	Дбицая масса, т	кв Зап	ар та олня: тови	<i>NQM</i> emc <i>\$</i> 1	, ем),	Заполняется Вц
				MC	19	86	Ko	A	17.0	ell .	4	12				 	1	1	<u>I</u> ĨÌ	Ù	ļ
1	2	3	4	5	Б	7	8	g	10	- 11	12	13	14	15	16	17	18	19	20	21	22
Сталь горячекатаная Швеллеры	BCT3cn5 TOCT380-71	E 12	1			2615							0,7			0,7					
TOCT 8240-72	Umoeo		г	1446									0,7			0,7	-				<u> </u>
Всего профиля		•	3		2615			4					0,7		<u> </u>	0,7	<u> </u>			 	
Уголки стальные го- рячекатаные равно-	16Д ГОСТ 6713- 75	L 90×8	4						D, f	1,4	0,1					1,6					
лолочные ГОСТ 850 9 -86	Umpeo .		5	2443					0,1	1,4	D, 1					1.6	<u> </u>			<u> </u>	
10010303.00	BCT3nc2	L 50×5	6										0,4			0,4	<u> </u>			<u> </u>	
1	FOCT 380-71	L 70×8	7										D,4			0,4	ļ			-	ļ
	Umoeo		8	1226		3				_			.D,8			0,8					
Всего профиля			9		2100				0,1	1.4	0,1	_	0,8			2.4				 	
Уголки стальные га- рячекатаные неравна-	15ХСНД ГОСТ6713- 7 5	L 125×80×10	10			2244	į.	v.	0,3	_						Д,3					
ПОЛОЧНЫЕ ГОСТ8510-86	Итого		11			ļ	<u> </u>		д3							0,3			•		
Всего профиля			12	 	2200	 			0,3						_	0,3					
Сталь горячекатаная	BCT3KNTOCT380-71	φ ₁₆ '	13		10000								0,2	_		0,2					
KPYESIUS TOCTESSO-71	<i>Ито</i> го		14	1123					_	_	_		0,2			0,2					
Всего профиля			15		1110	<u> </u>							0,2			0,2	<u> </u>				
	15 ХСНД	£8	16							-	-	D,3				0,3				\sqcup	·
Προκαπ πυςποδού	TOCT 8713-75	£10	17						2,3		1,0	1,8				5,1,	<u> </u>				
горячекатаный		£12	18			1			11,6	_						11,5	<u> </u>			<u> </u>	
ГОСТ19903-74		£16	19						4,4	_						4,4	<u> </u>			 	
		t 20	20						2,0		D, f					0,3				\vdash	
		£25	21						3,7							3,7	 		_	$\vdash \vdash \vdash$	
	Umaeo		22		<u> </u>				22,2		1,1	2,1				25,4		_			
	16 <u>/</u>	£8	23			<u> </u>				<i>D</i> ,3						D,3	 				
	TOCT 6713-75	.£10	24							0,1						0,1	 			\vdash	
		£60	25											1,1		1.1	├	-			
	Итого		25	2443						0,4				1,1		1,5 25,9	 	-			
Всего профиля			27.	L	7110				22.2	0,4	1,1	2,1		1,1			+			\vdash	
Листы старьные с ромбичес- ким и чечевичным рифле-	BCT3KN2 FOGT380-71	-риф. £5	28		<u> </u>	7152							1,1			1,1	-				
HUEM	<i>Итого</i>		29	1122	<u> </u>	<u> </u>							1,1			1,1	 				
Всего профиля			30	<u> </u>	7150	<u> </u>							1,1	1,1		31,6	T			-	· · · · · ·
Итого масса металла			31	 	 	<u> </u>			2,95	1,8	1,2	2,1	2,8	1.7	 	31,0				\Box	
		<u></u>	<u>L</u>	<u> </u>					<u> </u>	<u> </u>			L		L	L	L	L			

Нач отд Стрепецкий (дела)

Н. контр Спадодчикова (дела)

П. констр Гарнарушкий (дела)

П. констр Стадод (

/	ع	3	4	5	6	7	8	9	10	T			11,	родолъ	rehue	៣ឝ៦ីរាប	461 1	′			
Прокат листовой	16Д ГОСТ 6713-75				ļ. —		+-	 	100	//	12	13	14	15	16	17	18	19	20	21	22
едрячекя тяный ГОСТ 19903-74	1/moeo:		32	2443			1-	-	 	<u> </u>				1		 	+	一			T
Всеен профиля	•	,	33		7/10		<u> </u>	 	-			_	=		0,9	0,9	+	 	\Box		t^-
тяль горячекатаная	BCT3cn2				1		 		+=-			_	_		0,9	0,5	 	\vdash	1-1		T
кругляя	TOCT 380-71						 	-	-					†	- 0,5	1 -0,5	+-	 			
FOCT 2590-71	Umoeo		34	1443			├							ļ	 	 	 	 			
Beeen Apoquan			3 5		1100		-	-	<u> </u>			_			0.1	0,1	1-	 	H		一
BCERO NACCA MEMAJJA			36		1,50		-								0.1	0,1	1		1-1		┢
В том числе	15XCHA	,	37	2504	-		-		22,6	1,8	1,2	2.1	2.8	1.1	1.0	32.6	 				\vdash
NO MAPKAM .	/8Д		38	2443					22.5		1,1	2.1				25.7					
TO MITPARIN	BCm.3cn5		39	1446					0.1	1,8	0,1	_		1.1	<u> </u>	3.1					
	Blr3nc2		40	1226			 	-	_		_	_	0.7	<u> </u>		0.7					
	BCT3 KIN		41	1123			-	<u> </u>		_	_	. —	0.8			0.8					
•	BCT3Kn2		42	1122			 		<u> </u>				0.2			0.2					

Таблица 2 Ведомость металлоконструкций по видам профилей

HAUMEHOBAHUE KOH-	13		.				MA	CCA	KOHO	mpy	kuvú,	m							
струкций по номен-	PAHTY	N:	KOG	200			ים שני	YAM	про	PUST E	?Ù					Γ.	Bee 20	Kosiyu. ecrka	Серия
\	Mosuuvu npeucky	стрик	н од конструк ции		Бялки V W вел пвры	Широ копо- лочны овугаб ры	Крупна варт- няя стяль	C pegne C a p m H R R C m n n b	enniq	10.0010 10.0010 8 11 0.0010 0.0010 10.	CHITHING	Tanko nyeta- ban emanb t~4nn	гнугы Изнута Свярны прафи-	Mpy- Sti	Προ- 4 υ ε	C	C YUETON 1 % HA MACCY HANNAG NETHA JIR	W m	Серия типовых конструк - ций
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Пралетнае страсние		1	526422	25,7	0,7		2.7	_	0,2	28.0					1,0	32,6	.—		
Итога с учетан 3% он на уточнение массы в черте эках кну		2		26,5	0,7	_	2.8		0,2	28,8	_	_			1,0	33,5	33,8		
Umoeg c yyemon om- xogob 3,7%		3		27.5	0.7	_	2.9		0,2	29,9			_		1,0	34,7			
Приведенняя к обычным профилям нясся с уче- том 3% ня уточнение мяссы б чертежях КМД и 3,7% ня отходы.		4	·	-	0,7		2,9	_	0,2	29,9		<u></u>			1,0	34,7			
Рязниця приведённой и нятуряльной мяссы		5												 -		0			
Ряспределение мяссы метялля па пределям техничести с учетом 3% на уточнение мяссы б чёртсжах КНВ и 3,7% на отходы.		Б	МПа 185-235 325-345					1								7,4 27,3			
Придеденняя к стали угле- родистой обыкновенного кничествя по гост 380 ТУ-на Ся неталля с учетон 376 ня уточнечис нясель черк заях к НВ и 3.77-ы и отходы		7														42,3			
Всего приведенняя мясся метилля с учётонз% ня уточне ние мяссы в четежня (Мяи 3.1% ня отходы		8														42.3			

. Тяблиця 3 Свадняя ведамость мантяжных балтов, глек и шяйб.

., 8	# 0 0 m	MAPKA	KOSI,	MACC	A, KT	
Няименовяние	roct	ይጠЯЛህ	щm	одной	всех	Примечяния
Балт M22-8g×80.110			460	0,341	157	y
50лт М22-89 × 90. 110	/OCT22356-77	"Cenert"	160	0,370	60	
Балт М22-8д» 110.110			2/0	0,428	90	
Болт M22-8g×120.110			160	0,457	74	
Umaza			990		381	
Tauka M22-7H 110	[OCT 22354 - 77 [OCT 22356-77	40X	1980	0,108	214	
Шяи̂бя 22	<i>[0CT22355-77</i> [0CT22356 -77	BCT5cn2	3080	0,059	182	
Всега	·				777	
В тон числе		40 Х.Селект			38/	
па маркам		40X		1	214	
		BCr5cn2			182	

Технич	неская специ	фикация метал	าภต	на	проли	етнов	? (строе								г	Macc	a non	การกา		ица 1
Вид профиля	Марка	Обозначение и	N÷		Код				Масса	метал	חם חם אח	ементам	констр	укций, <i>Т</i> Т	·	масса,	& ME.	ជ ្ជាសារ ភា ពសារ	В ПО		63
u FOCT, TY	металла и ГОСТ	размер профиля,	1	марки металла	вида профиля	размера профа ля	Количество, шт.	Длиня, мм	Ілавные балки	Поперечные связи	Домкратные балки	Продольны г связи	Сматровой х од	плиты под опорные части	Опорные части	Общая ма т	/3ano	ภ.អ.ภ.ย. ภายชื่นเ	тся теле. т		Заполняется Вц
				мен	оди про	badu Epd	Kox		Inub	Попе	A OM,	Лроб			16	17	<u>Ī</u> 18	<u>Ū</u> 19	<u>I</u> II 20	<u>[]</u> } 21	22
1	2	`3	4	5	б	7	8	g	10	11	12	13	14	15	76	0,7	7.0	<u>,,</u>		-	
Сталь горячекатанная швеллеры	15 X CH A - 2 TOCT 6713-75	C <i>12</i>	1	•		2615							0,7			0,7					
TOCT 82.40 - 72	<i>Итого</i>		2										0,7				-				
Всего профиля			3		2610		<u> </u>						D, 7			0,7 1,7					
	15XCH.4-2	. ∟90×8	4	t	20.0		†		0,1	1,5	D, f					1 1					
Уголки стальные горя- чекатаные равнопо-	TOCT 6713-75												<u> </u>	·		1,7					
лочные ГОСТ 8509-86	Итого		5					<u> </u>	0,1	1,5	0,1					0,4	t				
	BCT3cn5	∟ 50×5	Б										0,4			0,4					
	FOCT 380-71	L 70×8	7										0,4			0,7	1				¥.
•							ij		·							0,8					5,
	Итого		8	1446									0,8			2,5					
Всего профиля		·	g		2100				0,1	1,5			0,8			0,3	<u> </u>				
Уголки стальные горя- чекатаные неравнопо-	15XCHД-2 10CT 8713-75	L 125×80×10	10			2244			· 0,3												
лочные ГОСТ 8510-86	Итога		11	 	l		 	 `	0.3							0,3	 	_	-		
Всего профиля	- CHIPCO		12		2200	<u> </u>	 	<u> </u>	0,3							0,3	 				
Сталь горячекатаная круглая	BCT3KN TOCT380-71	<i>φ1</i> δ	13		0.00								0,2			0,2					
TOCT2590-71	Итого		 	ļ			-	ļ	<u> </u>				0,2			0,2	ļ,				
D	шииси	_	14	1123		 	—					 	0,2			0,2					
Всего профиля			15	ļ	1110	ļ	-	<u> </u>	 			0,3				0,3	<u> </u>				ļ
Προκαπ πυσποδού	15 ХСНД-2	±8	16		ļ	ļ	!	<u> </u>		0,4	1,0	1,8				5,1	L				
горячекатаный	TOCT 6713-75	£10	17	 	 	ļ	├		2,3	D, 1	1.0					11,5	ļ				
TOCT 19903-74		£12	18	 -		 -	 	ļ	11,6							4,4	ļ				ļ
• •		£16	19	ļ	ļ	<u> </u>	 		4,4		0,1					0,3	<u> </u>				
		teo	20				├	ļ	2,0		<i>U,1</i>					3,7	ļ			I	ļ
•		£25	21				├	 	3,7					1,1		1,1	L				
•	11	£ 32	22		ļ	ļ					 	2,1		1,1		27.0	<u> </u>		<u> </u>		
Acces pandures	Итого		23	 	ļ	 	-	 	22,2	0,5	1,1	2,1		1.1		27,0			_	<u> </u>	
всего профиля Листы стальные с ромбичес			24		7110	<u> </u>	├—	ļ	22,2	0,5	1,1	6,1	1,1			1,1	<u> </u>				
нисты стальные с ратичес ким и чечевичным рифле - нием ГОСТ 8568-77	БСт3кп2 ГОСТ380-71 Иглого	-риф. £5	25 26	1222		7152	_		=				1,1			1,1	-				
Всего профиля			27		7 15 0								1,1			31.8	t				
Итого масса металла			28			F		1	22,5	2,D	1,2	2,1	2,8	1,1	 _	31,0	1				<u> </u>
Прокат листобой горя- чекатаный	15 X C H A - 2 10 C T 6 7 15 - 75				·										1,1	1,1					
TOCT 19903-74	Umoea	<u> </u>	29					<u> </u>			<u></u>	L									

Фасонную сталь марки 15ХСНД толщиной 11мм и менее допускается использовать без термической обработки, при этом ударная вязкость при минус 70°С должена быть не менее 3 кгс.м/см²(см. п.6 примечания к таблице 4 ГОСТ6713-75)

			_				
y. omd.	Стрелецкий	Gun		3.503.9	-84	+1-3	ПКМ
контр.	Слободчикова	253					₩
констр.	Тарнаруцкий	10/2		Пролетное строение 8-33м Т-4,5 себер	Cmadus	Sucm	Sucmob
инэнс пр	<i>Тарнаруцкий</i>	13-		HUP ULTIVITY HORAGA REGAMETAN ME -	P	1	2
ч. бриг	Кирюжина	may,		Ven Сродная редомость моншамсных шалубконстрякапу по рядам ибофя фократы	HHHAnon	KTTTBAL	KANCTOUKIINA
оберил	Цимбире	Kenedy		лей. [водная вёдомость монтаэнсных	W.W.		manch Shifter
	Partie of	Va T		болтов, гаек и шайд	l //M	Мельни	หก <i>ก</i> ัก

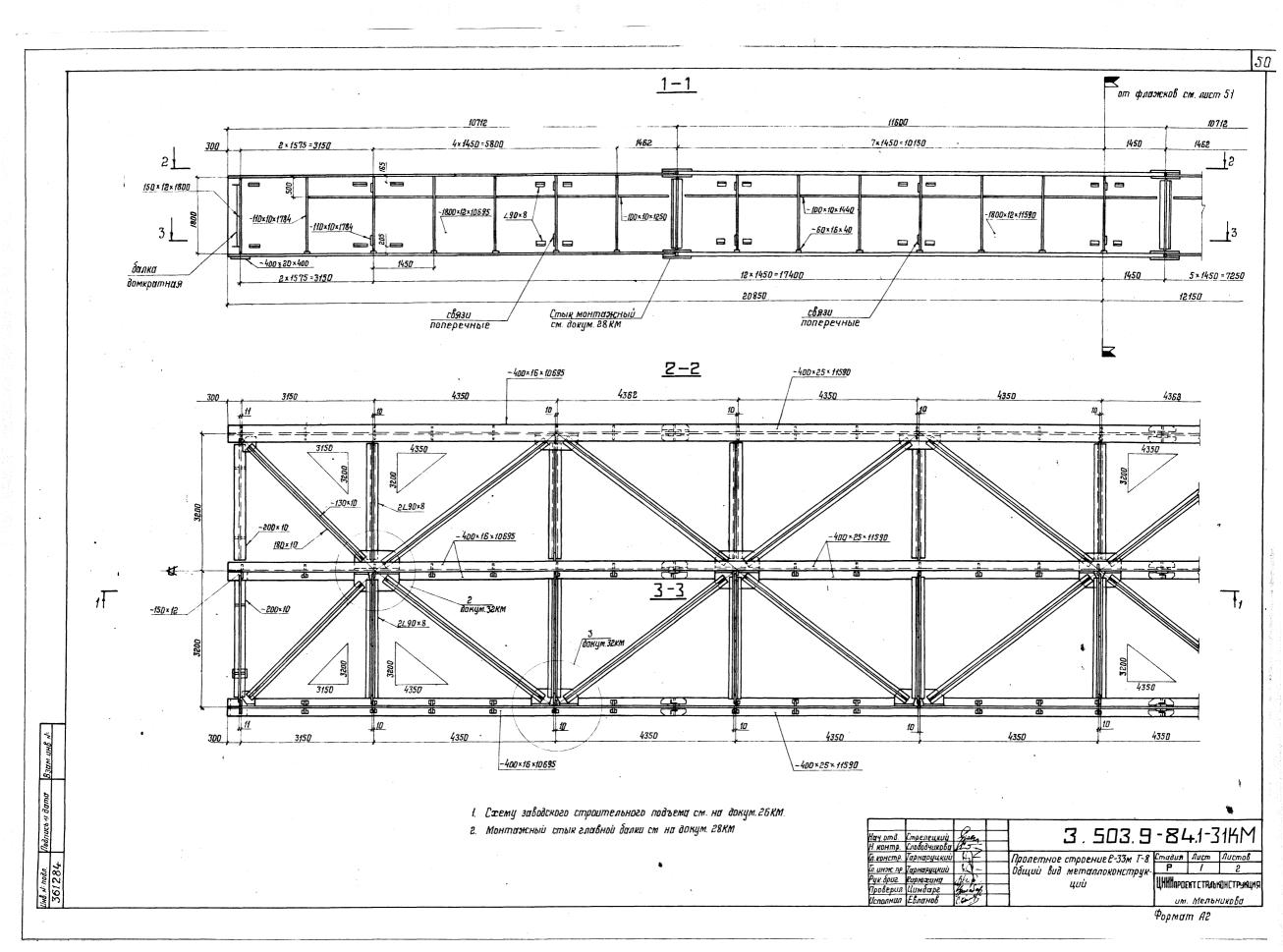
Фортат Аг

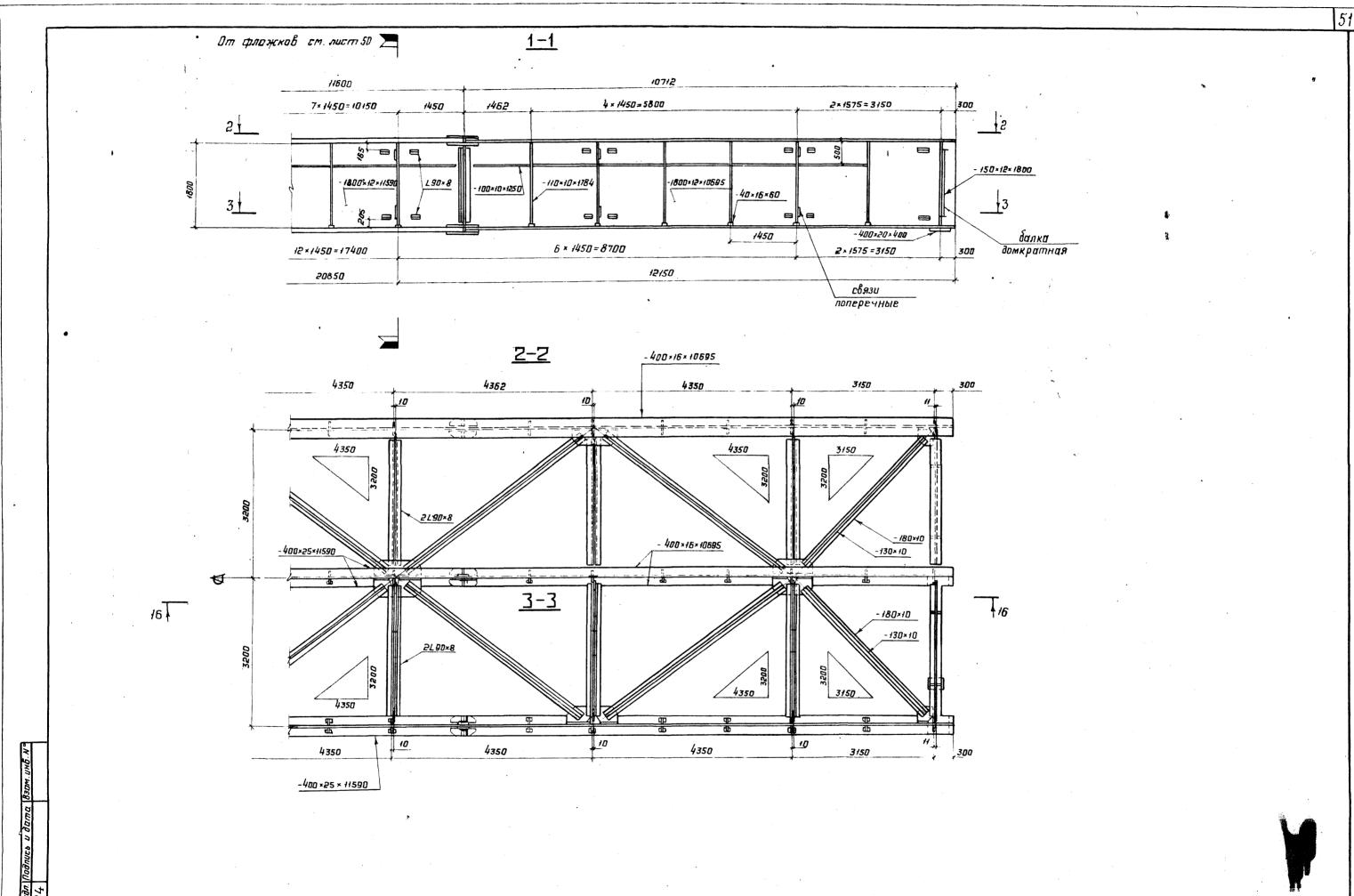
Прадалжение тыблицы 1

		7	14	5	6	7	8	g	10	11	12	13	14	15	16	17	18	19	20	21	22
/	2	3	100	-	7110					_	_				1.1	1.1					
Всего профиля			30		7770						-							 -			
Сталь гарячекатаная	09r2C																				l
1 to	1007 19281-73		12/	2314											0,1	0,1				\Box	
	Umaea		32	-	1100								_		0,1	0,1					l
Всего профиля			33	├	-				22.6	2,0	1.2	2.1	2,8	1.1	1,2	33,0					
Всего мясся металля				2504		 -			22.6	2.0	1,2	2.1	0.7	1,1		29,7					
В том числе	15XCHA-2	·	34	2304													\vdash				
na MARKAM	0000		35	1446	-								0.8			0,8					
	BCr3cn5		36						_				0,2			0,2					
·	BCr3kn 5Cr3kn2		37										1.1			1.1					

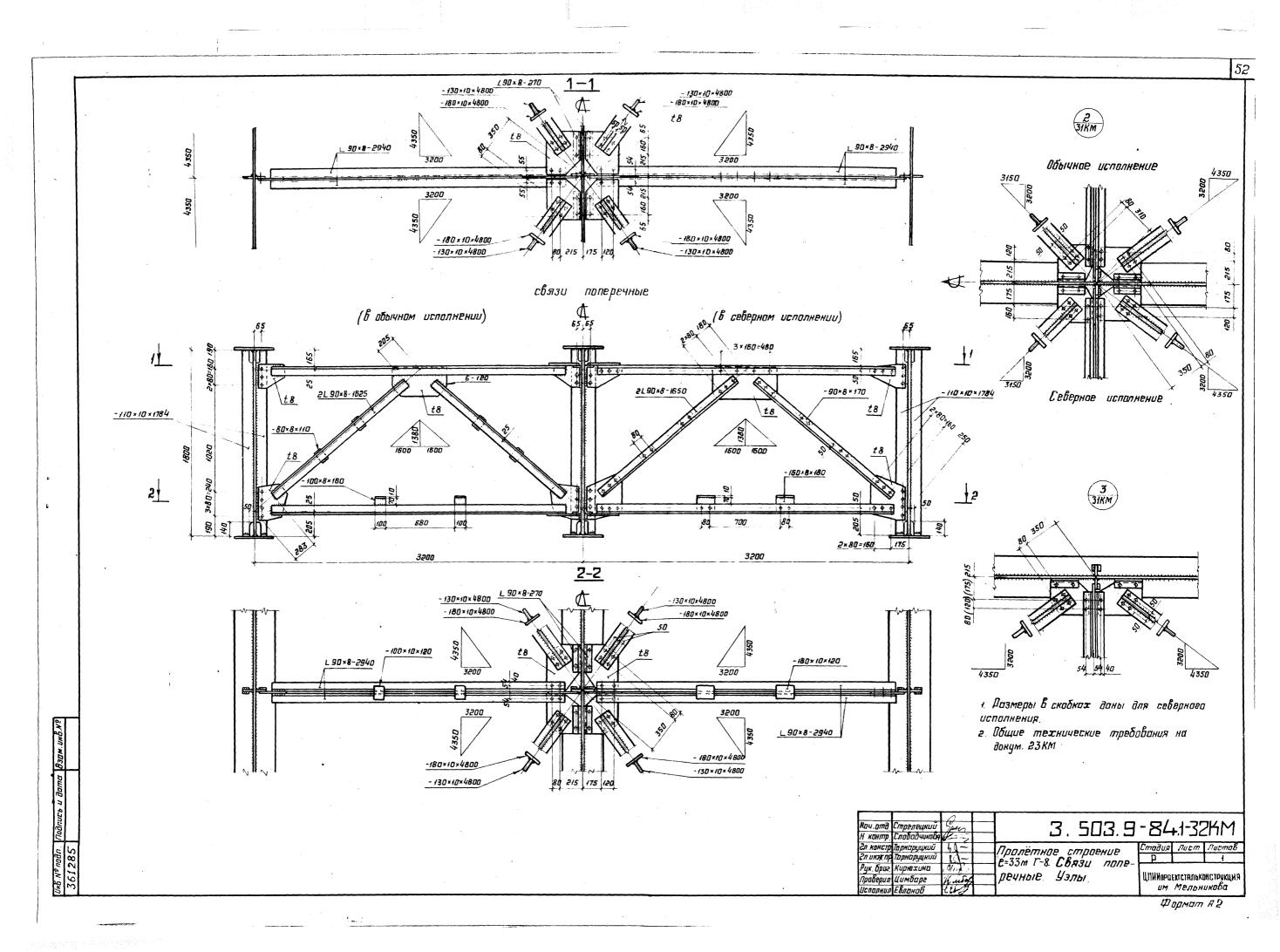
TABAULA 2

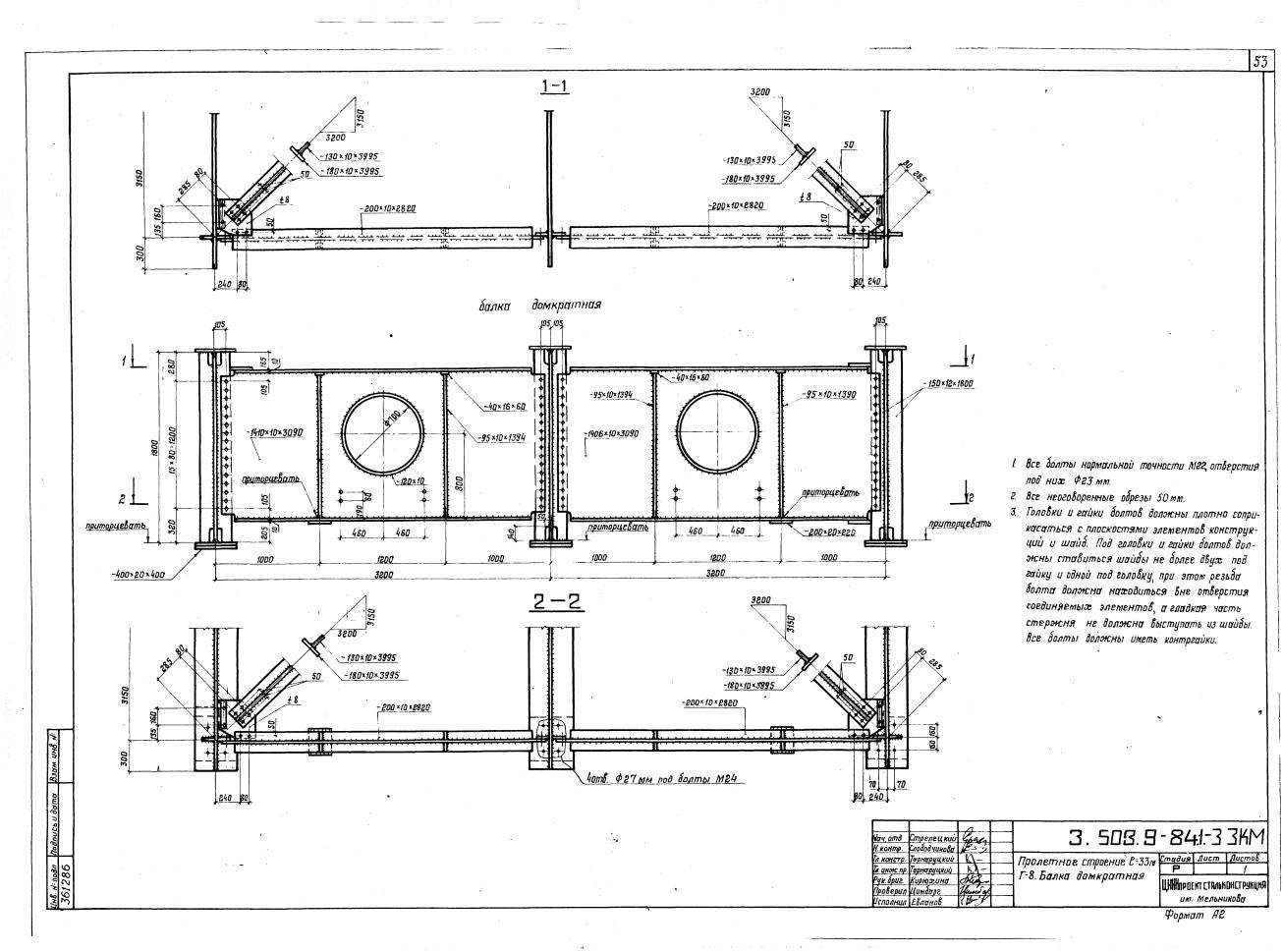
Ведамасть метяллаконструкций по видям профилей


HAUNEHABAHUE KOH-	NO RHTY				_		MAL	CF .	KOHCI	npyk	τιυύ,	m						Kony.	
CMPYKUUB NO HONEH-	U PR	Nº.	К од конструк	ACTO POCK POCK					ч пр							В	Becea. Cyneron	1	Серия Пиповых
knamype npeńcky- panma 01 - 22	Masuu v npeúek		นุบบ	NUCCUM NOODING HHAMMAQOU WARAMAQOU	Бялки швел- перы	Шуро- коло- лоуны двугно ры	Крупно сарт- няя стяль	Средне сорт няя стяль	MEAKO CAPM HRR CT R AB	Tancia Nucto Bra Ctrib Ctrib	Унибер САЛЬ- НАЯ ЕТАЛЬ	Tanka nucro Baa emanb t-4nn	2нутыв изнуто Свярны профи-	Тру Бы	17pa- 4ue	€ 2 0	VI HA WARCCY HAIIJAL METAJI	40"	конс трукци
+	2	3	4	5	Б	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Пролетнов строение		1	526422	29,7	0,7	_	2,8	_	0,2	28.1		_	_		1,2	33.0	 	1.5	20
Umoea c yvemom 3%, HA ymouhehue Macell & Yepmeseas KMD		.2		30,6	0,7		2.9		0,2	28,9	_	_		 -	1.2	33,9	 		
Итага с учетам от- ходов 3.7%		3		31,7	0.7	_	3,0	_	0,2	30,0	_	_			1,3	35,2			
Приведенняя к обычным профилям мясся с учегон 3% ня уточнение мяссы б чертежет КМВ и 3,1% ня итжады	f	4		_	0,7		3,0		0,2	30,0	_	_	_	_	1,3	35,2			
Рязниця прибеденной и нятуряльной мяссы		5														9	·		
Ряс пределение пяссы нетялля по пределян текучести с учетемэ?» ня уточнение няссы в чер теэсях КМД и 3.7% ня отх оды.		ľ	мПа 185-235 325-345													3,5 31.7			
Tousegehhark Ctru year poyuemdy Jookhubehhaeo Kwecmba notali 380 - Trmc Cr meminiar Cytembaso Hr ytouhenuc Macchi byedekka KMBU 3,7% Hr omwogol		7														44,1			
Всега приведенняя мясся метялля с учетом 3% ня уточнение няссы 6 чер- тежни кНВиЗ,7%ня атхады		8														44,1			


Тяблиця 3 Сводняя ведамасть монтяжных болтов, гаек и гияйб.

44		Mapka	Kos,	MAGE	R, KT	0
Няименавяние	rocr	C M AJU	шт	Однай	всех	Примечяния
Балт М22 8д:80.110.ХЛ	[OCT22353-77	40x	460	0,341	157	
Балт М228дх85 На.Х.Н	FOCT 22356-77	"Селект"	220	0,355	78	
Балт M22-8g×90.110 XЛ1			160	0,370	60	-
Балт М22-8д×110. НОХЛІ			210	0,428	90	
Балт М22-8дэ/20. НОХЛ!			160	0,457	74	
Umoeo			1210		459	
TAUKA N22-74.110XXII	TOCT22354-77 TOCT22356-77	40x	2420	0,108	262	
Шяข้อя 22	TOCT 22355-77 FOCT 2235&77	BCT5cn2	3300	0,059	195	
Bcezo					916	
В том числе		40 X. Ce nekî			459	
NO MAPKAM		40x			262	
		BCT 5cn2			195	


gnuco u gata (Bsan.unb


6 Nº nagh. Nagnuco u g

3.503.9-84.1-31KM 2

<i>Техни</i> -	ческая сп	ецификяция	' A	18 M	R STST F	9 НА	י ח	00Л	E MH08	c m	DOEHU	€.				Тябл	иця 1	,			
Bug профиля	Мяркя	[бознячение	√ =		Kog				MACCH A	иет ялл		?HEHMAH	конст,	oyk4vů, 7	•	a,	MACC	CA NOT	πρεδ	HOCTU	
u roct, ty		и рязмер профиля ММ	п.п.	мярки м е тялля	видя прафияя	рязмеря профиля	Количества шт.	A NUHA,	Глявные Бялки	Паперечные связи	Дом крятные. Бялки	Прадольные связи	Смотровой 209	Плиты пад апарные чяст	Опарные чясти	Общяя мясся, Т	(3An	BAPM ONHA OMOB T	AJIA!	я пем),	З пполняется В Ц
	i e	3	4	5	6	7	8	9	10	11	12	/3	14	15	15	17	18		20	21	22
Стяль горячекятяная	BCr3cn5	E 12	7	<u> </u>	 	2615	ا ا		+=-	<u> </u>			1,4			1,4	+-	<u> </u>		-	~~
швеллеры	FOCT 380-71	-	H	<u> </u>	ļ	20,0	 				<u> </u>	<u> </u>		 		- '''	 	\vdash		-+	
FOCT 8240-72	Umoeo		2	1446			<u> </u>		 				1,4			1.4	 	\vdash			
Всего профиля			3	1446	2610		-	-	-				1,4			1,4	 				
	76Д	L90 ×8	4	<u> </u>		 	<u> </u>	l	0,2	2,8	0,1					3,1	 	\vdash	Н		
Уголки стяльные горячекятяные рявно-	FOCT 6713-75		7		l	 			<u> </u>							1					
полочные.	Итого		5	2443	3				0,2	2,8	.0,1			_		3,1					
FOCT 8509-86	8CT 3 nc 2	L5015	6									_	0,7			0,7					
	FOCT 380-71	L70×6	7							V			0,8			2,8					
																2,9					
	<i>Итого</i>		8	1226									1,5			1,5					
Всега прафиля			g		2100				0.2	2.8	0,1		1,5			4,6					
. ,	15XCHД FOCT 6713-15	L125×80×10	10			2244			0.4							0,4	-				
Палочные Гост 8510-86	Итого		11						0,4							0,4	1				
Всего профиля			12		2200				0.4							0,4	1				
Стяль горячекнтяння кругляя	ВСтЗкл ГОСТ 380-71	φ16	13										4,3			0,3					
FOCT 2590-7/	<i>Итого</i>		14	1123					T				0,3			0,3	†				
Всего профиля			15		1110								0,3			0,3	†				
Трокят листовой	<i>ұ5</i> хс <i>н</i> д	t8	16						1	<u> </u>		0, 6		<u> </u>		0,6	†		ļ		
грокни лостивов	10/00/14 1007 67/3-75	t 10	17						3,4		1,9	3,5				8,9					
zóрячекатаный ГОСТ 19903- 14-	10010110 15	t12	18						17,4							17.4					
		. t16	19						5,5							6,5					
		t 20	20						0,3		0./	_				0,4					
		t 25	21						5,5			_				5,5					
,	<i>Итого</i>		22						33,1		2,0	4,2				3 9,4					
	16Д	t 8	23							0,5						0,5	1.				
	FOCT 6713-75	t10	24							0,1						0,1					
•		t 60	25						l					1,6		1,6					
	ปกาดยด			2443						Q, B				1.6		2.2	I				
Всего профиля			27		7/10				33,1	0,6	2,0	4,2		1.5		41.5					
Листы стяльные ронбичес- Кин и чечевичным рифле- нием ГОСТ 8568-77	БСт3кп2ГФСТ380-71	-pu p t 5	28			7/52							2.1			2,1	1.	<u> </u>			
	Umgea		29	1122		ļ	ļ		<u> </u>				2.1	<u> </u>		2.1	1	_	L_		
всего профиля			30		7150				<u> </u>				2,1			2,1			<u> </u>		

3.503.9-84.1-34КМ
Пропетное строение 8:33м 8 болого поетоб информация неталля вероность информация неталля вероность информация неталля вероность информация неталля вероность неталля вероность неталля вероность неталя профилем Спорням вероность неталя инмерониция ин мельниковя

Няч отд. Стре лецкий Н-к онтр. Слободчиковя

Рук. брие. Кирюжина Проверил Цимбаре Испалнил Васильева

ин. Мельниковя Фарнят Я2

Продолжение	makawa	
'I DUUUJIJHEEHUE	ΠΗΟΝΙΔΙΑΙΝ	

															,, 03,02						
/	2	3	4	5	6	7	8	g	10	11	12	13	14	15	16	17	18	19	20	21	22
Итово мясся метялля			31						33.7	3,4	2.1	4,2	5,3	1,6		50.3					
Прокят листовой	16 A ract 6713-75						l			٠,											
еорячекатаный гост 19903-74	Umoe0		32	2443			ļ					~			1,3	1:3					
Всего профиля			33	İ	7110										1,3	1,3		l			
Сталь гарячекатаная	8CT 3cn2 FOCT 380-71					:					•		•								
кругляя ГОСТ 2590-74	U moeo		34	1443											0.1	0.1					
Всего профиля			35		1100										0,1	0, 1					
Всего масса металла			36						33.7	3,4	2,1	4,2	5,3	1, 6	1,4	51,7					
	15xCHA		37	2504					33,5		2,0	4,2				39,7					
	16 Д		38	2443					0,2	3,4	0,1			1,6		5, 3					
В том числе	ВСтЗеп5		39	1446									1.4			1,4					
по мяркям	ВСт3пс2		40	1226									1.5			1.5					
	БСт3кп2		41	1222									2.1			2.1					
	ВСтЗкп		42	1123									0.3			0,3					

Таблица 2

Ведомость метяллоконструкций по видям профилей

Наименование кон-	*						MAC	CA .	KOHCI	npykl	LUU, N	7						Кали-	0
Chipghada no homen	dan ckgp:	N: crpak	Код конструк- ции	igo co	Балки и ш в ел-	Широ- копо- лочные	Крупна Сарт-	Средне сорт-	Menko copm-	Филе Толето листо- вня	Универ сяль-	TOHKO- nuemo- Bax	гнутые и гнуто свярные	/πρ4- δы	Npo-	8 C e	Всеео сучетом 1% ня мяссу, няпляв.	чест- Ва, шт	Серия типовых конструкций
	nogu upedi	3	4	Pres	3.0,00	двутяв Ры 1	стяль 8	стяль Я	ст я ль	стяль 5 74нн † 1	стяль 12	cmanb t 4 4nn	14		16	2 0	487 П . ЛЯ 18	10	20
Пралетнае	~	3		<u> </u>	6	<u> </u>	<u> </u>	3			12	13	/4	15	10	-	10	19	20
<i>стриени</i> е		1	526 422	39,7	1,4		5,0		0,3	43,6					1,4	51,7			
Umaza cyvernam3% ня утачнение мяссы в чертежтя кмД		2		40,9	1,4		5,2		0,3	44.g			-		1,4	53,2	53,7		
Итога с учетон от- ходов 3,7%		3		42,4	1,5	_	5,4		0,3.	46,5			_	_	1,5	55,3			
Прибеденняя к обычным профилям нясся с учегон 3% ня уто чнение няссы в чертежках кму и 3,77°, на от ходы		4			1,5		5,4		Q, 3	45,5					1,5	55 ,3			
Дязниця приведенной и нятуряльной мяссы		5													,	0			
Дяспределение мяссы метялля по пределян темялля по пределян темпон 3%. Ня причиние мяссы в чертых КНЗ и 3,7% ня атходы		6	МПа 185-235 325-345					·								12.9 42,4			
Приведенняя кстяли угле- рофисту рабынивенного криесту по ГОТ 380-ч1 жинс- ся нетялля с учетоной ня уточчение мяссы вчетежны кнур 3,7% ня отходы.		7														67,2			
Всееа приведенняя нясся метялля с учетан 3% ня уточнение мяссы в черте жени КМД и3.7% ня отходы		8														67,2			

Тяблиця 3

Сводняя ведомость монтяжных болтов, гаек и шяйб

	,	,				
., ρ		Mapka	Kon,	MACCI		
Няименовяние	roct	cmAMU	шт	одной	всех	Примечяния
Билт M22-8g ×80.110	FOCT 2.2353-11	40 x	890	0,341	304	
Болт M22-8g +90. 110	MET 22356-77	Г.е.п е кт."	240	0,370	<i>89</i>	
Балт M22-8gz110.110		,000.0	320	0,428	137	
Балт М22-8 дч20.110]		240	0,457	118	
Umaza			1690		540	
TAUKA MEZ 7H.110	FOCT 22354 - 17 FOCT 22356 - 77	40x	3380	0,108	460	
W #บํอัค 22	FOCT 22:355 - 77 FOCT 22:356 - 77	BCm5cn2	4440	0,059	262	
Всего					1362	
В там числе		40%,Селект			640	
па мяркям		40 x			460	
		BCT5cn2			262	

Техн	ם תמאטפאען	пецификация	7	мет	מתתם	א פ	Q	תסקח	nem អប	e cr	проен	'U&				T	IMPC	СО ПО		บบนุณ บกรสน	
និបនិ ៣០០ជុប្បារាន	марка	Обозначение	٧s		Koð				масса і	металла	·	ментам	KDHETT	рукций Г	, <i>†</i>	, ca,	Вме	nann mann pmann	פח פ	TOUTH	
u FOST, TY	MEMOJJU U 1007	и размер профиля, мм	п.п.	марки металла	ו אחטנ	repa Juna	иество, т.	, DH	главные Болки	Поперечные связи	Јомкратные балки	Про дольные связи	Смотровой <i>жод</i>	Паиты под опорные части	Опорные части	Общая масса, т	130n 1381	ална 80 то 1	2ME 8 UM 2 A T	1EM),	Заполняется Вц
				мар. мет.	вида врофиия	размера профиля	KONUYEET WITH	Длина ММ	רמם סמ	Tone cBs	JON 50	Tabu cB.				17	I 18	II 19	20	1 V	38
. 1	£	3	4	5	б	7	8	9	10	11	12	13	14	15	16	1.4	1"			"	
Сталь горячекатаная Швеллеры	1 5 xCH Д -2 10CT 5113-75	□ 12	1			2615	ļ	<u> </u>			-		1.4			1,4					
roct 82 40-72	итого		2						—				1.4			1.4	┼-	\vdash		┟╼╼╉	
всего профиля			3		2610								1.4			3.2	┼	\vdash		$\vdash \vdash \vdash$	
Уголки стальные горячекатаные	15 X CH A- 2 FOCT 6713 -75	∟ 90×8	4						0.2	2.9	0.1		=				<u> </u>				
равнополочные	итоеб		5				<u> </u>	†	0.2	2,9	D,1	 				3,2	↓			\vdash	
FOCT 8509-88	8C13cn5	∟ <i>50×5</i>	6		 		<u> </u>				l —	 	0,7			0.7	 				
	rdet 380-71	L70×6	7						<u> </u>				0,8			0,8	-				
	итого		8	1446		 		ļ			<u> </u>		1.5			1.5					
ชียะอก กออตบภล	4.,,000		9		2100		├	-	0.2	2.9			1.5			4.7		igsqcup	\sqcup	\sqcup	
Угалки стальные	15 X C H A - 2	L: 125×80×10	10		-	2244	+	 	0.4	<u> </u>		 				0,4	<u> </u>	$oxed{oxed}$		\sqcup	
горячекатаные неравнополочные	FOCT 6713-75															0,4	-				
FDET 8510-85	Osamu		"				<u> </u>	<u> </u>	0.4		<u> </u>		<u> </u>			0,4	1	\Box			
Всего профиля	ВСТЗКП		18	ļ	2200				0.4				-			0,3	1				
Сталь горячекатаная круглая гост 2590-71	FOCT 380 -71	Φ16	13				ļ		-				0,3			0.2					
	Umoto		14	1123								_	0,3			0,3	╂		┝─┤	┝─┤	
всего профиля			15		1110				T		_		0,3			0,3	┼	\vdash	\vdash	\vdash	
Προκαπι πυσποδού	15хСНД-2	t8	15							0,7		D.6				1.3 9.0	 	\vdash	\vdash	1	
гост напаный	roet 6713-75	t 10	17						3,4	. 0.1	1.9	3.5				17.4	 			1-1	
FOCT 19903-74	,	t IB	18						17.4							6.5	t^{-}				
	· ·	t 16	19				<u> </u>		6.5	<u> </u>						0,4	†				
		t20	20	ļ			<u> </u>	<u> </u>	0.3		D.1	<u> </u>				5,5	†				
		£ 25	21				<u> </u>	ļ	5.5					1.7		1.7	1			\Box	
	1/2000	t 32	22	ļ	ļ		<u> </u>	ļ						1.7		418		1		\Box	
Bress commuse	<i>Цтого</i>		23	<u> </u>	7/10	<u> </u>	<u> </u>	ļ	33,1	0.8	2.0	4.2		1.7		41.8					
упешы сшальные с Всего профиля	ECT 3 KM & FOCT		24	 	7110	<u> </u>	<u> </u>	-	33.1	0.8	2.0	4.2	3,1	1.1		2,1	Π				
ромбическим и чечевичным рифлением гост 8588-77	17-08E UMDEO	ράφ. εσ	25 26	1222	715E	 	ļ	 	<u> </u>				2.1			2.1					
' 'гост 8588-77 Всего профиля	5240		27	מממו	7150	├	-	-	=				2.1			2,1		igsqcut			
итого масса металла			28	 	1100	 	-	 	33.7	3.7	2.1	4.8	5,3	1.7		50.7			\sqcup	 }	
прокот листовой горячекатаный	15XCHQ-2 FOCT 6713-75									9,1	N.1				4.0	1,6		$\vdash\vdash$	H		
róct 19903-74	Usamu		29							_	_	-			1.6	,,,,	<u></u>				

Фасанную сталь марки 15XCHQ толщиной 11 мм и менее допускается использовать без термической обработки, при этом ударная вязкость при минус 10°С должена быть не менее 3 кгс м/см² (см. п. 6 примечания к таблице 4 гост 6713-75)

		1				
May.om8.	Стрелецкий	Son	3.503.9	- XL	L1-75	5KM
Ч. кон тр.	Сла бод чикова	13	<u> </u>		Fri	י וווע
ут. канстр	Тарна р уцкий	17/2	пролетное строение 2=33 м	<i>ពេធធិបវ</i>	AUCIT	Aucma8
п инн пр	<i>Тарнаруцкий</i>	121-	Г-8 (Северное исполнение) Техническоя спецификация	Р	1	2
	Кирюжина	ohis		IIHHneri	KTCTANK	ОНСТРУКЦИЯ
		Hunsa	ведомость монтажсных болтов,			
IENDANUA	василь ева	Bus 1	гаек и шайб.	UM	. МЕЛЬНИ	
					m m	

л Подпись и дата взам инв.м.

TATORS REGINCE & Dama

Продолжение таблицы 1

1	2	3	4	5	б	7	8	9	10	11	18	13	14	15 .	16	17	18	19	20	21	22
หณะสอดุก บรรวชิ			30								_	_			1.6	1.6					
Сталь горячекатаная Круглая	09F2C F0CT 19281-73								-							,					
וד-2590 ודי	Овоти	•	31	2314					_		_	_	_		0.1	0,1					
Bceso профил я	8		32		ממוו				_			_		-	D.1	0.1					
Всего масса металла			33						33.7	3.7	2,1	4.2	5,3	1.7	1,7	52,4					
в том числе по маркам	15xch 4 -8		34	2504					33,7	3,7	2.1	4,5	1.4	1.7		46,8					
	BET3 CT 5		35	2443							_	_	1.5	_	_	1,5				\neg	
* •	ВСТЗ КП		38	1123					_		_		0.3	_	_	D.3	. [
	БСтЗ кл 2		37	422									2.1	_	_	2,1					

Таблица 2 Ведомость металлоконструкций по видам профилей

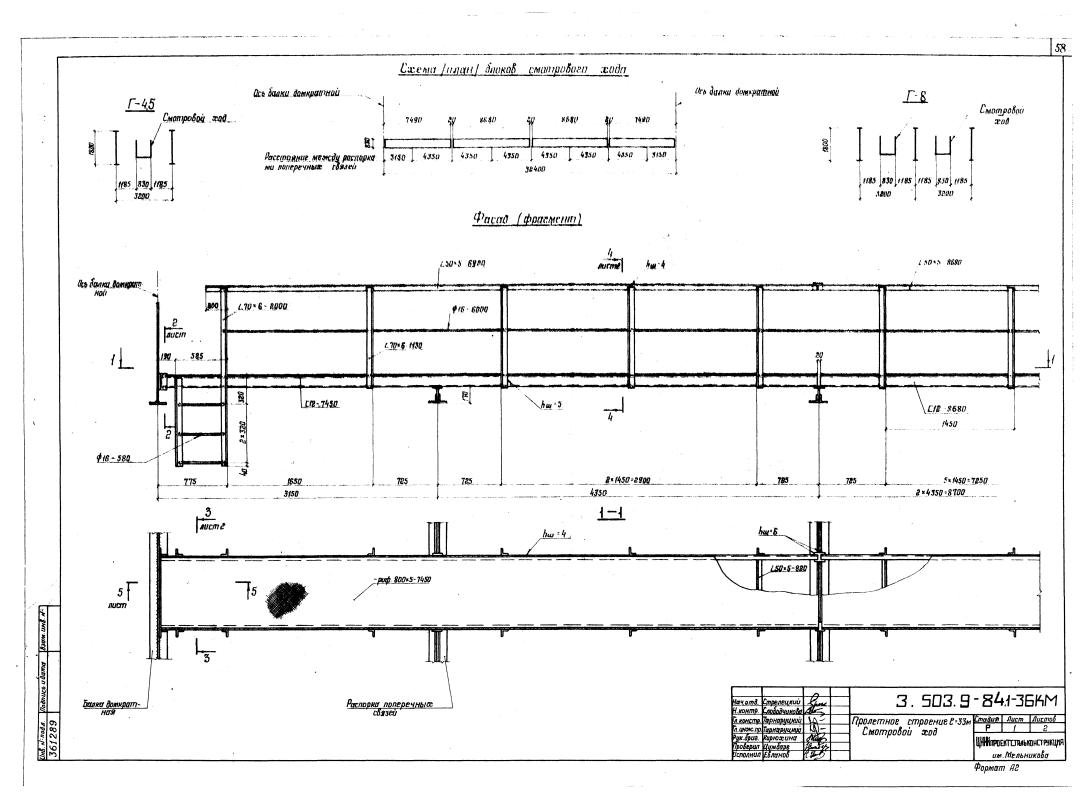
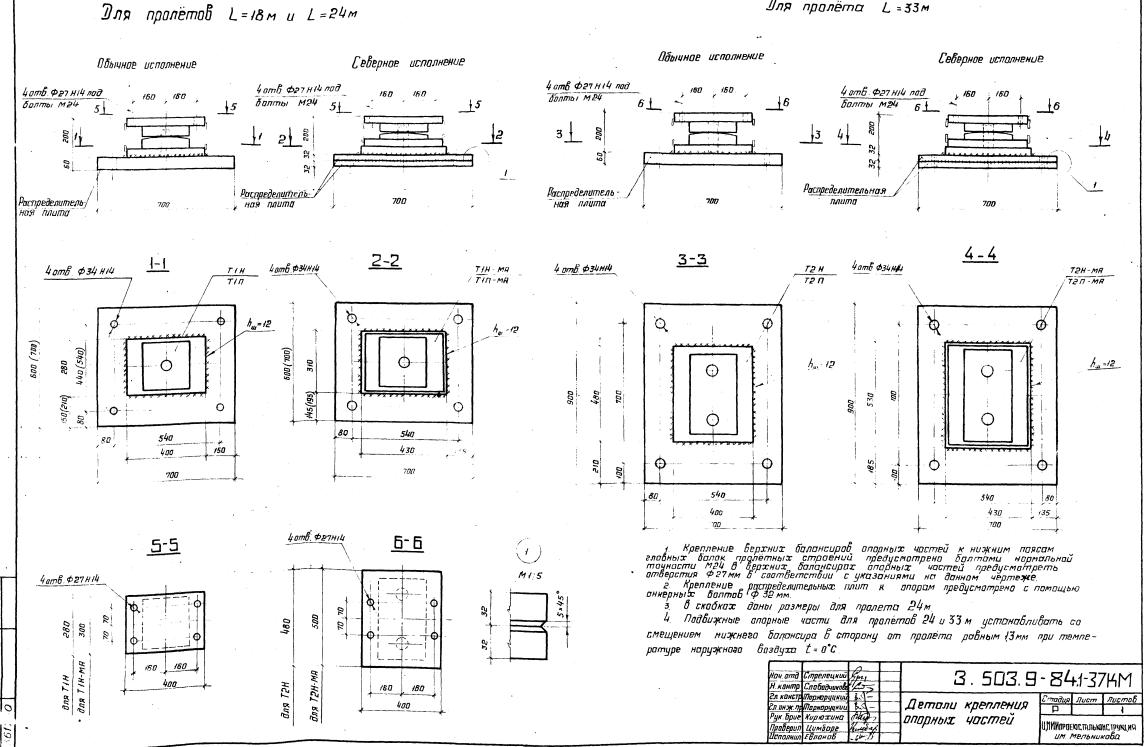
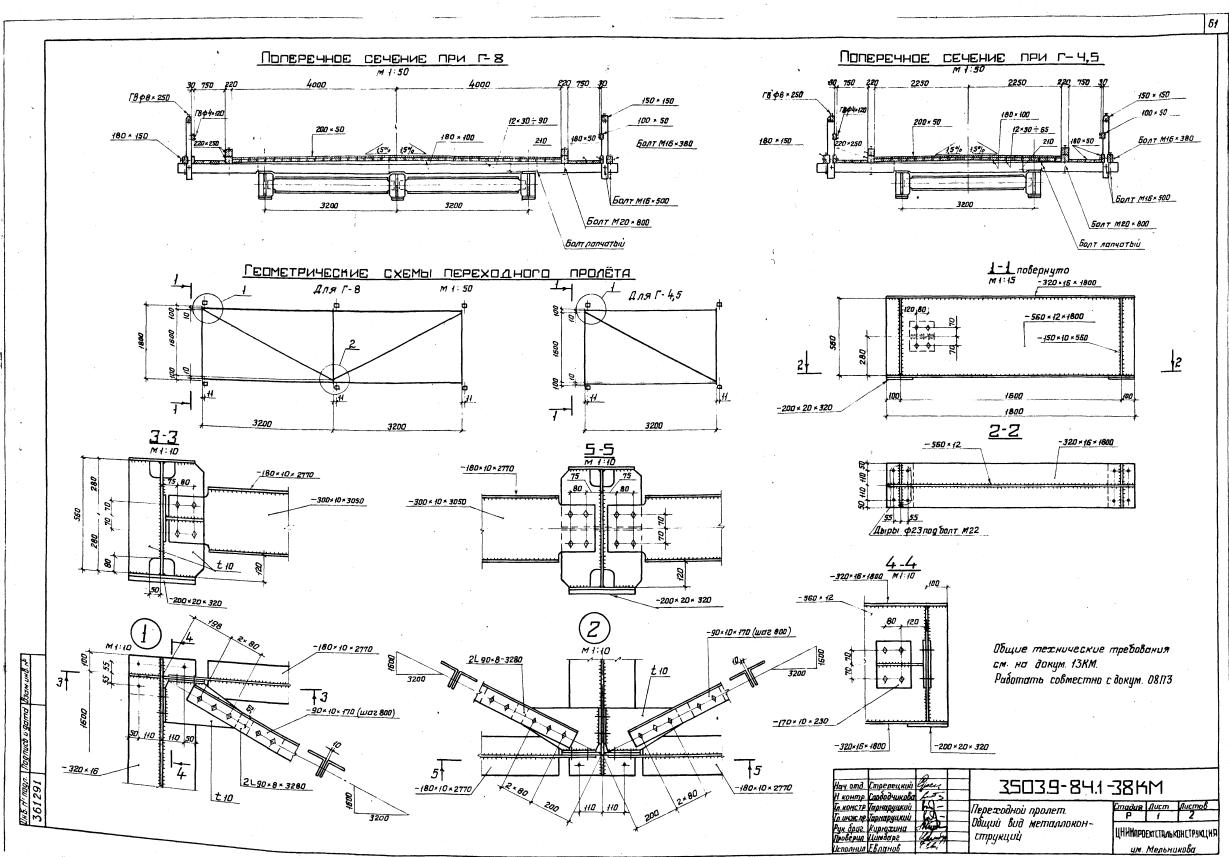

масса конструкций , т Коли-Наименование конст-Koß 485780, Серия всего с учетом 1% на по видам профилей рукций по номенклаконструк 👼 mu ท่อชิม**ว**ะ Балки широхо Круппо - Средне-полоч - сортная сорт-шбел - ные - сталь ная леры двутаь - сталь ры туре преискуранта - Тонко- Снутые Прубы листо- и гнуто вая сворые сталь профишт конструкций Толто - Универ-аисто - соль -вая ная массу наплаві метал ла циц EDDMI HDA 01-22 *стаяь* ѣ∠4мм сталь ст¤ль t ≥ 4мм 2 5 9 11 12 15 17 18 19 20 Б 8 13 16 Пролетное 1.7 52.4 526422 4,7,8 5.1 0.3 4**3**.9 строение Итого с учетом 3% на уточнение массы в черте-жах км) 54,0 54,6 49.Z 1,4 5.3 0,3 45,2 1.8 итога с учетом отжа-3 51.0 1,5 5.4 0,3 4**7**,0 1,9 56,1 ∂08 37% Приведенная к обычным профилям масса с цчетом 1,5 5,4 0,3 47,0 1.9 56,1 3% на уточнение массы в чертежах КМД и 3.7% на отходы Разница приведенной и натиральной массы Распределение массы метилла по пределам технуести с учетом 3% на уточнение массы в чертежата КМД и 37%, на отходы M/ID KEE/MM 5,1 185 - 235 19- 24 51,0 325-345 33-35 Приведенная к стали уелеро-дистой обыкновенного ка-чества по ГОСТ 380-11 мас-са нетарла с учетры 3% на уточнение массы в чертежах КМ Д и 3,7% на отъоды 7 71.4 Всево приведенная масса металла с учетом 3% на уточнение массы в черте жах кмди 31% на отходы 71,4

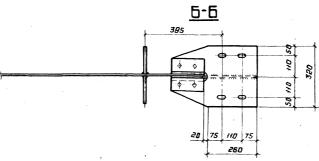
Таблица 3 ${\it Cbodhas}$ ведомость монтажных болтов, гаек и шайб

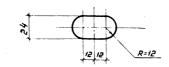
наименование	CODT	Μαρκα	Кол.,	Mage	α, κΓ	7
пиименовиние	דממז	<u> ក្រាជាវាជ</u>	шт.	одной	gcex.	Примечания
Болт M & 2 - 8g × 80 ,110 . ХЛ 1	roct 22353-77	4DX	890	0,341	304	
БОЛТ M22-8g×85,110 XЛ1	FOCT 22356-77	"Селект"	440	0,355	157	:
БОЛТ M22-8g×30.110. XЛ1			240	0,370	89	
Болт M22-8g×110.110, XЛ1			3 2 0	0,428	137	
болт M22-8g × 120.110. хл1			240	0,457	110	
משמשו			2130		797	
гайка мгг-7H.110.XЛ1	FOCT 22354-71 FOCT 22356-77	40×	4280	0,108	460	
<i>ωούδα 22</i>	FOCT 22355-77 FOCT 22356-77	ភ្⊆⊤5cn2	5 750	0,059	340	
05938					1599	
в том числе		40х "Селект"			797	
по маркам	l	40X			460	
		8675678			340	


в. н° тодп. Подпись и дата — Взах 61988


3.503.9-841-35KM

Рормат Аг


Для пролётα L=33м



Столик перехаднаго пралёта

Праченае ашрейсшпе р сшачике

і. все балты нармальной точности $M22, отверстия под них <math>\Phi$ 23 мм

г. Все неоговорённые обрезы 50 мм.

3 головки и гайки болтов должны плотно соприкасаться с пласкастями элементав конструкций и шайб. Под головки и гайки болтов должны ставиться шайбы не более двух под гайку и одной под головку, при этом резьба болта должна находиться вне отверстия соединяемых элементов, а гладкая часть стержня не должна выступать из шайбы все болты должны иметь контргайки

רת	อ์ภ	,,	,,,	\mathbf{r}	4

ជ្ញាក្សាសាធ្វាការាង	марка	Обозначение	٧º		Koð					толло по конструк		<u>.</u> .	Mac	ca n	ומדחמו אפודדו	ะก- วากะ	43
ц ГОСТ , TY	металла и ГОСТ	и размер профиля, мм	П.П	марки металла	вида профиля	размера профиля	Количества , шт.	Элина. мм	главные балки	Поперечные и продольные связи	Опорный столик	общая масса т	ΠΩ I (3ΩΠ	кварл олня отови т	ם <mark>תם</mark> ח אסחוש	M 7	Заполняется Вц
				Me	ng Idu	ag	ΚĐ	<u>L</u>	Sn. Or	non u np cBA	מעכ כעוד	nga	I	旦	亚	Ι¥	
1.	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
У голки стальные горяче- катаные равнополочн ые	16A FOCT 6713-75	L 90×8	1							0.1	0,1	0.2					
roct 8509-86	Umoro		2	2443		·				0.1	D.1	0,2					
всего профиля			3		2100					0.1	0,1	3.0					
Прокат листовои Орячекатаньци ГОСТ 19903-14	15xcha	t 10	4						0.1			D,1					
	roct 6713-75	£ 12	5						5.0	444. av		3.0					-
		+ 16	Б				<u> </u>		D.3			0,3			L	J J	
		t 2D	7	<u> </u>		<u> </u>	l		0.1			0.1					
	UmpeO		8			·	L _		ייט			7.0					
•	16Д	t 10	9				<u> </u>			0,4	D.1	05					
	roct 6713-75	t 16	10	<u> </u>	<u> </u>		<u> </u>	.			0.1	<u>B.)</u>					ļ
	Umoso	•	11	2443						0.4	0,2	3,0					
മോ സാത്യവനം			12		7110	<u> </u>	<u> </u>		0.7	D.4	SB	1.3					
Итого масса металла			13						0,7	0,5	0.3	1.5					
В том числе по	16.A		14		ļ					0.5	0.3	0.8			j		ļ
маркам	15xch A		15	<u> </u>				<u> </u>	0,7			0.7					

Ταδπυμα 3

ведомость металлоконструкций по видам профилей

HDL	именование кон-	135	J.º	Koð						р, тан									Коли -	Серия
EM)	рукций по номен- атуре прейску-	01 11 11 11	CTOOL	NONCHAINS.	27.7					им п							1	BERRO E YYEMDM		типовых
ם מק	атуре преиску- анта от 22	Позиции прейскур	CIPUN	Қ од конструк- ции	всее о ста, побышенно быбокой пр ности	Балки и швел- леры	широко П олоч- Ныё Овутав Ры	Крупна- сорит- на я сигаль	Средне- сорт- ная сталь	LIIIUIIO	TOJICITO: AUGITO: BOJA CITIOAL E > 4MM	r interior	TOHKO NUCITO - BOA ET WAS t< MM	, שעשינועיי	тру- бы	Про- 442	всего	1% на массу наплав. метал-	шт.	<i>хонструкций</i>
	1	2	3	-4	5	8	7	8	9	10	11	12	13	14	15	18	17	18	19	£0
	ежадное пропетноё Осниг			52.6422	0.7	_	_	0,2	_	_	1.3	_	_			_	1.5			
Unto ymoy	180 с учелтом 3% на Нение массы в Пених КМД				ס,ק			О,Z	_	_	1.3	_	_			_	1.5	1.5		
Ито	080 E Y48MOM OMXO- 3,7%				0,7	_	_	0,2	_	_	1.4	<u></u>	_	_	_	_	1, 5			
прод 3°, 1 черп	веденная к обычным рилям масса с учетом на уточнение массы в пемах кму и 3.7% от годы					_		0.2		_	1,4				_		1,5			
P _L varne	уральной массы																a			
Расп мет теку на ун черт	пределение моссы прла по пределам циесты с учетом 3% почнение моссы 8 пежат КМЈ и 3.7% отходы			мПа 185 - 235 325 - 345													0,9 0,7		·	
са мел улоч ум ј	евечная к стали угле - стои абыкновенного ства по гост 380-11*мас- талла с учетом 3% на нагние массы вчертегнах и 37% на отхады			·							•						1,8			
мета итпу	о приведенная масса опла с учетом 3% на нение массы в чертежа о и 37% на отъоды																1,8			

Сводная ведомость монтажных болтов, гоек и шайб

		Марка	Kan.	Macci	7, KF	
Наименование	רסכד	<i>ពេធ្</i> វាប	шл	08 HDÚ	Beex	Примечания
Балт M22-8g ×80.110	FOET 22353-TT	40X	. '42	0,341	15	_
Болт м 22-8g×90.110	7067 86330 77	"Селект"	44	ם מדבים	17.	
ดรดสาน			88		32	
2auкa м22-тн. 110	TOCT 22354-77 FOCT 22356-77	40X	178	0,108	19	·
ឃាធារសិធ 22	FOCT 22355-77 FOCT 22358-77	គ្រី ភេទ ខា ខិ	188	0,859	11	
Breso					62	
8 том числе по маркам		40 x "Селект" 40 x			32 19	
1	1	8CT 5 CT 2		-	11	

							
	Стрелецкий	Line.		3.503.9	- RL	11-75	HKM
н конптр.	Спободчикова	253		0, 000.0		Til	
	Тарнаруцкий	64-		Пережодной пролет Г-4,5 (обычное	<i>ំពាជពិបក</i>	SUEM	Ոսեւուոջ
Га. инт . пр.	Тарнаруцкий	4		исполнение). Тежническая специ- Фикация металла. Веромость	P		1
Рук бриг	Кирюзсина	Thigh		метралоконструкций по видам	HMMnoos	V70 74 6. U	ОНСТРУКЦИЯ
Проверил	<i>Цимбарг</i>	Kursy	2	поофилец. Сводная ведомость мантаженых болтов гоек и	4 minimum uz	THE HAND	אשאביוטאט
Uranawia	ЕВалноВ	Ellery		waith a sieraise barrioo , egen a	u:	M MPALN	ับมก <i>ใ</i> ส

Техническая спецификация металла на переходной пролет

โลอิภมนต	,	
uuiiuu		

Вид профиля	марка	Обозначение	Nº2		אמא					етолла конструк			Маси В ме	ומח מ: תתמח	пребн	юсти	
ע רסָבד , דע	металла и ГОСТ	•	п,п.	משענ	вида прафиля	размера профиля	Количество. шт	ฏภมหต . พพ	Главные балки	Поперечныё и продольные связи	опорный столик	Общая масса, т	, Вар (зап	пата экнло 18ат Т	OM PITTER	ем),	о лия ется ВЦ
				Me	Вида проф	ega adır	Kox	r (I	79.0	nan napa c B A	оша Ста	00	I	I	Ī	ĪV	Запо
1	2	3	4	5	Б	7	8	9	10	11	12	13	14	15	16	17	18
Уголки стальные	15 X G H A - 2	∟90×8	1					,		0.1	0,1	D.1					,
горячекатаные	FOST 6713-75																
равнополочные ГОСТ 8 50 9-8 6	Озоти		2							D.1	D,1	2,0	1.00				
Всего профиля			3		2100					D.1	0,1	3.0					
Προκαπι πιαποδοίι		t 10	4						0.1	0,4	D.1	0,6					
горячека таный	15хСнД-2	t 12	5					,	0,2			3,0			Ŀ		
FOCT 19903-74	FOET 6713-75	t 18	δ						0,3		0.1	0.4			L		
		t 20	7						0,1			0,1	_				
	Озати		8						ד,ם	0,4	3.0	1,3					
Всего профиля			9		מווד				7,0	0.4	0,2	1.3					,
Итого масса металла		·	10						D,7	0,5	0.3	·1.5					,
в том числе по	15XCH A- 2		11						0,7	0,5	0.3	1.5					
маркам									_	_							

Фасонную сталь марки 15ХСНЭ толщиной 11мм и менее допускается использовать без термической обработки, при этом ударная вязкость при минус 70°С должно быть не менее 3 кгс.м/см² (см п. в примечания к таблице 4 ГОСТ 6713-75)

Ταδлица 2

ведомость металлоконструкции по видам профилей

Наименование конст-	T									прук.	цuù ,	m ·				i		Коли - чество,	Серия
рукции по номенкла-	שאם שאש	Ν°	Koð	325			пο	Видам	прод	ງບາຍມ່							BCESD C MOMSHE	честиои. ШПТ.	типовых .
туре првисхуранта 01 - 22	Позиции по прейскуранту	строк	ции	Осего стал повышвиной бысохой пр ности	рапки п п п п п п п п п п п п п п п п п п	Широ коло - авчные авутов ры	ния	Средне- сорт- ная сталь	ная	Bas	HDA EMDAL	808	гнутые и гнуто- сварные профили	1	446 Ubo -	Всего	1% на массу наплав. метал. ла		конструкции
1	2	3	4	5	6	7	8	g	10	11	12	13	14	15	16	17	18	19	20
Пережадное пропетное строенце			526422	1.5	_	_	5,0	_	_	1.3		_	_	_		1.5			
Итого с учетом 3% на уточнение массы в чертежах кму				1.5	_	-	5.0	_	×_	1,3		_	-			1,5	1.5		-
итого с учетом отхо- дов 37%				1.6	_	_	0.2	<u>-</u>	-	1,4		_	_		-	1,6			
Приведенноя к обычным профилям масса с учетом 3%, на уточнение массы в чертемах КМД и 3.7%, на отходы			·				0,2		•	1,4						1, 6			
Разница приведенной и натуральной массы																٥			
Паспределение массым метаяла по пределам технучести с учетом 3% на утачнение массы в чертежает КМД и 3,7% на отходы			мП _п 325-345	кге/ ы м ² 33-35				•					-			1.6			
Приведенная к стали углеро- дистом обыкновенного ка- чества по гост 380-т масса кеталла с учетом 3% на уточнение массы вчертенах КМД и 37% на атходы	·			·												2.D			
всего привевенная масса металла с учетом, 3% на уточнение массы в черте- нсах КМВ и 37% на отходы																2.0			

Таблице 3 диош и нась, датлод жинжитим атгомовед вывода

0		марка	Кол.	MACC	מ, אר	_
Наименование	ract	<i>ពោធរាប</i>	шт	однои	Bcex	Примечания
болт м22-8 _д ×80.110	FOET 22353-77 FOET 22356-77	4DX Cedeum"	42	0,341	15	
Болт м22-8g×90.110		LENERNI	44	0,370	17	
š						
Итого			86		32	
гр <u>ика мгг-ТН.</u> 110	FOCT 22354-77 FOCT 22356-77	40 X	ITE	0.108	19	11
<i>Ψαύδα 22</i>	FOET 22355-77 FOET 22356-77	8CT 5 CM 2	188	0,059	11	
Scee0					52	
В том числе		40X "Cenekm" 40X			32 19	
по маркам		8C 7 5 CI i 2			11	

	трелецкий Спободчикова	Kary S		3.503.9	-84	+1-4	
Гл. констр. Та	арнаруцкий	4-		исполнение). Технической специали-	Спадия	Aucm	Surmaß
рук брие Н		News.		кация металла ведомость металло канструкций повидим профилей Свадная ведомость мантаженых		KTPTAGHK	ОНСТРУНЦИЯ
Проверил и Исполнил Е	цимбарг Евланов	there a	., · ·	боятов, гаек и шайо.		in Menth	

Т нбличя 1

Техническая спецификация металла на переходной прилёт.

Bug прафиля	Марка	Обозн ячение	Nº		Kog		1,		MACCA MO MAM KO		па элемен Сий, т	R,	my 6	METT	TAITI	бнОС. E ЛО	тся
ע ויסכד, דּצ	MEMFINE U FOCT	и рязмер прафи- ля, мм.	п.п.	мярки нетялля	Bugn npodona	рязмеря профиля	Ronuyecmba, wm	Д пиня, нн	Глявные Бялки	Паперечные и прадольные с бязи	Опорный сталик	ЦЯЯ МАССЯ, Т	K6A)	0 M A . 10 N H	กคห ค ย กเ		полня е В И
		÷		N H	gu	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.1		7,	101	000	UBU4.	I	I	I	亚	3 11.
	2	3	4	5	6	7	θ	9	10	14	12	13	14	15	16	17	18 .
Угалки стяльные гаряче- кятяные рявнопалочные ГОСТ 8509-81	16 Д ГО СТ 67 13~75	L9018	1							0,2	4,1	0,3					
	Umaea	·	2	2443					_	0.2	0,1	0,3					
Всега прафиля			3		2/00					0.2	0,1	0.3					
Npakam nucmabaù	45 X C H.A.	t. 10	4						0.1			0.1			,		
горячекятяный	10CT 6713 75	t 12	5						0.3			0.3					
roct 19903-74		t 16	6						0.5			0.5					
		t 20	7						0.1	_		0,1					
	Umaeo		8						1.0		_	1.0					
	164	t 10	g							0.7	0.1	0.8					
	10076713-75	.t 16	10				<u>'</u>				0.1	Q./					
	<i>Итого</i>		11	2443						0.7	0.2	0.9					:
Всега прафиля			12	ļ	7/10				1.0	0.7	0.2	1,9					
UMORO MACCA METAINA		<u>'</u>	13						1.0	0.9	1.3	2.2					
В там числе па	16Д		14		<u> </u>				_	0.9	Q,3	1.2					
MAPKAM	15×CH4	<u> </u>	15		<u></u>	<u> </u>			1.0			1,0					

Таблица 2

Ведоность метнялоконструкций по видам профилей

Universe	нование кон-	y						M	9CC R	KOHO	mpy	4400,	M						ragu	
cmpyki	HUDHHUC KOH-	III IIII	N:	граккане грук ции.	700 n	TO BUGAM PROPUNCU BANKUWUDO KPYNHO PPENHATOLOGIO YHUBED TOHKO 2 MYTOLE MPY NPO C KRONO CODMICO CODMICO CODMICO CARBO NACIONO DE VINTO DE COMBINE DE COMBINE													Кали- чества	l'epug
рян	струкций по номен- клятуре прейску- рянтя 01-22	Лазиции по прейскурянту	.,,,,,,		BCE 20 EMP gobery ExH Solco Kao A HOC MU.	Бялки и вел- леры	Шира- копа- лачны двутяв ры.	Крупни Сорт- няя Стяль	Средно Сорт- няя стяль	Мелко сарт- няя стяль	Taneta 114010- 8 M A empab t 24ma	Универ СЯЛЬ- НЯЯ СТЯЛЬ	Тонка- луста- бяя стяль	2н утые и знуто съядные прафи	Пру- бы	Пра- чив	С е е	С УЧЕТОН 1°% НЯ МЯССУ, НЯПЛЯЬ. МЕМЯЛ-	WIII	типовых канструкций
	1	2	3	4.	5	5	7	8	g	10	11	12	/3	14	15	16	17	18	<u></u>	
HOE C	аднае пролет - троение.			526422	1,0			4,3	_		1,9					-	2.2	70	19	20
Umozo ymoune ye ome	C YUEMOM 3% HA CHUR MACCHI B SICHIL KHIJ				1,0	_		<i>Q,3</i>		_	2.0	_		_			2,3	2.3		
	C 44EMAN AM				1,1		_	0,3			2.1	_	_				 	12.3		· · · · · · · · · · · · · · · · · · ·
прафия 3% на у чертен на отз	нняя к обычным пям мясся с учетон ппочнение мяссы в ёнх КМЗ и 3,7% соды.							0,3		-	2.1			_	_	1	2.4			
Рязниц нятуря	я приведенной и пьной няссы						٠,									<u> </u>	0		<u> </u>	
MENTAJI MEKYYE HA MADA	деление мяссы ля па пределян сти с учетом 3% ине ние няссы в чер- КМУ и 3,7% ня ы			MNa 1 185-235 325-345					٠,								1.3			
YMOYHER KMJ U3,	нняя к отали цгле- ой абыкновенноей бя по ГОСТ 380 ПУ-мяс- чля с цчетон 3% на чие массы бчертежь 1% на от ходы							`									2.7			
ME MAJIJI	оиведенняя мясся ня с учетам 3% нение мяссы в черте- Ju3,7% ня атхады																2.7			

Сводняя ведомость монтяжных болтов, гаск и шний

		Mapka	Kos,	MACCA	, Kr	
Нячменовяние	PACT	៤៣៛.៧	шm.	одной	всех	Примечяния
Балт М22-8дх80, 110	FOCT 22353-17 FOCT 22356-77	40 X "Селект"	66	0,341	23	
Балт М22-8д×90.110			75	0,370	28	
<i>Итоео</i>		y	141		51	
โลนิka M22-7H. H0	TOCT 22354 - 77 TOCT 22356 - 77	40x	282	0,108	16	
Шпи̂бп 22	FOCT 22355-77 FOCT 22356-77	8Cm5cn2	298	0,059	18	
Bceeo					85	
В тан числе		40 X., Ce nekt' 40 X		 	51 16	
по мяркям		8Cτ5cn2		1	18	

Стрелецкий			3.503.9	- 84	1.1-L	11 KM
Слобадчико б а Тярняруцкий		<u> </u>	7	Cmanua.	Auem	листов
Тарнаруцкий Тарнаруцкий			(lepexagnoù пралет Г-8(абычное, испалне- нис) Техническая спецификация не-	'n	JIGCIII	JIGETHUG
Кирюхиня	Okis-		mainna Beganocmb MetannokonCtpyk- และเกาก็มดลาก กอกสามาโยน Chinnas	(1100)		

Фарнат А2

TABAULA 3

6 N' naga | Nagnuch u gam

Техническая спецификация металля на переходный пролет

												•					
Вид прафиля	Mapka	<i>Пбозня</i> чение	Nº		Kag		0		MRCCA MB MMRM	MEMARINA	CA,	MAC	CA NO	nn pe Rini	DHO-	80	
v roct, 'ty		ирязмер про- филя, мм	п.п.	Мярки метялля	видя профиля	рязмеря профиля	muvec mb	A SUHA,	Глявные Бялки	Nane peumae u npuganbmae cbasu	Опорный столик	Общяя мясся, т.	Ka	Bapi nonh	TAJI ABJI	AM.	ж
				N X	80	40	Z.		50	Por u	00	00	I	I	П	Ţ	3,
1	2 .	3 .	4	5	Б	7	8	g	10	11	12	13	14	15	16	17	18
YEONAU CITANDHOLE	15XCHA-2	L 90 18	1							0,2	0,1	0,3					
горяче кятяные рявно палочные ГОСТ8509-86																	
114314411416 1 4416503-80	Umaea	* *	2							0,2	Q.1	0,3					
Всего профиля		1	3		2100					0,2	0.1	0,3					
Anaham aun Par	15XCHA-2	: t10	4						0,1	0.7	0.1	0,9					
Прокат листовой горячекатаный	FOCT6713-75	t12	5				- 1		0,3			0,3					
FOCT 19903-74		t 16	6						0,5		0,1	0,6	<u> </u>				
		t 20	7						0,1			0,1	<u> </u>		<u> </u>		
	Umazo		8						1,4	0,7	0,2	1,9					
Всега профиля			9		7110				1,0	4,7	0,2	1,9					
Umazo magan metanna			10						1.0	0,9	D, 3	2.2				· .	
В там числе па	15XCHA-2		11						1,0	0,9	0, 3	2.2					
MAPKAM				<u> </u>													

Фасонную сталь марки 15хСНД толщиной Имм и менее допускается использовать без термической обработки, при этом ударная вязкость при минус 70° С должня быть не менее 3 кгс $M/_{\rm CM}^2$ (см. п. 6 примечяния к таблице 4 ГОСТ 6713-75).

Тяблиця 2

Ведомость метяллоконструкций по видям профилей

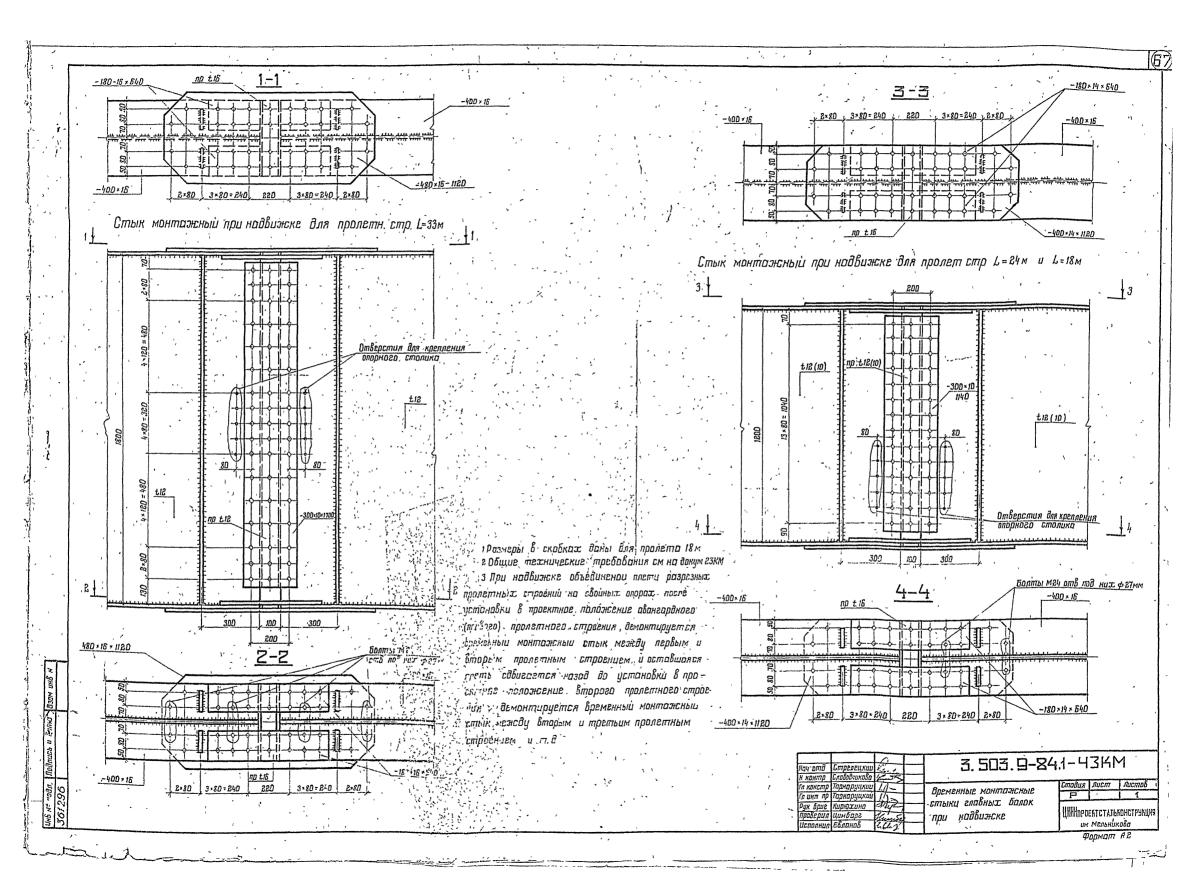

Наименование кон-	, P		<u>,</u>					9 <i>CCA</i>				m					Bcee0	Kanu- veciba	Серия
Няименовяние кон- струкций по номен- клятуре прейску- рянтя 01-22	Позиции по прейскурян:	м² строк	п ад конструк ции	Всего стяли побыщенных и Бысокай проч ностъ	BANKU WBEN- NEPHI			ИД ЯМ Средне сарт- няя стяль	Menka capm- HAR ctanh			Vanka- Aucta- BAR CTANB t<4nn	гнутыв и гнуто- съярные профи- лги	_	Npo- uue	8 C e r o	CYVETON 170 HA MRCCY, HATTAIT METAIT	wm.	Tanoberz Kancmpykuwi
1	2	3	4	5	Б	7	8	9	10	//	12	13	14	15	16	17	18	19	20
Переходное пролет-			525422	2,2	_	_	4,3	_	_	1,9			_		_	2,2	<u> </u>		
Umaea c yyeman 3%, HA ymayhe Hae HACCLI B YEDME HEAK KMD				2,3			0,3	_	_	2.0			_	_	_	2.3	2,3	ļ	
Итага с учетан от- хадов 3,7%				2.4			0,3			2.1		_			_	2.4			
Прибеденняя к абычным прафиляммясся с учеток 376 ня уточнений мяссы в чертежких КМД и 3.7% ня атабуы							0,3	_	-	2.1	_	_			_	2,4			
Рязниця прибеденнай и нятуряльной мяссы																0	ļ		
Ряспределение тяссы меннята по пределян текучести е учеток3% ня уточнение няссы в чертезиях КМЭ и 3,7% ня отхады			МПа К 325-345	75-35	,				•						·	2,4	·		
Прибеденняя к стяли целе водистой обыкновенного каче ствя по10СТ 38Ц-1314 нас вя метялля сучегом314 на уточнение мяссы бчертым км] и 3,7% ня отходы			·													3.1			
Всега приведенняя мясся метялля сучетамэчь ня уточнёние мяссывчерк жях КМДиз,14ь ня атхады.								•								3,1			

Таблица З

Сводняя ведомость монтяжных болтов, гнеки шяйб.

•					,	
Наименавание	racr	Mapka emasu	Kan, wm	Мясс одной	A, Kr BCEX	Применяния
Болт М22-8д 180. 110	FOCT22353-77 FOCT22356-77	40X Cenekm"	<i>66</i>	0341	23	
БалтМ22 8д190.110	706/2200 77	" <i>cesichiii</i>	75	0,370	28	
Umoeo			141	-	51	
Thúka M22:74 110	TOCT 22354-77 FOCT 22356-77	40X	282	0,108	16	
ัน คนิชิศ 22	10CT22355-77 10CT22356-77	BCr5cn2	298	0,059	18	
Bceea					85	
В там числе па маркам		40 x., Cenekt 40 x		1	51 16	
		8C15cn2			18	

	_				4
Нач. отд. Стрелецкий Стр. Н. контр. Словодчикова		3.503.9			2KM
Ел канструприяручкий КД —		Перехаднай пролет Г" В (север- нае испалнение) Техническая	Стядия	Juem	Auemah
Vл инэспруприпручкий 13-	 	CIGUUUKRUII MP MBAAA Re	P		1
Проверия Цинбарг (расса)		MOS MO MEMAJJOKO NE MOJKUTU 19 BUJAH NOODUJEU (GOGHHA BE JONGEMO MOHMAJKHII BUJMUB, EREK Y WAYO.	ЩИМпро	EKT CT RANKA	ИСТРУКЦИА
Испалнил в яси льевя Виг	<u> </u>	danmagerek u wava.	UM	Мельни	KOBA.
			φ_q	DMRM .	<i>92</i>

