ТИПОВЫЕ КОНСТРУКЦИИ, ИЗДЕЛИЯ И УЗЛЫ ЗДАНИЙ И СООРУЖЕНИЙ CEPHS 3.407.2-134

СТАЛЬНЫЕ ОПОРЫ ВЛ 750 КВ

выпуск 1

ХАЖЖТТО АН ІНОПО ЗІННАЛЬТАОП ЗІНРОТУЖВАМОЯП

РАБОЧИЕ ЧЕРТЕЖИ КМ

типовые конструкции, изделия и узлы зданий и сооружений серия 3.407.2-134

СТАЛЬНЫЕ ОПОРЫ ВЛ 750 КВ

выпуск 1

ПРОМЕЖУТОЧНЫЕ ПОРТАЛЬНЫЕ ОПОРЫ НА ОТТЯЖКАХ

РАБОЧИЕ ЧЕРТЕЖИ КМ

РАЗРАБОТАНЫ ОТДЕЛЕНИЕМ ДАЛЬНИХ ПЕРЕДАЧ ИНСТИТУТА "ЭНЕРГОСЕТЬПРОЕКТ"

ГЛАВНЫЙ ИНЖЕНЕР ОДП С-ГЛАВНЫЙ СТРОИТЕЛЬ ИИ РУКОВОДИТЕЛЬ ТЕМЫ 1

ГЛАВНЫЙ ИНЖЕНЕР ПРОЕКТА

Б.И. СМИРНОВ

И.А. ШЛЯПИН

Г.Ф. ПИВОВАРОВ

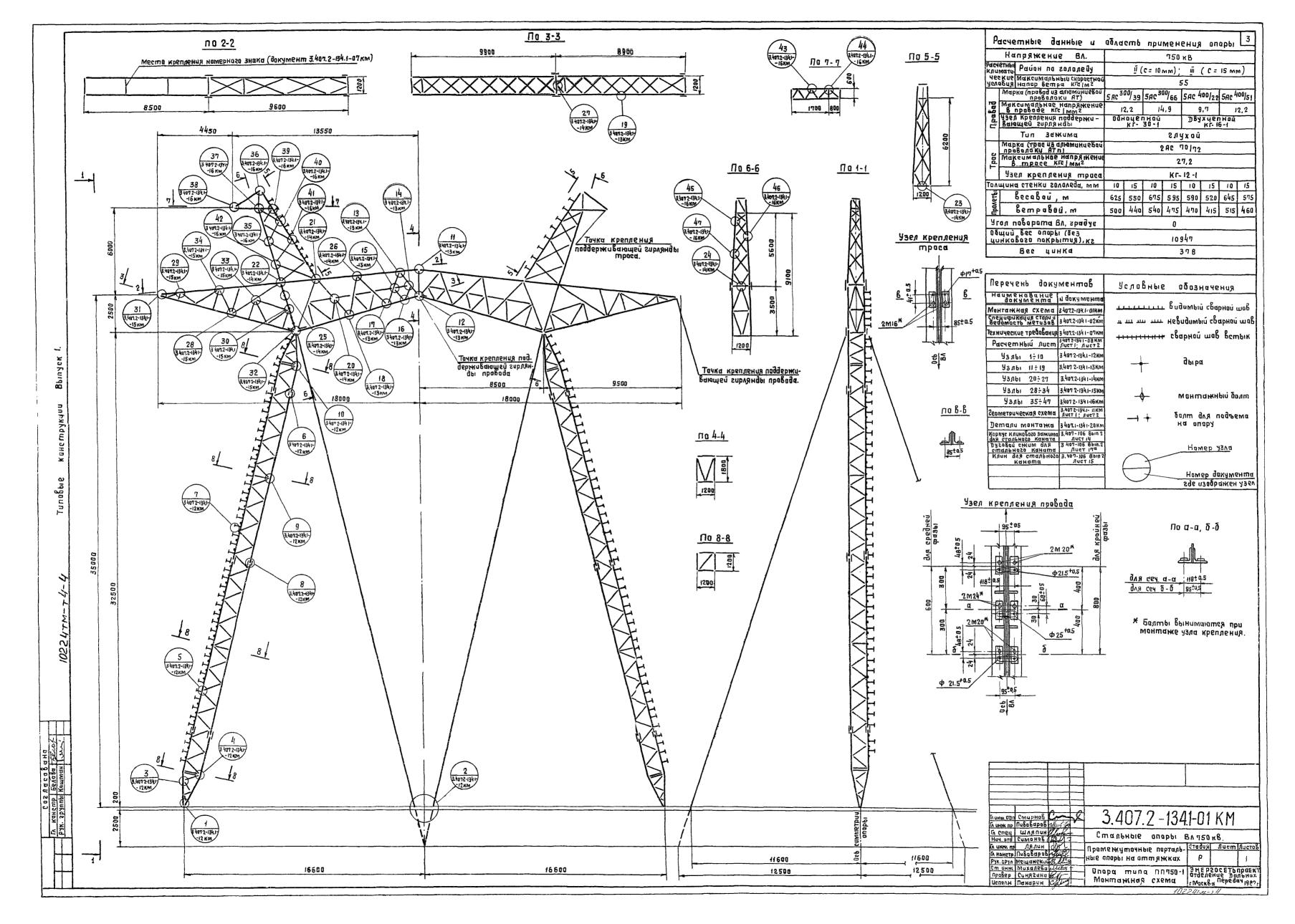
Ф.И. ЛЯЛИН

УТВЕРЖАЕНЫ И ВВЕДЕНЫ В ДЕЙСТВИЕ

Минэнерго СССР

RECTOROA

OT 29.04.83 NII

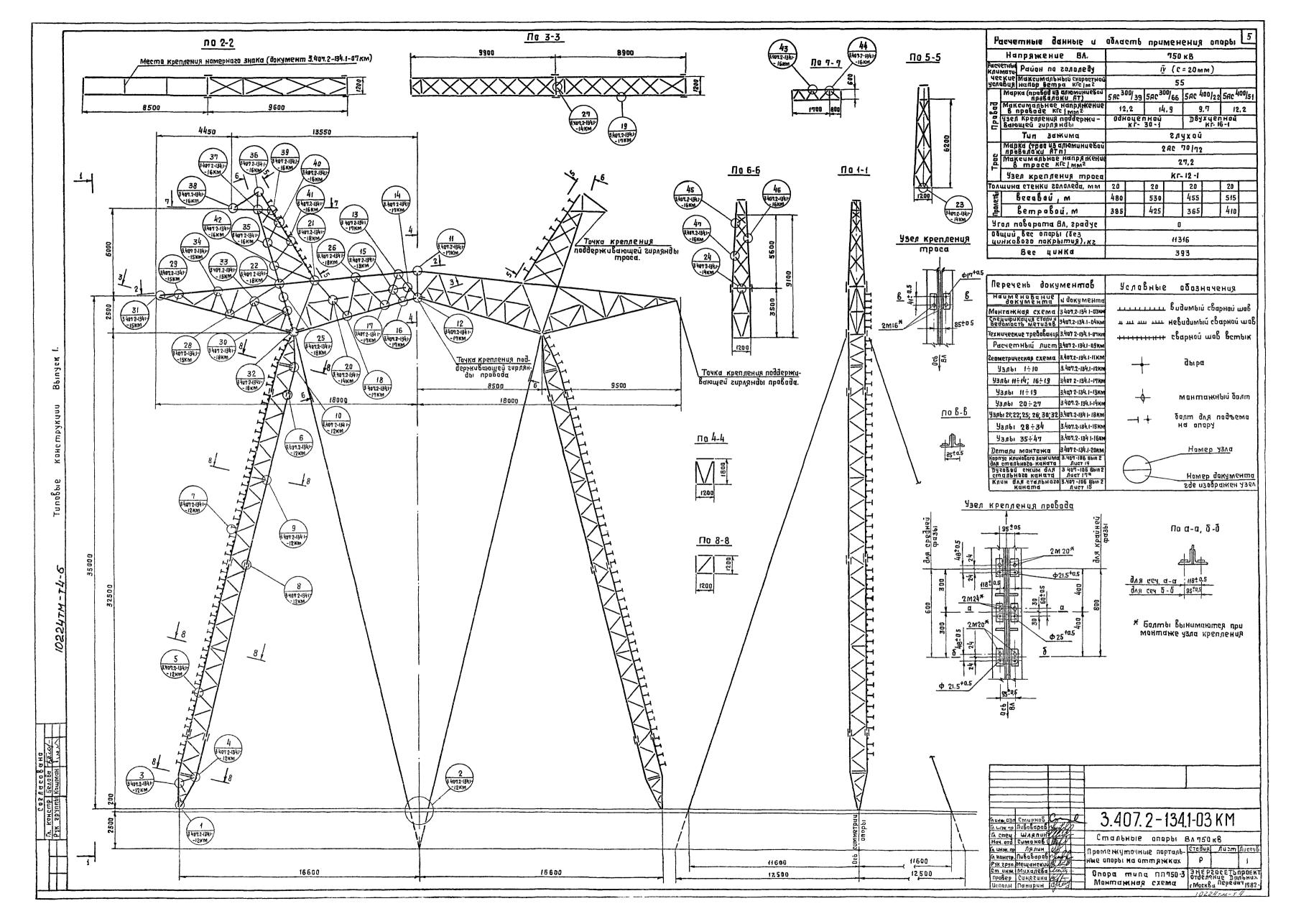

Напивнованпь	Стр.
Gnopa muna ПП758-1. Мантажная схема	3
Anapa muna nn750-1 Cnedupukadus cmanu	4
и ведамасть метизав	
Опора типа пп750-3 Монтажная схема	5
Опора типа ПП 750-3 Спецификация	6
стали и ведомость метизов	
Опора типа пл750-5 Монтажная схема	7
Опора типа ПП750-5 Спецификация	8
стали и ведомость метизов	
Технические требования на	g
изготавление и монтаж опар	
Опара типа ПП750-1 Расчетный лист	10
Опора типа пл750-3 Расчетный лист	12
Опора типа ПП750-5 Расчетный лист	14
Опары типа ЛП750-1,3,5 Геометрическая схема	16
Опоры типа пл750. Узлы 1÷10	18
Onaphi tuna 111750 Yanki 41-49	19
Onaphi tuna 111750 Yanbi 20-27	20
Onophi tung NN750 43.76 28:34	21
3.407.2-134.1-00	
Стальные впоры ВЛ750кВ	
Промежуточные портальные Стадия Лист	
ון או אא אוא אוא אוא אוא אוא אוא אוא אוא	2
Содержание диергасЕтьпр предедчу передач	DEKT
	Впора типа ПП750-1. Монтожная схема Дпора типа ПП750-1 Спецификация стали и ведомость метизов Опора типа ПП750-3 Мантожная схема Опора типа ПП750-3 Спецификация стали и ведомость метизов Опора типа ПП750-5 Спецификация стали и ведомость метизов Технические требования на изготовление и монтаж опор Опора типа ПП750-1 Расчетный лист Опора типа ПП750-3 Расчетный лист Опора типа ПП750-1,3,5 Геометрическая схема Опоры типа ПП750-1,3,5 Геометрическая схема Оп

Обазначение	Напменование	Стр.
3.407.2-134.1 - 16KM	Опары типа ппяза. Узлы 35÷47	22
3.407.2-134.1 - 17KM	Onaphi Tuna 117150, 43/16: 14; 16: 19	23
3.407.2-134.1 - 18 KM	Onaphi Tuna 111750, Yanhi 21; 22; 25; 26; 30; 32	24
3.407.2-134.1 - 19KM	Оперы типа ППП50 УЗЛЫ 4÷10	25
3. 407.2 - 134.1 - 20KM		26
3.407.2 - 134.1 - 21KM	Опоры типа пп750-1- <u>1; ў ; ў</u> ; <u>ў</u> . Мантаккная схема	27
3.407.2 - 134.1 - 22 KM	Опары типа ПП750-1- <u>1</u> ; įį; įį; Спецификация	28
	сшали п редомость мешпаов	
3 407.2- 134.1 - 23KM	Опоры типа ПП750-3- <u>1; ії; ії; ії.</u> Монтажная схема	29
3.407.2 - 134 1 - 24 KM	Onopbi Tung NN750-3-1;ii;iiji. Cnequipukayus	30
	сшали я ведомость мешпзор	
3.407.2 - 134.1 - 25KM	Опоры типа ПП750-5- <u>1; ії; ії ії М</u> онтажная схема	31
3.407.2-1341 - 26 KM	Օոգրի։ Tuna ՈՐԴ50-5- <u>1</u> ; լլ.՝ լ.՝ ը. Ըրջկս ф սкация	32
	стали и ведомость метизав	

Работать совместно с выпуском О. Материала для проектирования.

3.407.2-1341-00

fluct 2

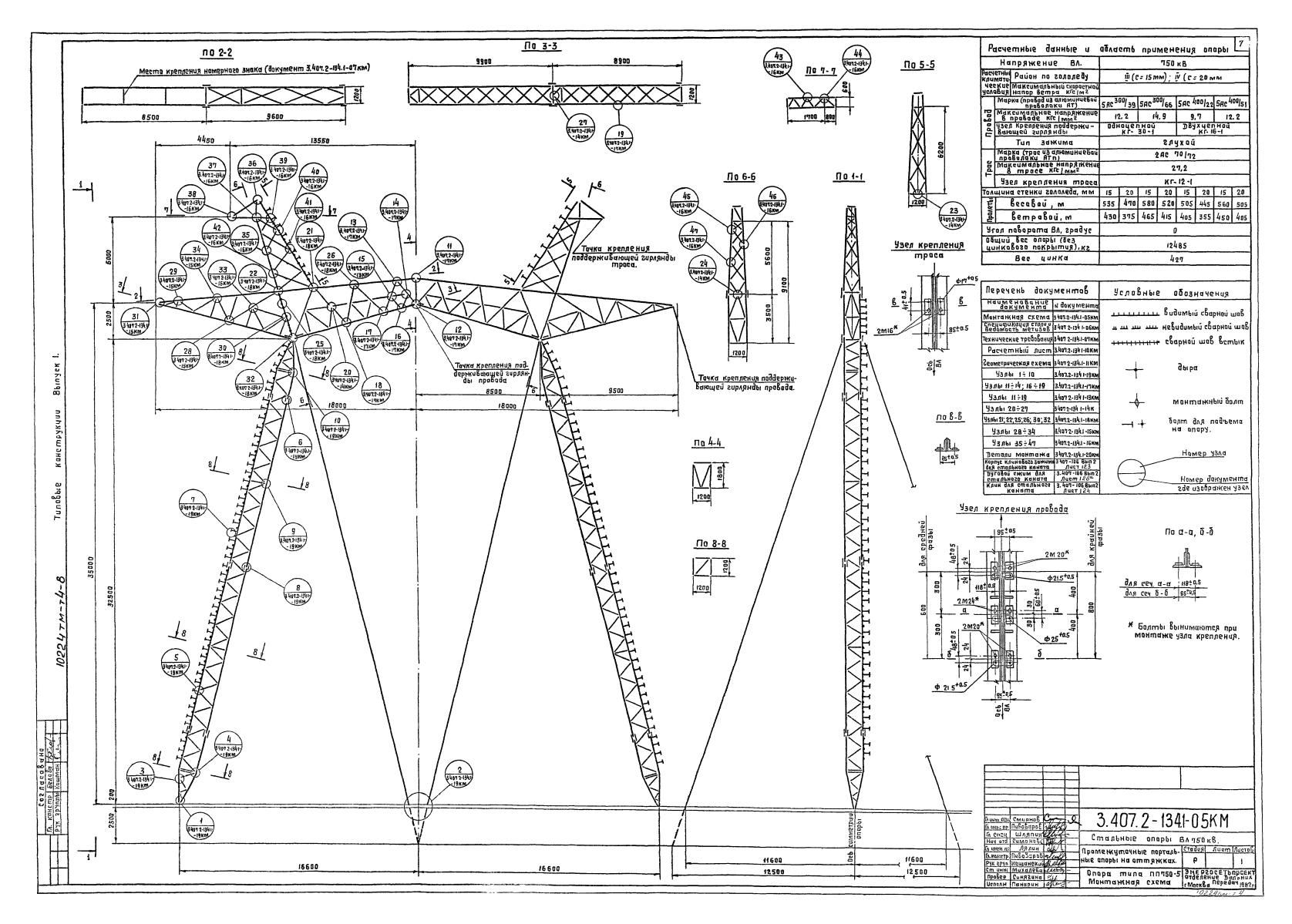

Wabka	ии	напшенованпь	Ubadanup	Ве	e em	αηυ	70 3A	еменш	aw KoH	струкц	JU, m		Obus
c w a Vri	nln	гост прокаша п	6 646 H n G N In	e m o	ų́κu	Tpaße	p c a	ления Монсоли	dag kpen- npoboda	Трососп	nouka	0 אאָפּדד	g e
				Пояс	Решетка	Пояс	Решетка	Пояс	Dem G W K 4	Пояс	Pewernka	1	
	1		L 160 × 10				0.045		0, 117				0, 1
	2		L 125×8			0,539							0, 5
1412-6	3	Asvagau	L 110 × 8			0, 413	ļ						0,
	4	Равно б окоя	L 100×7					0, 899				ļ	0, 1
	5	TO CT 8509-72	L 90 × 6	1,92			<u> </u>	ļ <u>.</u>	0,111		ļ	ļ	2,
	- 6	-	L 80 × 6	0, 383				ļ	0, 159	0,254	ļ		0,
ВСт3 пс 6	7	1	L 70 × 6				0.038	 	0,073	0,223			0,
1412 - 6	8	4	L 63×5				0, 268	ļ	0,085		0,040		0, 3
Вст3 nc 6	g	-	256 ×5				0,472	 	0,074		0, 202		0,
8 C T 3 ne 2	10	4	L 50×4		0 (07		0, 124		0,143		0, 099		0,
B CT 3 NC Z	11	ALVORAN			0, 193		0, 194	 	0,170		0, 136	 	0,
	12	75 - 1058 1301	T 20 x 22 x 4		1, 137		0,134	ļ	0,140		0,136		''
	13	1 9	$-\delta = 40$	n	, 033		L	<u> </u>	L		L	 	0,
09126 - 6	14	Талеталисто- Вая сталь	-δ=30									0,027	0,
	15	30), Cittolio	- δ = 16	0	084	0	1, 132					0,047	0,
1452 - 6	16	TOET 19903-74			1.036	0	, 352		,096	0,	034	0,046	0,
вст3 пс 6	17	1	- 8 = 6	(086		7,007		רוס,ס	0	,002	0,002	0
acro ne o		1											
		1											
09 F2 C- 12	18	Cmanb	• \$ 90									0,031	a,
	19	* KbAsuay	· \$ 60									0,011	0,
80т3 пс 6	20	Гаст 2590-71	· Ø12									0,002	0.
			Voneya Vallyo	ļ									
	21	Расанные отливки _ж	Boso Sakawa Kobule Kunko					ļ				0,063	0,
Ст 35 л ії гр	22	Y 100T 977-75	Клин			ļ		 				0,022	0,
	L	Umozo: 1472	l										6,
		Umozo: 091	2 c										Q,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Цтого: Ст	3										3,
		Umaza: Ct	35 _N										0
Канат 18,5	- B - C	: -1372(140) roo	r3064 - 80									0.514	0
Вес нап	наплавленного мешалла				,001	0	,003					0.002	0
05	Bec Memuzob				0, 3 12		7, 192	<u> </u>	0,131	0	1,072	0.019	0
	Общий Вгс апары (без цинковог пакрытия)				4,245	1	2.979		2.075	-	1.062	0,785	1
Bec	цині	Koboso nor	rphimus	ļ		ļ		ļ		<u> </u>		ļ	0
	Общ	ая масса				1				1		1	11

навана б Напыб-	Duamemp	Вес, кг	Примелание	Вес, кг	Примечание
	M30	7		5	
	m 24	183	א. 4.6 רספד יייס א- אס	129	4.6 OCT 34-13-021-97
Basm	M20	165	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	125	
	M15	121		90	
	M 20*	136	4.6 FOCT 7798-70*	136	4.6 rac 7 7798- 70*
	m 48	3		3	
	M 30	4		4	
FaúKa	m 24	46		46	,
	M20	74	4. (5) roet 5915-70*	74	4(5) FOCT 5915-70
	M 16	29		29	
	M12	ł		1	
	48	2		2	
	30	2		2	1
	24	30	*	16]
កាធពុខ្	20	31	FOCT 11371-78*	14	Γ0 CT 11371- 78 [*]
	16	20		10]
	12	1	1	1	1
ភាធត្ ខ្ម	30	,]	1]
пьликан	24	14	гост 6402- 70*	14	ract 64a2- 7a*
НаЯ	20	15]	15]
	16	8		8	
ראטת חש סד × 10		1	roc⊤ 397- 66	1	FO CT 397-66
Bec Me	гизов, кг	895		726	
×	5 a sim	rbon RAB	рема на опор	1	

Примечания:

- 1. Характеристику стали см. документ 3.407.2-134.1-07км
- 2. При сборке опоры на болтох по ГОСТ 7798-70* Вес опоры увеличивается на 169 кг.

							- 1
				3.407.2-134.1-02	KM		
		~		Сшачрные ацары в	3 / 750	нB	
UHUK NP.	Лялин	W.		Промежуточные портальные	C Tadus	Jucm	SucroB
	Метанский		2007	anaphi Ha ammankkax.	ρ		1
	Сина в на Сина		ĵ-	Bedomacme wemusog Gueda waraday cwara a Bedomacme wemusog	3HE PT	OCETPUL	DEKT
сполн.	Панарин	age	3	Bedomacmb memusos	гМаск	uebegaz	1982


M = c · · ·	4/:/	Наименование			ка ци 9	тали	C M a	емента	M Knur	יינוישטרות	<i>u m</i>		
Марка	NN	проката	или				······································			прукци	<i>y , m</i> .		Общи
стали	n/n	u FOCT	Сечен ие	Cmo	üкu	Tpabe	pca	ления	npoboda	Toococn	πούκυ	Оттяэкки	вес
				Пояс	Решетка	Пояс	Решетка	Пояс	Решетка	Пояс	Решетка		m.
	1		∠160 × 10				0,045		0,117				0,16
	2		∠140 ×9			0,675							0,67
1412-6	3	Угловая	∠125 × 8			0,444							0,44
141 2 - 0	4	4 /			ļ		0,026						0, 02
	5	сталь	∠100 × 7	4.000				1.043	ļ				1,0
	6	1°00T 8509-72		1.920	ļ			ļ	2.50	0.054			1,9
	7		∠80×6	0.383			0,044	ļ <u>-</u>	0,/59	0,254	ļ		0,84
ВСт.3 пс 6	8		∠70×6				0.000		0.073	0.223			0,25
1412-6	9		∠63×5		ļ		0,442		0.085		0,040	ļ	0,50
BCm 3 11C6	10		∠56×5		 -		0,3/9		0.074		0,202	 	0,5
BCm3nc2	12		∠50×4 ∠45×4		0,193		0,231	<u> </u>	0,740		0,099	ļ	0,4
DUILSTIG Z	13	Углобая нерабнобо- ная сталь ГОСТ 8510 - 72*	≥43×4 ≥50×32×4		1,197		0,106	 	0,170		0,136		0,19
		1007 8510 - 72*	20010214		1,197		0,700		0,770		0,700		1,60
09 F2C-6	14	Толсто -	−8 = 40	0	033								0,03
03120 0	15	листовая	-δ = 30									0,027	0,0
	16	сталь	$-\delta = 16$	0,0	284	a	132					0,047	0,20
14Г2-6	17	*	$-\delta = 10$				184					-7577	0,18
171 2 0	18	ГОСТ 19 903-74	-δ=8	0,0	736		258	0,096		0.	034	0,046	0,4
DC- 7 = 6	19	1	$-\delta = 6$		786		,007		1,017		002	0,002	0,11
BCm 3 nc 6	-												<u> </u>
09/20-12	20	Сталь	• Ø 90									0,031	0,03
0	21	круглая "	• Ø 60				·····					0,011	0,01
В Ст 3 пс б	22	ΓΌCΤ 2590 -71 [*]	• Ø 12									0,002	0,00
	02	Фасонные	Корпус клинова 20 зажима				···	ļ				0,063	0,06
Ст. 35 л 🗓 гр.	23	отливки "										0,022	0,00
un.oun gop.	24	ΓΟCT 977-75°	Клин									0,022	0,02
	<u>Um</u>	020: 14F2	L			l		L					6,5
	Um	020: 09 <i>Г</i> 2	C					•					0,10
	Um	ого: Ст. 3											3,2
	Un	10го: Ст 35	 ν̄Λ				····						0,0
Канат 18,5	- <i>B-C</i>	-13 72 (140) FO	0CT 3064-80				···	I				0,514	0,5
		нного мета		0,	001	0	,003					0,002	0,0
Bec Mer				0,	3/2	О	,199		0, 131	0	,072	0,019	0,7
Общий вес	oro	ры (без цинг покрыти	ковог о 1я)	4,	2 45	3	, 115		2,108	1	,062	0,786	11,3
Bec yur	ков	ого покры											0,3
Общая	ма	cca											11,7
		c onopt	npu		е на				7798 -				11,8

		Ведол	пость метиз	308	
Hayme= Hooghue	Диаметр	Вес , кг	Примечание	Вес, кг	Примечание
	M 30	7	¥	5	
_	M 24	187	4.6 FOCT 7798-70	/32	4.6 OCT 34-13-021-77
Болт	M 20	166		125	
	M 16	121		90	
	м 20*	136	4.6 FOCT 7798-70		4.6 FOCT 7798 - 70*
	M 48	3		3	
	M30	4		4	
Гайка	M 24	49	4(5) 1007 5915-70	48	4/ 5)
	M 20	74	,, 6,,	74	1,10,1111111111111111111111111111111111
	M /6	29		29	
	M12	1		1	
	48	2		2	
1	30	2		2	
Waὐδa	24	34		17	roct 11371-78*
wood	20	31	1°007 11371-78*	14	1001 //0/1-78
	16	20		10	1
	/2	1		1	
Waὐδα	30	1			
пружин-		15	FOCT 6402-70*	/5	FOCT 6402-70*
ная	20	/5		15	1
	16	В	1	8	
Шплинт 10 × 70		1	FOCT 397-66	1	FOCT 397-66
Вес мел	пизов, кг	907		733	
* /	5 <i>олт</i>	для под	ъема на опор	y	

Примечания:

1 Характеристику стали см. дак. 3.407.2-134.1-07.4M 2. При сборке опоры на болтах по ГОСТ 7798-70* Вес опоры увеличивается на 175 кг.

				3.407.2-134.	1-04	1KM	
		1	Н	Стальные опоры	BA 75	ОкВ.	
	Пибоваров Мешанский	(1) ZY	150}	anapar na amminataran i	Стадия Р	Лист	flucrioù
Ст инж Прэберия	Михалева	com		Опора типа ПП 750-3. Спецификация стали и Ведамость метизов.	Энере Отделен г Моск	goernbno we Далыких ва	0ект Передач 198% г

Марка	NN	Наименование	Профиль		Bec cn	חמוע .	по элег	<i>Neuman</i>	N KOHCA	прукци	IU, T		
стали	nļn	проката и ГОСТ	или сечение	Сто	ούκα	Трас	верса	Консоли пления	для кре- провода	Трососі	πούκυ	Оттяжки	Общі вес
	<u></u>			Пояс	Решетка	Пояс	Решетка	Пояс	Решетка	Пояс	Решетка	1	7.
	1/		L 160×10				0,045		0,117				0,10
	3		L 140x9			0,675	ļ				<u> </u>		0,6
1412-6		,, ,	L 125×8			0,444	ļ				ļ		0,4
	5	Угловая	L 110×8				0,026						0,0.
	6	равнобокая	∠ 100×7 ∠ 90×6	2,438				1,043					3.4
	7	CManb	∠ 80×6	0,391			0.066			0.05/	<u> </u>		0,3
B Cm 3 nc 6	8	<i>FOCT8509-72*</i>	∠ 70×6	0,014			0,044	 	0,159	0,254	 	<u> </u>	0,5
1452-6	9		L 63×5				0,442	 	0,013	0,223	0,040		0,2.
BCm3nc6	10		L 56×5		0,086		0,442	 	0,085		0,202	 	0,50
BCm3 nc 2	11		L 50×4		0,000		0,313	 	0,143		0,202	 	0,68
Join O IIL Z	12		L 45×4		1,295		9,201	 	0,173		0,000		1,25
	13	Угловая неравно- бокая сталь ГССТ 8510 - 72*	L 50×32×4		0,142		0,106	 	0,170		0,136	 	0.5
							1 5,.00		07.70		1 0,700	†	3,00
	14		- S=40	0,	033			l				<u> </u>	0,0
/4/2-6	15	Толстолисто.	– δ≈36									0,050	0.0
= +	16	вая сталь	- δ=16	0,	084	0	7, 132					0,047	0,2
	17		-δ=10			C	,184					0,041	0,2
	18		-δ=8	О,	036	0	, 258	0,096		0,	034	0,014	0.4.
BCm3nc 6	19		-δ=6	О,	086	C	7,007	0	,017	0	,002		0,1
	 												
09F2C-12	20	Сталь	• \$90									0,031	0,0
	21	круглая	• Ø70									0,016	0,0
<i>BCm3 nc 6</i>	22	FOCT 2590-7/*	• Ø12					ļ				0,002	0,0
	23	Фасонные	Корпус клино Рого эпэксима					 				0,164	0,10
Ст35 Л [[гр.		отливки	Клин					 				0,051	0,0
		FOCT 977-75*	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					 				1 5,557	1
	Un	n020: 14F2	2										7,2
	Un	1020: 09F	2C										0,1
	Un	10го: Ст.	3										3,4
	Un	пого: Ст.3	35 <i>1</i>					***************************************					0,2
Канат 22,	5-B-C	- 1372(140)FOC	73064-80					<u> </u>				0,778	0,7
Вес напу	павле	рнного мет	алл а	0	,001	0	7,003					0,002	0,0
Вес мет				O	320	(7,198	1	7, 131	(2,072	0,019	0,7
Общий ве покрыти	Общий вес опоры (без цинкового покрытия)			4,	986	ن	3, 114	2	,108	1	,062	1, 215	12,4
		εο ποκρδιπ	гия										0,4
Общая	Ма	сса											12.5

Наимено: Вание	Липмето	Bec, Kr	Пантана	Q00	//
JUHUE		DEC, KI	Примечание	DEC, KI	Примечание
	M30 M27	7		5	
	M24	170	4.6	18	4.6 OCT 34-13-021-77
Болт	M20	/70	4.0100/1130-10	127	4.0 UL 13473°021-11
	M16	118		88	
	<i>M20</i> ^¾	136	46 FOCT 7798-70*	136	4,6 FOCT 7798-70 *
	M48	3		3	
	M30	4		4	1
~ .	M27	7		7]
Гайка	M24	48	4.(5)	43	4(5) FOCT 5915-70
	M20	74]	74	
	M16	29]	29]
	M12	1		1	1
	48	2		2	
	30	2	}	2	
	27	2		1	1
Uaùδα	20	32	\[\int OCT 1\f37\f- 7\begin{align*} \text{*} & \text	15	
	16	28	-	14	4
	12	20	-	10	-
		1	 	/	<u> </u>
,,, , 5	30	1	4		1
Шайба		1	4	1	4 .
пружин-		14	FOCT 6402- 70 *	14	FOCT 6402-70
Ная	20	15	_	15	_
	16 8			8	
Шплинп 10×70	"	1	ГОСТ 397- 66	1	FOCT 397-66
Вес мел	าน308, หา	910		740	

Примечания:

- 1. Хароктеристику стали см дож 3.407.2-134.1-07КМ 2. При сборке опоры на Болтаж по ГОСТ 7798-70* Вес опоры увеличивается на 170кг

				3 407. 2 - 134.	1-06	KM	
		10		Стальные олоры ВЛ			
Гл инэк пр	Лялин	dw.		Промежуточные портальные	Стадия	Лист	Листов
Гл констр	Πυδοδαροδ	thing	#3.°/	опоры на оттяжках	0		<i></i>
Рук груп	Мещанский	Billy		опоры на оппиняказе			,
Ст инж	Михалева	Mil	-	Опора типа ПП 150-5	Энепгі	rembni	nnekm
โเคออ็ยคมภู	Синигича	CO.		Спецификация стали и ведомость метизов	Отделено	OCEMBAIL LE Manhus	Pepecay.
Испочнит	Понавич	da	-	BECOMOCME MEMUSOE	г Москв	q	1982

Ταδηυμα Η Ι

Материал конструкций опор для районов с расчетной температурой - 40°C и выше. Элементы Очинковка Mamepuar Сартамент конструкции Knaec Марка 914 60 2 0 Ocabbie Особые Texhuveckue roct пребования FOCT umpotipagn cwalin шьедованпы пребава ния челавия. Категория с сте. конст-прокат-C 38/23 пень раскисления 8 CT 3 380 - 71* 8509 - 72* CM. madauyy N2 Dan npakama 8510 - 72* Элементы к Рукции из пр Ной стали OCT 34- 006-73 C 38/23 09 F2C - 12 δ = 60÷460 19282-73 2590 - 71× **Виж** проката 19281 - 73 C 44/29 09120-6 δ = 21÷ 60 19903- 74× 19282-73 c 46/33 82 - 70* 14 12 - 6 OCT 34-13-021-77 1050 - 74 ** 7798 - 70 * І. шаг резьбы крупный Болты 4. 6 Cm 20 DCT 34- 013- 74 1 эриянавиз 1 1759 - 70* иди котоклавтови, 7796- 70* атеутствии болтов **Исполнение 1** no OCT 34-13-021-77 380 - 71* Mas beappn nct 34-013 - 74 4 5915 - 70* 2 a ŭ K u СтЗкпЗ 1759 - 70* крупный После оцинковки Шайбы Шачбы MYHSABBEON OCT 34- 013- 74 1050 - 74 XX 65 F 6402- 70* иь Аж а н н рі б эн елые обезводорыкиванин Шαйδы c 38/23 380 - 71* BCT 34- 013- 74 CT 3 KT 2 11371- 78 плоские Jumbe 35 A 977 - 75 * OCT 34- 006- 73* Spynna 2 CC u HCC Канаты грузовые, съедних и жест выешей мирки, 7372 - 79 3064- 80 Ommankku 7372 - 79 **Баск**БАлпрам-Kux yenabuu KOSOM KOSOM bagampi Только для свар. 342A 9467 - 75 ки сталей клас-са С 38/23 Электроды 946A 9469 - 95 19281 - 73 таг Безеде ост 34- 013-74 25 30 - 71 X c 44/ 29 Шпирьки 09 F 20 - 6 19282 - 73 кьйинрій

Примечания пружинной и двумя плоскими шайбами. злементов. длине оттянки 15-20 витков. номерные знаки должны заказываться и паставляться в камплекте с их крепежам.

Ун руилдрТ

Категория и степень раскисления углеродистой стали с 38/23. Характеристика Малка Примечания элемента конструкции. npokama cmanu 4 Вст3ле2 beex RAC элементов 5 ÷ 10 ВСтэпс 6 11 - 25 ВСт3 СП 5 канструкции. Толька для апорных плит башмакав. 26:40 Ударная Вязкость пои t = +20 Вст 3 сп 3

аедельна тойна с распечены для применения в распечень в распеченый темпера-

турой - 40° С и выше.
2. Канатрукции разработаны под оцинковку горячим способом.
3. Материал канструкций опор принимать в соответствии с имазаниями тоблицы мі.

в зависимости от расчетной температуры района строительства. 4. Конструкции опор изготовить в соответствии с ост 34-006-73 × и

5. Балты, поставляетые по ост 34-13-021-77 комплектинотся одной гриной. адной пружинной и одной плоской шайдой. Болты поставляемые по Гост 7798-70* и гост 7796-70*, камплектуются одной гайкой, адной

б. При сборке опоры резьба болтов должна находиться вне сбалчиваемых

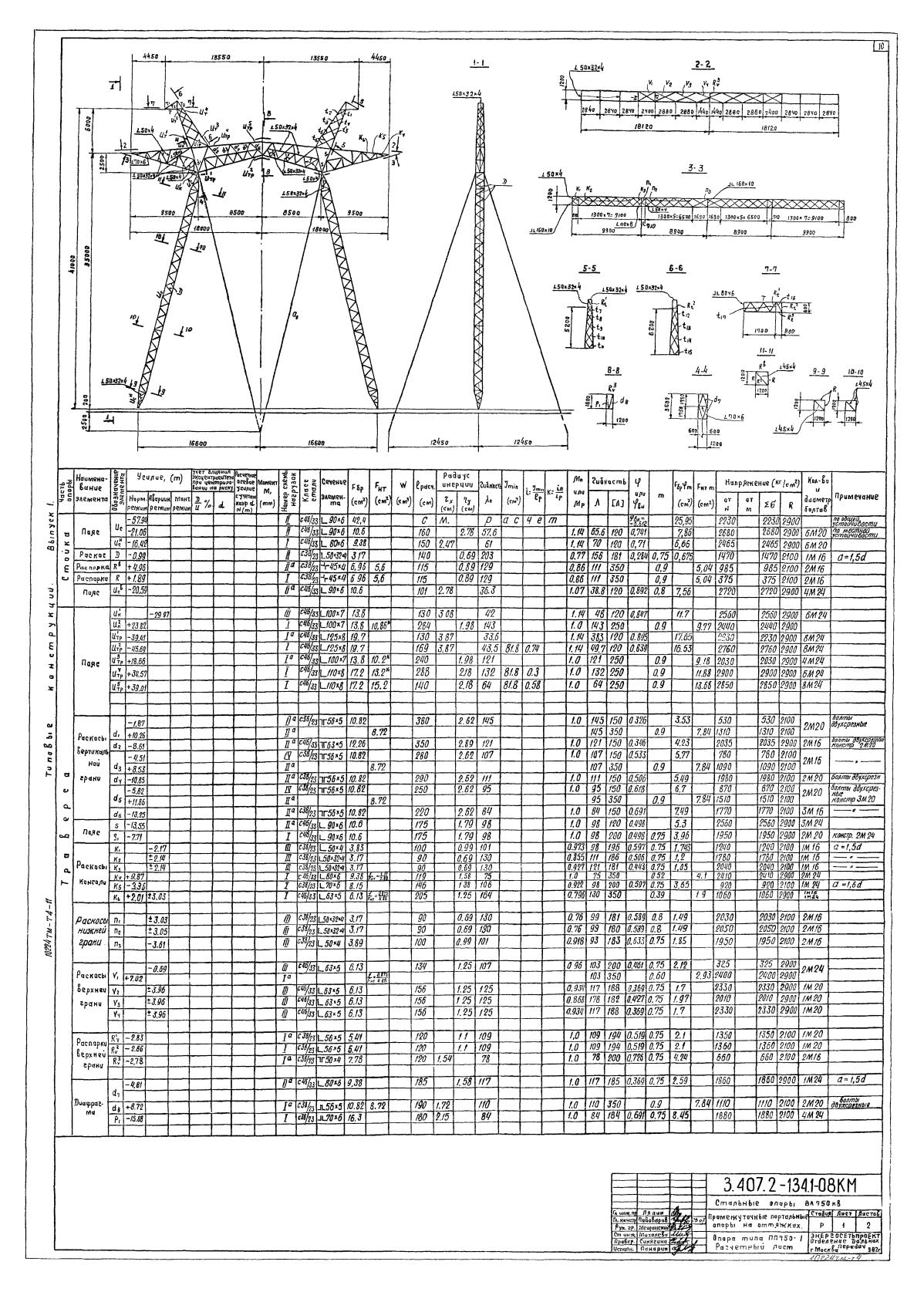
Ч. В опарах с оттяжками произвести свивку старьных канатав, да по

8. В отпянсках создать предварительное натяжение с помощью нотяжного устройства. Величина силы натяжения должна быть равна 2.5-3.0 м на каждун аттянку. Корпус клинового зажима после монтажа опоры должен находиться в пределах верхней трету нарезной части л-одразного анкерного дочша флидаменша, свододные конлы шьосов закрепыть на рабочей части оттяжен с помощью дуговых сжимов. Клин в карпусе клинового зажима для предотвращения выпадания закрепить установкой шплинтов по гост 397-79, взамен шплинтов может быть использована праволока d = 4 ÷ 5 mm. Оттяжки смазать защитной смазкой 390 в соответствии синструк-3 Места с поврежденным цинковым покрытием защитить от когрозии покрытием защитить от когрозии покрытием защитить от когрозии образии образии образии

1. Моншам спор вригознять в соответствен с Аказаначия снепий-18-12, 1. 144 п два раза цокрытр ачемментерой издрой на чаке у-144 наньсением панкорого покрытам спосодом расиріченая пуп озрунтовать чаком шеста с пробетовительной примором приботитем запапитанно та корьозап

Снип-111-33-76, техналогических карт на монтаж опор, разработанных институ-

И. Высота сварных швов принимается по наименьшей толщине привариваемых


12. Балты для подъема на опору устанавливаются на двух стойках промежуточнях опав п иа аднамя исяся каждой стапка анкевно-личерых сиов с внетны стороны угла поворота Вл. 13. Раскасы креставой решетки в местах пересечения соединяются одним болтом.

14. Для определения порядкового намера опары при облете трассы на вертолете на всех впорах устанавливаются номерные знаки в местах, обозначенных на монтаж ных схемах и по излам настоящего чертежа. На промежуточных опорах намерные знаки устанавливаются: нечетные - на левой кансоли траверсы по ходу трассы, на трасостойке крайней стойки опоры с внешней стороны угла поворота трассы Все намерные знаки имеют размеры, указанные на настоящем чертеже. Крепление осуществляется с помощью У-образных ской и оговоренным маркам опор.

3.407, 2-1341-07KM Стальные опоры ВЛ 750 кВ Гл чинкор Лялин Стальные плоры ВЛ 750 кВ

Пл чинкор Пововаров тоб до промежуточные портальные Стайия Лист Опары На отплужках. Р т инж Михалева Сила Технические пребования на изготов ление и мон-роверы Синягина Сила пор L Macke Usbegan 1885

	Наимено-	T		9 u N u S			лияния приситет прировн приску	Расчетна осе Вое усилие с учетан	Momen	Hamep exembi	acc Manu	Сечение	Fop	F _{HT}	W	6 back	, -	n Ac	Сп ұкаь.	Jmin	3	ju	Mn	Sug	kacmp	φ	Ī	Τ	<u> </u>	Hai	лик дп	2445	(X[]0.3] K
	Bahue		1 '	и режи		1 = 7	٩	N (m)	M(mm)	Hamep	Kna	wa avsws4.	(cm²)		(c m3)	1	7.	74	λo	cmy	t= ep	K= CD	υΛυ qM	٨	[Y]	чен Чен	m	, ,	FHT M (CM²)	4 au	om M	£6°	R	8
		u;								I		L80×6	9.38			180	2,47		7.3				1.14	83	120	0,615	0,75	4.33	<u> </u>	1780		1780	2900	┾
	B	<i>u</i> ² <i>u</i> ³	+5.71			┼	-			I	C 46/33 C 38/23	∟ <i>80×6</i> ∟ <i>70×6</i>	9.38 8.15	£=0.17		110	2.47		45	├	-		1.14	51	120	0,831	0.75	6.23		1090		1090	2900	İ
	Пояся	UT	+5.95		1	 	 		<u> </u>	I	C38/23		8,15	6 89	-	100	2,15	1	93 46,4	 	 		1.14	<i>106</i> 53	250 250		0.58		6,2	980	-	1430	2/00	\vdash
	110	T_2	-6,0.							I		L 70×6	8.15			110		1.38	80				1,0	80	120	0.715	0,75	4.37		1380		980 1380	2100	+
		T3	+5.0	± 2.53	-	├	┼		├	Ī	C38/23		8.15 5.41	Fur=0.17		100		1.38	72	 				72	250		0,58		4.0	1270		1270	2/00	İ
		t ₁	-	-3,07	+	 	-	┼─			C38/23		5.41			60 90		1.1	55 82	 			1.0	55 82	200	0.843		3,42		740	-	740	2100	F
- {		ta		± 2.9	 					ĪŸ	C38/23	L <i>56×5</i>	5.41			140		1.1	127	 	 		0.86	101	200 194	0.703	0,75 0.75	2.85		1080	-	1395	2100	┝
		Ły		±1,39		<u> </u>	ļ	ļ		<u>IV</u>		L 50×4	3.89			90		0.99	91				0.97	88		<i>0.6</i> 67	0,75	1,95		710		7/0	2100	+-
	19	ts te		±1.44			 			<u>IV</u>		L 50×4	3.89 3.89		ļ	150 190		0.99	152				0.81	123		0,433	0,75	1.26	ļ	1/40		1140	2100	I
- [0	t5		±1.29	+						G38/23		3.89			150		0,99	152				0.85 0.81	170		0. 240 0. 433	0.75	1,26		1900		1900 1020	2100	\vdash
۵	0	ty		± 2.03						ΪΫ		L 50×4	3.89			60		0.99	61				1,0	61		0.815	0.75	2.38		850		850	2/00	+
$ \mathbf{x} $	×	t.s		± 2,61								L 56×5 L 50×4	5.41 3.89			<i>90</i> 100		0,99	83 101	 			1.0	83	200	0,703	0.75	2.85		920		920	2100	
Z	ن	£10		±1.79				-				L50-32×4	3.17			100		0,59	145				0,94	95 119	197 188	0,618	0,75 0,75	1.8	 	1200 1660		1200	2/00	
0	æ	Łu		± 1.69						ĬΫ	G38/23	L5U×32×4				100		0.69	145				0,91	132		0,387	0.75	0.92		1840		1660 1840	2100	+
-	م	t12		± 1.41 ± 0.89				-		<u>IV</u>		L <i>50=32×4</i> L <i>50×32×4</i>	3.17 3.17			110		0.69	160		!		0.8	128		0.407		0.965		1460		1460	2/00	L
١٠		t13		±0.70	 			-		<u> </u>		L50×32×4				110 110		0.69	160 160				0.80 0,80	128 128		0.407 0.407	0.75 0.75	0,965 0,965	<u> </u>	920		920	2/00	-
0		£15		± 0.60						ĪŸ		∟50×32×4				110		0.69	160				0,80	128		0.407	0.75	0,965		620		725 520	2100	-
.	Ţ	ŧ 16		± 1.56						<u>IV</u>		L5D:32:4				86		0,69	124				0,87	109		0.519	0.75	1,23		1270		1270	2100	
-		<i>t</i> 17 Rt	+0,35	±2.46								L <i>50×32×4</i> L <i>50×32×4</i>		± =0.26		<i>66</i>		0.69	<i>96</i> 87				0.952	91		0.648	0.75	1,54	1.50	1600		1600	2100	L
1		Rt Rt	-0,50 -0,6	 								50-32-4		F-87 -0.20		60		0,69	87				1,0	87 87	350 200	Q 673	0,56	1,6	1,39	250 375		250 375	2100	-
	PKE			+							aliet								,							4,010	3,10	===		- 515		3/0	2,000	1
1	распорі	Rt3		± 3 37						<u>IV</u>	C46 _{/33}	L <i>63×5</i>	6.13			80		1,25	64				1.0	64	200	0.752	0,75	3.47		970		970	2900	
-	<u> </u>			 				<u> </u>																										┝
ľ		7		-6.01							C46/33	∟ <i>63×5</i>	6,13	+ 087		170	1.94		88				0.91	80	190	0.638	0.75	2,94		2 0 40		2040	2900	
١	Конеоль	<u> </u>	+3.69	-						I.	C46 <u> 3</u> 3	L <i>63×5</i>	6,13	Fut 5.08		210		1.25	168				0,79	/33	350		0.37		1,88	1962		1962	2900	Ļ
+			+25.35	-						īja				ната	l	 18.5	<u></u>	- <i>c</i> -	1372	(140)	roc	L	3054				73p = 2.	3 30						-
0	PHARTT	0.	7 20.00							<u>"</u>																71 pc	13p - 2	0.00						
		Hasi NN	лы х	аракт	Spuctu	ka cxe	мы н	EŁd 2 p.	oκ	Wu	p wan ab bei	EHUU 3.		em a	зрн	py 3 o	к	187 187 187	PY3EK			KA CX6				P	d c d 6 ul lam a H da bb beskal	Mid Nid	C x	6 M 0	ч н	a s p y	130K	
		1		и пок Вете лярн С=15, ур=0	рыті р наі о ос ім. (ії і ода	район правл правл	лоле ен	nepne r 2011 o.n = 55 ^{KT} 51	iduky- edy)		<i>51552</i>		3.28	1.26	3.28 5.94	/t 3.99	3.28 3.28 5.94	į	1	u chai Bemer Kacu L=D PP=P1	pobad max; pobad	mpoch pabnes pauo (ymas (ymas 2 × A	2011 H 110 H 120 E 400	ia L 2011 5 Kl	Эа 45° өледу)	51551		6.17	.04		04	0 55	2.0
				n RAB	Soor	u pad	n wb	acact	bepcbi, où ku .	,										ou back gvv u	iascal Besei HRmr		age!	oebi	u	' 			**					
		1-1	α	и пок Вете к ос С=15 Прово	ры М р На и Вл м (<u>ії</u> .5 9 _{та}	րգ ըն որ գրջ թլ ջ օ	ЛОЛе 1ен Н ПО 10/51	e abapi dam. nad 4 sanan 55 Kii	45° edy)	1A	515 5 2		3.99 7.64 E.94	- 1	1.64 5.94	V 3.9	2.63 9 164 5.94		iii	pasb Beme C=0 Pp= 9	i. Tp pu s l max, abada	про осы салале райс (ут 5 х д 2 х д с	ie ob Barne in no ax = c 400	O KE Soli Sali Sali Sali Sali Sali Sali Sali Sa	тыруы тыруыл		5155 1	2.	1.1 7 6.17	4	6.17		617	,

	для поясов и раскогов траверсы, поясов стойки и трасастойки.				для поясов стоики, раскосов траверсы и оттяжек.			
i i	Провода и тросы не оборваны. и покрыты гололедом. Ветер направлен под 445° к оси Вл. С=15мм (т район по гололеду) Фр=0,25 умах (умах=55 кгс/м²) Провода 5×яс 400/51 Тросы 2×яс 400/51 Тросы 2×яс 400/51 Схема является расчетной для поясов, раскосов и распорок троверсы.	1 A 51552	2.99 2.63 2.99 2.63 2.99 2.64 16.64 1.64 1.64 15.94 15.94	18.	Обарваны провода одной фазы. Тросы не обарваны. Ветер и голопед атеутствуют С=0 (Î райан по голопеду) ур= у тах; (утах = 0 кгс/м²) Правода 5 хас 400/51 Тросы 2 х ас 70/72 Схема является расчетной для траверсы.	3-51551	2.7 6.17 6.17	617
ij	Провода и тросы не оборваны и свободны от гололеда Ветер направлен перпенди- кулярно к оси Вл. С: 0 (I район по гололеду) Ур=Утах; (Утах = 55 кгс/м²) Провода 5 х АС 400/51 Тросы 2 х АС 70/72 Схема является расчетной для поясов и раскосов стойки.	2 - 51551	1.18 1.14 1.14 1.08 1.08 1.08 1.08 1.08 1.08	Ī	Оборван один трос Провода не оборваны. Ветер и гололед отсутствуют. С=0 (1 рачон по гололеду) Гр= Утах; (Утах = 0 кгс/мг) Провода 5 хАС 300/66 Тросы 2 хАС 70/72 Схема является расчетной для раскосов, роспорок и пояса консоли тросостоими	4-66551	2.08 075 5.42 5.42	5.42

Таблиц	a backe	тных ве	травых н	аѕьязак	на консп Рт	กрукцию _{1x} =55 ^{кг} / _м 2
N	Ветер на	правлен Т	ocu BA.	Ветер на	правлен 11	gcu BA
a 0 . 14 a . a	Cwanka	Tpabepca	Травастайка	Стойка	Траверса	Τροσοςτούκα
besknwa	G t	Q TP	Q.Tc	Q et	Q" _{TP}	Q."
Ĩ	0,573	0.380	0.079	_		_
<u>j</u> ď	0,473	0, 380	0.15	0.473	0.824	0.15
Ą	2,702	1.792	0.374		_	
Ĩ <u>i</u> a,	2. 232	1,792	0. 706	2,232	3,883	0.706

10224 TM - T4 - 12

AC 300/66,

TM-T 2 3. Опора рассчитана на эвм по программе, составленной в отделении Дальних

Передач. 4. В болтовых соединениях обрезы элементов приняты d=2d, кроме оговаренных, в многоболтовых воединениях минимальное расстояние между болтами в = 2.5 d, кроме оговоренных. 5. Минимальное усилие для прикрепления нерабочих элементов стойки и

элементав впоры.

				3.407. 2-134	1-08	3KM	
		1. 1		Сшапрные опоры	BAT	150 KB	
		chi		Промежуточные портальные	CTadus	Aucm	Aucto
TA, MOHETP	NGPIANCKAR Ungabag	The stay	2305	впоры на оттянках.	P	2	2
	Уонизана Синягина Синягина		-	Unopa muna nn 750-1	ЭНЕР Отдел	гасетья ение Да	POEKT Nonux
Ucnank	Данарам	chille	-	Рэсчетный лист.	r. Mack	ge de ge	1982

нол- бо (кло/лу) вына жи дпа Н

диаметр При ме ча ние

d=1.5 d

a=1.5 d

a=1,25 d

a=1,25d

d= 1.25 d

d = 1.5 a

констр ⊾80×6

болтов

1780 2900 3M20

1090 2900 2M24

1430 2100 2M20

980 2100 2M20

1380 2100 2M 20

1270 2100 2M20

740 2100 1 M 10 1 M 20

1900 2100 1M 15

2040 2900 1962 2900 IM20

1840 2100 1N16

1450 2100 1M16

620 2100 1M16

970 2900 1 M20

1080 2100 1M20 a=1.5d

1395 2100 IM 20 a= 1.5d 710 2100 1 M 20 M 15 0 = 1,5d

1140 2100 1 M 16 0 = 1,5d

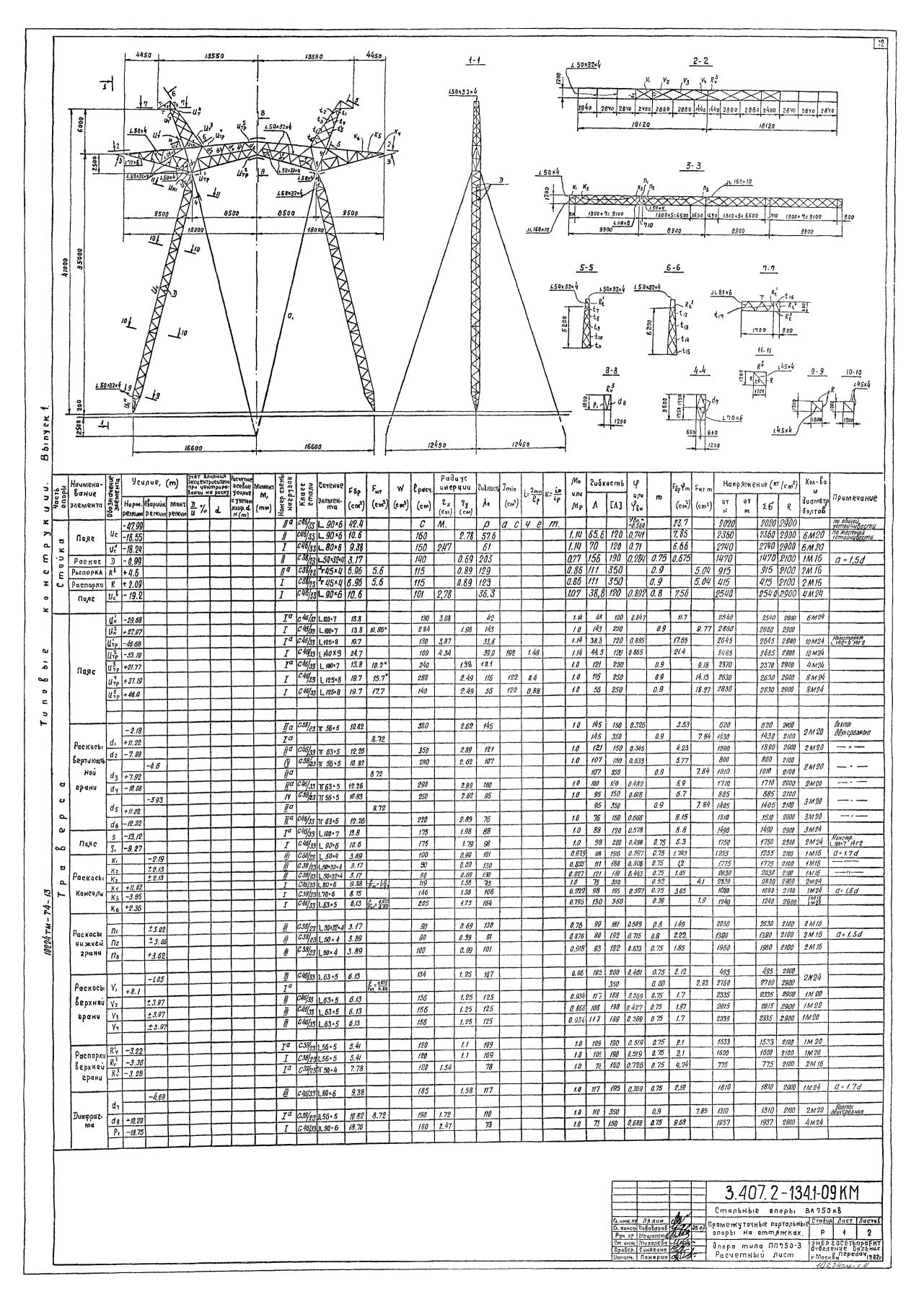
1990 2100 1 M 15 0 = 1,5d

1020 2100 1M 10 KONCTP L36-5 1020 2100 1M 16 C KONCTP L36-5 850 2100 1M 16 KONCTP L58-5 1 M 20 C - 1,5 d

920 2100 1M 20 a = 1.5 al
1200 2100 1M 20 KOHEMP L 56 - 5
1M 16 d = 1.6 d

IM16

1M 16


1M16

1M16

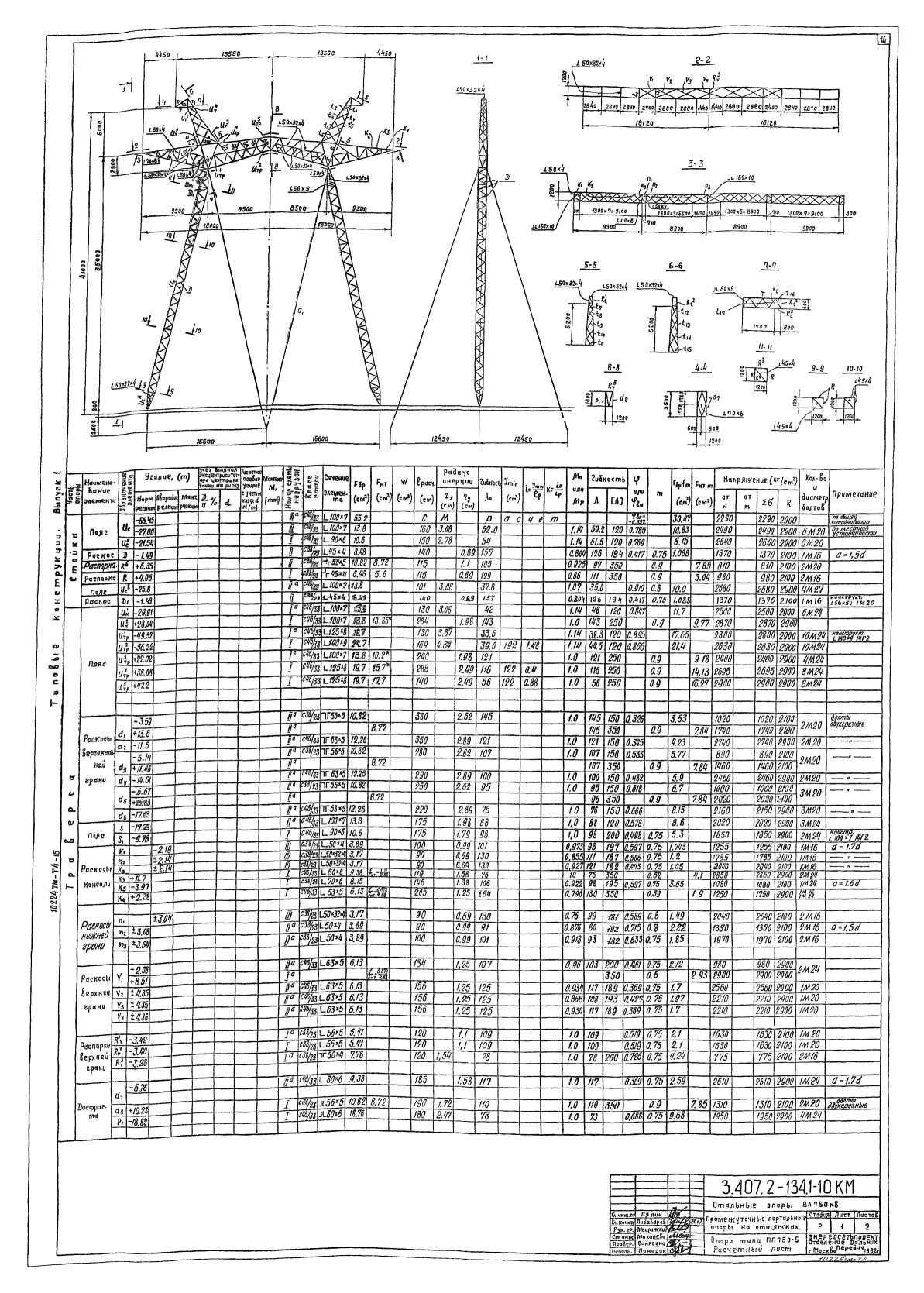
1M16

/M/6

1M16

Усилие (м)		33	9.38 8.15 8.15 8.15 8.16 5.41 5.41 5.41 5.41 3.89 3.89 3.89 3.89 3.89 3.89 3.89 3.89	6.89	180 110 200 100 100 100 100 60 90 140 90 150 150 60	2.47 2.47 2.15 2.15	0,99	73 45 93 46.4 80 72 55 82 127 91 152 192			1,14 1,14 1,14 1,10 1,0 1,0 0,86 0,97	83 51 106 53 80 72 55 82 109	[A] 120 120 250 250 120 250 200 200 200 200	0,615 0,831 0,715 0,843 0,703 0,519	0,75 0,75 0,58 0,9 0,75 0,58 0,75 0,75 0,75	4,37 3,42 2.85	4,0 6,2 4,0	N 2/ 59 1368 1720 1202 1750 1610 740 1080 1400	130 172 120 173 161 74	59 2900 68 2900 60 2100 60 2100 60 2100 60 2100 60 2100	2M24 2M20 2M20 2M20 2M20 1M20 1M20	a=1.5d a=1.5d
8.52 6.69 745 764 5.45 ±2.53 -3.07 ±2.94 ±1.39 ±1.45 ±1.38 ±1.46 ±2.05 ±2.63 ±2.63 ±2.19 ±1.8 ±1.7 ±1.43 ±1.7	I c49 I c38 2	953	9.38 8.15 8.15 8.15 8.16 5.41 5.41 5.41 5.41 3.89 3.89 3.89 3.89 3.89 3.89 3.89 3.89	6.89	110 200 100 100 100 60 90 140 90 150	247 2.15 2.15	1.38 1.1 1.1 1.1 0.99 0.99 0,99	45 93 46.4 80 72 55 82 127 91 152			1,14 1,14 1,14 1,0 1,0 1,0 0,86	51 106 53 80 72 55 82 109	120 250 250 120 250 200 200 200	0,715 0,715 0,843 0,703 0,519	0,75 0,58 0.9 0,75 0,58 0,15 0,75 0,75	6,23 4,37 3,42 2,85	4.0 6.2 4.0	1368 1720 1202 1750 1610 740 1080	130 172 120 173 161 74	8 2900 0 2100 2 2100 0 2100 0 2100 0 2100	2M24 2M20 2M20 2M20 2M20 1M20 1M20	
5.69 745 764 5.45 ±2.53 -3.07 ±2.94 ±1.39 ±1.45 ±1.38 ±1.46 ±2.05 ±2.63 ±2.49 ±1.8 ±1.7 ±1.43 ±1.7 ±1.43 ±1.7	I	10	8.15 6 8.15 8.15 8.15 5 5.41 5.41 5.41 5.41 3.89 3.89 3.89 3.89 3.89 3.89 3.89 3.89	6.89	200 100 110 100 60 90 140 90 150	2.15	1.38 1.1 1.1 1.1 0.99 0.99 0,99	93 46.4 80 72 55 82 127 91 152			1,14 1,14 1,0 1,0 1,0 0,86	106 53 80 72 55 82 109	250 250 120 250 200 200 200	0,7/5 0,843 0,703 0,5/9	0,58 0.9 0,75 0.58 0,75 0,75 0,75	4,37 3,42 2.85	4,0 6,2 4,0	1720 1202 1750 1610 740 1080	172 128 173 161 74	0 2100 2 2100 0 2100 0 2100 0 2100 0 2100	2M20 2M20 2M20 2M20 1M16 1M20 1M20	
745 764 764 545 ±2.53 -3.07 ±2.94 ±1.39 ±1.45 ±1.38 ±1.46 ±2.05 ±2.63 ±2.63 ±2.19 ±1.8 ±1.7 ±1.43 ±1.7 ±1.43 ±1.7	I	100	8.15 8.15 8.15 5,41 5,41 5,41 3.89 3.89 3.89 3.89 3.89 3.89 3.89 5,41	6.89	100 100 100 60 90 140 90 150	2.15	1.38 1.1 1.1 1.1 0.99 0.99 0,99	46.4 80 72 55 82 127 91 152			1,14 1.0 1.0 1.0 1,0 0,86	53 80 72 55 82 109	250 120 250 200 200 200	0,7/5 0,843 0,703 0,5/9	0.9 0.75 0.58 0,15 0,75 0.75	3.42 2.85	6,2 4,0	1202 1750 1610 740	120 175 161 74	2 2100 2100 0 2100 0 2100 0 2100	2M20 2M20 2M20 1M16 1M20 1M20	
2.64 2.53 2.53 2.53 2.53 2.54 2.54 2.55 2.63 2.19 2.18 2.17 2.143 2.17 2.143 2.09	I \$\circ{\circ}{38\emptyset}\$ I \$\circ{\circ}{23\emptyset}\$ I \$\circ \circ{\circ}{23\emptyset}\$ I \$\circ \circ \circ^{\circ}{23\emptyset}\$ I \$\circ \circ cir	10 x 6 1	8.15 8.15 5,41 5.41 5.41 3.89 3.89 3.89 3.89 3.89 5.41 3.89		110 100 60 90 140 90 150 190		1.38 1.1 1.1 1.1 0.99 0.99 0,99	80 72 55 82 127 91 152			1,0 1,0 1,0 0,86	80 72 55 82 109	120 250 200 200 200	0,843 0,703 0,519	0,75 0,58 0,75 0,75 0,75	3.42 2.85	4,0	1750 1610 740 1080	175 161 74 108	0 2100 0 2100 0 2100 0 2100	2M20 2M20 1M16 1M20 1M20	
5.45 ±2.53 -3.07 ±2.94 ±1.39 ±1.45 ±1.38 ±1.46 ±2.05 ±2.63 ±2.19 ±1.8 ±1.7 ±2.43 ±0.9	I	23	8.15 5,41 5.41 5.41 3.89 3.89 3.89 3.89 5.41 3.89	# = G.17	100 60 90 140 90 150 190		1.38 1.1 1.1 1.1 0.99 0.99 0,99	72 55 82 127 91 152			1,0 1,0 0,86	72 55 82 /09	250 200 200 200	0,843 0,703 0,519	0.58 0,75 0,75 0,75	3.42 2.85	4,0	1610 740 1080	161 74 108	0 2100 0 2100 0 2100	2M20 1M16 1M20 1M20	
\$\frac{12.53}{-3.07}\$ \$\frac{12.94}{2.94}\$ \$\frac{11.39}{2.145}\$ \$\frac{11.45}{2.05}\$ \$\frac{12.05}{2.63}\$ \$\frac{12.19}{2.18}\$ \$\frac{11.8}{2.17}\$ \$\frac{11.8}{2.143}\$ \$\frac{11.7}{2.143}\$ \$\frac{12.43}{2.09}\$	\(\bar{Y} \) \(\cdot \	23	5,41 5,41 5,41 3,89 3,89 3,89 3,89 3,89 5,41 3,89	707 6.17	60 90 140 90 150 190		/f /. f /. f 0,99 0,99 0,99	55 82 127 91 152			1,0 0,86	55 82 109	200 200 200	0,843 0,703 0,519	0,75 0,75 0,75	2.85		740 1080	74 108	0 2100	1M16 1M20 1M20	
-3.07 ±2.94 ±1.39 ±1.45 ±1.38 ±1.46 ±2.05 ±2.63 ±2.19 ±1.8 ±1.7 ±1.43 ±0.9	\bar{Y}	23	5.41 5.41 3.89 3.89 3.89 3.89 3.89 5.41 3.89		90 140 90 150 190		1,1 1.1 0,99 0,99 0,99	82 127 91 152			1,0 0,86	82 109	200 200	0,703	0,75 0,75	2.85		1080	108	0 2100	1M20	
±2.94 ±1.39 ±1.45 ±1.38 ±1.46 ±2.05 ±2.63 ±2.19 ±1.8 ±1.7 ±2.43 ±0.9	V c38/2 V c38/2 V c38/2 V c38/2 V c38/2 V c38/2 V c38/2 V c38/2 V c38/2 V c38/2 V c38/2 V c38/2 V c38/2 V c38/2 V c38/2	23 56×5 25 50×4 23 50×4 20 50×4 20 50×4 20 50×5 20 50×4 20 50×4 20 50×4 20 50×4 20 50×4 20 50×2×4 20 50×	5.41 3.89 3.89 3.89 3.89 3.89 5.41 3.89		140 90 150 190		1.1 0.99 0.99 0.99	127 91 152			0,86	109	200	0,519	0.75							u-1,0a
11.39 11.45 11.38 11.46 12.05 12.63 12.19 11.8 11.7 11.43 10.9	Iğ C38/g Iğ C38/g Iğ C38/g Iğ C38/g Iğ C38/g Iğ C38/g Iğ C38/g Iğ C38/g Iğ C38/g Iğ C38/g Iğ C38/g Iğ C38/g	23 50×4 23 50×4 23 50×4 23 50×4 23 50×4 23 50×4 23 50×4	3.89 3.89 3.89 3.89 3.89 5.41 3.89		90 150 190 150		0,99 0,99 0, 9 9	91 152								2.1			1 1/1/	al ama	1 /1/20	a=1.5d
±1.45 ±1.38 ±1.46 ±2.05 ±2.63 ±2.63 ±2.49 ±1.8 ±1.7 ±1.43 ±0.9	\$\bar{y}\$ \$c38/2 \$\bar{y}\$ \$\ba	123 L50×4 123 L50×4 123 L50×4 123 L50×5 123 L50×5 123 L50×32×4 125 L50×32×4	3.89 3.89 3.89 3.89 5.41 3.89		150 190 150		0,99 0, 9 9	152	-		0,07			<i>n </i>	0.75			7/5	140		11100	и = 1, 3 d констр 2 56 x a = 1,4 d
±1.38 ±1.46 ±2.05 ±2.63 ±2.63 ±2.19 ±1.8 ±1.7 ±1.43 ±0.9	\$\begin{array}{cccccccccccccccccccccccccccccccccccc	23 50×4 23 50×4 23 50×4 23 56×5 23 50×4 25 50×32×4	3.89 3.89 3.89 5.41 3.89		190 150		0,99			i	0.81	123			0,75			1150	115			a = 1.4d $a = 1.5d$
1.146 1.205 1.263 1.2.19 1.18 1.17 1.143 1.09	\vec{y} \cdot \sqrt{y}	23 50×4 23 50×4 23 56×5 23 50×4 23 50×32×4	3.89 3.89 5.41 3.89		150						0.885					0.7		1970	113			a = 1.5a
±2.05 ±2.63 ±2.49 ±1.8 ±1.7 ±4.43 ±0.9	Īy C38/2 Iy C38/2 Iy C38/2 Iy C38/2 Iy C38/2 Iy C38/2 Iy C38/2	<u> </u> <u>50×4</u> <u>50×5</u> <u>50×4</u> <u>150×32×4</u>	389 541 389				71 44 1	152			0.81				0,75			1110	111		17700	i .
±2.63 ±2.49 ±1.8 ±1.7 ±1.43 ±0.9	/y c38/2 /y c38/2 /y c38/2 /y c38/2	1/23 L50×5 1/23 L50×4 1/23 L50×32×4	5.41 3.89		100	1 1	0.99	61			1.0	61			0.75			860	80			$\alpha = 1.5\alpha$ $\alpha = 1.5\alpha$
±2.19 ±1.8 ±1.7 ±1.43 ±0.9	ĬŸ C38/2. ĈŸ C38/2.	23 L50x4 23 L50x32x4	3.89		30	1	1.1	83			1.0	82	200		0.75			923	92			a = 1.5 d
±1.8 ±1.7 ±1.43 ±0.9	Ů C38/2	23 L50x32x4	0.00		100	+		101	_		0.94		200		0.75			1220	122		7M20 1M16	XOHCTP 250 a = 1,6 d
±1.7 ±1.43 ±0.9	<u>l</u> y c38/2.	-0 -0 04 1	7/7		100	+	-	145			0.82		188		0,75			1670	16		1M16	$\alpha = 1.0\alpha$
±143 ±0.9		23 L50x32x4	3/7		100	1	0.69	/45	_		0.91		185		0.75			1850	18:			a=1,5d
±0.9	IV C38/2		3.17		110		0.69	160	-	_	0.8		200		0.75			1480		0 2100		a=1,250
	Ty c38/2	, , , , , , , , , , , , , , , , , , , ,	3.17		110			160	_		0.80		200		0.15			930	95		1116	a=1,250
	Ī C38/2				110		0.69	160	-				200		0.75			735	73		1M16	- 11
±0.61	<u> </u>	23 L50x32x4			110		0.69	160	_		0.80		200		0.75			630	62		IM16	a=1.250
±1.56	Ty C38/23	23 L50x32x4			85		0.69	124	_		0.87				0.75			1270	12			
+246	iy c38/23	23 L50x33x4			66		0.69	96		_	0.952				0.75			1600	100		1M16	u = 110 u
	7 (38/0	23 1 501324		= =005				-						3.070		7.57	129					a=1,5d
	T C38/2	03 1 50x30x4		WF 420							_			0673		16	7,00					
· '''	/20	20 130-02-7	5.77		1-00	-	0,03				1,0	07	200	0,0 13	0.13	".		7/0	- 17/	2100	TAITO	
+394	TV C46/3	93 1 63x5	E 13		00	\vdash	1.25	64	\neg	$\neg \vdash \neg$	10	64	200	0752	0.75	3/17		934	q:	4 2900	IMOD	KOHCMP L80x 6
					100		720				- //-	-		7,102	0115	0,47		1	-	12300	TMLO	28010
- 			-			+-+			_		1-1											
-50	1V (46/2:	33 L 63x 5	613		170	194		88	$\neg +$		0.91	80	181	0.638	0.75	2.94		2010	20	0 2900		KOHEMO. L80×6
				0.87			1.25							7000		2127						
	- 1 - 1 - 1 - 1 - 1 - 1	00	0.70	HT 5.08	1210		1				9/10		-		0,0,							
	Ta Ta	ne.			105	- R -	<u> </u>	1370	(140	LOCT	3064	-80	1/	L	= 233	Qm				_		
19	#	T #00	T KO	ната	70,5	T		7072	1.70	7,00,	1	1		pusp	20,00	5 ///						
43 13.24 19 19 19 19 19 19 19 1		I C38, I C40, IV C40,	I C38/23 L50x30x4 I C38/23 L50x30x4 IV C46/33 L63x5 IV (46/33 L63x5 I C46/33 L63x5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I C38/23	I C38/23 L50324 3.17 Fm = 026 50 0.69 87 1.0 87 I C38/23 L50324 3.17 60 0.69 87 1.0 87 IV C4G/33 L63x5 6.13 80 1.25 64 1.0 64 IV C4G/33 L63x5 6.13 770 1.94 88 0.94 80 IV C4G/33 L63x5 6.13 770 1.94 88 0.94 80 I C4G/33 L63x5 6.13 770 1.25 168 0.79 133	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I C39/23 L50×30×4 3.17 F _{III} =025 50 0.69 87 1.0 87 350 0.56 1.39 I C38/23 L50×30×4 3.17 60 0.69 87 1.0 87 200 0.673 0.75 1.6 I V C46/33 L63×5 5.13 80 1.25 64 1.0 64 200 0.752 0.75 3.47 I V V V V V V V V V	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

cxewpi dasp330		Mada dann	Схема нагрузок	GX 6WP	Харақтеристика схемы нагрузок	ь а сл с ш с матаннам Пафь Бежама	Схета нагрузок
Ī	Правада и тросы не одорваны и покрыты гололедам. Ветер направлен перпендикулярно оси Вл. С=20нн(Йрайан по гололеду) Провода 5×8с на [5] Тросы 2×8с 70 [72 Схема является расчетной для поясов и раскосов траверсы, поясов стойки и трасостойки.	<i>f-51553</i>	5.06 1.35 1.35 5.06 15.06 15.06 15.06 18.90 18.90 18.90	i (1)	Провода и тросы не обарваны и свабодны от голаледа Ветер направлен пад 145° к вси ВЛ. С=0 (Й район по голаледу) ур=утах; (утах = кс/м²) Провода 5 х дс 400/51 Тросы 2 х дс 40172 Схема двляется расчетной для поясов стойки, раскосов траверсы и оттяжек.	2A 51553	Q32 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Ĭa	Провода и тросы не оборваны. и покрыты гололедом. Ветер направлен под 445° к оси ВЛ. С=20mm(Г район по гололеду) Фр=0.25 9mm (9max = 55 кг/м²) Провода 5×8с 400/si Тросы 2×8с 70/72 Схема является расчетной для поясов, раскосов и распорок траверсы.	IA51553	5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06	ŢĪ.	Обарваны провода одной разы. Тросы не обарваны. Ветер и гололед атеутетвунт С=0 (!У район по гололеду) Ур= У тах; (Утах = 0 ^{Kfc} /м²) Провода 5 х де 400/51 Тросы 2 х де 70/72 Схема является расчетной для	<i>3-51553</i>	2.7 / 0.92 5,10 5,10 5,10
	Провода и тросы не оборваны и свободны от гололеда Ветер направлен перпенди- кулярна к оси Вл. С=0 (1½ район по гололеду) ур=уmax; (уmax = 55 кгс/м²) Провода 5×8с чоо/51 Тросы 2×8с чо/12 Схема является расчетной для поясов и раскосов стойки.	2-5/553	0.94 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	ĪV	Обарван адин трас Правада не оборваны. Ветер и зололед отсутствуют. С=0 (12 район по гололеду) Ур=Утах; (Утах = 0 кгс/м²) Провода 5 х дс 400/51 Тросы 2 х дс чо/чг Схема является расчетной для раскосов, распорок и пояса консоли трасостойки	4-51553	2.08 0.59 10.92 5.10 5.10


Ταδλυυ	та Басле	тных ве	mpugbix (m)	нагрузок .	на констр Ф _{.max} = 3	ук <i>цию</i> 55 кг/м²
И	BETPOSAS H		oeu BA.	BETPOBAS		gev BA
bemnwa	Стойка	Tpasepea	Трасастайка		Tpaßepca	Τροσοςτούκα
petricular	β _{eτ}	Q TP	Q te	0 cr	G" _{TP}	Q''C
Ī	0,573	<i>0,397</i>	0,079	_		
įα	0,473	0,397	0,15	0,473	0,861	0,15
ĬĪ	2,702	1,874	0,374			
<u>įį</u> a	2, 232	1,874	0,706	2,232	4,06	0,706

Примечания: 1. Опора рассчитана на подвеску проводов 5 × яс 300/39, 5 × яс 400/22, 5 × яс 300/66, 5 × яс 400/51 едвоенного троса марки яс 70/72.

- 2. Схемы нагрузок и гобариты опары см. технические условия N 10224 тм. т. 2. 3. Опара рассчитана на ЭВМ по программе, составленной в отделении Дальних
- Передач.
 4 В болтовых соединениях обрезы элементов приняты d=2d, кроме оговоренных, в многоболтовых соединениях минимальное расстояние межdy болтами в=2.5d, кроме оговоренных.
 5. Минимальное усилие для прикрепления нерабочих элементов стойки и

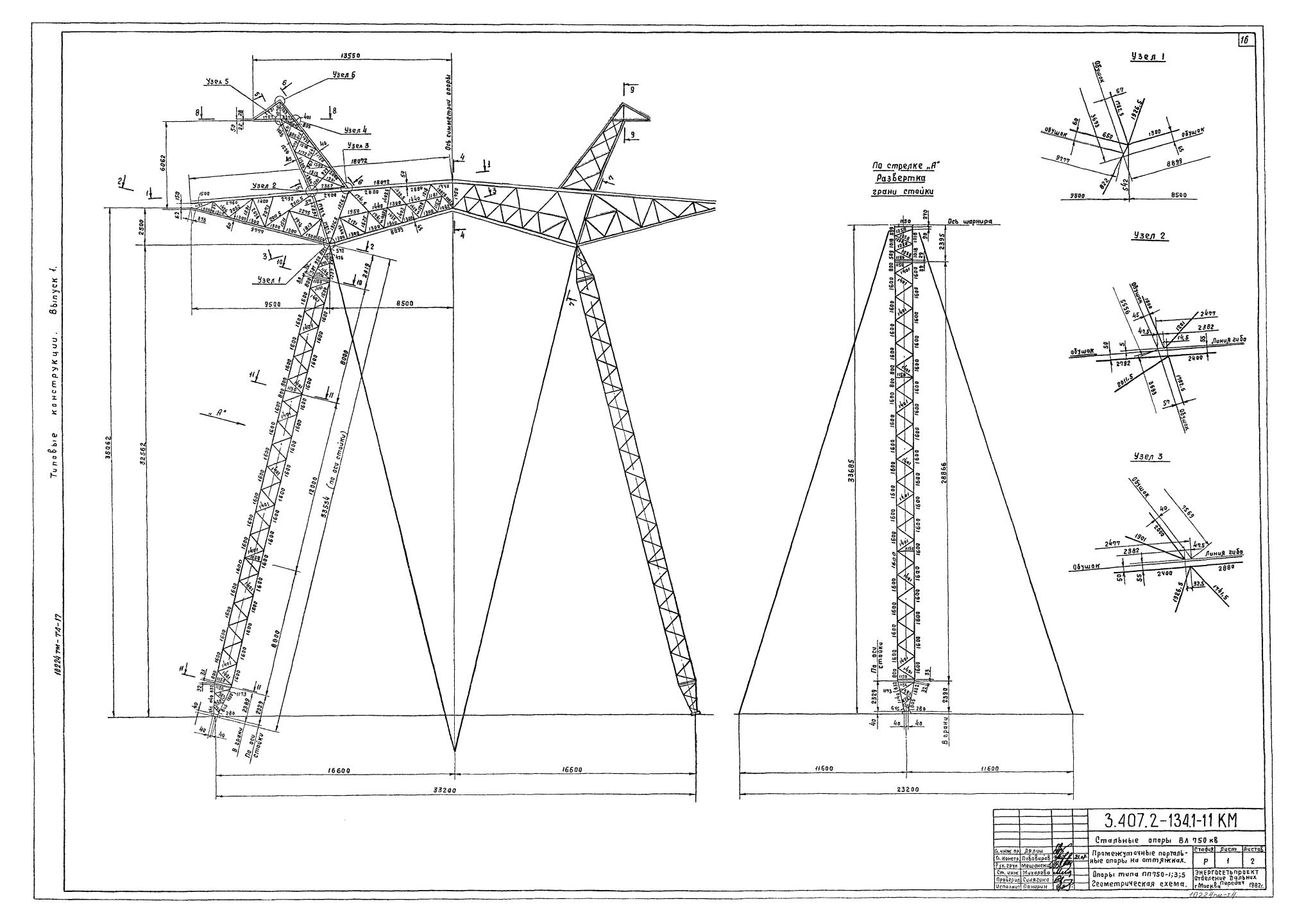
тросостойки равно 1.66 т. 6.8 таблице указаны режимы, являющиеся расчетными для элементов апоры

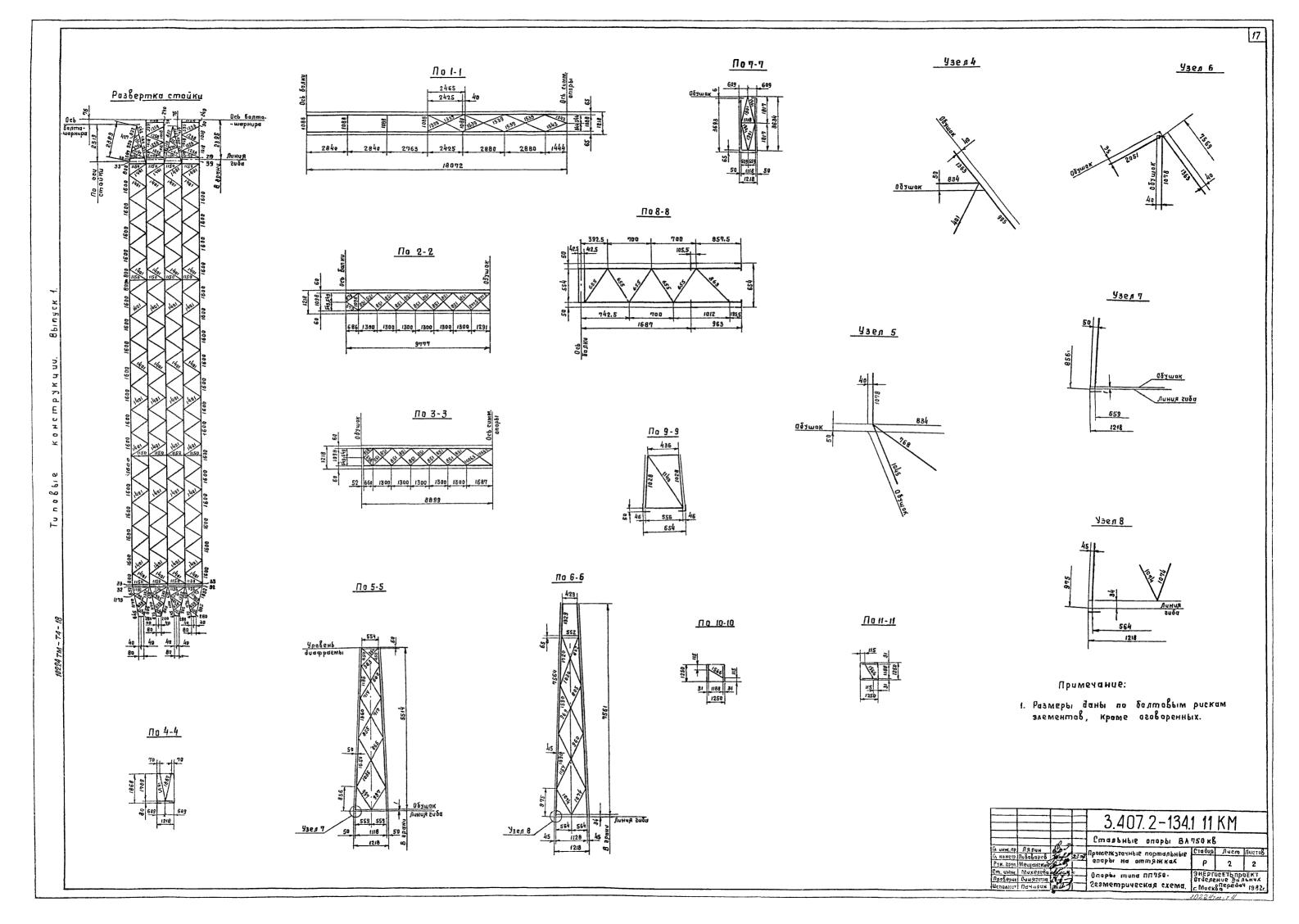
				3.407.2-1 34	.1-09	3KM	
		4		Сшальные апоры			
IA. UHUK AP	Ираки	OBK_		Прамежутачные портальные	Cradus	Jucm	Sucraß
PYK. SPYN.	метанска, Павова вов	July 1	20,07	опоры на оттянках.	P	2	2
	Waxabega			Unopa muna 111750-3	3 HEPI	OCETbo	POEKT
Hockep.	Синягина	B.1-	,		Orden	ение Да	UPHAX
	Пана рин		5	Расчетный лист.	r.Mack	ga uebega	1982
					10		

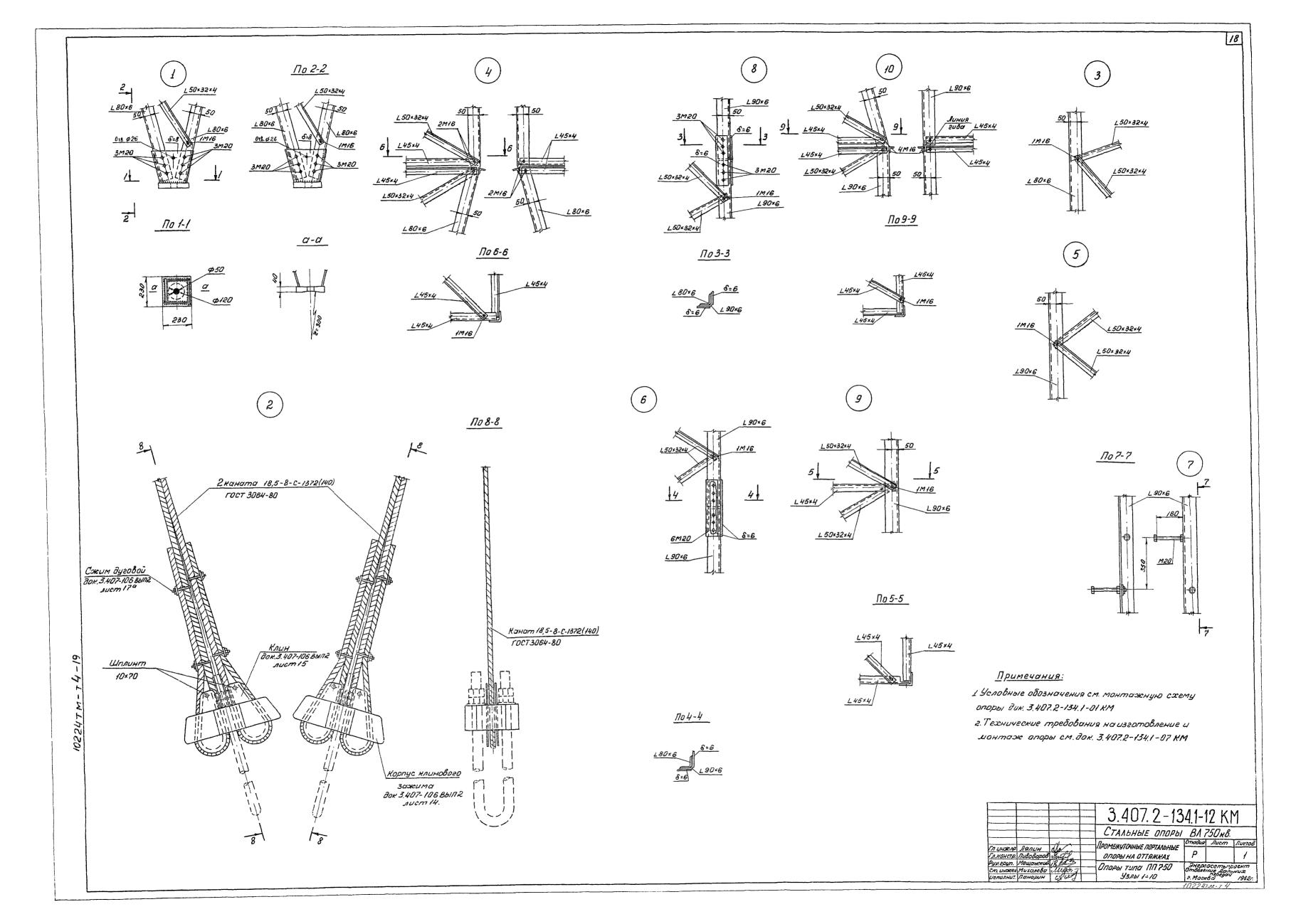
Hacmb Onopoi	Haumena Banue Banue Banue	156		илие (Режим	' m) Монт, режим	To de Han Ha	P P P P P P P P P P P P P P P P P P P	Расчетное осе 8 ое усилие с учетом коэф, ь N (m)	Momen M (mm)	127	Kage	wa gvawsh- gadshna	Fop (cm²)	Fut (cm²)	W (c m ³)	(cw)	ı		у о Sпұкавы	Jmin	i 2 min ep	K² ¿p	M⊓ u∧u qM		[4] caemp	у или 48н	m	Fop xYx m	$F_{tt} \times TD$	Han Han	m m	446 €6	"'/¢Mi/	Kan-bo duametp Sontob	Примечание
-		u' ₇	_				_			7		L80×6	9.38			180	2.47		73				1.14	83	120	0.6/5	0.75	4.33		2270		2270	2900	3M 20	
-	0	-	-8.48				-		-	7		L80×6	9,38			110	2.47		45				1.14				0.75			1360				2M 24	
	0		+ 7.49				-		-			L70×6		F = 0,17	1	200	2.15		93				1.14	106	250		0.58		4.0	1880				2M 20	
-	80	UT	+ 7.53							I		L70×6	8.15	6,89		100	2.15		46.4				1.14	53	250		0.9		6.2	1205				2M20	
	-	T ₂	- 7.5							I	C38/23	L70×6	8.15			110	ļ	1.38	80				1.0	80		0.715	0.75	4.37		1720				2M20	
	l	T ₃	+ 6.34									1 1.70×6	8.15	I =0,17		100		1.38	72					72	250		0.58		4.0	1585				2M20	
		ŧ,		± 2.54						W			5.41		L	60		1.1.	55				1.0		200					740			2100	[M] [6 [M] 20	a = 1,5d
	1	t ₂	1	-3.09						11	C38/23	∟56×5	5.41			90		1.1	82				1.0			0.703				1080				tM20	a = 1,5d
		tз		± 2.94						ΙŸ	£38/23	∟56×5	5.41			140		1.1	127									2.1		1400		1400		/M20	d=1,5d
	1	ty		± 1.4						ι <u>Ψ</u>			3.89			90		0.99	91				0.97				0.75			720			2100		констр. 156×5 A = 1,4d
1	1	ts		± 1.46								1.50×4	3.89			150		0.99	152							0.433		1.26		1160			2100		a=1,5d
	0	te		-1.38									3.89			190	-	0.99	192				0.885		182			0.7		1970	/	970	2100	IM 16	a = 1,5d
a	0	ts		± 1.46							c 38/23		3.89			150		0.99	152				0.81			0.433		1.26		1110		110	2100	1,116	КОНСТР 456×5 d = 1,5 d КОНСТР 456×5
1 ×	0	ty		± 2.05						ĮΫ		L_50×4	3.89			60		0.99	61				1.0			0.815		2.38		860			2100		констр. 156×5 a = 1,5 d
`	*	t ₈		± 2.63						ſĬ		∟56×5	5.41		ļ	90		1.1	83				1.0	82	200	0.703	0.75	2.85		923			2100		$CL = 1.5 \text{ cl}$ $ROTO TO 1.55 \times 5$
1,2	0	to	_	± 2.19						ΙŸ	C38/23		3.89	L	 	100		0.99	101				0.94		200			1.8		1220				IM 20 IM 16	KORCMP.L56×5 Q=1,6 Q
0		tio		± 1.8						1Ÿ	C38/23	L50×32×4	3.17			100		0.69	145				0.82	119		0.454		1.08		1670			2100		a = 1.5d
E	a	tin		± 1.7						17	030/23	L50×32×4	3.17			100 110		0.69 0.69	145				0.91	132		0.387		0.92		1850			2100		a = 1,5d a = 1,25d
2	d	then.		± 1.43 ± 0.9								L50×32×4				110			160						200			0.965		1480			2100		
1		世迟		± 0.71								L50×32×4 L50×32×4				110		0.69 0.69	160 160					128		0.407		0.965		930		930		1M16	d=1,25d
0	l	±141		± 0.61	-					/Ÿ		L50×32×4	3.17			110		0.09	160					/28		0.407		0.965		735 630		73 5		IM 16	a = 1,25d
Q		±13		± 1.56	\dashv								3.17			86		0.69								0.407		0.965 1.23		1270				1M16 IM16	a = 1,5d
0		tin		± 2.46	-			-				L50*32*4				66		0.69	96			_		109 91		0.519 0.648		1.54		1600			2100		<u> </u>
Q	 	11	+7,45	-2.70	_	\neg		-			c38/23			Z =0.26		60		0.69	87				0.952												a=1,5d
T	3	_	±0,72									L50*32*4		PHT U,LU		60		0.69	87					87			0.56			<i>320</i> 450			2100		-η
	0%	1,75	0,72	-	-	\rightarrow		\dashv		-1	723	L00-32-4	J.17			00		0.09	0/			-+	1.0	87	200	U.673	0.75	1.0		430		DU .	2100	1/M 10	
	аспорки	Rt3		± 3.34	_					ĪŪ	C46/33	L63×5	6.13			80		1.25	64				1.0	61.	200	0.750	0.75	3 117		965		nce	2900	IM ON	констр. 180 × 8
	Pac										,,,,,							1.20			\dashv		1.0	04	200	U. 702	0.13	0,47		303		105	2300	1111 20	LDU * 0
	<u> </u>			500						,0	CUET	67.5	6.12			170	1.01:				二						2.00	2.04		0000					конструкт.
;	l	1		-5.93						19	C//6/	L63×5	6.13	₹_0.87		170 210	1.94	105	88				0.91				0.75			2020		020			конструкт. L 80 × 6
	Кансаль	T	+4.6			\dashv	\dashv			4	· 70/33	∟ <i>63×5</i>	0./0	F _{8T} 5.88		410		1.25	108				0.79	/33	350	\dashv	0.37		1.88	2450	- 2	450	2900	IM 20	
	OTTANKO	0,	+36.02		1	廿				Įα		1.60	K	ана	ma	22,5	-В	<u>- c</u>	-/37	2(140) 10	$c\tau$	3064	1 - 80		Npa	_{3p.=} 30	5,377							
															1								1	\perp I	1									i	

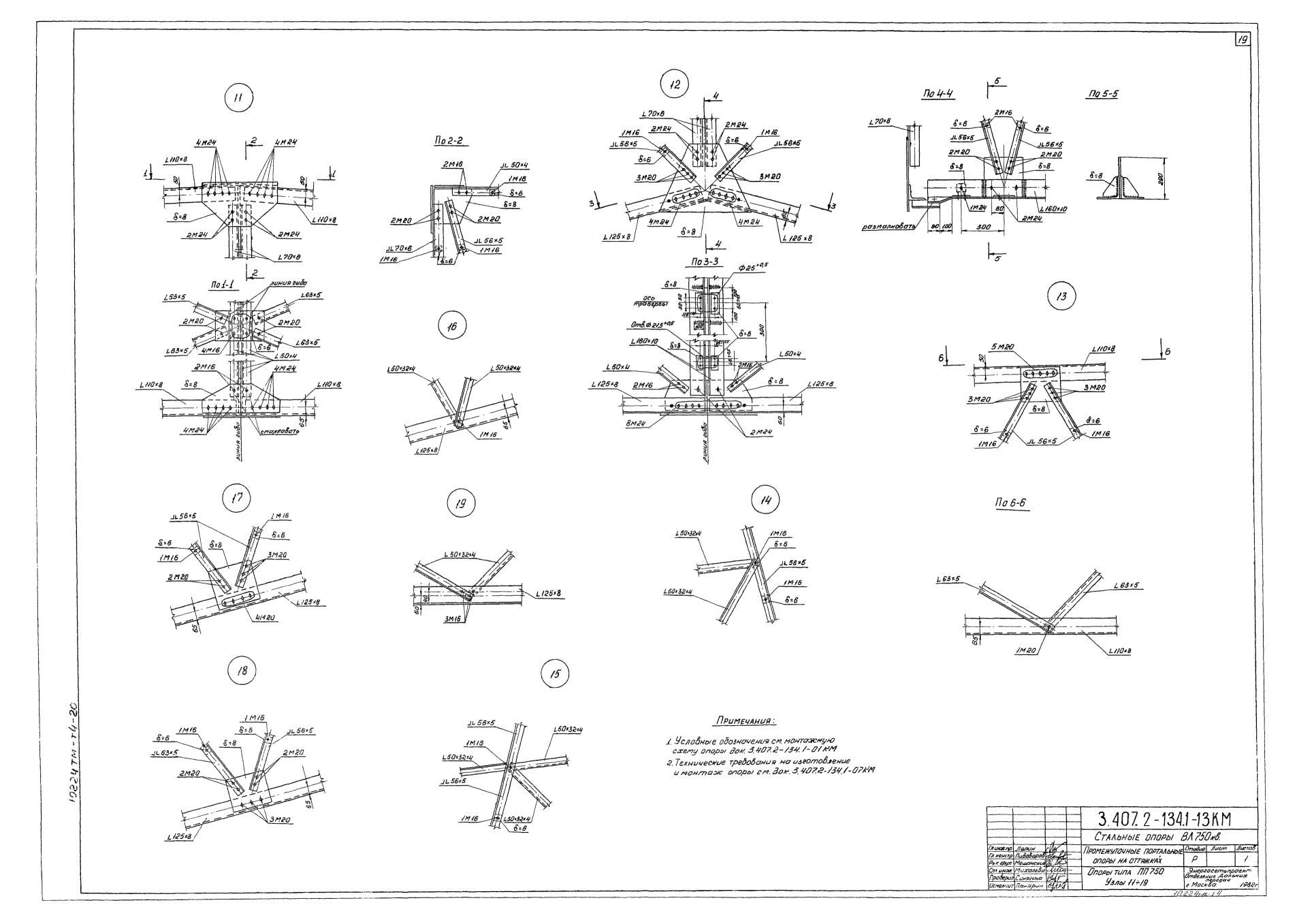
Hasbizon Cxswpi Nn	. Характеристика схемы нагрузок	нам баслете ша в шатин Плавь Бежп	Схема нагрузок	NN EXEMBI	Харахтериетика схемы назузок	расчете В машинным Шафр режима	Схема нагрузок
)—-)	Правода и трасы не оборваны и покрыты гололедом. Ветер направлен перпендикулярно аси Вл. С=20mr (Фрейон по гололеду) Яр=0.259 тах, (Утах=80 KTc/m²) Провода 5×пс нов)51 Трасы 2×пс 70/12 Схема является расчетной для поясов и раскосов траверсы, поясов стойки и трасостайки.	1-51803	4.91 1.94 14.91 14.97 18.55 18.55 18.55	ijα	Провода и трасы не обфваны и свабойны от гололода Ветер направлен под L 45° к оси вл. С=0 (2A51802	0.74 1.0 2.46 2.46 5.47 5.47 5.47
Ĩ	Провода и тросы не оборваны. и покрыты гололедом. Ветер направлен под 445° к оси Вл. С=20m(1½ район по гололеду) Ор=0.25 утах (утах = 80 km/m²) Провода 5× пс 400/51 Тросы 2× дс 400/51 Тросы 2× дс 70/72 Схема является расчетной для полеов, раскосов и распорок траверсы.	1A51803	0.97 14.97 12.47	<u>ia</u> .	Обарваны провода одной фазы. Тросы не оборіаны. Ветер и гололед отгутствуют С=0 (то так) (утах = 0 «СС/м²) провода 5 хас 400/11 Тросы 2×ас 70/12 Схема является расіетной для	3-51802	2.7
1221	Провода и тросы не оборваны и свободны от гололеда Ветер направлен перпенди- кулярна. к оси Вл. С=0 (II район по гололеду) Провода 5 х Ас чоо/51 Тросы 2 х Ас чо/72 Схема является расчетной для поясов и раскосов стойки.	2 - 51802	1.48 1.0 1.0 1.0 1.0 1.0 1.0 1.9 1.9 5.47 5.47	ر ا ا	Оборван адин трос Провода не оборваны. Ветер и гололед отсут твуют. С=0 (1) район по гололеду) ур=утах; (утах = 0 кгс/м²) Провода 5 х вс чоо ы Тросы 2 х вс чо/12 Схема является рачетной для раскосов, распирок и пояса консоли тросовойки	4-51802	2.03, 0.63\ 5.47 5.47 5.47

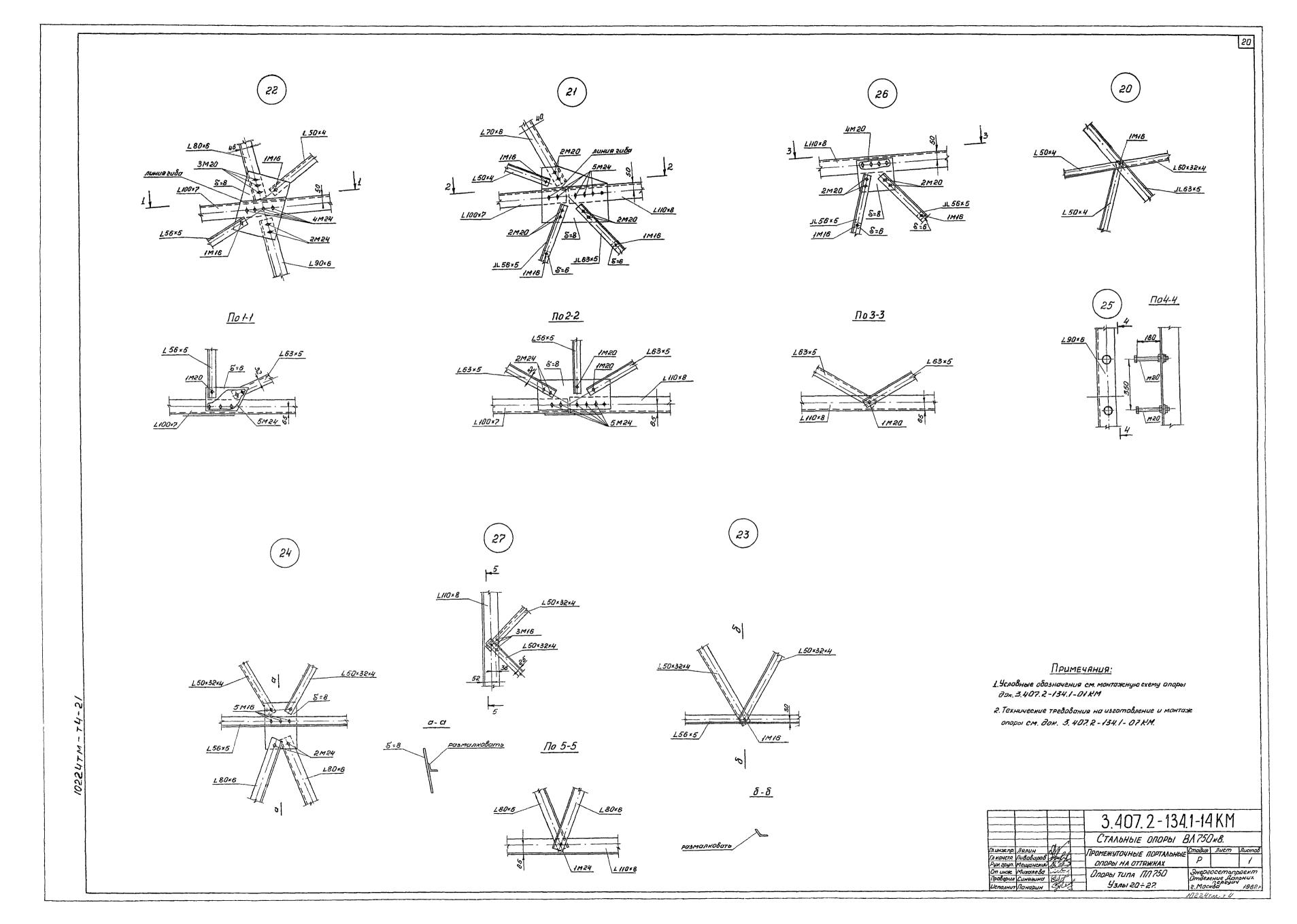
рилдьт	а Басле	тных ве	травых	нагрузок	на констр	укцию
И	Ветровая	нагрузка 1	acu BA.	Ветровая		: = 80 кг/м ²
режима	Emoúka	Lbagebca	Трасастойка		Tpaßepta	Тросостойка
,	Q 1	Q TP	G te	Q et	Q" _{TP}	Q"c
Ĩ	0,857	0,567	0,113	_		_
Ĩα	0,709	0,567	0,214	0,709	1,229	0,214
ij	4,119	2,726	0,544			
<u>i</u> i a	3,4	2,726	1,027	3,4	5,905	1,027

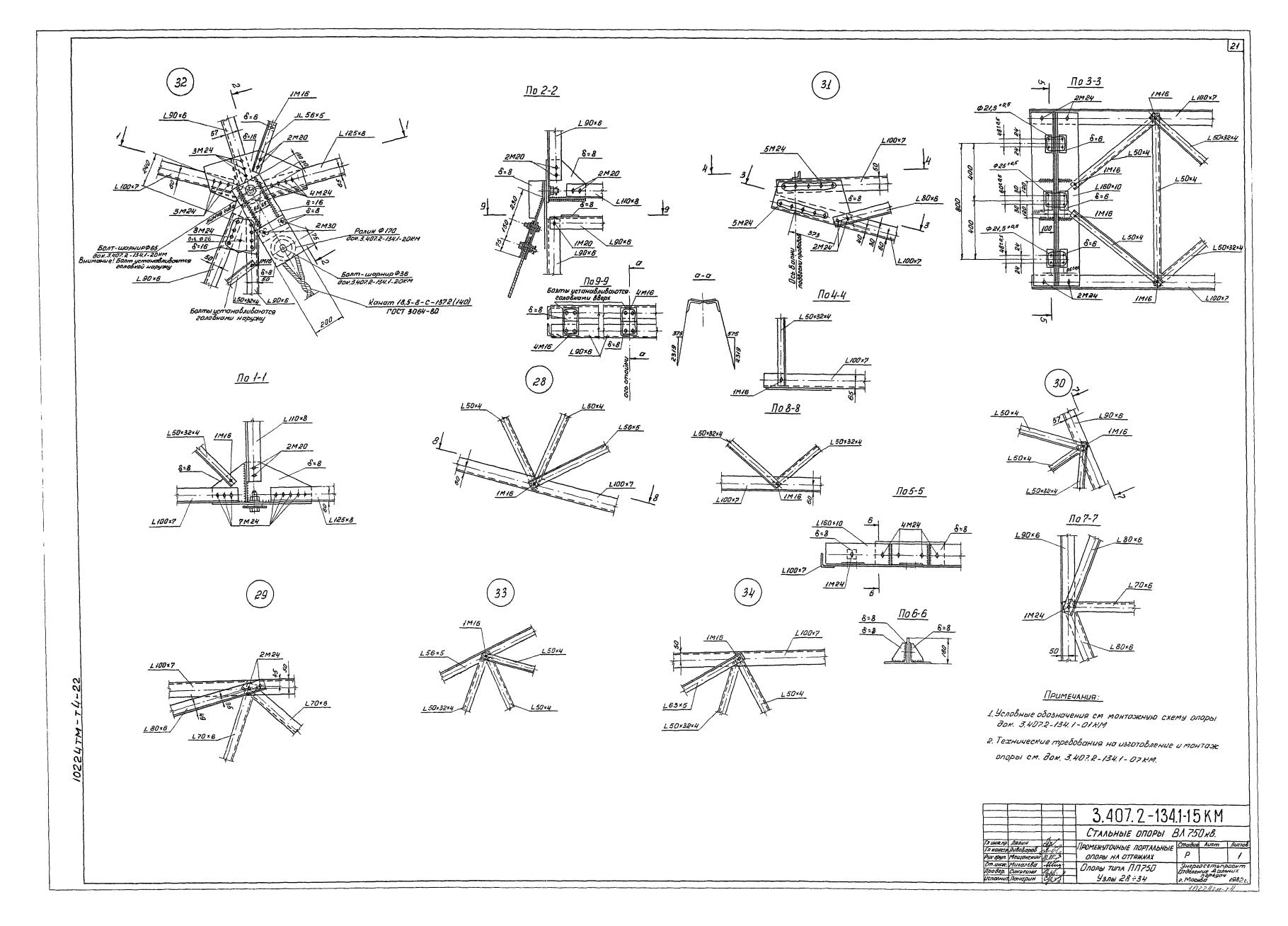

Примечания: Onopa paceyumana na nodbecky npobodob 5 xAc 300/39, 5 x Ac 400/22, 5 xAc 300/66,

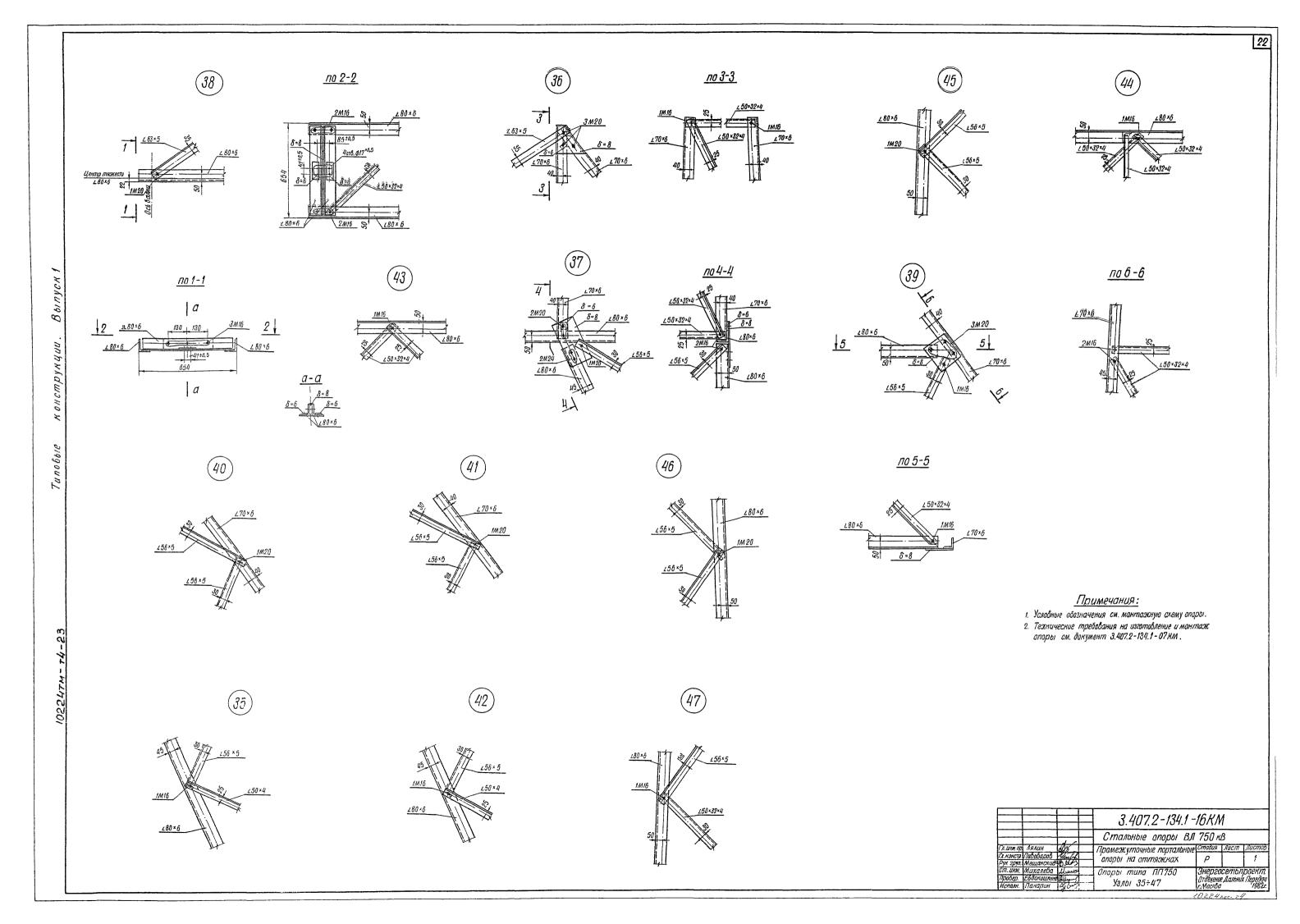

- 5×де 400/51 сдвоенно строса марки де 70/12.
 2. Схемы нагрузак и гвариты опоры см. технические условия и 10224 тм. т. 2.
 3. Опора рассчитана на эвм по программе, составленной в отделении Дальних
- передач. 4. В болтовых соейнениях обрезы элементов приняты d=2d, кроме оговаренных, в мыгоболтовых соединениях минимальное расстояние
- испольенных, о миссиолиновой спесинениях минимальное рассто, между болтами в = 2.5 d, кроме оговоренных.

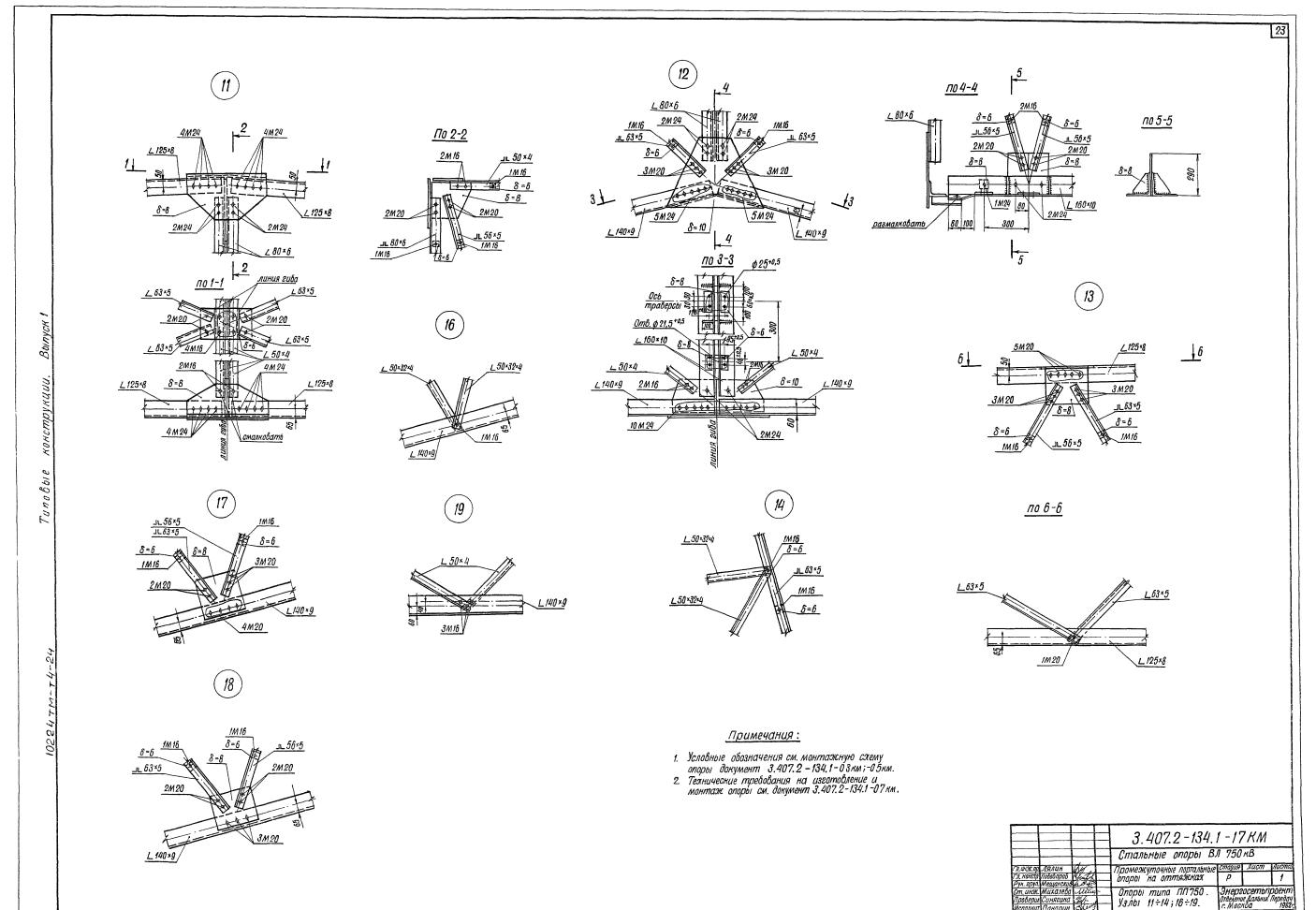

 5. Минимальное усилиедля прикрепления нерабочих элементов стойки и тросостойки равы 1.66 т.

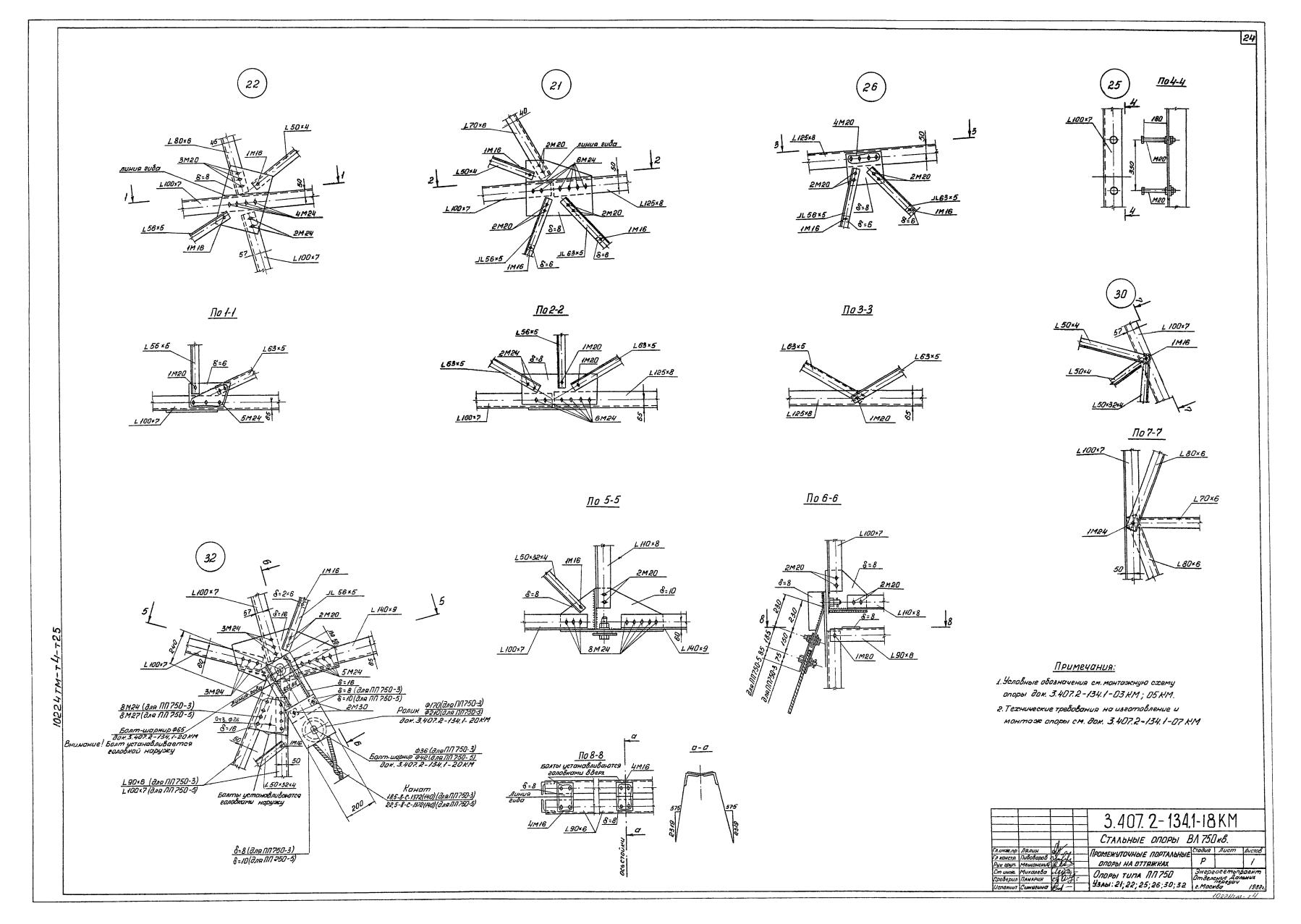

 6. 8 таблице указани режимы, являющиеся расчетными для элементов опоры

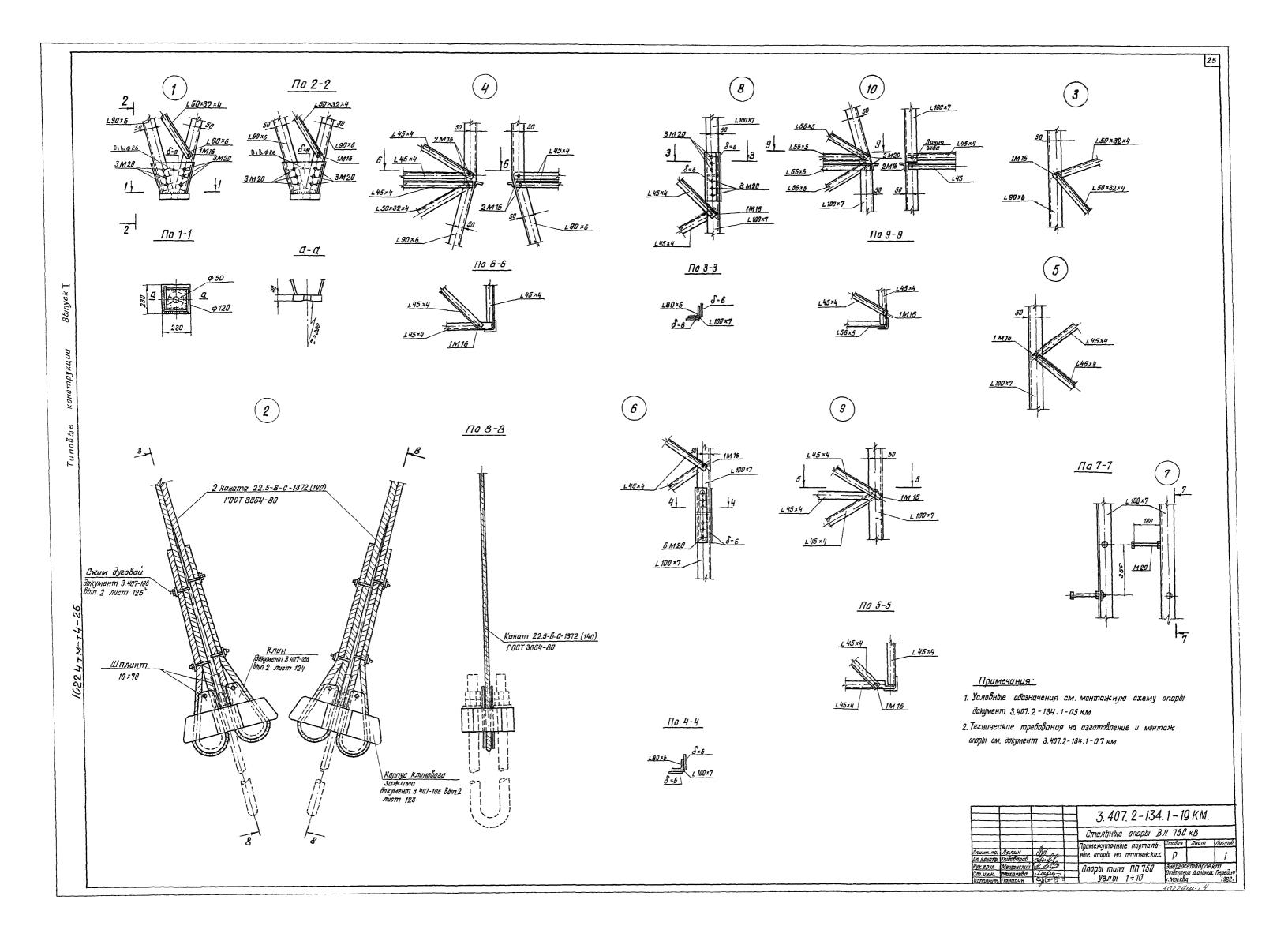

				3.4	407	2 -	-134	1-10	IKM	
		4		Cma	льны	6 0	пары	BAT	150 KB	
In KOHCTP	Ungogapag Ungogapag		£1.07	апары Праменс	на вш На вш	rqpn MRm	ках.	P	2	2
Cm. GHM	Панарлн Спћазпна Шакачбра	Muy		Onopa Pacue	т ипа : тный		50-5 m.	3HEP Grden	Lacetpu enne Da uebega	IPOEKT Inohux 1982

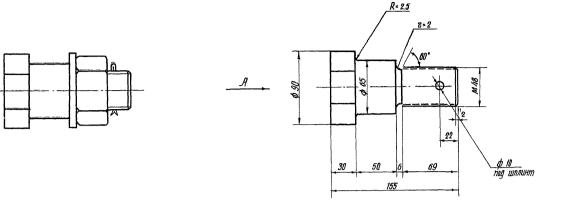


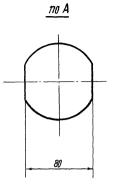


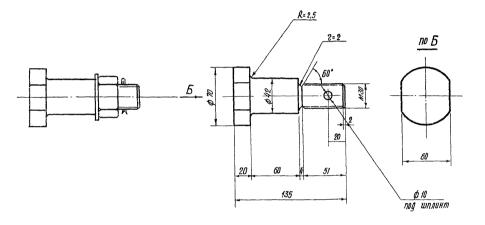


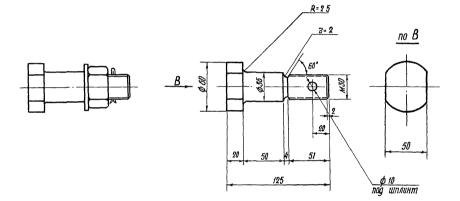


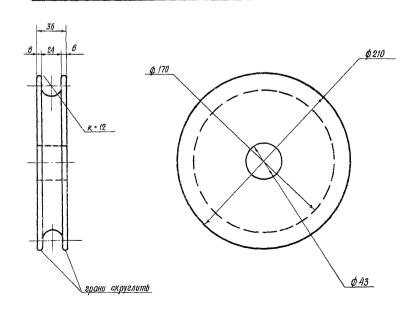



102247er-T4

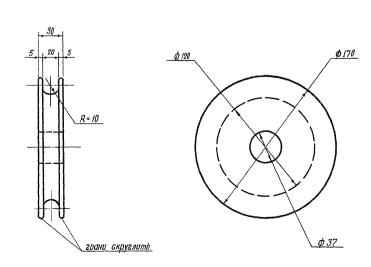



Болт — шарнир ф 65



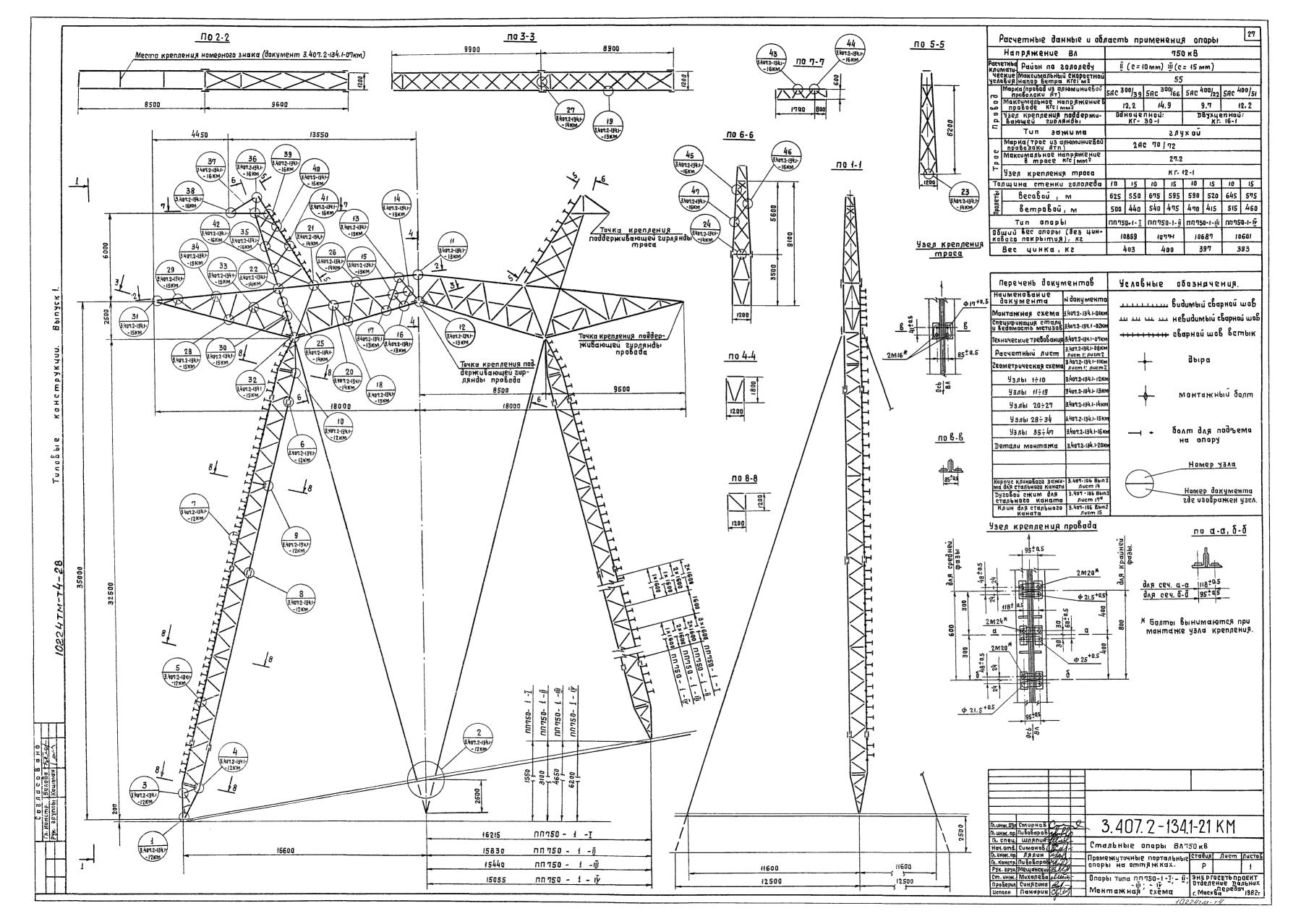

Болт — шарнир ф 42

Болт — шарнир ф 36



Ролик ф 210 для стального каната ф 22.5

Ролик ф 178 для стального каната ф 18.5

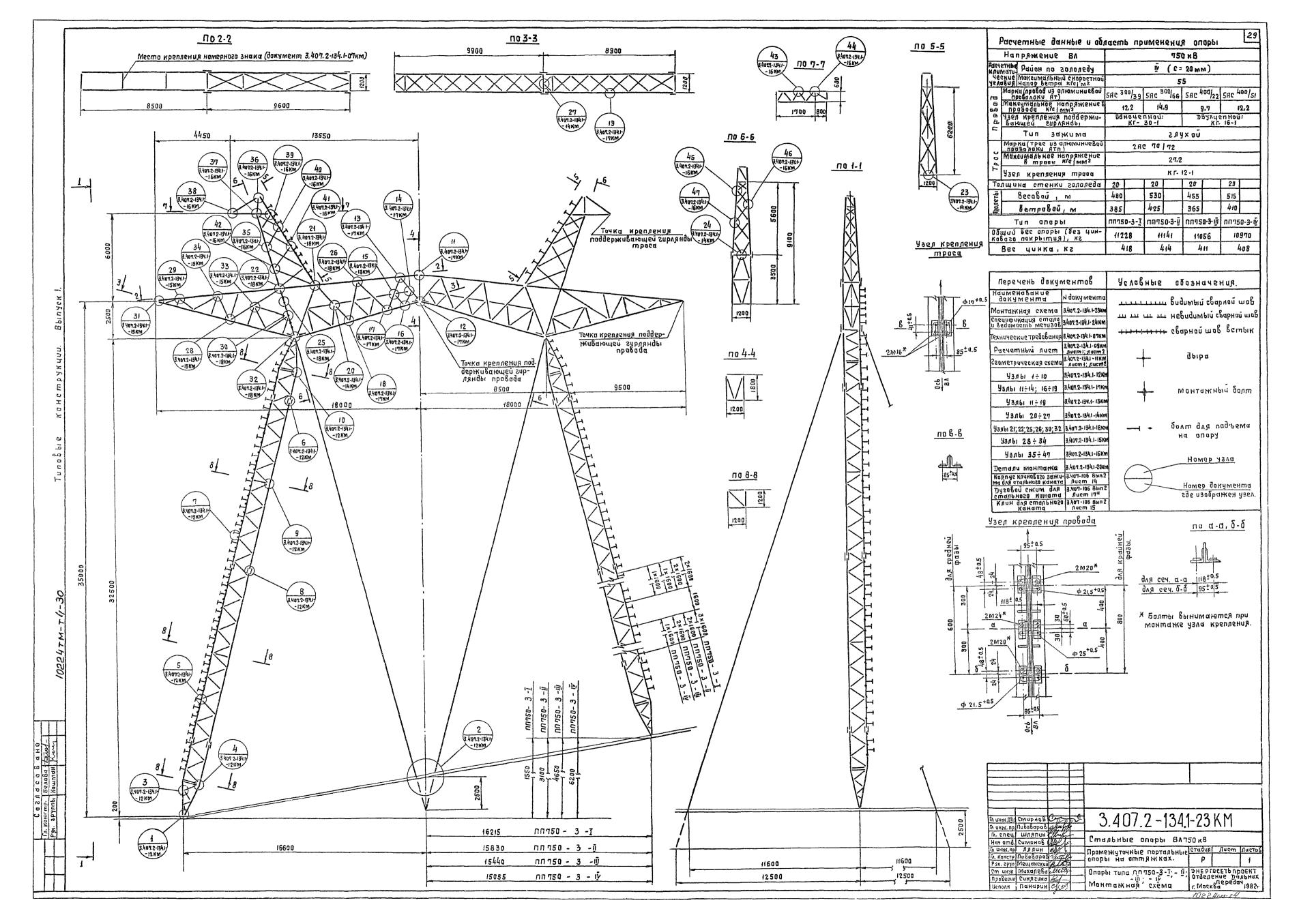


	Специфа	икация в	max	<i>u</i>	26
Марка	Сечение	Длина, мм	x-80	Вес, кг	Примечан.
	• Ø 90	155	1	7.7	09 F2G-12
Болт	Γαύκα Μ48	_	1	_	Beg
шарнир	<i>Ψαύδα 48</i>		1		учтен в
Ø 65	Шплинт		1		ведомости
					метизов
	• \$ 68	125	1	2.8	09 F 2 C-12
Болт-	Гаика МЗО		1		Вес
-шарнир	Шаива 30		1		учтен в
ф 36	Шплинт10*70	_	1	_	ведомости
					метизов
	* Ø 70	/35	1	4.1	09 120-12
Болт	Γαύκα Μ 30	_	1		Bec
шарнир	Шайба 30		1		учтен в
φ42	Шплинт 10×70		1		ведомости
					метизев
Роликф 170	- 170 × 30	170	1	6.8	09Г2С-6
Ролик ф 210	- 210 × 36	210	1	12.5	09 Г 2 С - 6

Примечания:

- 1. Условные обозначения см монтажную схему опоры.
- 2. Технические требования на изготовление и монтам опоры см. документ 3.407.2-134.1-07км.

	=	3. 407.2-134.1	- 20	KM	
		Стальные опоры в			
ГИП ЛЯЛИН ОГ Гл. конст Пивоваров Э Рук. гр. Мещанский П	The state of the s	Промежуточные портальные опоры на оттяжках	<i>()maðus</i> <i>()</i> -	Лист	листэв 1
Ст. инж. Михалева & Инженер Голодникова [ф	cent	Опоры типа пп 759 Цетали монтажа	Энер. г. Моск	20СЕТЬПР :6a ОДП	1982 r
v					

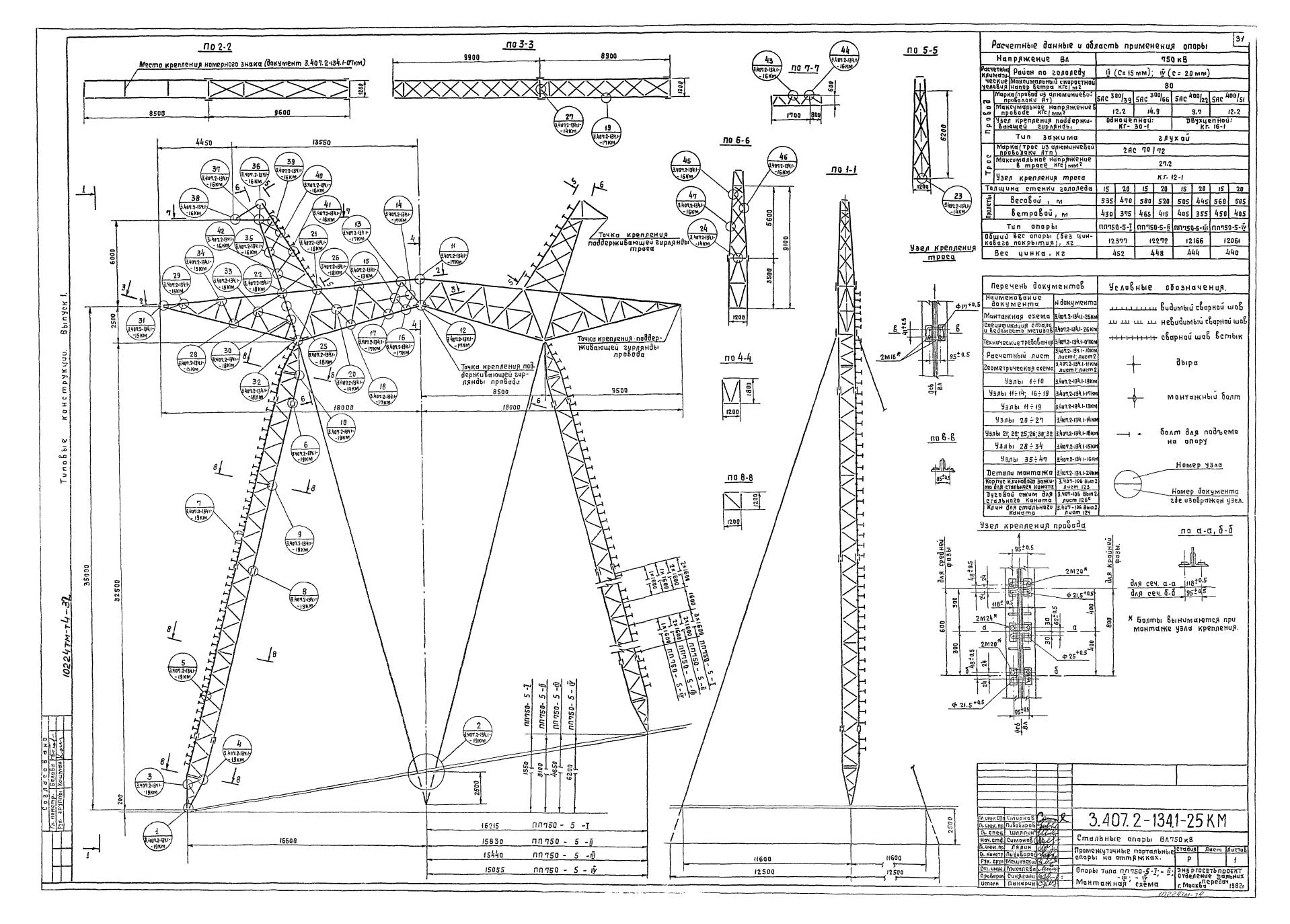


Марка	NN	Наименован.	Профиль			Вес	c n	пали	ı no			там	KOR	cmp	укци	u , m.			050	yuú t	вес, п	7
стали	<i>n </i> _n	проката и ГОСТ	' или сечение	C m o t 111750	-1-I	Стои ПП 750	-1- <u>/</u> [C m o t NN 75	1 KU 0-1-11	C m a l NN 750	ฆหน)-1-เข็	Tpabe	pca	Koncon Kpenn npat	и для ения 10да	Трасос	тойки	Оттяжки	750-1	750-1	7750-1 M	20-1
				/Тояс	Решет- ка	Пояс	Решет- Ка	Пояс	Решет- ка	Пояс	Решет- ка		Решет- Ка		Решет- КО	Пояс	Решет- ка	0,1,1,0,	III.	E I	1117 III.	nn 750-1
	1		∠160×10										0,045		0,117				0,162	0,162	0,162	0,16
	2	V	∠140 × 9																			
14172-6	3	Угловая равнобокая	∠125 × 8									0,539							0,539	0,539	0,539	0,5
141 2-0	4	сталь	∠110×8									0,413							0,413	0,413	0,413	0,4
	<u>δ</u>		∠100×7	l										0,899					0,899	0,899	0,899	0,8
	7	FOCT 8509-72	∠90×6	1,867		1,813	ļ	1,760		1,707					0.111				1,978	1,924	1,871	1,8
B Cm.3 (1C6	8		∠80×6 ∠70×6	0,383		0,383		0,383		0,383					0,159	0,254			0,796	0,796	0,796	0,
1452-6	9		∠63 × 5	-									0,038		0.073	0,223			0,334	0,334	0,334	0,3
BCm.3 (1C6	10		∠56×5	 				 	 				0,268		0,085		0,040		0,393	0,393	0,393	0.3
ט און נייווים	11		∠50×4	 	 		 	 	 		 -	 	0,472		0,074		0,202		0,748	0,748	0,748	0,
B Cm.3 /10 2	12		∠45×4	 	0,193		0,193	 	0,193		0 100	 	0,124		0,143		0,099		0,366		0,366	0,
		Угловая неравнобонов сталь гост 8510-72	∠50×32×4	 	1, 168		1,139		1,111	<u> </u>	0,193 1,082	<u> </u>	0 105	-	0.450	ļ	0.00		0,193	0,193	0,193	0,
	Ť			 	-,,,,,		.,	 	1 ', '''	 	1,002	 	0,194	-	0,170	 	0,136		1,668	1,639	1,611	1,5
09	14	Толстолисто-	$-\delta$ = 40	0.	033	0.	033	0.	.033	0	033	 		 					0,033	0 033	0,033	0,
	15	вая сталь	-δ=30							1 ,	300							0,027	0,027	0,027	0.027	
	16	<i>COCT 19903-74</i> *	-8=16	0,	084	0,	084	0,	084	0.	084	0	132	 		 		0.047	0,263		0,263	
1412-6	17	1 001 19900 14	$-\delta = 10$, °	.02	 -		 		0,047	0,200	0,203	0,203	0,
	18		$-\delta = \delta$	0,	036	0,	036	Q,	036	0.	036	0	352	1	096		,034	0,046	0,564	0,564	0,564	0,
ВСт.ЗПСв	19		$-\delta = \delta$	0,	086	0,	086	0,	086		086		007		017		.002	0,002	0,114		0,114	0,
												1		 "	<u> </u>	- °	,	1 0,002	5,	7	0,777	1 4.
09/2C-12	20	Сталь	• \$90	<u> </u>		L												0,031	0.031	0,031	0,031	0,0
	21	Круглая Гост 2590 -71*	• \$ 60	1		<u> </u>										1		0,011	0,011	0,011	0,011	0,
B Cm.3 1766	22	1 007 2090 -71	• ø 12	 														0,002	0,002		0,002	
	02	Фасонные	Корпус клино- дого зажима	. 		├						ļ										Γ
Ст. 35 л <u>і</u> ї гр	23 24	<i>отливки</i>	оого зажима Клин	'		├		┼		├								0,063	0,063	0,063	0,063	0,0
	124	FOCT 977-75*	Tolan	+-		 		┼		┼				 		ļ		0,022	0,022	0,022	0,022	0,
	того	: 14/2		†		<u> </u>		1		<u> </u>		<u> </u>		ــــــــــــــــــــــــــــــــــــــ		L		<u> </u>	6 000	E 052	E 000	Ļ
	того	: <i>09Г2С</i>		1						·									6,007	 	5,900	╁╌
И	того	: Cm.3		1						·									0,102	<u> </u>	0,102	†
И	того	: Cm. 351		T															3,425		3,368	1
Канат 18	1,5 -B	- C -1372(140) r	OCT 3064-80							T				T		T		A Feb	0,085	T	0,085	
Вес напл	авлег	нного метал	ла		0,001	0	,001	1	0,001	0	, 001	0	,003	1		1		0,514	0,514	0,006	0,514	-
E	Bec M	<i>етизов</i>		0	,306	0	,301	1	0, 298	+	, 294	+	, 192	1	0,131	0	,072	0,002		0,7/5		+
Общий ве	c one	ры (без цинк	ового покрыт	2) 4	1,157	4,	069		3,985	3	,899	 	,779	+	?, <i>075</i>	+	062	0,786	+	10,771	 	+
Вес ци	нкав	ого покрыт	пия											 		 '		-,,,,,,	+	0,400		_
6	бщая	п масса												1			~~~~	1	 	11,171		+-
	3 e c	Опоры	npu									1				1		4	1 11,202	1 // 1//	111,004	, , , v

	В	e ð	0 M	00	m	у мет	130	б			28
			Вес	, кг				Bec	; K2		
Наимено- вание	Диаметр	1-0 <u>2</u> -1	nn750-1 -¶	111750-1 -W	กก750-1 -นี	Примечание	nn 750-1 -I	TIT 750-1	7750-1 - M	M750-1 -18	Примечание
	M 30	7	7	7	7		5	5	5	5	
	M 27					*					1
Болт	M 24	183	183	183	183	4.6 COCT 7798-70	129	129	129		4.6 OCT 34-13-021-77
	M 20	166	166	166	166		125	125	125	125	l
	M 16	120	119	118	117		89	88,5		86,9	
	м 20*	133	130,5		125,8		133	130,5		125,8	
	M 48	3	3	3	3		3	3	3	3	
Гайка	M 30	4	4	4	4	4(6)	4	4	4	4	4.(5) FOCT 5915-70*
	M 27					טור־טופט וטט ו (טן גי					4.(3)1 061 0913-10
	M 24	46	46	46	40		46	46	46	46	'
1	M 20	73,4					73,4	72,8	72,3	71,8	
ļ	M 16	28,7	28,5		27,9		28,7	28,5			
	M 12	1	1	1	1		1	1	1	1	
İ	48	2	2	2	2	roct 11371 - 78*	2	2	2	2	FOCT 11371 - 78*
	30	2	2	2	2		2	<u>'</u>	2	2	700171071 70
Шайба	27	-	-		-		15	-	 	10	
	24 20	30	30	30	30		16	16	16	16	
	16	+	31	31	31		14	14	14	14	
	12	19,8		19,5			9,9	9,6	9,7	9,6	
<u> </u>	30	1	1	1	1		 	1	↓	1	
Шайба	27	1	+-	 '-	├′-		1	 	+-		
пружин-	24	14	14	14	14	roct 5402-70*	14	14	14	14	
ная	20	14,9	+	-		1001 0402-70	14,9		+		TOCT 5402~70*
	16	7,9	<u> </u>	7,8	_	1	7,9	-	_		4
Шплин	m 10×7	17	1,0	1	1	roct 397 − 66	1,9	1,0	1,0	1	ΓΟCT 397 - 66
	тизов, кг	889,	884	<u></u>	ــــــــــــــــــــــــــــــــــــــ		720,8	714,	712,5	 	
*	Болт	дл			ёма	на опору					

Примечание: Характеристику стали см. документ 3.407.2-134.1-07 км.

				3.407.2- 1 34.1	-22	КМ	
		8 1		Стальные опоры	BA 75	ОкВ	
Рун.гр.	Ливоваров Мещанский		_	Промежуточные портальные опоры на оттяжках.	Стадия Р	Aucm	Aucmob 1
Проберия		leving Cons	E	Опоры типа ПП750-1-1; ў. ў. ў. Специфинация стали и Ведомость метизоб.	Энерго Отделен г. Моско	сеть п ше дальн а	DOEKM ux Repega 1982 c.


Manua	NN	Наименование	Προφυπό			Bec	cm	али	по эл	емент	ам К	онстр)	КЦИИ	, т					06	щий l	вес, т	
Марка	١. ١	проката и ГОСТ	บภบ	Cmu NN 750	ούκ <i>μ</i> 1 3 1	Cmo NN 750	ÚKU 3 lī	Cm0 NN 750	ÚKU	Cmoú NN 750	KU 3 IV	Трав	enca	Консоли коеплени	для ня провода	Трососл	πούκα		87	مُ	-3-	ون
стали	n/n	u 1061	сечение	Пояс	Решетка	Пояс	Решетка		Решетка	Пояс	Решетка	Пояс	Решетка	-	Решетка	Пояс	Решетка	<i>Өттяжки</i>	nn 750-3 - 1	nn 750-3- - II	- <u>M</u>	nn 750-3-
	1		L 160 × 10										0.045		0.117				0.162	0 162	0.162	0.162
	2		L140 × 9									0.675							0.675	0.675	0.675	0.67
<i>4.50.6</i>	3	Угловая	L 125 x 8				ļ					0. 444							0.444	0. 444	0.444	0.44
4	4	равнобокая Сталь	L 110 = 8				ļ		ļ				0.026						0.026	0.026	0.026	0.0
	5	5000 0500 00*	L 100 × 7	<u> </u>			ļ							1.043					1.043	1. 043	1 043	1.0
	7	FOCT 8509-72*	190×6	1.867		1.813		1.760		1, 707									1.867	1.813	1.760	1.7
ВСт З ПС-6	8		L 80 × 6	0.383		0.383	 	0.383		0. 383			0.044		0. 159	0.254			0.840 0.296	0, 840 0, 296	0.840 0.296	0.8
1452-6	9		2 63 × 5	<u> </u>			-	<u> </u>		<u> </u>			0.442		0. 073 0.085	0. 223	0.040		0. 250	0.567	0. 567	0.2
ВСТЗПС6	10		L 56 * 5										0.319		0.074		0.040		0,595	0 595	0. 595	0.5
807011-0	11		2 50 3 4	 				 	ļ				0, 231	 	0. 014		0.099		0.473	0.473	0.473	0.4
B CT 3 MC 2	12]	L 45×4		0. 193		0. 193		0. 193		0 193								0. 193	0 193	0.193	0.
	13	Угловая неравной ком Сталь Гост 8510 - 72 *	L50×32×4		f. 168		1. 139		1. 111		1 082		0. 106		0.170		0 136		1.580	1.551	1.523	1.4
09 F2 G-6	14	Толстолистовая	δ = 40	0.	033	0.	033	0.	033	0.	033								0. 033	0. 033	0.033	0.0
	15	<i>вталь</i>	$-\delta = 30$							ļ								0.027	0 027	0.027	0.027	0.0
	16	FOCT 19903 - 74 *	$-\delta = 16$	0.	084	D.	084	0.	084	0.0	84	0.						0.047	0. 263	0.263	0.263	0.2
14	17		$-\delta = 10$ $-\delta = 8$	<u> </u>				-					184	 	005		021	0.046	0.184 0.470	0.184	0. 184	0.1
	19		-0=8 $-\delta=6$	 	036 086		036		036	0.0	36 086	 	258 007		096 017	 	034	0.046	0.470	0.470	0.470	0.1
BGT 3 NG 6	19		- 0-0	<i>U.</i>	000	U.	086	, u	. 000	0. 0	700			- ".		<u>. </u>	002	0.002	0.11	0.11-7	0.77	10.7
	20	Сталь	• \$ 90					-										0, 031	0.031	0. 031	0, 031	0.0
09 1 20-12	21	круглая	• \$ 60															0. 011	0.011	0.011	0.011	0.0
B C7 3 nc 6	22	ГОСТ 2590 - 71*	• φ <i>f</i> 2															0. 002	0.002	0.002	0.002	0.00
B 67 5 710 0	<u>L</u>																					
	23	Фасонные отливки	Корпус клинового Зажима	2						ļ				<u> </u>				0.063	0.063	0 063	0.063	0.0
Ст 35 л- <u>П</u> гр.	24	FOCT 977 - 75*	Клин	ļ										ļ				0.022	0.022	0.022	0. 022	0.0
	<u></u>		<u> </u>			L		<u> </u>		<u></u>		L]				<u> </u>				⊢
<u> </u>	mozo	1: 14 [2																	6.541	6.487	6.434	6.3
И	mozo	: 09 F 2 G																	0. 102	0. 102	0.102	0.
	lmozo	: Cr 3																	3. 253	3.224	3.196	3.
h	lmozo:	Ст 35 л															_		0.085	0.085	0. 085	0.1
Канат -	B-C-	1372 (140) Foct	3064-80															0.514	0.514	0.514	0.514	0.5
Вес напл	авлен	ного металла	7	0.	. 001	0	7. 001	0	2. 001	g.	001	0.	003					0.002	0.006	0.006	0.006	0.
E	Bec n	метизов		0.	306	0.	302	0	. 298	0.	294	0.	199	0.	/31	0	072	0.019	0.727	0.723	0.719	0.1
Общий ве	с опор	ы (без цинков	вого покрытия	4	1. 157	4	ý. 070	3	.985	3.	899	3.	115	2	. 108	1.0	762	0.786	11. 228	11. 141	11.056	10.
Вес цин	Koboza	покрытия																	0. 418	0. 414	0.411	0.
l	Пбщая	п масса																	11.646	11. 555	11.467	11. 3
				<u> </u>														1	 	 	 	+

		Вед	g o M	0 C T	n b	мет изо	в				30
			Вес,	KE				Вес,	кг		
Наименование	Диаметр	nn 750-3- -1	750-3 - <u>II</u>	ทก 75 <u>ด</u> -3 - <u>พ</u> ี	nn 75g-3 - <u>lÿ</u>	Примечание	nn 750-3- -1	กก 750 -3 - <u>ที</u>	NN 750-3- <u>M</u>	759-3 -1V	Примечание
	M 30	7	7	7	7		5	5	5	5	
	M 27										
Болт	M 24	187	187	187	187	4.6 FOCT 7798-70*	132	132	132	132	4.6 OCT 34-13-021-7
	M 20	166	166	166	166		125	125	125	125	
	M 16	120	119	118	117		89	88,5	87. 7	86.9	
	M 20 *	133	130.5	128.5	125.8		133	130,5	128.1	125.8	
	м 48	3	3	3	3		3	3	3	3	
	M 30	4	4	4	4		4	4	4	4	
Γαύκα	M 27	<u> </u>				4.(5)					4.(5)
	M 24	48	48	48	48		48	48	48	48	
	M 20	73.4	72.8	72.3	71.8		73.4	72,8	72.3	71.8	
	M 16	28.7	28.5	28.2	27. 9		28.7	28.5	28.2	27.9	
	M 12	1	1	1	1		1	1	1	1	
	48	2	2	2	2	F04T 40T4 T0 T	2	2	2	2	
	30	2	2	2	2	FOCT 11371 - 78 *	2	2	2	2	FOGT 11371 - 78 *
Wαύδα	27	<u> </u>	ļ					<u></u>			
	24	34	34	34	34		17	17	17	17	
	20	31	31	31	31		14	14	14	14	
	16	19.8	19.6	19.5	19.3		9.9	9.6	9.6	9.6	
	12	1	1	1	1		1	1	1	1	
Maú 5 -	30	1	1	1	1		1	1	1	1	
Шайба	27	<u> </u>	<u> </u>					ļ	<u> </u>		
пружинная	24	15	15	15	15	FOCT 5402-70*	15	15	15	15	FOCT 5402-70*
	20	14.9	14.8	14.7	14.7		14.9	14.8	14.7	14.7	
	16	7.9	7.8	7.8	7.7		7.9	7.8	7.8	7.7	
Шплинп	1 10×7	1	1	1	1	FOCT 397 - 66	1	1	1	1	FOCT 397-66
Вес меп	пизов, кг	900.7	896	892	887. 2		727 8	723 5	719.5	715.4	
*	Болт	для .	подъе	MQ F	ia o	пору					

Примечание:

Характеристику стали см. документ 3.407.2-13411 - 07км

		3.407.2-134.1-2	24 KM	
	-	Стальные опоры ВЛ 750) KB	
л. цнгк. пр. Л.Я.Лин Гл. констр. Пивовароб Оук груп Мещанский	and all	Промежуточные портальные опоры на оттяжках	Стадия Ляст Р	Пиетов 1
Стинж Имихалева	teles	Опоры типа по 750-3-1-1;-1);-1);-1 Спецификация стали и ведомост метизов .	Энергосетьпр Отделение Далы г. Москва	0 EKT HIX Nepega4 1982 ₀
		102247.00	-14	

Марка	NN	Наименование	Профиль			Вес	стал	nu n	0 3/1	емені	пам	KOHC	прукц	и и , т	•			Ì	06	щий в	šec, m	
стали	n n	проката и ГОСТ	или сечение		0ύKU 0-5-I	C m 1750 -	0ÚKU • 5 - 1Î	Cm NN 750	0ÚKU -5-IÎI	Cmo.		Праве	peq	Kohconu Kpenne noodog	gna Iwi	Tpacaca	πούκυ		-5-	45	5	-5
<i>ынала</i>	nju	0 7007	6046/100		Решетка		Решетка		Решетка		Решетка	NOAG	Решетка		и Решетка	Пояс	Решетка	Оттяжки	-027 NN -1	-057 M - <u>II</u>	750- M	-057 M
	1		L 160 ×10										0.045		0.117				0. 162	D. 162	0. 162	0.1
	2		∟ <i>140 × 9</i>	ļ								0.675							0. 675	0.675	D. 675	0.
	3	Угловая	L 125×8	ļ								0.444	<u> </u>						0.444	0.444	0.444	a.
<i>µ</i>	4	равнобокая сталь	L 110×8	 									0.026						0,026	0.026	0.026	0.
	5		L 100×7	2.368	ļ	2.299		2.230		2.161				1.043					3.411	3. 342	3.273	3
	6	FOCT 8509 - 72*	L 90×6	0.391		0. 391		0. 391		0, 391									0.391	0.391	0.391	0
	7		L 80×6	 	0.074		0.074	ļ	0,074		0.074		0.044		0.159	0.254			0.531	0.531	0. 531	0
3 Ст 3 пс б	8		L 70×6		ļ										0. 073	0,223	ļ		0. 296	0.296	0, 296	1
14 [2 - 6	9		L 63×5		ļ								0.442		0.085		0.040		0,567	0.567	0. 567	10
ВСТЗ ЛС б	10		L 56×5		0.086		0.086		0.086		D. 086		0.319	ļ	0.074		0, 202	 	0.681	0. 681	0.681	0
В СтЗ пс 2	11	1	∟ 50×4 ∟ 45×4	 	1,000		/ 001		4 (00		1,00		0.231		0. /43		0.099		0.473	0.473	0.473	1
	12	У2.708ая неравновоч- ная ставь ГОСТ 8510 - 72 *		 	1.263		1.231		1.199		1.167								1. 263	1.231	1.199	1
	13	10CT 8510 - 72 *	L50×32×4	 	0.142		0.142		0.142	<u> </u>	0.142		0.106		0.170		0.136		0.554	0.554	0.554	Ľ
09 F2G-6	14		- S = 40	 	. 033		033	 	033		000	<u> </u>							0, 033	0. 033	0.033	+.
09126-0	15	Тол столистовая	$-\delta = 30$	u	. 033			U.	000	0.	033	ļ						0.050	0.050		 	1
	15	сталь	- B= 16	1 0	084	0	084		084		084		. 132					0.050	0.253	0,050 0,263	0.050	-
14 [2-6	17	FOGT 19903-74*	- S=10	-	004			- u.		- "								0.041	0. 225	0.225	0.263 0.225	1
	18		$-\delta=8$		036		036		036	 	036		. 184 . 258	0.1	106		19 /	 	0.223	0.225	0.438	+-
0.0-2.006	19	1	$-\delta=\delta$. 486		086		<i>Q86</i>		086		. 238		90 917	0.0		0.014	0.1/2	0.438	0.438	1
В Ст3 пс б	/3			1	. 400		. 000	, ·	400						,,,	0 0	02		0.112	0.112	0, 112	+
09 F2G - 12	20	Сталь	• \$\phi 90															0.031	0.031	0.031	0. 031	1
	21	круглая	• \$70															0.016	0.016	0.016	0.016	1
8 CT 3 NC 6	22	ΓΟCT 2590-71 [*]	• \$ 12	ļ														0.002	0.002	0.002	0.002	I
	23	Фасонные	Карпус клинова)-				ļ										0.164	0.164	0.464	0.454	\vdash
Ст 35 л <u>П</u> ер	24	отливки	20 ЗОЖИМО КЛИН	╁				 										0. 154	0. 164 0, 051	0.164	0.164	+
	24	FOCT 977-75*	KNOH	 														0,031	V, U37	D. 051	0.051	+
	Umoz	o: 14 F2																	7. 133	7. 064	6.995	
	Imozo	: 09 F2 G																	0.130	0.130	0. 130	
	<u>Итога</u>);																	3.381	3.349	3.317	
	Umoza	о: <i>Ст 35 л</i>						_		,	·····			,	- 	r		T	0, 215	0.215	0.215	L
Канат 22	,5 - B -	C - 1372 (140) 10	CT 3064 - 80															0.778	0.778	0.778	0.778	1
Вес напло	<i>вленн</i>	ого металла		0.	001	0	001	0.	001	0.	001		7. 003					0.002	0.006	0 006	0.006	1
		тетизов .		0	314	0	.310	0	305	0.	301	-	D. 198	9.	131	0.4	772	0. 019	0.734	0 730	0 725	L
Общий вес	ono _j	оы (без цинк покрытия	0802 0)	4	4. 878	4.	773	4	1 667	4	562		3. 114	1 2	2. 108	1.0	062	1. 215	12.377	12.272	12.166	-
Вес цин	кового	покрытия																ļ	0.453	0.448	0, 444	-
	រាស្តរប	A MAGGA		1				1		1		1		1		1			12.830	12. 720	12.610	

			В	egoi	и о с	mb Memusol	3				<u> </u>
Наимено-			Bec,	кг				Вес	, кг		
вание	Диаметр	7-05L 1-	710750-5 -ÎÎ	NN 750-5 -Ū	กก 750-5 - <u>เ</u> ชิ	Примечание	nn 750-5 -I	ภภ 75g-5 - <u>นี้</u>	nn 750-5 - <u>II</u> I	กก 750-5 - <u>ใช้</u>	Примечание
	M 30	7	7	7	7		5	5	5	5	
	M27	21	21	21	21		18	18	18	18	
Бол т	M 24	170	170	170	170	4.6 FOCT 7798 - 70*	119	119	119	119	4.6 OCT 34-13-021-77
	M 20	170	170	170	170		127	127	127	127	
	M 16	1/7	116	115	114		87.2	86.4	85.6	84.8	
	M 20 *	133	130.5	128.1	125.8		133	130.5	128.1	125.8	
	M 48	3	3	3	3		3	3	3	3	
Γαύκα	M 30	4	4	4	4		4	4	4	4	
,	M 27	7	7	7	7	4.(5) FOGT 5915 - 70 *	7	7	7	7	4.(5)
	M 24	43	43	43	43		43	43	43	43	
	M 20	73.4	72.8	72.3	71.8		73.4	72.8	72.3	71.8	
	M 16	28.7	285	28.2	27.9		28.7	285	28.2	27.9	
	M 12	1	1	1	1		1	1	1	1	
	48	2	2	2	2	_	2	2	2	2	
	30	2	2	2	2	FOGT 11371 - 78 *	2	2	2	2	FOCT 1/371-78 *
Шаиба	27	2	2	2	2		1	1	1	1	
Manna	24	32	32	32	32		16	16	16	16	}
	20	28	28	28	28		14	14	14	14	
	16	19.8	19.6	19.5	19.3		9.9	9.6	9.7	9.6	
	12	1	1	1	1		1	1	1	1	
	30	1	1	1	1		1	1	1	1	
Шайба	27	1	1	1	1		1	1	1	1	
пружинная	24	14	14	14	K	FOCT 5402-70*	14	14	14	14	FOCT 5402 - 70*
	20	14.9	14.8	14.7	14.7		14.9	148	14.7	14.7	
	16	7.9	7.8	7.8	7.7		7.9	7.8	7.8	7.7	
Шплинт	10×7	1	1	1	1	FOCT 397-66	1	1	1	1	ΓΟCΤ 397-66
Вес мет	изов, кг	904.7	898 8	894.5	891.2		734	7304	725 4	721.3	
*	Болт д.	ng n	одъем	а н	a ono,	ру					

Примечание . Характеристику стали см. документ 3.407.2—134.1-07км

	3.407.2 134.1 - 26	КМ		
	- Стальные опоры В.	/1 750 H	<i>B</i> .	
Пинукла Лялин Ду Гаконетр Пибаваров жиз	Промежуточные портальные	Стадия	Лнст	Листов
Рук. гр. Мешанский В сегя	опоры на отпляжких	Энерго Энерго		/
Стинж Михалева Цегу Поеверил Синягинс Заба Исполнит Панарин Свиг	- ปีกอคงเ типа ЛЛ 150-5-1;- <u>11</u> ;- <u>11</u> -1 <u>9</u> : Спецификация стали и ведо- мосто метизов	От деле; г Мосі	чие Дало.	них передин 1982 г