ТИПОВЫЕ СТРОИТЕЛЬНЫЕ КОНСІРУКЦИИ, ИЗДЕПИЯ И УЗЛЫ

СЕРИЯ 3.407.1-143

ЖЕЛЕЗОБЕТОННЫЕ ОПОРЫ ВЛ 10 «В

выпуск б

Двухцепные железооетонные опоры рабочие чертежи

23413-07

Разработаны институтом." Сельэнергопроект

Главный инженер институте Главный инженер проекта

ВМ. Ударов

Утверждены

Протоколом Минэнерго СССР от *Dl.D6.88 №16-3/9-33* Введены в действие с *Dl.D7.89*

© СФ ЦИГП Госстрой СССР, 1988.

55

23

24,25

Обозначение	Наименование	Cmp.	Обозначение	Наименование
3 407 1-143. 6 00	Срдержание.	2	3.407.1-143.6.9	Концевая опора 2110-1.
3,407 1-143. 6. N3	Пояснительная записка	3		Схема расположения.
3.407.1-143.6.1	Номенклатура опор	ا و	3.407.1-143.6 10	Подресья нашежная
3.407.1-143.6.2	Спецификация элементов			изолирующая.
.,,	onop.	10	a. 407.1-143.6.11	Подреска паддержпрающая
3.407.1-143.6.3	Промежуточная опора 2010-1.	1 1		изолирующая I.
	Сжема расположения	12	3.407.1-143.6.12	Подреска поддержираюта:
3.407.1-143.6.4	Ответвительная промежуточная	1		изолирующая I.
	onopa 20010-1.	1 1	3,407.1-143.6. PM	Ведотость расхода
	Схема расположения,	13		материалов,
3.407.1-143.6.5	Опрешрпшельная иромежлионная	1 1		
	onopa 20010-2.	1 1		
	Стема расположения	14		
3.407.1-143.6.6	Опрешришетрная иропежличная	1		
	опора 20110-3	1 1		
	Сжема расположения.	15		
3.407.4-443.6.7	Угловая промежуточная	1 1		
	onopa 29N10-1	16		
	Сжема расположения			
3.407.1~143.6.8	1-01RS восла выпрамина С			
	винежоположения	17		
L				3.407.4-143.6.00
			אמע מחס באחשפעה אמע מחס באחשפעה	Emades 11)

בוליםתו שבמ בשם ה שפתים ווסטת ור ביון twi Agabage 2 1 Harangland 2 1 H

Condita Liver Uluanit Содержание. CENSAMEROUSDERT ! 1.2. Выпуск в содержит рабочие чертежи протежуточных, ответвительных протежуточных, угловых промежуточных, анкерных и концевых опор, разработанных на базе стойки СВ 164-12 по ГОСТ 23613-79.

2. Указания по применению.

г. Опоры преднавначены для применения $\mathbf{b} \ \mathbf{I} \div \overline{\mathbb{V}}$ районах по ветру и $\mathbf{I} \div \overline{\mathbb{V}}$ районах по гололёду \mathbf{b} ненаселённой и населенной местности.

22 Опоры разработаны для применения в районаж с расчетной теппературой наиболее жолодной пятидневки до пинус 40°С.

опоры погут притеняться при более низких тетпературах при условии уточнения гаваритных пролетов, а также изготовления железобетонных стоек и стальных конструкций по специальным заказат, в которых указана эта тетпература.

2.5. Опоры могут применяться в агрессивных грунтовых средах и в неагрессивных зазовых средах. Вид защитного покрытия желеговетонных стоек должен назначаться в соответствии со СН и п 2.03.11-85, а стальных конструкций - по ОСТ 34-12-645-83.

шесть проводов одного сечения с попощью изоли-

Pyroutus nodbecos.

2.5. Расположение на опаре проводов движ целей принять вертикальное, каждая цель со своей стороны стойки, что позволяет вести ретоитиные работы на отключенной цепи при включенной другой. При пересечении двужцепной личии вл 10кв с инженерными сооружениями рекопендуется применять протежущочные повышенные двужцепные железобетонные опоры вл 35кв по типовоту проекту 3.407-107, выпуск 2.

2.6. Расстояние между проводати одной цепи приняти: в ненаселенной местности — $2,2\,\mathrm{m}$

В населенной тестности — 2,0 п. Расстояние теород ближайшими проводами разных цепей вл 10 кв в ненаселенной и населенной тестности — 2.5 п, что обеспечивает надёжную работу линии по схлёстыванию, подскокам провода при сбросе вололёда и пляске проводов.

2.1. Шифр впоры состант из трёж частей, соответственно указывающих:

в первой части-каличества цепей и название опоры; во второй части-напряжение вл;

В третьей части – модификацию опоры. Например: 20110-2 — двужцепная ответвительная протежуточная опора; напряжение 10кв; модификация 2.

		3.407.1-143.6.	n3.
Ни онд Кивиеи Нимпр Совние Гип Ударов Сп. инж. Шаваро	Total	Пояснительная записка.	CENESHEPPORPOEKT

ada Nodnuce u dama

3 Провода, изоляторы, арматура.

31 Двужцепные железодетонные опоры разрадотаны для подвески сталемлютиниевых проводов следующих марок и сечений ЯС 50(8,0; ЯС 70/11 и ЯС 95(16 по ГОСТ 839-80.

32 Рекомендуемые марки проводов в зависи-

Ταδημιμα 1.

SOUDUEGA	селенпе иродода Марка п
I÷ <u>š</u>	AC 70 44
亚一亚	ACTOM; AC 95/6

33. Величины принятых в данном выпуске максимальных напряжений и тяжений в проводах при нормативной наврузке приведены в табл. 2.

Tabsuug 2.

·	,	Mกิส	Максимальное мяжение в
иьорода селенпё	Hangavener n Hangavener mswuebawhbe Han Hasmer Han Hasmer	истисьаий в водо рол истиська истент истиська и	npabode, Tmax
AC 50 8.0	89	40	5.0
AC 70(11 AC 95 K6	63	40	5.0
AC 95 16	45	40	5.0

LA Soda Basover y dama Bran who He

34 Монтажные стрелы провеса проводов приняты по "Руководящим материалам по проектированию электроснабжения сельского жозяйства", явгист —

сентябрь 1985 г. Сельэнаргопроект.

35 Крепление проводов на протежуточных опораж предустотрена при потощи поддерживающих изоли-рующих подвесок.

Независить от степени загрязненности сттосферы воздуха как поддерживающая, так и натяжная изолирующая подвеска должны содержать два подвесных изолятьра типа ПФ 70В. Допускается применение подвесных изолятьров типа ПС 70 Д.

3.6. Соединение проводов в петлях опор анкерного пипа предустатривается заокитами типа ПЯ по ГОСТ 4261-82; в пролёте — заокимати сое - динительными овальными типа СОЯС по ТУЗ4-27-10876-84.

3.7 В проекте приняты унифицированные пролёты, адинаковые для всех тарок проводов в одном климатическом районе, что позволяет увеличивать сечение провода при росте электрических нагрузак без изменения расстановка опор. Эти про-лёты приняты для населенной и ненаселенной местности одинаковыми, для чего в населенной местности увеличена высота подвески нижних проводов. Величины пролетов приведены в табл. 3.

Ταόπυμα 3.

ветравой райын	I+ñ	40-	50 dal	me	F:	658	aH m	s
מחשטום כהפוצע	5_	10	15	20	5	10	15	20
ренью протел в менасе пенной и населенной пенной и населенной	90	80	60	50	65	65	60	50

- 4. Основные положения по расчеты опор
- 44 Спределение делотрующих нагрузов и расчёт опор выполнены по методу предельных состояний для сочетаний клитатических условий, указанных в п. г.4, согласно действующим "Правилам устройства электроустановок (ПЧЭ) и "Строительным нормам и пра-
- 4 г. Максимальные порпативные скоростные напоры ветра и толишны гололёдно-изторозевых отложений на проводах определены, исходя из повторяето-сти 1 раз в 10 лет.
- 43. Максимальный нормативный скоростной напор ветра принят следующим по ветровым районам: $I \cup \overline{I} 40$ дан $[n^2]$, $\overline{I} 50$ дан $[n^2]$, $\overline{I} 65$ дан $[n^2]$.
- 4.4 Нормативная толщина стенки гололева принята следующей по районам гололевности: I-5mm; I-10mm; I-15mm; I-10mm.
- 4.5 вкоростной напор ветра в гололедном режиме принят равным для $I-\overline{I}$ ветровых районов -20 дан \mathbb{N}^2
- 46 Коэффициенты перегрузки приняты в соответствии с приложениет к главе 2.5 ПУЭ "Указания по проектированию опор, фундатентов и оснований вл.".
- 47 Ветровые пролёты для опор вл рассчитаны в соответствии со стандартом института Сельэнерго-проект" СТП-I-82.
- 18 Расстояние тежду проводами d на опоре по условиям сълижения проводов в пролете принята по формуле $d=0.75\,f+\lambda$, еде:
 - фином пролёте, м пробольшая стрела провеса провода в заба-
 -), длина изолирующей подвески пропедутачной опоры, м.

4.9. Максимальної Завление стойки с железобетонной плитой П-Зи на групт:

> анкерной опоры - 0.27 MNa; концевой опоры - 0.41 MNa.

4.40 Максимальный помент, действующей на протеску-точную опору на уровне земли, приведён в табл. 4

Tabsuua 4

Ветровой райан	I÷I	, 40)đa l	1/n2	Ē,	50a	aH r	, 2	V,	65	2¢H	m²
Толщина стенки гололеда, мм	5	10	15	50	5	10	15	50	5	10	15	20
MP (ha+2.5m), RHM	87.0	1000	1050	H5,0		_			_	_		
M\$ (ha: 3.0m), mHm	840											

5. Закрепление опор & группе.

- 5.4. Закрепление двужцепных опор предустатривается в сверленых котпованах диаметрот 650 mm с засып-кой пазух котпованов местным грунтам.
- 5.2. Засылку котлована производить местным грунтам слояти не более 0.2 м с уплотнением его примбовкой до получения плотности грунта засыпки равной $4.7 \, \text{T} \, \text{m}^3$.

Не допускается применение для обратной засылки распительного и переублажненного аттосферными осадками глинистого грунта.

При работе в зитнее время допускается абратная засыпка пазух котлована свежевынутым врунтом с доутратвовкой и досыпкой в летнее время.

5.3. Расчетные сопротивления грунтов на сокатие.

3.407.4-143.6. N3

4

с учетом желегобетонной плиты п-30 и несущая способность свободностоящей опоры без ригеля приведе-

- 54 Расчет закреплений всеж видов опор выпалнен в соответствии с указаниями СН и П г.02 01-83 ... Основания зданий и сооружений. Норты проектирования
- 5.5. Закрепление в грунте промежутачных опор предуспатрено двуж типов: безригельное и а установкой ризеля яря с попащью детали крепления кря на расстоянии 0.5 м от повержности зетли. Конструкции яря и кря приняты по типовой серии 3.407-115 выпуск 5. В случае, когда такситальный мотент (п.4.10) больше предельной несущей способности грунта, следует устанавливать ризель яря.
- 5 б. Если максимальное давление стойки на грунт (п.4.9) в опоражантерного типа больше расчетного сопротивления грунта, необходито предустотреть или его усиление или снижение тяжения проводов.
- 5.7 Закрепление каждой оттяжки у сложных опор производится к анкеру $\mathfrak{K}\mathfrak{U}^{-1}$, установленноту в сверленый котлован. Котлован засыпается на высоту не пенее 1 т песчано-гравийной спесью, оставийной объёт пестным грунтот Это позволяет использовать анкер $\mathfrak{K}\mathfrak{U}^{-1}$ во всех грунтох, кропе супесей при $0.5 < \mathfrak{I}_L \le 0.75$ с $e = 0.85 \div 0.85$; суглинков при $0.5 < \mathfrak{I}_L \le 0.75$ с $e = 0.85 \div 1.05$ и глин при $0.5 < \mathfrak{I}_L \le 0.75$ с e = 1.05.

Максимальное расчётное тяжение в оттяжке принять 4670 да Н.

58 При установке атпяжек концевой апары следует их натягивать до атглонения верха

cmouru des apobodob om bepmuranu na 15-20 cm.

При установке отпяжек анкерной опоры следует первой отпяжкой отклонить верж стойки на 5-10 см, а второй-вернуть его в вертикальное положение.

6. Заземление опор.

- 6.4 Для заветления в стойках СВ 164-12 предустотрены заветляющие проводники, выполненные из абух стальных стержней $\phi 12$, приваренных к закладным деталям стойки.
- 6.2 При необходимости, к нижнепу заветляющему проводнику должны быть приварены искусственные заветлители в соответствии о типовым преектом 3.407-83.
- 6.3 На концевых и анкерных опорах к зазепляющему устрайству должны быть подсоединены отпяжки опор.
- 6.4. Заветление стальных элепентов опор осуществляется путём их присоедитения заветляющим проводником ЭП1 к специальному болту Б1, пропущенному в отверстие верхнего конца стойки СВ 164-12, образованного закладными деталями, приваренными к продольным арматурным стержням.
- 6.5 Контактные болтовые соединения зазетляющих элементов должны быть предварительно зачищены и покрыты споет чиство технического вазелина.

	ипенование	_									<u> </u>	30	P 4	יייי	ر ب و	нп	_	n	ppr	len	200	THE STATE OF		sþ	44	ma	!	e													
-	pyrmab pyrmab	L		О.	45			_	,	0,5			\dashv			. €5	; —					D. 1	15					3.8	5					0.95			_				
		Cn	7	E	R	M1	Ma	Cn	₽n	Ε	R 1	7.	Me	Cn	7,	Ε	£	Μŧ	nz	C"	З'n	E	R	M,	Mz	C"	₹,	E	R	7,	Mz C	Ty	, [-	_	+		1.0		
	spagesnowere n	2	43	50	1.32	165	250	1	40	40	1.05 1	55	197	-	38	3 C	0.89	109	175	-	-	-	-	-	-	-	-	_	_	1	7	+	+	R	4	14 M	2 C	, y,	, E	R	M.
,	cpedneú cpedneú	_				1	T		1	١.	0.94	_1		4	35	3D	0.75	88	145	-	-	_	-	1	-	-	_	_		1	+	+	+	4	4	4	1-	上	Ŀ	-	-
	mentue	16	20	1.0	0.89	24	227	4	36	38	074 1	16	186	2	32	28	0.54	19	156	-	28	18	0.40	52	83				-	4	4	1	1:	1		- -	- -	- -	. _	T	T
		+	t	1	1	T	_	Γ-	Π.	· · ·	0.60	\neg										_		_	1		-	-	-	4	-1:	1:	1.	_].	- .	-].	-T-	. †	+	+	+
-	neinebarnere	+-	+-	+-	1-	1	† –	├ ─	1	1		-1			_	-	_	_			_	 	-	┝	-	_		_			- -	- -	- -	- T.	-T.	_		+	+	+	干
	0 < JL = 0.25		+	_	_		_	_	T '	1 -	0.51									_		1 —		_		=	-	-	-	-	-].	-	_	_	_	+	+	+	+	1	上
•	c 25 < JL = 0 75	19	28	32	0.48	145	229	15	56	24	0,40	17	189	13	24	16	3,34	89	144	11	21	10	0,28	73	114	و	18	7	0.23	52	24	+	+	+	+	+	4	+	上	上	1-
	Q < JL +025	147	56	34	075	231	371	37	25	eγ	0.58	78	288	31	24	52	254	149	239	25	23	17	044	109	191	55	22	u	C 30	100	156 1	+	+	+	4	4:	4	上	1-		-
: 1	0,25 4JL ± 0,5	39	24	32	0.55	!93	311	136	23	25	249	65	265	28	22	19	042	:50	213	23	21	14	0,37	102	156	1.2	19	44		46	125 1	9 2	9 1	10.	34 8	5 12	5 -		- -	-	1-
	0.5 471 = 0.75	1-	1_	_		-	_	_	_	-			_	25	19	17	11 24	109	475	2ñ	i,R	12	25	92	175	,,		-	U.30	89	125 1	5 1	7	8 5	.26	i0 5	4 -	- -	T	1-	1_
<u>.</u>		+	+-	┝	+	+		1.	+	-		-			-	-7		-	13	-	-			-	133	1.0	16	8	0.21	60	94 1	4 1	4	6 0	.18	2 -	11 1:	, ,	, 1	+	1
5	0 < JL ≤ 0,25	+	1	F	╀	F	F	81	21	58	0.84	98	322	68	20	24	1168	166	210	54	19	21	0.56	146	239	47	18	18	0.49	127	94 1 204 1 166 3	1 1	6 1	5 0	12.	-	+	+	+	10.1	736
5	0.25 < JL ± 05	1-	上	<u> -</u>	1-	上	F	上	上	上		_	_	57	18	21	0,54	135	239	50	17	18	0,47	130	203	43	16	15	0.47	06	204 A 166 3	7 1	4	2 0		10 12	10 31	5 14	112	0.3	5 83
-	05 4JL 4075	-	-	-	-	-	-	-	-	-	-	-	-	45	15	18	1934	83	135	41	14	15	934	105	166	36	12	12	0.26	23	135 3		+	7	.54 6	2 13	5 3	2 11	1 9	0.2	62
	В табл.	5	np) -	, SIT	161	c.	ne:	344	بس	ue	•	აბი	эзн	04	eH	وں	:									•	•	• 1	- 1	1-	٠١,	٦,	ما د	23) 8	2 11	2	3 7	7	01	3 52
	Cn - Hopi	701	uB	HO	e	3 H	a 46	- 40	Je	٠	ige:	16)	10i	90	C	,e	n ne	HL	Ŗ	sp	ун	mo	٤,	,	ĸΝο	4															

R — расчетное сопротивление грунта основания на сокатие, мпа M_1, M_2 — предельная несущая спосъбность закрепления опоры, соот-

ветственно при глубине заделки в грунт № 2.5 и 3.0 п, кни

3.407.1-143,6 n3

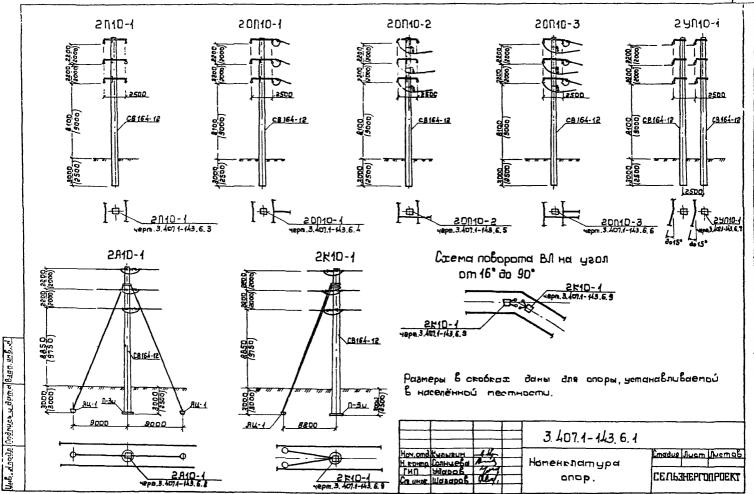
ivem

7. Показатели надежности ВЛ10кв

71 Расчет покавателей надежности производится по "Методическим указаниям по расчёту надежности теханической части вл6-10кв при воздействии гололедно-ветровых нагрузок, "Сельэнергопроект" арх. л: 015261.

7.2. Вероятность аварии вл от гололедно-ветровых нагрузок на опорах данного выпуска в шесть раз теньше, чет на опорах по типовой серии 3.407-404, а число одиначных отказов уменьшается более, чет в 20 раз.

7.3 Расчётные показатели надёжности приведены в табл. Б.


Таблица 6.

Β ε προδού <i>Ρα</i> ύρη	I-ī	40	дан	m 2	ā,	508	øH r	2	ĬŸ,	65	8aH	n²
олщина стенки гололёда, пп	5	10	15*	20*	5	10	15*	20 *	5	10	15*	20
Расчетный период работы ВЛ без аварии, t, лет	2 15	85	60 105	<u>45</u> 80	175	& 5	<u>60</u> 105	45	370	115	55 95	45 80
вероятность аварий на Вл. W, 1/год	0,0046	00114	0 DIE1	Ø 015 0 053	Q 00 57	વાન	0 0161 00037	60!5 055	00027	Cooes	0.018 00103	0.023 0.012
Удельное число одиночны отказов двуж цепей ВЛ общей длиной 100км шт год		0.	.5			٥.	6			0,6		

* В числителе приведены значения ВЛ с проводом яс 70/14, в значенителе — яс 95/16.

8. Texhund besondehoemu

8.1. При тантарке опор и проводов должны соблюдоться абщие правила техники безопасности в строительстве согласно СН и Π $\overline{\mathbb{I}}$ – 4-80 и "Правил техники безопасности при производстве электромонтажных работ на объектах Минэнерго СССР", утвержденных Минэнерго СССР ОА.10.83.

Japea,	Обозначение	Наименование			4ecm						acca ≥d.	Spone
nas.		Trade (enough) 20	2010-4	50U40-4	20110-5	гомо з	1-01uks	2×10-4	2110-4		E.C.	400
		1										
	Железобетанн	че элементы.										
B 164-12	3.407.1-143.7.5	Empúra CB164-12	1		1	_1_	2	4	1	3.	550	
N-3u	3.407.1-143.7.6	Nouma N-3u						1	1		110	L
AU-4	3.407 (-143, 7.7	Янкер ЯЦ-1						2	_ 2		300	
	Cmanenne con	етрукции.			-					-		
TM 19	2.407.1-143.8.12	Траверса ТМ19	3	3	3	3	_	-	_		38,0	
TM 18	3.407.1- 143.8.18	TpaBepca TM18	-		3	3	6	I —	-		15,8	
7m20	3.407.1~ 143.8.19	Траверса ТМ20		-		=	=	3	3		45,0	_
ד 4	3.407.4-43.8.46	Ommaskea DTA	=	=	=	=	=	5	2		64,0	
£6 x	3.407.1-143.8.51	Xonym x33	1	j	2	2	2	2	5		1.9	
x34	3.407.1-143.8.51	Conym 234	1	1	2	2	2	2	2		2.0	<u> </u>
æ 35	3.407.4-143.8.51	Œmym ∞35	1	1	2	2	2	2	2		2,1	
OT 5	3.407.4-143.8.47	Cmasked OT5	=	=	=	=	=	1	2		20,1	-
61	3.407.1-143.8.39	50NT 51	1	1	1	1	2	2	2		0.7	
301	3.407.1-143.8.54	Проводник ЗП1	5,0 m	5,0 ~	5,5 m	5.5 m	100 m	3,85 m	3,85 m	-	0,9	$oxed{\Box}$
<u> </u>		Всево на опору, кг	125,2	125,2	182,1	182,1	123, 2	300,0	320,1	+		+

Степы расположения опор сп. докум. 3... 3

ווא פאיז עשקא שששם חשפין איזיין וויין איזיין וויין אין איזיין איזיין איזיין איזיין איזיין איזיין איזיין איזיין

The condition of the co

Mapra,	05	J		לסזי	ч e en	80 ,	ים סו	nopy	Li)	m.	Macca	lipune- va+ue
no3.	Обозначение	Наименование	2010-1	20กเจ-	50010-5	30WC-3	27010-1	2910-1	2510-4	<u> </u>	EC.	rànue
	Изоляторы.	Линейная арпатура.										
1	LOCT 4561-85	Jakum NA	_	3	3	6	_	6	6			
5	LOCT 4561-85	3aokum nc-3	Ξ	=	=	=	=	1	2		0.85	} -
3	3.407.1-143.6.10	Подреска напрогная	=	3	-	3	-	12	12			
4	3.407.1-143.6.41	mak nsounbliomas I lipagecka upggeb ikngalo- nsounbalomas	6	6	9	9	_	-				
5	3.407.1-143.6.12	nas napundamias I.	=	=	=	_	6	=				
6	FOCT 14122-82	Узел крепления к/п-7-26	-	3	-	3	-	=	-			
	1											<u> </u>

Марка и сечение

AC 3516.2

	AC 50 8.0 AC 70 41	9-Rn 2-Rn		07-RSR 07-RSR	- 78 - 78
	AC 95/16	กя-3		A2A-95	<u> </u>
ать	mom ske mpobod, чт	10 U HØ M	asnew barn	ВЛ. При	соединении
🗢	- 1440mmm - 00 T	DCT 4264-82	WI TO COOK SE		" IMO

Mapra

N8-4

Undmertie saskoue

4. В ответвлениях до концевой опоры притенять тот эке провод, что и на пагистрали вл. При соединению этих проводов использовать плашечные зажиты по ГОСТ 4261-82, типоразтер зажита выбирается по сечению провода из табл.1.

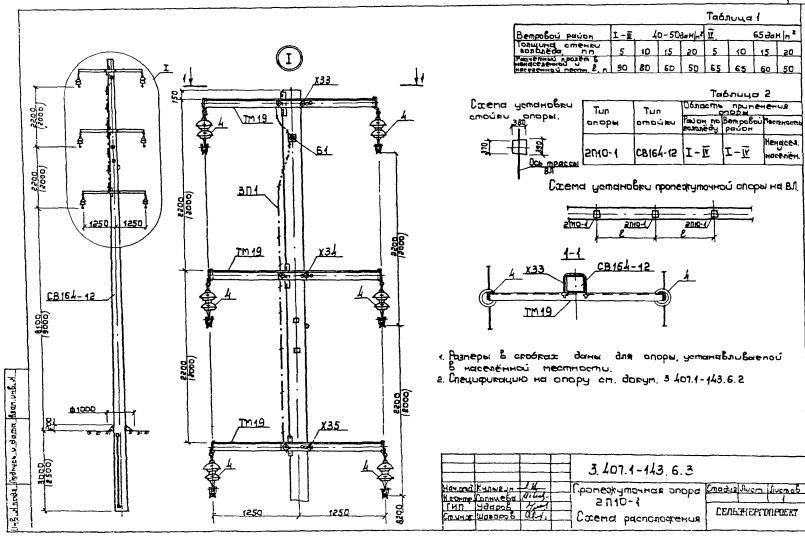
г. Соединение проводов в петлях опор анкерного типа осуществляется плашечными зажимами типа

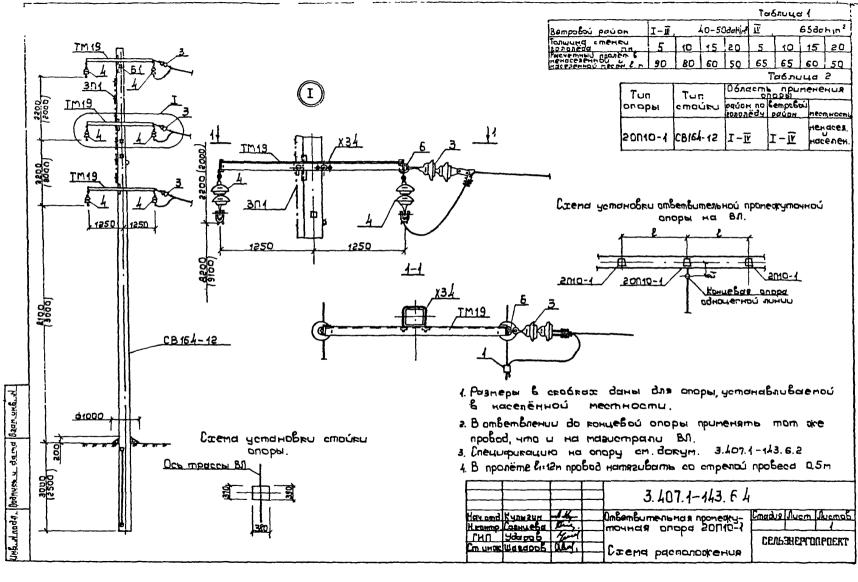
אטיישפקן ששפי ה שפשים שוישוש

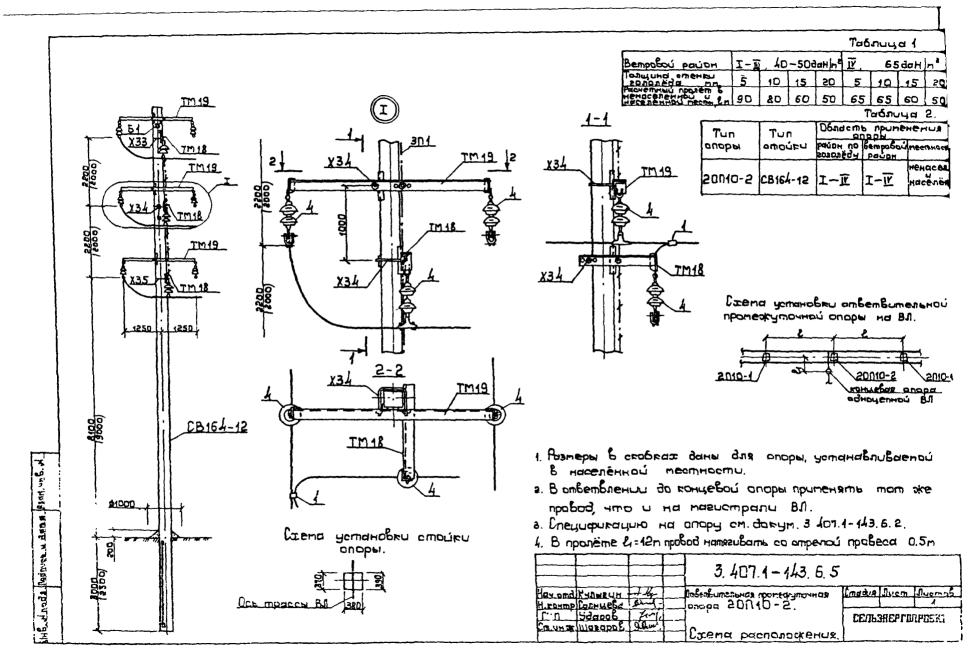
пл по гост 4261-82. При срединении проводов разных сечений типоравтер зажита выбирается по проводу большего сечения, а на проводе теньшего сечения выполняется плотная напотка листового алютиния по гостинал-те

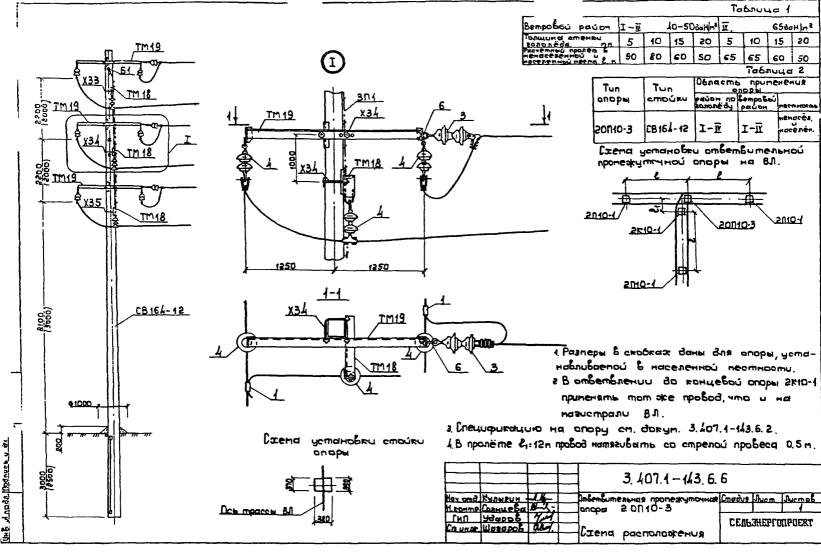
на длину зажина, плюс 15-20nn с обеих сторон зажина. Толицина и количество споев натотки компенсирует разность диатетров соединяетых проводов. Дапускается использовать два аппаратных зажита тила ягя, выбираемых по табл. 4 в зависитости от сечения соединяетых проводов. При этот дополнительно должны быть

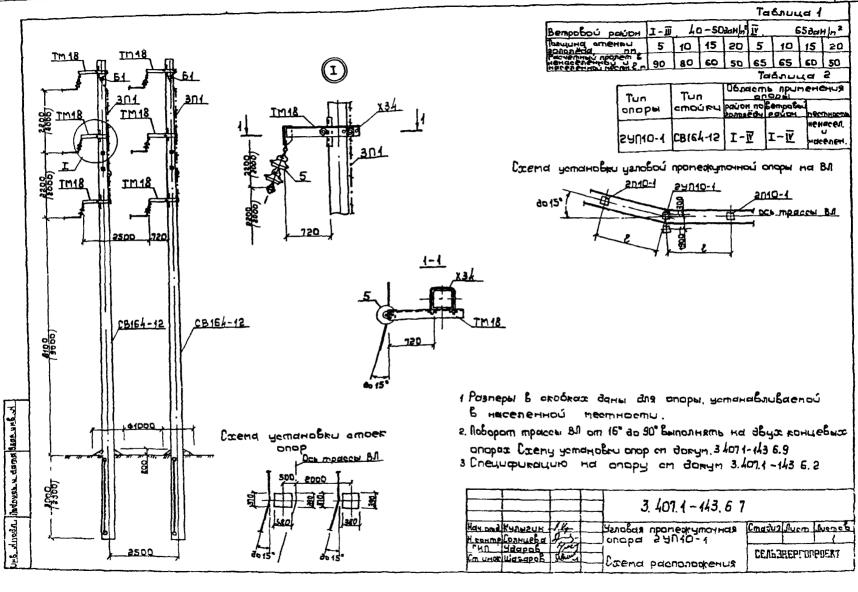
предустатрены: два болта м12×35.46 01 по ГОСТ 1798-70, две зайки м12.4.01 по ГОСТ 5915-70, две шаибы пружинные 12 Л65 Г по ГОСТ 6402-70. Допускается применять термитные патроны по ГОСТ 18492-73.

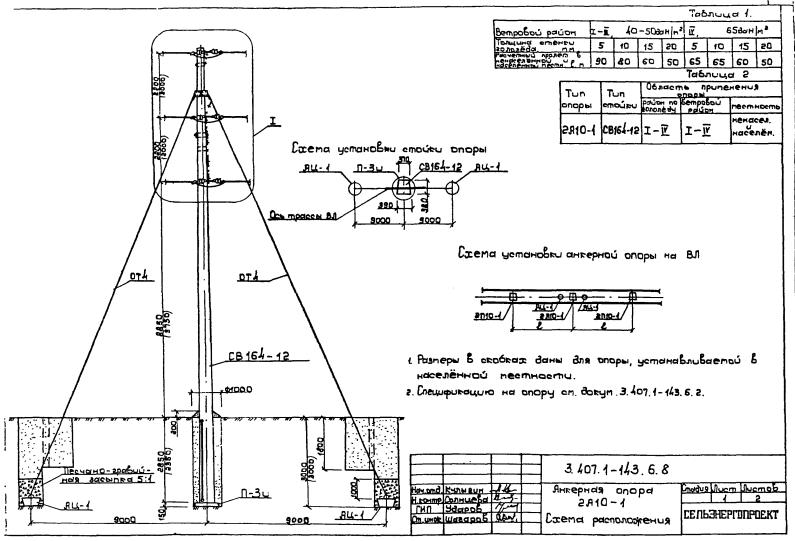

3. При соединении оттяжки ОТА зажитот ПС-3 к проводнику 3П1 на последнет выпалнить 3.407.1-143. 6. 2

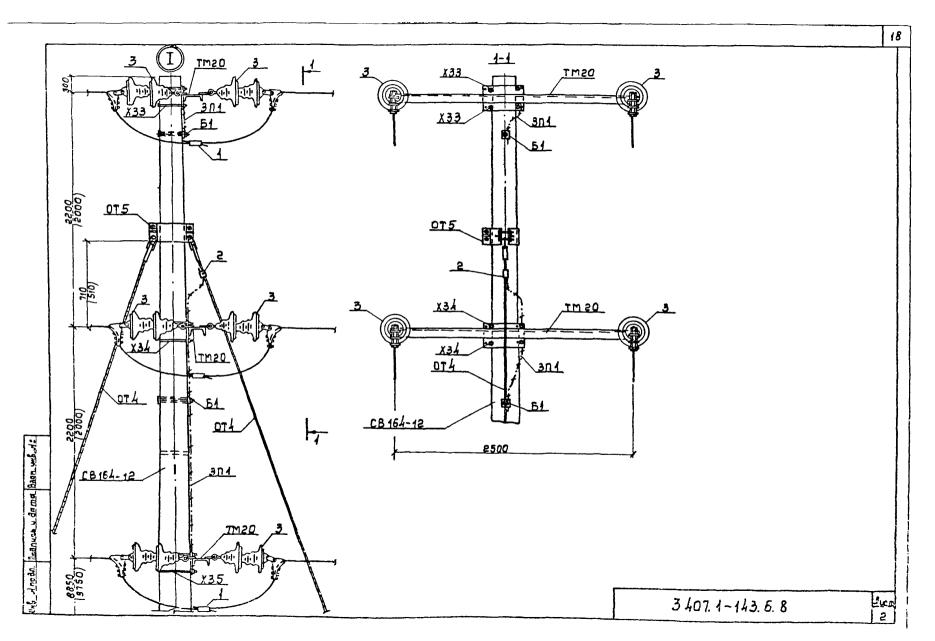

плотную напотку стальной проволькой ф2.0-2.5 п на длину зажита плос 15-20 п с обоих спорон.

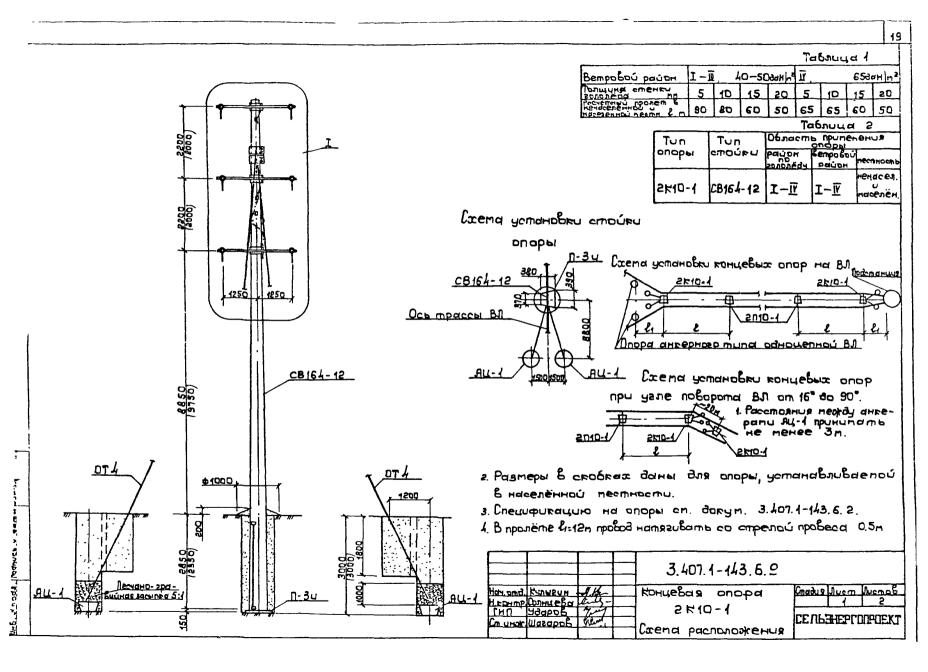

Annapannoe, saxunu

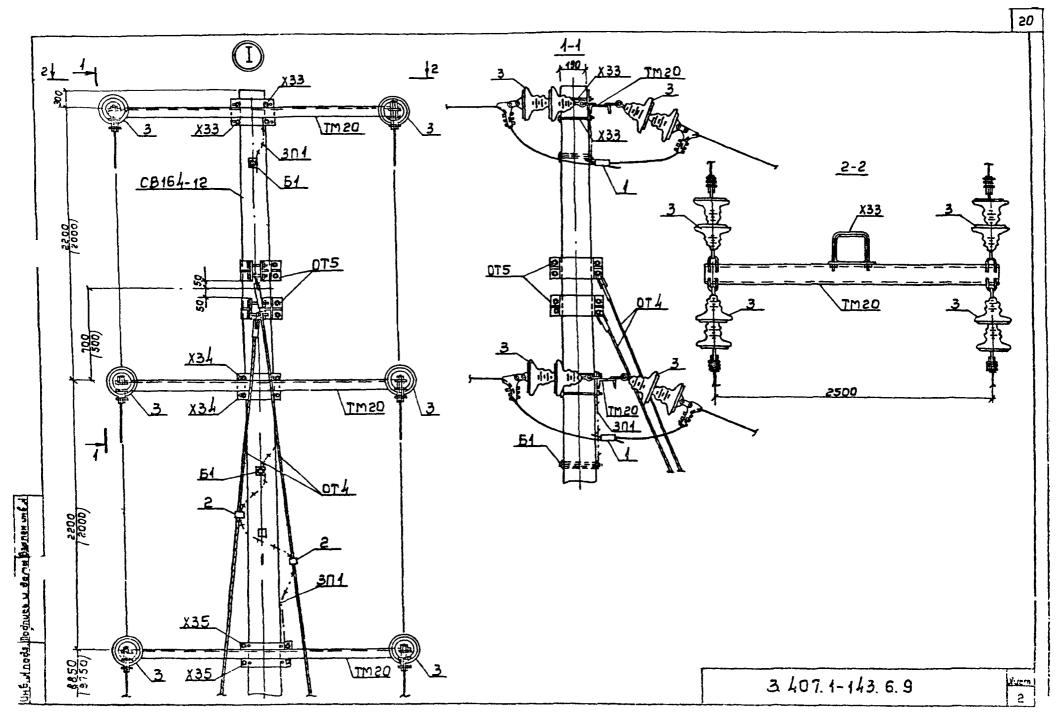

Mapra

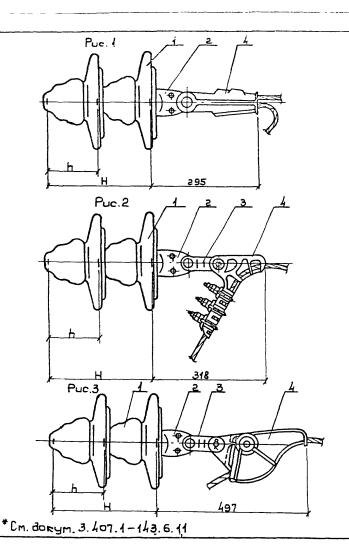

328-35











Зажиты натяжные

Tabsuya 1

Tunopasnep saskuna	ГОСТ	Нопер		Марка и сечение провода	При теча-
HKK-1-15	2730 -18	1	1.6	AC50 8.0	Puc. 1
HE-2	2731-82		2.2	AC 10 11	Pug. 2
н3-2	2/31-86	-	2.6	AC 95 16	Puc. 3

Tabsuya 2

Изоляторы подвесные

	-51-10 U &			143	TO7-	O <u>J</u> 10874	-84
h,	H,	Marco	d,kr	h,	Н,	Macc	4, 51
ηm	nn	eď.	kex	חרי	mm	eđ.	6cex
146	292	4.8	9,6	127	254	3.5	1

Mapra, nos.	В <i>бо</i> значение		Напиенование	Kon.	Припеча	
			гиандариные пзделля.	×		
~			Uzanamap nodbechoù		2	cn. mada. 2
2			Ушко однолапчатов			
			94-7-16 FOCT 2727-77		1	
3			Звена пратежуточн	oë.		kpome
			mpessanvamae ner-7		1	HKK-1-15
Å			Зажим напяжной		1	сп. пабл. (
			3, 407, 1-143, 6 11		<u> </u>	1
FH II	Удавов Угод н		Nogpeckd b		1	ronpoekt

Tabsuua 1 Baskuns noddepskubolowie snyzue

Tunopasnep saskuna	TOCT	č, nn	Macca, pr	иророда Марка п селение
ULH-5-6	2135-18	60	1.3	AC50 8.0; AC70 4
RFH-3-5		66	1.4	AC95 16

Наименование

дтьо одночаилатос 91-7-16 FOCT2727-17

21420ú FOCT 2735-78

Tabsura. 2

Usonamopu nodbechue

TYSY N	OP 71 · 27-11	350 350	-25	1 1 1	NC70	D <u>D</u> 10874	-84
ħ,	Н,	Mate	ed.Er	ħ.	H,	Mate	Lei, Rf
mn	nn	eđ.	BOOK	nn	กก	eđ.	200
146	292	4.8	9.6	127	as 4	3.5	7

Déoshavenue

na3.

2

3

emcR u	
c	

Дополнительно к указанные в специрикации элементам заказыва серьга СРС-7-17 по 1007:2725-78 для крепления изолирующей подвески с серьга СРС-7-17 по 1007:2725-78 для крепления изолирующей подвески с изсотоблении При этсупетвии серьги СРС-7-17 на изготовленных теталлоконструктическ крепление изолирующей подвесси ссуществляется через скобу СК-7 гост 2724-78 и серьгу СРС-7-17.

Hay and Kynneyy Rodbecke H RO-MOCONHURE A 11-1 FIND STORE TO THE CONTROL OF ucggebikngatemal השחטיה הלוחשה I Unde Rondbourge &

Non. # вывоен чентамина ch. mats. 2 Usonamop nodbechoù 2 Baskum noddepskubawuú n ma6s.4 3.407.1-143.6.11

None.

HAMUE

Charles Ben Decres CENTEHERRORESCIL

HE dapta loomes a dama Bran was of

2 3

Tabnuya 1

CEUP3HELLOULIEK

Usenamopa nodbechue

Марка, 1003.	D603начение	Наипенование	Kол.	Npuney.
		Стандартные изделия		
1		Uzonamap nodbecmoù	2	сп.тибл. (
2.		Заким поддерживающий	L	1
		87-02-17 1007/6450-78	1_	
\vdash		3.407.1~143.6.12		

Nagbecka naggebykngaramay

שמחשטששא I

* Cm. dorym. 3.407.1 -143.6.11

אים שושפש ווישטיים ווישטיון יישטיון יישטיון יישטון

-											\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	24
_		Kod		Ks	map	ים ע	3 de n	٠,				
٥	п едпнимы пзиебенпи Напиеноранпе и ашебпача	namepuda4	eđ. usn.	en40-4	20010-1	20110-2	20n1a-3	29n10-1	2A10-1	2 × 10 - 1		
Hone				ROTH	14 0 cm	So.	4 Ct M	& PRY				1
2	Сталь сортовая конетрукци- онная Прокат из стали углеродистой	095000										
5	шекласшп SЭМИа [sgkt uus]kt	095003	166	107.6	107,6	1 6 1, {	163, f	118.9	22 1 , 2	240,6		
8	рукционной в напуральной конет- рукционной в напуральной насее, к в пом числе по укруплениюму архинет		166	Į	107.6					1		
	Сталь среднесортная, кг	095100	166	110.7	110,7	160,6	160.6 1.3	100.0 2.4	154, £	169,7 76.8		1
•	Сталь мелкосортная, кг	053400	166	9.5	9.5	15.0		16.5	15,1	15,1		1
13	ного назначеная (мешпзы) Мешапировечая пропытиен-	120000										
1	наплавленный теталл, кг Метизы гостирбанные кг	127001	166	1.2	1.2 2.6	1.4 3.8	1.4	0.9 3.4	1.4 53.4	1.6 56.9		
16	Umoso теталлоизделий про- тышленного назначения вт		166	3.8	3,8	5.2	5.2	43	54.8			
18	Umo≥0 стали приведённой № Ст. 3. рг		166	141.7	111.4	168.3	168.3	123.2	300,0	320.1		
ליום ליוסמי וופסינים א									L vo M	end K	3,407.1-143.6 PM muels Poly bedomeens perecada P 1 2 manepuanos EENBHEPTONOS	4

1		Kod		Kod ne	ped u	denus
	Наитенование материале и единицы изп еретия	vezeb nava	ed. uan,	CB 164-12	N-34	ነ - ክሆ
J				ROS. H	d maj	NA.
•	Copmoboú n <mark>pokem obusnobe</mark> n					
•	200 204 000000	093 000				
•	Knacea A-I, er	093000	166	14.3	0.2	8.5
4	Knacea A- <u>IV</u> , er	093006	166	163,7		
	Отого сортового проката Отого сортового проката		166	178.0	0,2	8.5
7	Сталь сфлювоя конструкционная, кг	090100	166	3.5		1
	Umoso стали в натуральной					-
9	macce, kt	1	166	181.6	5.0	8.5
a	В том числе по укрупнённому		}			
11	сортатенту:	1				
5	сталь крупносортная, кг	095 100	166	0.8		1
13	сталь среднесортная, кг	095200	166	2.8		5,4
1	сталь телкосортная, кг	093300	166	1709	1	3.1
15	ramarra rr	093400	166	7.4	αz	1
16	Memussi	120000		'		
17	Проволока стальная В-І, кг	124300	166	13.4	1.9	}
	Всего стали приведённой к			1		
19	£m.3, RT		166	355,4	2.9	8.5
50	Demon maskened					
21	rnacea B15, m³		113			0,12
22	rnaced B25, n ³		113	1.42	0.05	

3.407.1-143.6 PM

S Unew