Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Спектрофотометрическое определение карбоксиметилцеллюлозы натриевой соли в атмосферном воздухе

Методические указания МУК 4.1.1958—05 ББК 51.21 С79

С79 Спектрофотометрическое определение карбоксиметилцеллюлозы натриевой соли в атмосферном воздухе: Методические указания.—М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2006.—9 с.

ISBN 5-7508-0656-1

- 1 Разработаны ГУ НИИ экологии человека и гигиены окружающей среды им. А. Н Сысина РАМН (к. х. н. А. А. Беззубовым) и НИЦ «ЭКОС» г. Москва (В. А. Смирновым)
- 2. Утверждены Руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главным государственным санитарным врачом Российской Федерации Γ Γ . Онищенко 21 апреля 2005 Γ
 - 3. Введены в действие с 1 июля 2005 г.
 - 4. Введены впервые

УТВЕРЖДАЮ

Руководитель Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главный государственный санитарный врач Российской Федерации

Г. Г. Онишенко

21 апреля 2005 г Дата введения: 1 июля 2005 г

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Спектрофотометрическое определение карбоксиметилцеллюлозы натриевой соли в атмосферном воздухе

Методические указания МУК 4.1.1958—05

1. Область применения

Настоящие методические указания устанавливают количественный спектрофотометрический анализ атмосферного воздуха для определения в нем карбоксиметилцеллюлозы натриевой соли в диапазоне концентраций 0,075—2,5 мг/м³.

Методические указания предназначены для использования лабораториями центров гигиены и эпидемиологии при осуществлении аналитического контроля химического загрязнения атмосферного воздуха в районе расположения производства и применения карбоксиметилцеллюлозы натриевой соли, производственными лабораториями предприятий, научно-исследовательскими институтами, работающими в области гигиены окружающей среды.

Методические указания разработаны в соответствии с требованиями ГОСТ Р 8.563—96 «Методика выполнения измерений», ГОСТ 17.0.0.02—79 «Охрана природы. Метрологическое обеспечение контроля загрязненности атмосферы, поверхностных вод и почвы. Основные положения», ГОСТ 17.2.4.02—81 «Охрана природы. Атмосфера. Общие требования к методам определения загрязняющих веществ».

Методические указания одобрены и рекомендованы к практическому применению на бюро секции по физико-химическим методам исследования объектов окружающей среды Проблемной комиссии «Научные основы экологии человека и гигиены окружающей среды» и бюро Комиссии по государственному санитарно-эпидемиологическому нормированию Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека.

2. Физико-химические и токсикологические свойства

Карбоксиметилцеллюлозы натриевая соль (поли-1,4β О — карбоксиметил-Д-пиранозил-Д-глюкопираноза натрия) представляет собой полимерный простой эфир целлюлозы и натриевой соли гликолевой кислоты. Получают ее взаимодействием щелочной целлюлозы с натриевой солью монохлоруксусной кислоты. В различных типах натриевой соли карбоксиметилцеллюлозы содержится от 0,5 до 1,2 карбоксиметильных групп на одно элементарное звено макромолекулы.

Общая формула $[C_6H_7O_2(OH)_{3-x}(OCH_2COONa)_x]_n$, молекулярная масса $(25-50)\times 10^3$, регистрационный номер CAS 9004-32-4. Она представляет собой аморфное, порошкообразное, мелкозернистое вещество от белого до кремового цвета, температура размягчения – 170 °C, плотность 1,59 г/см³, растворимое в воде, водных растворах щелочей, аммиаке, не растворимое в органических растворителях и минеральных маслах

Применяется в нефтяной, газовой, добывающей, текстильной и пищевой промышленностях. Агрегатное состояние в воздухе — аэрозоль, которая пожароопасна, температура ее воспламенения 315—355 °C.

Карбоксиметилцеллюлозы натриевая соль не обладает раздражающим, сенсибилизирующим и резорбтивным эффектом. Максимально разовая предельно допустимая концентрация 0,5 мг/дм³, среднесуточная 0.15 мг/см³.

3. Погрешность измерений

Методика обеспечивает выполнение измерений с погрешностью, не превышающей $\pm~20~\%$. При доверительной вероятности 0,95.

4. Метод измерений

Измерение концентраций карбоксиметилцеллюлозы натриевой соли основано на улавливании ее из воздуха и концентрировании на фильтре с последующей десорбцией дистиллированной водой, реакцией с антроном в концентрированной серной кислоте и последующем спектрофотометрировании окрашенного продукта реакции при длине волны 600 нм.

Нижний предел измерения содержания карбоксиметилцеллюлозы натриевой соли в анализируемом объеме пробы – 20 мкг.

Измерению мешают другие углеводы.

Спектрофотометр СФ-46 или

5. Средства измерений, вспомогательные устройства, реактивы

При выполнении измерений применяют следующие средства измерений, вспомогательные устройства, материалы и реактивы.

5.1. Средства измерений

Chekipopotomet p C 4 40 km				
аналогичный прибор				
Весы аналитические ВЛА-200	ГОСТ 24104—01			
Меры массы	ГОСТ 7328—01			
Колбы мерные, вместимостью 25 и 100 см ³	ГОСТ 1770—74Е			
Пипетки, вместимостью 1,2,5 и 10 см ³	ГОСТ 29196—91			
Бюксы, вместимостью 25 см ³	Γ OCT 25336—83 Ε			
Пробирки колориметрические с притертыми				
пробками, вместимостью 5 и 10 см3	ΓOCT 25336—82E			
Барометр-анероид М-67	ТУ 2504-1797—75			
Термометр лабораторный шкальный ТЛ-2	ΓΟCT 215—73E			
Секундомер	ГОСТ 5072—79			
Электроаспиратор марки 822	ГОСТ 2.6.01—86			
5.2. Вспомогательные устро	йс тва			
Фильтродержатель с металлической сеткой	ТУ 6-09-170677			
Баня водяная	ТУ 64-1-2850			
Дистиллятор	ТУ 61 -1-721—79			
5.3. Материалы				
Фильтр АФА-ХА-20	Т У 95-743—80			
5.4. Реактивы				
Антрон (9,10-дигидро-9-кетоантрацен), хч Карбоксиметилцеллюлозы натриевая соль,	ТУ 6-09-157077			
содержание основного вещества не менее 63 % Серная кислота, хч	OCT 6-05-386—80 Γ OC T 4204—77			

6. Требования безопасности

- 6 1. При работе с реактивами соблюдают требования безопасности, установленные для работы с токсичными, едкими и легковоспламеняющимися веществами по ГОСТ 12 1 005—88 и 12.1.007—76.
- 6 2 При выполнении измерений концентраций карбоксиметилцеллюлозы натриевой соли с использованием спектрофотометра СФ-46 и электроаспиратора следует соблюдать правила электробезопасности в соответствии с ГОСТ 12.1.019—79 и инструкциями по эксплуатации приборов.

7. Требования к квалификации оператора

К выполнению измерений и обработке их результатов на спектрофотометре и электроаспираторе допускаются лица, знающие устройство и правила эксплуатации приборов.

8. Условия измерений

При выполнении измерений соблюдают следующие условия:

- 8.1. Процессы приготовления растворов и подготовки проб к анализу проводят в нормальных условиях согласно ГОСТ 15150—69 при температуре воздуха (20 ± 5) °C, атмосферном давлении 630—800 мм рт. ст. и влажности воздуха не более 80 %.
- 8.2. Выполнение измерений на спектрофотометре СФ-46 проводят в условиях, рекомендованных технической документацией к прибору и настоящими методическими указаниями.

9. Подготовка к выполнению измерений и проведение измерений

Перед выполнением измерений проводят следующие работы: приготовление реактивов, подготовку спектрофотометра к работе, установление градуировочной характеристики, отбор проб.

9.1. Приготовление растворов

Исходный раствор карбоксиметилиеллюлозы натриевой соли для градуировки (c = 1 мг/см³) В мерную колбу емкостью 25 см³ вносят 39,7 мг (63 % основного вещества), доводят дистиллированной водой до метки и тщательно перемешивают. Срок хранения рабочего раствора 1 месяи.

Рабочий раствор № 1 карбоксиметилиеллюлозы натриевой соли для градуировки ($c = 100 \text{ мкг/см}^3$) В мерную колбу емкостью 25 см³

Рабочий раствор № 2 карбоксиметилиеллюлозы натриевой соли для градуировки $(c = 400 \text{ мкг/см})^3$) В мерную колбу емкостью 25 см³ помещают 10,0 см³ исходного раствора, доводят дистиллированной водой до метки и тщательно перемешивают. Срок хранения рабочего раствора № 2-1 месяц

Раствор антрона В мерную колбу емкостью 100 см³ помещают 0,2 г антрона, приливают концентрированную серную кислоту до метки и тщательно перемешивают.

9.2. Подготовка спектрофотометра к работе

Подготовку спектрофотометра к работе проводят в соответствии с инструкцией по эксплуатации.

9.3. Установление градуировочной характеристики

Градуировочную характеристику устанавливают на градуировочных растворах. Она выражает зависимость оптической плотности растворов от массы карбоксиметилцеллюлозы натриевой соли и устанавливается по 5 сериям растворов для градуировки.

Каждую серию, состоящую из 6 растворов, готовят в пробирках с притертыми пробками. Для этого в них вносят рабочие растворы № 1 и № 2 в соответствии с таблицей, приливают дистиллированную воду и 3,0 см³ раствора антрона, тщательно перемешивают и нагревают на кипящей водяной бане в течение 10 мин. После охлаждения измеряют оптическую плотность растворов в кювете с толщиной слоя 10 мм при длине волны 600 нм по отношению к раствору № 1 в таблице. По полученным результатам строят градуировочную характеристику. Градуировку проверяют 1 раз в 3 месяца или в случае использования новой партии реактивов.

Таблица Растворы для установления градуировочной характеристики при определении концентрации карбоксиметилцеллюлозы натриевой соли

Номер раствора	1	2	3	4	5	6
Объем рабочего раствора № 1, (c = 100 мкг/см ³), см ³	0	0,2	0,4	0,8	-	-
Объем рабочего раствора № 2, (c = 400 мкг/см³), см³	0	-	_	~	1,0	1,875
Объем дистиллированной воды, см ³	2,0	1,8	1,6	1,2	1,0	0,125
Содержание карбоксиметилцел- люлозы натриевой соли, мкг	0	20,0	40,0	80,0	400,0	750,0

9.4. Отбор проб

Отбор проб воздуха, содержащего карбоксиметилцеллюлозы натриевую соль, проводят согласно ГОСТ 17.2.3.01—86. Воздух аспирируют с помощью электроаспиратора через фильтр со скоростью 20 дм³/мин в течение 30 мин. Отобранные пробы помещают в пробирки с притертыми пробками. Срок хранения — 1 месяц.

10. Выполнение измерений

Фильтр с отобранной пробой помещают в бюкс, заливают 4 см³ дистиллированной воды и оставляют на 10—15 мин, периодически помещивая стеклянной палочкой. Степень десорбции карбоксиметилцеллюлозы натриевой соли с фильтра 98 %. Фильтр отжимают и отбрасывают, объем раствора доводят до 4,0 см³. Для анализа отбирают 2,0 см³ полученного раствора и далее проводят анализ в условиях, описанных в п. 9.3. Расчет содержания карбоксиметилцеллюлозы натриевой соли проводят по градуировочной характеристике.

11. Вычисление результатов измерений

Концентрацию карбоксиметилцеллюлозы натриевой соли в атмосферном воздухе ($M\Gamma/M^3$) вычисляют по формуле:

$$C = \frac{m \cdot V_2}{V_1 \cdot V_0}$$
, где

m — содержание карбоксиметилцеллюлозы натриевой соли в анализируемом объеме пробы, мкг;

 V_2 – общий объем раствора пробы, см³;

 V_1 – объем раствора пробы, взятой для анализа, см³;

 V_0 – объем воздуха, взятого для анализа и приведенный к нормальным условиям, дм³.

$$V_0 = \frac{V - 273 P}{(273 + t) 760}$$
, где

V – объем воздуха, взятого для анализа, дм³;

P — атмосферное давление, мм рт. ст.;

T — температура воздуха в месте отбора пробы, °C.

12. Оформление результатов измерений

Результаты измерений концентраций карбоксиметилцеллюлозы натриевой соли оформляют протоколом в виде. C, мг/м³; $\Delta \pm 20$ % с указанием даты проведения анализа, места отбора пробы, названия лаборатории, юридического адреса организации, ответственного исполнителя и руководителя лаборатории

13. Контроль погрешности измерений

Проводят контроль погрешности измерений на градуировочных растворах, имеющих низшую границу диапазона измеряемых концентраций в соответствии с п.п. 10 и 11.

Рассчитывают среднее значение результатов измерений концентраций в градуировочных растворах.

$$\overline{C} = \frac{1}{n} \left(\sum_{i=1}^{n} C_{ni} \right)$$
, где

n — число измерений вещества в пробе градуировочного раствора, C_m — результат измерения концентрации вещества в ι -ой пробе градуировочного раствора, мкг/дм³.

Рассчитывают среднее квадратичное отклонение результата измерения концентрации вещества в градуировочном растворе:

$$S = \sqrt{\frac{\sum_{i=1}^{n} (C_{ni} - \overline{C}_{i})^{2}}{n-1}}$$

Рассчитывают доверительный интервал:

$$\Delta \overline{C}_i = \frac{S}{\sqrt{n}} \cdot t$$
, где

t- коэффициент нормированных отклонений, определяемый по таблицам Стьюдента, при доверительной вероятности 0,95.

Рассчитывают погрешность определения концентраций калия:

$$\delta = \frac{\Delta \overline{C}_i}{\overline{C}_{ni}} \cdot 100, \%$$

Если $\delta \leq 20$ %, то погрешность измерений удовлетворительная. Если данное условие не выполняется, то выясняют причину и повторяют измерения