ТИПОВЫЕ СТРОИТЕЛЬНЫЕ КОНСТРУКЦИИ, ИЗДЕЛИЯ И УЗЛЫ

СЕРИЯ 1.090.1-1/88

СБОРНЫЕ ЖЕЛЕЗОБЕТОННЫЕ КОНСТРУКЦИИ МЕЖВИДОВОГО ПРИМЕНЕНИЯ ДЛЯ КРУПНОПАНЕЛЬНЫХ ОБЩЕСТВЕННЫХ ЗДАНИЙ И ВСПОМОГАТЕЛЬНЫХ ЗДАНИЙ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ С ВЫСОТОЙ ЭТАЖА З,З М

выпуск 4-2

ПАНЕЛИ ВНУТРЕННИХ СТЕН. ПРОСТРАНСТВЕННЫЕ КАРКАСЫ.

РАБОЧИЕ ЧЕРТЕЖИ

ТИПОВЫЕ СТРОИТЕЛЬНЫЕ КОНСТРУКЦИИ, ИЗДЕЛИЯ И УЗЛЫ

СЕРИЯ 1.090,1-1/88

СБОРНЫЕ ЖЕЛЕЗОБЕТОНОХ ЭЙННОТЭВОБЕЛЯМИМ ВИНАДЕ ХИНАНВНИЧНОПО ОХИНАНВНИЧНО ХИНАНВНИЧНОПО ИНТЕИНОПО ОТОТОВНО ОТОТОВНОТЬ ОТОТОВНЕНЬ ОТОТОВНОТЬ ОТОТОВНОТЬ ОТОТОВНОТЬ ОТОТОВНОТЬ ОТОТОВНОТЬ ОТОТОВНЕНЬ ОТО

выпуск 4-2

ПАНЕЛИ ВНУТРЕННИХ СТЕН. ПРОСТРАНСТВЕННЫЕ КАРКАСЫ.

РАБОЧИЕ ЧЕРТЕЖИ

РАЗРАБОТАНЫ ЦНИИЭП ТОРГОВО-БЫТОВЫХ ЗДАНИЙ И ТУРИСТСКИХ КОМПИЕКСОВ

ДИРЕКТОР ИНСТИТУТА НАЧАЛЬНИК ОТДЕЛА ГЛАВНЫЙ ИНЖЕНЕР ПРОЕКТА ГЛАВНЫЙ ТЕХНОЛОГ

УТВЕРЖДЕНЫ
ГОССТРОЕМ СССР
ПРОТОКОЛ ОТ 28.03.89 м АЧ-44
введены в действие с 04.40.89

OF SHAYEHHE AOKYMEHTA	НА именование	CTP.
1.090.1-1/88.4-2-TT	TEXHUTECKUE TPEGOBAHUA	3
K1	RPOCTPANCTBEHHOLE KAPKACHI KRG0.30,	
	KN 59.30	5
KZ	RPOCTPANCTBENHOIE KAPKACOI KA 30.30,	
	KN 30.30-B	7
K3	Пространственный каркас кп 30.30-9	9
кч	RPOCTPANCTBENHUE KAPKACU KR 29.30,	
	KN 28.30	10
KS	ПРОСТРАНСТВЕННЫЙ КАРКАС КП 18.30	11
KG	RPOCTPAHOTBEHHOLE KAPKACOL KR 12.30,	
	KN 6.30	12
KT	ПРОСТРАНСТВЕННЫЙ КАРКАС КП12.30-Э	13
X 8	RPOCTPANCTBENHOLE KAPKACH 4KR60.30,	
	1KN 59.30	14
K9	Пространственный каркас 1КП 30.30	16
X10	RPOCTPA HCTBEHHOLE KAPKACOL 1KR 29.30,	
	1kn 29.30-8	17
K11	Пространственный каркае 1КП 30.30-Э	19
K12	RPOSTPANCTBENHUE KAPKACU 1KR 18.30,	
	4KN 12.30	20
k13	ПРОСТРАНСТВЕННЫЙ КАРКАС 1КП12.30-Э	2.2
X14	ПРОСТРАНСТВЕННЫЙ КАРКАС КПП 60.30.40	23
K15	NPOCTPANCTBENHOLÜ KAPKAC KNN 60.30.40	2.5
K16	RPOCTPAHCTBEHHOIE KAPKACH KRR 30.30.40,	
	KNN 30.30.13	27
K 17	ПРОСТРАНСТВЕННЫЙ КАРКАС КПП 28.30.40	29
K18	NPOCTPAHCTBEHHOL KAPKAC 1KNN 30.30.40	30
K19	RPOSTPANCTBENHOL KAPKAC 1KM 30.30.13	31

0603HAYEHUE A0Kymehua	Наиненование	CTP.
1.090.1-1 88.4-2 K20	Пространственный каркас кп59.33	32
K 24	RPOCTPANCTBENHOIÙ KAPKAC KR 30.33	34
K 2.2	ПРОСТРАНСТВЕННЫЙ КАРКАС КП 29.33	35
K23	ПРОСТРАНСТВЕННЫЙ КАРКАС КП 30.16	36
X 24	RPOCTPAHETBEHHOLD KAPKAC 1KR 59.33	37
K25	ПРОСТРАНСТВЕННЫЙ КАРКАС 2КП 59.33	39
K2G	RPOCTPANCT BEHN LIN KAPKAC 1KA 30.33	41
K27	RPOCTPANCTBENHOLY KAPKAC 2KN 30.33	42
K28	RPOCTPANCTBEHNOLH KAPKAC 1KNT 59.33	43
K29	RPOCTPANCTBENHOLÜ KAPKAC 2KRT59.33	45
K30	ПРОСТРАНСТВЕННЫЙ КАРКАС КПР 60.30.42	47
K31	RPOCTPAHCTBEHHOLE KAPKACOLKAP 30.30,45	
	KNP 30.30.19	49
K32	RPOCTPANCTBENHALE KAPKACOI KRP29.30.45,	
	KNP 28.30.15	51
K33	ПРОСТРАНСТВЕННЫЙ КАРКАС КПА 60.30.42	53
K34	ПРОСТРАНСТВЕННЫЙ КАРКАС КПА 30.30.20	55
K35	RPOCTPANCTBENHOLE KAPKACOLKIA 29.30.20	
	KNA 28.30.20	56
K36	RPOCTPAHOTBEHHOIH KAPKAC KAT 30.42	77
K37	FACK BOIKAHOMATERS " EB " CEOPKA	58
K38	FAOK BOIKAHOMATERS "EP" CEOPKA	60
K39	73101	62

ВОЛЫНСКИЯ Хорошилов А	Y Annua	1.090.1-1 88.4-2			
LIIALL ,	07//2		СТАДИЯ	ANCT	листов
HHKONAEBA	Vacel	•	P		A
KOHOBAJOBA	Kaul	CONELXVARE	ПНИИ		PFORD- TOBUX AHMR
	MAKONERA	XOPOLIUNOBA Xinaua	XOPOMUMOBA XINAUA MALI MHKONAERA	RONDATO CTADINA PX A H U E	XOPOZIUMOBA XINDUS WALLOW CTACHAR MACT BULLOW CHOBANDBA KOWA COREPXAHUE TO

I. Общая часть

Выпуск 4-2 "Панели внутренних стен. Пространственные каркасы" входит в состав серии I.090.I-I/88 "Сборные железобетонные конструкции межвидового применения иля крупнопанельных общественных зданий и вспомогательных зданий промышленных предприятий с высотой этажа 3.3 м".

Настоящий выпуск следует рассматривать совместно с выпуском 4-3 "Панели внутренних стен. Арматурные и закладные изделия".

Выпуск сопержит:

- технические требования:
- специйикации и сборочные чертежи пространственных каркасов:
- спецификации и чертежи электроблоков (блок розетки и блок выключателей):
 - арматурные узлы.

Пространственные каркасы состоят из следующих сборочных единиц:

- плоские каркасы вертикальные и горизонтальные, устанавливземые у наружных граней панелей, по контуру проемов, в перемычках нап проемами.
- C - сетки косвенного армирования, устанавливаемые в стойках арок и рамок.

MH - изделия закладние.

CII - петли строповочные.

AH - анкерные выпуски, устанавливаемые в вертикальном торце панели марки I ПВ ... и в нижнем горизонтальном торце панелей марки IB 30.16 ...

и отдельные стержни.

Арматурная сталь для плоских каркасов, закладных изделий и отпельных стержней принята класса А-Ш по ГОСТ 5781-82 и Вр-І по ГОСТ 6727-80: пля анкерных выпусков и строповочных петель - класса A-V по ГОСТ 5781-82 Пля строповочных петель должна применяться горячекатанная сталь марок ВСтЗсп2 и ВСтЗпс2. В случае. если монтаж возможен при зимней температуре ниже минус 40°С. применение петель из стали марки ВСт3пс2 не попускается.

Иля пластин закладных изделий принята полосовая сталь по ГОСТ 103-76. Марка стали для пластин закладных изделий должна назначаться в конкретном проекте в соответствии с придожением 2 (п. Іа) СНиП 2.03.01-84 в зависимости от температуры наружного воздуха.

2. Изготовление пространственного каркаса

Сборка пространственного каркаса панелей выполняется при помощи контактной точечной сварки, осуществляемой сварочными клещами, из веттикальных и горизонтальных плоских каркасов. Все пересечения вертыкальных и горизонтальных плоских каркасов должны быть сварены контактной точечной сваркой. Вертикальные каркасы в панелях марок ПВ, ПВП, расположенные у грани панелей и не пересекающиеся с горизонтальными каркасами, присоединяются к пространственному каркасу с помощью отпольных сторжней.

В панелях марок IIBA и IIBP сопряжение вертикального каркаса у грани панели и горизонтального каркаса выполняется при помощи закладного излелия.

	KOHOBA 10BA	Rouse	требов ани я	Технические томогомогомогомогомогомогомогомогомогомо		TOBUC AND PHOTOKOC		
LNU	HMKOVYEBA	0	Torrest o every	I p l	T	2		
LVKOHCL	WALL	Mille		CTADIA	ANCT	/NCTOB		
H.KOHTP.	ECOP)8	800						
нач.отд.	волынския	F.	I.090.I-I/88. 4-2	I.090.I-I/88. 4-2 - TT				

B3AM.M-B

NODINCL N DATA мев. подл. Закладние изделия, строповочние петли и анкерные випуски устанавливаются в проектное положение с помощью монтажных стержней, привариваемых к элементам каркаса или при помощи привязки их вязальной проволомай к элементам каркаса.

При сборке пространственных каркасов с электроблоками, при установке в них "блока розеток и блока выключателей" следует соблюдать следующую очередность выполнения пространственного каркаса:

- установить вертикальные, нижний и верхний горизонтальные каркасы;
- - в панелях марок ПВП ... установить каркаси перемычки;
 - приварить отдельные стержни, соединяющие вертикальные каркасы.

Плоские сварные изделия и закладные изделия должны уловлетворять треботачиты ГОСТ 10922-75 "Арматурные изделия и закладные детали сварные для железобетонных конструкций". Все сварные соединения следует выполнять в соответствии с ГОСТ 14098-85 "Соединения сварные арматуры и закладных изделий железобетонных конструкций".

3. Маркировка пространственных каркасов

Марки пространственных каркасов имеют буквенно-пифровое обозначение. Группа букв обозначает:

КП - каркас пространственный для панелей без проема (глухих);

КШ - каркас пространственный для панелей с проемом;

КПГ - каркас пространственный для Г-образных панелей;

КПР - каркас пространственный для рамных панелей;

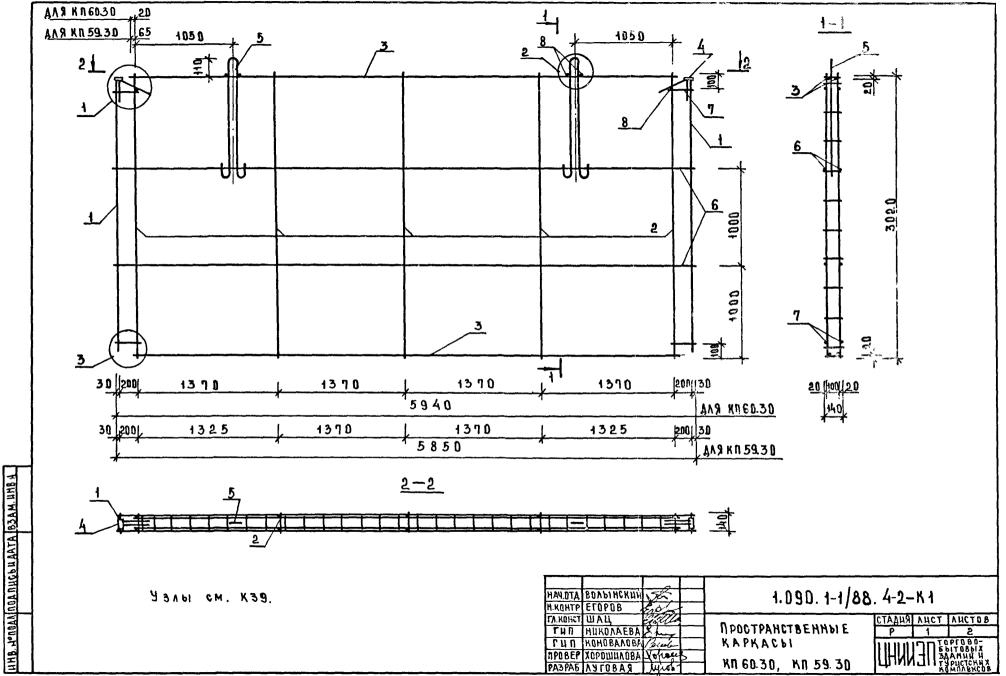
КПА - каркас пространственный для арочных панелей.

Буква в конце марки обозначает:

- В наличие вентиляционного отверстия;
- э панель с электроблоками.

Первая цифра обозначает:

- для каркасов высотой 3.0 м наличие анкерного выпуска.
- для каркасов высотой 3,3 м (с гребнем) наличие анкерного выпуска справа цифра "I". слева цифра "2".

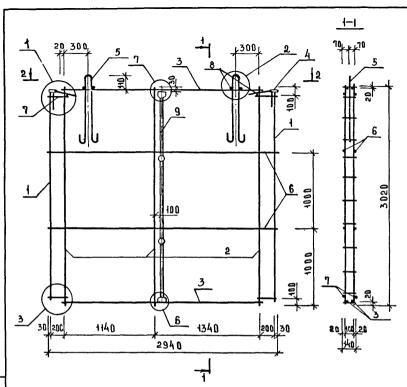

Вторая группа цифр обозначает габариты панели: длину, высоту и размеры проема в дециметрах.

Пример: IKI 30.30 - каркас пространственный для панели без проема длиной 3.0 м; висотой 3.0 м с анкерным випуском в торце панели.

В спецификациях на закладные изделия не учтен расход стали на осадку анкеров в процессе сварки в тавр, который составляет до 2% расхода стали на анкера.

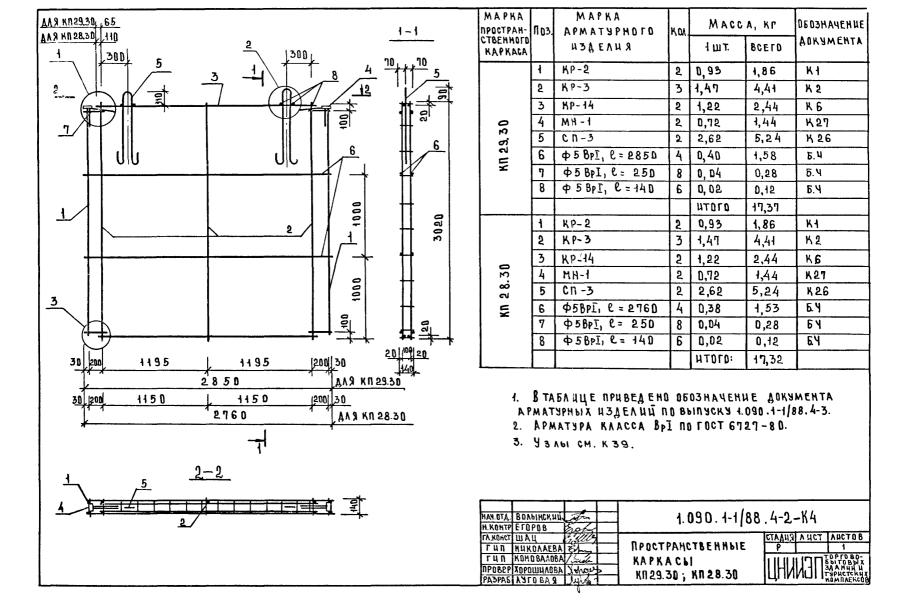
В спецификациях пространственных каркасов с электроблоками не учтена арматура в 3 Вр-I, предназначенная для соединения электроблоков с арматурным каркасом. Расход этой арматуры дан в выборке стали см. I.090.I-I/88. 4-I PC.

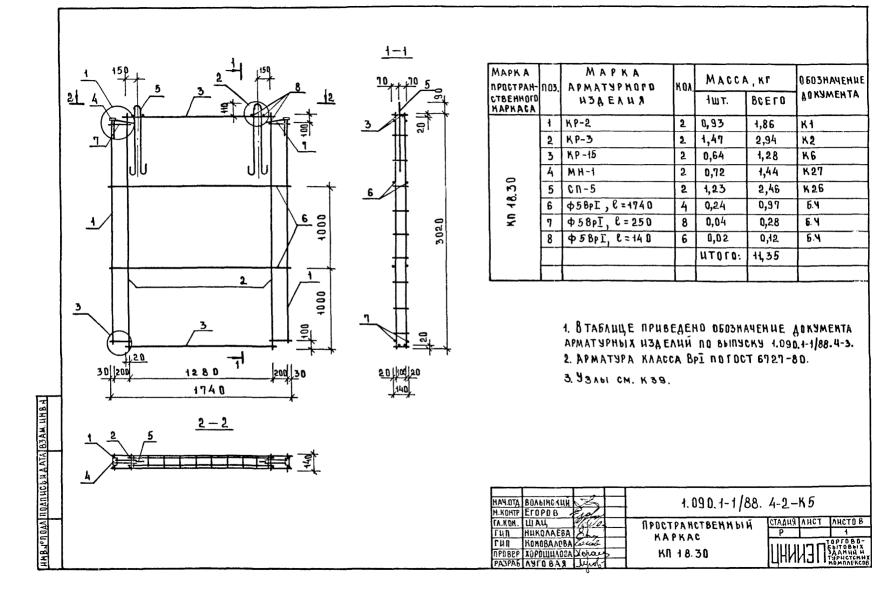
MAPKA NPOCTPAH-	n 03	A	KOA.	MACCA	, Kr	DE03HA4EHUE
CTBEHHQFO KAPKACA	כנווו	<i>R H Л Э Д Е H</i>		1шт.	BCETO	AOKYMENTA
	1	KP-2	2	0,93	1,86	K4
	2	KP-3	5	1, 47	٦,35	K 2
	3	KP-12	2	2,66	5,32	K 5
30	4	MH-1	2	0,72	1,44	K27
60.3	5	C N-1	2	6, 56	13,12	K 26
X.11 6	6	φ 5 Bp I, L = 5940	4	0, 83	3,32	5.4
×	7	φ 5 BPI, L= 250	8	0,04	0,28	6.4
	8	φ58PI, L=140	6	0,02	0,12	5.4
				DIOTH	32,81	
	1	KP-2	2	0,93	1,86	K4
	2	HP-3	5	1,47	7,35	KS
_	3	KP-12	2	2,66	5,32	Қ 5
.30	4	M H-1	2	0,72	1,44	K27
Kn 59.	5	cn-1	2	6,56	13,12	K26
	6	φ5 βρ <u>1</u> , L = 5 8 5 0	4	0,81	3,24	Б.Ч
	7	φ5 βρ <u>Γ</u> , L = 250	8	0,04	0,28	F.4
	8	Φ5 Bp I, L =148	6	0,02	0,12	5.4
			T	HTOFO:	32,73	

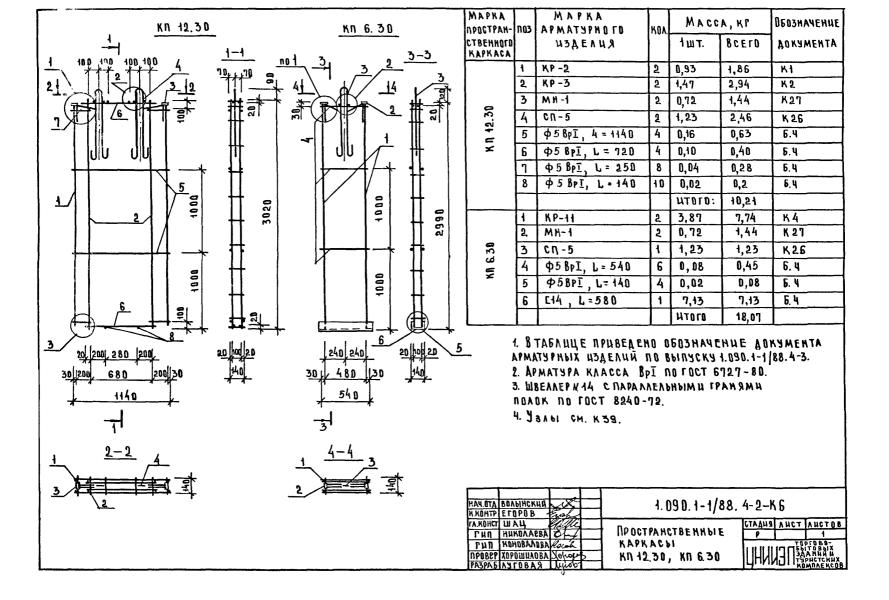

1. В ТАБЛИЦЕ ПРИВЕДЕНО ОБОЗНАЧЕНИЕ ДОКУМЕНТА АРМАТУРНЫХ ИЗДЕЛИЙ ПО ВЫПУСКУ 1.090. 1-1/88. 4-3. 2. АРМАТУРА КЛАССА $B_{P}T$ по гост 6727-80.

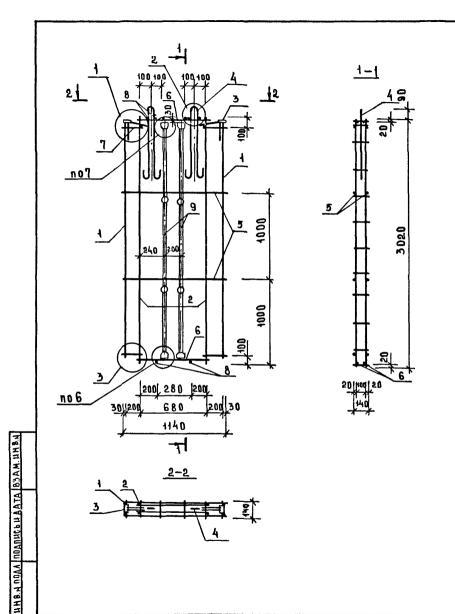
MAPKA	n D3.	A A 9 A A A M	XDA.	MACC	А, КГ	отина ранково Обозначение
CTBEHHOFO KAPKACA		изделия		1 W T.	BCETO	O OKYMEHTA
	1	KP-2	5	0,93	1,86	Kł
	2	KP-3	3	1,47	4,41	K2
	3	KP-14	5	1,22	2,44	K 6
0	4	MH-1	2	0,72	1,44	K 27
30.30	5	cn-3	2	2,62	5,24	K 26
KN 3	6	φ 5 Bp I, L= 2940	4	0,41	1,63	Б. Ч
×	7	Ф 5 BpI, L= 250	8	0,04	0,28	6.4
	8	Φ 5 8p1, L= 140	6	0,02	0,12	5.4
				HTOTO:	17,42	
	1	KP-2	5	0,93	1,86	K1
	5	KP-3	3	1,47	4,41	K 2
\$	3	KP-14	5	1,22	2,44	K6
2	4	H-HM	5	0,72	1,44	K27
KN 30.30-8	5	Cn-3	5	2,62	5,24	H 26
5	6	Φ58pī, L = 2940	4	0,41	1,63	5. Y
-	7	φ58pI, L = 250	8	0,04	0,28	F. 4
	8	ф58pī, L = 140	6	0,02	0,12	5.4
	9	Φ8Aii, L= 1300	5	0,51	1,03	Б.Ч
				HTOFO	18,45	

- В ТАБЛИЦЕ ПРИВЕДЕНО ОБОЗНАЧЕНИЕ ДОКУМЕНТА АРМАТУРНЫХ ИЗДЕЛИЙ ПО ВЫПУСКУ 1.090.1-1/88.4-3.
 АРМАТУРА КЛАССА ВрТ по гост 6727-80.
 АРМАТУРА КЛАССА АЩ по гост 5781-82.

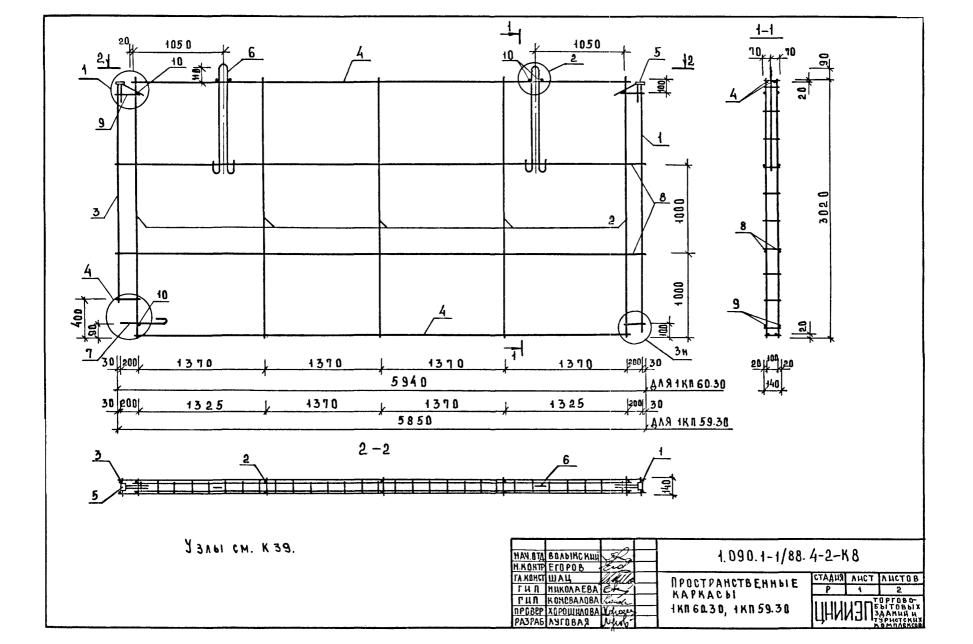



MAPKA		ן איאאוטאוט ן		MACCA, Kr		ЭИНЭРАНЕОВО АТНЭМЕНОВ
KAPKACA		нздел ия		1w T.	BCELO	AGNSMENTA
	1	KP-2	2	0,93	1,86	Ki
	2	KP-3	3	1,47	4,41	K 2
	3	KP-14	2	1,22	2,44	K 6
	4	MH-1	2	0,72	1,44	K 27
30.30-9	5	CN -3	2	2,62	5,24	K26
). 3(6	φ58pI, L=2940	4	0,41	1,63	Б.Ч,
	7	φ5 BpI, L=250	8	0,04	0,28	5. 4 .
Ϋ́	8	φ58pī, L=140	6	0,02	0,12	5.4 .
	9	БР	1	2,96	2,96	1,0901-1/88,4-2-4.58
				:070TU	20,53	


- 1. В ТАБЛИЦЕ ПРИВЕДЕНО ОБОЗНАЧЕНИЕ ДОКУМЕНТА АРМАТУРНЫХ ИЗДЕЛИЙ ПО ВЫПУСКУ 1.090,1-1/88.4-3. 2. АРМАТУРА КЛАССА ВРТ ПО ГОСТ 6727-80.
- 3. 43161 CM. K39.

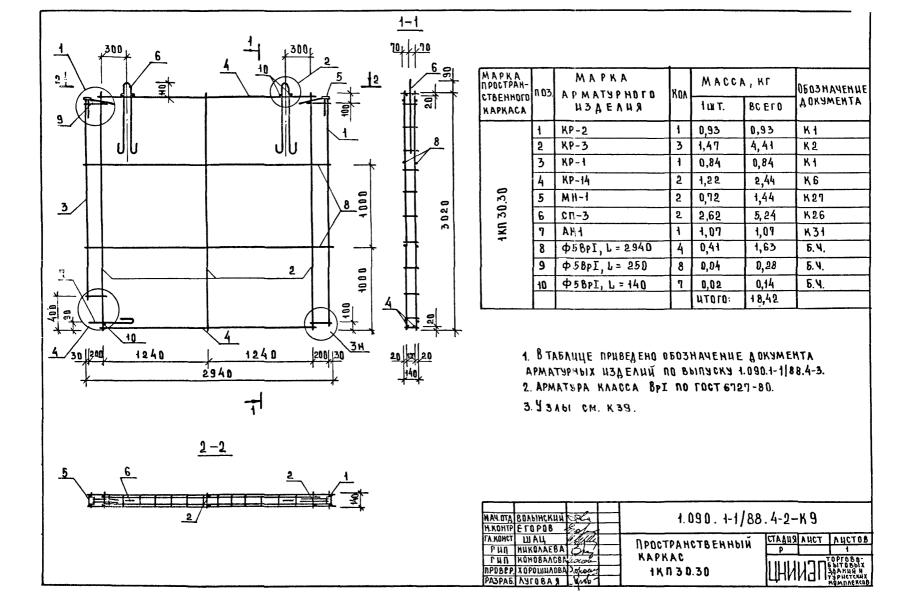

T B	1'
BJAM UHB	<u>2-2</u>
กอลกนธะ บลลาสุธงสพ	2
инв и подл.	

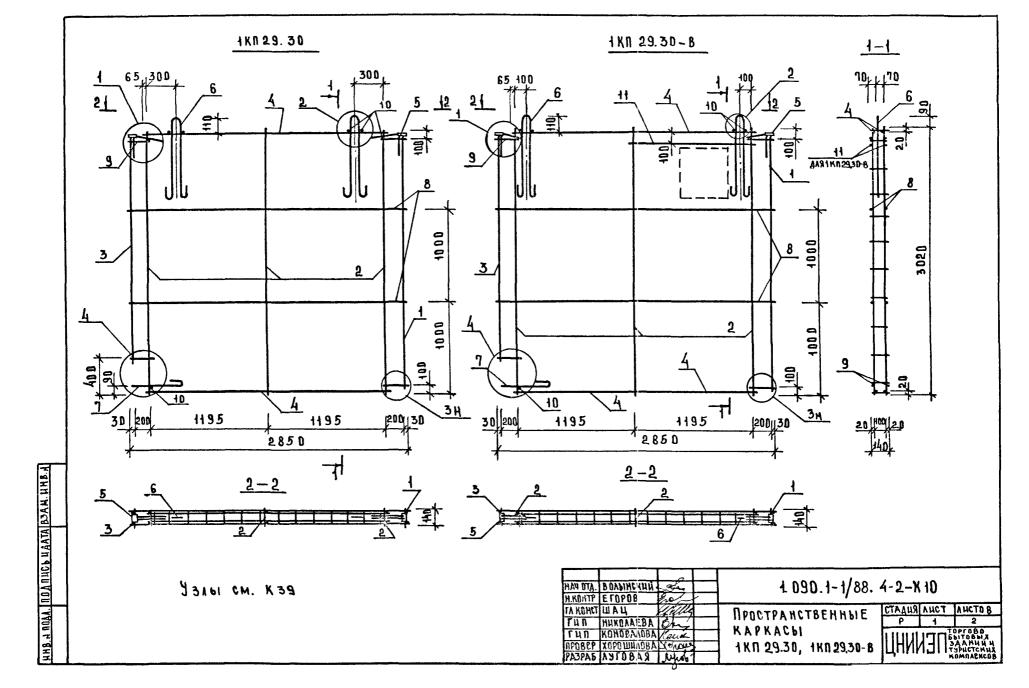
ATO PA	ВОЛЫНСКИЙ	VII.		1.090.1-1/88.4	4-2 1	(3	
KOHTP.	ETOPOB	Pur/		'			
TJHON /	ШАЦ	115100	,	Deceroousternuli	СТАДИЯ	AUCT	AUCTOB
านก	HUKONAEBA	EF->		ПРОСТРАНСТВЕННЫЙ	P		1
run	КОНОВАЛОВА	Caret		КАРКАС	lunu	เนาท	DPFDBD-
POSEP	ETOPOB .	ich		KN 30.30-3	ШНИ	N.HI	AAHUU
АЗРАБ	SKOBNEBA	Sung-			14, 171	, in i i	вазивали от



MAPKA ПРОСТРАН- СТВЕННОГО МАРКАСА		АНЧА М ОТОНЧЕТАМЧА К И ЛЭДЕН	HOA.	DOAM TWF	A, KP BCETO	обозначение Аткаточно Д
	1	KP-2	2	0,93	1,86	Ki
	2	ዚ ዖ-3	2	1,47	2,34	K2
	3	нн	2	0,72	1,44	K27
6-(4	Cn 5	2	1,23	2,46	K 26
12, 30-9	5	Φ58pī, L=1140	4	0,16	0,63	6.4
	6	\$58PI, L=720	4	01,0	0,49	5.4
¥	7	φ58pī, L=250	8	0,04	0,28	5. Y
	8	φ58p1, 6≈140	10	0,02	0,2	5.1
	9	БР	2	2,96	5,9 2	t0901-i/88.49-K38
				UTO CO:	16,28	

- 1. В ТАБЛИЦЕ ПРИВЕДЕНО ОБОЗНАЧЕНИЕ ДОКУМЕНТА АРМАТУРНЫХ ИЗДЕЛИЙ ПО ВЫПУСКУ 1.090.1-1/88. 4-3. 2. АРМАТУРА НЛАССА ВРІ ПО ГОСТ 6727-80.
- 3. 43 A 61 CM. K39.

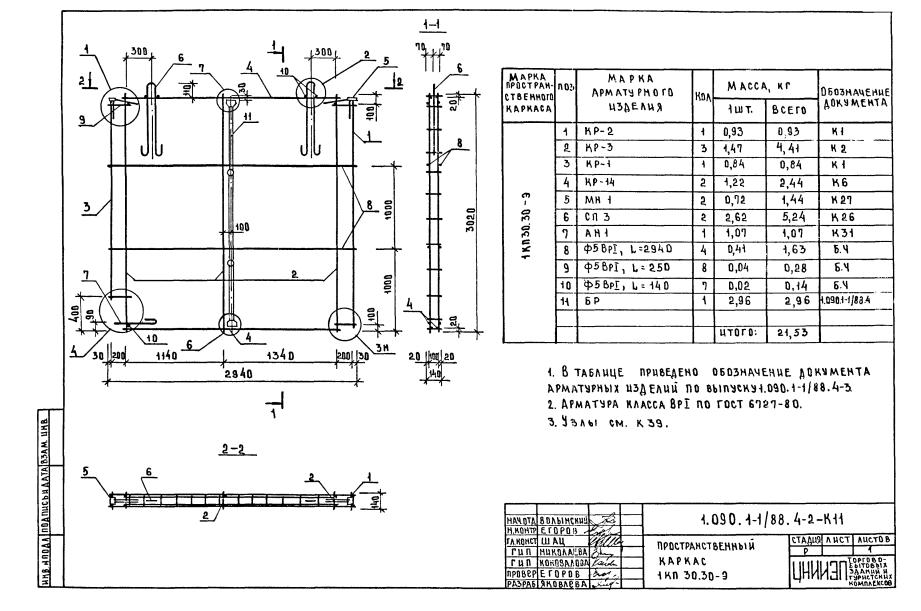

мачота вольниский Ж.	1. 09 0. 1- 1/88	. 4-2-K7
TAMONOT WALL STATES	ПРОСТРАНСТВЕННЫЙ	CTAAUS AUCT AUCTOB
PAJPAD AKOBAEBA XIII	KAPKA C KN 12.30-3	TO STATE OF THE NUMBER OF THE

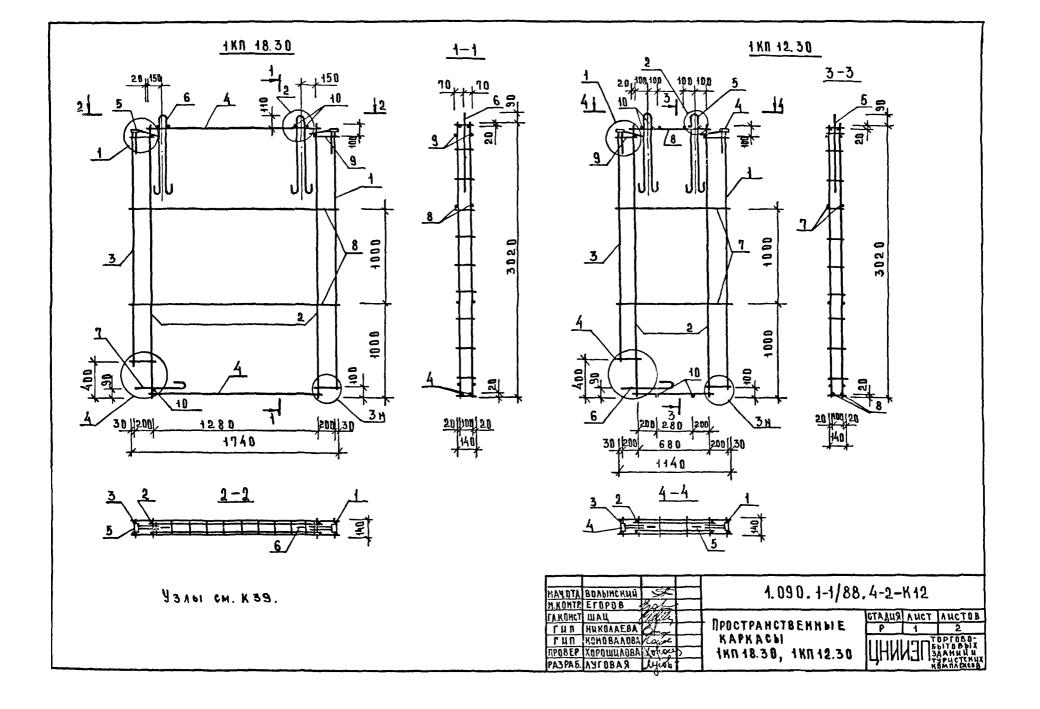


MAPKA

MAPKA

1.8 TAGANHE NPHBERENO OBOSHAYENHE AOKSMENTA APMATUPHOIX HARENUR TO BUTTUCKY 1.090.4-1/88.4-3. 2. APMATUPA KAAGGA BPI NO FOCT 6727-80.

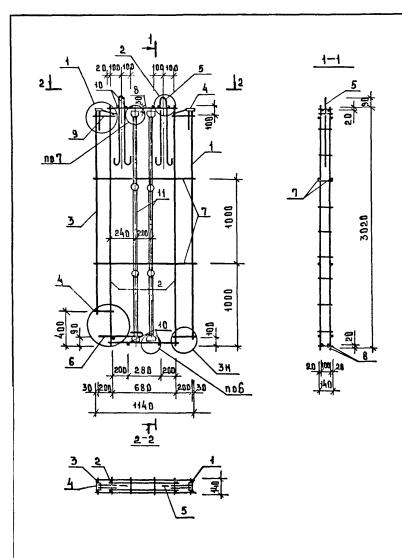



MAPKA BPOCTPAH-		MAPKA	v	MACC	Α, ΚΡ	DEOSHAYEHUE
KAPKACA	N 03 .	ОТОНЧЕТАМЧА КИЛЭ БЕИ		łшΤ.	8CEL0	AOKAWEHL
	1	KP-2	1	0,93	0,93	Kł
	2	KP-3	3	1,47	4,41	KE
	3	KP-1	1	0,84	0,84	KI
0	4	KP-14	2	1,22	2,44	KE
29.30	5	MH-1	5	0,72	1,44	K27
~	6	CN-3	5	5,65	5,24	к 26
×	7	AH	1	1,07	1,07	K31
	8	φ58pI, L = 2850	4	0,40	1,58	6.4.
	9	Φ58pī, L= 250	8	0,04	0,28	6.4 .
	40	φ 5 Bp I, L= 140	7	0,02	0.14	Б.Ч.
				итого:	18,37	
	1	KP-2	1	0,93	0,93	K1
	2	KP-3	3	4,47	4,41	K2
	3	KP-1	1	0,84	0,84	KI
æ	4	KP- 14	2	1,22	2,44	K 6
န်	5	MH-1	2	0,72	1,44	K7
29.30-	6	CN-3	2	2,62	5,24	K26
N. N.	7	1 HA	1	1,07	1,07	K 31
-	8	φ58pī, L=2850	4	0,40	1,58	Б. Ч.
	9	\$5BPI, 6= 250	8	0,04	0,28	БЧ
	10	\$58pI, L= 140	7	20,0	0,14	5.4.
	11	φ 8A m , L = 1300	2	0,51	1,03	6.4.
			1	HTOTO:	19,38	

1. В ТАБА ИЦЕ ПРИ ВЕДЕНО ОБОЗНАЧЕНИЕ ДОКУМЕНТА АРМАТУРНЫХ ИЗДЕЛИЙ ПО ВЫПУСКУ 1.090.1-1/88.4-3. 2. АРМАТУРА КЛАССА 8 р 1 по гост 6727-80.

3. APMATUPA MAACCA AII NO FOCT 5781-82.

AHCT 2



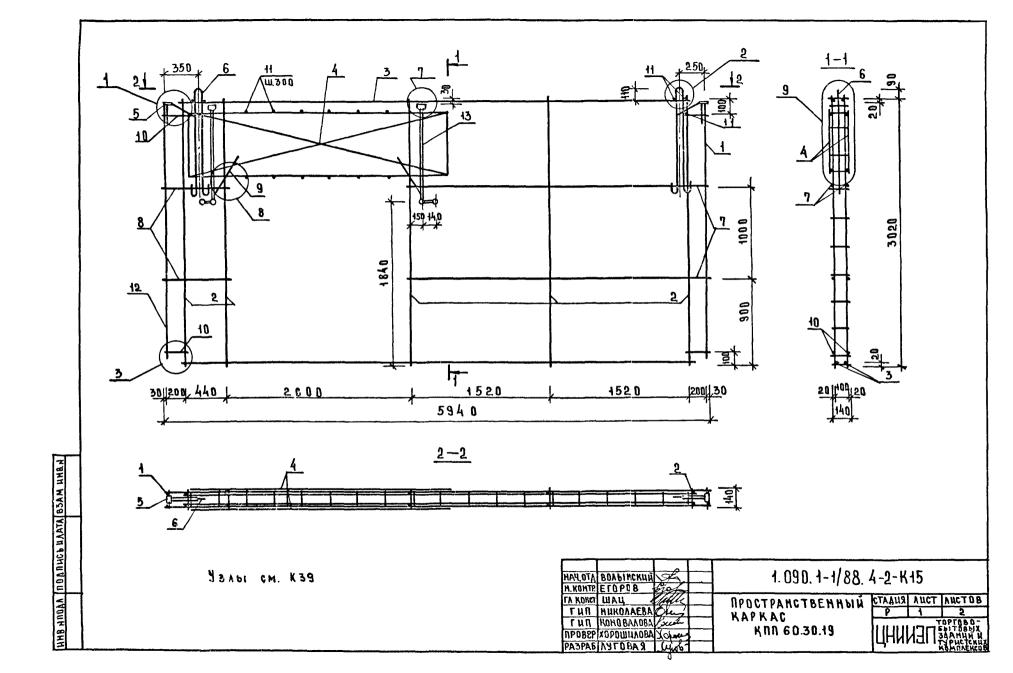
1. В ТАБЛИЦЕ ПРИВЕДЕНО ОБОЗНАЧЕНИЕ ДОКУМЕНТА АРМАТЧРНЫХ ИЗДЕЛИЙ ПО ВЫПЧСКУ 1.090.1-1 [88.4-3. 2. АРМАТЧРА КЛАССА ВЫТ ПО ГОСТ 6727-80

ина. подл. подпись и дата взамине

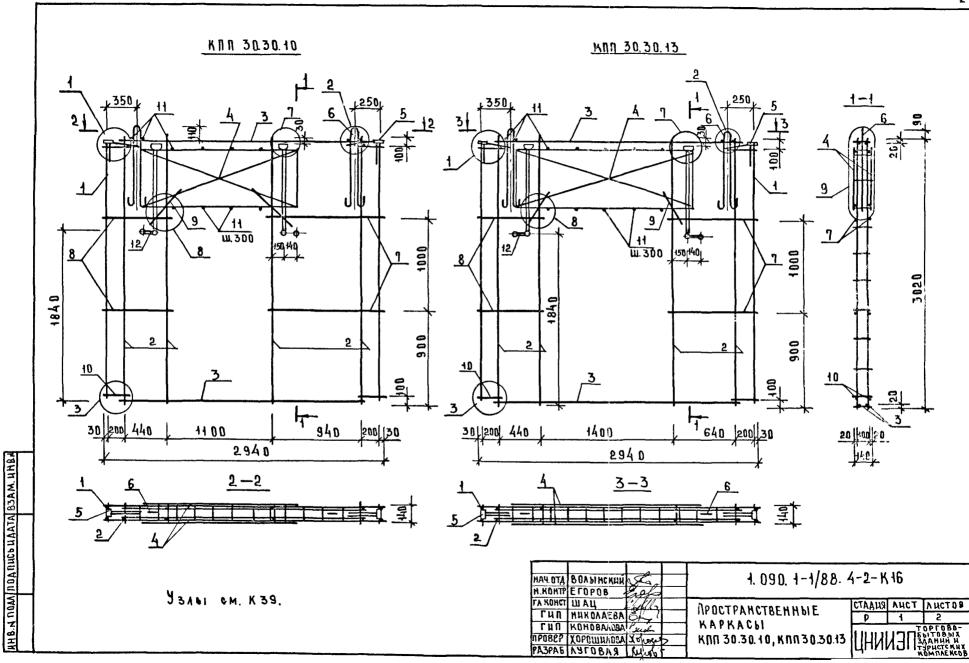

лист 2

М АРКА Простран-	п 03	A N A A M O 1 O H A P E T A M A A	Koa	MACC	A, KP	ОБОЗНАЧЕНИЕ
СТВЕННОГО К Д РКАСА		RUABAEH	''''	דשו	BCETO	Документа
-	1	KP-2	1	0,93	0,93	Ki
	2	KP-3	2	1,47	2,94	K 2
	3	K P - 1	1	0,84	0,84	Kil
en e	4	MH-1	2	0,72	1,44	K27
30-	5	c n-5	5	1,23	2,46	K26
कुं	6	AHI	1	1, 07	1,07	K31
# F	٦	φ5 8pĪ, L=1140	4	9,16	0,63	Б.Ч.
7	8	φ5 Bpī, L =720	4	0,10	0,40	Б.Ч.
	9	φ58p1, L= 250	8	0, 04	0,28	5. L
	10	Φ5BpI, L=140	7	0,02	0,14	Б. Ч
	44	бр	2	2,96	5,92	1.090.1-1/884240
			+-	יסו סדע:	17,20	

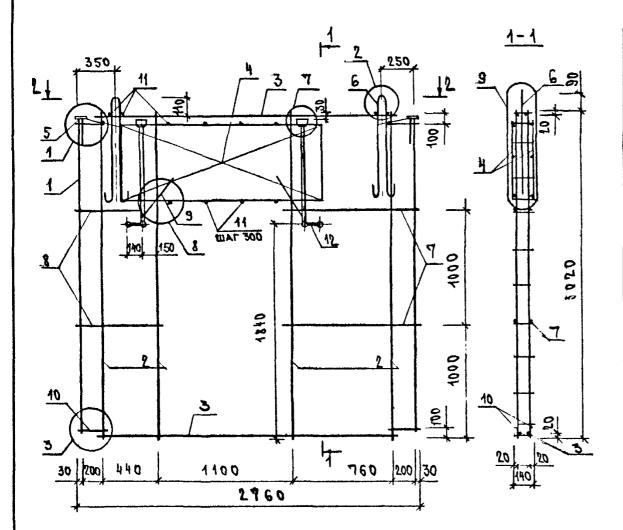
4. В ТАБЛИЦЕ ПРИВЕДЕНО ОБОЗНАЧЕНИЕ ДОКУМЕНТА АРМАТУРНЫХ ИЗДЕЛИЙ ПО ВЫПУСКУ 1.090.1-1/88.4-3 2. АРМАТУРА КЛАССА ВРТ ПО ГОСТ 6727-80. 3. У ЗЛЫ СМ. К 39.


HAN GTA BOALINCHIA	1.090.1-1/88	. 4-2-1	(13	
M. KOHT ETOPOB	ПРОСТРАНСТВЕННЫЙ	СТАДИЯ	AUCT	AUCTOR
TUN HUKOAAEBA	KAPKAC	HUIII	וח ו	0 P F O B D
PAJPAG AKOBAEBA	1KN12.30-9	цпи	וניא וניא <u>ויי</u>	ADHELEKTO ADHELEKMI

MAPKA NPOCTPAH-	กอร	A A P K A OTO H T Y A M T A	KOA.	MACCI	λ,ΚΓ	OGO3HA4EHUE
СТВЕННОГО К АР КАСА		КИХЗДЕН	107.	łшт.	BCE TD	AOKYMEHTA
	1	Kb-5	2	0,93	1,86	Ki
	5	KP-3	6	1,47	8,82	K2
	3	KP-12	2	2,66	5,32	K5
9	4	KP-16	5	2,42	4,84	KT
60.30.10	5	MH-1	2	0,72	1,44	K 27
19	6	cu - 5	2	5, 03	10,06	K 26
K E	7	φ58PĪ, L =4200	4	0,58	2,34	Б.Ч
	8	φ58pI, L= 700	4	0,10	0,39	Б.Ч.
ĺ	9	φ58pī, L=500	4	0,07	0,28	Б. Ч .
	40	φ58pI, L=250	8	0,04	0,28	54
	11	ф58pI, L = 140	14	0,02	0,28	Б,Ч
	12	БВ	2	1,32	2,64	1.090.1 1/88.4-2-K37
				нтого	38,70	


1. В ТАБЛИЦЕ ПРИВЕДЕНО ОБОЗНАЧЕНИЕ ДОКУМЕНТА АРМАТУРНЫХ ИЗДЕЛИЙ ПО ВЫПУСКУ 1.090.1-1/88.4-3. 2.АРМАТУРА КЛАССА ВРТ ПО ГОСТ 6727-80.

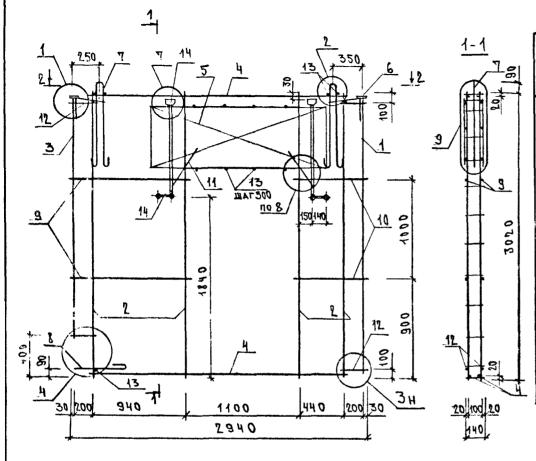
1.090.1-1/88.4-2-K14


MAPKA ПРОСТРАН-	nos.	M A P K A O T D H 9 C T A H 9 A	 	Macer	۱, K۲	ОБОЗНАЧЕНИЕ
CTBEHHOLO KALKACA	nus.	кил адғи	KON.	1 wT.	BCELO	LOKAMEHTA
	1	KP-2	1	0,93	0,93	K1
	2	KP-3	5	1,49	7,35	K 2.
	3	KP-12	2	2,66	5,32	K 5'
9	Ц	KP-18	2	6,30	12,60	K 8
9	5	MH-1	2	0,72	4,44	K 2.7
60.30.49	6	Cn-2	2	5,03	10,06	K 2.6
KDA	A	4 5 B p I , 4 = 3300	4	0,46	1,83	6.4.
 	8	\$ 5 BpI, L = 700	4	0,40	1,58	6.4.
	3	中 8 A III , L = 500	4	0,20	0,80	6,4.
	10	4 5 BpI, 4 = 250	8	0,04	0, 2 &	6.4.
	14	458pI, 4=140	20	0,02	0,40	Б.Ч.
	12	KP-41	1	3,87	78,6	K4
	13	68	2	1, 32	2,64	1.090.1-1 83.4-2-K3
				чтого:	49,25	

1.8 таблице приведено обозначение документа арматурных изделий по выпуску 1.090.1-1/88,4-3. 2.4 горо вы торо вы торо

MAPKA Простран-		A		Macca,	KF	Овозначение
CTBEHHOTO KAPKACA	103	н э д Е л и я	KON.	1шт.	BCETO	ATHEMENOA
	1	KP- 2	2	0,93	1,86	K1
	٩	KP- 3	4	1,47	5,88	K2
	3	KP-19	2	1,22	2,44	KS
	4	KP-16	2	2,42	4,84	KT
_	5	ин- 1	2	0,٦2	1,44	K 27
5	G	cn - 4	2	1,81	3,62	K 2 G
30	7	+5BpI, L=1200	4	0,17	0,68	Б.Ч.
Knn 30.30.10	8	+ 5 BpI, L = 400	4	0,10	0,39	8.4.
E E	ð	+ 58pI, 4 = 500	4	דס,0	9,28	6.4.
*	10	ф 58p1, L = 250	8	0,04	0,28	5 , 4 .
	11	+ 58pI, L = 140	14	0,02	0,28	6.4.
	12	E8	2	1,32	2,64	1.090.1-1/884-2-K37
				HTOTO:	24.78	
	1	KP-2	2	0,93	1,86	K1
	٤	KP-3	4	4,47	5,88	X 2
	3	KP-14	2	1,28	2,44	KG
	4	KP-19	2	3,00	6,00	Ͷ
	5	MH-1	2	0,72	1,44	K 27
10	S	cn - 4	2	1,81	3,62	KLE
ò	7	+58pT, 4 = 900	4	0,13	0,50	Б. Ч.
30.30,13	8	+ 58+I, L = 400	ц	0,10	0,39	Б.Ч.
KAN 3	9	+58pI, 4 = 500	4	P0,0	0,28	B.4.
2	10	Ф 5BþI . 4 = 250	8	0,04	0,28	6.4.
	11	4 5 BpI, 4 = 140	14	0.05	0.58	5.4 .
	12	68	2	1,32	2,64	1090.1-4 88.4-2-837
				нтого:	26.04	

1.В ТАБЛИЦЕ ПРИВЕДЕНО ОБОЗНАЧЕ-HUE AOKUMEHTA APMATUPHOX HARENUH по выписки 1.090.1-1 88.4-3. PAPMATUPA KNACCA BPT NO . 08 - FSP2 T201

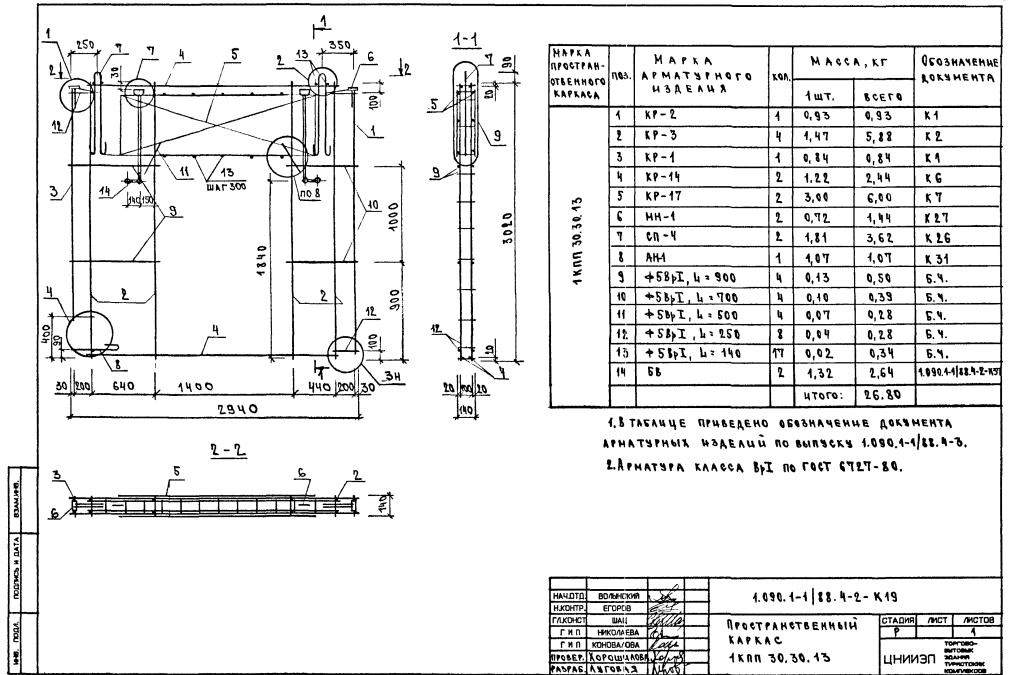


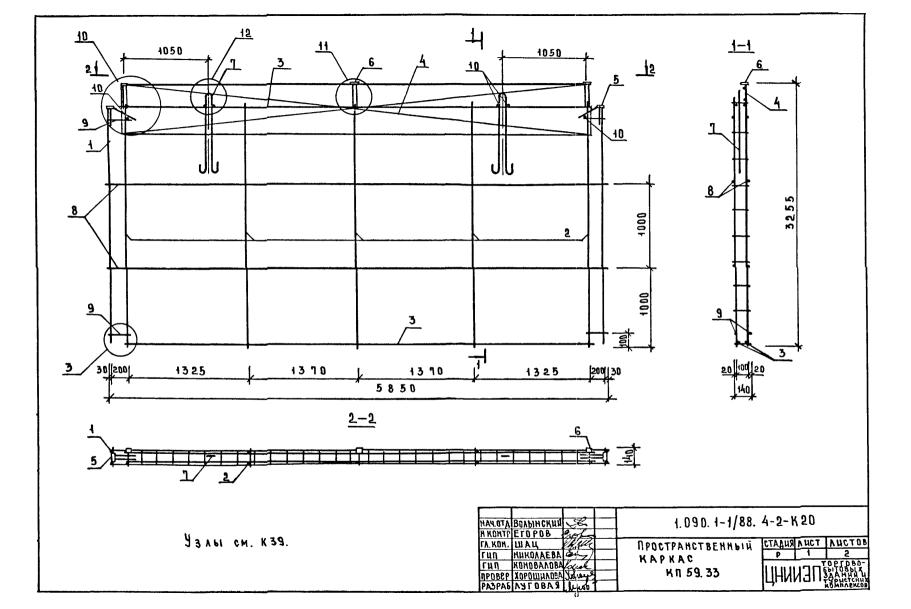
mapka Npoetpah-	No3.	MAPKA		MAGE	A, Kr	OFOSHA TEHUE
CTBEHHOLD KALKACA	445,	OTOM 9 ETAM 9 A RHABAEH	KON.	1шт.	BCETO	LOKNHEHTA
	1	KP-2	2	0, 93	1,86	K4
	2	KP- 3	4	4, 49	5,88	K 2
	3	LP-14	2	1, 2 2	2,44	KG
	4	KP-16	2	2,42	4,84	ΚП
70	5	MH-1	2	97,0	4,44	K 2 7
28.30.10	6	cn-4	2	1,81	3,62	K 2 G
	7	458pI, h = 1000	ч	0,14	0,56	Б. Ч.
KOU	8	458pI, L= 700	4	0,10	0,39	6.4.
-	9	+ 6BpI , 4 = 500	4	F0,0	0,28	6.4.
	10	4 58 pl. 4 = 250	8	0,84	0,28	Б.Ч.
	11	+ 6 B p I , L = 140	14	0,02	0,28	6.4.
	12	БВ	2	1,32	2,64	1.090.1-1 88.4-2-K3T
				пьосо:	24,66	

1. В ТАБЛИЦЕ ПРИВЕДЕНО ОБОЗНАЧЕНИЕ ДОКИМЕНТА АРМАТУРНЫХ ИЗДЕЛИЙ ПО ВЫПУСКУ 1.080.1-1 (88.4-3. 2. АРМАТУРА КЛАССА ВРТ ПО ГОСТ БТ27-80.

2 - 2	
1 6	
	\$

			2				
ДТО,РАН	ВОЛЫНСКИЙ	10		1.090.1-1/88.4-2 -	K AT		
H.KOHTP.	ECOPO3	6	7	1.030.1-1100.4 2	7,11		
ГЛЖОНСТ	BJALI	1611			СТАДИЯ	MCT	листов
LNU	HUKOMAEBA	61-		TPOCTPAHOTBEHH WIN	P		4
ГИП	KOHOBA/108A	lage		KAPKAC			PT080-
rpobet.	Хорошилова	Low	-7	KAN 28.30.10	ЦНИИ	3U 30	TOBUK APPIR
Pastag.	KABOTEK	THE S				177	WCTOKPIK WIVEKCOB

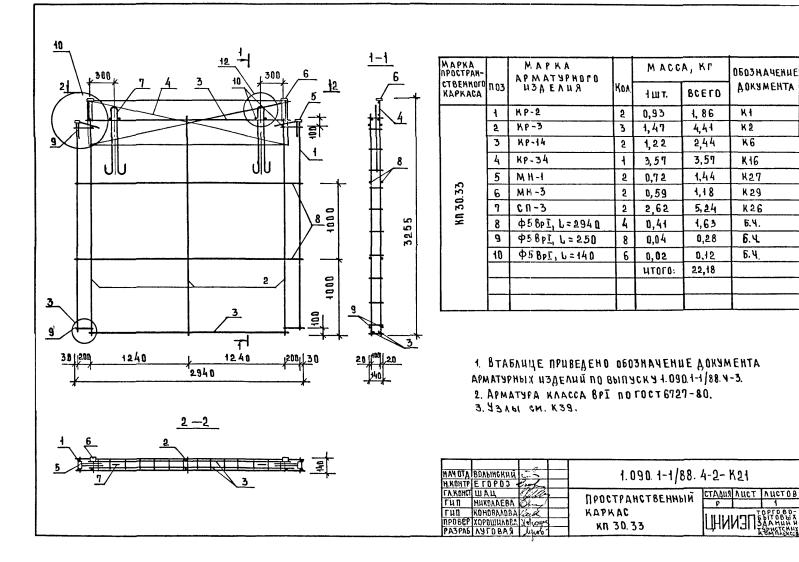

MAPKA	1103.	А Я Ч А М О Т О Н Ч Е Т А М Ч А К И Л В Д Е Н	KON.	Масса 1 шт.	, KT BCETO	аинаранкод0 Атнэмклод
	1	KP - 2	1	6,93	0,93	Ki
	2	KP-3	Ч	1,47	5,88	K 2
	3	KP-1	1	0,84	0,84	K1
1	4	KP-14	2	1,22	2,44	K 6
2	5	KP-16	2	2,42	4,84	χч
30, 10	6	MH-1	2	27,0	1,44	K 27
30.	Ч	611-4	2	1,81	3,62	K 2.6
4 K N N	8	AH1	1	1,07	1,07	K 31
*	9	458pI, L=1200	4	0,17	89,0	6.4.
	10	4 5 8 FT , L = 700	4	0,10	0,39	5. 4.
	41	45BpI, L=500	4	70,0	9,28	5.4.
1	12	+ 5ByI, 4: 250	8	0,04	0,28	5.4 .
	13	+ 5 B p I , L = 140	15	0,02	0,30	Б. Ч.
	14	68	2	1,32	2,64	1.090,1-1 88.4-2-K37
				HTOFO:	25,85	


1.8 TAFRULE RPUBERENO OFOSHAVENUE ROKUMENTA APMATUPHOLY HIRERUÑ NO BURUCKY 1.090.1-1 |88.4-3|. 2. APMATUPA KARCCA BET NO FRET GY27-80.

3	2	7 1
6		1

2-2

НАЧ.ОТД. НТОХН			ф.	1.090.1-1 88.4-2 -	K18		
LVYCHCL	DIALL ,	K.	El B		СТАДИЯ	/MCT	/MCTOB
LNU	НИКОЛАЕВА	6		Простелнственным	P		4
LNU	KOHOBA/IOBA	Di	rfil	KAPKAC			PCORO- TORNE
MYOBET.	Хорошилова	14	mg	1 K N N 30. 30. 10	Іцнии	3U 36	AHER
PASPA 6.	RABOTEN	V	NO.				MCTOKINE MINEKOOS

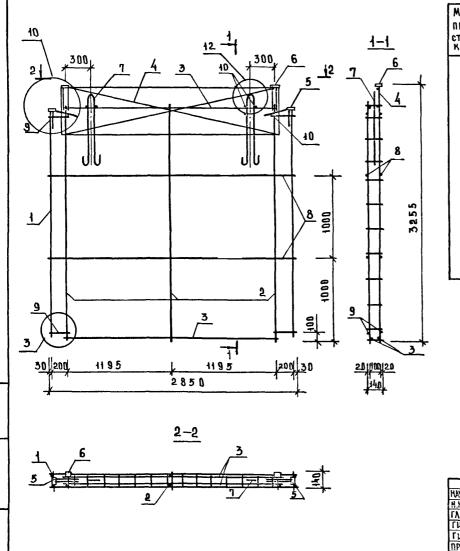

Mapka Npoctpan-	NO3.	MATKA OTOHOTO		MACCI	۱, ۲۲	OFOSHAYENLE
ct Be hhqrq Ka P K AC A	REMHAIA	RUNJAEU	KOA.	1 uT.	BCETO	HOKSHEHTA
	1	K8-5	٤	0,93	1,86	K1
	2	KP - 3	5	4, 4 7	Y, 35	K 2
	3.	KP-12	2	2,66	5,32	K5
	4	KP- 33	1	7,40	7,40	KAG
	5	MH - 1	2	0,72	1,44	KZT
_	6	ин - 3	3	0,59	1,99	K 2 9
5 9. 33	7	ÇП -1	2	6,56	13,12	K 26
S.	8	45 8pl, L = 5850	4	6,40	1,58	Б.Ч.
Z Z	3	458+I, b = 250	8	0,04	0,28	6.4.
	10	45 BpI, L = 140	6	0,02	0,12	5.4.
			_	чтого:	40,24	
			-			
			\perp			

АРМАТУРНЫХ ИЗДЕЛИЙ ПО ВЫПУСКУ 1.090.1-1 88.4-3. 2.APHATUR KARCER BY TO FOOT GTET-80.

нВ. подл. подгись и дата взаминВ.

1.090, 1-1 88.4-2- K20

84CT



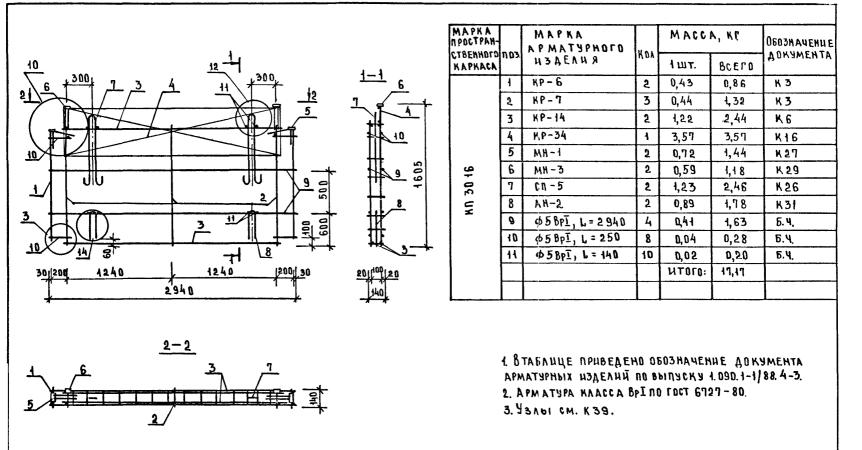
K29

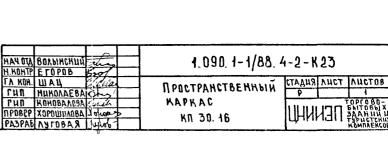
K26

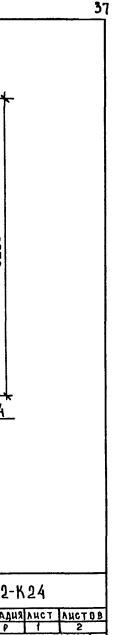
5.4.

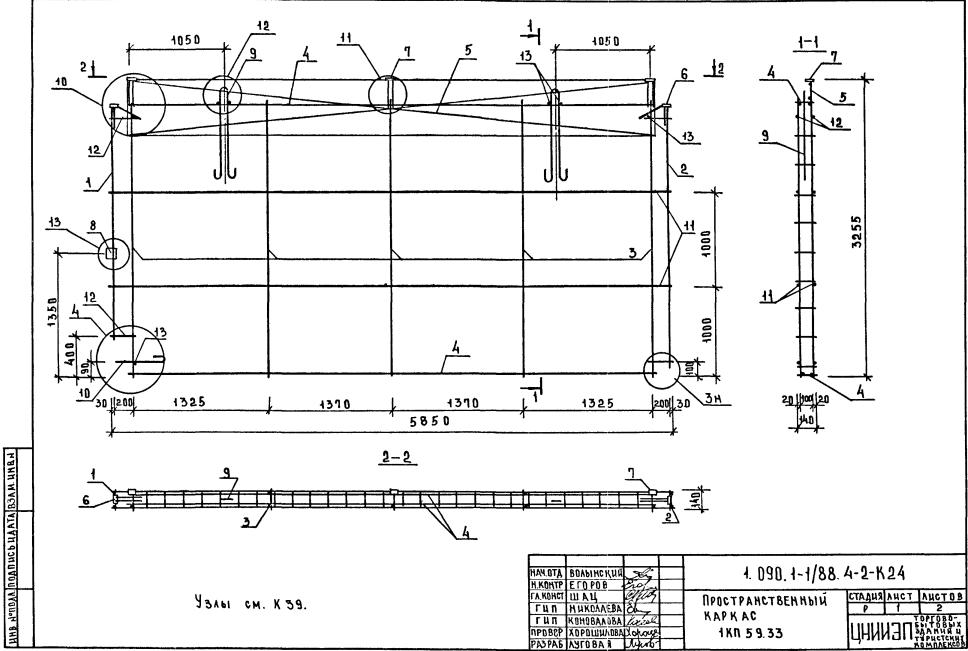
6.4

HHBACHOBA INDANUCE UAATABSAM UHBA

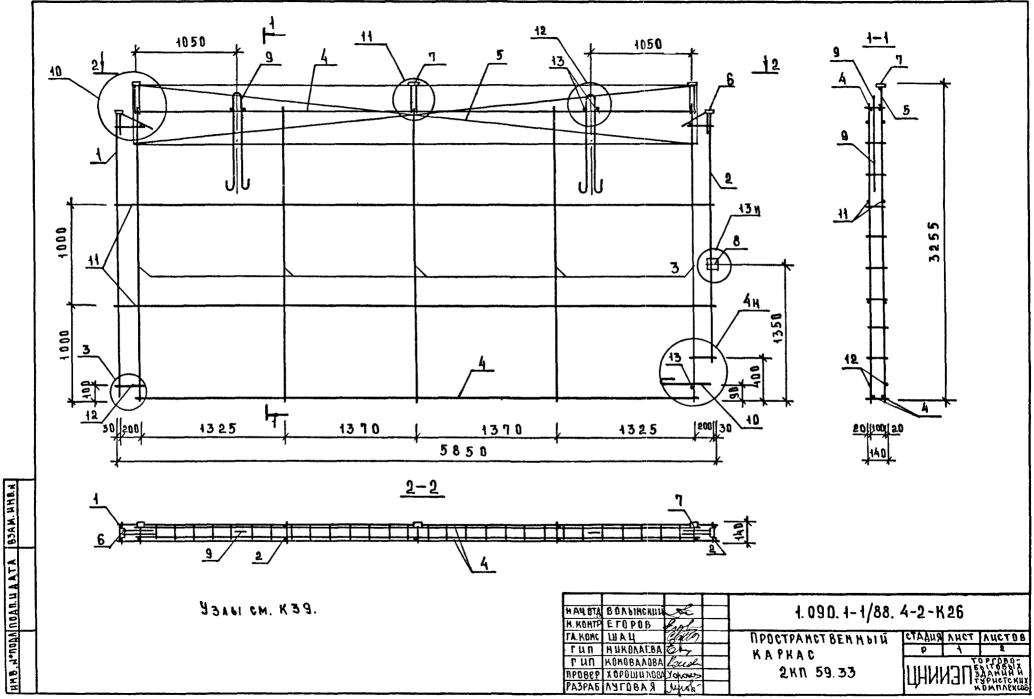

MAPKA	mai	MAPKA APMATYPHOTO UJAENUR	KOA.	Масса, кг		DEO3HA4EHUE
				1шт.	BCETO	ADKYMENTA
29.33	1	KP-2	2	0,93	1,86	K1
	2	KP-3	3	1,47	4,41	К 2
	3	KP-14	2	1,22	2,44	K6
	4	KP-35	1	3,40	3,40	K 16
	5	MH-I	2	0,72	1,44	K27
	6	MH-3	2	0,59	1,18	K29
	7	cn-3	2	2,62	5,24	K 26
Ę.	8	φ58pI, L=2850	4	0,40	1,58	6. V,
_	9	φ58pI, L = 250	8	0, 04	0,28	6. Ч.
	10	Ф5ВРІ, L = 140	6	0,02	0,12	5.4.
				UTOFO:	21,95	
			T			


- 1. В ТАБЛИЦЕ ПРИВЕДЕНО ОБОЗНАЧЕНИЕ ДОКУМЕНТА АРМАТУРНЫХ ИЗДЕЛИЙ ПО ВЫПУСКУ 1.090.1-1/88.4-3.
- 2. APMATYPA KAACCA BPI NO FOCT 6727-80. 3. 43461 CM. K39.

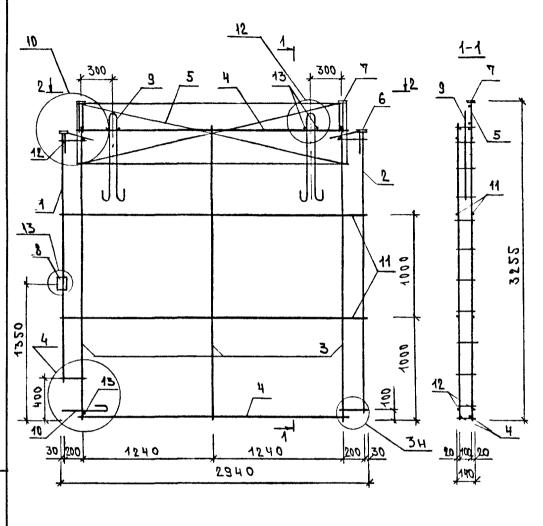

НАК ОТЛ ВОЛЬНСКИИ 4.090.1-1/88.4-2-1	(22


ПРОСТРАНСТВЕННЫЙ КАРКАС
ПРОВЕР ХОРОШЕЛОВАЯ КАРКАС
КП 29.33

BOTOUR TOUR RUBATO
PORTON PROPERTY OF THE PROP



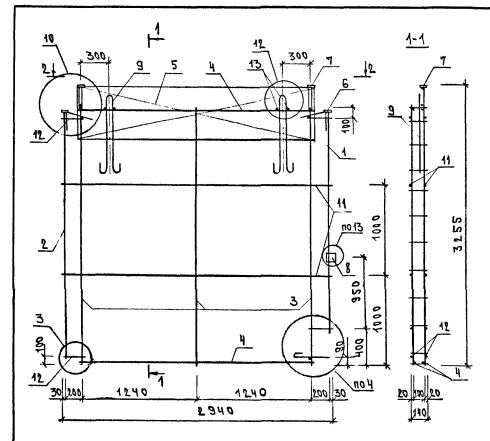
MAPKA TPOTTAH-	NO3.	NAPKA	KOA.	Mace	Α, Κ Γ	OFOSHAVEHUE
KA!KACA		КНИЯДЕНЯ		1 щт.	BCETO	ATHAMEROA
	1	XP-1	1	0, 8 4	0,84	K1
	2	KP - 2	4	0,93	0,93	K 1
	3	KP-3	5	1,47	7,35	K 2
	4	KP-12	2	2,66	5,32	K 5
	5	KP-33	4	प, ५ ०	7,40	K16
	e	MH-1	2	0,72	1,44	K 27
58.33	7	HH-3	3	0, 5 9	1,17	K 2 9
	8	ин- 4	1	0, 6 9	0,69	K30
1 Ku	9	cn - 1	2	92,3	13,12	K 2 G
`	10	AH-4	1	۲,0 ۲	4,07	K 31
	11	45 BpT , 4 = 5850	4	0, 4 0	4,58	Б. Ч .
	12	+58pI, 4:250	8	٧, ٥ ٧	0,28	F.4.
	13	Φ 5 ΒþΙ, 4 = 140	A	0,02	0,14	G, 4.
				HTOFO:	41,94	


в табацце приведено обозначение документа арматурных изделий по выпуску 1.090.1-1/88.4-5. Арматура класса врT по гост 6727-80.

VHC

MAPKA Npostpah-	NO3.	M A P K A A P M AT Y P H O F O	KOA.	MACC	A, KT	0603HA4EHHE
CTBEHHORO "" Kapkaca	1143.	KHN3 #6H		1 шт.	BCETO	AOKSMEHTA
	1	KP-4	1	0,84	0,84	Қ 1
	٤	KP-2.	1	6,93	0,93	X4
	3	K1-3	5	1,47	7,35	K 2_
	ų	KP-12	2	2,66	5,32	K 5
	5	KP-33	1	7,40	7,40	X 16
•	E	MH - 1	2	0,72	1,44	K 2 T
59.33	7	MH - 3	3	0,59	4,77	K 2 9
	8	MH - 4	1	0,69	0,69	K30
¥.	9	en - 1	2	6,56	13,12	KZG
~	10	AH -1	1	1,07	1,07	K31
	44	+ 5BpI, h = 5850	4	0,40	4,58	6.4.
	12	+ 58pI, 4: 250	8	0,04	0,28	B. 4.
Ţ.	13	4 58pI, h = 140	٣	0,02	0,14	6.4.
			1	HTOTO:	41,94	

1. В таблице приведено обозначение документа арматурных изделий по выпуску 1.090.1-1 (88.4-3. 2. Арматура класса ВЫ по гост с727-80.

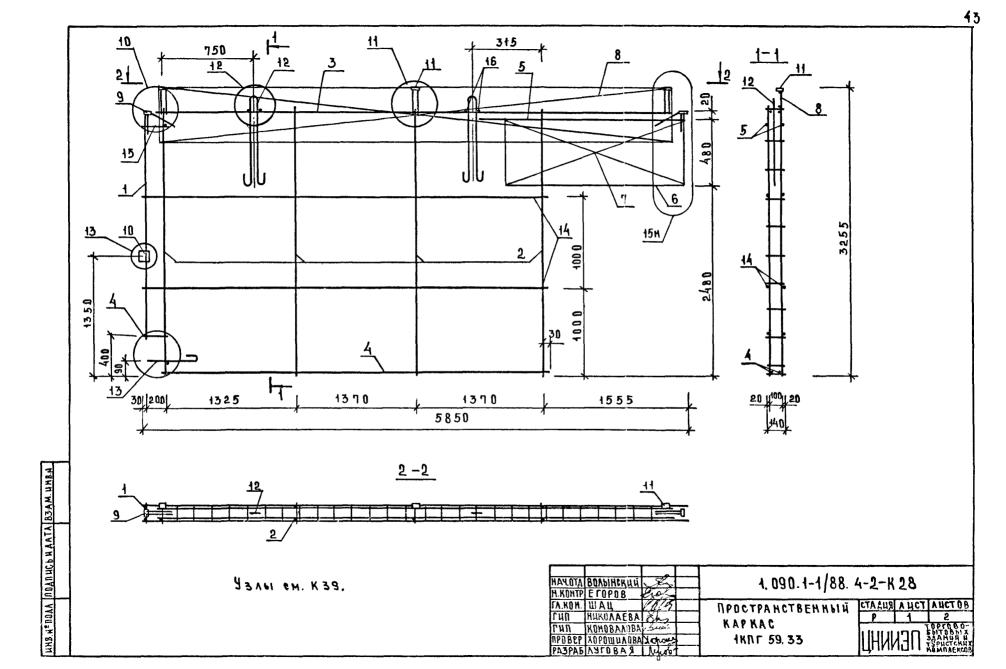

MAPKA ПРОСТРАН- СТВЕННОГО		M A P K A A P H A T Y P H O F O	KOA.	MACCI	\ , KF	06034446446
KAPKAGA	1145.	н в д в к ц я	KON.	<i>1</i> Ш1	BCELO	TOKAMEHLY
	1	KP-1	4	0,84	9,84	K1
	2	KP- 2	1	0,93	0,93	K 4
	3	KP-3	3	1,47	4,44	K 2
	4	KP-44	2	1, 2, 2	2,44	K G
	5	KP-35	1	3,40	3,40	K16
	6	MH-1	2.	0,72	1,44	K 27
33	٦	MH-3	2	0,59	1,18	K 29
000	8	MH-4	1	0,69	0,69	K30
E	9	Ç⊓ - 3	2	2,62	5,24	K 2 6
=	10	AH-1	1	1,07	1,07	K31
	11	458pI, L=2940	4	0,41	1,63	Б.Ч,
	12	45 BpI, 4 = 250	8	0,04	0,28	F.4.
	13	458pI, 4 = 140	٦	0,02	0,14	5.4.
				HTOTO:	23,70	

1. В ТАБЛИЦЕ ПРИВЕДЕНО ОБОЗНАЧЕНИЕ ДОКУМЕНТА АРМАТУРНЫХ ИЗДЕЛИЙ ПО ВЫПУСКУ 1.090.1-1 88. N-3. 2. АРМАТУРА КЛАССА ВЫТ ПО ГОСТ 6727-80.

	2-2	- 4	
1 7			<u></u>
		<u>3</u>	直到
	<u>.s.</u> /		

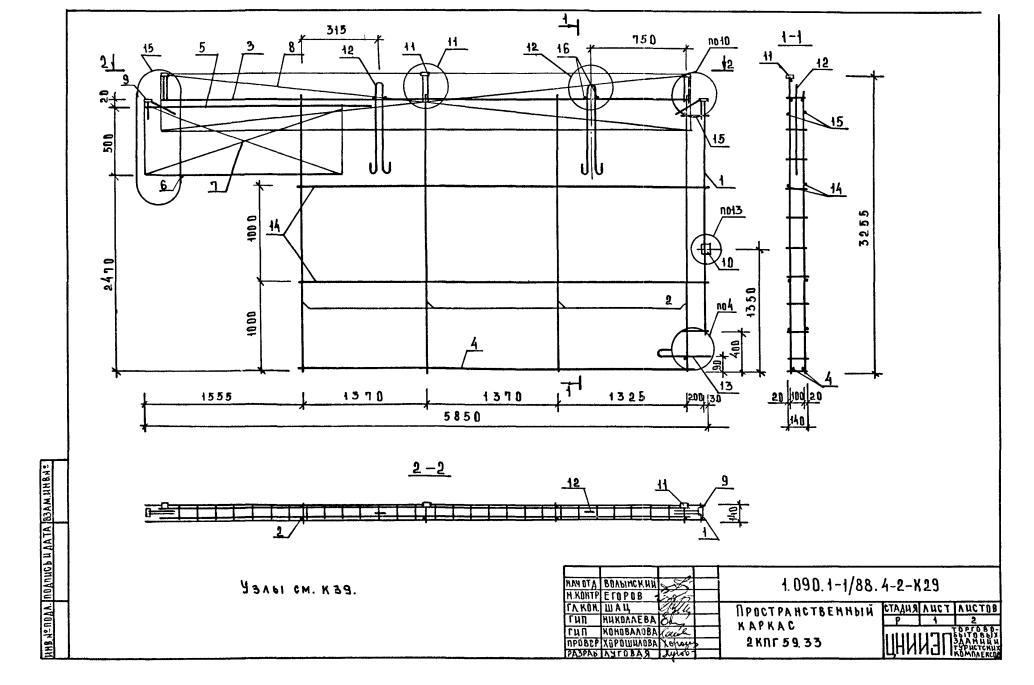
инв. подл. подпись и дата

				4							
нач.отд.	BO/INHCK	ND	18	()	1.090.1-1 88.4-2 - K26						
IKOHTP.	ECOPOB	<u> </u>	4	Ŧ.							
VYKOHCT	LIAU	6		MA	ПРОСТРАНСТВЕННЫЙ	СТАДИЯ	/MCT	ANCTOB			
ZNU	HNKO/A-E	3A P		7		P		1			
ГИП	KOHOBA/IOI	BA Z	Park	de	KAPKAC		TOPFORO-				
IPOBET.	Хорошил			pres	1KN 30.33	ЦНИИ	JU 30	AHMA			
ABPAG.	VALO81: 3	,	W	1			PROTOKINK MRMEKODB				

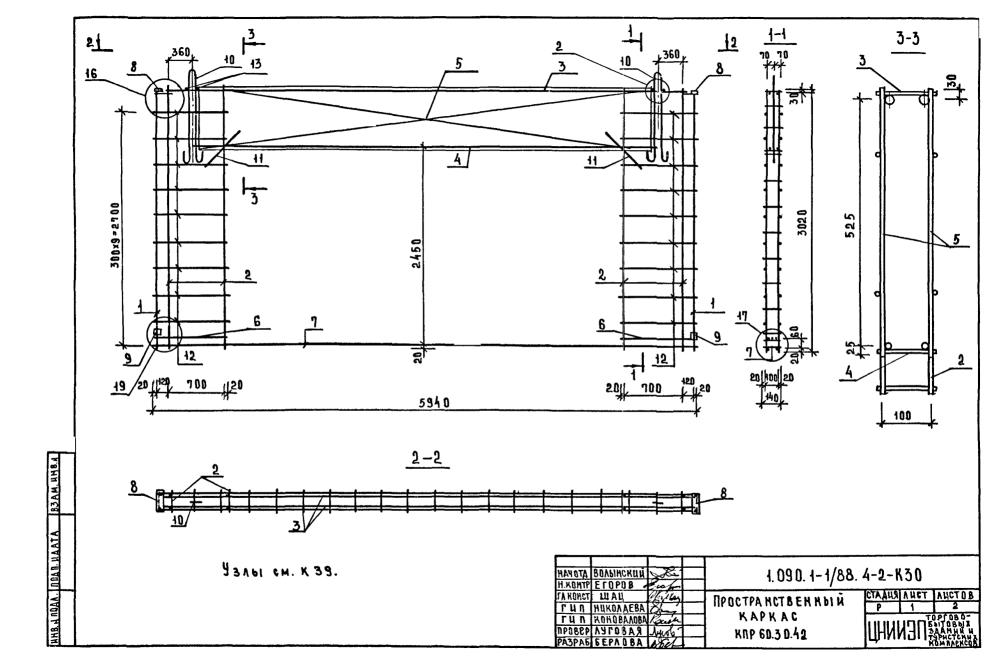


MAPKA RPOCTPAH-		MAPKA		MAGG	Α, ΚΓ	ОБОЗНАЧЕНИЕ АТНЭМЕХЛОД
CTBEHHOFO KAPKACA	N93.		KON.	1 wt.	8cer0	
	1	KP - 1	1	0,84	P8,9	K4
	٤	KP-2	1	0,93	0,93	K1
	3	KP-3	3	1,47	4,44	K 2
	4	KP-14	2	1,22	2,44	K 6
	5	KP-35	1	3,40	3,40	KAG
20	6	MH-1	2	27,0	1,44	K27
70.33	П	MH - 3	2	0,59	1,18	K 2 9
E	8	MH-4	1	0,63	0,69	K30
2	9	cn-3	2	2,62	5,24	K 2 6
	10	AH-1	1	4.07	70,1	K31
<u> </u>	11	+5BFI , L = 2940	Ч	0,41	4,63	5.4.
	12	45BbI, 4 = 250	1	P 0,0	82,0	5.4.
	13	+5BpI, 4 = 140	7	0,02	0,14	5.4.
			1	HTOFO:	23.70	
1						

2-2


4.В таблице приведено обозначение документа арматурных изделий по выпуску 4.090.4-4|88.4-5. 2.Арматура класса вы по гост счеч-80.

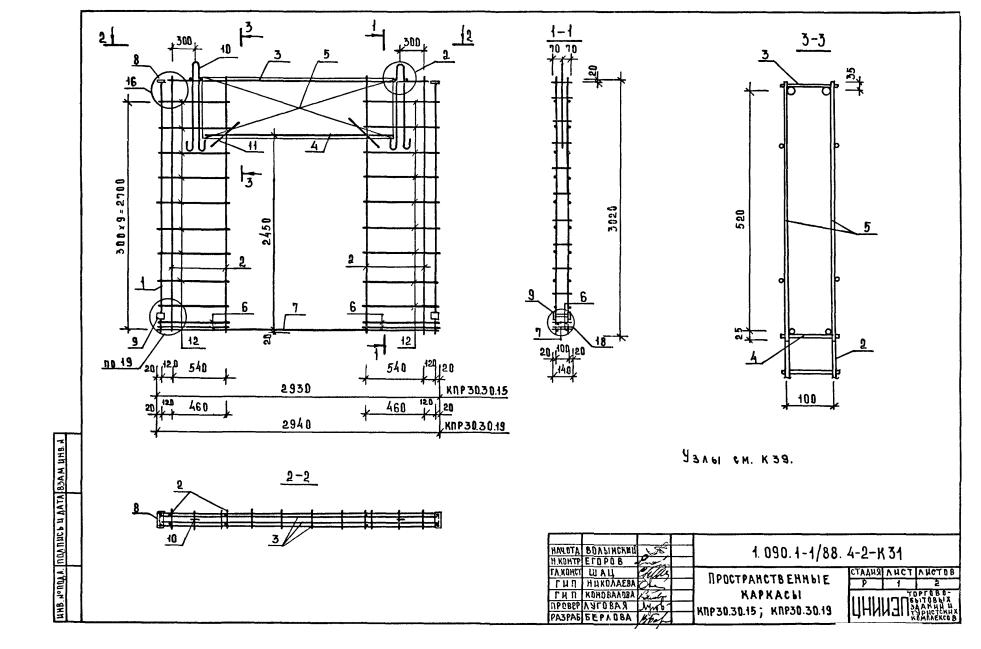
	Волынский Егорив		Z,		1.090.1-1 88.4-2 -	K27		
TA.KOH.	WAY,	1	Tio		ПРО СТРАНСТВЕННЫЙ	LAMATS	ANGT	ROTSHA
	MUKONAEBA	0	يعال			P	L	1.4
	KOHOBALOBA		140	1	KAPKAC	I		PALOPPIA
rpobed. Pagpas.	KABAHABAAKA	K			2 KN 30.33	ПНИМ	1111	TYPUCTCKUX TYPUCTCKUX


MAPKA	поз.	MAPKA	KQA.	Илес	A , KT	0603HA4EHUE
KAPKACA		RHABAEH		1 wt.	BCETO	TOKAMEHLY
	1	KP-1	1	0, 84	0, 84	K1
	2	KP-3	¥	1,47	5,88	K 2.
	3	KP-12	1	2,66	2,66	KS
	4	KP-13	1	1,99	1,99	K 5"
	5	KP-31	4	8,91	19,8	K45
	e	KP-32	1	1,58	1,58	KAS
	7	KP-30	2	1,45	2,90	K 14
59.33	8	KP-33	1	7,40	7,40	K 16
2.9	9	1-ни	2.	2 F,0	1,44	K 2.T
1 2	10	MH-4	1	0,69	0,69	K 30
4 KNT	44	мн-3	3	0,59	1,99	x 2.9
	42	cn - 2	2	5,03	10,06	K 2.6
	43	AH-1	1	1,07	1,09	K 31
	14	+ SB+I L=4150	4	9,58	2,30	6.4.
	15	+5BpI, 4 = 250	4	0,04	0,14	6.4.
	16	+5BpI, L=140	7	0,02	0,14	6.4.
				нтого:	49.78	

1. B TREALUR RPHBEREND OF SHAVENUE ROKSHENTA APHATSPHOLL WAREAUÑ BO BOIRSCKY 1090.1-1 |88.4-3. 2. APHATSPA KARCCA BPI ROFOCT CT27-80.

MAPXA NPOCTPAH-	П93.	M A P K A P M O T O T O T O T O T O T O T O T O T O	KQA.	MACC	Α, ΚΓ	OBOSHAMEHHE
KAPKACA		нзделця		1 шт.	BCETO	АТНЭМСХОД
	1	KP-4	4	0, 84	0, 84	K4 .
	2	KP-3	ų	4, 47	5,88	K 2
	3	KP-12	4	2,66	2,66	K 5
	4	KP-13	4	1,99	1, 9 9	K 5
	5	KP-31	1	8,91	8,91	K 15
	6	KP- 32	1	1,5 &	4,58	K 15
	7	KP-30	2	1,45	2,90	K 14
59.33	8	KP - 33	1	7,40	7, 40	K 16
59.	9	MH-1	2.	0,72	1,44	K 2 T
2 K II F	10	ин-4	1	0,69	0,69	K 30
2 X	12	cn - 2	2	5,03	10,06	K 26
	13	AH-1	1	1,07	1,07	K34
	14	+58pI , 4 = 4150	4	0,58	2,30	6.4.
	15	458pI, L= 250	4	0,04	0,14	6.4.
	16	+58pI, L=140	٣	0,02	0,44	Б.Ч.
	11	MH-3	3	0,59	1,77	K29
				HTOFO:	49,78	

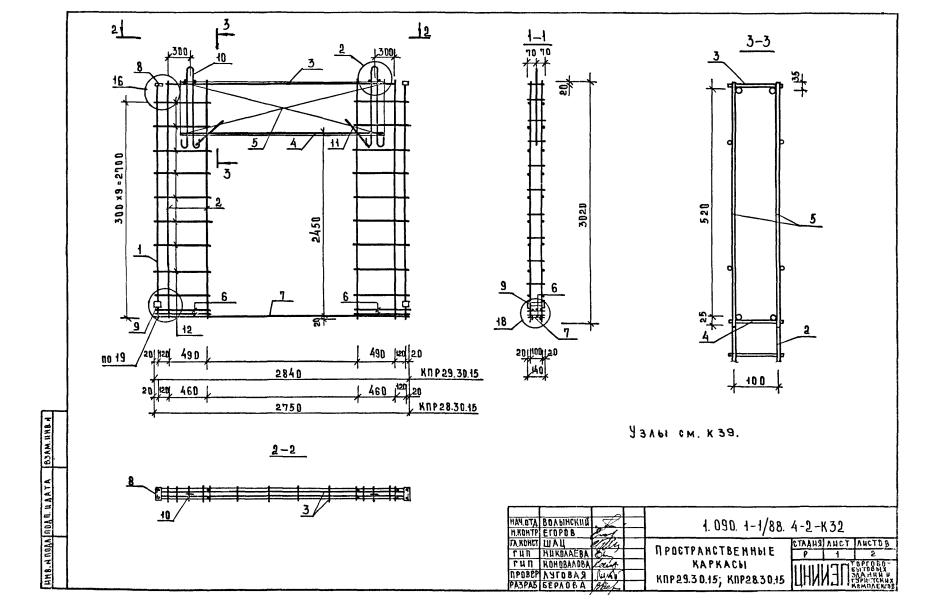
1. В ТАБЛИЦЕ ПРИВЕДЕНО ОБОЗНАЧЕНИЕ ДОКУМЕНТА АРМАТУРНЫХ ИЗДЕЛИЙ ПО ВЫПУСКУ 1.090.1-1 [88.4-5. 2. ВРИТОРА КЛАССА ВРТ ПО ГОСТ 6727-80.



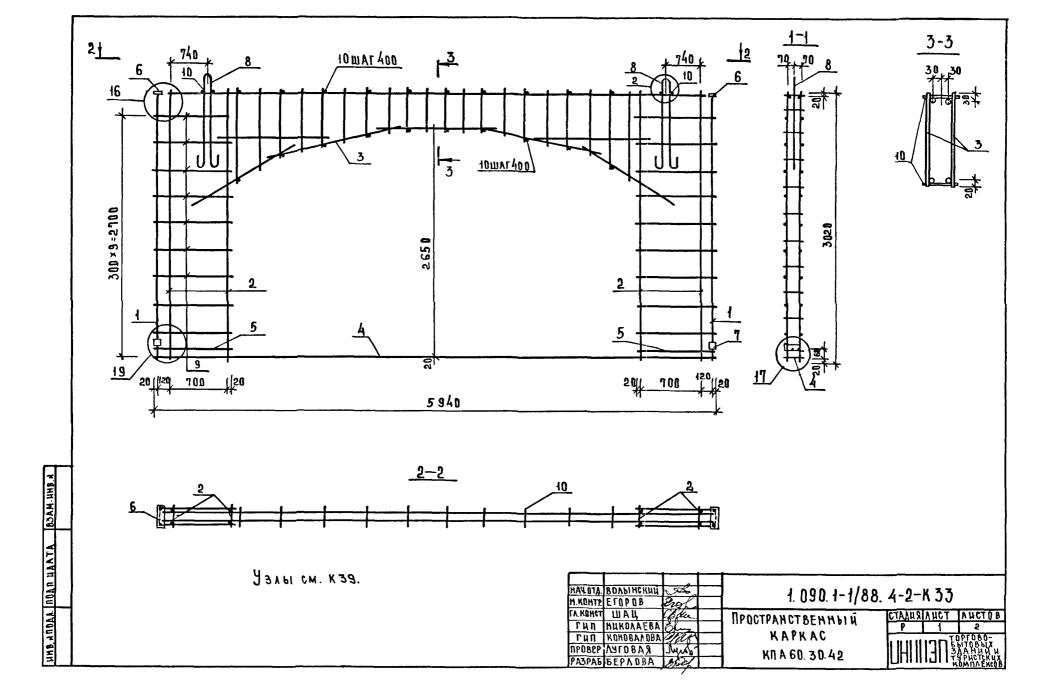
МАРКА ПРОСТРАН-	Поз.	MAPKA APMATYPHOFO		MACC	А, КГ	()503 HAYEHUE
CTBEHHOFO KAPKACA	1103.	RUNBAEN	Kon.	∫wT.	BCETO	AOKYMEHTA
	-	KP-8	2	14,88	29,76	К4
	2	KP-5	4	9,66	38,64	K 2
	3	KP-20	1	34,42	34,42	K 9
	4	KP-19	1	23, 20	23,20	K9
	5	KP~ 28	2	9, 52	19,04	K 13
42	6	C-1	2	1,84	3, 68	K22
KIIP 60.30.42	7	KP-26	1	31,08	31,08	K12
0.3	8	MH-2	2	1,37	2,74	K28
P	9	MH-4	4	0, 69	2,76	K30
ΚΠ	10	сп-3	2	2,62	5,24	K26
	44	Φ8AII ; L= 500	4	0,20	0,79	6.4.
	12	\$58pI; 4 = 860	36	0,12	4,30	6.4.
	13	\$58PI; 4=140	4	0,02	80,0	6.4.
				Цтого:	195,77	

1. В ТАБЛИЧЕ ПРИВЕДЕНО ОБОЗНАЧЕНИЕ ДОКУМЕНТА АРМАТУРНЫХ ИЗДЕЛИЙ ПО ВЫПУСКУ 1.090.1-1/88.4-3.

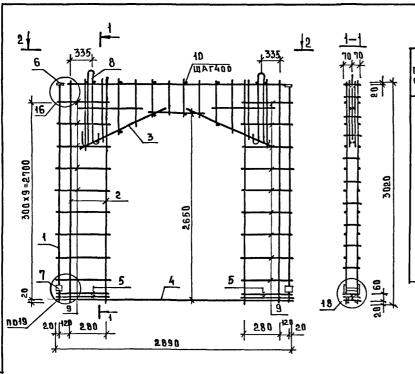
2. APMATUPA KAACCA Be I NO FOCT 6727-80.


3. APMATUPA KAACCA AIII NO FOCT 5781-82.

M A PKA H P O C T PA H- C T B E H H D C D K A P K A C A	n 0 3.	A	KOA	DDAM ТШ F	A, KP 80E FD	А ОКУМЕНИЕ В ОКУМЕНТА	
	1	KP-11	2	3,87	7,74	н 4	
	5	KP -3	4	1,47	5,88	K2	
	3	KP-23	1	4,91	4,91	KAD	
	4	KP-21	1	2,22	2,22	K 10	
	5	MP-29	2	1,88	3,76	X13	
	6	C -5	4	1,52	6,08	KSS	
Knp 30. 30.45	7	KP-27	1	5, 08	5,08	K 15	
ě.	8	MH -2	2	1,37	2,74	K 28	
Ę.	9	MH-4	4	0,69	2,76	K30	
×	10	CN-5	2	1,23	2,46	K26	
	11	Ф8 A II L=500	4	0,20	0,79	P.3	
	12	Φ5 Bpī L=700	36	0,11	3,88	6.4	
	13	φ5 Bpī L= 140	4	0,02	0,08	6.4	
				HTOFO	48,38		
	1	KP1D	2	7,39	14,78	KY	
	5	KP-4	4	2,51	10,04	Кā	
	3	Kb-55	1	6,63	6,63	K10	
	4	KP-21	1	2,22	2,22	K40	
	5	NP-29	2	1,88	3,76	K13	1. B TAFAULE PRUBEAEHO OF CONTACT
	6	C- 5	4	1,09	4,36	K24	НИЕ ДОКУМЕНТА АРМАТУРНЫХ ИЗДЕ- АИЙ ПО ВЫПУСИ 1.090.1-188-4-3.
\$	٦	NP-27	1	5,08	5,08	K 12	2. APMATYPA KAACCA BEI NO FOCT 6727-8
Š.	8	MH-5	2	1,37	2,74	K 28	3. APMATUPA MAACA AM NO FOCT 5781-82
Kn P 30.50, 19	9	MH-4	4	0,69	2,76	K30	
	10	Cn-5	2	1,23	2,46	K26	
	11	Ф8 A II L = 500	4	0,2	0,79	Б.Ч.	
	12	φ5 BpI L=620	36	0,08	2,88	Б.Ч	
	13	\$5 BpI L=140	4	0,02	80,0	P.3	
				HTOFO:	58,62	1	

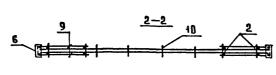

1. 090, 1-1/88. 4-2-K31

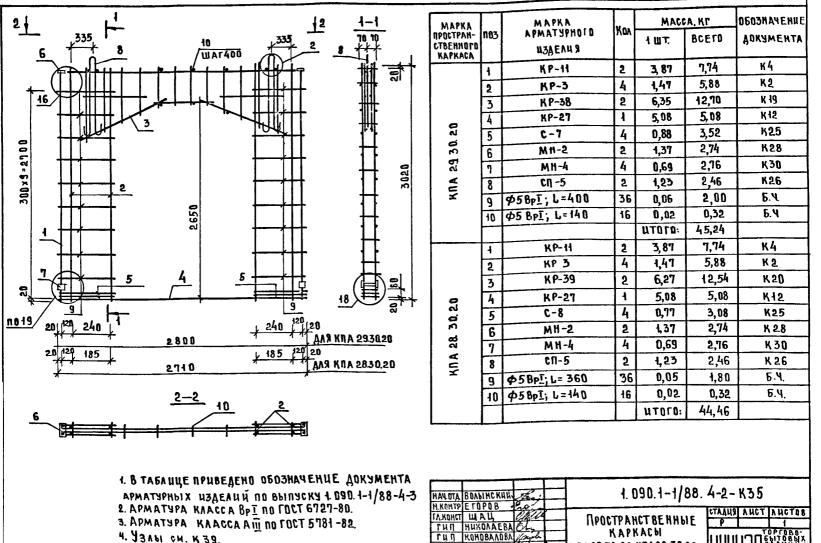
2


MAPKA	N03,	АХЧАМ ОТОНЧЕТАМЧА КИЛЭДСИ	KOA.	М АСС 1 ШТ.	A, KT BCETO	ЭИНЭРАНЕОЗО АТНЭМЕХОД	
	1	KP-11	2	3,87	7,74	к4	
	2	KP-3	4	1,47	5,88	K2	
	3	K P-24	1	4,13	4,73	KH	
	4	KP-21	1	5,55	2,22	KHO	
	5	KP-29	2	1,88	3,76	K13	
쵼	6	C-3	4	1,41	5,64	K23	
30.	7	KP-27	1	5,08	5,08	K12	
KnP 29, 30,45	8	MH-5	2	1,37	2,74	X28	
<u>ء</u>	9	MH-4	4	0,69	2,76	K3D	
×	10	CN -5	2	1,23	2,46	K26	
I	44	Ø8A m, L = 500	4	0,2	0,79	5.4	
	12	Ø 5 BpI, L=65D	36	0,10	3,60	5. 4	
	13	\$ 58p I, L=140	4	0,02	0,08	F.4	
				HTOFO	47,52		
	1	KP-11	5	3,87	7,74	K4	
	2	KP-3	4	1,47	5,88	K2	
	3	KP-25	1	4,59	4,59	KH	
	4	KP-21	1	2,22	2,22	KID	
	5	KP-29	5	1,88	3,76	K13	
	6	c - 4	4	1,30	5,20	K23	1. В ТАБЛИЦЕ ПРИВЕДЕНО ОБОЗНАЧЕНИЕ ДОКУМЕНТА АРМАТУРНЫХ ИЗДЕЛИЙ ПО
KNP 28. 30.45	7	KP-27	1	5,08	5,08	K15	BUNNER 1 4 1.090, 1-1 / 188-4-3
9.3	8	8-HW	2	1,37	2,74	K58	2. APMATYPA KAACCA BPI ROFOCT 6727-80
P 25	9	MH-4	4	0,69	2,76	K30	3. APMATUPA KAACCA AIII NO FOCT 5781-82
\ \S	10	Cn-5	2	1,23	2,46	K 26	
	11	φ8Am, L=500	4	0,2	0,79	Б. Ч	
	12	φ 5 Bp Ī, L= 620	36	0,09	3,43	6.4]
	13	φ58PI, L= 140	4	0,02	0,08	P.3	
				HTOFO:	46,77		
							1.090. 1-1/88. 4-2-K32

1.030. 1-1/00. 4-2

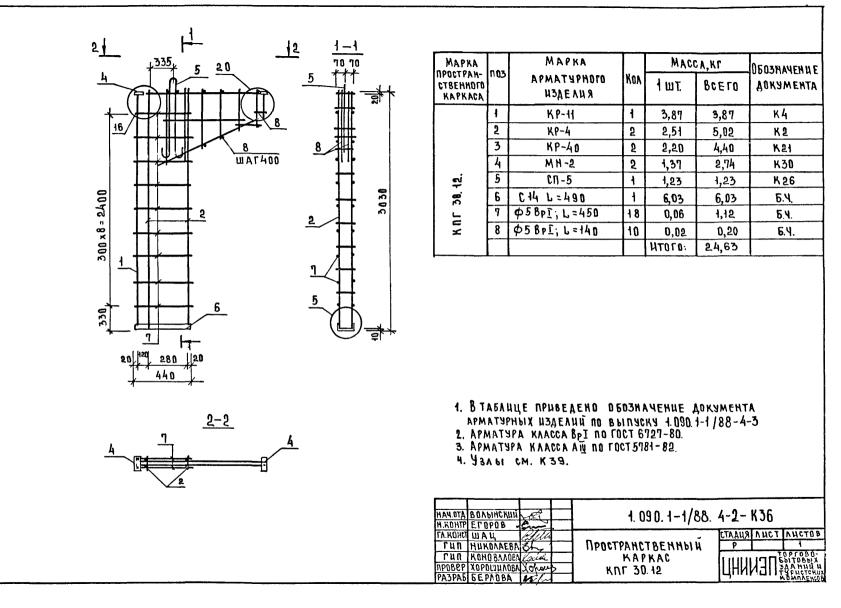
МАРКА ПРОСТРАН-		MAPKA APMATSPHOTO	Kon.	Macc	A, KC	OE03HAYEHUE	
CTBEHHOLO KAPKACA	ll03.	изделия		1шт.	BCETO	TOKAWEHLY	
	1	KP-9	2	9,60	19,20	K4	
KNA 60.30.42	2	KP-5	4	9,66	19,32	K2	
	3	KP-36	2	18.76	37,52	K17	
	4	KP-26	1	31,08	31,08	K12	
	5	C-1	2	1,84	3,68	K 22	
	6	MH-2	2	1,37	2,74	K28	
	7	MH-4	1	0,69	2,76	K30	
	8	cn-2	2	5,03	10,06	K26	
	9	45BpI, 4=860	36	0,12	4,30	Б.Ч-	
	10	φ58pI; 6=140	26	0,02	0,52	£.4.	
				μτοσο:	150,50		


- 1. В ТАБЛИЦЕ ПРИВЕДЕНО ОБОЗНАЧЕНИЕ ДОКУМЕНТА АРМАТУРНЫХ ИЗДЕЛИЙ ПО ВЫПУСКУ 1.090.1-1/88.4-3.
- 2. APMATUPA KAACCA BPI TO FOCT 6727-80.
- 3. APMATUPA KAACCA AIII NO FOCT 5781-82.

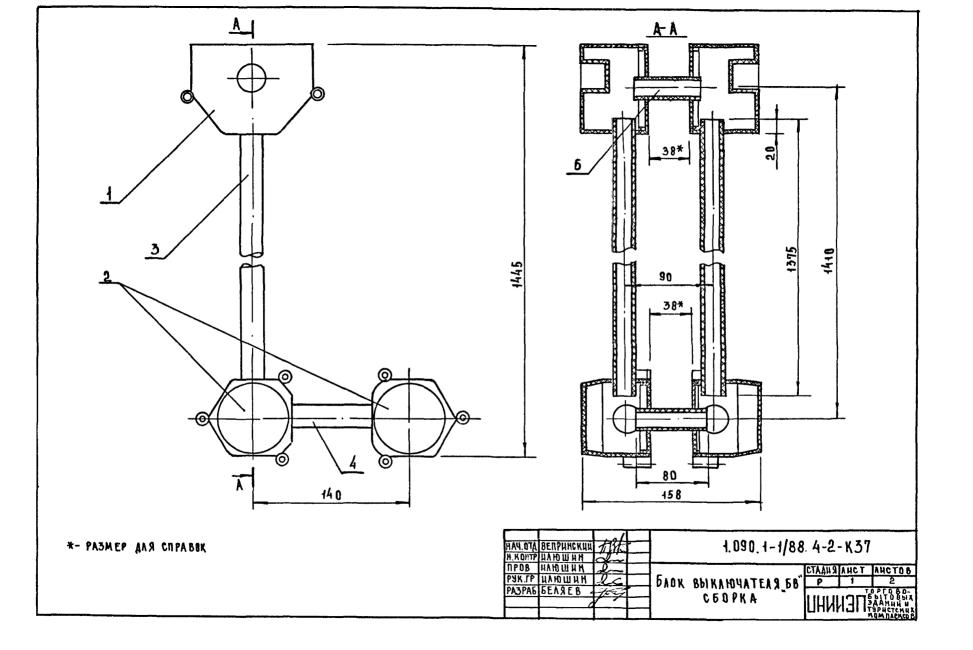

MAPKA		MAPKA		MAC	A, KP	DEO3HAYEHUE
ПРОСТРАН- СТВЕННОГО КАРКАСА	1 1	О ТО Н Р СТАМ Р		1 шт.	BCE10	AOKAWEHT
	+	KP-H	5	3,87	7,74	К4
	2	KP-3	4	1,47	5,88	K2
	3	KP-37	2	0,43	12,86	K18
9	4	KP-27	1	5,08	5,08	K12
99	5	C -6	4	0,98	3,92	K24
30, 30, 20	6	MH-2	5	1,37	2,74	K28
	7	MH-4	4	0,69	2,16	K30
KNA	8	CN - 5	2	1,23	2,46	K26
	9	φ58pI; L=450	36	0,06	2,25	Б.Ч.
	10	\$58PI; L=140	16	0,02	0,32	5.4.
:	<u> </u>		+	HTOFO:	46,11	

- 1. В ТАБЛИЦЕ ПРИВЕДЕНО ОБОЗНАЧЕНИЕ ДОКУМЕНТА АРМАТУРНЫХ ИЗДЕЛИЙ ПО ВЫПУСКУ 1.090.1-1/88-4-3. 2. АРМАТУРА КЛАССА ВРІ ПО ГОСТ 6727-80. 3. АРМАТУРА КЛАССА ЇЇ ПО ГОСТ 5781-82. 4. Узлы см. к 39.

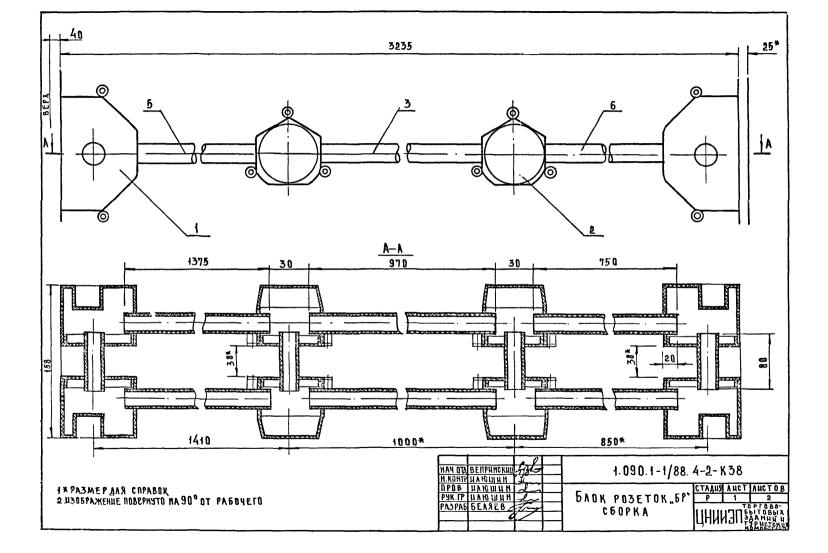
	ВОЛЫНСКИИ Егоров	E S	1.090.1-1/88.	4-2-	K34	
TAKOKU TUN	ШАЦ НИКОЛАЕВА	8	ПРОСТРАНСТВЕННЫЙ	CTAAUP	AUCT	AUCTOB
NPOBER	KOHOBAAOR AY FOBAY BEPAOBA	Map	KAPKAC KNA 30,30,20	ЦНИ	NEK	ОРГО В О БЫТО ВЫХ БЫТО ВЫХ КИМТОНЧЕН ВОЛЖАКОМОР

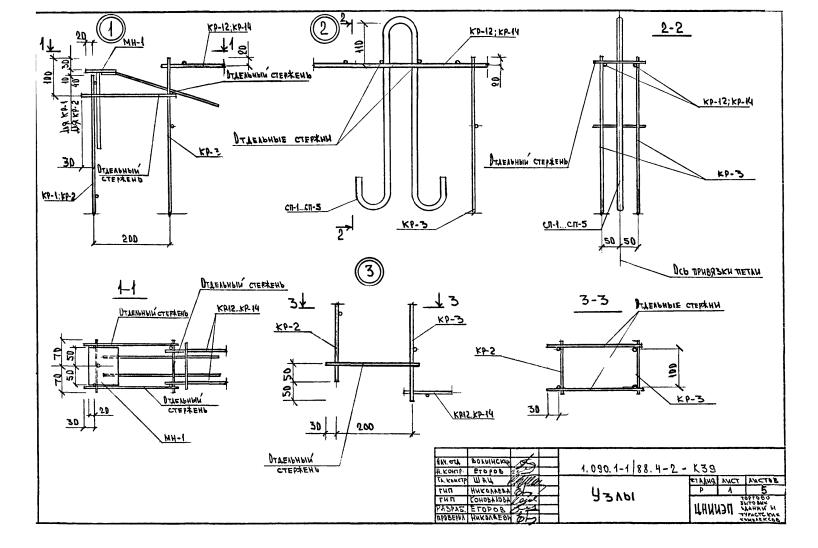


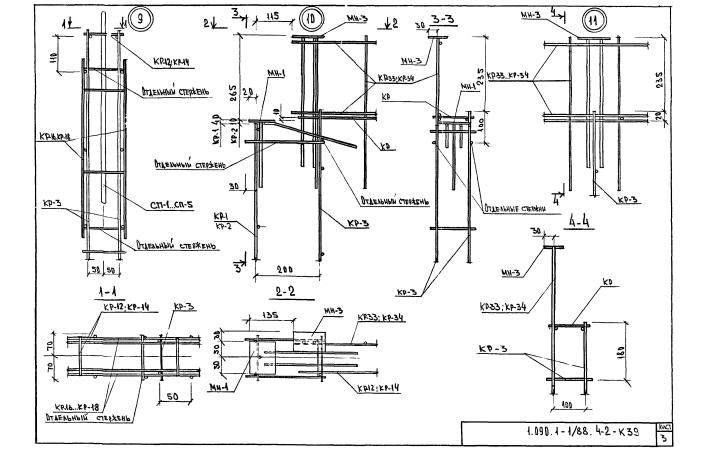
HHB. H NOAM NOAN HOD PATA BSAM HHBM

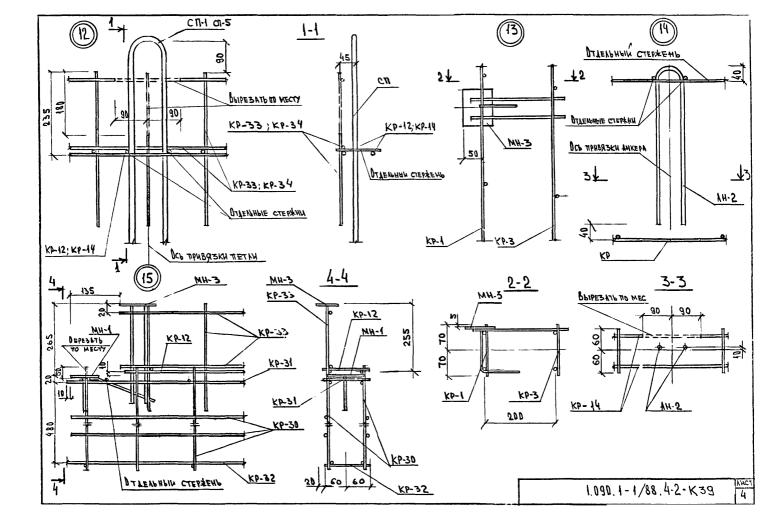


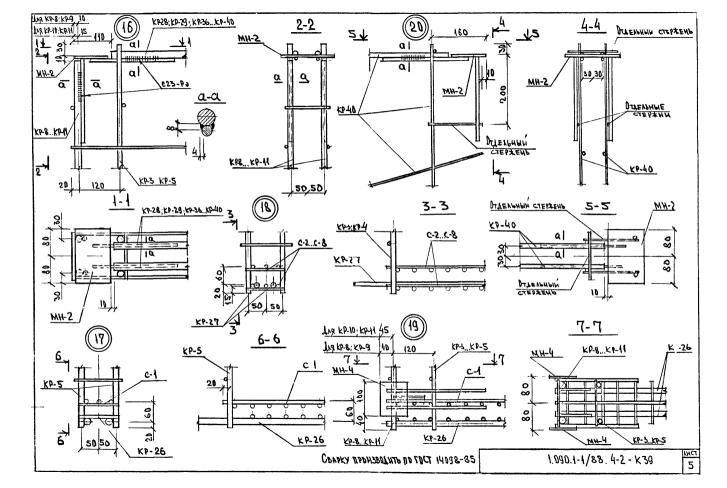
ПРОВЕРХОРОШИЛОВА PASPAGIGEPADBA


KNA29.30.20; KNA28.30.20


HHB. HIDAA ROAR HARTA BSAM. UHB.N


•					_			
E	HAHME	MEHO	0 B A	HUE	ŀ	KOA	RPUME	.нар
-					\exists			
~	YOKAW	AMEH	HIAL	ция	\dashv		 	
Ū	OK BHIKA	ы ключ	HATE	3d., RA	B"		 	
		CEOPY			十			\dashv
_					士			
_	AETA	ETAN	14					
_					_		MACCA	EA,KP
_	POEKA	KA OTB	BETB	HTEAH	KAH	2	0.15	
_					_		<u> </u>	
_	POBKA Y	A SUIA	ANUE	КАНРИВ	^_	4	0.1	
-					-+		 	
ē	MATERI	CEPUA	AAN		-+		 	
Ξ	7.77.1.1.1	LINA	ATIO		\dashv		 	
ī	YEA DAA	DAACTA	MACC	COBAS	, 			
		φ25, e				2	0.26	
	AAN ABE						1	
		\$ 25, C			\neg	2	0.02	
ï	AAN ABE	ΠΛΑΣΤΑ	MACT	CDBAR	一			
,	ф 32	ቃ 3 2,	6=81	0	\neg	3	0.02	
_								
_]	<u> </u>	1	
_					_	<u> </u>	 	
_							 	
_					-	 	 	
_							 	
_							 	
-					\dashv	├	╁	
-						 	 	
-						<u></u>		14117
)	1.09	1.090.).†-†	1/88.	4-	-2 -1	137	2 Auct




НАЧЕН И Е	HAUMEHOBAHUE	KOA.	ПРИМЕЧАНИЕ
	<u> </u>		
4	FAOK POSETOK- 5P"		
	COUPKA		
	AETANH		
			MACCA EA.KT
	КОРОБКА ОТВЕТВИТЕЛЬНАЯ	4	0.15
		<u> </u>	
	KOPDEKA SCTAHOBOSHAS	4	0.10
-00-00		├	
	MATEPHANH	ļ —	
83	RABDOOMTOAND ABEGT		
	\$25, e = 990	6	0.18
-83			
			0.02
83	TPYTA MACTMACCOBAR	<u>ا</u>	
0.7			0.26
65			D. 14
	725, 6 150		0.77
		-	
		-	
		+	
2	68-85 93 68-85	ВЗ ТРУБА ПЛАСТМЕТОВ ВЗ СРЕВ В	БЛОК РОЗЕТОК- 5P° СБОРКА — ИЛАТЗА В НОРОБКА ОТВЕТВИТЕЛЬНАЯ 4 В 8-85 В КОРОБКА УСТАНОВОЧНАЯ 4 В 8-85 — МАТЕРИАЛЬІ В 10 Р 2 9 0 6 В 2 9 0 5 6 В 2 1 7 РЗБА ПЛАСТМАСОВАЯ Ф 25, С 8 0 В 2 1 7 РЗБА ПЛАСТМАСОВАЯ Ф 25, С 1 3 7 5 2 В 2 ТРУБА ПЛАСТМАССОВАЯ В 25, С 1 1 3 7 5 2 В 3 ТРУБА ПЛАСТМАССОВАЯ В 3 ТРУБА ПЛАСТМАССОВАЯ В 3 ТРУБА ПЛАСТМАССОВАЯ

