ТИПОВЫЕ КОНСТРУКЦИИ, ИЗДЕЛИЯ И УЗЛЫ ЗДАНИЙ И СООРУЖЕНИЙ

СЕРИЯ 1.431.6-28

ПЕРЕГОРОДКИ КИРПИЧНЫЕ ЗДАНИЙ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ

ВЫПУСК 0 МАТЕРИАЛЫ ДЛЯ ПРОЕКТИРОВАНИЯ

ЦЕНТРАЛЬНЫЙ НИСТИТУТ ТИПОВОГО ПРОЕКТИРОВАНИЯ
ГОССТРОЯ ССЕ И

К МЕ В С К ИИ В И П И И И

Z У/// г Кие 37 уп Элеми Пона № 12

Замая № 32.5 — № 12.5 - 50.5 — 7 — 2.200

Само в понти У-О/ № 97 — Цени — 5.5 У

ТИПОВЫЕ КОНСТРУКЦИИ. ИЗДЕПИЯ И УЗЛЫ ЗДАНИЙ И СООРУЖЕНИЙ

СЕРИЯ 1.431.6-28

ПЕРЕГОРОДКИ КИРПИЧНЫЕ ЗДАНИЙ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ

ВЫПУСК 0 МАТЕРИАЛЫ ДЛЯ ПРОЕКТИРОВАНИЯ

РАЗРАБОТАНЫ ИНСТИТУТАМИ

ЦНИИПРОМЗДАНИЯ

зам. директора института

CM, FNUKUH

ГЛАВНЫЙ АРХИТЕКТОР ПРОЕКТА

Н.С. ЕРМОЛИН

ХАРЬКОВСКИЙ ПРОМСТРОЙНИИПРОЕКТ ГЛАВНЫЙ ИНЖЕНЕР ИНСТИТУТА

знесь н.а довгий

ГЛАВНЫЙ ИНЖЕНЕР ПРОЕКТА

how A.M. MOHUH

СОГЛАСОВАНО

С ЦНИИСК, им. КУЧЕРЕНКО ЗАМ. ДИРЕКТОРА ИНСТИТУТА

В.М. ГОРПИНЧЕНКО

зав. Отделфи пк и кз

Янада П.Г. ЛАБОЗИН

William III.

ЗАВ, ЛАБОРАТОРИЕЙ ПРОЧНОСТИ

КАМЕННЫХ КОНСТРУКЦИЙ

ЬЬЬЬЬ

Н.И. ЛЕВИН

Одобрена ГУП Госстроя СССР, письмо от 04.03.88 м6/6-403; введена в действие Харьковским Промстройнии проектом с 04.07.88, приказ от 44.03.88 м41.

		1
D603HA4EHME	HANMEHOBAHNE	CTP.
1.431.6-28. О-00 ПЗ	Пояснительная записка	4
1.431,6-28. 0-01	Указания по устройству отвер-	
	СТИЙ В КИРПИЧНЫХ ПЕРЕГОРОДКАХ	
	толщиной 65 mm; 120 mm; 250 mm	13
1.431.6 - 28. 0-02	KOHCTPYKTHBHЫЕ PEWEHHA ПОПЕРЕЧ-	
	HUX REPEROPODOK B ODHOSTAMHUX	
	ЗДАНИЯХ	15
1.431.6 - 28. D - 03	КОНСТРУКТИВНЫЕ РЕШЕНИЯ ПРОДОЛЬ-	
	HOIX REPEROPOLOK B CAHOSTAMHOIX	
	ЗДАНИЯХ	18
1.431. 28.0-04	KONCTPYKTHBHBIE PEWEHNA NEPEROPO-	
	LOK 8 MHOLOSTAMHON SAAHMAX	24
1.431.6-28.0-05	ТАБЛИЦА СЕЧЕНИЙ КИРПИЧНЫХ ПИ-	
	NACTP B OAHOFTAMHUX SAAHNAX	30
1.431.6-28. 0-06	ТАБЛИЦА СЕЧЕНИЙ АРМОКИРПИЧНЫХ	
	NUARCTP & MHOTOSTAXHIX SAAHHAX	31
1.431.6-28.0-07	КАЮЧ ДЛЯ ПОДЕСРА СТАЛЬНЫХ КОЛОНН	
	PAXBEPKA M CTANBHBIX BAEMEHTOB "T"	
	PPODONOHOIX DEPETOPODOK OMHOGTAX-	
	ных зданий	32
1.431.6-28. 0-08	Ключ для подборя стяльных	
	KONOHH BAXBEPKA REPETOPOAOK	
	МНОГОЭТАЖНЫХ ЗДАНИЙ	37
1.431.6-28.0-09	HOMEHKAATYPA CTANBHBIX KONOHH	
	PAXBEPKA TEPETOPOAOK MHOTOSTAM	41
	ных здяний	
1.431.6-28.0-10	PACYETH DIE CXEMBI CTANDHDIX KO-	
	AOHH PAXBEPKA REPEROPOLOK MHORD.	
	ЭТАЖНЫХ ЗДАНИЙ	43

O603HAYEHHE	HANMEHOBAIINE	CTP.
1.431.6 - 28.0-11	ПРИПЕРЫ РЕШЕНРЯ ПОПЕРЕЧНЫХ ПЕРЕ-	
	ГОРОДОК ТОЛЩИНОЙ 120 и 250 мм	
	C KUPTHYHDIMH THARCTPAMH B	<u> </u>
	OAHOSTAXHOM SAAHNN BES MOCTO-	
	BUX KPAHOB	45
1.431.6-28.0-12	ПРИМЕРЫ РЕШЕНИЯ ПОПЕРЕЧНЫХ ПЕРЫ	
	городок толщиной 120мм в одно-	
	STAMHOM SARHHH BES MOCTOBUX	
	KPAHOB	46
1.431.6 - 28. 0-13	ПРИМЕРЫ РЕШЕНИЯ ПОПЕРЕЧНЫХ ПЕРЕ	
	ГОРОДОК ТОЛЩИНОЙ 120 ММ В	
	DAHD STAXHOM SAAHUN C MOCTO-	
	BUMU KPAHAMU CPEAHETO W TAKE	
	1000 PEXHMA PASOTH	48
1.431.6-28. 0-14	Примеры РЕШЕНИЯ ПОПЕРЕЧНЫХ ПЕРЕ-	
	ГОРОДОК ТОЛЩИНОЙ 120 и 250 ММ	
	В ОДНОЭТАЖНОМ ЗДАНИИ С ЖЕЛЕЗО	
	SETOHHUMM CTPONMADHUMM BANKAMA	
	H SE3 MOCTOBUX KPAHOB	49
1.431.6-28. 0 - 15	Примеры РЕШЕНИЯ ПРОДОЛЬНЫХ	
	REPETOPO LOK TONLUMHON 120MM B	
	DAMOSTAMHOM SAAHHU BES MOC-	
	TOBBIX KPAHOB	51

						2309	18-01
H. ROHTP.	БРВДСКИЙ ЧУМАКОВА КОРОТЕЦКИЙ	155		1.431.6-2	28. 0-	00	
PYK. TP.	YYNAK OBA NPOLEN KO	145	뒥	THE THE THE CONTROL OF THE THE PARTY OF THE	CTRAM	AWET	ANCTOE 2
Инженер	K03Y6	H -		COAEPMAHHE	MAI	РЬКОВС ТРОЙК.	KHЙ NOFO_K
	-	THE RESERVE OF THE PERSON NAMED IN	me receipt			_	- 6

Ososhayehhe	HANMEHOBAHNE	CTP.
1.431.6 - 28.0-16	Примеры РЕШЕНИЯ ПРОДОЛЬНЫХ ПЕРЕ-	
	ГОРОДОК ТОЛЩИНОЙ 120 ММ В	
	ОДНОЭТАЖНОМ ЗДАНИИ С МОСТОВЫМИ	
	KPAHAMH NEIKOTO PEXHITA PABOTH	53
1.431.6-28. 0-17	Примеры РЕШЕНИЯ ПРОДОЛЬНЫХ ПЕРЕ-	
	ГОРОДОК ТОЛЩИНОЙ 120 ММ В ОДНО-	
	TAMHOM SAAHHH CO CTANBHOM	
The state of the s	KAPKACOM N NOCTOBBINH KPAHAMM	
	NETKOTO PEMMINA PABOTOI	
1.431.6-28.0-18	ПРИМЕРЫ РЕШЕНИЯ ПОПЕРЕЧНЫХ И	
	ПРОДОЛЬНЫХ ПЕРЕГОРОДОК ТОЛЩИНОЙ	
	250 HM & OAHOSTAXHOM SAAHHH	
	BES MOCTOBULK KPAHOB	
1.431.6-28.0-19	MPH MEPOI PEWEHNA PROADABHOIX PEPE	
	ГОРОДОК ТОЛЩИНОЙ 250 ПП В	
	OAHOSTAXHOM SAAHNN SES MOCTO-	
	BUX KPAHOB	
1.431.6-28. 0-20	ПРИМЕРЫ РЕШЕНИЯ ПРОДОЛЬНЫХ ПЕРЕ-	
	ГОРОДОК ТОЛЩИНОЙ 250 ММ В ОДНО-	
	STAXHOM SARHMU C MOCTOBOINH	
	KPAHAMA AETKOTO PEXMMA PABOTM	
1.431.6-28. 0-21	ПРИМЕРЫ РЕШЕМИЯ ПРОДОЛЬНЫХ	
	ПЕРЕГОРОДОК ТОЛЩИНОЙ 250 ММ	
	в одноэтажном здании со сталь-	
	HUM KAPKACOM	
14316-28. 0-22	ПРИМЕРЫ РЕШЕНИЯ ПОПЕРЕЧНЫХ	
	ПЕРЕГОРОДОК ТОЛЩИНОЙ 65 ММ.	
	BUICOTA STAKA 3,6 M	

Oboshayehne	HANNEHOBAHNE	CTP.
1.431.6-28.0-23	Примеры РЕШЕНИЯ ПЕРЕГОРОДОК	
	ТОЛЩИНОЙ 65ММ ВЫСОТА ЭТАЖА	
	6,0 M	63
1.431.6-28.0-24	ПРИМЕРЫ РЕШЕНИЯ ПОПЕРЕЧНЫХ	
	ПЕРЕГОРОДОК ТОЛЩИНОЙ 120 ИИ.	
	BUCOTA STAWA 3,6 H	65
1.431.6 - 28. 0-25	ПРИМЕРЫ РЕШЕНИЯ ПОПЕРЕЧНЫХ	
	ПЕРЕГОРОДОК ТОЛЩИНОЙ 120 ММ.	
	BUICOTA STAWA 8,0 M	66
1.431.6-28.0-26	ПРИМЕРЫ РЕШЕНИЯ ПОПЕРЕЧНЫХ	
	REPEROPOAOK HE B CTBOPE KONOHH	
	ТОЛЩИНОЙ 65 ММ. ВЫСОТА	
	3TAXA 4,8 M	68
1.431.6-28.0-27	ПРИПЕРЫ РЕШЕНИЯ ПРОДОЛЬНЫХ	
	NEPETOPOAOK HE B CTBOPE KOAOHH	
	толщиной 120 пп. Высота	
	3TAXA 4,8 M	70,71

23098-01

1.431.6-28. 0-00

Anci 2

1. ОБЩАЯ ЧАСТЬ 1.1. Настоящая серия выпущена взамен серин 1.4316 в составе:

BUTYCK D. MATEPHANU AND THOEKTHPOBAHHA BUTTY CK 1. YSTIBI. PABOUME YEPTENCH.

BUINYCK 2. NADENIA CTRIBHUE. PREDYHE YEPTEKH. THE THEMEHEMME HACTORINED CEPHN PREDICTOR PEND TRICKE HOTOK-308RHHE YEPTEMCEN CEPHH 1.030.9-2 " REPETOPOAKH RAHERAHUE SARHHH

BAITYCK D. MATEPHRANI ANA THOEKTHPOBRHHA. BUINYCK 4. KONOHHUI PAXBEPKA CTANGHGIE PAROYME YEPTEMON BAITYCK 5 . KONOHHAI PRYBEPKA DEENEBOBETOHHAIE. PABOYA E YEPTE SKH.

BUITYCK 6. Y3.TU. PREDYME YEPTERCH. BUITYCK 7. YRCTL 2. HSREAMS APMATYPHUE H SAKARANUE K DICE SESO SETOMM WIM KOSOMMAM, MASSESNAS COE-AMHHTEMINE PREDYNE YEPTECKU.

1.2. HASHAYEHHE H OBJACTS RPHMEHEHHA. 1.2.1. 8 RPOEKTAX HOBOTO CTPOHTERICTBR KNPTHYHAIE REPETOPOAKH RPHME-

HINTCH & CNYYRAX, KOFAR NO YCHOBHAM SKCHAYATRUHH(BHCOKRA BARAC-NOCTO REPECCHBARY CPERA A T.A.) HE MOSYT BUTTO PRAMEREAU APYINE RADI MEPETOPOLOK, A TAKNOS B SARHHAX C NOMEWEHNAMH HEBONGWOH NAOWAAH WAN TIPH HRANYWH & TEPETOPOAKRY BOTHWOTO YHCAR TIPOEMOS.

1.2.2. B APOEKTAX PERCHCTPYKLINH KHPAH YHBIE REPETOPOLIKH APHMEHRHOTCA TAKNCE M3-3A HEBOSMONCHOCTH MCTOSIGOBAHMA MEXAMMSMOB, HEOSXOAH-MAIX AND MONTANCA MARYCTPHRAGAGY KONCTPYKLHIN DEPETOPOROK. 1.3. NEPETOPOAKH, PASPABOTAHHLUE B HACTORILLEH CEPHH, NPEAHASHAYEHU ALA TIPHMEHEMHA B'PAHOHAX C OBLIYHLIMH TEOJOTHYECKHMH YCJOBHAMH H

CENCMANHOCTON HE BOWE & BRANDS II B T-TE GEOGRAPHYECKHX PRHOHRX TO CROPOCTHOMY HATTOPY BETTAT.

HON! POSS PRINCE HEATH SAMENARIA HANTER OTAL TONOMHINGRED GOVE

1.4. KOHCTPYKUMM PEPETOPOADK PRZPREOTRHU AMR: 1) OA HOSTRONCHEIX TIPOMSBOACTBEHHUX SARHHH BUCOTOH AO HH3R CTPORMAGHGIX KOHCTPYKUMM OT 3 AO 18 M. BEIROAHAEMEIX H3 THROBBIX ONE DESOBETONHUX H CTRIBHBIX KONCTPUNLIHH TO YHH PHLIN POBRHHIM FRERPYTHIM CXEMRM:

2) MHOROSTROCHGIX BARHHH ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ С KAPKACOM NO CEPHH 1.020-1/83 C CETKAMH KONOHH 6×6M (6+3+6)×6 м н высотями этяжей 3,3,3,6;4,2;4,8; 60м, с сеткой колонн 9×6м н высотями этяжей 3,6; 4,2; 4,8; 5,4; 6,0M;

- C KAPEACOM NO CEPHH 1.420-6 C CETRON ROMAN 12×6m H BUCOTAMN STANCEN 4,8; 6,0; 7,2 M; - C EAPEACOM NO CEPHH 1.420-12 C CETEAMH COSOHH 6x6M H 9x6M H BUCOTAMH STAREH 36; 4,8;

1.5. Перегородии могут применяться в заяниях с различными BUIRMU BOSIEUCTBUR OFOPYROBAHMA HA KOHCTPYKUHH 30AHHU.

60; 72M.

5.5

250

B CAYYAE APMMEHEHUR REPETOPOROK B BARHHAX C MOCTOBUMH

LPAHAMU CPEAHETO H TANCENOTO PENCUMOS PASOTAL H 8 3ARHHAX COSO-PYAOBAHKEM, DEASSIBAHOLUMM AHHAMHYECKOE BOSAEHCTBHE HA KAPKAC SAA-

HUS. AOSIMCHOL BOITO YYTEHOL TPEBOBRHHIS, HIS NOMERHOLE B 17, 3.18. 16. RPEREN OTHECTOÙ KOCTH REPEROPOROK, PRIPABOTANHUK B HACTO RULEN CEPHH. APHBEAEH B TABAHLE:

OFHECTONKOCTS, YAC THE KOHCTPYKUHH TEPETOPOAKH: Толщння BES OTKPUI- CO CTRABHUMH C HESRILHILEH-C OTKPUTTIMH CTRAB REPEROPOLIK THIX CTRACHUX SAEMENTAMM, HIMM CTRACHEN HIMM SAEMENTAMM MM PRIMEMEHHLIMU MH SAEMEH-SIEMEHTOB HMEKUMHMH OTHE. B TOMME MEPEROPOL TAMH 3RMHTHOE MOKPH-KH NPH HEBRUM THE (D. 1.6.1) WENHELK MONKRY 65 0.75 0,75 0.25 0.75 2,5 120 0.75 0,25 0,75

*) [PH 970M 3AUHTA OTKPHITHIX CTRACHUX SAEMEHTOB Y3,008 KPEATHHAA QOANCHA BUIDONHATUCA NO N. 1.6.1. 23998-01

0.75

HAY. OTA BPOACKHH Z 1431.6-28.0-00 173 H.KOHTA YYMRKOBA ZA CA.KOHTA KOPOTEUKHA PYK. FP. YYMAKOBA 15A CTREMA SHET SHETOB CT. HHOR MPOLENKO FROM-NOSCHMTEJ6HAS X APSKO BCKKÚ 3ATHCEA ПРОМ СТРОЙНИИ ПРПЕКТ

0.25

0.75

1.6.1. B LIERAX ROBBINEHHA RPEREROB OTHECTOMICITH REPEROPO-AOK C OTKABITHIM ETRIBHBIMH SREMEHTAMU C Q.25 AO O, 75 YACA NEOSXOGUMO CTRIBHBE SREMEHTBI REPEROPOJOK SALLIHTHTB DA-HUM US YKRSAHHBU MWIKE OTHECTOЙIU ROKPBITHM:

nii ns grashiidik tinke olkeroorto tiokebittin. a) qocqathoe ookpsithe Oqifmatonyahokismatooct23191-79;

В) ВСПУЧНВЯЮЩЕЕСЯ ПОКРЫТНЕВПИ-2 ТОЛЩИНОЙ Чттпогост 25/31-82; В) ЦЕМЕНТНО-ПЕСЧЯНЯЯ UTYLIATYPKA ТОЛШИНОЙ 2,5 mm

1.6.2. ПРЕДЕЛ PACTPOCTPAHENKA OFHA KHPINYHHUX REPETOPOZOK ORPEREJAETCA B KONKPETHOM RPOEKTE C YYETOM OTHERKU REPETO-POJOK.

1.7. Kupahyhbie reperopoaka h3 roahoteroro ramhahoro khpahyr rarcthyeckoro reccobahha moryt repimehateca b romellehhbax C rnoboù cterehbo barnchocta.

KMPTHYNGE TIEPETOPOAKH HS TIOTHOTETOTO TAHHAHOTO KHPTHYA H CHTHKAT-TIOTIY CYXOTO TIPECCOBAHHA, TIYCTOTETOTO TAHHAHOTO KHPTHYA H CHTHKAT-HOTO KHPTHYA HE MOTYT TIPHMEHATICA B TOMELLEHHAX C MOKPHM PE-XHMOM. BARKHOCTHIH PEXHM TOMELLEHHIH TIPHHHMARETCA B COOTBET-CTBHH C TOMBON CHMT 13-3-19 %. CTPOHTETIBHRA TETUOTEXHULA.

1.8. KHPINYINIE TEPETOPOAKH, PRISPREOTRININE B HACTORIAET CEPAN, MOTYT TIPNMEHITIGA B TOMELLEHMIN C'HERPECCHBHOÙ, CIRRO-N CPER-HERTPECCHBHOÙ CPERRIMH.

1.9. BHA N XAPARTEP DIAEMONHUX PAGOT KMPANYHUX REPETOPOAOK RPUHHMAETCA B KOHKPETHOM RPOEKTE B SABNON-MOCTH OT SICCRINYATALMONHUX TPEGOBANNÄ.

1.10 PACYETHUE XAPARTEPHCTHEN SBUKONSONHPYNOWEN CHOCOBHOCTH B Q & KNPMYHLIX MEPETOPOLOK BES MPDEMOR:

Талщина перего- Родки в муп 563 штукатурки	MACCA, KT/M2		E A HE OK TH	TEOM BHOM	FTPH	YECK OCU,	AA 41	CTOTA	7
CO WTYKATYPKON	8KM=1800 Kr M3	63	125	250	500	1000	2000	4000	8000
<u>65</u> 80	<u>117</u> 150	<u>30</u> 32	<u>35</u> 37	<u>37</u> 39	<u>37</u> 39	<u>42</u> 44	49	<u>54</u> 56	<u>60</u>
<u>120</u> 140	<u>216</u> 260	<u>37</u> 38	<u>37</u> 38	<u>37</u> 39	<u>42</u> 42	49	<u>54</u> 54	<u>58</u>	<u>59</u>
<u>250</u> 270	<u>450</u> 494	<u>35</u> 36	<u>38</u> 41	43	<u>49</u> 51	<u>54</u> 58	<u>58</u> 64	<u>62</u> 65	<u>85</u>

PRCYETH WE XAPARTEPICTURY SBYCOUSDINGSHOWER COCCOSHOCTH KHPOHYHWX PEPEROPOLOK RANGTW DO LANGWM HUNCOP.

2. HAPPYSKU U PACYET KOHCTPYKYUN.

2.1. HAPPYSKH HA REPETOPOAKH RIPHHATH:

a) Bepthkarbhbie ot cosctbehhoro beca knarkh пры норматнвной объемной массе клаяки у=1,8 т/m³ с коэф-Фициентом перегрузки гт=1,1 (0,9);

5) TOPHSONTRABHLE BETPOBLE & COOTBETCTBAN C N. 6.8

CHAT [-6-74], HATPLSCH H BOSAEHCTBAS" ALB [PRHOMA—
14 ETC/m², AJA [V-TO PRHOHA-22 ETC/m².

2.2. В СООТВЕТСТВИН С "ПРАВИЛЯМИ УЧЕТА СТЕПЕНИ ОТВЕТСТВЕННОСТИ ЗДЯНИЙ И СООРУЖЕНИЙ ПРИ ПРОЕКТИРОВАНИИ КОИСТРУКЦИЙ КЛЯСС ОТВЕТСТВЕННОСТИ ЗДЯНИЙ, ДЛЯ КОТОРЫХ ПРОЕКТИРУЮТСЯ ПЕРЕГОРОДЕИ, УСТЯНОВЛЕН $\overline{11}$, КОЭФФИЦИЕНТ НАДЕЖНОСТИ ПО НА-ЗНЯЧЕНИЮ Q 95.

2.3. PACYET KARAKH NEPETOPOADK N KHPNYYHIX NKNRCTP NOOMBE-AEH NO CHKN 11-22-81 KAMEHHIE N RPMOKRMEHHIE KOHCTPYKYMK. 2.4. ORPEAESHEHNE MAKCHMRAGHO AONYCTHMOÙ BIICOTH REPETO-POAKH MAN YYRCTKA KARAKH MEMLY TOPKSOHTRAGHIIMH BETPOBH-MI NORCHMH MAN TOPKSOHTRAGHIIMH APMRTYPHIIMH KAPKRCAMH NPOM3BEAEHO NO YCAOBHAM AONYCTHMOTO OTHOUGHUR BIICOT CTEH K YX TORUHHRM B COOTBETCTBHH C N.A. 6.16-6.20; NPH STOM KOSP-PHUNEHTHI K "NO TABANUE 28 NPHHATHI:

ПО П. 1 ПРН ТОЛЩИНЕ 25CM 1,2 ПРН ТОЛЩИНЕ 12 CM 1,7. ПРИ ТОЛЩИНЕ 6,5 CM 1,8 ПО Л. 3

NO N. 5 (B HEOEXOZHMUIX CAYYAAX) 0,8

PRCCTORHHE MEKAY FORMSONTAMEHDIMM BETPOBLIMM FORCAMIN UNIN FORMSONTAMEHDIMM APMATY PHONIM KAPKACAMIN FIRMHATO C SUETOM HECYLLEЙ CHOCOBHOCTH FORCOB MAIN KAPKACOB.
2.5. TRUBEPKA FROUNDCH KHPHNYMOЙ KARAKU HA BHELLEHTPEH HOE CIKATHE B BEPTUKAMEHOM HAFIPABJEHMU FIRMSBEJEHA C SUETOM CREASHOUMX RPERMOCOLLOK:

C) PACYETHAR BURGIA REPETOPORTH HAM SYNCTICA REPETOPORTH MEXILY CTRABHBITH BETPOBBITH ROSCRIM RIM ORPEREDENHA KOSIPPHULHEHTA RIPOLOAGHOTO HISHBA Y RIPHHATA BO=H B COOTBETCTBHA C N. 4.3,0; NO AHAROTHA C N. 4.3,5 PACYETHAR BURGIA SYNCTICA REPETOPORTH MEXILY APMATYPHBITH KAPLACAMA RIPHHATA BO=1,5 H; LAR HANCHETO SYNCTICA REPETOPORTH ARMARINGERICA YEPE3 CAON YEMEHTHOTO PACTBOAR HA GYMLARHAT PACYETHAR BUCOTA RIPHHATA BO=1,25 H. NPH STOM RIPHHATO BO BUHMANNAE, 4TO COCHACHO N. 6.7 BETPOBBE ROSCA CYNTROTCS XECTERMAN COPASONTRIBHBITHAN OROPANN; REMATYPHBE KAPKACH BUBAX KARREN RIPHHATAS SA VIPYTHE OROPSI;

- \mathcal{E}) случниный эксцентриситет вертикальной нагрузки по указанням п. 6.6 для перегородок высотой \mathcal{E} , от воляе принат в соответствии с л. 4.9 \mathcal{E}_{V} =1,0 cm;
- E) HRH50.76WRA AORYCTHMAA BEJHYHHA ACCUEHTPHCHTETA (C YYETOM CAYYRHHOFO) APHHATA B COOTBETCTBHH C 11.4.10 PABHOH O, 84.

2.6. And yurctub, prevetable exemble cotopbix yuntbibriot monepeuable exectede concepteuah be kauectbe onop and kappinghoù karren, preuet karaka npoksbedeh be cootbetetban e n.4.18 ha n.3.5 be tophsohtraghom hanpabaehan.

2.7. PRCYET RPMRTYPHЫХ KRPKRCOB C CHMMETPHYHOÙ RPMR-TYPOÙ B WBRX KARIKH MPON3BEIEH C YYETOM PREOTЫ RPMRTYPЫ B PRCTAHYTOÙ JOHE. B CWRTOÙ JOHE YYHTЫBRARCO TONGKO PREO-TR KARIKH HA CWRTHE.

2.8. Provet ctraghbix betpobbix porcob apprehen b coutbet-ctbum c parboù chur \underline{i} : 23-81, Ctraghbie conctrykum, r. 5.12.

2.9. Proyet knprhyhbix rhurctp reperdadak oahostrikhbix sarhhi rpoksbeaeh c yyetom creaydilikx rpeardcblock:

- a) pacyethar bucota anarcten aph opperemenha cosapanymenta aporomehoro histher y aphhita Co=0,8H;
- 5) HANGONGWAR ADDYCTHMAR BENNYWHR SKYLHTAYCHTETA B HERE-MHODERHHOÙ YACTH THARCTPGI TPHHRTA PABHOÙ 0,99;
- 6) Windhar Tojook, Beogramer B prichet, Transtr prehioù 1,0 m B Krikayro Ctopony ot (prhu tikisetph). 2.10. Nen prichet Tuirich Teretoporok Banostrikheix sarhuñ or-

2.10. NPH PACYETE THURSCIP TEPETOPOROR AGROSTAXEHUX SARHHÜ OR PERETIEHU BUHU, FAE CLEO, 9y; & YERSAHHUX SOHRX TIPERUC MOTPEHA RPORONGHAR APMATYPA.

Canehar subsete ha subseterx, sae $a7y < e_h < a9y$ spobepehu bo packputho trewith b cootbetctbar c s.33.

23098-01

2.4. PACYET PRODOJUHUS CTEPICHEN PARATTA PEPETOPOJON MHOTO-STAMHUS SARHNI PRONSBEAEH BES YYETA PABOTU KHPIHYHON KARAKA. PABOTA HA CIKATHE PRODOJAHUS CTEPICHEN OBECREYNBRETCH YCTAHOB-KON XOMYTOB, PPETIATCTBYHOMNIN POTEPE MECTHON YCTOHYMBOCTH STAL CTEPICHEN. C WATOM, HE PREBUWAHOMM 15d.

2.12. PACYETH LE COMPOTHEMEHUA CHATHO FORAKH MPHHHMARINGS NO TREMHUE 2 CHHM 11-22-81 SE3 YYETA MOHHMARIOUHX KO3ФФИЦИЕНТОВ, YKR3RHHLIX В ПРИМЕЧЯНИИ К ТЯБЛИЦЕ.

PROGETHAGE COMPOTED THE STEELS FOR KINGKE PROTESTALEHING THE HISTORY TO THE THE STATE THE HUMRAUCH TO THE THE SOUTH SOFT MOXHOCTH THE PROMETER OF CHARLEST CHARLEST FOR THE THE STATE OF THE THE STATE OF THE STATE O

2.13. ОПИРАНИЕ ПЕРЕГОРОДОК НА КОЛОННЫ ФАХВЕРКА В ВЕРТИКАЛЬ-НОМ НАПРАВЛЕНИИ, Т.Е. ПЕРЕДАЧА ВЕСА КЛАДКИ НА КОЛОННЫ, НАСТОЯЩЕЙ СЕРНЕЙ НЕ ПРЕДУСМОТРЕНО, ПОЭТОМУ ЖЕЛЕЗОВЕТОННЫЕ И СТАЛЬНЫЕ КОЛОН-НЫ ФАХВЕРКА СЕРИИ 1.030.9-2 ПРИМЕНЕНЫ БЕЗ ДОПОЛНИТЕЛЬНЫХ РАС-ЧЕТНЫХ ПРОВЕРОК. В СЛУЧАЕ, ЕСЛИ НА КОЛОННЫ ФАХВЕРКА ПЕРЕГОРОДОК БУДЕТ ПРИЛО-

B CNYYRE, ECNH HA KONOHHU PRIBEPKA PEPETOPONOK BYAET RPKAD-KEHA BEPTHERNUHAR HATPYZKA OT YYACTKOB PEPETOPONKA, HABEUMBAE-MUK HA KONOHHU POCPEACTBOM OPPHUK CTONIKOB, PPOBEPKA PPOYMIKTU KONOHH PRIBEPKA LONIKHA BUNONHATUCA B KOHKPETHOM PPOEKTE. 3. KONCTPYKTHBHUE PEWEHAR.

3.1. AND BOBBEREHUR KUPANYHBIX REPETOPOZOK RPEZYCMOTPEHO RPUME-BEHHE ROMHOTEROTO U RYCTOTEROTO CANHAHOTO KUPANYA DARCTWYECKOTO M ROMYCHXOTO REECCOBRHHA, ATAKKE CHANKATHOTO KHPANYA MARKH 75. RPHMEHEHHE KUPANYA QAR ROMEULEHWÁ C PRBHOÁ CTEREHBIO BARK-HOCTH OTOBOPEHO B.R. 1.8.

3.2. PACTBOP ANA KARAKU NPUHRT MAPAK 25 H 50 YEMENTHO-NECYR-HUM NARCTUYHUM TRIKERUM CAOBARKON MBECTH HIM NAHHU B KRYECT-BE NARCTUPHKATOPA. 3.3. APMATYPA TAPHHATA CAERYHOLLHX BHROB:

a) B nungctpax: npoqonehra apmatypa knacca A-1, xomytul knacca A-1;

5) 8 KAPKACAX, YCTAHABJABREMBIX 8 WBRX KJAJKH: APOQOA-HAR APMATYPA KJACCA A-II, NONEPEYHAR APMATYPA KJACCASP-IJ B) AJIR AHKEPOB - KARCCOB A-III H BP-I.

3.4. ПО КОНСТРУКТИВНОЙ СХЕМЕ ПЕРЕГОРОЯКИ ЯВЛЯЮТСЯ СЯМО-НЕСУЩНИМ, ОПИРАЮЩИМИСЯ НА ЛЕНТОЧНЫЕ ФУНДАМЕНТЫ НЯМ ФУН-ДЯМЕНТНЫЕ БАЛКИ НА УРОВНЕ ПОЛА ПЕРВОГО ЭТЯЖА НЯМ НА КОНСТ-РУКЦИМ ПЕРЕКРЫТИЯ НА ВЕРХНИХ ЭТЯЖАХ МНОГОЭТЯЖНЫХ ЗВАНИЙ. ГОРИЗОНТАЛЬНАЯ ГИДРОНЭОЛЯЦИЯ КИРПИЧНЫХ ПЕРЕГОРОДОК НА ОТМЕТ-КЕ -0.030 ВЫПОЛНЯЕТСЯ ИЗ ЦЕМЕНТНОГО РЯСТВОРЯ СОСТЯВЯ 1: 2 ТОЛЩИНОЙ ЭОММ.

3.5. The Belotte Reperdeden 2030m in tarigine 120mm garyocaetch yethhobka reperdedok ha rentouhble фундатенты сечением 200×400mm (h) из бетона класса в 10, опирающиеся на грунты фе ратной засыпен, при условии уалотнения грунтов обратной засыпки до коэффициента стандартного уплотнения грунта, раного 0,98, или непосредственно на пол, если пол рассчитан на нагрузку не менее 5.0 тс/m².

3.6. TO MUHHA MEPETOPOLION (SES YYETH OTBENOYHELX MOKPETHIK) PPAHATA 120 H 250 MM B ORHOSTAIK HELX SURHHAX, 65 N 120 MM B MINOTO-STAIKHELX SURHHAX.

B KOHKPETHЫХ ПРОЕКТЯХ ВОЗМОЖНО ПРИМЕНЕНИЕ ПЕРЕГОРОДОК ТОЛЦИНОЙ 65 ММ И В ОДНОЭТЯЖНЫХ ЗДЯНИЯХ (НЯПРИМЕР ВО ВСТРО-ЕННЫХ ПОМЕЩЕННЯХ) ВО ТИПУ РЕШЕНИЙ, ПРИВЕДЕННЫХ В ДЯНИОЙ СЕРИИ.

23098-01

BRIOK BES PROEMOS, KOTOPSIE NCHOLOSYNOTCH & KRYECTSE BERYHEN NETH REPETOPOAKH. PM. COOTSETCTSYNOUIEM OBICHOSHNUN BOSMOKHO TRE-XE YCTPONCTSO MEKKOSIOHHSIX REPETOPOAKS & SARHKRX C BRIKAMI, MRE-HOUMMIN PROEMS. & STOM CRYYRE PROEMSI & BARKAX, HCHOLOSYEMSIX & KRYECTSE BERYHEN YACTU REPETOPOAKH, SONKHIS BUTS SAROKEHSI KAP-MAYOM USU APYTUM MATEPHARIOM, HATPYSKA OT KOTOPOTO SONKHA SUTS YYTEHR PM POSTOKE BRIOK DO MECYULEN CHOCOSHOCTU. 3.7.2. & OSMOSTAKHSIX SARHURX C MOCTOSSUMU KAPHARIM PROGODISHSE PEPETOPORKU RPUNSTU TOSUKO MEKKOSONHISIMI, TAK KAK PROCOCHISE

B DAHOSTAKCHLIX SARHKAX BES MOCTOBLIX KPAHOB N BES MOACTPOINKHLIX FEPM MPOADAGHIE MEPETOPOAKH MPUHATU MEKKOMOHHLIMIN AMA SARHKI C KEJESOGETOHHLIMIN KOMOHHAMIN U MPHCHONHILIMIN AMA SARHKI CO CTRAGHUMIN KOMOHHAMIN (B NOCHEAHEM CMYRE NS-SA CHOKHOCTH MEPECEYEHKA MEPETOPOAKH CO CTRAGHUMIN PEWETYATUMIN KOMOHHAMIN).

A MUNISTAKCHUK SARUWAY SER MOCTOBLIX KONOHAMIN AMA SEREFOUND

REPETOPORKH RORARANT B FREAPHT KPRHA.

B DANDSTRICHUM SARHHRIX EES MOCTOBUM CPAHOB C KERESOBETOHHUMMH U CTRABHUMU NOQCTPONHABHUMU ФЕРМАМИ ПРОДОЛЬНЫЕ ПЕ-PETOPOAKH ПРИНЯТЫ ПРИСЛОННЫМИ, УТО ДЯЕТ ВОЗМОЖНОСТЬ ДОВЕЛЕ-HUR ПЕРЕГОРОДКИ ДО ПЛИТ ПОКРЫТИЯ РЯДОМ С ПОДСТРОПИЛЬНОЙ ФЕР-MON. ДОПУСКАЕТСЯ ТЯККЕ УСТРОЙСТВО ПЕРЕГОРОДКИ В СТВОРЕ КОЛОМИ C HCROABSOBARHEM REAESOBETOHNOÙ ROACTPORINABHOÙ PEPMBI B EAVECTBE BEPXHEÙ YACTH REPETOPOAKH. HAIPYSKA OT SAROSHEHUA RPOEMOB B REAESOBETOHNOÙ ROACTPORINABHOÙ PEPME B STOM CAYVAE
AGAKHA BBITG YYTEHA RPH ROABOPE PEPMBI RO HECYLLEÙ CROCOBHOCTH.
37.3. B MHOTOSTRRHBIX SARHURX REPETOPOAKH, COBRARHOULHE SO
CTBOPOM KOROHH, RPHHATBI MERKOSOHHBIMH, KAK BOREE RPEAROYTHTERGHBIE RO CPABHEHURO C RPHCROHHBIMH RO YCROBHAM RARHHPOBKH ROMELLEHUÙ.

CTRABHOLE CHARBEPROBBLE KONOHHBI B NEPEROPOAKAX MHORO-STRIKHBIX JARHUH PRENDARANTER NPHENOHHBI K NEPEROPOAKAM C UENBA COXPRHEHMA CHARVECKAX XAPAKTE PHETHE (JBYKONJOAHPYHOUJEH CNOCOBHOCTH H AP.) NEPEROPOAOK NO BEEH HY NAOUARM.

3.8. BEPTURIAHAMIN DIOPHAMIN KONCTPYKUHAMIN DEPETOPOROK ABARKITCR: KOJOHHAI BARHUR (KEJESOBETOHHAIE NIM CTAJAHAIE), KEJE305ETOHHAIE KOJOHHAI PRKBEPKA CTRJAHAIE KOJOHHAI PRKBEPKA, KUPINYHAIE NIM RPMOKUPINYHAIE JAJACTPAI (CM. TREJHUAI HR ROLYM. -02...-04).

- 3.9. TOPH30HTAJIGHBIE ODOPHBIE KONCTRYKUHH DEPETOPODOK DANHATU 8 2 BAPHAHTAK:
 - O) BETPOBBIE NORCA H3 CTRABHBIX NPOPHAEH WBEAAEPHOFO CEVEHHA AAA KAARKA TOAWHAOH 120 N 150mm;
 - ELLERAY GIN LINGUR TOMMAHON 120 N 250 NIM; δ) RPMRTYPHSIE KRPKRCSI B FOPH30HTRAGHSIX LUBRX LAAR-KH TOMMHHON 65, 120 N 250 MM.

PROCTORHUR MEKLY TOPHSONTRAGHUMH OTTOPHUMH KONCTPYKLHRMM ARHU HA AOKYM.—02...-04 HACTORILETO BUTYCKA. BUTOTA KONCOASMO-TO YYRCTKA HAA TOPHSONTRAGHOÙ OTTOPHOÙ KONCTPYKLHEÙ AOTIKHA BUTU HE GOTEE 300 MM ARR KIRAKH TORILHHOÙ 65MM, 120MM N'NE BOREE GOOMM ARR KIRAKH TORILHHOÙ 250 MM.

> 23098-01 1.431.6-28.0-00 73

3.40. Пилястры перегородок одноэтяжных зданий приняты сечением от 250 x 510 mm (h) 10 640 x 900 mm (h). B BEPXHEH YRCTH THINACT PH TIPERY CMOTPEHO RPDADAGHOE APMAPOBAHHE HA YYACTKE, THE SKCHEHTPHCHTET ANA OCHOBHOTO COYETAHHA HATPY30K 8>0,94.

BEPX HAMMA KOHUAMMA APMATYPHIJE CTEPXCHA BABEAEHIJ B OTBEPCTAS COEAHHHTEJIBHOFO MBAEJHA, TIPHKPETAAREMOFO K KOHCTPYKUHAM TOKPBITHA BARHHA.

3.4. THARACTPH REPEROPOLION MHOROSTRONCHIN SARHHU TORULHHOÙ 65 MM U 120 MM ANA BUICOT STRIKEN AO 3,6 M BKNOYHTENUHO PPHHATU APMOKHPRINI HAMMH BES YTONWEHHA KARAKH.

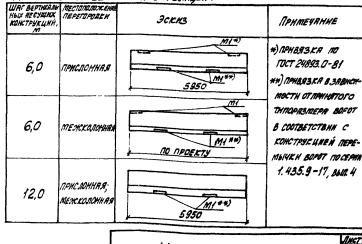
MANACTPU NEPETOPOROK MHOTOGTANCHUIX BRAHHU ANA BULOT STANCEH OT 4,2 M DO 6,0 M BK SHO YHTE SIGHO PPHHATII APMOKHPPHHYHIMU CEYEHHEM 160×310 mm (h) ASA REPETOPOAOK TONMHHON 65 mm H 120 mm. (CM. AOKYM. - 06).

3.12. Onhprhhe neperopogok nobepxy no bceh ganhe, kak nprbnao he RPERYCMATPHBRETCA. K KOHCTPYKUMAM ROKPHITHA H REPEKPHITHA KPERATCA TOAKKO KOAOHHUL PRIBEPKR W MUNACTPUL B OCTRAGHON YACTH MEPETOPOD-KH MESKLAY NEPEKPAITHEM (NOKPAITHEM) H BERXOM KHPNHYHOH KARAKH OCTABINGETCA 3A3OP 30MM, 3A10014AEMBIN TOPHCTBINH PESHHOBBINH STINOT-

HETBEPAEHOWEH MACTHKOH/CM. LOKYM. . 1-00.0 TO, SHCT3). BEANYAHA 3830PA B KOHKPETHOM PROEKTE MODKET BUTG YBEANYEHA B 3ABHCHMOCTH OT MAKCHMAJILHOTO PROTHER KOHCTPYKLINH PREPEKPLITHA

HARDILLHMH TIPOKARAKAMU C TOCAEAHOLLEH OBMRAKON TEPMETEANPHOLLEH

(MOKPHTHA) 3.13. Y3.161 KPENNEHHA SNEMEHTOB PAXBEPER K KOHCTPYKLINAM NEPE-KPSITUS USIN MOKPSITUS OBECNERUBRIOT BSAHMHYIO BEPTUKANSHYIO MORBIOS-HOCT'S COMPAGAEMSIX KOHCTPYKLINN HA BESHYHHY BO3MOXCHOGO MPOGHBA REPEKPHITHS HIN MOKPHITHS.


3.14. KPERSEHHE STEMENTOB REPEROPOZOK K OKERESOBETOHHUM KOHCT-PYKLINAM 3.AAHNA TIPEAYCMOTPEHO C HCTOJIB30BAHNEM AHKEPOB HAN PACTOPHUX ANDEREN, YCTAHABAHBAEMDIX B OTBEPCTUR, OSPAROBAMHDIE B SETONE C MOMOLUGIO PYYHEIX CBEPJIHJIGHGIX MAWHH HAH GAEKTPOREPOPATOPOB.

CTRALHUE SAEMENTH THAR "T" KPERRTCS K OKERESOSETOHHUM KOLODHHAM NPH NOMOWN BREARDHUX MBDEANH B STAX KOJOHHRX.

3.15. [TPM YCTPONCTBE Y3.008 KPERISEHMA SAEMENTOB REPETOPOLOGE K KOHCTPYKLINAM BARHUA NPHMEHAETCA MOHTRAKHAA CBAPKA, HCKNIOVE-HHE COCTABILATOT REPETOPORKH MHOTOGTANCHILL SAAHHH C APMOKH PRAY HEIMH THURSTPRIMM, THE BOSBEREHHH KOTOPEIX MONTRICHRIS CBAPER HE TPEBUETCS 3.16. TEMMEPATY PHOLE WAS B MEPETO PORKAY CORMADANT C TEMME-

PATYPHEIMH LUBAMH & KOHCTPYKLINGX KAPKACA SAAHNA. 3. 17. BOPOTA & DEPETOPORICAL ORMOSTASHCHUL SERHHU RPHMATU PACRALLANI-

MN NO CEPHN 1.435.9-17. KHPNHYHRA KARAKA BHILLE NPOEMA BOPOT ONHPA-ETCA HA 0589304HWE BRAKH NO FOCT 24893.0-81 - FOCT 24893.2-81. B KOHEPETHOM OPDEKTE B OBBASOUHLIX BRAKRY WENPONYHOÙ KARAKE HE-OBXOLHMO RPELYCMOTPETS BAKRALHSIE KBAFANA ARA KPERNEHNA CTARANOK PAMBI BOPOT. PASSHBKY SAKARAHGIX MBAEJHU B OSBASOYHGIX BAAKRX TPH-HHMATE & COOTBETCTBHH CTREMUEN:

1.431.6-28.0-00 113 23098-01

THROPASMEPA BOPOT & COOTBETCTBHH C KONCTPYRUMEN CTOEK DO CEPHH 1.435.9-17, BUT. 4, R 43.161 YCTAHOBEH PAMBI BOPOT - BUT. D. A BEP HALE MPDEMAI MPHHATAI NO FOCT 14624-84. AND KPENNEHNA ABEPHAIX KOPOSOK & DTKOCAX TIPOEMOB TIPERYCMOTPEHAI DEPEBBHHAIE TIPOSIN. 3.18. KAPANYHLIE REPETOPORKU B 3RAHURY C MOCTOBLIMU KPAHRMU CPEAHETO H TANCESOFO PENCHMOB PASOTH H SAAHHAX C OSOPYAO-BRHHEM, OLRSWBAHOLUM ANHAMNYECKOE BOSAENCTBNE HA CAPKAC BARHUS, ADRYCKAETCS OPHMEHSTO OPH BUTONHEHHH CREASIO-WAX CONCTPYKTHBHGIX TPEBOBRHHH: C) TONIUNHA NEPETOPORKH DONOCHA BUTG HE MEHEE 120 mm; 5) REPETOPORKH, APMUPOBAHHGIE TOPHBONTAJIGHGIMH ERPERCRAMA JONYCERHOTCA TOMKO B 34 RHHSX C KPAHAMA CPEAHETO PERCHMA PABOTHI NPH BHICOTE 3AAHHH HE BONEE 12,0M; ANS OCTANOHOIX NEPETOPO-AOK, YKABAHHEIX B HACTOSILLEM NYHET E, CHEAVET MPHMEHATE CTANEHOLE BETPOBLE MORCH: 6) PACCTOSHUE MESKLY BETPOBLIMU NOSCAMU NO BLICO-TE 8 NEPEROPORKAX TOMMHHOHO 120mm C WAROM BEPTHKAJI6 H6IX HECYLLUX SIEMEHTOB QO 6 M BESINGHITESTONO HE DOSSICHO PREBLIWATE 1,8 M: 2) B MECTAX PHIMBIKAHNA ENARCH MEPETOPOROK K KOBOHHAM JOJINCHI BUTT YCTPOEHU Y3JIL KPERAEHHA KARACH C WATOM HE BOASE 900mm ASIA REPETOPOROK TOJIMHHOW 120mm H 1200 mm-ANS REPETOPOSOK TOSIMHHOW 250 MM;

A) 8 BEPXHEH YACTH TIEPETOPOAKH OBABATEASHA YCTAHOBKA TOPHBOHTAASHOTO HAH HAKAOHHOTO BAEMEHTA PAXBEPKA. YCTPOHCTBO KOHCOAGHOTO

YYACTER KARAKH HE ADNYCKRETCS;

PASSHBKY BRENARHOIX HBRENHA B KNARKE AND KPERMEHHA CTOEK

SEPOT BUTTON HATE & KOHKPETHOM PROEKTE & SABACHMOCTH OT PHHATOTO

E) BUITONHEHME KMPNMYHOÙ KNAAKH NPH OTPHUATENGHOÙ TEMNEPATUPE AONYCKRETCA NPH YCHOBHH OBASA-TENGHOLO BKNOYEHMA B PACTBOP AOBABOK, OBEO NEYMBAYOUMX TBEPAEHME PACTBOPA NPH CTPHURTENGHUX TEMNEPATYPAX;

XK) MAPKA PACTBOPA ANA KNAAKH AONXCHA BUITG HE MEHEE 50, BPEMEHHOL CONPOTH BIEHME OCEBOMY PACTAXCEHHHO NO HENEPEBASAHHOMY UBY (HOPMANGHOE CUENIEHME) AONXCHO GUTG HE MEHEE

1,2 кгс/ст². Аля повышения нортального сцепления рекотендуется притенять растворы со стецияльныти добавкати. 3.19. Стальные изделия для крепления телкого оборудования

M COMMYHHEALHH MOTYT JAKJAADBATECA APH BOJBEAEHHA MEPE-TOPOLOK, JABO KPEAHTECA K TOTOBEM REPETOPOLKAM C ROMOULEO BCTPEJHBAEMEIX UJU PACTOPHEIX LIOBEJEH HJAH BOJTOB, YCTAHAB-JABREMEIX B CKBOJHEIF RPOCBEPJEHHEIE OTBEPCTUA.

THE TORUGHE TEREFORM OF THE PETUS.

THE TORUGHE TEREFORM 65MM KPETTERHE METALOGO
OBOPYROSHMA H KOMMYHHKALIHH DOTYCKAETCA TOJICKO K STEMENTAM PRIBEPKA.

3.20. OTBEPCTUR B REPEROPORERX RPH HX BOSBEREHHH RORYCER-ETCR YCTPRHBATE C YYETOM YERSAHHH, RPHBEREHHEIX HA ROKYM. - 01 HACTORWETO BURYCER.

1.431.6-28.0-00 113

POPMAT A3

23098-01

4. YKR3RHNA NO NPHMEHEHHHO.

4.1. BUBOP KOHCTPYKLINH PEPETOPOLOK PROUBBOANTCH PO PEKOMEH-ARLHAM HACTORILLEH CEPHH C YYETOM KOHKPETHIK YCHOBHH CTPOHTEN-CTBR M TPEBOBRHHH TIT 101-81*

PAN STOM CREASET HMETS & BHAY, 4TO PRIMEHAEMSIE & HACTOS-ЩЕЙ СЕРИН КОЛОННЫ ФЯХВЕРКА ПЕРЕГОРОДОК ОДНОЭТЯЭЮНЫХ ЗДА-HUM CEPHH 1.030.9-2 PHHATH CTAJIGHUMH AJA KAPKACA SAAHHA C HECYLLINMU CTANAHAMU KONONHAMU U DEENEZOBETOHHAMUH - ANA

- KAPKACA C HECYLLUMU KOROBETOHHUMU KOROHHAMU. 4.2. PEKOMEHAYIOTCA (APH OTCYTCTBUH TPEEOBRHHÚ, OSOCHOBIJBA-ЮЩИХ ДРУГИЕ КОНСТРУКТИВНЫЕ РЕШЕНИЯ) СЛЕДУЮЩИЕ КОНСТРУК-LUH REPEROPOSOK:
 - d) Ang Oahostrychbix Barhny, he henditbibhownx HATPY30K OT KPAHOB CPERHETO H TROKESOTO PERKY-MOB PAGOTAL M APYTHY ANHAMMYECKHY BOSAENCT-BHH. PEPETOPORKH TOMMHHOND 120MM C HEENEBOSE-TOHHLIMM KOJOHHAMU PRYBEPER M RPMATYPHLI-MH KAPKACAMM & WBRX KNARKH;
 - б) ДЛЯ MHOГОЭТЯЖНЫХ ЗДЯНИЙ, НЕ ИСПЫТЫВАЮЩИХ ANHAMMYECKHE HAFPYSKH, NEPETOPOAKH TOMYNHOW 120 MM H3 OSAETYEHHOTO ENPIRHYA C APMOKHPIHY-HUMM THERETPAMM THE BUCOTE STANCE 3 H 36m N CO CTRIBENSIMH KONOHHRIMH CPRIBEPER IPH BAI-COTE STROKER OT 4,2 407,2 M:
 - 6) TPESOBRHHA K KOHCTPYKUHAM DEPETOPOAOK B BARHURY C ANHAMNYECKHMH BOBRENCTBURMH OTO-BOPEH6/ B 17. 3.18.

B MECTAX YCTAHOBKH CBABEH MEHCAY KOJOHHA-MH KAPKACA BARHAR PEKOMEHRYETCA YCTPOHCTBO MPHCJOHHGIX NEPETOPOZOK.

NPM HEOEXOLHMOCTH YCTPOHCTBA MESICIONOHHOH MEPEROPORKH & CASSEBOM REQUETE KOHCTRYKUHH

CBASEN N REPEROPORKH B STOM RPONETE AONOCHOI PEWATECS B KOHKPETHOM TROEKTE C SHETOM BBRUMHON YBRBKH.

4.3. BAPHAHTSI KOHCTPYKTHBHSIX PEWEHNN MEPETOPOROK, PASPA-BOTAHHAIX B HACTORINEN CEPMA, PRABEREHA HA DOCUM. -02... -04 HACTOS-METO BUTTYCKA.

4.4. ACERESOBETONHAGE KORONHAG PRIBEPICA REPEROPOLOK DANOGTROKOMIK 3ARHHH MPHHATH NO CEPHH 1.030.9-2. NOABOP SKEME3OBETOHHHU KOMOHH PAXBEPKA, CTAJIGHGIX SAEMEHTOB "T"K HHIM H YSJOB KPEAJEHHA KO-JOHH K KOHCTPYKUHAM BARHHA TIPONSBOANTS TO AOKYMEHTAM 1.030.9-2.0-09, 1.030.9-2.0-10.

HA YEPTESKERY SICESESOSE TOHHGIY KONOHH GPAYBEPKA DEPETOPONOK ORHOSTROCHEIX SARHHUN PPERYCMOTPEHEI SAKORRHEIE NSAESHA ALA KREP JEHHA STUX KOJIOHH K PYHARMEHTAM U KOHCTPYKUHAM TOKPUTHA.

PAN HEOSXOAMMOCTH B KOHKPETHOM PROEKTE ADAMCHAI SHTA THE AYC MOTPEH W. AOTOTHHTE JOHNE SAKJAAHWE MSAEJHA AJA KPEN-JEHNA SJEMENTOB TEPETOPOLOK. B KONKPETHOM TPOEKTE, TPH HE-OBXOLHMOCTH, LOSISCHLI BLITH TAKSKE PPELYCMOTPEHLI SAKSALHLIE HORESHAR B KOSOHHRY BARHHA ASIA KPENDEHHA SAEMEHTOB NEPE TO-PODOK IN TIPONSBEDEH TOBEPOYHEIN PROYET STAX KONOHH HADENCTBHE AOTONHATEN6H6IX BEPTHKAN6H6IX HATPYBOK OT NEPETOPOROK.

4.5. CTRICHUE KOJOHHU PRYBEPKA NEPEROPOQOK OQHOGTROKHUX ЗАЯНИЙ ПРИНЯТЫ ПО СЕРИИ 1.030.9-2.

MORBOP CTANGHOUX KONOHH PRAYBEPKA MOREPEYHOIX MEPEROPOROK CTRIGHGIX GIEMEHTOB "T" K HUM U 43.008 EPERIEHUS KOJOHH K KAPKAY BARHHA RPOMBBOAHTE RO ACKYMEHTY 1.030.9-2.0-11.

23098-01

1.431.6-28.0-00 173

ПОДБОР СТАЛЬНЫХ КОЛОНН ФЯХВЕРКА ПРОДОЛЬНЫХ ПЕРЕГОРОДОК, СТАЛЬНЫХ ЭЛЕМЕНТОВ "Т $^{\circ}$ К НИМ И УЗДОВ ИХ КРЕПЛЕНИЯ ПРОИЗВОДИТЬ ПО ДОКУМЕНТУ — 07 НАСТОЯЩЕГО ВЫПУСКА.

4. G. CTRUBHABE KOMDINIAL PRIMERIKA TEPETOPOROM MNOTORTRINCHAM SARHHÁ PRIPREUTRHAL B. BALT. Z. HRCTORUJEH CEPNN. TOAGON KOMONN PRIMERKA TEPETO-POROM RODURA OTUTE, ID. ROMUMENTU - D.S. MOCTOR MAGEO. RADUKANA

POROK NPOHBBOQUITE NO ROKYMEHTY-08 HRCTORUGETO BENTYCKA. 4.7. YSREI BRWAPKUPOBRHHEIE HA NPHMEPAK PEWEHNA NEPETOPOROK, MMEHO-ULNE UNIPOBOE OBOBHRYEHNE/BEB BBEBOYKN), PRBPABOTANEI B BENTYCKE 2

ЩНЕ ЦИФРОВОЕ ОБОЗНАЧЕНИЕ (БЕЗ ЗВЕЗДОЧКИ), РАЗРАБОТАНЫ В ВЫТУСКЕ 2

HACTORILLE СЕРИИ; УЗЛЫ, ИМЕЮЩИЕ ЦИФРОВОЕ ОБОЗНАЧЕНИЕ СО ЗВЕЗДОЧКОЙ (НЯПРИМЕР 11 °), ВЫПОЛНЯТЬ ПОТИПУ УЗЛОВ СЕРИН 1.030, 9-2 ВЫП. 6.

МЕСТЕ СВЕРИВНИЯ ОТВЕРСТИЙ ПО ИТВОЙСТВО ИЗЛОВ ГОСЛЯВИЛИ ОТВОЕ-

MECTA CBEPARHUA ÖTBEPCTHÁ ANA YCTPOÁCTBA YSAOB EPERMEHHA NEPE-TOPOROK K ACEMESOBETOHHBIM KONOHHAM AONACHDI BUTO YTOYMEHBI B DOH-KPETHOM TROEETE CULTURO NCLINOYEHUA BOSMODEHOCTH PRARYWIEHUA PABOYEH

RPMRTYPH IXCEJIESOBETOMHOIX KOJOHH.
4.8. KOJNYECTBO PRCTOPHOIX ANJEJEN BYBJAX KPETJEHNA SJEMENTOB DEPETOPOROK K DCEJESOBETOMHIM KOHCTPYKYNAM BYRHHA DPWHATO BES YYETA BHBPAYNOHNOK BOJJEŻCTBYŃ HA YSJNI CO CTOPONI OBOPYJOBAHNA DPW IKCOJYATALYM
BARHNA.

TIPM HAJMYUM BABPALUONHOLK BUSAEKCTBUN OT OBOPYAOBAHAA HA KOHCT-PYKLUM SAAHHA B KOHEPETHOM APDEKTE AOARKHA BOITO APDBEPEHA HECYURA STACOLINGOL UN BOOK GUNGTON STAK ARBAKATEMA

CROCOBHOCTS YSAND C YMETOM STHX BUSAEHCTBHH.

B COOTBETCTBHN C, PEKOMEHRAUHAMIN NO YCTAHOBEE AKKENEH PACROP-

HAIX KUHMYECKUX ANA KPENJEHNA REPETOPOADK K CTPONTEJAHAIN KONTPYKUMAM BARHNIN, PARPABOTAMHAININ BHNN MONTRYKCREUCTPOEM (MOCKRA), HECYULAR KROCOS-HOCTA ANGEJR APK-MIO, KTANGRIEHNOTO 8 OTBEPCTNE, OBPRIOBRHHOE 8 EETOHE

KJINCCH BIS H BBIWE, CO	INCCH 515 N BUNDE, COCTRUSINET:								
Harpyska, krc	CTATHYECKAA	При наличии вибрации							
Выдергивающая	750	375							
Савнгающая	180	90							

Tiph cobmecthom deuctbum buildpinbriownx n cabhirhownx haipysok ykasah-Hule shayenur hecywax chocobhocteñ andelas cheryet ymehbwatu b 1,5 prsa. 4.9. The proekthrobahhu perecordadk b konkrethely proektry behooghants 4eptemen:

1) PHARMENTOS NEPETOPODOK, YCTAHAB, MBAEMЫХ НА УРОВНЕ 1 12 ЭТАЖА ЗДАНИЯ (ПРИ ОТСУТСТВИИ ПОДВЯЛОВ); 2) CXEM NEPETOPODOK В УВЯЗКЕ С КОНСТРУКЦИЯТИ ЗДАНИЯ;

3) KONOHH LAPLACA SAAHHA C QOTONHHTENSHIMH SALNAAHIM MH 1831ENHAMH ANA KPENNEHHA NEPETOPOQOK;

4) ПРИ НЕОБХОДИМОСТИ-УЗЛОВ, ВЫПОЛНЯЕМЫХ ПО ТИПУ УЗЛОВ НЯСТОЯЩЕЙ СЕРИП. И СТЯЛЬНЫХ ИЗДЕЛИЙ К НИМ.

4.40. Non nolbope koncryklinh pokretna odhostamkhoro slrhha po he-Cyweh chocobhocth heobxorimo yynteibrte roponhmtejehhee harpyski Ot sanonhehua nademob b kohcryklinax, monojesjemely b kavectre bepyheh

YACTH REPETOPORKH, NOT KPERREHHA PRISEPKOBUK CTOEK (EM. GOKYM. 1.030.9-2.6-012.0 n.3).

4. 4. ANTHKOPPOSHOHHRA SAULHTA REPETOPOROK ADDISCHA REPHHINDATUCA & KOHLPETHOM REPETOPOROK ADDISCHA REPHHINDATUCA & KOHLPETHOM REPOSHOM C. TARBOH CHARI 2.03.41-85., SAULHTA CTPONTERUMIX KOHCTPYKLUM OT KOPPOSHOM"H., NOCCEHA RO REPETHOSK KOHCTPYKLUM "LUHHNCK HM. KYMEHINIK, APMOKARIEHHIN N. ACCECTULAMENTHOK KOHCTPYKLUM "LUHHNCK HM. KYYPEHKO. CTPONINSAR 1886", NOW STONI CHEMET YYECTI, YTO HEOSETOMPOBANNIE COERHHITERUHUS HAZERIA, AOCTYRK KOTOPIAM B. ROLLECCE SECRUSHTALUM SATRYA-HEN HIM HEBOSANOSCEM, AORISCHA HMETO METARIMYEKOE ROKPATINE. COOSO CRESS-ET AVBOPPATS BOCCTHOBSIEHME ANTIKOPPOSHOHOR ROLPHTYR CTRIBHNIK HIMENNÄ.

NOBPENCAEHHOLO NPH CBAPKE & NPULECCE MONTANCA KONCTPYKLHM.
4.12. BOSSEAEHHE N SKCHAVATALMA NEPETOPOAOK NPEAYCMOTPEHSI & SAKPSITSK
NOMEWEHMAX NPH NONONCHTENSHSIX TEMPEPATYPAX KARAKA CHOCOSOM SAMOPANCHSHHMA
HE ADNICKHETCA. NPH KIRAKE CHOTHBUMOPOSHSIMIN ADBASKAMI CHEAYET BST
NORTH STRASHMA NO KRAKE SOSSOAMORO & SHMIN YKNOSHSK, NPUSET BST
NORTH STRASHMA NO KRAKE SOSSOAMORO & SHMIN YKNOSHSK, NPUSET BST
NORTH STRASHMA NO KRAKE SOSSOAMORO & SHMIN YKNOSHSK, NPUSET BST
NORTH STRASHMA NO KRAKE SOSSOAMORO & SHMIN YKNOSHSK, NPUSET SONO

HOLE B CHAPT TO -22-BL, PRIMER TO MB CHAPT THE 19-78, PRIMER S. THE BOSSELEHMM REPERDED ON AD SCHEPCHCTBR HAPSYCHALK OFFRICARDWINK KONCTPYKLUM ADDINCHLI PREMYCHARMOWNE WETONICHMI REPERDED OFFRICARDWINE WETONICHBROWNE WETONICHBROWNE WETONICHBROWNE THE PREDT IN AD OKRHYRHUM PREDT DO SCRIPTICTBY HAPSYCHOLD OFFRICARHMA BARHMA.

23098-01

1.431.6-28.0-00 113

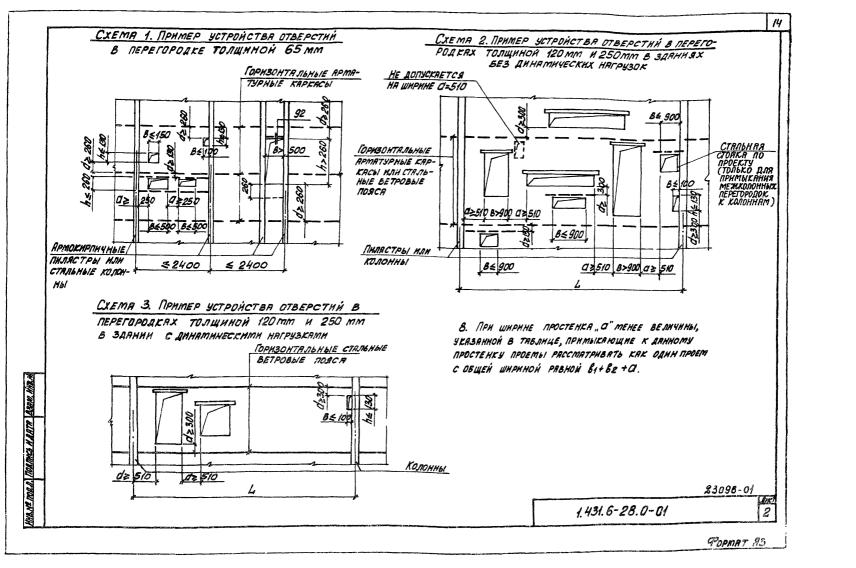
УСЛОВНЯ ЭКСПЛУА- ТАЦИИ ПЕРЕ ГО- РОДОК	ТОЛЩИНА КЛАДКИ ПЕРЕГО- РОДКИ, ММ	HAA BUCOTA	МАЛЬН АЯ ШИРИ НА	Мини- мапьна а ширин а простенка С, м м	CXEMBI	Приме. ЧАНИЯ
CKNX CKNX K HA S	65	260	500	250	1	n.1; n.8
ПРИ ОТСУТС ДИНЯМИЧЕС! НАГРУЗОК КЯРКАС ЗДЯНИЯ	120	2000	5600	510	2	
	250	3800		370	2	
HANHYNN 9 MAFPGOK HAFPGOK KAPKAC 18 MHA	120	1400	5600	540	7	п.2-п.8
При напичи Динатичес Ких нагрязс НА КАРКА З Д ОНИЯ	250	1400	3000	510	3	

1.8 перегородках толщиной 65mm проемы высотой "h" более 260 mm и шириной более 500 mm допускается устраивать только между вертикальными несущими конструкциями типа стальных колони фахверка или арпокирпичных пилястр, припыкающих к проему (по типу проемов для дверей). Армирование кладки над проемами в этом случае производить в соответствии с узлом 92 (см. докут. — 90.0, вып. 1).

Проепы шириной $8 \le 500$ mm и $h \le 260$ обрамляются горизонтальными арматурными каркасами, Дово-Димыми до вертикальных опор (стоек фахверка или пилястр).

2. Проеты 100×130 (h) у пилястр и 150×130 (h) между пилястрати могут устранваться без дополнительного артирования с соблюдением условий приближения к горизонтальным артатурным каркасам и ветровым поясам (сп. схемы 1-3 на л. 2).
3. В перего родках толщиной 120 и 250 мм при ширине проема 8 < 900 мм допускается устройство рядовых перемычек.
Над проемами ширино но 900 мм и более примемяются сборные железобетонные перемычки по серии 1.038 гром.

В ПЕРЕГОРОДКАХ, ИСПЫТЫВАЮЩИХ ДИНАМИЧЕСКИЕ НАГРУЗКИ, УСТРОЙСТВО РЯДОВЫХ ПЕРЕМЫЧЕК НЕ ДОПУСКАЕТСЯ.


4. При устройстве отверстий в перегородках с пиластрамы расчет пиластр должен быть произведен по фактическому их сечению без учета полок, отсутствующих в зоне устраиваемых отверстий.

5. HA WHPHHE TIPOCTEHKA, PABHOTO MMHMMAAHOMY 3HAYEMMA Q", YKASAHHOMY B TABAMUE, B 30HE MEMAY TOPHSONTAADHBIMM HE-CYWUMM BAEMEHTAMM TEPETOPOAKH YCTPOŃCTBO AOROAMNTEABHHOMY OTBEPCTMÁ HE AORYCKAETCA.

6. При больших разнерах отверстий перегородки должны выполняться со стальными ветровыми поясами и обрамлением из стальных элементов, соединенных с ветровыми поясами. 7. В зданиях с динамическими нагрузками участок неарихрованной кладки должен быть обрамлен стальными элементами и иметь площадь не более 10 м2

23098-01

Ст.инж.	Туровнч	3R,	- REPETOPOLIKAN TOMUNHON	XAP5KOSC NPOMCTPOÚHK	KWÁ MNPOEKT
C7. HHM.	ПРОЦЕНКО	hear	OTBEPCTME B KHPONUHBIX	P	2
PYK. TP.	YYHAKO8A	195	Указания по эстройству	CTARNE ANCT	ANCTOR
	KOPOTELLKAN		1. 751. 6- 20.	0 - 07	i
H. KOHTP.	YYMAKDBA	200	1. 431. 6- 28.	0-01	
HAY. OTA	BPDACK HA	4			
				Z509	0-01

		Конструк	ТИВНЫ	Е РЕШЕНИЯ	попе	РЕЧНЫ	X NE	PEFOPO.	док	в о	дноэ	ТАЗ	жныж	3ДІ	яниях
	Харяктеристикя ЗДЯНИЯ	ВЕРТИКЯЛЬНЫЕ НЕСУЩИЕ ЭЛЕМЕНТЫ ПЕРЕГОРОДКИ	ШЯГ ВЕРТИКЛІВ- НЫХ НЕСУЩИХ ЭЛЕМЕНТОВ ПЕРЕ- ГОРОДКИ, М	ГОРИЗОНТВЛЬНЫЕ НЕСУЩИЕ ЭЛЕМЕНТЫ ПЕРЕГОРОДКИ	НЫЖ НЕО ЭЛЕМЕНТО ВЕТРОВОЙ	18 (11) NPA 1 HATPY3KI	WE TOPHS OND YCHEN UP	IRMHYNE 93N C BEPTH- NBHBIMN ONOPAMN	ВЫ ЭТП ЗДАНИ	TUMAR COTA ЖА ЧЯ, М	ЯКСИМВЛЬНВЯ ВЫСОТЯ СЛЯПКИ, М	Толщиня РЕгородки ћ, мм	Мяркя и вид кирпичя	МЯРКЯ РЯСТВОРЯ	Сжемя перегородки
-		BE	HE HE		14 кгс/М	22 KTC/M	HADAN TRANGH B BEI NEPE	CBA3 KRING	BE3 KPRHOB	KPAHAMU	W	UE		,	
E Fre Moston we vo	лапе въз Рисливы кия 8, с <i>железоветоннин</i> Ропильныти КОНСТРУК- 1ЯТИ L=9,0 – 24,0 м	Кирпичные пилястры *)	6,0	ПРМЯТУРНЫЕ КЯРКЯСЫ В ГОРИЗОНТЯЛЬ НЫХ ШВЯХ КЛЯДКИ	<i>≟2,25</i>	<i>≤ 1,80</i>	с опорой		3,0-6,0		9,3	120	ГЛИНЯНЫЙ И СИЛИКАТ~ НЫЙ МЯРКИ 75	50	СХЕМЯ 1 (ДОКУМII) КИРПИЧНЯЯ ПИЛЯСТРЯ 6000 6000×П 6000
20000	CTPOONS UNSTAN							Шпильки по колонням шаг 1200 ма	3,0-7,2		10,5	250			5 5
KDOWDA	EMPH TO PA	WEBEROE ETO		ВЕТРОВЫЕ ПОЯСЯ ИЗ Е!Ч	<i>≟3,0**</i> 9	<i>≟3,0*</i> *									CTEMA 2 (QOKYM12;-18)
* MOCTORET	HRMM JETKOTO PES C SKEJESOBETOMI JOHNSIMU CTPUMI FRIM L=18,0-36	ЖЕЛЕЗОБЕТОК НЫЕ КОЛОННЫ ФРІЖВЕРКА ПО СЕРИИ 1.030.9-2,		ПРМЯТУРНЫЕ КЛРКЯСЫ В ГОРИЗОНТЯЛЬ- НЫХ ШВЯХ КЛЯДКИ	€2,25	<i>≟ 1,80</i>	С ОПОРОЙ		4,8-14,4	8,4-14,4	17,7	120	Глиняный и Силикат- ный	25	6000 6000×n 6000
12	E SEE	<i>вып.0;5</i>						ШОНЛЬКИ ПО				250	мпрки 75		\
ВВНИ	A CT						БЕЗ ОПОРЫ	KOJIOHHAM Wat 1200 mm			4,2	230			

РЕКОМЕНДЯЦИИ ПО ВЫБОРУ ТИПН ПЕРЕГОРОДКИ СМ. П.4.2 ДОКУМ.-00

- *) СЕЧЕНИЯ ПИЛЯСТР СМ. НЯ ДОКУМ. 05
- **) Последний (верхний) ШЯГ ВЕТРОВЫХ ПОЯСОВ 42,2 м

	23098-01
Нач. отд. Бродский Н. конте. Чумакова Гл. конст. Коротецкий	1.431.6-28.0-02
PYK.TP. YYMAKOBA 725 CT. HHAK TIPOLIEHKO Show -	KOHCTPYKTUBHME PEWEHUA CTAQUA JIHCT JIMCTOB
, ,	

Харяктеристикя Заяния	ВЕРТИКАЛЬНЫЕ НЕСУЩИЕ ЭЛЕМЕНТЫ ПЕРЕГОРОДКИ	UIRC BEPTHKRAB- HBIX HECYUHX BATEMEHTOB NEPE- TOPOQKH, M	HAIE HECUMULE	WRF FOPM HWX HEC SNEMEHTO BETPOBOM	78/M) NPU	16528	Няличие Связи с верти- Кяльными Опорями	ДОПУС ВЫС ЭТЯ ЗДЯНИ	COTA War	KCHMRABHRA BBICOTH RAKKI, M	ТалщИНВ Егородки ћ,ММ	Мпркя и вид Кирпичя	Мпркя Растворя	Схемя перегородки		
X. X.	BEP 32,	HIN HISTO JOE TOPOG	BETPOBLIE			₹£80	32	БЕЗ КРЯНОВ	ICP RH AMW	¥ 3	NEP	ГЛИНЯНЫЙ МАРКИ 15	•	CXEMA 3		
TENENT PER MEMBER	_		ПОЯСЯ ИЗ Е14	<i>≟3,0**</i>)	€3,0**)							ГЛИНЯНЫЙ МЯРКИ 15 СИЛИКЯТНЫЙ МЯРКИ 75	25;50	СХЕМА З (ДОКУМ12) СТАЛЬНАЯ КОЛОННА ФАХЬЕРКА		
CTOBSI JETKO STRING SCOR	СТЯЛЬНЫЕ КОЛОННЫ ФЯЖВЕРКЯ	60	ПРМЯТУРНЫЕ КЯРКАСЫ В ГОРИЗОНТЯЛЬ-	≟ 2,25	<i>≤ 1,8</i> 0	С ОПОРОЙ	_	6,0-18,0	8,4-18,0	21,3	120	<i>เภมห</i> яныท่ ห				
HEIMAN HEIMAN	ПО СЕРИИ 1.030.9-2	9-	НЫХ ШВПХ КЛАДКИ	- =,==	-,,50							СИЛИКПТ- НЫЙ	25	6000 6000×R 6000		
3дяние без мостовых км- нов н с кранары леткого режы уче работы со стальным стропильными фермени, L = 18,0 — 36,0 м	вып. 0; 4					SE2	ШПИЛЬКИ ПО КОЛ ОНН ЯМ				250	МПРКИ 75		<u>L</u>		
C as a constant			Acronus			БЕЗ ОПОРЫ	MAT 1200MM			4,2	_			0 0		
, ,			BETPOBЫE ПОЯСЯ ИЗ СІЧ	<i>≤1,80</i>	<i>≤1,80</i>		шиильки		8,4-14,4	17,7		าภมหลหม่น				
СРЕДНЕГ ЫМИ И С .=180—36	Железобетон ные колонны Фажверка по серни 1.030.9-2, вып. 0;5	6,0	ЯРМЯТУРНЫЕ КАРКАСЫ В ГОРИЗОНТЯЛЬ- НЫЖ ШВАЖ КЛЯДКИ	<i>≟1,8</i> 0	<i>≤1,80</i>	с опорой	по Колоннаг шаг <i>900г</i>		8,4	11,7	120	И СИЛИКАТ- НЫЙ МАРКИ 75	50	CM. CXEMY 2		
КРВНЯМИ ЗОБЕТОНН ЕРМВМИ, ¹	com. o,o					563	ШПИЛЬКИ ПО КОЛОННАМ ШПГ 1200М		8,4-14,4	17,7	250					
EN EN			0.000000			БЕЗ ОПОРЫ	WAL IZOOM			4,2						
SKE SKE	СТАЛЬНЫЕ		ВЕТРОВЫЕ ПОЯСЯ ИЗ "СІЧ	<i>≤1,80</i>	≤1,80		шпильки		8,4-18,0	21,3		<i>เภมหяныน</i> ์				
Здяние с мостовыми режимя работы, с же ными стропильными	КОЛОННЫ ФПЭСВЕРКП ПО СЕРИИ 1.030.9-2; Вып. 0;4	6,0	ЯРМЯТУРНЫЕ КЯРКЯСЫ В ГОРИЗОНТЯЛЬ- НЫХ ШВЯХ КЛЯДКИ	<i>≟1,80</i>	<i>≤1,80</i>	с опорой	ПО КОЛОННЯМ ШЯГ 900м		8,4	11,7	120	И СИЛИКАТ-	и Силикат- Ный	и Силикат- Ный	50	CM. CXEMY 3
五章五							ШПИЛЬКИ ПО		8,4-18,0	21,3	250					

		Конструк		РЕ ШЕНИЯ	ПОПЕРЕ	чных	перег	ОРОДОК		QH0ЭTR:			даниях	(oko	ЭНЧЯНИЕ)
	Хяряктеристикя ЗДЯНИЯ	Вертиклальные Несущие элементы перегородки	Шиг ВЕРТИКЛЛЬ- НЫХ НЕСУЩИХ ЭЛЕМЕНТОВ ЛЕРЕ- ГОРОДКИ, М	ГОРИЗОНТВЛЬ- НЫЕ НЕСУЩИЕ ЭЛЕМЕНТЫ ПЕРЕГОРОДКИ	ШЯГ ГОРЫ НЫЭС НЕС ЭЛЕМЕНТО ВЕТРОВОЙ	130НТАЛЬ- УЩНЭС В (м) ПРИ НЯГРУЗКЕ	НЯЛИЧИЕ ГОРИЗОН ТЯЛЬНОЙ ОПОРЫ В ВЕРХНЕЙ ЧЯСТИ ПЕРЕГОРОДКИ	HRJNYNE CBA3N C BEPTH KRNBHBIMN ONOPRMU	эцппи	TUMES COTE 9CE 19CE	MRKCHMRIBHRS BEICOTA KARDKH, M	Толщиня перегородки ф.т	МпРКА И ВИД КИРПИЧЯ	Ияркя Рястворя	Схемя перегородки
	ZAP6	BEPT HE 30R NEPI	HBIS HBIS FOPC	7,2, 0, 0, 0,	14 KFC /M2	22 KTC/M2	TRAIL B BE NEP	#352	BE3 KPRHOB	с <i>КРЯНЯМИ</i>	AR 3	ne		1	
	Елого РЕжитя Кяти, с жБ. L=18,0—36,0 m	ЖЕЛЕЭОБЕТОН НЫЕ КОЛОННЫ ФЯЖВЕРКЯ ПО СЕРИИ 1.030.9-2,	6,0	ВЕТРОВЫЕ ПОЯСА ИЗ С14	<i>≟1,8</i>	<i>≟!,8</i>	с опорой	ШПИЛЬКИ ПО КОЛОННЯМ ИЯГ 900 М		8,4-14,4	17,7	120	ГЛИНЯНЫЙ И СИЛИКЯТ- НЫЙ МЯРКИ 75	50	(докум13) См. сэсему 2
	нями тяж иги нягруз I ФЕРПЯПИ,	I.030.9-2, вып.0;5					БЕЗ ОПОРЫ	ШПИЛЬКИ ПО КОЛОННАМ ШЯГ 1200мм	1		4,2	250			
	Эдяние с тостовыти корнями тяжелого р РАБОТЫ ЫЛИ С ДИНЯМИЧЕСКИМИ НЯГРУЗКЯМИ, (И СТЯЛЬНЫМИ СТРОПИЛЬНЫМИ ФЕРМЯМИ, L=18,0	СТПЛЬНЫЕ КОЛОННЫ ФПЖВЕРКН ПО СЕРИИ 1.030.9-2,	6,0	ВЕТРОВЫЕ ПОЯСЯ ИЗ [14	≤ <i>l,8</i>	£1,8	с опорой	ШПИЛЬКИ ПО КОЛОННЯМ ШЯГ 900 гого		8,4-1 8 ,0	21,3	120	ГЛИНЯНЫЙ И СИЛИКАТ- НЫЙ	50	(ДОКУМ. – 13) См. сжему 3
	ЭНИЕ С ОТЫ ИЛН ГВЛЬНЫМ	1.030.9-2, ВЫП. 0;4					<i>5E</i> 3	ШПИЛЬКИ ПО КОЛОННЯМ		,	11.0	250	МЯРКИ 15		
				BETPOBLIE			БЕЗ ОПОРЫ	WAF 1200(4)			4,2				CXEMR 4
HITE. N'S	T KM	Железобетон		пояся из січ	£3,0**)	<i>≟3,0**</i>)							Глиняный		(ДОКУМ14) Ж.Б. КОЛОНКА ФПЖВЕРКА
MBA*nood, (Todoks H. Orth 1839m Hib.Nº	3дяние без мостовых ку нов со стропильными Б B	ЖЕЛЕЗОБЕТОН НЫЕ КОЛОННЫ ФЯЖВЕРКЯ ПО СЕРИН 1.030.9-2, ВЫП. 0;5	6,0	ПРМАТУРНЫЕ КАРКАСЫ В ГОРИЗОНТАЛЬ- НЫХ ШВАХ КЛАДКИ	≟ 2,25	<i>≟ 1.80</i>	с опорой		3,0-6,0		6,0	120	И СИЛИКАТ- НЫЙ МЯРКИ 75	25	6000 6000 6000
llegrakes A	RAPHUE E HOB CO CT. KRIMU , L	, DDHI. V ₁ J					БЕЗ ОПОРЫ	ШПИЛЬКИ ПО КОЛОНКЯМ ШИГ 1200 ММ	3,0-12,0		12,0 4,2	250			5 5
TOOL	11112	**) CM.	ПРИМЕЧ	И Я НИЕ НЯ Л	UCTE 1										23098-01 Лист
WB X															1.431.6-28.0-02 3 POPMET R3

			Конст	ГРУКТИВНЫЕ	РЕЩЕ	ЕНИЯ	продо	льных	; ΠΕΡΙ	ЕГОРОДО			7H0ЭТР Ж	H 613C	зданиях
	Хяряктеристикя Эдян ия	Вертикальные несущие элементы перегородки	IIIAT BEPTUKRIIS- HISIX HECYIIHX SINEMEHTOB NEPE TOPOZIKH, M	ГОРИЗОНТЯЛЬНЫЕ НЕСУЩИЕ ЭЛЕМЕНТЫ ПЕРЕГОРОДКИ	BETPOBOL	й <i>нагруз</i> и	1225	Няличие Связи с Верти- Кяльными Опорями	BAL	CTUMAR ICDTA A HCR IR, M C KPAHAMU	Мпксимпльнпя высотя клядки, м	Толщиня перегородки h, мм	МАРКА И ВИД КИРПИЧА	Мяркя Рястворя	Схемя перегородки
İ	TX KPA- TXOTO T CPEQ- H CTPONINS			ВЕТРОВЫЕ ПОЯСЯ ИЗ СІЧ	1	<i>≤3,0**</i>)									CXEMA 5 (AOKYM:-15;-18) Ж.Б. КАЛОННЯ КАРКАСА
	28 E E E E	Железобетон Ные Колонны Кяркаса ЗДЯНИЯ		ЯРМЯТУРНЫЕ КЯРКЯСЫ В ГОРИЗОНТЯЛЬ- НЫХ ШВЯХ КЛЯДКИ	≟ 2,25	<i>≟ 1,80</i>	с опорой			8,4-10,8	11,7 ****)	120	Глиняный И СилиКПТ- ный МПРКИ 75	25	6000 6000 6000
	3ARHHE HOB H C PENEUMA HHT. KOM HUT. QEF						БЕЗ ОПОРЫ	Шпильки По Колонням Шяг (200мм	3,0-4,2	_	4,2	250			0 0 0 0
				BETPOBBIE NORCR U3 E14	<i>≤3,0**</i>)	<i>≤3,0**</i>)									CXEMA 6 CTRABHRA KOJIOHHA KAPKACA
	БЕЭ МОСТОВЫХ КРА- П СРЕДНИК КОЛОНН Я И СТРОПИЛЬНЫХ 6 М	Стяльные Колонны Каркаса Здания	6,0	ЯРМЯТУРНЫЕ КАРКАСЫ В ГОРИЗОНТЯЛЬ- НЫХ ШВЯХ КЛЯДКИ	<i>≟</i> 2,25	<i>≤ 1,80</i>	с опорой		9,6;10,8	_	14,1	120	Глиняный и силикат- ный марки 75	25	6000 6000 6000
1	Заяние бе нов шпг Кяркяся ФЕРМ - б 1			_			БЕЗ ОПОРЫ	<u>Шлильки</u> по колоннят шяг 1200г а			4,2	250			0 0 0
+		Рекоменді	ЯЦИИ I	70 86150PY 7	гипа п	EPETOPO	дки								02000 14

CM. N. 42 DOKYM. - 00

**) CM. ПРИМЕЧЯНИЕ НЯ ЛИСТЕ 1 ДОКУМ. - 02

*** *) ПРИ ОТСУТСТВИИ СВЯЗЕЙ ПО КОЛОННЯМ ВДОЛЬ ПЕРЕГОРОДКИ

В ЗДЯНИЯХ БЕЗ МОСТОВЫХ КРЯНОВ МЯКСИМЯЛЬНЯЯ ВЫСОТЯ

СЯМОНЕСУЩЕГО УЧЯСТКЯ КЛЯДКИ ПРИ ТОЛЩИНЕ 120 ММ

ДОЛЖНЯ БЫТЬ НЕ БОЛЕЕ 6,0 М

23098-01

Н.КОНТЕ ЧУМЯКОВЯ ТОТ ПОВТЕНИИ ПРОДЕНКО ЗОЧ В ОДНОЭТЯЖИНЫХ ЗДЯНИЯХ

В ОДНОЭТЯЖИНЫХ ЗДЯНИЯХ

23098-01

1.431.6-28.0-03

Г.КОНСТРУКТИВНЫЕ РЕШЕНИЯ

ПРОДОЛЬНЫХ ПЕРЕГОРОДОК
В ОДНОЭТЯЖИНЫХ ЗДЯНИЯХ

РОРМЯТ ВЗ

			УКТИВН Т.	IBIE PEWEH				PETOPO						(ПР	Одолжение)
	Хяряктеристикя Здяния	ВЕРТИКЯЛЬНЫЕ НЕСУЩИЕ ЭЛЕМЕНТЫ ПЕРЕГОРОДКИ	T BEPTHKRIBS X HECSIYUX MEHTOB NEPE YOJKA, M	ГОРИЗОНТЯЛЬНЫЕ НЕСУЩИЕ ЭЛЕМЕНТЫ ПЕРЕГОРОДКИ	ЭЛЕМЕНТО ВЕТРОВОЙ	РВ (М) ПРИ НЯГРУЗКЕ	ИУИЕ ГОРИЗ НОЙ ОПОРІ РХНЕЙ ЧВІ РЕГОРОДКИ	187 28	Допус; Выс эт п Здан	TUMRA COTA COTA CHA, M CUA, M	КСИМВЛЬНВЯ ВБІСОТЯ ПРДКИ, М	Толщиня Тородки h, мм	Мпркя и вид Кирпичя	МЯРКЯ РАСТВОРЯ	Схемя перегородки
L		1 6 11	1967 1967 1967		14 KLC/MS	22 KTC/m2	HE B	CBA3H KRAB	BE3 KPRHOB	кранами	7 Z	JEPI		10	
	сРЕДНИК Х			BETPOBLIE NOACH W3 E14	43,0**)	€3,0**							โภนหяный		СХЕМЯ 7 Ж.Б. КОЛОННЯ (QOKYM.—15) ФЯХВЕРКЯ
	. ~	ЖЕЛЕЗОБЕТОН- НЫЕ КОЛОННЫ ФЯЖВЕРКЯ ПО СЕРНИ 1.030.9-2, ВЫП.0;5	l .	ЯРМЯТУРНЫЕ КЯРКЯСЫ В ГОРИЗОНТЯЛЬ НЫХ ШВЯЖ КЛЯДКИ		<i>≤ 1,80</i>	с опорой		4,8-14,4		17,8	120	и Силикат- Ный Марки 75	25	6000 6000 6000
l		BB111.0;3		**********				ШПИЛЬКИ ПО КОЛОННЯМ				250			12000 12000
	612 1 12m,						BE3 ONOPW	KONOHHAM War i200mm			4,2				
	90			ВЕТРОВЫЕ ПОЯСЯ ИЗ СІЧ	<i>≟ 3,0**</i>)	£3,0**									СЖЕМЯ 8 СТЯЛЬНЯЯ (ДОКУМ21) КОЛОННЯ ФЯЖВЕРКЯ
	200	СТЯЛЬНЫЕ КОЛОННЫ ФЯЖВЕРКЯ ПО СЕРИИ 1.030.9-2,	6,0	ПРМЯТУРНЫЕ КАРКЯСЫ В ГОРИЗОНТЯЛЬ НЫХ ШВЯЖ КЛЯДКИ	≟2,2 5	<i>≟1,8</i> 0	с Опорож		6,0-18,0		21,3		ГЛИНЯНЫЙ И СИЛИКАТ- НЫЙ МАРКИ 75	25	6000 5000 6000 12000 12000
٦	SAR	вып. 0; 4						Unuabku no Konohhria				250			12000
					_			MAF 1200mm			4,2				

**) См. ПРИМЕЧЯНИЕ НЯ ЛИСТЕ 1 ДОКУМ. - 02

23098-01 1.431.6-28 .0-03

POPMAT A3

Me I topolobors u antibarme i

	Ко но	CTPYKTH	18НЫЕ РЕШЕ	ת אמא	продолі	SH bloc 1	TEPETOF					ix здаі	ниях	(ПРОДОЛЖЕНИЕ)
Хяряктеристикя эдяния	вертикальные несущие элементы перегородки	BEPTUKRAB- C HECYWUX MEHTOB NEPE- YKH, M	ГОРИЗОНТВЛЬНЫЕ НЕСУЩИЕ ЭЛЕМЕНТЫ ПЕРЕГОРОДКИ	MEHTOB	(м) при НАГРУЗКЕ	ние сори Эхней опор Рхней чт Егородки	HRANUT 3N C BI BEHEINI OPFINI	Допус Вы этпжп	СТИМ ПЯ ІСОТЯ ЗДЯНИЯ М С КРЯНЯМИ	КСИМВЛЬНВЯ ІСОТЯ КЛЯДКИ, М	ТОЛЩИНЯ ЛЕРЕГОРОДКИ ћ,ММ	Мяркя и вид Кирпичя	<i>Мпркя</i> Рестворя	Схемя перегородки
XAP	8E4 H 34 HE 11E1	War bei Haix I Sanemer Topogik	ILL CI OT OFFICE	14 KTC/M2	22 KTC/H	TRUE SE	CERSH CERSH CARB	6E3 KPAH08	КРЯНЯМИ	88	NEP		_	
РЕЖ ит ОПИЛЬ —			BETPOBLIE NORCH H3 [14	≤3,0**	≤3,0***)							_ ,		СХЕМЯ 9 Ж6, КОЛОННЯ (ДОКУМ16) ФЯХВЕРКЯ
METKOTO 12m, CTP	Жепезобетон- ные колонны Фажверка ПО СЕРИИ 1.030.9-2,		ПРМЯТУРНЫЕ КАРКАСЫ В ГОРИЗОНТАЛЬ- НЫХ ШВЯХ КЛЯДКИ	£2,25	<i>≤ 1,80</i>	ONOPOH		_	8,4-14,4	15,3	120	Глиняный и силикат- ный марки 75	25	6000 6000 6000 12000 12000
КРАНЯМИ КОЛОНН-1 12 м	вып. 0;5		_	_	_	БЕЗ ОПОРЫ	UINUAKU 110 KONOHHAM WAL 1200mm			4,2	250			12000 12000
		6,0	BETPOBLE									Глиняный МЯРКИ 75	25	COSEMA 10 CTRABHRA KONOHHA (ADKYM, -17) PROBERCA
МОСТОВЫМИ Г СРЕДНИК М — 6 М И	СТВЛЬНЫЕ КОЛОННЫ ФВХВЕРКЯ		ПОЯСЯ ИЗ ЕИ	≟3,0**)	<i>±3,0**</i>)	с опорой				2.2		Силикат- Ный Марки 75	25;50	
Здяние с мо Ряботы; шяг с Ных ферм	по СЕРИИ 1.030.9-2, вып. 0;4		ПРМЯТУРНЫЕ КЛРКАСЫ В ГОРИЗОНТАЛЬ- НЫХ: ШВЯЗС КЛЯДКИ	£2,25	<i>≤1,80</i>				8,4-18,0	21,3	120	Глиняный и силикат- ный марки 75	25	6000 6000 12000 12000

CM. ПРИМЕЧЯНИЕ НЯ ЛИСТЕ 1 ДОКУМ. -02 CM. RPHMEYRHUE HR JUCTE 2 DOKYM.-02

23098-01

1.431.6 - 28.0-03

				ые решения	7 NPO1	7 <i>0</i> ЛЬН Ь І	ж перв	ГОРОДО	K B (рдноэтн			<i>3Д</i> ЯНИЯ Д	: (n	РОДОЛЖЕНИЕ)
	Хяркте ристикн ЗД В Н ИЯ	ВЕРТИКВЛЬНЫЕ НЕСУЩИЕ ЭЛЕМЕНТЫ ПЕРЕГОРОДКИ	Шиг Вертиклов- Ных Несущих Элементов пере- Городки, м	ГОРИЗОНТВЛЬНЫЕ НЕСУЩИЕ ЭЛЕМЕНТЫ ПЕРЕГОРОДКИ	War roph Hbix He Birmehti Betpoboh	C.VIII มา	まずが	НЯЛИЧИЕ СВЯЗИ С ВЕРТИ- КЯЛЬНЫМИ ОПОРЯМИ	Допуст Выс ЭТН ЗДЯН	OTA HCA	МВКСИМВЛЬНВЯ ВЫСОТЯ КЛЯДКИ, М	Толщиня перегородки ѝ, мм	Мвркя и Вид Кирпичя	М <i>п</i> РК <i>п</i> Р _В СТВОРЯ	Сжемя перегородки
	Хяры З	BEF HI SAN	HIBIT		14 KTC/M2	22 KFC/M	HRIN THAN 18 BE NEI	32	EE3 KPAHOB	КРЯНЯМИ	2 3	MEP		4	4
	г СРЕД- М -6 М	Железобетон-		BETPOBLIE NORCH H3 E27	<i>≟4,</i> 72	<i>≤4,</i> 72	_						Глиняный и силикат-		CXEMA II (BOKYM 19) 9E.5. KONOHHA KAPKACA
	мостовых крянов; шя 12м, стропильных феі	ные колонны Кяркаса Здания	12,0	ПРМЯТУРНЫЕ КАРКАСЫ В ГОРИЗОНТЯЛЬ- НЫХС ШВЯХС КЛЯДКИ	<i>≟1,95</i>	<i>≟1,20</i>	с опорой		4,8 - 14,4		17,8	250	ный Мярки 75	25	12000 12000
	3 MOCTOBS 1-12M, CTP	СТПЛЬНЫЕ КОЛОННЫ		ВЕТРОВЫЕ ПОЯСЯ ИЗ С27	£4,72	£4,72							Глиняный		CXEMA 12 CTRIDHAR KOROHAR KAPKACA
	Здяние без них колонн-1	кипинны Каркаса Здания	12,0	ЯРМЯТУРНЫЕ КЯРКЯСЫ В ГОРИЗОНТЯЛЬ- НЫХ ШВЯХ КЛЯДКИ	<i>≟1,95</i>	<i>≤1,20</i>	С опороц	_	6,0-18,0		21,3	250	и Силикат- НЫЙ МАРКИ 75	25	12000 12000
	MEHIMA KAR MEHIMA PA- I. M.S. KONOM PEPM - 6 M	Железобетон		ВЕТРОВЫЕ ПОЯСЯ ИЗ Е27	<i>≟4</i> ,72	£4,72							Глиняный и силикат-		CXEMR 13 96-5. KONOHHA KRPKACA
	ЗДЯНИЯ С МОСТОВЫМИ КРЯ- ИЯМИ ЛЕТХОГО РЕЖИМЯ РЯ- БОТЫ; ШЯГ СРЕЦИНХ, Ж.Б.КАМЯ -[2m,CTPOINNINH&X. ФЕРМ - 6 М	ные колонны Каркаса Здания	12,0	ПРМАТУРНЫЕ КАРКАСЫ В ГОРИЗОНТЯЛЬ- НЫХ ШВАХ КЛАДКИ	<i>≤1,95</i>	<i>≟1,20</i>	С опорой			8,4- 14,4	/3,7	250	ный Ный Мярки 75	25	12000 12000
	<u>रेश्चर</u>				L	L			L			لــــا			23098-01 IMCT
															1.431.6-28.0-03 4
_					-	~····									POPMAT A3

		Kohci	РУКТИВ	BHBIE PEWER	אח מער	የዐቧዐብьዞ	HBIX NE	PETOPO,	док в	одноэ	TRI	H619C	здания	x (ПРОДОЛЖЕНИЕ)
-	Заряктеристикя эдяния	ВЕРТИКЛАНЫЕ НЕСУЩИЕ ЭЛЕМЕНТЫ ПЕРЕГОРОЦКИ	BEPTHKAND- X HECYMUX EMEHTOB DEPE- PODKU, MM	ПРИЗОНТЯЛЬНЫЕ НЕСУЩИЕ ЭЛЕМЕНТЫ ПЕРЕГОРОДКИ	WALL FORM HIST HEC BIEMEHTO BETPOBOR	30HTAA6- УЩИЯС В (м) ПРИ НЯГРУЗКЕ	Неличие торизон- тпльной опоры В ВЕРХНЕЙ ЧИСИ ПЕРЕГОРОДКИ	НЯЛИЧИЕ 28ЯЗИ С ВЕРТИ- КЯЛЬНЫМИ ОПОРЯМИ	Donyca Bbio 9TR 3DAH BE3 KPRHOB	ГИМ АЯ ОТА ЖА ИЯ, М С КРЯНАМИ	Мпксимпльния Высотн КЛЯДКИ, М	ТОЛЩИНЯ ПЕРЕГОРОДКИ В,ММ	МЯРКЯ И ВИД КИРПИЧВ	МпРКЯ РЯСТВОРЯ	Схема перегородок
	Z.	BEF 11 34 11 11 11 11 11	HNZ HNZ JUE! TOP		14 RIC/M	22KIC/M	HE CO								CXEMA 14 (QOKYM20)
1	Y KPAHAMY KOTUS; WAS HIVIX KONOMY MY - 12 M	Железобетон-		ВЕТРОВЫЕ ПОЯСЯ ИЗ Е27	<i>≟4</i> ,78	<i>4,72</i>	c .			8,4-14,4	15,3	250	Глинян ы й И Силикят-	25	ЖБ. КОЛОННЯ КАРКАСА
	ЗАПНИЕ С МОСТОВЫРРИ КР. ЛЕГКОГО РЕЖИРРИ РАБОТЫ; СРЕДНИХ ЖЕЛЕЗОВЕТОННЫХ И СТРОПКПЪНЬСК. ФЕРРИ –	НЫЕ КОЛОННЫ КАРКПСЯ ЗДЯНИЯ	12,0	ЯРМЯТУРНЫЕ КЯРКЯСЫ В ГОРИЗОНТЯВЬ НЫХ ШВЯХ КЛЯДКИ	<i>≟1,95</i>	≤1,20	опорой				,		ный мпрки 15		12000 12000 CXEMA 15
	и крянями эд боты; ият понн-12м, ср 1-6м и 12м и	СТЯЛЬНЫЕ		ВЕТРОВЫЕ ПОЯСЯ ИЗ С27	<i>≟ 4,</i> 72	€ 4,72	c .			8,4-18,0	21,3	250	ГЛИНЯНЫЙ И СНЛИКАТ-	25	(BOKUM21) CTRAISHRY KONOMHA KRPKACA
	ЗИНИЕ С МОТИВЫМИ КРАНЯМИ ЛЕТОЛО РЕЖИМА РАБЛИ; ШИТ СРЕДИКХ СПЯВНЫХ КОЛОНН-12М, СТРОПИЛЬНЫХ ФЕРМ-6М И 12М	колонны клркаса ЗДАНИЯ	12,0	ПРМЯТУРНЫЕ КАРКАСЫ В ГОРИЗОНТЯВ НЫХ ШВЯХ КЛЯДКИ	ļ	<i>≟1,20</i>	опорой						НЫЙ МЯРКИ 75		12000 12000

HAB.1º NODATAO NOTATA BERNAMB.1º

23098=01

1.431.6-28.0-03

5

POPPINT R3

ларнктеристика ЭДЯНИЯ	ВЕРТИКЯЛЬНЫЕ НЕСУЩИЕ ЭЛЕМЕНТЫ ПЕРЕГОРОДКИ	LIBT BEPTUKRIB- HINX HECSILIVX SIEMEHTOB NEPE- TOPOJKH, M	ГОРИЗОНТВЛЬНЫЕ НЕСУЩИЕ ЭЛЕМЕНТЫ ПЕРЕГОРОДКИ	ШЯГ ГОРИ НЫЖ НЕС МЕНТОВ (ВЕТРОВОЙ	130HTRJI6- 11YUX SINE 1M) NPU 1 HANPYSKI	20 20 E	HANNYNE CBR3H C BEPTU- KRIJBHSIMU OROPRIMU	Допуст Вы этржа	ИМ П Я СОТ Н ЗДПНИЯ, М С КРЯНЯМИ	РКСИМВЛЬНВЯ ІСОТЯ КЛЯДКИ, М	Толщиня перегорадки ћ, мм	МпРКЯ И ВИД КИРПИЧЯ	Мяркя Рястворя	Сжемя перегородки
	98 E 86	SHEKE TO SEE	1 .	14 KEC/M2	22 MT/m2	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	882	BE3 KPAHOB	KPBHRMU	₹8	1 31			
F	ЖЕЛЕЗОБЕТОН- НЫЕ И СТВЛЬ- НЫЕ КОЛОННЫ		BETPOBLIE NORCH H3 [14	≤ 1,80	<i>≟1,80</i>				8,4-18,0	21,3				CM. CXEMЫ 9,10
MEMPIR PREDTSI	ФЯЖВЕРКЯ ПО СЕРИИ 1.030.9-2 ВЫП. 0; 4; 5	6,0	ЯРМЯТУРНЫЕ КЯРКЯСЫ В ГОРИЭОНТЯЛЬ- НЫХ ШВЯХ КЛЯДКИ	<i>≤1,8</i> 0	<i>≟1,8</i> 0				8,4	11,7	/20	Глиняный и силикат-		an oberno 3,10
	Железобетон-		ВЕТРОВЫЕ ПОЯСЯ ИЗ СІЧ	€ 4,72	<i>≙4,</i> 72	с опорой			8,4-18,0	21,3	-	ный МПРКИ 75	50	CM. CXEMЫ 13-15
PE3	МЫЕ И СТЯЛЬ- НЫЕ КОЛОННЫ КПРКАСА ЗДЯНЫЯ	12,0	RPMRTYPHUE KRPKRCU B FOPH3OHTRIU HUIC WBRIC	€1,95	€1,80				8,4	11,7	250			3.1.3.1.2.1.1.1.0.1.0
HETO			КЛАДКИ			6E3 ONOP&I				4,2	\vdash			
или с динямиче – Нягрузками	эд яния	6,0	BETPOBLIE NOACA M3 E14	<i>≤1,8</i> 0	<i>≤1,80</i>	c			8,4-18,0	21,3	120	ГЛИНЯНЫЙ И СИЛИКЯТ-	50	см. СЖЕМЫ 9,10
РЯБОТЫ ИЛИ С ДІ СКИМИ НЯГРУЗ	BUN. 0, 4; 5 MENESOGETOH- HUE U CTRNb- HUE KONOHHU KRPKRCR 3.0RHUR	12,0	ВЕТРОВЫЕ ПОЯСЯ ИЗ С27	<i>≟4,</i> 72	<i>≟ 4,72</i>	Опорой			5, 16,0		1 1	ный МПРКИ 75		См. СХЕМЫ 13-15

23098-01

1.431.6-28.0-03

6

POPMAT A3

LAP MODE HUMAN W

			Кон	структ	TUBHЫE P	ЕШЕНИ	1Я ПI	EPETOP	одок	в МН	01091	ПЖНЫХ	3Д	Яниях
	Харктеристикя Заяния	Местоположение перегородки	ВЕРТИКЛІВНЫЕ НЕСУЦИЕ ЭЛЕМЕНТЫ ПЕРЕГОРОДКИ	ШЯГ ВЕРТИКАЛЬ- НЫХ НЕСУЩИХ ЭЛЕМЕНТОВ ПЕРЕГОРОДКИ, М	ГОРИЗОНТВОЬНЫЕ НЕСУЩИЕ ЭЛЕМЕНТЫ ПЕРЕГОРОДКИ	SHEMEHT	ЕСУЦИЭС ОВ (М) ПРИ НЯГРУЗКЕ	医圣罗斯	НВЛИЧИЕ СВЯЗИ С ВЕРТИКАЛЬ- НЫГИИ ОПОРЯГИИ	Допустимяя Высотя этяжя эдяния, м	Толщиня перегородки ћ,т	MAPKA N BNQ KAPONYA	Мяркя рястворя	Сжемя перегородки
	КАРКЯСОМ ПО СЕРИИ 1.020-1/83,1.1120-6) ШЯГ КОЛОНН КЯРКЯСЯ ИЛИ ШИРИНЯ М	ЕРЕЧНЯЯ В СТВОРЕ ЗАВНИЯ	Колонны Клрк псп и прмокир- пичные пилястры *) Колонны клрк псп и ств льные колонны фяжверкя*	<i>≤2,4</i>	ПРМЯТУРНЫЕ КАРКЯСЫ В ГОРИЗОНТЯПЬ НЫЗС ШВЯЗС КЛЯДКИ	<i>≜1,5</i> 6	<i>≤1,5</i> 6	c	Шпильки колонняг Каркнен ЗДЯНИЯ ШЯГ 780 тм	ł	65	Глиняный и силикат- ный мярки 75	50	СХЕМЯ 1 (ДОКУМ-22,-23) ПРМОКИРПИЧНАЯ ПИПАСТРЯ 2000 2000 2000 €2400 €2400 6000 6000 СХЕМЯ 2 (ДОКУМ-22,-23) СТЯЛЬНАЯ КОЛОННЯ ФАХВЕРКЯ 2000 2000 2000 €2400 €2400 6000 6000
	ЗДЯНИЕ С КЯРК. И 1.420-12; ШЯГ . ПРОЛЕТЯ 6 М	ПРодольняя <i>и</i> Колонн кя	Колонны Каркаса ЗДания	6,0	ЯРМЯТУРНЫЕ КЯРКЯСЫ В ГОРИЗОНТЯЛЬ НЫХ ШВЯХ КЛЯДКИ	€2,25	<i>≟1,80</i>	с опорой		3,3-60	120	Глиняный и силикат- ный мачки 95	25	Схета 3 (докум-25) Колонна каркася здания 6000 6000
7														

*) СЕЧЕНИЯ ПРМОКИРПИЧНЫХ ПИПЯСТР СМ. НА ДОКУМ.-06; МАРКИ СТЯЛЬНЫХ КОЛОНН ФЯХВЕРКА—НА ДОКУМ.-08

the Nº nobe Inditines H anni Ben man

Характернотикя Запния	Местоположение перетородки	ВЕРТИКЯЛЬНЫЕ НЕСУЩИЕ ЭЛЕМЕНТЫ ПЕРЕГОРОДКИ	WRT BEPTHKRISH- HNIX HECYMHIX SIEMEHTOB DEPETOPORKH, M	Горизонтяль- Ные несущие ЭЛЕМЕНТЫ Перегородки	HUX H GIEMEHT IPU BETI HATPY3	POBOH BKE	Няличие горизон Тяльной опоры в верхней чясти Перегородки	Няличие связи с вертикяль - Ными опорями	Допустимяя Высотк этяжя эдяния, м	Толщиня перегородки ћ, мм	МАРКЯ И ВИД КИРПИЧВ	МяРКЯ РАСТВОРЯ	Сжемя перегородки
КЯРКЯСОМ ПО СЕРИИ 1.020-1/83; 1 ПРОЛЕТЯ (6+3+6) М	C78C	Колонны клекаса и прмокирпич ные пиластрой Колонны клекаса и стальные колонны фажверка	<i>≜2,4</i>	ПРМАТУРНЫЕ КАРКАСЫ В ГОРИЗОНТАЛЬ НЫХ ШВАХ КЛЯДКИ	<i>≟1,56</i>	<i>± 1,56</i>		Шпильки по колонням кяркяся здяния шяг 780 мм		65	Глиняный и силикят- ный мярки 75	50	СХЕМЯ 4 (ДОКУМ-23) RPMOКИРПИЧНЯЯ ПИЛЯСТРЯ 2000 2000 2000 1500 1500 2000 2000 6000 3000 6000 CXEMЯ 5 (ДОКУМ-23) СТЯЛЬНЯЯ КОЛОННЯ ФЯЗВЕРКЯ 2000 2000 2000 1500 1500 2000 2000 6000 3000 6000
ЗДЯНИЕ С КЛ ШИРИНЯ	Поперечняя в	Колонны каркаса ЗДАНИЯ		ЯРМЯТУРНЫЕ КЯРКЯСЫ В ГОРИЗОНТЯЛЬ НЫХ ШВЯХ КЛЯДКИ	<i>42,25</i>	<i>≜ 1,80</i>	С Опорой		<i>3,3-6,0</i>	120	Глиняный силикат- ный марки 75	25	CXEMB 6 (AOKYM-24) KANOHHR KRPKACA 3QAHHA 6000 3000 6000

			Конс	ТРУКТИ	ВНЫЕ РЕШ	ЕНИЯ	ΠΕΡΕΓΟ	РОДОК	В МН	OCOSTR:	жныя	с здани:	9 9 C (.	ПРОДОЛЖЕНИЕ)
	Хяряктеристикя эдіяния	Местоположение Перегородки	ВЕРТИКЯЛЬНЫЕ НЕСУЩИЕ ЭЛЕМЕНТЫ ПЕРЕГОРОДКИ	ШЯГ ВЕРТИКАЛЬ- НЫХ НЕСУЩИХ ЭЛЕМЕНТОВ ПЕРЕ- ТОРОДКИ, М	ГОРИЗОНТИЛЬНЫЕ НЕСУШИЕ	MAT FOPP HIST HI BIEMEHTO BETPOBOÙ 14 KTC/H	Е СУЩИЭС ЭВ (М.) ПРИ	Напичие горизон Терьной опоры В Верхней части ПЕРЕГОРОДКИ	НВЛИЧИЕ СВЯЗИ С ВЕРТИКЯЛЬНЫ- МИ ОПОРЯМИ	Допустимня высогн этяжн эдяния, м	<i>Тапщиня</i> перегородки <i>h,</i> т	МЯРКЯ И ВИД КИРПИЧЯ	Мяркя Рястворя	Схемя перегородки
	КЯРКЯСОМ ПО СЕРИИ 1.020-1/83,1.420-12; ИНЯ ПРОЛЕТЯ 9М	створе капонн кяркпся здяния	Колонны каркаса и прмокирану ные лилястры*) Колонны каркаса и стальные колонны фяхверка*)	≟2, 4	ПРМАТУРНЫЕ КПРКАСЫ В ГОРИЗОНТАВЫ НЫЗС ШВЯЗС КЛАДКИ	<i>≤1,56</i>	≤1,56	C	Шпильки по Колонны Каркаса ЗДАНИЯ ШАГ 780 ММ		65	Глиняный И Силикат- Ный Марки 75	50	CXEMR 7 (ROKYM 22) RPMOKHPIHYHRA INDACTPA 2250 2250 2250 2250 GOOD CXEMR 8 CTRIBHRA KOTOHHA PRIBEPKA 2250 2250 2250 2250 9000
D.N. TICHRITOLINGS N. LININGSHIT, MIB. H.	Запние с кпри шириня	Поперечняя в ст	КОЛОННЫ КЯРКАСЯ И ЯРМОКИРПИЧ НЫЕ ПИЛЯСТРЫ Ф	6,0	ПРМЯТУРНЫЕ КАРКАСЫ В ГОРИЗОНТЯЛЬ НЫУС ШВЯЭС КЛЯДКИ	<i>≟2,25</i>	≤ 1,80	с опорой		3,6-6,0	120	Глиняный и силикат- ный марки 75	50	CXEMR 9 (DOKYM-24-25) (DOX DOKYM-24-25) (DOKYM-24-25) (DOK
7.1		*) Cm.	ПРИМЕЧЯН	INE HE	я листе 1							Г		1.431.6 - 28 .0-04 3

POPMA 83

Харяктеристикя Здяния	Местоположение лерегородки	Вертикяльные несяцие элементы перегородки	WRT BEPTUKANB- HBIX HECYWHX ƏSIEMEHTOB NEPE- TOPOQIKH, M	ГОРИЗОНТЯЛЬ- НЫЕ НЕСУЩИЕ ЭЛЕМЕНТЫ ПЕРЕГОРОДКИ	ных н	<i>НАГРУЗКЕ</i>	3500	HRINYUE CBR3H C BEPTH- KRIJSHSIMH ONDPRMH	Допустимяя Высотя этяжя Эдяния, м	Толщиня перегородки ћ, мм	Мвркя и вид кирпичя	Мпркя Рястворя	Сжемя перегородки
ком по 93 и 94 и	Поперечняя в створе V Колонн Кяркяся Здяния	Колонны кяркяся и стяльные колонны фяхверкя*	6,0	ПРМЯТУРНЫЕ КЯРКЯСЫ В ГОРИЗОНТЯЛЬ НЫХ. ШВЯХ КЛЯДКИ	<i>≟2,25</i>	<i>≤ 1,80</i>	с <i>опогой</i>	_	3,6-7,2	120	Глиняный и силикрт- ный мярки 75	25	CIEMA 10 (QOKYM24, -25) CIRNHARA KOJOHHA PARIBEPKA 6000 3000
жасом по серии 1.420-6; пролетя 12 м	КОЛОНН	КОЛОННЫ КАРКАСА И ЯРМОКИРПИЧ- НЫЕ ПИЛЯСТРЫ КОЛОННЫ КАРКАСА И СТЯЛЬНЫЕ КОЛОННЫ ФАЖВЕРКА*	<i>42,4</i>	ПРМАТУРНЫЕ КАРКАСЫ В ГОРИЗОНТВЛЬ НЫХ ШВЯХ КЛЯЦКИ	<i>≟1,56</i>	<i>≤1,56</i>	C ONOPOÚ	Шпильки ПО КОЛОННЯК КАРКАСЬ ЗДЯНИЯ ШЯГ 780 ММ	4,8-6,0	65	Глиняный И Силикат- ный Мярки 95	50	CXEMR 11 RPMOKNPTUVHRA THATACTPR 2000 2000 2000 ±2400 ±2400 12000 CXEMR 12 CTRADHRA KOROHHA PRABEPKA 2000 2000 2000 ±2400 ±2400 12000

		Конс	ТРУКТЬ	1ВНЫЕ РЕШ	ЕНИЯ	ΠΕΡΕΓΟ	РОДОК	в М	ногоэт	<i>РЖ</i> Н І	bix 3QRi	жияж	(продоляњение)
Хяряктеристик р ЗДЯНИЯ	МЕСТОПОЛОЖЕНИЕ ПЕРЕГОРОДКИ	Вертикальные НЕСУЩИЕ ЭЛЕМЕНТЫ ПЕРЕГОРОДКИ	ШЯГ ВЕРТИКЯЛЬ- НЫХ НЕСУЩИХ ЭЛЕМЕНТОВ ПЕРЕ- ГОРОДКИ, М	ГОРИЗОНТЯЛЬ— НЫЕ НЕСУЩИЕ ЭЛЕМЕНТЫ ПЕРЕГОРОДКИ	HUIC H	И ЗОНТВЛЬ ECYUJ ИЭС FOB(M) ПРИ HRГРУЗКЕ	ичие гориз Таной Опон Ерхней чя Регородки	TRONYVE R3H C BEPTH- NSHSIMH NOPRIMH	Допустимяя высотя этяжя здяния, м	Толщиня перегородки h,mm	МЯРКЯ И ВИД КИРПИЧЯ	Мяркя Рястворя	Схемя перегородки
	30	Ber ne	### ## P		14KTC/M	22KTC/m²	S THE	1820	25 E	1, 5		- 3	
ОМ ПО СЕРИИ 1.420-6; ПРОЛЕТЯ 12М	створе колонн здяния	Колонны кяркаса и прмокирпич- ные пилястры *)		Ярматурные Каркасы В Горизонталь	4005	<i>≤ 1,80</i>	С		4,8-6,0	120	Глиняный И Силикат-	50	CXEMR 13 (ROKUM: -25) RPMOKUPINUHRA INDIRECTPR 6000 6000 12000
Здяние с кяркясом шириня пр	ПЕРЕЧНЯЯ В КЯРКЯСЯ	Колонны каркаса и стальные колонны факверка ³	6,0	отогласти НЫХ ШВАХ КЛАДКИ	-420	= 1,00	опорой		4,8-7,2		ный марки 75	25	CXEMR 14 CTRABHRA KOJOHHA PRISEPKA 6000 6000 12000
Занные с каркасом по СЕРНИ (1020-1/183, 1.420-6, 1.420-12; шт. колонн Каркаса бм; ширина пролетн бм; 9м, 12м	808	ЯРМОКИРПИЧ НЫЕ ПИЛЯСТРЫ ^А)	£2,4	ЯРМЯТУРНЫЕ КАРКАСЫ В ГОРИЗОНТЯЛЬ НЫХ ШВЯХ КЛАЦКИ	41,5 8	<i>≟ 1,56</i>	БЕЗ ОПОРЫ		3,3-6,0		Глиняный и силикат- ный марки 75	50	CXEMP 15 (ADKYM-26) RPMOKUPNUHRA NHARCTPA 2000 2000 2000 2000 2000 2000 (2250) (2250) (2250) (2250) (2250) (2250)
	*) c	М. ПРИМЕЧН	НИЕ Н	я листе 1									23098-01 1.431.6 - 28.0-04 5

PITO Nº TREET, TOURNES H AHTH BARM HIRE

9-001 (Стальные каркасы в горизонтальные каркасы в горизона в горизонтальные каркасы в горизонтальные каркасы в горизона в горизон	Харяктеристикя Здяния	Местопаложение перегородки	blE CM	ЕРТИКВЛЬ- НЕСУЩИХ ЧЕНТОВ ОРОДКИ, М	ПОРИЗОНТЯЛЬ- НЫЕ НЕСУЩИЕ ЭЛЕМЕНТЫ ПЕРЕГОРОДКИ	MAT FOR HUIC HE MEMEHTO	НАГРУЗКЕ	ТОРИЗОН ОПОРЫ И ЧЯСТИ ОДКИ	НЯЛИЧИЕ СВЯЗИ С ВЕРТИ- КЯЛЬНЫМИ ОПОРЯМИ	Допустимяя Высоти этяжи здания, м	Талщиня перегоюдки в,мм	Мяркя и вид Кирпичя	МЯРКЯ РЯСТВОРЯ	ОНЧЯНИЕ) СЖЕМЯ ПЕРЕГОРОДКИ СЖЕМЯ 16
При карки по то	1,420-6,		Стяльные колонны	40.4	КАРКАСЫ В ГОРИЗОНТАЛЬ- НЫХ ШВАХ	<i>≤1,5</i> 6	<i>≤ 1,56</i>	6E3	_	3,3-6,0	65	И СИЛИКАТ- НЫЙ	50	CTEMR 16 (DOKUM - 26) CTRIISHRR KONOHHR PRISEPKR 2000 2000 2000 2000 2000 2000 (2250) (2250) (2250) (2250) (2250)
O THIRD CHARGE AND CHA	каркпсом по серии ШЯГ КОЛОНН КЯРКЯ ПРОЛЕТЯ 6М,9М,12М	перечняя не здяния	НЫЕ		KRPKRCH B FOPM30HTRJB			c		3,3-6,0	400	И	50	нимилиння пашисти
3,3-7,2 25 CARNOHISE KONOHHSI PRINCE PKR 9 6000 600 (300)		тольня) Элонн	Стпльные Колонны	<i>≤6,0</i>		<i>≙2,25</i>	<i>≤1,80</i>	onoro k		3,3-7,2	120	СИЛИКАТ- НЫЙ МАРКИ 75	(докум27) СТЯПЬНАЯ КОЛОННА ФЯЗОВЕРКА	

ТЯБЛИЦЯ СЕЧЕНИЙ КИРПИЧНЫХ ПИЛЯСТР В ОДНОЭТЯЖНЫХ ЗДЯНИЯХ

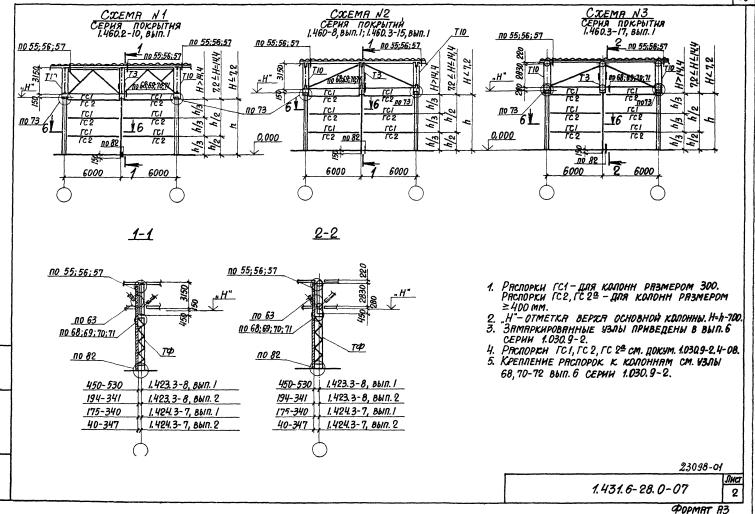
Высотн ЗДЯНИЯ ДО НИЗЯ СТРОПИЛЬ-	Высотн		ПИЛЯСТР (& x h	* * * * * * * * * * * * * * * * * * * *	ПЕРЕГОРОДОК
НЫХ КОН- СТРУКЦИЙ,	ПИЛЯСТРЫ,	BETPOE			
M	М		14		22
	j ,	ТОЛЦ	уиня перегороді	cu d, mm	
		120	250	120	250
3,0	∠ 4, 4	250 × 510	250× 510	250 × 510	250 × 510
3,6	≤ 5,0	250×510	380×640	380 × 510	380 × 640
4,2	≤ 5,6	380 × 510	380 ×640	380 × 640	380×640
4,8	≤ 8,1	510×640	510 x 770	510 x 770	510 × 770
5,4	<i>≤ 6,8</i>	380×640	510 x 640	510 × 640	510×640
6,0	≤ 9,3	510 × 770	510×900	640 × 770	510 × 900
7,2	≤ 10,5		510 x 900	Pr. Walter, and	640 × 900

В ТЯБЛИЦЕ ВЫСОТЯ ПИЛЯСТРЫ УКАЗАНА ДЛЯ ПОПЕРЕЧНОЙ ПЕРЕГОРОДКИ ДО ПЛИТ ПОКРЫТИЯ ПРИ МЯКСИМАЛЬНО ВОЗМОЖНОЙ ВЫСОТЕ СТРОПИЛЬНЫХ КОНСТРУКЦИЙ.

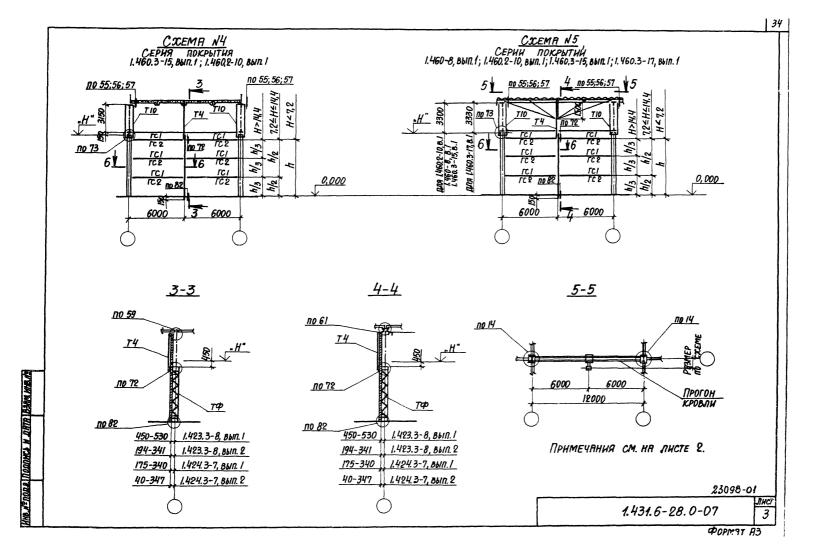
Tless OT D	Emocking				230	98-01
H.KOHTP. Ta. Caeu.	БРОДСКИЙ ЧУМАКОВА КОРОТЕЦКИЙ	do	 1.431.6	-28.0	7-05	
PYK FP. CT. HHMC.	ЧУМАКОВА ПРОЦЕНКО	Jan	тимици сечении	СТАДИЯ Р	ЛИСТ	Листов
СТ. ИНЖ.	ГУРОВИЧ	3/2	КИРПИЧНЫХ ПИЛЯСТР В ОДНОЭТЯЖНЫХ ЗДЯНИЯХ	XAF	15KOB C TPOKH	KUÚ MPDEKT

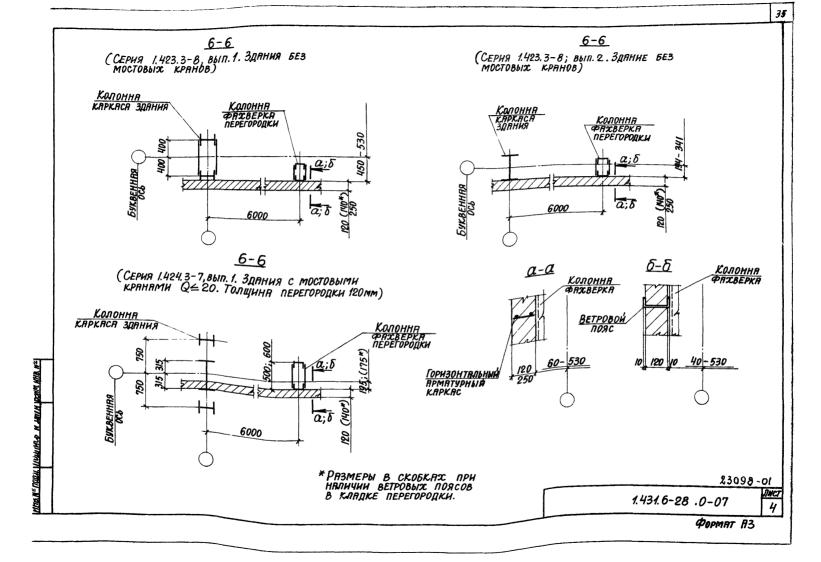
POPMPT A3

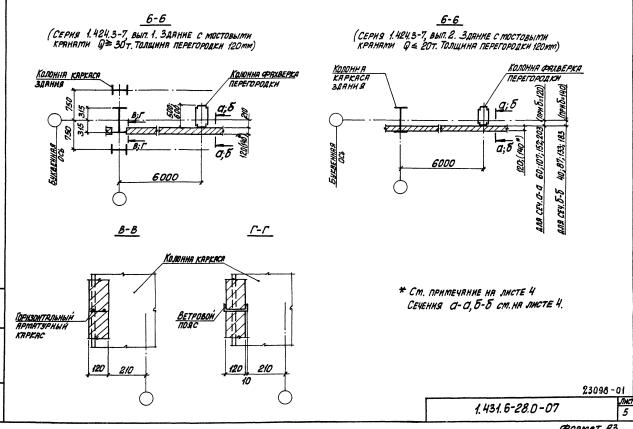
Высота	Сечение пилястр (h×8) поперечных и продольных перегородок							
ЭТАЖА ЗДАНИЯ,	Толщина перего	РОДКИ d, MM						
одппия, М	65	120						
"	MAPKA PACTBOPA							
	50	25						
3,3	/25 × 160	180 × 160						
3,6	125 × 160	180 × 160						
4,2	310 × 160	310 × 160						
4,8	310 × 160	310 × 160						
6,0	310 × 160	310 × 160						


23098-01

HRY OTAL BPOACKHÚ Z VLKOHTP YYMRKOBR XX [a. CNEU KOPOTEUKHÚ Z		28 .0-06
PYK. FP. YYMPKOBA 35 CT. UHYK. NPOUEHKO Sagu-	⊣ /НБЛИЦЯ СЕЧЕНИИ	CTRANA SINCT SINCTOB
Ст.инж ГУРОВИЧ ЗА	АРРОСКИРЛИЧНЫХ ПИЛЯСТР В МНОГОЭТРЯСНЫХ ЗДЯНИЯХ	ХАРЫКОВСКИЙ ПРОМСТРОЙНИИПРОЕКТ


ГРУ 3 01 К	2000	;	KOJIOH BECKPRHOB CEPHR	ІНЫ ДЛЯ 3 <u>612</u> С ЗДЯНИЙ		***************************************	Коло	ННЫ ДЛЯ	3กลหมน่	C MOCTO	BHMU Y	PAHAMU		
K	КОЛОНН ЗДПНИЯ			CEPHЯ 1.423.3-8,8MR.2	СЕРИЯ 1.	424.3-7,8Wn.2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	НЫ ДЛЯ ЗДЯНИЙ С МОСТОВЫМИ КРАНЯМИ СЕРИЯ 1.424,3-7, ВЫП. 1						
Тип	NOQBEMHO CPAHOB	СТЬ	_		Q=10; 20T Q=10;			IG = Q=30T (JETKHH H Q=30T (TROMEDILLY PE-			Q=50T			
	КРОВЛИ		СРЕДНИЙ РЕЖИМ РАБОТЫ) ЖИМ РАБОТЫ) Ц=30Т МАЛОЧКЛОННАЯ											
CEPUR KOHCTR	СТРОПИЛЬ! РУКЦИИ	104		1.460-8,	861N. 1;	1.460.2-10.				460.3-17, 86				
ШПГ СТРОПИЛЬНЫХ КОНСТРУКЦИЙ №№ СЖЕМ			6	6	6	/2	6	12	6	/2	6	/2	6	/2
			1-3	3	1-3	4;5	1-3	4;5	1-3	4;5	1-3	4;5	1-3	4;
The state of the s	6	,0		T\$P12; T3		_	_	_				 		
Отметкя Верхя основно́Н Копонны "Н"	7	,2	_	T\$13;T3				_				<u> </u>	 	1
	8	,4		TФ14; T3	TФ14;T3	T\$14;T4	_		_	*******				
	g	,6	T\$15;T3		T\$15;T3	T\$15;T4							 	1
	= 11	0,8	<i>ТФ16; Т3</i>				T\$16;T3	T\$16;T4	T\$16; T3	T9016; T4	-			 _ _
		2,0	T\$P17;T3	_			T\$17;T3	T#17;T4	T\$P17;T3	T9P17;T4	TP17;T3	T917; T4	7417; 73	7417;1
	15	3,2	T\$18;T3	_			T\$P18;T3	T\$18;T4	T\$18; T3	T\$18;T4	T\$18; T3	TP18; T4	T4P18; T3	TP18; T
	3 /4	1,4	T\$19;T3	_			T\$P19;T3	T\$19;T4	T\$\phi_19;T3	T\$19;T4	TФ19;T3	TP19; T4	TP19;T3	7419;1
TFMI	15	5,6	TФ20; ТЗ				_		T \$ 20;73	T\$20;T4	T\$ 20;T3	TP20; T4	TФ20; T3	T#20;1
9	16	5,8	TP21;T3						T \$ 21;T3	T\$21;T4	T\$\phi_21;T3	7421; T4	TP21;T3	P#21;
	16	3,0	T4P22;T3	_				-	T \$ 22;T3	T\$22;T4	T\$22;T3	T\$22;74	TP22; T3	T422;


1.	CXEMЫ	cm.	ня	лис	TAX	2	;3.
2	ПРИМЕЧА	ния	CM.	HR	лис	ΤE	2.



Име. м^епараПодансь и дятвівзящине м^е

HHB. HEROHA. DOLONGS H BATTA | 8340, HHB. Nº

								KF	PKAC	3,	ДЯНИ	я п	0 C	ЕРИИ									
MEC			Ton-		1.02	20-1/8	3					*****************	1.420	-/2						1.4	420-6		
1		co-			ME	стопо	ЛОЖІ	ЕНИЕ	K	ЛОНН	151	PAS	CBEPK	CFI	ΠE	PETOP	POAK	Ч					
		TR STR- SKR,	HA NE- PETO-	RLICATI	HFENEM PH, MM	под п КРЫТИ	литой a (h=30	REPE- OMM)	ПОД РИ ВЫСОТО	ITENEM Ú 800 MM	ROD PH DOKE BUCOTO	HENEM PUTHA OH, MM	ПОД РЕВ ПЛИТОЙ КРЫТИЯ (PHCTOH NEPE- (h=400 mm)	под Р пок	РЕБРИСТ РЫТИЯ 30	OAKI OH NAI BBICO OOMM	HTOH TOH	ПОД РИГЕ- ЛЕМ		ПОД ПІ ПЕРЕКРІ	питой ытия	
		М	РОД- КИ,	450	600	ПУСТОТ- НОЙ	PEBPI 110.0 110.01.KOM	ICTON NOQ	I TUN NEPEKPU- TUR	ІІ ТИП ПЁРЕКРЫ ТИЯ	600	800	под полкой	под	DEPEKP	ытия	NEPEŘP NOD NOJKOÚ	ытия	861CO- TOH 800 MM	119c- 10t- Hod		SPHCTO	lů Nagy Pestan (h=300mm)
			MM			<u> </u>	IIIIIKUN	PEBPUT	H	OME	P	C X	EMBI		IIVSIKUM	TEBRUIA	HOJIKON	PEDPUIT	ll		ĮII VIIKO PI	((=HUVPH)	(וייניוטעניים)
				Ţ	Ī	<i>[iii</i>]	ĨΨ	<u> </u>	Ī	<u> </u>	<u> </u>	<u> </u>	ĪV	\overline{Y}	ĪV	Ψ	<u>ΙΨ</u>	<u>V</u>	<u>_T</u>	ĪĪ	ĪŸ	$\bar{\underline{y}}$	₹
		3,3	65	KP4	KAP2	_						l —											
	ヹヹ	5,5	120	K\$4	K#2	_		_			_	_				_					_	_	
RA	HHI	3,6	65	КФ7	K\$5	_			K#3	KP1	K#3	_					_				_		_
POL	35	5,0	120	KФ7	K\$5			-	K\$3	K#1	K\$3	_		_	_		_		_		_	_	
EPE	36	4,2	65	KP17	K\$15					_				_							_	_	
Полеречняя перегородкя	1,2 1,2 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	4,2	120	K\$29	KP27					-				_	_			_				_	
F	KHY	U R	6 5	K#35	KФ34				K#20	K\$15	K\$ 20	KФ15		_		_			KP20				_
		7,0	120	KФ35	K\$234		_	_	КФ32	KФ27	K#32	K\$27	-						K\$ 32		_	_	_

Стальные колонны фижверки для ветровой нагрузки 14кгс/m^2 и 22кгс/m^2 приняты одинаковыми

หม่อ. № กอลล์ Поапись и ลูการโอลก... กาล №

23098-01

Н. КОНТР. Гл. СПЕЦ.	БРОДСКИЙ Чумпкова Коротецкий	Jan.	1.431.6-2			
	<u>Чумаќова</u> ПРОЦЕНКО		 Ключ для подбора стальных	<u>Стадия</u> Р	NHCT 1	<u> ЛИСТОВ</u> 4
	ГУРОВИЧ Катышова	13 Kaus	 КОЛОНН ФАХВЕРКА ПЕРЕГОРОДОК МНОГОЭТ РУСНЫХС ЗДАНИЙ	XAF	SKOBC TPOKH	KUÚ UNPOEKI

		T-	T					//														
150-					020-11	102		KAPK	AC	ЗДР	ЯНИЯ			EPHH	<u>'</u>			,				
PECTO-	BW	Ton-					00000	<u></u>				1.420-						<u> </u>		1.420	-6	
HHE_	70	ЩИ-	}				0ПОЛО:			<i>солон</i>			XBEP			EFOP		·				
ЕРЕГО- ОДКИ	CHICA CHIA	TOPON		Hrenem OH, MM	ПОД КРЫТИ	NNUTOU IS (h≈.	ПЕРЕ- 300 мм)	ПОД Р. ВЫСОТО	ИГЕЛЕМ Й 800 ММ	<i>ПОД Р</i> ПОК ВЫСОТО	ИГЕЛЕМ РЫТИЯ ОЙ, ММ	под РЕ Плитой Тия (h	БРИСТОЙ ПЕРЕКРЫ = 400 мм,	nnu nnu Bbic	D PEBI DH NO DTOH 3	РИСТОЙ КРЫТИЯ 800 ММ	,	ПОД РИГЕ- ЛЕМ			NNHTO. KPUTHS	
	M	MM	450	600	ПУСТОТ Н ОЙ	non .	HCTOH TOD PESPOM	! ТИП ПЕРЕКРЫ	II THII TEPEKPH TUO	600	800 11 THR RE	под полкой	под	DEPEK	TUN PHITUS NOD PESPOM	I NEPĒKI	PUTUR PUTUR DOD	861CD- TOH 800mm	ПУС- ТОТ- НОЙ	1	PESPON PESPON	-
				L		IIIOIKON	TELOPUM			РЕКРЫТИЯ М Е Р	РЕКРЫТИЯ	X E M	L	полкон	РЕБРОМ	Полкой	PESPOM	L	11011	IIIUJIKUM	(h=YDOM)	11/5
			Ī	I	<u> </u>	№	<u> </u>	7	110	<i>ī</i>	<i>II</i>	17	7	/V	Ī	ĪŸ	Ī	Ī	ĪĪĪ	ĪĪ	<u> </u>	T
Ta	1	65	КФ44	KP42	_	-		_							-	<u> </u>	<u> </u>	<u> </u>		1-		1
EE	5,4	120	K#60	KФ 58	-		_	_						_		-					_	†
колонн завния	1 00	65	KФ50	K#49		_	_	КФ47	KP42	KP 47	K\$ 42		_		_			K\$47		_	_	T
CTBOPE	6,0	120	KФ66	KP 65				KP63	K\$ 58	KФ63	K\$ 58		_			_		KP63	_	_	_	T
25	-	65		_						_					_	_	_			_	_	1
02	7,2	120		_				KP 75	K#73	K#75	KФ73				_	_	_	K#75		_	_	1
	1.,	65	_		KP6	KФ9	K\$ 5	_		_		_	_		_		_				_	T
1	3,3	120			KP6	кФд	K \$ 5		_		_		_	_				_		Ī	_	T
	3,6	65			KPII	KP14	K#10	K\$3				KP 14	K#8	K\$ 16	K\$12	KФ13	K#8			_		T
жолони здяния	3,0	120			KФ23	KP26	KФ22	КФЗ				K#26	K#8	K#28	КФ24	K#25	K#8					Τ.
Колони здяния	4,2	65			KФ19	K#21	K\$18				-		-				-			_	_	I
28	7,2	120			K#31	КФ33	KФ30]							_					Γ
1 1.2	4,8	65			KФ38	KФ 41	K#37	KP20	KP15			K.Ф41	K Ф 36	K P 43	KФ39	K#40	K\$36	K#20	KP 38	KP41	K#36	K
CTBOP!	4,0	120			KФ38	KФ41	KФ37	K#32	K#27	-		K#41	K#36	KФ 59	KФ39	КФ40	K \$ 36	K#32	K#38	KФ41	KP36	K
HE & CT	5,4	65			КФ46	KP 48	КФ45			_	_											
		120			K\$62	КФ64	KP61		—													L
HE	6.0	65			KP 53	K.Ф 56	KP52	KФ47	KФ42]	_	KP 56	K#51	KP 57	K.Ф54	KP 55	KФ51	K P 47	KФ53	KP 56	KP51	K
	0,5	120			K#69	KP 72	K\$ 68	KФ63	K#58]		KФ72	KФ67	KФ 74	KФ70	KP71	KФ67	K P 63	KP69	K\$ 72	KP67	K
1	70	65							_]												
1	7,2	120			-			KФ75	кФ73			K#81	K#76	K\$ 82	K4779	K#80	KФ76	KP75	K#78	K\$81	K#76	KA

Dun National In Mith Barm. His Na

1.431.6-28 .**0-08**

23098-01

					·			KAPKI	7C 3,	ДЯНИЯ	70	CEP	чи									
				1.0	20-1/8	13						1.420	-12						1.	420-6		
ECTO-	BH- CO- TR	Tan-					MECTO	ROJOS	КЕНИЕ	K	олонн	si 4	PROBER	KA	ПЕРЕ	ГОРОДК	CH					
DOKE HE PETO- DKH	TH-	PETO	ПОД РІ ВЫСОТ	ИГЕЛЕМ ОЙ, ММ	ПОД П КРЫТИ	литой 9 (h=31	NEPE- DOMM)	ПОД Р ВЫСОТО	РИГЕЛЕМ Й 800ММ	ПОД PI ПОКР ВЫСОТОІ	HENEM BUTHA W, MM	ПОД PEI ПЛИТОЙ ТИЯ (h=	SPHCTOM NEPEKPЫ- 400 mm)	ПЛН ВЫС	той п	EBPUCT OKPLITI 300 MM	lЯ	ПОД РИГЕ- ЛЕМ			ПЛИТО РЫТИЯ	
	М	POD- KH, MM	450	600	ПУСТОТ- НОЙ	ΡΕБΡИ ΠΟΩ ΛΟΛΚΟΎ	200	I ТИП ПЕРЕ- КРЫТИЯ	П ТИП ПЕРЕ- КРЫТИЯ	600 Ттип перв КРЫТИЯ	800 Цтип пере КРЫТИЯ	под полкой	ПОД РЕБРОГ 1	DEPEKE	под	NEPEKI NOA	пол	ВЫСО- ТОЙ 800 mm	ПУС- ТОТ- НОЙ		FPHCT	
								 		HOME		CXE	7 <i>61</i>	HUNKUM	rebruit	HUNKUM	PEDFUT			Полкон	Ch=4000	(h
	<u> </u>		Ī	Ţ	<u>III</u>	<u>[7</u>	Ţ	I	<u> </u>	ĪĪ	<u> </u>	<u>/v</u>	V	17	Ψ	ĪĪ	V	Ī	ΙΊΪ	ĪŸ	Ī	Т
	3,3	65	_		K#6	Køg		_												<u> </u>	 _ _	士
	Ľ	120						_					_									+
ЗДЯНИЯ	3,6	65			KPII	KФ14		КФ3				КФ14	K#8	КФ16	KAP12	KP13	K#8					╁
ЗДВ		120						_				_				107 13	WT 0			 	<u> </u>	+
بع	4,2	65			KAP19	KP21		_	_		_											\vdash
KAPKACA		120																		<u> </u>		Ļ
КПРКЯСЯ ЗДЯ	4,8	65			КФ38	KP41		K#20	KФ15			KФ41	КФ36	K\$43	V db 20	Vot to		***				Ļ
HH		120			_		_							10773	KФ 39	KФ 40	K#36	K P 20	K#38	K\$41	KФ36	K9
Колонн	5,4	65			КФ46	KP48		_	_													
		120		_	_																	Ŀ
CTBOPE	6,0	65	_		КФ53	KP 56		K\$P47	КФ42			KФ 56	KФ51	KΦ57							_	<u> </u>
BCT		120				_			_			_	_	~~57	KØ54	KP55	K P 51	КФ 47	KP53	K#56	K\$P51	K9
	7,2	65	-	_	_			_	_													Ŀ
		120	_			_	_													_	_	.

23098-oi

1.431.6-28.0-08

24

								K	PERC	3)	RHUS	ПO	CE	РИИ									
Me	cm-	BW	Ton			1.020-1	/83						1.420	-/2		_					1.420-	6	
nan	OSICE: HE		MH-				MEC?	ополо	ЖЕНИ	E	колон	НЫ	Ø A X	BEPKA		ΠΕΡΕΓ	OPOQK	И					
NEP POL	EPO-	97R	PERO POR-	ПОД Р. ВЫСОТ	ИГЕЛЕМ ОЙ, ММ	под п. Т ня	питой п (h=300)	EPEKPЫ- MM)	ПОД РІ ВЫСОТО	НГЕЛЕМ И 800 ММ	TOD PH TOKE BUCOTO	TEREM BITUR B, MM	ПОД РЕПЛИТОЙ ТИЯ (Н	БРИСТОЙ ПЕРЕКРЫ =400мм)	плит	ПОД И ОП ИОТОЗІ ИОТОЗІ	РЕБРИСТ РКРЫТИ 300 М	Я	ПОД РИГЕ- ЛЕМ			ПЛИТО! РЫТИЯ	и
			KH,	450	200	пустот-	PESPI		ITHN	<u>І</u> І ТИП ПЕРЕКРЫ	600	800	под	под	ПЕРЕК	TUN PUTUS	[] TIEPEK	ТИП РЫТИЯ	BUCO- TON	NYC- TOT-	1	ЕБРИСТ	
				730	600	НОЙ	под полкой	PEBPOM	TUR	TUR	N/TUN NEM	II TWO DEPL KPNTUR	полкои	PEBPOM	под полкой	ПОД РЕБРОМ	под полкой	под РЕБРОМ	800 mm		กอกห้อน	NOA PEFPOM (h=400mm	PE5PON (h=300m
										Hom		CXEMB	,	L	<u> </u>	4	L		L				1
-		_	<u> </u>	Ī	I	<u>III</u>	<u>/V</u>	<u> </u>	Ī	<u> [</u>]	<u> </u>	ĪĪ	<u></u>	<u> </u>	Ι <u>ν</u>	<u> </u>	<u>ΙΨ</u>	Ī	Ţ	Ш	<u>/V</u>	<u>V</u>	Ÿ
		3,3	65	КФ4	K#2	КФ6	КФ9	KP5			_				-				_		_	_	_
	KM1	Ĺ	120	КФ4	KP2	KAD 5	кФд	KP5	<u></u> .			_	-				_					_	_
æ	ЭДПНИЯ	36	65	KP7	K \$ 5	KAII	K# 14	K P 10	KP3		K#3	KOP1	KФ14	КФ8	KP16	K#12	KAP13	K#8	_				_
ПЕРЕГОРОДКЯ			120	KP7	K\$P 5	KФ23	КФ26	KФ22	K P 3		KФ3	KPI	_		_		_				_	_	_
è	КЯРКЯСЯ	4,2	65	K\$17	KФ15	КФ19	KФ 21	K\$18	_				_				_	_					_
JEPE	KA	_	120	KФ29	K#27	K\$31	K4 33	KФ30				_	_		_	_		_			-	_	
	HH	4,8	65	KP35	K#34	K4 38	K\$41	K\$37	K P 20	KP15	K#20	KP15	КФЧІ	КФ36	КФ43	КФ39	K\$P40	KФ36	K#20				
HB	Колонн		120	KФ35	KФ34	K#38	K P 41	K\$37	K#32	KФ27	KФ32	KФ27					_		КФ32				
2001	-	5,4	65	KФ44	КФ42	KAP46	KP 48	K P 45							1								
//Родольнвя	CTBOPE		/20	KP60	KP 58	KP62	KФ64	K\$61				_					_				 		
-	20	6,0	65	K\$ 50	КФ49	КФ53	K\$ 56	K4952	KФ47	K P 42	KФ47	KФ42	KФ56	K#51	K#57	КФ54	KP 55	K\$P51	KФ47				
	HE		120	K 4 966	K P 65	КФ69	KФ72	KP 68	<i>КФ63</i>	K#58	КФ63	KФ58			//				КФ63			_	
1	- 1	7,2	65							_													
丄	$_{\perp}$		120						KP75	KP 73	K\$75	KФ73											

Vide s^endralidatince n atiti Byrumr.

23098-01 08 Лист 4

1.431.6-28 .0-08

Обознячение	MAPKA	Эскиз		ЯРИТ МЕРЫ		Мясся,	ОБ03НЯЧЕНИЕ	Мяркя	Эскиз	PR3I	APHT MEPH	, MM	MR
			Н	a	в	Kr				H	a	в	\ \ \
2-47.0	KP1	-	2250			20,07	2-47.0 -23	КФ24		3250			35,
-01	КФ 2	1	2550			22,28	-24	KФ25		3300			35
-02	KP3		2650			23,01	-25	K#26	-	3400			36
-03	КФ4	11 11 11	2700			23,38	-26	KP 27	11 11	3450			37
-04	КФ5] ' '	2850			24,48	-27	KФ28]'	3500			37
-05	КФ6	1 1 =	2930			25,07	-28	KФ 29	H	3600			38
-06	K#7	1 11 1	3000			25, 59	-29	K4P 30		3750			39
-07	КФ8	1	3050			25,95	-30	K#31		3830		1	40
-08	КФ 9	1 , ,	3100]	}	26,32	-31	K\$P32	1-1	3850		1	41
-09	KPIO	1-1	3/50			26,69	-32	KФ33		4000			42
-10	KPII		3230			27,28	-33	КФ34		4050			42
-//	KФ12	0 9	3250	80	80	27,42	-34	KP35	0 4	4200	80	120	41
-12	KФ13] <u>a</u>	3300			27,79	-35	K# 36	a	4250			44
-/3	KФ14	1 **	3400			28,53	- 36	KФ37] **	4350			45
-14	K#15	1	3450	1	}	28,89	-37	KP 38		4430			40
-15	КФ16	1	3500	1		29,26	-38	KФ39		4450			46
-16	K.Ф17	1	3600	1		30,00	-39	K\$40		4500			46
-17	KФ18	1	3750	1		31,10	-40	K\$P41		4600			47
-18	KФ19	1	3830	1		31,69	-41	KФ42		4650			48
-19	K# 20	1	3850	4 !		31,83	-42	KФ43	1	4700			48
-20	КФ21	1	4000	1		32.94	-43	K# 44	1	4800			49
-21	KP 22	1	3/50			34,41	-44	KP 45	1	4950			50
-22	K#23	1	3230	4	120	35.15	-45	KФ 46	1	5030			51,
	1 101 25		L			L						23	098
							НАЧ. ОТД. БРОДСКИЙ Н.КОНТР. ЧУМАКОВА ГЛ.КОНСТР.КОРОТЕЦКИЙ «	7	1.4	31.6-2	28.0-	09	

Инжене Козуб

HHB.Nº TIODDI, HOUTHINGS H HATH BERNINGS.Nº

ХАРЬКОВСКИЙ ПРОМСТРОЙНИИПРОЕКТ

Обозначение	Марка	∂c.	киз	FR31	ЯРИТН МЕРЫ,	MM	MRCCA,	ОБОЗНЯЧЕНИЕ	Мяркя	Эскиз		PHTHU 1EPЫ,		Мясс
GOODINI ILIIVIL	,		.07.0	Н	a	в	Kr '				Н	а	в	Kr
2-47.0 -46	K4947			5050			51,91	2-47.0 -65	K\$#66		5400			85,5
-47	K# 48	1		5200			53,29	-66	KФ67		5450			86,2
-48	KФ49] _		5250			53,75	-67	KФ68		5550			87,
-49	K# 50	٦ نهر [11	5400			55,13	-68	KФ 69	11 11 11	5630	100	140	88,
-50	K#51	11_		5450			55,59	-69	KФ70]'- -'	5650			89,
-51	K\$ 52	1	#	5550			56,52	- 7 <i>0</i>	K \$ 71] #	5700			89,
-52	KAP 53			5630	80	120	57,25	-7/	KAP 72		5800			91,
- <i>53</i>	KP 54			5650			57,44	-72	KФ 73] "	5850		ĺ	13
-54	KP 55] ,		5700			57,90	-73	K4074	<u>1-1</u>	5900			132
- <i>55</i>	K.Ф 56] _7	1-1	5800			58,82	-74	KAP 75		6250			140
-56	K#57] .		5900			59,74	-75	K.Ф76		6650			146
- <i>5</i> 7	KP 58		□ <i>∞</i> (4650			74,51	-76	K.Ф77		6750			/50
-58	KP 59	1 [a	4700			75,23	-77	K.4P78	a	6830	120	160	152
- <i>59</i>	K\$60	1 *	-	4800			76,70	- 78	KP 79] ''	6850			/53
-60	K\$61			4950			78,91	- <i>79</i>	K#80		6900			/53
-61	K\$62	1		5030	100	140	80,08	-80	K481		7000			156
-62	K\$63]		5050			80,38	-81	K#82		7100			158
-63	K.Ф64	1		5200			82,58							
-64	КФ65	1		5250			83,32							

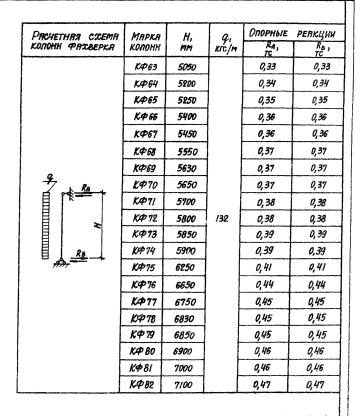
"пода Подпись и дят Вэят инв. И

1431.6-28.0-09

PRCYETHRA CXEMA	MAPKA	Н,	a,	Опорные	РЕЯКЦИН
КОЛОНН ФПОВЕРКП	колонн	mm	KIC/M	RA, TC	RB, TC
	<i>ΚΦ1</i>	2250		0,15	0,15
	КФ2	2550	1	0,17	0,17
	КФ3	2650	1	0,17	0,17
	КФ4	2700	1	0,18	0,18
	K\$5	2850	/32	0,19	0,19
	K\$6	2930	1	0,19	0,19
	K P 7	3000		0,20	0,20
	KФ8	3050		0,20	0,20
a.	KP9	3100		0,20	0,20
-7 RA	K#10	3150		0,07	0,07
	KPII	3230	1	0,07	0,07
	KP12	3250	1	0,07	0,07
目 #	K4P13	3300	1	0,07	0,07
	КФ14	3400		0,07	0,07
Re]	K.Ф15	3450	44	0,08	0,08
7/17	KФ16	3500		0,08	0,08
	KP17	3600		0,08	0,08
	K\$18	3750		0,08	0,08
	KФ19	3830		0,08	0,08
	KФ20	3850		0,08	0,08
	KФ21	4000		0,09	0,09
	KФ22	3150		0,21	0,2/
	КФ23	3230	/32	0,21	0,21
	K#24	3250	132	0,21	0,21
	KФ25	3300		0,22	0,22

ИНВ И"ПОДЛ. ПОДЛИСЬ И ДВТВ ВЭВМ. ИНВ И"

I	Расчетная сосемя	Марка	Н,	g, NC/M		РЕПКЦИИ
	КОЛОНН ФАХВЕРКА	Колонн	mm	Krc /M	RA, TC	R₃, TC
Γ		KP 25	3400		0,22	0,22
1		KФ27	3450	1	0,23	0,23
		КФ28	3500		0,23	0,23
1		КФ29	3600		0,24	0,24
l	<u>a</u>	KФ30	3750		0,25	0,25
1	Z on RA	KФ31	3830		0,25	0,25
1		KФ32	3850		0,25	0,25
		KФ33	4000	/32	0,26	0,26
1		K4P34	4050		0,27	0,27
		KФ35	4200		0,28	0,28
1	[<u>Ro</u>	КФ 36	4250		0,28	0,28
١	7)7)7	KФ37	4350		0,29	0,29
1		K\$38	4430		0,29	0,29
ı		KP39	4450		0,29	0,29
I		KФ40	4500		0,30	0,30
		KФ41	4600		0,30	0,30
		KФ42	4650	44	0,10	0,10

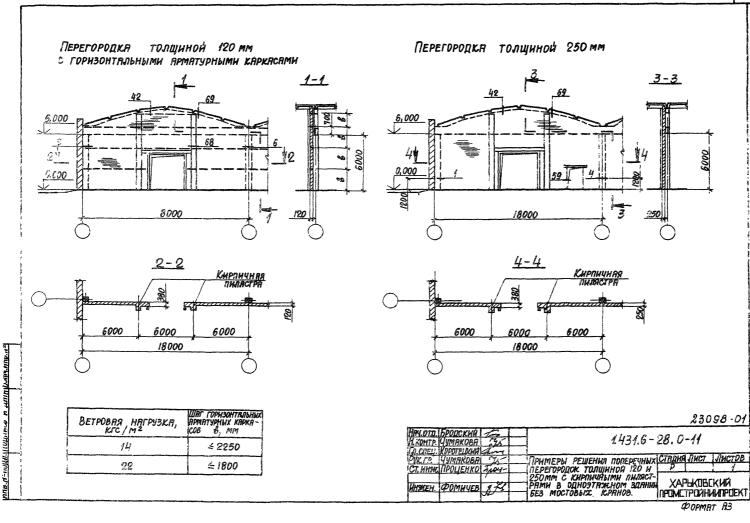

g=go:b, где go=22krc/m², в—шяг колонн фяховеркя Перегородок (при кирпичной клядке перегородки Толщиной 65mm в=2,0m; толщиной 120mm—в=6,0m)

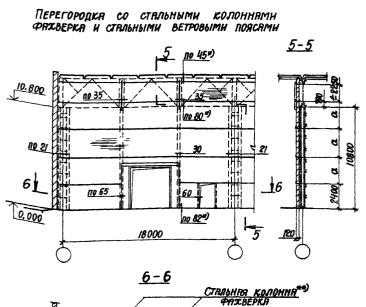
23098-01

HAY.OTD. 5	РОДСКИЙ	To					
H.KOHTP. Y	YMAKOBA	25		1.431.6	-28. i	0-10	1
Гл.спец. К	ОРОТЕЦКИЙ	F					
PYK. TP. 14		75		D	CTAQUA	SHCT	JHCTOB
Ст. инж. П	РОЦЕНКО	Buy -		PACHETHLIE CXEMILI CTRALHUX	P	1	2
		/		KONOHH PRICBEPKA NEPEROPO-	ì		
UHJEFH K	АМЫШОВА	B. Kant	-	док. многоэтпэксных здяний			
1		-			POME	TPOÚHI	aunpoekt
Инжен. К		/		DOK MHOFD-TRIKHIN SORHUU	XAF	SKOBO	

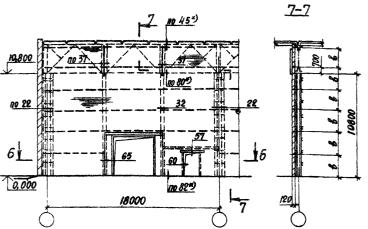
PACYETHRA CZEMA	MAPKR	Н,	2	Опорные	РЕПКЦИИ
Колонн Фахверка	Колонн	mm	KIC/M	R _A	R _B , τc
	KSP 43	4700		0,10	0,10
	KP 44	4800	1	0,11	0,11
	KP 45	4950]	0,11	0,11
	KAP 46	5030]	0,11	0,11
	K#47	5050		0,11	0,11
	KP 48	5200	1	0,11	0,11
0	KA 49	5250	44	0,12	0,12
Ro Ro	KФ 50	5400]	0,12	0,12
	KP 51	5450		0,12	0,12
	KФ 52	5550		0,12	0,12
	KP53	5630		0,12	0,12
Rs	KP 54	<i>565</i> 0		0,12	0,12
M	KP55	5900		0,13	0,13
	K.Ф56	5800		0,13	0,13
	KP57	5900		0,13	0,13
	KP 58	4650		0,31	0,3/
	K.Ф 59	4700		0,31	0,31
	KФ 60	4800	/32	0,32	0,32
	KØ61	4950		0, 3 3	0,33
	КФ62	5030		0,33	0,33

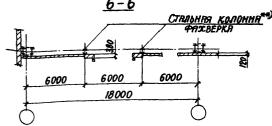
HIB NOOD TODOWS HORTH BARN MARK



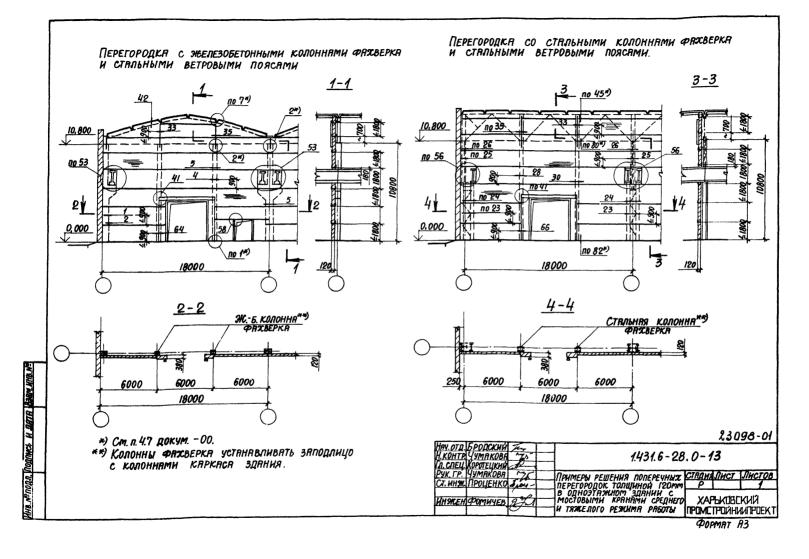

23098-01

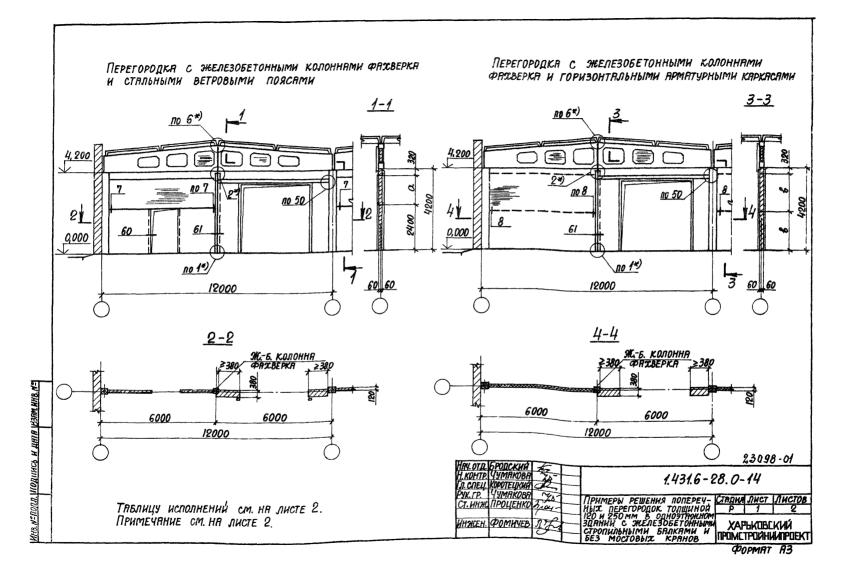
1.431.6-28.0-10

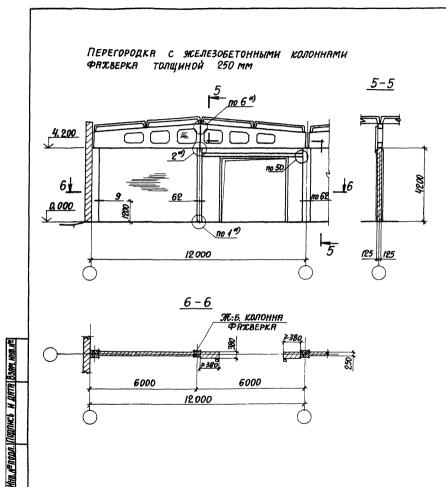

2 7 R3


POPMAT R3

ПЕРЕГОРОДКА СО СТЯЛЬНЫМИ КОЛОННЯМИ ФРЯЗВЕРКА И ГОРИЗОНТЯЛЬНЫМИ ЯРМЯТУРНЫМИ КАРКАСЯМИ



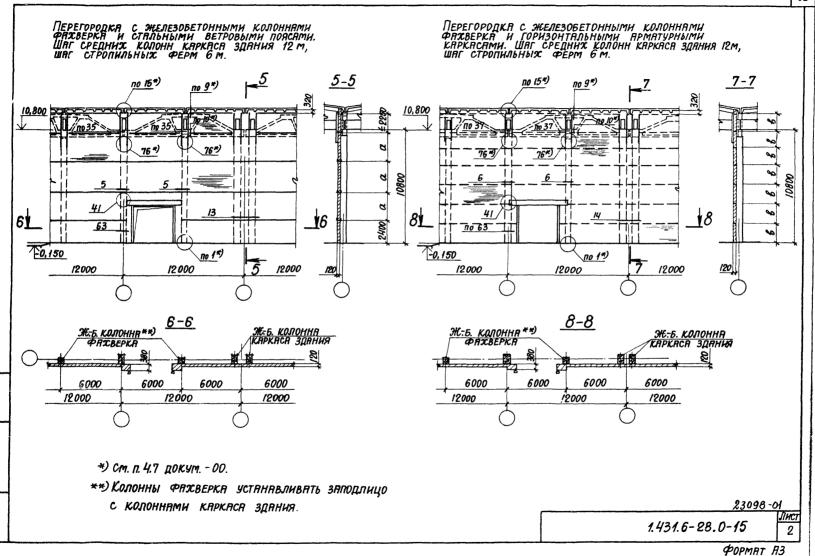

*) См. лист 1


**) КОЛОННЫ ФЯХВЕРКЯ УСТАНАВЛИВАТЬ ЗАПОДЛИЦО
С. КОЛОННЯМИ КАРКАСА ЗДАНИЯ

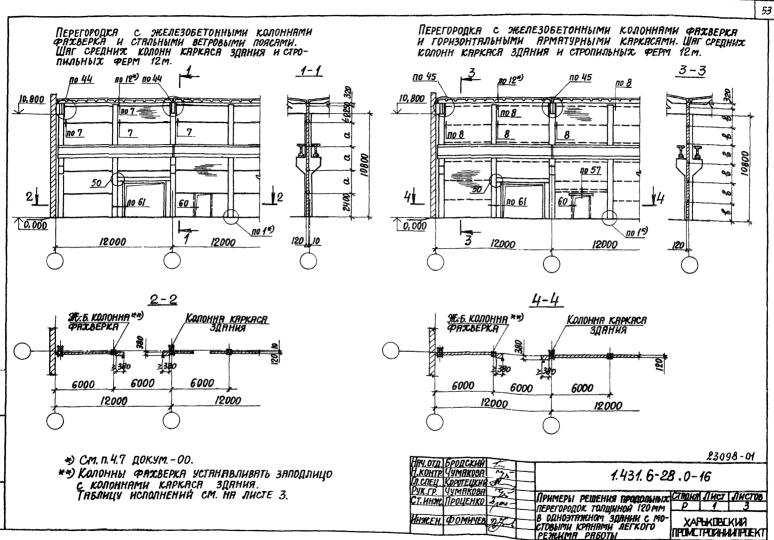
ПРИ НЯЛИЧИИ В ЗДЯНИИ МОСТОВЫХ КРАНОВ ЛЕГКОГО РЕЖИМА РАБОТЫ ИМРИЧНУЮ ПЕРЕГОРОДКУ ВЫПОЛНЯТЬ ПО ТИПУ ПРИМЕРОВ РЕШЕНИЯ ПЕРЕГОРОДОК, ПОКАЗЯННЫХ НЯ ДЯННОМ ДОКУМЕНТЕ. РАЗБИВКУ ВЕТРОВЫХ ПОЯСОВ ИЛИ ГОРИЗОНТЯЛЬНЫХ ЯРМЯТУРНЫХ КАРКЯСОВ ПО ВЫСОТЕ ПЕРЕГРОДКИ ПРОИЗВОДИТЬ С УЧЕТОМ ПРИВЯЗОК ЭТИХ ЭЛЕМЕНТОВ ОТНОСИТЕЛЬНО ПОДКРЯМОВОЙ БЯЛКИ, КАК ПОКАЗЯНО НЯ УЗЛЯХ 54 И 55 (СМ. ДОКУМ.1431.6-28.1-53,-54). ЗЯДЕЛКУ ПРОЕМОВ В ЗОНЕ ПОДКРЯНОВЫХ БЯЛОК СМ. ДОКУМ.1431.6-28.1-53,-54.

23098-01 1.431.6-28.0-12

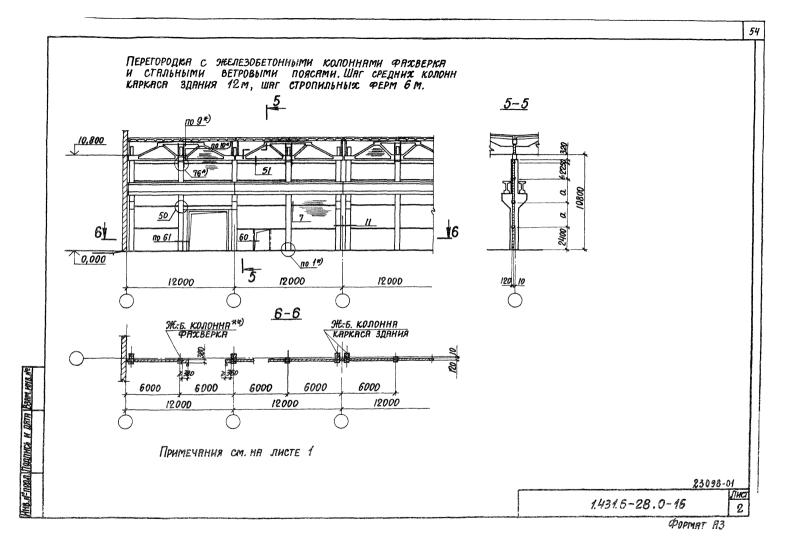
BETPOBRA HAFPY3KA, KFC/M²	Толщина перегород- ки, мм	поясов	ШЯГ ГОРИЗОНТЯЛЬ- НЫХ ЯРМЯТУРНЫХ КЯРКЯСОВ В, ММ
14	/20	≤ 3000	€ 2250
22	120	<i>≤ 3000</i>	€ 1800

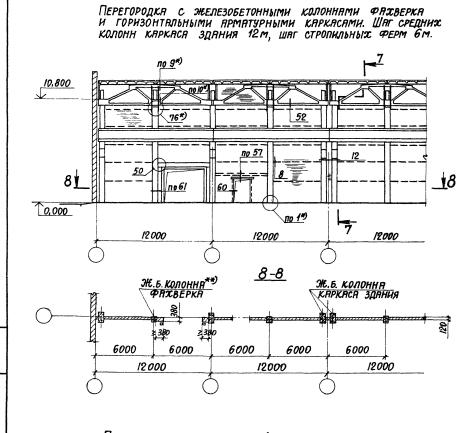

*) CM. N. 4.7 DOKYM. -00.

23098-01 1.431.6-28.0-14 2


KING IT TOOLOO (TOOLOO) HE LINTER HIND AT

POPMAT R3





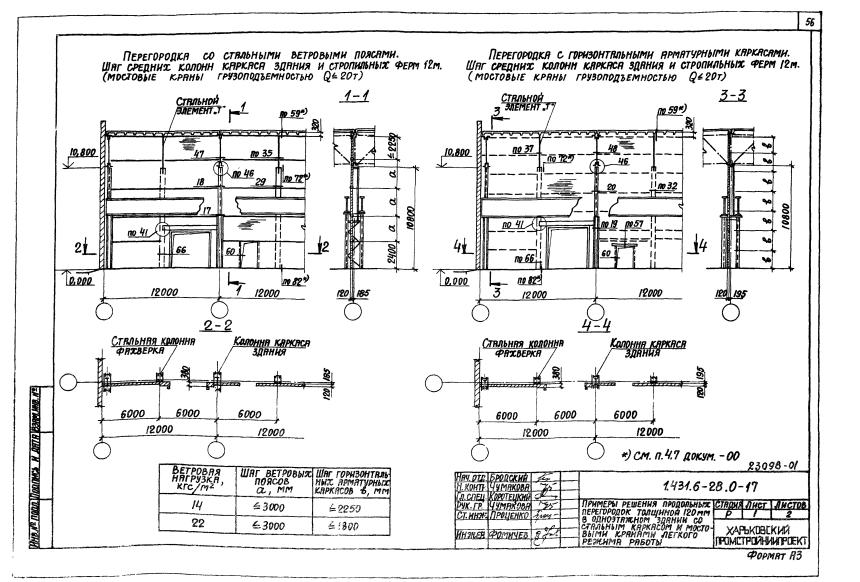
the at node Modifies in Afite Been we as

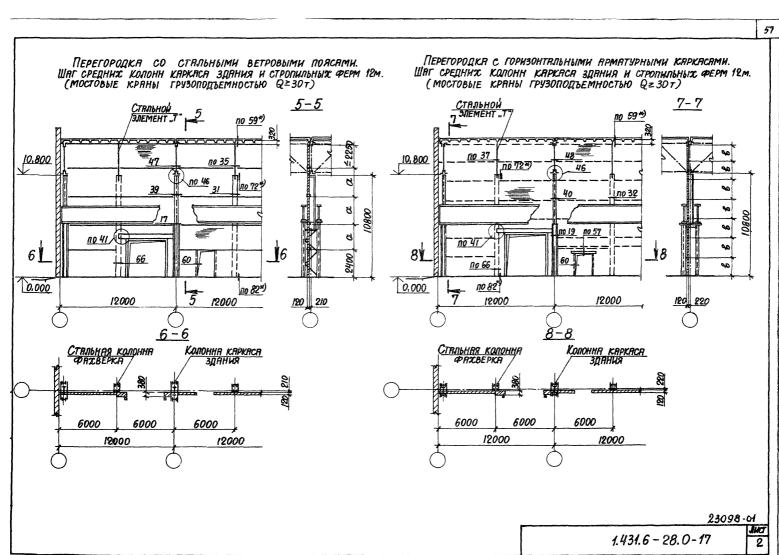
S. Nº 1004 (DOSTUME - N DEFINESSE NES Nº

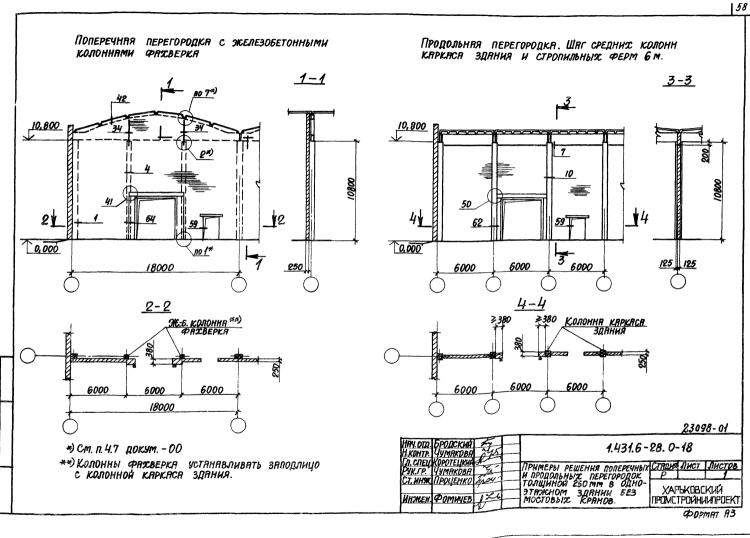
	~ %	7801	
	90		
	9		
		,	
120			
C			
Γ	BETPOBRA HATPY3KA	, ШЯГ ВЕТРОВЫХ ПОЯСОВ	Ш
	urr/m2	'	·

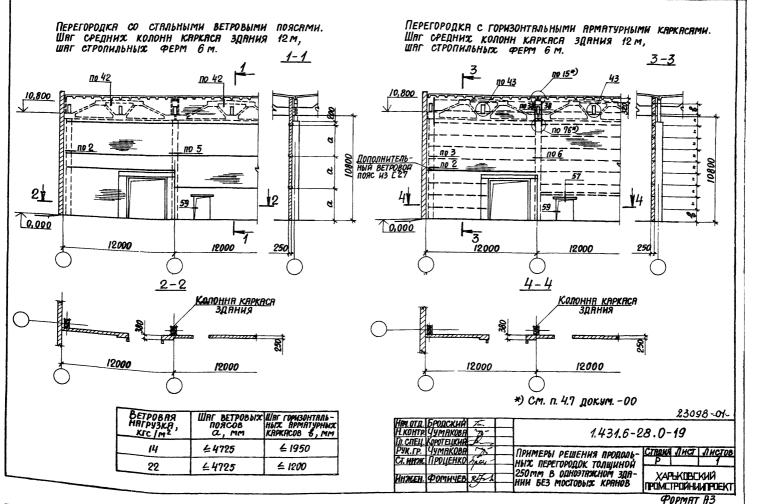
7-7

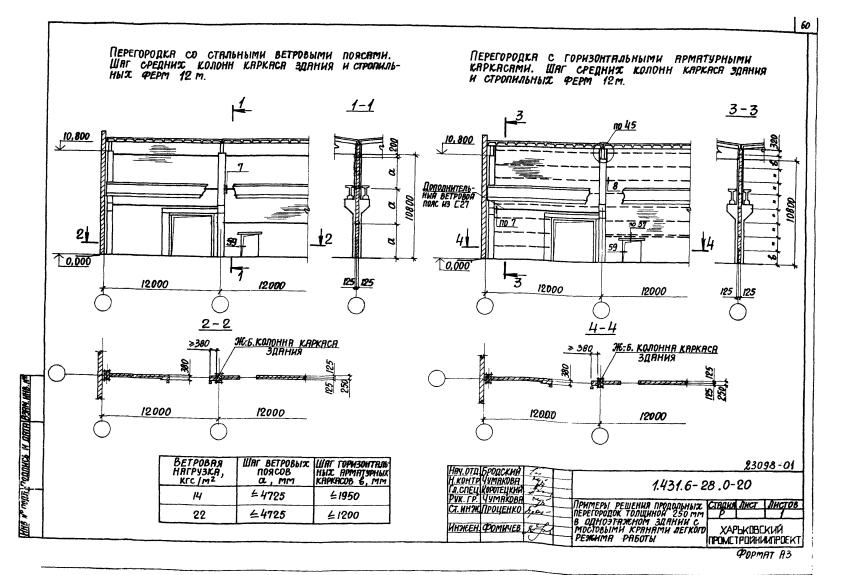
BETPOBRA HATPY3KA, Krc/m²	ШЯГ ВЕТРОВЫХ ПОЯСОВ А, ММ	ШАГ ГОРИЗОНТАЛЬ НЫХ АРМАТУРНЫХ КАРКАСОВ Е, ММ
14	<i>≟ 300</i> 0	£2250
22	<i>≟ 3000</i>	<i>≦ 1800</i>

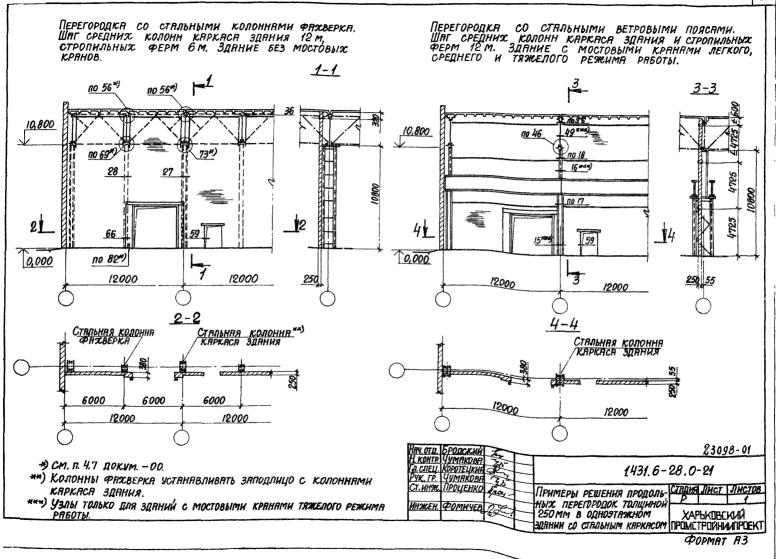

Примечяния см. на листе 1

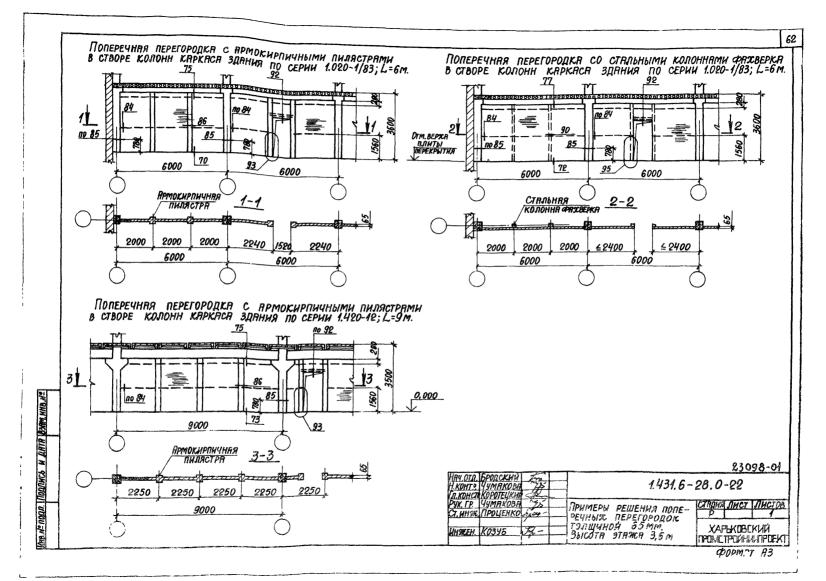

HIB.Nº HORAN PODDINGS IN CHTRICHEN HIB.Nº

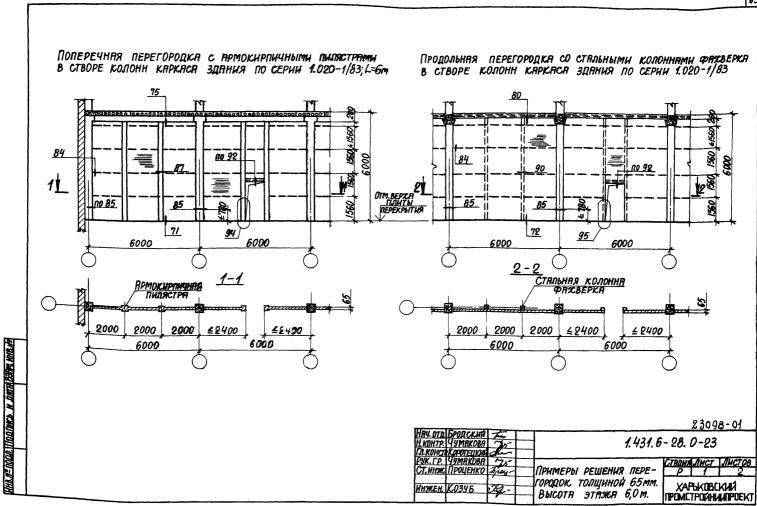

23098-01

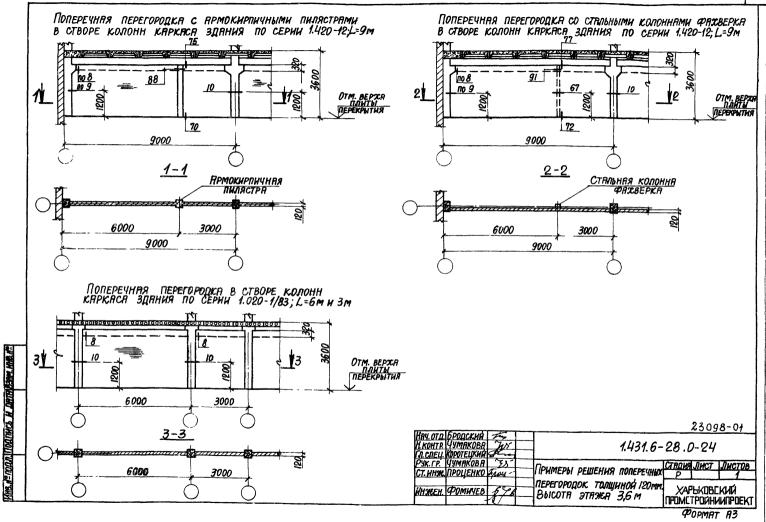

1.431.6-28.0-16

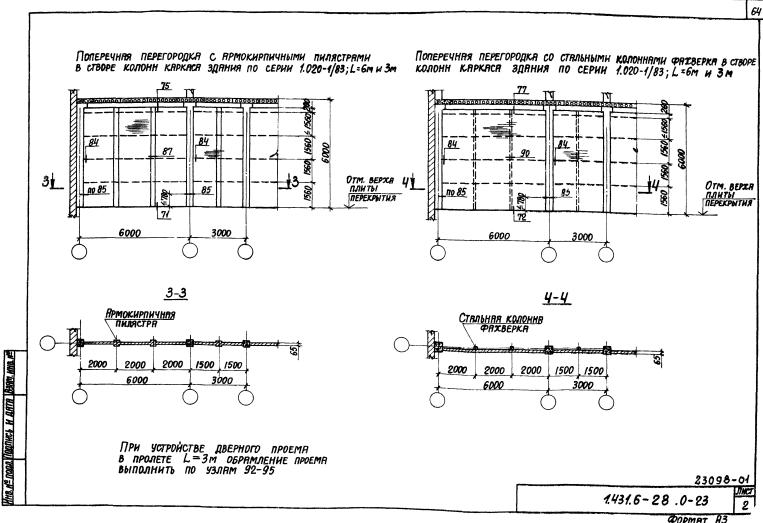

Л*н*ст 3

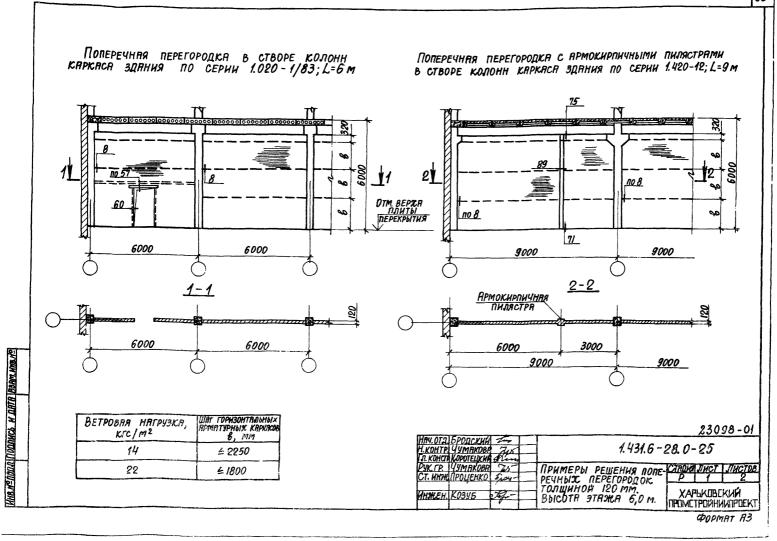


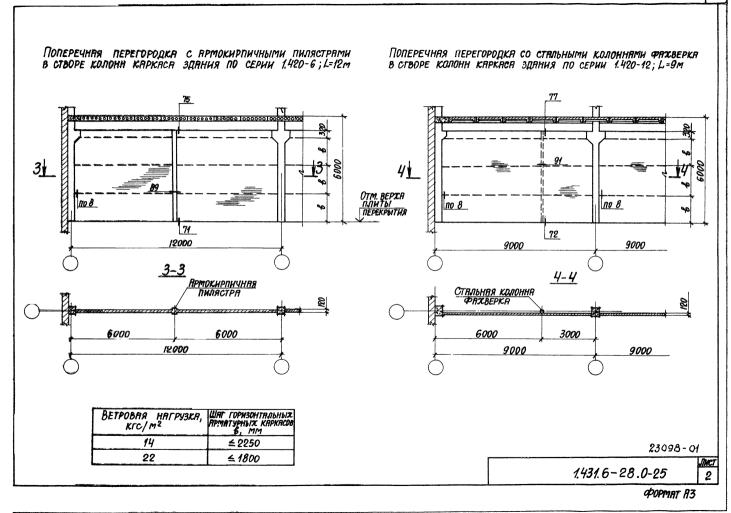


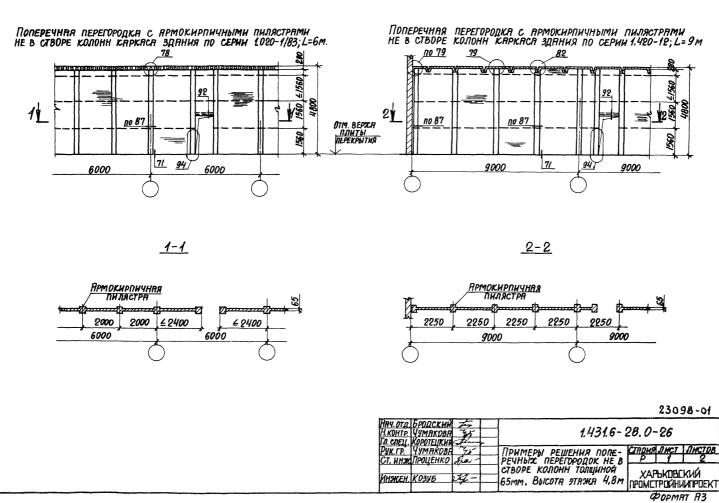


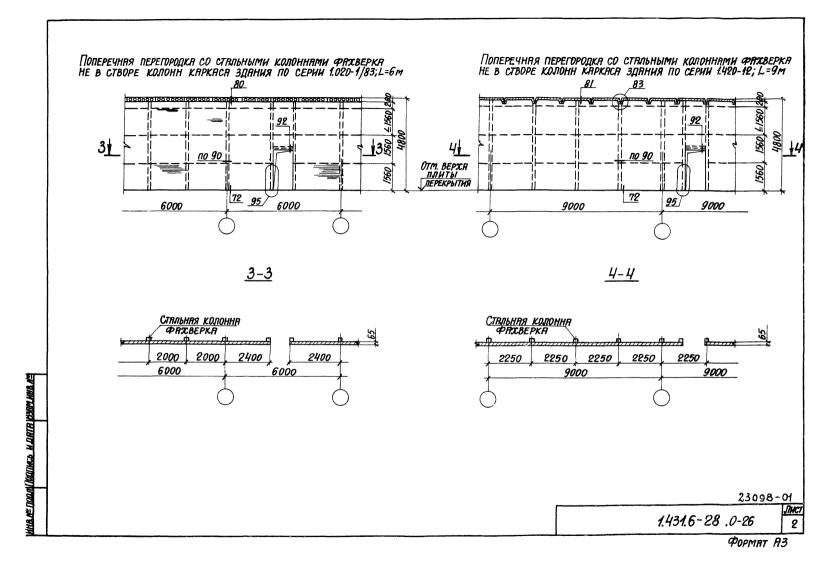


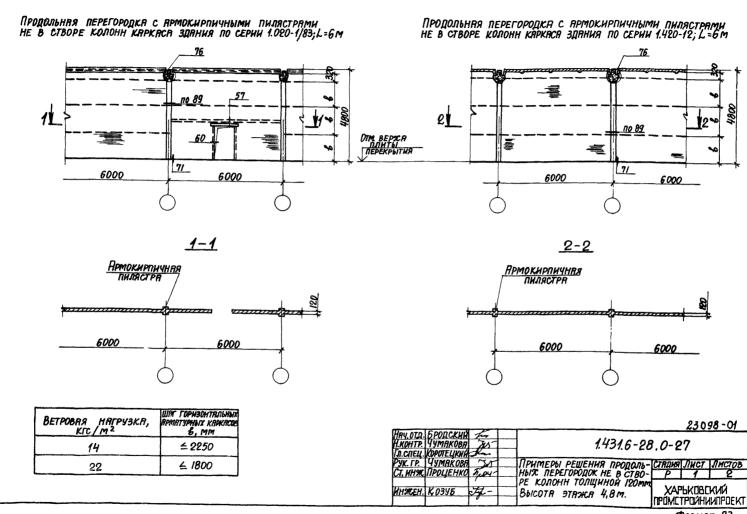




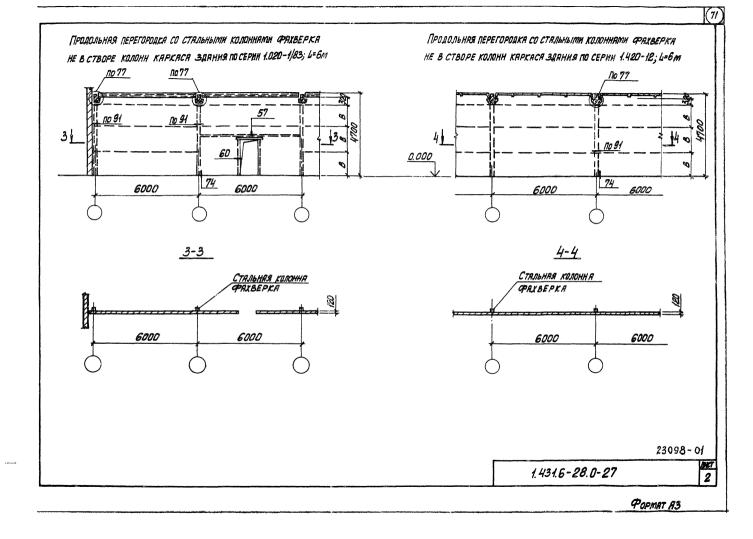








68



HBAPOOT HORINGS H MATH BARM MIBA

Hib. Nº noda. Nogince il data Birm. Hib. Nº

