

НЕФТЕПРОДУКТЫ методы

МЕТОДЫ ИСПЫТАНИЙ

HACTE T

ГОСУДАРСТВЕННЫЕ СТАНДАРТЫ СОЮЗА ССР

НЕФТЕПРОДУКТЫ

МЕТОДЫ ИСПЫТАНИЙ

Часть I

Издание официальное

ИЗДАТЕЛЬСТВО СТАНДАРТОВ
Москва
1987

ОТ ИЗДАТЕЛЬСТВА

Сборник «Нефтепродукты. Методы испытаний» часть I содержит стандарты, утвержденные до 1 марта 1987 г.

В стандарты внесены все изменения, принятые до указанного срока. Около номера стандарта, в который внесено изменение, стоит знак *.

Текущая информация о вновь утвержденных и пересмотренных стандартах, а также о принятых к ним изменениях публикуется в выпускаемом ежемесячно информационном указателе «Государственные стандарты СССР».

$$H \frac{30801}{085(02)-87} - 87$$

НЕФТЬ И НЕФТЕПРОДУКТЫ

Метод определения содержания асфальтово-смолистых веществ

Petroleum and its products.

Method for the determination
of asphaltic resinous substance content

ΓΟCT 11858-66*

Утвержден Комитетом стандартов, мер и измерительных приборов при Совете Министров СССР 2 марта 1966 г. Срок введения установлен

c 01.07.67

Постановлением Госстандарта от 21.07.86 № 2195 срок действия продлен

до 01.01.88

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на нефть, масла и жидкие темные нефтепродукты без присадок и устанавливает метод определения содержания асфальтово-смолистых веществ.

Метод заключается в выделении асфальтенов н-гептаном или петролейным эфиром из нефти (нефтепродукта) и последующем отделении их фильтрацией. Смолы, растворенные в фильтрате, адсорбируются на силикагеле и затем десорбируются спирто-толуольной смесью.

В стандарте учтены требования рекомендации по стандартизации СЭВ РС 1419—69 в части определения асфальтенов.

(Измененная редакция, Изм. № 1, 2).

1. АППАРАТУРА, МАТЕРИАЛЫ И РЕАКТИВЫ

1.1. При определении асфальтово-смолистых веществ применяются:

экстракционный аппарат (черт. 1), состоящий из колб круглодонных узкогорлых вместимостью 100 и 500 см³ по ГОСТ 25336—82, экстрактора и шарикового холодильника по ГОСТ 25336—82. Колбы, экстрактор и холодильник должны иметь нормальные шлифы А29;

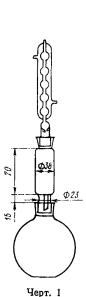
Издание официальное

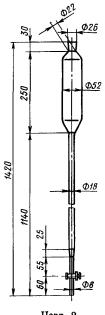
Перепечатка воспрещена

*

^{*} Переиздание с Изменениями № 1, 2, утвержденными в июне 1971 г., ноябре 1980 г. (ИУС 7—71, 1—81).

адсорбционная стеклянная колонка, изготовляемая по черт. 2; воронки конические диаметром 70 мм по ГОСТ 25336-82; колбы конические (Эрленмейера) вместимостью 100,


500 см³ по ГОСТ 25336—82;


чашки стеклянные для выпаривания диаметром 90 мм по ГОСТ 25336—82;

холодильник Либиха по ГОСТ 25336-82; чашка фарфоровая диаметром 200 мм; стаканчики для взвешивания (бюксы) по ГОСТ 25336—82; эксикатор по ГОСТ 25336-82; термостат воздушный на нагрев на 200° С; шкаф сушильный на нагрев до 120°С; баня водяная:

Экстракционный аппарат

Адсорбционная колонка

Черт. 2

плитка электрическая с закрытой спиралью; эфир петролейный, фракция, выкипающая до 50°C; гептан нормальный эталонный;

толуол нефтяной по ГОСТ 14710—78;

спирт этиловый ректификованный по ГОСТ 5962—67 или спирт этиловый гидролизный ректификованный высшей очистки:

спирто-толуольная смесь в соотношении 1:1;

бензин-растворитель для резиновой промышленности по ГОСТ 443—76:

силикагель марки АСК с зернами размером 0,2—0,5 мм по ГОСТ 3956—76, допускается применение регенерированного силикагеля;

фильтры беззольные марки «синяя лента»;

бумага фильтровальная лабораторная по ГОСТ 12026—76;

вата стеклянная;

вода дистиллированная по ГОСТ 6709—72;

весы аналитические с погрешностью не более 0,0002 г.

(Измененная редакция, Изм. № 2).

2. ПОДГОТОВКА К ИСПЫТАНИЮ

- 2.1. Силикагель насыпают в фарфоровую чашку на ³/₄ емкости и помещают на 6 ч в воздушный термостат при температуре 180±10° С. Затем силикагель, не охлаждая, переносят в сухую колбу, предварительно нагретую в течение 15 мин в том же термостате. Колбу с силикагелем плотно закрывают резиновой пробкой во избежание поглощения влаги из воздуха.
- 2.2. В нижнюю часть чистой сухой адсорбционной колонки закладывают тампон из стеклянной ваты и небольшими порциями насыпают охлажденный до комнатной температуры силикагель (около 100 г), непрерывно уплотняя его путем постукивания колонки в вертикальном положении. Уплотнение силикагеля продолжают до тех пор, пока уровень силикагеля при встряхивании колонки не перестанет понижаться. Высота слоя сорбента должна быть на 3—4 см ниже резервуара.
- 2.3. Стеклянные выпарительные чашки (или колбы Эрленмейера) сушат в сушильном шкафу при 105—110° С не менее 1 ч, охлаждают в эксикаторе в течение 30 мин и взвешивают с точностью до 0.0002 г.

Бумажные фильтры сушат в бюксах с открытой крышкой не менее 1 ч при той же температуре, затем охлаждают в течение 30 мин в эксикаторе и взвешивают в закрытых бюксах с точностью до 0.0002 г.

Операции высушивания чашек или колб и фильтров повторяют до получения расхождений между двумя последовательными взвешиваниями не более 0,0004 г (до постоянной массы).

3. ПРОВЕДЕНИЕ ИСПЫТАНИЯ

3.1. Пробу нефти (нефтепродукта) тщательно перемешивают в течение 5 мин.

Навеску 3—10 г взвешивают в колбе экстракционного аппарата (или колбе Эрленмейера) вместимостью 500 см³ с точностью до 0,01 г и разбавляют 40-кратным количеством н-гептана (в случае необходимости, при осторожном нагревании) или 30-кратным количеством петролейного эфира.

(Измененная редакция, Изм. № 1, 2).

3.2. Для осаждения асфальтенов раствор нефти (нефтепродукта) в н-гептане отстаивают в темном месте в течение 16 ч при температуре окружающей среды.

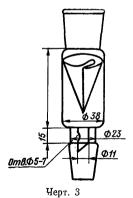
Для осаждения асфальтенов из раствора нефти (нефтепродукта) с петролейным эфиром собирают экстракционный аппарат, как показано на черт. 1, ставят его на водяную баню с горячей водой, имеющей температуру 50—55° С, кипятят 30—35 мин, поддерживая указанную температуру путем добавления горячей воды в баню (применение электроподогрева исключается в связи с пожароопасностью петролейного эфира). По истечении 30 мин горячую воду прекращают доливать и оставляют раствор стоять в течение 1 ч в аппарате на водяной бане, считая с момента прекращения кипения. Место испытания должно быть защищено от воздействия солнечного света.

(Измененная редакция, Изм. № 1).

- 3.3. Определение асфальтенов
- 3.3.1. В коническую воронку вставляют фильтр «синяя лента». Отстоявшийся раствор н-гептана (или петролейного эфира) осторожно без перемешивания фильтруют через фильтр «синяя лента». Затем осадок возможно полнее переносят на тот же фильтр при помощи н-гептана (или петролейного эфира) и промывают их до тех пор, пока растворитель не будет стекать совершенно прозрачным и после его испарения на фильтровальной бумаге не остается масляного пятна. Если образуется твердый, трудно смываемый слой асфальтенов, его растворяют в небольшом количестве бензола и переносят в колбу, в которой (в ходе дальнейшего анализа по п. 3.3.3) асфальтены экстрагируют бензолом.
- 3.3.2. После этого фильтр сворачивают, как показано на черт. 3, и помещают в экстрактор аппарата для удаления соосажденных смол и парафинов. В колбу экстракционного аппарата вместимостью 100 см³ наливают 50 см³ н-гептана (или петролейного эфира). Собирают аппарат и помещают на электрическую плитку (водяную баню, нагретую до 50—55° С). Экстрагирование производят в течение часа при использовании н-гептана и в течение 30 мин при использовании петролейного эфира.

Укладку фильтра и сборку аппарата производят по возможности быстро, так как в контакте с кислородом воздуха асфальтены переходят в трудно растворимое состояние.

Перед началом экстрагирования нагрев проводят таким образом, чтобы фильтр с осадком полностью заполнился растворителем, затем экстрагирование продолжают со скоростью 2—4 капли в секунду.


При отсутствии экстракционного аппарата фильтр с осадком складывают и закрепляют проволокой на крючках, припаянных к холодильнику экстракционного аппарата, или на проволоке, пропущенной через внутреннюю трубку холодильника.

При применении н-гептана проводят дополнительное экстрагирование спиртом для более полного удаления высокоплавких церезинов. Для этого по окончании экстрагирования н-гептаном колбу заменяют другой вместимостью 100 см³, в которую наливают 50 см³ этилового спирта и проводят экстрагирование в течение 5—10 мин.

3.3.3. По окончании экстрагирования колбу со спиртом или петролейным эфиром заменяют колбой вместимостью 500 см³, в которой происходило осаждение асфальтенов, предварительно налив в нее 50—100 см³ толуола.

Экстракционный аппарат помещают на закрытую электрическую плитку и экстрагируют со скоростью 2—4 капли в секунду

Укладка фильтра

до тех пор, пока не растворятся все асфальтены и толуол не будет стекать в колбу бесцветным. Толуольный экстракт переносят количественно в стеклянную чашку или колбу Эрленмейера, доведенные до постоянной массы по п. 2.3.

3.3.1—3.3.3. (Измененная редакция, Изм. № 1, 2).

3.3.4. Толуол выпаривают из чашки или отгоняют из колбы Эрленмейера с помощью колодильника на водяной бане, а асфальтены доводят до постоянной массы при температуре 105° С так, как указано в п. 2.3.

Полученные асфальтены должны быть хрупкими и блестящими черно-коричневого цвета. Матовый и мазеобразный вид асфальтенов указывает на присутствие в них масел, парафинов и требует повторного переосаждения.

(Измененная редакция, Изм. № 2).

3.4. Определение карбенов и карбоидов

3.4.1. После растворения асфальтенов в толуоле фильтр с нерастворившимся остатком доводят до постоянной массы по п. 2.3. Разность между массой фильтра с остатком и массой чистого филь-

тра является суммой механических примесей, карбенов и карбоидов в навеске.

(Измененная редакция, Изм. № 2).

- 3.5. Определение смол, адсорбируемых силикагелем («силикагелевых смол»)
- 3.5.1. Фильтрат, полученный после фильтрования и промывки асфальтенов, помещают в колбу Эрленмейера вместимостью 250 см³ и выпаривают или отгоняют н-гептан (или петролейный эфир) до получения 50—70 см³ остатка (концентрата). К остатку в колбе, полученному после отгона н-гептана, добавляют экстракт этилового спирта и отгоняют с инертным газом до полного удаления растворителя. Затем остаток растворяют в 30—50 см³ бензина.

(Измененная редакция, Изм. № 1, 2).

- 3.5.2. В адсорбционную колонку, заполненную силикагелем, через воронку наливают 200 см³ бензина-растворителя. Когда бензин полностью впитается силикагелем, кран закрывают и в колонку наливают концентрат фильтрата. Колбу из-под концентрата промывают небольшим количеством растворителя, а также наливают в колонку. Затем в колонку наливают еще около 100 см³ бензина-растворителя так, чтобы в колонке поверхность силикагеля была покрыта растворителем. Колонку сверху закрывают ватой и оставляют на 1—2 ч. Затем открывают пробку и краном регулируют скорость прохождения раствора так, чтобы она составляла 5 см³ в 1 мин.
- 3.5.3. Когда уровень бензина в колонке дойдет до поверхности силикагеля, в колонку наливают смесь бензина и толуол взятых в соотношении 6:1, отдельными порциями по 100 см³ пока из колонки не будет стекать чистый растворитель, не содержащий масла. На промывку расходуют 500—600 см³ растворителя. После отмывки масла дают растворителю полностью стечь. Колбу с растворителем убирают и устанавливают чистую сухую колбу вместимостью 500 см³.
- 3.5.4. Для десорбции смол в колонку небольшими порциями наливают $400~{
 m cm}^3$ спирто-толуольные смеси. Десорбцию смол из силикагеля производят до полного осветления растворителя, стекающего из колонки.
- 3.5.5. Из полученного раствора на водяной бане выпаривают или отгоняют спирто-толуольную смесь. Выпаривание производят в вытяжном шкафу в стеклянных чашках, доведенных до постоянной массы по п. 2.3. Смесь отгоняют с инертным газом в аппарате, собираемом из доведенной до постоянной массы (см. п. 2.3) колбы Эрленмейера и холодильника Либиха. Раствор выпаривают или отгоняют небольшими порциями. Полученный сухой остаток высушивают в сушильном шкафу и доводят до постоянной массы в соответствии с п. 2.3, причем за постоянную массу принимают мас-

26-3234

TOCT 11858-66

су при расхождении между двумя последовательными взвешиваниями не более 0.001 г.

3.5.2—3.5.5. (Измененная редакция, Изм. № 2).

4. ОБРАБОТКА РЕЗУЛЬТАТОВ

4.1. Содержание асфальтенов (X) в весовых процентах от исжодного образца вычисляют по формуле

$$X = \frac{m_1}{m} \cdot 100,$$

где m — масса нефти в Γ ;

 m_1 — полученная масса асфальтенов в г.

4.2. Суммарное содержание карбенов и карбоидов (X_1) в весовых процентах от исходного образца вычисляют по формуле

$$X_1 = \frac{m_2}{m} \cdot 100 - C$$

где m — навеска нефти в r;

та — разность между массой фильтра с нерастворившимся остатком и массой чистого фильтра в г;

 С — содержание механических примесей в процентах, определенное по ГОСТ 6370—83.

4.3. Содержание «силикагелевых смол» (X_2) в весовых процентах от исходного образца вычисляют по формуле

$$X_2 = \frac{m_3}{m} \cdot 100,$$

где m — навеска нефти в r;

 m_3 — полученная масса смол в г.

4.4. Расхождения между параллельными определениями асфальтенов, смол, карбенов и карбоидов не должны превышать величин, указанных в таблице.

Наименование асфальтово-смолистых веществ	Допускаемые расхождения в процентах от величины меньшего результата
При содержании асфальтенов до 0,5% При содержании асфальтенов более 0,5% При содержании смол до 10% При содержании смол более 10% При содержании карбенов и карбоидов в 0,1% При содержании карбенов и карбоидов более 0,1%	20 10 10 5 20 15

ПРИЛОЖЕНИЕ

РЕГЕНЕРАЦИЯ СИЛИКАГЕЛЯ

Силикагель промывают в адсорбционной колонке или экстракционном аппарате толуолом и спирто-толуольной смесью до получения бесцветного растворителя.

Затем силикагель дополнительно промывают этиловым спиртом из расчета 100 см³ спирта на 100—150 г силикагеля.

Промытый указанным выше способом силикагель заливают дистиллирован-

ной водой шесть раз по 200 см³ воды на 100-150 г силикагеля.

После отделения воды силикатель сушат при 50°C до распада комков, а затем просушенный силикатель выдерживают в воздушном термостате при температуре 180±10°C в течение 6 ч.

(Измененная редакция, Изм. № 2).

СОДЕРЖАНИЕ

Общие методы испытаний

3	Газы углеводородные сжиженные. Методы отбора проб	14921—78	LOC T
11	Масла и смазки. Метод определения давления насыщенных паров	15823—70	ГОСТ
19	Масла и темные нефтепродукты. Методы определения температур вспышки и воспламенения в открытом тигле	4333—48	ГОСТ
25	Масла нефтяные. Метод определения стабильности против окисления	981—75	FOCT
34	Масла нефтяные. Определение стабильности энергетических масел по статическому методу	11257—65	гост
40	Масла смазочные. Метод определения антикоррозионных свойств	19199—73	ГОСТ
45	Нефть. Метод определения парафина	1185185	ГОСТ
58	Нефть и нефтепродукты. Диэлькометрический метод определения влажности	14203—69	гост
65	Нефть и нефтепродукты. Метод определения фракционного состава в аппарате АРН-2	11011—85	гост
90	Нефть и нефтепродукты. Методы отбора проб	251785	ГОСТ
121	Нефть и нефтепродукты. Маркировка, упаковка, транспортирование и хранение	1510—84	ГОСТ
159	Нефтепродукты. Метод определения числа нейтрализации потенциометрическим титрованием	11362—76	ГОСТ
177	Нефтепродукты и присадки. Метод определения серы хроматным способом	1431—85	ГОСТ
184	Нефть, нефтепродукты и присадки. Метод определения механических примесей	6370—83	roct
190	Нефтепродукты. Метод определения удельной теплоты сгорания	21261—75	ГОСТ
217	Нефтепродукты. Метод определения содержания воды	247765	ГОСТ
224	Нефтепродукты. Метод определения наличия водорастворимых кислот и щелочей	6307—75	ГОСТ
229	Нефтепродукты. Метод определения вязкости автомаческим капиллярным вискозиметром	7163—84	ГОСТ
421			

241	Нефть и нефтепродукты. Метод определения зольности	1461—75	LOCT
248	Нефтепродукты. Метод определения кинематической и расчет динамической вязкости	33—82	гост
259	Нефтепродукты. Метод определения кислотности и кислотного числа	5985—79	гост
267	Нефтепродукты. Метод определения условной вязкости	6258-85	ГОСТ
274	Нефтепродукты. Метод определения коксуемости по Конрадсону	19932—74	гост
27 9	Нефтепродукты. Метод определения коксуемости на аппарате типа ЛКН-70	8852—74	гост
283	Нефтепродукты. Метод определения температуры каплепадения	679374	ГОСТ
287	Нефтепродукты. Методы определения фракционного состава	2177—82	гост
312	Нефтепродукты светлые. Метод определения цвета .	266782	FOCT
314	Нефтепродукты. Метод определения цвета на колориметре ЦНТ	20284—74	гост
318	Нефтепродукты. Методы определения температуры застывания	20287—74	гост
326	Нефтепродукты. Метод определения температуры плавления по Жукову	4255—75	гост
330	Нефтепродукты. Определение фракционного состава методом испарения	8674—58	гост
335	Нефтепродукты светлые. Метод определения бромных чисел (массовой доли непредельных углеводородов) электрометрическим способом	8997—59	гост
343	Нефтепродукты. Метод определения содержания механических примесей	10577—78	гост
353	Нефтепродукты темные. Определение содержания ванадия методом колориметрирования	10364—63	FO CT
357	Нефтепродукты темные. Ускоренный метод определения содержания серы	1437—75	roct
36 5	Нефтепродукты тяжелые. Метод определения содержания серы сжиганием в калориметрической бомбе .	387749	FO CT
374	Нефтепродукты отработанные. Общие требования к методам испытания	26378.0—84	гост
376	Нефтепродукты отработанные. Метод определения воды	26378.1—84	гост
381	Нефтепродукты отработанные. Метод определения механических примесей и загрязнений	26378.2—84	гост
383	Нефтепродукты отработанные. Метод определения условной вязкости	26378.3—84	
386	Нефтепродукты отработанные. Метод определения температуры вспышки в открытом тигле	26378.4—84	гост

roct	11858—66	Нефть и нефтепродукты. Метод определения содержания асфальтово-смолистых веществ	388
ГОСТ	5211—85	Смазки пластичные. Метод определения массовой доли мыл, минерального масла и высокомолекулярных органических кислот	396
ГОСТ	6479—73	Смазки пластичные. Метод определения содержания механических примесей разложением соляной кислотой	402
ГОСТ	9127—59	Смазки пластичные. Методы определения вязкости и предела прочности пластовискозиметром	406
FOCT	26581—85	Смазки пластичные. Метод определения эффективной вязкости на ротационном вискозиметре	415

НЕФТЕПРОДУКТЫ

Методы испытаний

Часть 1

Редактор *С. И. Бобарыкин* Технический редактор *Г. А. Теребинкина* Корректор *А. П. Якуничкина*

Сдано в наб. 28.10.86. Подп. в печ. 13.05.87. Формат 60×90¹/₁₆. Бумага книжно-журнальная. Гарнитура литературная. Печать высокая. 26,5 усл. п. л. 26,75 усл. кр.-отт. 24,80 уч.-изд. л. Тираж 10000 экз. Зак. 3234. Цена 1 р. 40 к. Изд. № 9024/2.

Ордена «Знак Почета» Издательство стандартов. 123840, Москва, ГСП, Новопресненский пер., 3 Великолукская городская типография управления издательств, полиграфии и книжной торговли Псковского облисполкома, 182100, г. Великие Луки, ул. Полиграфистов, 78/12