МЕХ ИСКУССТВЕННЫЙ ТРИКОТАЖНЫЙ

Метод определения воспламеняемости ворсовой поверхности

Издание официальное

Предисловие

1 РАЗРАБОТАН Арендным предприятием «Украинский научно-исследовательский институт по переработке искусственных и синтетических волокон» (АП «УкрНИИПВ»)

ВНЕСЕН Государственным комитетом Украины по стандартизации, метрологии и сертификации

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 7 от 26 апреля 1995 г.)

За принятие проголосовали:

Наименование государства	Наименование национального органа стандартизации
Азербайджанская Республика	Азгосстандарт
Республика Армения	Армгосстандарт
Республика Беларусь	Госстандарт Республики Беларусь
Кыргызская Республика	Кыргызстандарт
Республика Молдова	Молдовастандарт
Республика Таджикистан	Таджикгосстандарт
Туркменистан	Главгосинспекция «Туркменстандартлары»
Республика Узбекистан	Узгосстандарт
Украина	Госстандарт Украины

- 3 Настоящий стандарт содержит аутентичный текст международного стандарта ИСО 6940—84 «Текстильные ткани. Воспламеняемость. Определение легкости воспламенения вертикально ориентированных образцов» с дополнениями, отражающими потребности экономики страны
- 4 Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 18 июля 2001 г. № 273-ст межгосударственный стандарт ГОСТ 26666.8—95 (ИСО 6940—84) введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 2003 г.
 - 5 ВВЕДЕН ВПЕРВЫЕ

МЕХ ИСКУССТВЕННЫЙ ТРИКОТАЖНЫЙ

Метод определения воспламеняемости ворсовой поверхности

Imitation knitted fur.

Method for determination of pile surface inflammability

Дата введения 2003-01-01

1 Область применения

Настоящий стандарт распространяется на трикотажный искусственный мех (далее — мех) всех назначений, кроме меха для игрушек, и устанавливает метод определения воспламеняемости ворсовой поверхности.

Сущность метода заключается в определении минимального времени воспламенения меха при воздействии на него открытого огня, вызывающего возгорание меха при указанных условиях испытаний.

По результатам испытаний мех подразделяется на легковоспламеняющийся и трудновоспламеняющийся.

Метод применяется при испытаниях.

Стандарт пригоден для целей сертификации.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 12.1.005—88 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 427—75 Линейки измерительные металлические. Технические условия

ГОСТ 5542—87 Газы горючие природные для промышленного и коммунально-бытового назначения. Технические условия

ГОСТ 6309—93 Нитки швейные хлопчатобумажные синтетические. Технические условия

ГОСТ 8030—80 Иглы для шитья вручную. Технические условия

ГОСТ 10681—75 Материалы текстильные. Климатические условия для кондиционирования и испытания проб и методы их определения

ГОСТ 22360—95 Шкафы демонстрационные и лабораторные вытяжные. Типы и функциональные размеры

ГОСТ 25562—82 Мех искусственный трикотажный. Термины и определения

ГОСТ 25779—90 Игрушки. Общие требования безопасности и методы контроля

ГОСТ 26666.0—85 Мех искусственный трикотажный. Правила приемки и методы отбора проб

ГОСТ 26666.7—89 Мех искусственный трикотажный. Метод определения линейных размеров и площади

3 Определения

В настоящем стандарте применяют термины в соответствии с ГОСТ 25562.

4 Средства испытаний и вспомогательные устройства

Для проведения испытаний должны применяться:

горелка газовая по ГОСТ 25779;

секундомер 2 класса точности по нормативному документу (НД);

штатив металлический по НД;

держатель пробы (U-образной формы длиной (170 \pm 1) мм, шириной (120 \pm 1) мм — из стальной антикоррозийной проволоки диаметром от 3,5 до 5,0 мм;

линейка по ГОСТ 427;

шкаф вытяжной по ГОСТ 22360 и другому НД:

газ (пропан или бутан баллонный) по ГОСТ 5542 и другому НД;

нитки по ГОСТ 6309 и другому НД;

иглы по ГОСТ 8030 и другому НД;

шаблоны металлические размером $(160 \pm 1) \times (125 \pm 1)$ мм.

5 Порядок подготовки к проведению испытаний

- 5.1 Отбор проб по ГОСТ 26666.0.
- $5.2~{
 m OT}$ каждой отобранной единицы продукции отбирают по одной точечной пробе длиной (400 \pm 1) $_{
 m MM}$.

Длину точечной пробы измеряют по ГОСТ 26666.7.

- $5.3\,$ Из точечной пробы вырезают (с помощью шаблона по разделу 4) 14 элементарных проб (далее проб):
 - 7 по длине,
 - 7 по ширине (из них по одной каждого вида для предварительных испытаний).

Размер элементарной пробы: $(160 \pm 1) \times (125 \pm 1)$ мм.

5.4 Каждую пробу перегибают пополам по линии AA' в соответствии с рисунком 1 ворсом внутрь и сшивают вручную по линиям I и 2 швом шириной не более 2,5 мм, образуя мешочек.

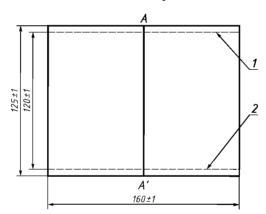


Рисунок 1 — Схема сшивания пробы

- 5.5 Сшитую пробу выворачивают ворсом наружу и расправляют.
- 5.6 Пробы перед испытанием выдерживают не менее 24 ч при температуре (20 ± 5) °C и относительной влажности $65\% \pm 5\%$ в соответствии с ГОСТ 10681.
- 5.7 Перед испытанием пробу встряхивают, надевают на держатель пробы (по разделу 4) и устанавливают его на штатив в вертикальном положении.

5.8 Подготовка горелки

- 5.8.1 Газовую горелку зажигают и прогревают не менее 2 мин.
- 5.8.2 Высота пламени горелки должна быть порядка 40 мм.

За высоту пламени горелки принимают расстояние между верхней частью сопла горелки и кончиком желтой части пламени при вертикальном расположении горелки.

Измерение производят металлической линейкой, закрепленной вертикально таким образом, чтобы нулевая отметка на ней совпадала с горизонтальным уровнем расположения верхней части сопла горелки.

5.8.3 Горелку подготавливают к испытанию в затемненном помещении, освещенность которого аналогична освещенности электрической лампочкой мощностью 15 Вт.

6 Порядок проведения испытаний

- 6.1 Испытания каждой пробы начинают не позднее чем через 2 мин с момента удаления из атмосферы, после кондиционирования. Если испытания не выполняются в этот срок, пробы помещают в плотно закрываемые ящики (или полиэтиленовые пакеты), где и выдерживают до начала испытаний.
- 6.2 Держатель с пробой устанавливают на штатив так, чтобы концевая часть горелки, установленная на неподвижной опоре, находилась на расстоянии около 20 мм от поверхности пробы и пламя воздействовало на середину края пробы.
- 6.3 Одна и та же проба может быть подвергнута испытаниям в одном месте (посредине ее) или в двух местах на расстоянии не менее 20 мм от каждого из вертикальных краев пробы.
- 6.4 Из каждой группы проб по 5.3 отбирают случайным отбором по одной пробе для определения начального времени воспламенения.

Время воздействия пламени на пробу принимают начиная с 1 с, и в случае невоспламенения пробы увеличивают его последовательно до 2, 3, 4 с и т.д. до 20 с, пока проба не воспламенится.

Если проба не воспламеняется при воздействии пламени в течение 20 с, дальнейшие испытания нецелесообразны, и мех должен быть отнесен к категории трудновоспламеняемого по 7.5 без дальнейших испытаний.

- 6.5 Воспламенение считается состоявшимся, если после удаления горелки пламя сохраняется, не угасая, на пробе не менее 5 с, или проба горит до верха, или до вертикальных краев пробы; если в течение 5 с пламя гаснет, воспламенение считается несостоявшимся.
- В случае сохранения пламени на пробе более 5 с пламя следует загасить, не давая ему возможности распространиться по всей пробе.
- 6.6 Остальные пробы из каждой группы проб по 5.3 подвергают испытаниям при воздействии на них пламени, начиная со значения начального времени, полученного по 6.4, с учетом требований 6.5.
- 6.7 Если на первой испытуемой по 6.6 пробе воспламенение произошло в течение времени, равного начальному, то для испытания второй пробы время воздействия пламени уменьшают на 1 с. Если при этом испытании воспламенение опять произошло, то при следующем испытании новой пробы время опять уменьшают на 1 с.

Если воспламенение не произошло, время воздействия пламени на следующую пробу увеличивают на 1 с.

Если проба воспламенилась при воздействии пламени в течение 1 с, следующее испытание проводят также в течение 1 с, считая, что между этими испытаниями проба не воспламенялась.

Испытания по такому принципу проводят до тех пор, пока не будут иметь место не менее пяти случаев воспламенения и пяти случаев невоспламенения по 6.5.

Пример записи результатов испытаний по указанной методике приведен в приложении А.

- 6.8 Испытания по 6.7 проводят и оформляют по обеим группам проб по 5.3.
- 6.9 Рекомендации по проведению испытаний приведены в приложении Б.

7 Правила обработки результатов испытаний

- 7.1 Подсчитывают среднеарифметическое значений времени, при которых воспламенение или невоспламенение наблюдалось при испытаниях 12 проб.
- 7.2 Если данные, полученные по 7.1, относятся к случаям воспламенения, необходимо вычесть 0,5 с из среднего значения, подсчитанного по 7.1.

Если данные, подсчитанные по 7.1, относятся к случаям невоспламенения, необходимо добавить 0,5 с к среднему значению, подсчитанному по 7.1.

7.3 Полученное по 7.2 значение времени принимается как характеристика воспламеняемости меха по каждой группе проб по 5.3 и называется «время воспламенения» независимо от того, как производится расчет — по результатам «воспламенения» или «невоспламенения» (результаты совпадают).

Полученные результаты для двух групп проб усредняют, среднее значение округляют до целого числа и принимают за окончательный результат, характеризующий воспламеняемость меха.

- 7.4 Мех классифицируют как легковоспламеняющийся, если время воспламенения менее 5 с.
- 7.5 Мех классифицируют как трудновоспламеняющийся, если время воспламенения 5 с и более.
 - 7.6 Результаты испытаний оформляют протоколом в соответствии с приложением В.

8 Требования безопасности

- 8.1 Испытания следует проводить в вытяжном шкафу.
- 8.2 Скорость движения воздуха в вытяжном шкафу должна быть не более 0,2 м/с.
- 8.3 При испытаниях в вытяжном шкафу с открытой передней стенкой пробы меха следует размещать на расстоянии не менее 300 мм от стенок шкафа.
- 8.4 Рабочее место лаборанта должно соответствовать санитарно-гигиеническим требованиям ГОСТ 12.1.005.

ПРИЛОЖЕНИЕ А (справочное)

Методика вычисления среднего значения результатов испытаний на воспламенение

А.1 Результаты испытаний

Пример результатов 12 испытаний приведен в таблице А.1. При этом « \times » обозначает, что проба воспламенилась, «0» — не воспламенилась.

Таблица А.1 — Пример записи результатов испытаний

Номер испытания	Время, с	Результат	Номер испытания	Время, с	Результат
1	6	×	7	4	0
2	5	×	8	5	×
3	4	×	9	4	×
4	3	0	10	3	0
5	4	0	11	4	×
6	5	×	12	3	0

Таблица А.2 — Обобщение результатов

Время, с	Число случаев воспламеняемости	Число случаев невоспламеняемости	
6	1	0	
5	3	0	
4	3	2	
3	0	3	

А.2 Вычисления

На основании результатов испытаний составляют таблицу A.2, суммирующую случаи воспламеняемости и невоспламеняемости на каждой пробе.

Среднее арифметическое значение результатов испытаний на воспламенение подсчитывают следующим образом:

- по числу случаев воспламенения по формуле

$$\frac{(1\times6)+(3\times5)+(3\times4)}{7}=4{,}7\text{ c};$$

а) тогда воспламеняемость будет равняться:

$$4.7 - 0.5$$
 (no 7.2) = 4.2 c;

- б) 4,2 с (по 7.3) округляют до целого числа и принимают равным 4 с;
- по числу случаев невоспламенения по формуле:

$$\frac{(2 \times 4) + (3 \times 3)}{5} = 3,4 \text{ c}; \tag{A.2}$$

а) тогда невоспламеняемость будет равняться:

$$3.4 + 0.5$$
 (no 7.2) = 3.9 c;

б) 3,9 с (по 7.3) округляют до целого числа и принимают равным 4 с.

ПРИЛОЖЕНИЕ Б (рекомендуемое)

Рекомендации по проведению испытаний

- Б.1 В целях безопасности испытательное оборудование следует размещать вне зоны нахождения баллона с газом на расстоянии в соответствии с правилами безопасности при пользовании баллоном.
- В каждом случае использования оборудования необходимо подождать 2-3 мин с тем, чтобы чистый бутан или пропан достиг газовой горелки и пламя стало равномерным.

Оборудование необходимо устанавливать и эксплуатировать так, чтобы тлеющие частицы, которые могут быть захвачены горючими газами или же могут улететь с пробы, не попали на горючие материалы.

В распоряжении лаборанта должны быть защитная накидка, огнетушитель и пожарная сигнализация.

- Б.2 Из соображений безопасности оборудование необходимо содержать в чистоте.
- Б.3 После испытания необходимо устранить с держателя с помощью металлической щетки прилипшие остатки меха. Любые тлеющие нити и волокна должны быть потушены до того, как они будут помещены вместе с другими отработанными материалами в несгораемый ящик.
- Б.4 Необходимо проводить предварительные испытания, так как они позволят установить примерное минимальное время воспламенения, которое будет использовано в качестве исходной точки для плана испытаний.

ПРИЛОЖЕНИЕ В (обязательное)

Протокол испытаний

Протокол испытаний должен содержать следующие данные:

- ссылку о том, что испытания проводились в соответствии с настоящим стандартом;
- дату испытаний;
- газ, используемый при испытании;
- данные о мехе (номер партии, артикул и др.);
- показатель воспламеняемости меха;
- табличные данные по числу случаев воспламенения и невоспламенения (приложение А).

УДК 687.8:677.075.001.4:006.354

MKC 59.080.30

M09

ОКСТУ 8409

Ключевые слова: мех искусственный трикотажный, воспламеняемость ворсовой поверхности

Редактор Т.П. Шашина Технический редактор Л.А. Гусева Корректор Е.Д. Дульнева Компьютерная верстка Л.А. Круговой

Изд. лиц. № 02354 от 14.07.2000.

Сдано в набор 15.10.2001. Подписано в печать 16.11.2001. Уч.-изд. л. 0,65. Тираж 000 экз. С 2810. Зак. 1069.

Усл. печ. л. 0,93.

ИПК Издательство стандартов, 107076, Москва, Колодезный пер., 14. http://www.standards.ru e-mail: info@standards.ru