УКАЗАНИЯ ПО ПРИМЕНЕНИЮ ПОКАЗАТЕЛЕЙ НАДЕЖНОСТИ ЭЛЕМЕНТОВ ЭНЕРГОСИСТЕМ И РАБОТЫ ЭНЕРГОБЛОКОВ С ПАРОТУРБИННЫМИ УСТАНОВКАМИ

министерство энергетики и электрификации СССР

ГЛАВНОЕ ТЕХНИЧЕСКОЕ УПРАВЛЕНИЕ ПО ЭКСПЛУАТАЦИИ ЭПЕРГОСИСТЕМ

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ ПОКАЗАТЕЛЕЙ НАДЕЖНОСТИ ЭЛЕМЕНТОВ ЭНЕРГОСИСТЕМ И РАБОТЫ ЭНЕРГОБЛОКОВ С ПАРОТУРБИННЫМИ УСТАНОВКАМИ

- РАЗРАБОТАНО Производственным объединением по наладке, совершенствованию технологии и эксплуатации электростанций и сетей "Союэтехэнерго" и Московским энергетическим институтом (МЭИ)
- И С П О Л Н И Т Е Л И И.Г.БАРГ, Э.В.ДИДЕНКО, Л.Е.ЛАЗАРЕВА, Э.Л.ФОШКО (ПО "Союзтехэнерго"); Б.Н.НЕКЛЕПАЕВ, А.И.ПОЙДО, Н.С.ДЕВИСИЛОВА (МЭИ)
- У Т В Е Р Ж Д Е Н О Главным техническим управлением по эксплуатации энергосистем Минэнерго СССР

Заместитель начальника К.М.АНТИПОВ 3 сентября 1984 г.

© CHO Constexamepro, 1985.

Ответственный редактор И.Л.Левина Литературный редактор А.А.Шиканян Технический редактор Б.М.Полякова Корректор К.И.Миронова

Подписано к печати 22.05.85 Формат 60x84 I/I6 Печать офсетная Усл.печ.л.I, I6 Уч.—изд.л.0,9 Тираж 800 экз. Заказ № 168/85 Издат.№ 90/85 Цена I4 коп.

Производственная служба передового опыта и информации Союзтехенерго 105023, Москва, Семеновский пер., д.15

Участок оперативной полиграфии СПО Совзтехэнерго 109432, Москва, 2-й кожуховский проезд, д.29, строение 6

RIMERIOLO AND I

І.І. Показатели надежности (ПН) элементов энергосистем предназначены для сравнительных расчетов и оценок (далее — расчетов, оценок) надежности энергосистем, электрических станций, электрических сетей, систем электроснабжения потребителей и узлов натрузки, сравнительной оценки уровня надежности электроустановок и линий электропередачи в различных схемах и условиях эксплуатации, определения целесообразности и эффективности мероприятий и средств повышения надежности и совершенствования системы планово-предупредительных ремонтов, нормирования резервов оборудования, материалов, запасных частей. Показатели надежности не следует использовать для оценки надежности отдельных видов оборудования.

Показатели работы энергоблоков с паротурбинными установками и их элементов предназначены для оценки влияния работы энергетических блоков на надежность работы электрических станций и энергосистем.

I.2. Показатели надежности элементов энергосистем и показатели работы энергоблоков с паротурбинными установками позволяют унифицировать банк исходных данных при расчетах и оценках надежности.

При расчетах надежности конкретных энергосистем и электростанций допускается использование более представительных показателей надежности электрооборудования, полученных по данным эксплуатации соответствующих энергосистем.

- І.З. В качестве основных показателей надежности приняты:
- параметр потока отказов ω , I/год;
- среднее время восстановления T_{β} , ч;
- продолжительность ремонтов (планового, капитального, текущего) $T_{\rm D}$, ч;

- частота ремонтов (плановых, капитальных, текущих) μ , I/год. Для линий электропередачи используются также показатели надежности:
 - среднее число преднамеренных отключений μ , I/год;
 - среднее время простоя при преднамеренных отключениях \mathcal{T}_{p} ,ч.
- 1.4. Показатели надежности приведены для: трансформаторов, выключателей, разъединителей, отделителей, короткозамыкателей, сборных шин, воздушных и кабельных линий, асинхронных электродвигателей.
- I.5. Для энергоблоков с паротурбинными установками и их элементов приведены следующие показатели работы;
 - параметр потока отказов ω' , I/год;
 - среднее время восстановления $T_{\mathcal{B}}$, ч;
 - удельное число остановов блока п , І/агрегато-год;
 - среднее время плановых простоев T_{nn}^{I} , ч.

2. HOKABATEJIN HAJIEWHOCTN TPAHCOOPMATOPOB

- 2.1. В качестве основных показателей надежности трансформаторов приняты:
 - параметр потока отказов W , I/год;
 - среднее время восстановления Тв , ч;
 - частота текущих ремонтов $\mu_{\scriptscriptstyle T}$, I/год;
 - продолжительность текущего ремонта \mathcal{T}_{p_T} , ч.

Основные показатели надежности трансформаторов приведены в табл. I.

Таблица І

S _{t hom} MB•A	<i>U_{вн ном}</i> кВ	<i>ω</i> I/год	T _B	μ _т І/год	<i>T_{pT}</i> **
До 2,5	6–20	0,016	50	0,25	6
	3 5	10,0	40	0,25	6

Показатели надежности трансформаторов

- b -

Окончание таблицы I

S _{T HOM} MB· A	<i>U_{вн ном}</i> кВ	Ш I/год	<i>Т_В</i>	μ _τ 1/год	<i>τ_{ρτ}</i> * u	
	6-20	0,006	120	0,25	გ	
2,5-7,5	35	0,007	65	0,25	26	
	110	0,018	40	0,25	2ප	
	Зъ и ниже	0,012	70	0,75	26	
10-80	0d1-011	0,014	70	0,75	225	
	220	0,035	60	0,75	28	
	110-150	0,075	95	1,0	30	
T (10	220	0,025	60	1,0	30	
Более 80	330	0,053	45	1,0	30	
	. 00 771 0	0,021	222			
	500-750	0,05	220	1,0	50	

- 2.2. Усредненные значения показателей надежности приведены для всех типов трансформаторов независимо от их назначения. Iloказатели параметра потока отказов и среднего времени восстановления трансформаторов получены как среднее значение за 6 лет с 1977 г. по 1982 г. Показатели $\mu_{\mathcal{T}}(1/\text{год})$ и $\mathcal{T}_{\rho\mathcal{T}}$ (ч) приведены для текущих ремонтов, выполняемых в соответствии с требованиями действующих правил технической эксплуатации электрических станций и сетей (ПТЭ) и Правил организации технического обслуживания и ремонта оборудования, зданий и сооружений электрических станций и подстанций.
- 2.3. Показатели надежности трансформаторов разработаны совместно кафедрой "Электрические станции" мЭи и ПО "Союзтехэнерго" по материалам по "Союзтехэнерго".

^{*}На один трансформатор. **Для однофазных трансформаторов.

^{***}Для трехфазных трансформаторов.

3. показатели надежности коммутационной аппаратуры

- 3.1. В качестве основных показателей надежности выключателей, короткозамыкателей, отделителей и разъединителей приняты:
 - параметр потока отказов ω , 1/год;
 - среднее время восстановления Тв , ч;
 - частота капитальных ремонтов μ_{K} , I/год;
 - продолжительность капитального ремонта, $\mathcal{T}_{\mathcal{DK}}$,ч .

Основные показатели надежности коммутационных аппаратов приведены в табл. 2 и 3.

- 3.2. Показатель ω получен как среднее значение за 6 лет с 1977 г. по 1982 г. (в расчете на 1 аппарат). Параметр T_6 получен как среднее время восстановления на один отказ аппарата с приводом за тот же период. Параметры μ_K и $T_{\rho K}$, приведенные в табл.3, определены в соответствии с требованиями пТЭ по "Нормам времени на капитальный и текущий ремонты и техническое обслуживание оборудования подстанций напряжением 35-500 кВ" (м.: СПО Союзтехэнерго, 1980) и "Нормам времени на ремонт и техническое обслуживание электрического оборудования напряжением 750 кВ" (м.: СПО Союзтехэнерго, 1979).
- 3.3. Параметр потока отказов разъединителей приведен из литературных источников. Показатели надежности отделителей, корот-козамыкателей и параметры $T_{\mathcal{B}}$, μ_{K} , $T_{\mathcal{P}K}$ разъединителей определялись аналогично соответствующим показателям для выключателей.
- табл.4 приведены значения относительной частоты отказов выключателей α_{on} , под которым понимается отношение количества отказов выключателей при выполнении коммутационных операций, в том числе отключений α , к общему количеству операций (в расчете на один аппарат).

В табл.5 приведены значения относительной частоты отказов выключателей при отключении K3 α_{K3} , под которым понимается отношение количества отказов выключателей при отключении K3 к количеству отключеных K3. При этом учитывались отказы как собственно выключателя, так и его привода, вызвавшие отказ функционирования выключателя, но не учитывались отказы устройств релейной защиты.

3.4. показатели надежности выключателей, отделителей, короткозамыкателей разработаны совместно кафедрой "Электрические станции мЭй и по "Союзтехэнерго" по материалам 110 "Союзтехэнерго", показатели надежности разъединителей разработаны кафедрой "Электрические станции" мЭй.

Таблица 2

Вид выключателей	U _{HOM} xB			<i>Т_в</i> ч	<i>Д</i> _K 1/год	Tp*
Автоматические	До I	-	I/год 0,05	¥	0,33	IU
Электромагнит- ные	6 -I 0	ВЭм-0,ВЭм-10, ВЭ-10	0,022	11	0,2	2±
		BMII-IO	0,009	20	0,11	Ö
	10	Прочие	0,009	20	0,1+	16
Маломасляные	20	-	0,01	26	0,14	**
ĺ	35	-	0,02	25	0,14	9
	IIO-I50		0,06	20	0,14	30
	35		0,01	30	0,14	12
масляные баковы	eIIO	-	0,010	1 0	0,14	23
	220		0,055	50	0,14	43
	I5 -2 0		0,04	20	0,2	+0
į	35	-	0,02	₩	0,2	29
	OII		0,02	20	0,2	\$
D	220	BBE	0,02	55	0,2	122
Воздушные		Прочие	0,02	25	0,2	98
i	330 ****	BBE	0,03	-#ઇ	0,2	I6I
		Прочие	0,03	60	0,2	113
	500 ***	BBE	0,15	60	0,2	**
ļ	. i	Прочие	0,15	60	0,2	133
	750 ***	<u>-</u>	0,25	75	0,2	271

^{*}На один выключатель.

^{**}Отсутствует представительная выборка данных.

^{***} Показатели надежности выключателей на напряжение 330-750 кв приведень без учета отказов выключателей ВНВ.

Таблица 3

ноказатели надежности разъединителей, отделителей и короткозамыкателей

Аппарат	<i>U_{ном}</i> кв	ω 1/год	TB	<i>µ_K</i> 1/год	<i>Τρκ</i> *
Разъединители	6-I0 35 II0 I50 220 330 500	0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01	7 6 11 15 7 10 14	0,166 0,166 0,166 0,166 0,166 0,166 0,166	4 6 8 11 13 18 31 87
Отделители	35 110 220	0,0I5 0,0I 0,0I	3 3,5 3,5	0,33 0,33 0,33	7 10 16
Короткозамы- катели	35 110 220	0,0I 0,0I 0,0I	4 6 6	0,33 0,33 0,33	8 6 8

*На один аппарат.

Таблица 4

Эначение отн $_{\text{ОСИТЕЛЬНОЙ}}$ частоты отказов ($\mathcal{C}_{\text{ОЛ}}$) выключателей

Вид выключателя	<i>U_{ном}</i> кВ	a _{on}	
Электромагнитные	6-10	0,0022	
Маломасляные	20 и выше 35 IIO	0,003 0,005 0,006	

-9-Окончание таблицы ±

Ьид выключателя	U _{НОМ} кВ	a _{on}
Масляные баковые	90 и выше 35 110-15 220	0,001 0,000 0,004 0,011
Воздушные	35 110-154 220 330 500 и выше	0,013 0,00 ± 0,00 ± 0,002 0,007

Таблица 5

Значение относительной частоты отказов выключателей (α_{K3}) при K3

Вид выключателя	<i>U_{ном}</i> кВ	Тип выключателя	a _{K3}
Электромагнитные	6-10	-	0,027
маломасляные	20 кВ и ниже	В МП Прочие	0,005 0,002
MOJOMACMATING	35	-	0,005
	IIO		0,013
	20 и ниже 35	-	0,003 0,006
Масляные баковы е	110-150	У	0,006
Maconymine Canada		Прочие	0,004
	000	У	0,009
	220	Прочие	0,009
	3 5		0,012
Возпушные		BBE	0,00±
2001 Mune	110-150	Прочие	0,003
	2.22	BBE	0,006
	220	Прочие	0,003

окончание таблицы 5 U_{HOM} a_{K3} іип выключателя Вид выклочателя КЫ 0,006 RRE 330 0.002 Прочие Воз тушные 0,003 BBB 500 и выше 50.0 прочие

4. ЛОКАЗАТЬЛИ НАДЕЖНОСТИ СБОРНЫХ ШИН

- $\pm .1$. В качестве основных показателей надежности сборных шин принягы:
 - параметр потока отказов ω , 1/год на присоединение;
 - среднее время восстановления $T_{oldsymbol{eta}}$, ч;
 - частота капитальных ремонтов μ_{κ} I/год;
 - продолжительность капитального ремонта \mathcal{T}_{ρ_K} ,ч. показатели надежности приведены в табл.о.
- 4.2. При обесточении одновременно двух систем шин параметр потока отказов определяется умножением данных, приведенных в табл.о, на коэффициент 0,0 для шин напряжением II0-220 кВ и на коэффициент 0,25 для шин напряжением 330-500 кВ.

Таблица б

Показатели надежности сборных шин

U _{HDM}	кВ	ω 1/год на присое- динение	<i>Т_в</i> ч	μ*1/год	Т* ч
	0	0,03	ხ	0,166	5
	10	0,03	7	0,166	5
	20-35	0,02	7	0,166	1
	110-150	0,016	5	0,166	4
	220	0,013	5	0,166	3
	330	0,013	5	0,566	3
	500	0,013	5	0,166	5
	750	0,01	6	0,166	5

* На присоединение.

Параметр потока отказов определен для схемь РУ "две системы шин" при обесточении одной системы шин. ∴ри определении параметра потока отказов учитывались отказы собственно шин и аппаратов, подключенных непосредственно (без разъединителей и предохранителей) к шинам, и не учитывались отказы выключателей при отключении ими кЗ на линиях. Показатель ТВ рассчитан по материалам № "Союзтехнерго" как среднее время восстановления одной секции шин. Значения показателя среднего времени восстановления принимаются одинаковыми для всех схем соединения РУ.

- 1.3. Продолжительность капитального ремонта $\mathcal{T}_{\rho\kappa}$ дана на одно присоединение по экспертным оценкам.
- ±.1. Таблица показателей надежности сборных шин составлена кафедрой "Электрические станции" МЭЙ с использованием материалов 110 "Союзтехэнерго".

5. LOKASATEJIN HAJEWHOCTN JINHIN ƏJLEKTPONEPEJIANIN

- 5.I. В качестве основных показателей надежности воздушных и кабельных линий электропередачи (табл.7) приняты:
 - параметр потока отказов ω , I/год;
 - среднее время восстановления Тв , ч;
 - среднее число преднамеренных отключений ВЛ μ ,I/год;
- среднее время простоя при преднамеренных отключениях \mathcal{T}_{ρ} , ч. Показатели ω и \mathcal{T}_{δ} воздушных линий электропередачи приведены для устойчивых отказов.

Показатели надежности линий электропередачи

Тип линии	U _{HOM} RB	материал опор	Число	цепей	ω* I/год	T _{B y}	μ** I/год	<i>Tp**</i>	
	До I				25	1,7	0,17	***	
	6-10	_		_	7,64	5,0	0,17	***	
		Металлические	Одног	епные	0,90	9,0	2,I	16,0	
				Отключена одна цепь	1,00	6,0	1,0	13,0	
			двухцепные	Отключены дье цепи	0,22	ც , 0	0,3	9,0	1
Воздушная	35	Железобетонные	езобетонные Одноцепные		0,72	10,0	1,2	I5,0	7
		Двухцепные	Пвухнепные	∪тилючена одна цепь	18,0	9, 5	1,3	14,0	Ì
			Отключены две цепи	0,05	12,4	0,15	13,0		
		Деревянные	_		I,46	13,0	2,5	16,0	
		металлические	металлические Одноцепные		I,25	8,8	2,I	14.5	
1	110		Дв у хцепнье	Отключена одна цепь	1,68	0,9	3,8	I1,8	
				Отключены две цепи	0,17	10,3	0,±	19;0	
			Одно	тепняе	0,06	0,11	I,6	I5,5	
	9ыннотэдосележ ОІІ	Виупепипе	Отключена одна цепь	1,01	d , ₹	2,4	12,0		
			двухцепные	Отключены две цепи	0,13	I4,8	0,4	13,0	
	}	дерев янные	-	-	I,44	10,2	3,6	I4,0	

	1	1	Одно	цепные	0,5	11,3	2,8	17,0	
Воздушная	220	металлическая		Отключена одна цепь	0,63	11,2	3,3	17,4	
			Двухцепные	Отключены две цепи	0,04	14,9	0,5	21,0	
			Одно	цепные	0,36	9,3	I,8	24,0	
		Железобетонные	Двухцепные	Отключена одна цепь	0,47	8,6	I,I	17,0	
			And a	Отключены две цепи	0,03	7,6	0,3	9,4	
		Деревянные			0,57	10,6	5,4	17,9	
	330	Металлические	Одно	цепные	0,55	10,8	3,0	21,0	
			Двухцепные	Отключена одна цепь	0,90	9,4	7,3	I5,0	
			70,112011120	Отключены две цепи	0,09	1,9	0,3	I ±,I	13
Воздушная		Железобетонные	Одно	цепные	0,3	15,3	2,9	20,0	1
	500	Металлические	Одно	Одноцепные		14,3	1,8	18,0	
		Железобетонные	Одно	цепные	0,15	13,0	3,5	23,0	
	750	-		-	0,2	20,0	0,17	***	
	6-I5				7,5	10****	1,0	2,0	
Кабельная	ая 20-35 -				3,2	16****	1,0	2,0	
	До I	_		-	10,0	24***	I,0	***	

****Указана продолжительность ремонта.

^{*}На 100 км. **На одну линию.

^{****}Отсутствует представительная выборка данных.

- 5.2. для определения параметра потока отказов воздушных линий электропередачи 35-750 кв с учетом неустойчивых отказов (ω_{Σ}) значения, приведенные в табл.7, следует делить на коэффициенты, приведенные в табл. σ .
- 5.3. Таблицы показателей надежности линий электропередачи составлены 1.0 "Союзтехэнергс".

6. IIONASATEJIN HAJENHOCTVI ACNHXPOHHEIX SJERTPOJBNI ATEJIRN

- о.І. В качестве основных показателей надежности асинхронных электродвигателей приняты:
 - параметр потока отказов (, 1/год;
 - среднее время восстановления Тд , ч;
 - частота капитальных ремонтов μ_{κ} , I/год;
 - продолжительность капитального ремонта $T_{p\kappa}$, ч.

Іюказатели надежности электродвигателей приведены в табл.9.

Таблица в

Коэффициент учета неустойчивых отказов

BJ: 35-	-750 кВ
U _{HOM} KB	$\frac{\omega}{\omega_{\Sigma}}$
3 ნ	0,34
IIO- I 54	0,24
220-330	0,25
500-'750	0 ,3 6

Таблица 9

U _{HOM} KB	р ном кыт	ω 1/год	<i>Т_в</i> ч	μ_{κ}^* І/год	<i>Трк</i> ч
до I	до 320	0,1	50	0,25	50
выше I	200-800 1000-2000 Выше 2000	1,0	50 90 140	0,25 0,25 0,25	96 I64 384

^{*}По экспертным оценкам.

- 6.2. поличество отказов электродвигателей и показатель среднего времени восстановления получены по материалам ПО "Союзтехэнерго". Показатель параметра потока отказов рассчитан как отношение количества отказов к количеству установленных электродвигателей и усреднен по данным за 5 лет с 1977 г. по 1961 г. Показатель среднего времени восстановления приведен как среднее
 значение времени восстановления электродвигателей за 5 лет с
 1977 г. по 1961 г.
- 6.3. Для электродвигателей напряжением до I кВ мощностью до 320 кВт показатели ω и $T_{\pmb{\delta}}$ приведены из литературных данных. Показатель частоты капитальных ремонтов $\mu_{\pmb{\kappa}}$ приведен на основании экспертных данных Мосэнерго; продолжительность капитального ремонта $T_{p\pmb{\kappa}}$ получена в соответствии с "Нормами времени на ремонт электродвигателей переменного и постоянного тока" (м.: СПО Союзтехэнерго, 1978).
- 6.1. Таблица показателей надежности асинхронных электродвигателей составлена кафедрой "Электрические станции" мЭи.

7. HOMASATEJIM PABOTH SHEPI OBJIONOB С паротурбинными установками и их основного оборудования

- 7. І. В качестве показателей работы энергоблоков с паротурбинными установками и их оборуцования (табл. IO, II) при-HETE:
 - параметр потока отказов ω' , I/arperato-год:
 - среднее время восстановления $T_{\mathcal{R}}$, ч;
 - удельное число остановов блока n , 1/агрегато-год; среднее время плановых простоев \mathcal{T}_{nn} , ч.

Блочные трансформаторы связи и оборудование распределительных устройств в состав энергоблока не включены.

Таблица IO

показатели работы энергоблоков с паротурбинными установками

Оборудование	P _{HOM} MbT	ω*I/год	<i>Т_в</i> ч	<i>п</i> 1/агре- гато-год	T'n, *4
Энергоблок	150-165 180-210 250-300 500 800	5,65 8,67 8,26 21,36 12,08	#5,8 #5 70 74	19 16 15 24 16	1559 1139 1007 911 1066

^{*}Ha один агрегат.

Таблица II Показатели работы основного оборудования энергоблоков с паротурбинными установками

Оборудование	P _{HOM} MBT	ω'* I/год	T _B u
Котлоагрегат	150-165	4,02	44
	180-210	6,14	47
	250-300	5,78	38
	500	6,59	56
	800	9,08	50
Турбина	150-165	0,97	43
	180-210	I,45	45
	250-300	2,2I	68
	500	4,22	85
	800	2,66	99
Турбогенератор	150-165 180-210 250-300 500***	0,55 0,87 0,59 4,48 0,89	91 58 83 136 179

*На единицу оборудования.

Расчетной единицей времени является агрегато-год. В число остановов блока включены все плановые и неплановые остановы, в среднее время плановых простоев включено время плановых ремонтов, нахождения в резерве, проведения испытаний и др.

7.2. Для приближенного перехода к показателям надежности рекомендуется использовать выражения (I), (2), (3):

$$\mu_{n,n} = (n - \omega') \frac{8760}{T_{azpezaro-cod}}, \qquad (1)$$

жидля турбогенераторов TГВ-500 и ТВН-500.

где $\mu_{n,n}$ - частота плановых остановов, І/год (единицей времени является календарный год):

n - удельное число остановов блока за агрегато-год; ω' - параметр потока отказов І/агрегато-год.

Продолжительность агрегато-года вычисляется по выражению $T_{\rm arperato-rog} = 8760 - T_{\rm nn}' - T_{\rm g} \omega'.$

Параметр потока отказов, приведенный к календарному году, определяется по выражению

$$\omega = \omega' \cdot \frac{8760}{T_{\text{apperato-poil}}}.$$
 (2)

Продолжительность планового простоя, приведенная к календарному году, определяется по выражению

$$T_{n,n} = \frac{T'_{n,n}}{n - \omega'} \tag{3}$$

- 7.3. Для основного оборудования энергоблоков с паротурбинными установками удельное число остановов и среднее время плановых простоев определяются условиями эксплуатации оборудования в конкретных энергосистемах.
- 7.4. Таблицы показателей работы энергоблоков и их основного оборудования составлены ПО "Союзтехэнерго".

пиния отрива

КАРТА ОБРАТНОЙ СВЯЗИ. ОЦЕНКА КАЧЕСТВА РАБОТЫ, ВЫПОЛНЕННОЙ СПО СОЮЗТЕХЭНЕРГО

2 1		полненной СПО Союзтеханерго
3. n	аименование расоты, вы	полненном спо совстеханерго
4.	Какая информация Вас	заинтересовала
5.	Какая информация испо	ользована в Вашей работе
6.	Ваши пожелания и заме	пинаре
7.	Общая оценка работы (хорошо, удовлетворительно)
ецо ице но па выя	нке работы "удовлетвор ные недостатки и имею	онтельно ^я необходимо указать циеся замечания.