ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

СОКИ ФРУКТОВЫЕ И ОВОЩНЫЕ

Метод определения содержания мякоти, отделяемой центрифугированием

Издание официальное

ГОССТАНДАРТ РОССИИ Москва

Предисловие

1 PA3PAБОТАН Всероссийским научно-исследовательским институтом консервной и овощесушильной промышленности (ВНИИКОП)

ВНЕСЕН Техническим комитетом по стандартизации ТК 93 «Продукты переработки плодов и овощей»

- 2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 22 декабря 1999 г. № 597-ст
- 3 Стандарт гармонизирован с европейским стандартом ЕН 12134 : 1997 «Соки фруктовые и овощные. Определение содержания мякоти, отделяемой центрифугированием»
 - 4 ВВЕДЕН ВПЕРВЫЕ
 - 5 ПЕРЕИЗДАНИЕ

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Госстандарта России

II 236

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

СОКИ ФРУКТОВЫЕ И ОВОЩНЫЕ

Метод определения содержания мякоти, отделяемой центрифугированием

Fruit and vegetable juices.

Method for determination of centrifugable pulp content

Дата введения 2001-01-01

1 Область применения

Настоящий стандарт распространяется на фруктовые, овощные соки и подобные им продукты и устанавливает метод определения содержания мякоти, отделяемой при центрифугировании. Диапазон измерения объемной доли от 5 до 20 %.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 1770—74 Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия

ГОСТ 26313—84 Продукты переработки плодов и овощей. Правила приемки, методы отбора проб

ГОСТ 26671—85 Продукты переработки плодов и овощей, консервы мясные и мясорастительные. Подготовка проб для лабораторных анализов

ГОСТ Р 51431—99 Соки фруктовые и овощные. Метод определения относительной плотности

ИСО 3696—87* Вода для лабораторного анализа. Технические условия и методы испытаний

3 Обозначения

В настоящем стандарте применяют следующее обозначение: ${\bf g}$ — ускорение силы тяжести.

4 Сущность метода

Метод основан на центрифугировании пробы сока и определении объемной доли мякоти в процентах.

Издание официальное

237

^{*}Действует до введения в действие ГОСТ Р, разработанного на основе стандарта ИСО.

5 Средства измерений, лабораторное оборудование, реактивы и материалы

Центрифуга, обеспечивающая центрифужное ускорение 370 g на дне центрифужной пробирки.

 Π р и м е ч а н и е — Частоту вращения ротора n, мин $^{-1}$, требуемую для получения соответствующего ускорения центрифуги, вычисляют по формуле

$$n = 95.5 \sqrt{Fg/r} , \qquad (1)$$

где F — фактор разделения;

- r радиус центрифуги, измеряемый от средней точки (точка пересечения осей центрифуги) до дна центрифужной пробирки в состоянии вращения, см;
- g ускорение силы тяжести (9,81 м/ c^2).

Пробирки по ГОСТ 1770 исполнения 1 вместимостью 10 см³ ценой деления 0,1 см³ или другие центрифужные градуированные пробирки с коническим основанием вместимостью 10 или 50 см³. Вода для лабораторного анализа по ИСО 3696 не ниже третьей категории качества.

6 Отбор и подготовка проб

- 6.1 Отбор проб по ГОСТ 26313.
- 6.2 Подготовка проб по ГОСТ 26671.

Жидкие продукты, за исключением концентрированных, не требуют разбавления. Концентрированные продукты разбавляют водой до заданного значения относительной плотности в соответствии с нормативным или техническим документом на конкретный вид продукта. Относительную плотность разбавленного продукта определяют по ГОСТ Р 51431 и найденное значение указывают в протоколе испытаний.

Пробу мутных продуктов перед разведением тщательно перемешивают.

7 Проведение испытаний

Проводят два параллельных определения.

В центрифужную пробирку, в зависимости от ее вместимости, помещают 10 или 50 см³ сока, напитка или разбавленного концентрата. Центрифугируют в течение 10 мин при ускорении 370 g.

8 Обработка и оформление результатов

8.1 Поверхность слоя отцентрифугированной мякоти в пробирках может быть не горизонтальной. В этом случае замеряют самую высокую и самую низкую точки уровня мякоти в каждой пробирке, находят среднеарифметическое значение объема мякоти.

Объемную долю мякоти x, %, вычисляют по формуле

$$x = \frac{V_0 K 100}{V_1} , (2)$$

где V_0 — объем осадка мякоти в пробирке после центрифугирования, см³;

К — коэффициент разведения при разбавлении водой;

 V_1 — объем пробы продукта, отобранный в пробирку для центрифугирования, см³.

Вычисления проводят до второго десятичного знака. Окончательный результат округляют до первого десятичного знака.

8.2 Относительное расхождение между результатами двух определений, полученными при анализе одной и той же пробы продукта одним лаборантом с использованием одного и того же оборудования за возможно минимальный интервал времени, не должно превышать норматива оперативного контроля сходимости 11% (P=0.95). При соблюдении этого условия за окончательный результат измерений принимают среднеарифметическое результатов двух параллельных определений.

2 238

- 8.3 Относительное расхождение между результатами двух определений, полученными при анализе одной и той же пробы продукта в двух различных лабораториях, не должно превышать норматива оперативного контроля воспроизводимости 27 % (P = 0.95).
- 8.4 Пределы относительной погрешности определения объемной доли мякоти при соблюдении условий, регламентируемых настоящим стандартом, не превышают \pm 19 % (P = 0,95).
 - 8.5 В протоколе испытаний указывают:
- информацию, необходимую для идентификации исследуемого продукта (вид, происхождение, шифр);
 - ссылку на настоящий стандарт;
 - дату и способ отбора проб (по возможности);
 - дату получения пробы для испытаний;
 - дату проведения испытаний;
 - результат испытаний с указанием погрешности и единицы измерений;
 - соблюдение нормативов контроля сходимости результатов;
- особенности проведения испытаний (разведение концентрированного продукта, относительная плотность разведенной пробы и пр.);
- отклонения условий проведения испытаний от описанных в стандарте, которые могли повлиять на результат.

OKC 67.160.20 H59 OKCTY 9109

Ключевые слова: фруктовые и овощные соки, испытания, определение содержания, мякоть, центрифуга

239 3

Содержание

ΓΟCT P 51398—99	Консервы. Соки, нектары и сокосодержащие напитки. Термины и определения	3
ГОСТ 656—79	Соки плодовые и ягодные натуральные. Технические условия	4
ΓΟCT 657—79	Соки плодовые и ягодные с сахаром. Общие технические условия	.7
ΓΟ CT 937—91	Консервы. Сок томатный. Технические условия	6
ΓΟ CT 16366—78	Соки плодовые и ягодные с мякотью. Технические условия	1
ΓΟ CT 18192—72	Соки плодовые и ягодные концентрированные. Технические условия	3
ΓΟCT 18193—72	Соки из цитрусовых плодов. Технические условия	9
ГОСТ 25892—83	Сок виноградный натуральный. Технические условия	5
ГОСТ 28539—90	Соки плодово-ягодные спиртованные. Технические условия	3
ГОСТ 29135—91	Соки фруктовые. Общие технические условия	0
ГОСТ Р 51122—97	Соки плодовые и овощные. Потенциометрический метод определения формольного	
	числа	
ГОСТ Р 51123—97	Соки плодовые и овощные. Гравиметрический метод определения сульфатов 9	
	Соки плодовые и овощные. Фотометрический метод определения пролина 9	
ГОСТ Р 51128—98	Соки фруктовые и овощные. Метод определения D-изолимонной кислоты 10	13
ГОСТ Р 51129—98	Соки фруктовые и овощные. Метод определения лимонной кислоты	. 1
ГОСТ Р 51239—98	(ДИН 1138—94) Соки фруктовые и овощные. Метод определения L-яблочной кислоты	9
ГОСТ Р 51240—98	(ДИН 1140—94) Соки фруктовые и овощные. Метод определения D-глюкозы и D- фруктозы	
Γ OCT P 51427 —99	Соки цитрусовые. Метод определения массовой концентрации гесперидина и нарингина с помощью высокоэффективной жидкостной хроматографии	;7
ΓΟCT P 51428—99	Соки фруктовые. Метод определения содержания винной кислоты с помощью высокоэффективной жидкостной хроматографии	13
ΓΟCT P 51429—99	Соки фруктовые и овощные. Метод определения содержания натрия, калия, кальция и магния с помощью атомно-абсорбционной спектрометрии	9
ΓΟCT P 51430—99	Соки фруктовые и овощные. Спектрофотометрический метод определения содержания фосфора	57
ГОСТ Р 51431—99	Соки фруктовые и овощные. Метод определения относительной плотности 16	3
ГОСТ Р 51432—99	Соки фруктовые и овощные. Метод определения содержания золы	9
ГОСТ Р 51433—99	Соки фруктовые и овощные. Метод определения содержания растворимых сухих	
	веществ рефрактометром	
	Соки фруктовые и овощные. Метод определения титруемой кислотности	
	Сок. яблочный, сок. яблочный концентрированный и напитки, содержащие 19 яблочный сок. Метод определения содержания патулина с помощьювысоко-	
	эффективной жидкостной хроматографии	<i>;</i> 7
ΓΟCT P 51436—99	Соки фруктовые и овощные. Титримстрический метод определения общей щелочности золы	13
ΓΟCT P 51437—99	Соки фруктовые и овощные. Гравиметрический метод определения массовой доли общих сухих веществ по убыли массы при высушивании	19
ГОСТ Р 51438—99	Соки фруктовые и овощные. Метод определения содержания азота по Кьельдалю 20	15
ГОСТ Р 51439—99	Соки фруктовые и овощные. Метод определения содержания хлоридов с помощью потенциометрического титрования	1
ГОСТ Р 51440—99	Сок яблочный, сок яблочный концентрированный и напитки, содержащие яблочный	-
	сок. Метод определения содержания патулина с помощью тонкослойной фроматографии	9
ГОСТ Р 51441—99	Соки фруктовые и овощные. Ферментативный метод определения содержания уксус-	
	ной кислоты (ацетата) с помощью спектрофотометрии	:5
ΓΟCT P 51442—99	Соки фруктовые и овощные. Метод определения содержания мякоти, отделяемой центрифугированием	5

СОКИ

Технические условия. Методы анализа

БЗ 5-2001

Редактор В.Н. Копысов
Технический редактор О.Н. Власова
Корректор Т.И. Кононенко
Компьютерная верстка В.И. Грищенко

Изд. лиц. № 02354 от 14.07.2000. Сдано в набор 29.11.2001. Подписано в печать 10.01.2002. Формат $60 \times 84^1/8$. Бумага офсетная. Гарнитура Таймс. Печать офсетная. Усл. печ. л. 27,90. Уч.-изд. л. 22,30. Тир. 1100 экз. 3ак. 2208. Изд. № 2785/2. С 3409.

ИПК Издательство стандартов, 107076, Москва, Колодезный пер., 14. http://www.standards.ru e-mail: info@standards.ru Набрано в Издательстве на ПЭВМ. Калужская типография стандартов, 248021, Калуга, ул. Московская, 256 ПЛР № 040138