материалы лакокрасочные

МЕТОДЫ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ МЕТАЛЛОВ.
ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ ОБЩЕГО
«РАСТВОРЕННОГО» ХРОМА В ЖИДКОЙ ЧАСТИ КРАСКИ.
МЕТОД ПЛАМЕННОЙ АТОМНО-АБСОРБЦИОННОЙ
СПЕКТРОМЕТРИИ

Издание официальное

53 11-92/1148

36 py6.

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

МАТЕРИАЛЫ ЛАКОКРАСОЧНЫЕ

Методы определения содержания металлов. Опрелеление содержания общего «растворенного» хрома в жидкой части краски. Метод пламенной атомно-абсорбционной спектрометрии

ГОСТ Р 50279.8 - 92

Paints and varnishes Test methods of metal content Determination of total "soluble" chromium content of the liquid portion of the paint Flame atomic absorption (MCO 3856/6—84) spectrometric method

ОКСТУ 2310

Дата ввеления

01.07.93

1. НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт устанавливает метод пламенной атомноабсорбционной спектрометрии (ААС) для определения содержания общего хрома в жидкой части краски, приготовленной п 93 ГОСТ Р 50279 1 или другим, пригодным для этой цели, стандартам

предназначен для Указанный метод лакокрасочных риалов с содержанием общего хрома от 0.05 до 5% (по массе).

По согласованию между заинтересованными сторонами можно использовать и другие методы, но данный метод является арбитражным в случае появления разногласий.

2. ССЫЛКИ

ГОСТ 1770. Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Технические условия. ГОСТ 6709. Вода дистиллированная. Технические условия.

ГОСТ 20292. Приборы мерные лабораторные стеклянные. Бю-

ретки, пипетки. Технические условия.

ГОСТ Р 50279.1. Материалы лакокрасочные. Методы определения содержания металлов. Приготовление кислых экстрактов из лакокрасочных материалов в жидкой и порошковой формах.

Издание официальное

© Издательство стандартов, 1993

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен без разрешения Госстандарта России

3. СУЩНОСТЬ МЕТОЛА

Всасывают испытуемый раствор в пламя газовой смеси закись азота ацетилен. Измеряют поглощение выбранной спектральной линии, испытуемой лампой с хромовым полым катодом или разрядной хромовой лампой при длине волны 357,9 нм.

4. РЕАКТИВЫ И МАТЕРИАЛЫ

Для испытания используют только реактивы известной аналитической квалификации и воду по ГОСТ 6709.

4.1. Кислота соляная, c (HCl) = 0,07 моль/л.

Используют соляную кислоту, идентичную применяемой для приготовления испытуемых растворов по ГОСТ Р 50279.1 (п. 6.2).

4.2. Ацетилен в стальном баллоне, технический.

4.3. Азота закись в стальном баллоне, технический.

4.4. Хром, стандартный основной раствор, содержащий 100 мкг Сг в 1 л.

Готовят следующим образом:

- а) содержимое ампулы со стандартным раствором, содержащим точно 0,1 г Cr, переливают в мерную колбу с одной меткой вместимостью 1000 мл, разбавляют до метки соляной кислотой и тщательно перемешивают;
- б) 282,9 мг высушенного бихромата калия взвешивают с погрешностью не более 0,1 мг, растворяют в соляной кислоте в мерной колбе с одной меткой вместимостью 1000 мл, разбавляют до метки той же соляной кислотой и тщательно перемешивают.

1 мл этого стандартного основного раствора содержит 100 м Ст.

4.5. Хром, стандартный раствор, содержащий 10 мг Сг в 1 л.

10 мл стандартного основного раствора хрома пипеткой вносят в мерную колбу с одной меткой вместимостью 100 мл, разбавляют до метки соляной кислотой и тщательно перемешивают. Раствор готовят в день применения.

1 мл этого стандартного раствора содержит 10 мкг Сг.

5. АППАРАТУРА

Обычное лабораторное оборудование, а также

- 5.1. Спектрометр пламенный атомно-абсорбционный, работающий при длине волны 357,9 нм, снабженный горелкой со смесью закиси азота и ацетилена.
- 5.2. Лампа с хромовым полым катодом или хромовая разрядная лампа.
 - 5.3. Бюретка вместимостью 25 мл по ГОСТ 20292.

5.4. Колбы мерные с одной меткой вместимостью 100 мл по ГОСТ 1770.

6. ПРОВЕДЕНИЕ ИСПЫТАНИЯ

6.1. Построение калибровочного графика

6 1.1. Приготовление стандаріных калибровочных растворов Растворы готовят в день применения.

В каждую из шести мерных колб с одной меткой вместимостью 100 мл отбирают стандартный раствор хрома из бюретки в количествах, приведенных в таблице, разбавляют до метки соляной кислотой и тщательно перемешивают.

Номер стандартного калибровочного раствора	Объем стандартного раствора хрома, мл	Концентрация хрома в стандартном калибровочном растворе, мкг/мл
0*	0	0
1	2	0,2
2	5	0,5
3	10	1
4	15	1,5
5	20	

^{*} Контрольный раствор

6 1.2. Спектромегрические измерения

Устанавливают лампу с хромовым спектральным источником в спектрометре и оптимизируют условия для определения хрома. Настраивают прибор в соответствии с инструкцией изготовителя и настраивают монохроматор в области длины волны 357,9 нм для получения максимального поглощения.

Устанавливают поток ацетилена и закиси азота в соответствии с характеристиками всасывающей горелки и зажигают ее Устанавливают развертку шкалы, если таковая имеется, так, чтобы стандартный калибровочный раствор № 5 (см. таблицу) дал почти полное отклонение шкалы.

Всасывают в пламя каждый из стандартных калибровочных растворов в порядке возрастания концентрации и повторяют процедуру со стандартным раствором № 4 для подтверждения стабильной работы прибора. После каждого измерения через горелку всасывают воду, следя за тем, чтобы скорость всасывания оставалась постоянной.

6.1.3. Калибровочный график

Строят график, откладывая на оси абсцисс массу Сг (мкг), содержащуюся в 1 мл стандартных калибровочных растворов,

а на оси ординат — разность соответствующей величины поглощения и поглощения при контрольном опыте.

6.2. Испытуемые растворы

Используют растворы, полученные по п. 9.3 ГОСТ Р 50279.1 или другим установленным или согласованным методом.

6.3. Проведение испытания

Сначала измеряют поглощение соляной кислоты в спектрометре, после его настройки в соответствии с п. 6.1.2. Затем измеряют поглощение каждого испытуемого раствора три раза, и снова поглощение соляной кислоты. Наконец снова определяют поглощение стандартного калибровочного раствора \mathbb{N}_2 4 (п. 6.1.1), чтобы убедиться, что настройка прибора не изменилась. Если поглощение испытуемого раствора выше, чем стандартного калибровочного раствора с максимальной концентрацией хрома, разбавляют испытуемый раствор (коэффициент разбавления F) известным объемом соляной кислоты.

7. ОБРАБОТКА РЕЗУЛЬТАТОВ

7.1 Расчеты

Массу хрома в экстракте соляной кислоты (m_2) , г, полученном по п. 9.3 ГОСТ Р 50279.1, вычисляют по формуле

$$m_2 = \frac{b_1 - b_0}{10} \cdot V_2 \cdot F,$$

где b_0 — концентрация хрома в контрольном испытуемом растворе, полученном по п. 6.5 ГОСТ Р 50279.1, мкг/мл;

 b_1 — концентрация хрома в испытуемом растворе, полученная по калибровочному графику, мкг/мл;

F — коэффициент разбавления (п. 6.3);

 V_2 — объем раствора, полученного по п. 9.3 ГОСТ Р 50279.1 (=100 мл), мл.

Содержание хрома в жидкой части краски $C_{\rm Cr}$, % (по массе) вычисляют по формуле

$$C_{Cr_2} = \frac{m}{m_3} - 10^2,$$

где m_3 — общая масса краски, составляющая «комплект», как определено в п. 6.4 ГОСТ Р 50279.1, г.

Примечание Содержание общего «растворенного» хрома в жидкой части краски, состоящее из содержания «растворенного» шестивалентного хрома в пигментной части и содержания общего хрома в жидкой части краски, выраженное в процентах (по массе), вычисляют как сумму результатов, полученных по ГОСТ Р 50279 7 и настоящему стандарту

Если испытуемый раствор готовят методами, отличающимися от приведенных в п. 6.2 ГОСТ Р 50279.1, то необходимо модифицировать формулы расчета содержания хрома, приведенные выше.

7.2. Точность

Данные отсутствуют.

8. ПРОТОКОЛ ИСПЫТАНИЯ

Протокол испытания должен содержать:

- а) тип и наименование испытуемого продукта;
- б) ссылку на настоящий стандарт;
- в) метод отделения твердой фракции из испытуемого продукта в соответствии с разд. 6 ГОСТ Р 50279.1 (метод A, Б или B);
- г) тип растворителя или смеси растворителей, используемых для экстрагирования;
- д) результаты испытаний, выраженные в процентах (по массе), т. е. содержание хрома в жидкой части краски;
 - е) любое отклонение от указанного метода;
 - ж) дату испытаний.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. ПОДГОТОВЛЕН И ВНЕСЕН ТК 195 «Материалы лакокрасочные»
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 16.09.92 № 1190

Настоящий стандарт подготовлен методом прямого применения международного стандарта ИСО 3856/6—84 «Лаки и краски. Определение массовой доли «растворенного» металла. Часть 6. Определение общей массовой доли хрома в жидкой части краски, метод пламенной атомно-абсорбционной спектрометрии»

- 3. Введен впервые
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕН-ТЫ

Обозначение отечествен ного нормативно техниче ского документа	Обозначение соответствую щего стандарта	Раздел подраздел пункт
FOCT 1770—74	ИСО 1042—83	Разд 2 п 54
FOCT 6709—72	ИСО 3696—87	Разд 2 ц
FOCT 20292—74	ИСО 385/1—84	Разд 2 п 53
FOCT P 50279 1—92	ИСО 6713—84	Разд 1 2, пп 41, 62, 71

Редактор H B Bиноградская Tехнический редактор F A Tеребинкина Kорректор E A Eогачкова

Сдано в наб 16 12 92 Подп в печ 02 02 93 Усл п л 0 5 Усл кр отт 0 5 Уч-изд л 0 36 Тираж 272 экз