

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

метионин кормовой

ТЕХНИЧЕСКИЕ УСЛОВИЯ
ГОСТ 23423—89

Издание официальное

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

метионин кормовой

Технические условия

Fodder methionine.
Specifications

ГОСТ 23423—89

ОКП 24 3181 0200

Срок действия <u>с 01:07.90</u>

до 01.07.95

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на кормовой метионин, получаемый синтетическим путем, предназначенный для применения в качестве добавки в премиксы, кормосмеси и комбикорма для сельскохозяйственных животных и птицы.

1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

- 1.1. Кормовой метионин должен соответствовать требованиям настоящего стандарта и изготовляться по технологическому регламенту, утвержденному в установленном порядке.
 - 1.2. Характеристики
- 1.2.1. Кормовой метионин (смесь D, L-изомеров альфа-аминогамма-метилтиомасляной кислоты) представляет собой кристаллический порошок со свойственным для данного продукта запахом, молекулярная масса — 149,21.
- 1.2.2. По физико-химическим показателям кормовой метионин должен соответствовать требованиям, указанным в табл. 1.

Таблица 1

Наименование показателя	Норма
Массовая доля метионина, %, не менее Массовая доля воды и летучих веществ, %, не более Массовая доля золы, %, не более	99 0,3 0,5
Массовая доля остатка после просева на сите с отверстия- ми диаметром 1 мм, %, не более	0,5

Издание официальное

Перепечатка воспрещена

Наименование показателя	Норма
Содержание цианистых соединений, мг в 1 кг, не более	2
Содержание мышьяка, мг в 1 кг, не более	2
Содержание фтора, мг в 1 кг, не более	100
Содержание свинца, мг в 1 кг, не более	5
Содержание кадмия, мг в 1 кг, не более	0,3
Содержание ртути, мг в 1 кг, не более	0,1

 Π римечание. Показатели содержания мышьяка, кадмия и ртути до 01.07_{19} 2 не являются браковочными.

1.3. Требования безопасности

1.3.1. Кормовой метионин — легковоспламеняющееся горючее вещество. Температура самовоспламенения 315°C.

Пыль кормового метионина взрывоопасна. Нижний предел концентрации для распространения пламени 45,4 г/м³.

При загорании тушить водой.

Показатели пожароопасности проверяют по ГОСТ 12.1.044.

В условиях производства кормового метионина должны быть смонтированы пылегазоулавливающие установки. Для удаления осевшей пыли в помещениях ежедневно проводят влажную уборку.

1.3.2. Кормовой метионин умеренно опасное вещество, относит-

ся к 3-му классу опасности по ГОСТ 12.1.007.

Предельно допустимая концентрация в атмосферном воздухе

населенных мест 0,6 мг/м3, а в рабочей зоне — 5 мг/м3.

Помещения, где проводятся работы с кормовым метионином, должны быть оборудованы приточно-вытяжной вентиляцией, а рабочие места иметь местные вентиляционные отсосы. Все применяемое оборудование, в том числе прошивочные машины, должно быть во взрывобезопасном исполнении.

1.3.3. При производстве и использовании кормового метионина, а также отборе проб и испытаниях необходимо соблюдать личную гигиену и применять индивидуальные средства защиты: спецодежду, спецобувь, респиратор, защитные очки или специальные полу-

маски из прозрачного материала, резиновые перчатки.

- 1,3.4. Сточные воды производства кормового метионина подвергают биологической очистке, а сульфатированные отходы—термическому обезвреживанию с последующим получением условно чистых вод и водного раствора сульфата натрия.
 - 1.4. Упаковка
 - 1.4.1. Кормовой метионин упаковывают в:

мешки бумажные четырех- и пятислойные по ГОСТ 2226 марок БМП, ВМП и ПМ;

картонные навивные барабаны типов I, II, III по ГОСТ 17065 вместимостью 36—100 дм³ со вставленными внутрь полиэтиленовыми мешками-вкладышами или бумажными мешками по ГОСТ 2226;

фанерные барабаны по ГОСТ 9338 вместимостью 50, 66 и 93 дм³ со вставленными внутрь полиэтиленовыми мешками-вкладышами или трехслойные бумажные мешки по ГОСТ 2226;

мешки бумажные четырех- и пятислойные для метионина и сульфата, изготовленные по нормативно-технической документации, утвержденной в установленном порядке.

Масса нетто одного мешка с метионином ($20\pm0,2$) кг.

- 1.4.2. Полиэтиленовые мешки-вкладыши должны быть завязаны. Бумажные мешки зашивают машинным способом с наложением креперной ленты.
- 1.4.3. Кормовой метионин, отгружаемый в районы Крайнего Севера и приравненные к ним районы, упаковывают по ГОСТ 15846 в фанерные барабаны по ГОСТ 9338.
- 1.4.4. Кормовой метионин, предназначенный для экспорта, упаковывают в соответствии с требованиями внешнеэкономической организации по ГОСТ 26319.
 - 1.5. Маркировка
 - 1.5.1. Маркировка должна содержать:

наименование предприятия-изготовителя;

наименование продукта;

массу нетто и брутто;

обозначение настоящего стандарта;

дату изготовления и номер партии;

знак опасности.

1.5.2. Маркировку наносят на тару или бумажную этикетку непачкающейся краской печатным или типографским способом по ГОСТ 14192, а знак опасности по ГОСТ 19433 (класс 4, подкласс 4.1, классификационный шифр группы опасного груза 4133).

Допускается наносить на этикетку знаки опасности, уменьшив их до квадрата со стороной 50 мм.

Этикетку к таре пришивают или приклеивают.

2. ПРИЕМКА

- 2.1. Кормовой метионин принимают партиями. Партией считают любое количество однородного по качеству продукта до 60 т, оформленное одним документом о качестве.
 - 2.2. В документе о качестве должны быть указаны:

наименование предприятия-изготовителя и его товарный знак; наименование продукта;

номер партии;

количество мест в партии;

дата изготовления (месяц, год);

масса брутто и нетто;

результаты испытаний; по периодически проверяемым показателям (мышьяк, фтор, свинец, кадмий, ртуть) в интервале между датами проведения испытаний указывают: «соответствует требованиям стандарта»;

обозначение настоящего стандарта;

классификационный шифр группы опасного груза по ГОСТ 19433:

штамп технического контроля.

2.3. Для проверки соответствия качества кормового метионина требованиям настоящего стандарта на предприятии-изготовителе отбирают точечные пробы при выходе продукта из шлюза перед автоматической системой взвешивания путем пересечения падающей струи пробоотборником (автоматическим или механическим).

Допускается точечные пробы отбирать из заполненных на потоке мешков, отобранных вначале, середине и конце формирования партии перед их зашиванием (завязыванием). Точечные про-

бы отбирают из 5% упаковочных единиц, но не менее трех.

При получении неудовлетворительных результатов испытания хотя бы по одному из показателей по нему проводят повторно испытания проб из удвоенной выборки той же партии.

Результаты повторных испытаний распространяют на всю пар-

тию.

2.4. Содержание мышьяка, свинца, кадмия, фтора и ртути определяют периодически, но не реже одного раза в квартал.

3. МЕТОДЫ ИСПЫТАНИЙ

- 3.1. Определение запаха кормового метионина органолептически.
 - 3.2. Методы отбора проб

3.2.1. Пробы отбирают щупом, изготовленным из некорроди-

рующего материала.

3.2.2. Из одной упаковочной единицы щупом, погруженным на всю глубину, отбирают две точечные пробы: одну в центре, другую у края.

Масса точечной пробы — 30-60 г.

3.2.3. Точечные пробы тщательно перемешивают и от объединенной пробы отбирают среднюю пробу массой не менее 500 г.

Среднюю пробу продукта помещают в стеклянную или полиэтиленовую банку с этикеткой.

На этикетке должны быть указаны:

предприятие-изготовитель и его товарный знак;

наименование продукта;

номер партии;

дата отбора проб; фамилия пробоотборщика; надпись «Огнеопасно!».

3.3. Определение массовой доли метионина Сущность метода заключается в йодировании метионина с последующим титрованием избытка йода стандартным раствором тиосульфата натрия.

3.3.1. Аппаратура, реактивы*

Весы лабораторные общего назначения по ГОСТ 24104 2-го класса точности с наибольшим пределом взвещивания 200 г.

Колба Кн-2-500-14/23 ТС по ГОСТ 25336.

Пипетки 2-2-5; 2-2-50 по ГОСТ 20292.

Цилиндры 1—5; 1—50; 1—100 по ГОСТ 1770.

Йод по ГОСТ 4159, раствор концентрации c ($^{1}/_{2}$ J_{2}) = = 0,1 моль/дм³ (0,1 н.).

Калий йодистый по ГОСТ 4232, ч. д. а., 5 моль/дм³, раствор. Калий фосфорнокислый двузамещенный 3-водный по ГОСТ 2493, ч. д. а., раствор концентрации 1 моль/дм³.

Калий фосфорнокислый однозамещенный по ГОСТ 4198, ч. д. а.,

раствор концентрации 1 моль/дм3.

Крахмал растворимый по ГОСТ 10163, ч. д. а., раствор с массовой полей 1%.

Натрий серноватистокислый (натрия тиосульфат) 5-водный по ГОСТ 27068, ч. д. а., раствор концентрации c (Na₂S₂O₃·5H₂O) = = 0,1 моль/дм³ (0,1 н.).

Смесь буферная; готовится следующим образом: 400 см³ раствора фосфорнокислого однозамещенного калия смешать с 600 см³ раствора фосфорнокислого двузамещенного калия.

Вода дистиллированная по ГОСТ 6709.

3.3.2. Проведение испытания

0,3000 г кормового метионина помещают в коническую колбу вместимостью 500 см³, растворяют в 60 см³ воды, прибавляют 37,5 см³ буферной смеси и 2,5 см³ раствора йодистого калия. Раствор тщательно перемешивают, затем добавляют пипеткой 50 см³ раствора йода, колбу закрывают, содержимое тщательно перемешивают и выдерживают в темном месте в течение 30 мин. Затем пробку обмывают водой и титруют избыток йода раствором серноватистокислого натрия, прибавляя в конце титрования 5 см³ раствора крахмала.

Параллельно проводят контрольный опыт. Для этого титруют раствором серноватистокислого натрия смесь, состоящую из

^{*} Допускается при проведении испытаний во всех методах использовать импортные реактивы, аппаратуру и материалы, технические характерисгики которых не ниже отечественных аналогов.

60 см³ воды, 37,5 см³ буферной смеси, 2,5 см³ раствора йодистого калия и **50** см³ раствора йода.

3.3.3. Обработка результатов

Массовую долю метионина (X) в процентах вычисляют по формуле

$$X = \frac{(V-V_1)\cdot 0.007461\cdot 100}{m}$$

где V — объем раствора серноватистокислого натрия концентрации точно 0.1 моль/дм³, израсходованный на титрование в контрольном опыте, см³;

 V_1 — объем раствора серноватистокислого натрия концентрации точно 0,1 моль/дм³, израсходованный на титрование анализируемого раствора, см $^{\circ}$;

0,007461 — масса метионина, соответствующая 1 см³ раствора серноватистокислого натрия концентрации точно 0,1 моль/дм³, г;

т — масса навески кормового метионина, г.

За окончательный результат испытания принимают среднее арифметическое результатов двух параллельных определений, допустимые расхождения между которыми не должны превышать $0.5\,\%$ при доверительной вероятности P=0.95.

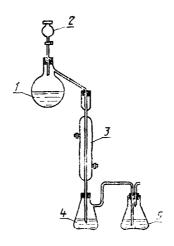
3.3.4. Массовую долю воды и летучих веществ определяют по ГОСТ 21119.1 высущиванием в термостате навески кормового метионина массой около 5 г.

Допускается определять содержание воды и летучих веществ высушиванием кормового метионина инфракрасной лампой. Расстояние лампы от высушиваемого продукта должно составлять 20—25 см.

3.3.5. Массовую долю золы определяют по ГОСТ 21119.10 прокаливанием навески кормового метионина массой около 3 г, предварительно смоченной раствором серной кислоты с массовой долей 20% для равномерного обугливания.

Допускается проведение озоления на электроплитке с закрытым обогревом до удаления избытка серной кислоты (прекращение выделения белого дыма и вспенивания содержимого тигля). Затем навеску прокаливают в муфельной печи при 800—850°С до постоянной массы.

3.4. Определение содержания цианистых соелинений


Сущность метода заключается в превращении циан-ионов в бромциан, который образует с пиридинсульфаниловым реактивом глутаконовый альдегид, определяемый фотометрическим методом.

3.4.1. Аппаратура, материалы, реактивы

Весы лабораторные общего назначения по ГОСТ 24104 2-го класса точности с наибольшим пределом взвешивания 200 г.

Фотоэлектроколориметр.

Прибор для отгонки цианионов (см. чертеж).

I—круглодонная перегонная колба вместимостью 250 см 3 ; 2— капельная воронка; 3— холодильник; 4, 5— колбы-приемнана вместимостью 50—100 см 3

Колбы 2-50-2 по ГОСТ 1770.

Кюветы с толщиной поглощающего свет слоя 20 мм.

Пипетки 4—2—1; 4—2—5, 2—2—10 по ГОСТ 20292.

Пробирка П-2-10-01 ХС по ГОСТ 1770.

Цилиндр 2—25 по ГОСТ 1770.

Бром по ГОСТ 4109.

Вода бромная; готовится следующим образом: воду в колбе насыщают бромом до появления капли брома на дне колбы, не растворяющейся при перемешивании.

Бумага индикаторная универсальная.

Гидразин сернокислый по ГОСТ 5841, ч. д. а., раствор с массовой долей 0.5%.

Гидразин солянокислый, раствор с массовой долей 0,5%.

Кислота соляная по ГОСТ 3118, плотностью 1,19 г/см³ и раствор концентрации *c* (HCl) = 0,1 моль/дм³ (0,1 н.). Кислота серная по ГОСТ 4204, ч. д. а., плотностью 1,84 г/см³,

разбавленная 1:1.

Кислота сульфаниловая безводная по ГОСТ 5821, ч. д. а., раствор с массовой долей 1%.

Натрий цианистый технический по ГОСТ 8464, сорт 1-й.

Натрия гидроокись по ГОСТ 4328, ч. д. а., раствор с массовой долей 1%.

Пиридин по ГОСТ 13647, ч. д. а.

Пиридиновый реактив; готовят следующим образом: 60 см3 пиридина смешивают с 40 см³ воды и 10 см³ концентрированной соляной кислоты. Реактив должен быть прозрачным.

Пиридинсульфаниловый реактив готовят смешиванием пиридинового реактива и раствора сульфаниловой кислоты в соотноше-

нии 3:0.5.

Вода листиллированная по ГОСТ 6709. 3.4.2. Приготовление растворов сравнения

Раствор А.

0.1880 г цианистого натрия в пересчете на 100%-ный растворяют в свежепрокипяченной и охлажденной до температуры 20-25°C воде в мерной колбе вместимостью 1000 см3, тщательно перемешивают и доводят объем раствора водой до метки (раствор А. годен 15 сут).

Раствор Б.

10 см³ раствора А переносят в мерную колбу вместимостью 1000 см³ и доводят объем раствора водой до метки (раствор Б, годен для анализа только в день его приготовления). 1 см³ раствора Б содержит 1 мкг цианионов.

3,4,3. Построение градуировочного графика

В одну из двух градуированных пробирок с притертыми проб-ками вместимостью 10 см³ помещают 5 см³ воды, в другую 0,4 см³ раствора Б, доводят объем раствора водой до 5 см3, затем в каждую пробирку приливают бромную воду до появления светложелтой окраски раствора, после чего по каплям приливают раствор гидразина солянокислого или гидразина сернокислого до исчезновения желтой окраски брома и 3,5 см3 пиридинсульфанилового реактива.

Сразу же измеряют оптическую плотность раствора сравнения по отношению к контрольному раствору, пользуясь синим свето-

фильтром при длине волны 400 нм.

Таким же образом измеряют оптическую плотность растворов сравнения, содержащих 0,6; 0,8; 1,0; 3,0; 4,0; 5,0 мкг цианионов.

По полученным данным строят градуировочный график, от-кладывая на оси абсцисс введенные в растворы сравнения коли-

чества цианионов в мкг, а на оси ординат — соответствующие им значения оптических плотностей.

Для построения каждой точки градуировочного графика вычисляют среднее арифметическое значение оптической плотности трех параллельных определений. График проверяют не реже одного раза в 3 мес, а также при замене реактивов или фотоэлектроколориметра.

3.4.4. Проведение испытания

В колбу для отгонки (см. чертеж) вносят 20,00 г кормового метионина и 25 см³ воды, затем присоединяют колбу к прибору и приливают 10 см³ раствора серной кислоты. Содержимое колбы перемешивают, затем нагревают до кипения и собирают отгон в колбы-приемники, содержащие по 10 см³ раствора гидроокиси натрия. Объем отгона должен быть не менее 10 см³ в первом приемнике. После этого отгонку прекращают, содержимое приемников количественно переносят в мерную колбу вместимостью 50 см³, доводят объем раствора водой до метки и тщательно перемешивают. Раствор годен для анализа только в день его приготовления.

В градуированную пробирку вместимостью 10 см³ вносят 4 см³ отгона, нейтрализуют его по индикаторной бумаге раствором соляной кислоты концентрации 0,1 моль/дм³ до рН 7,0, а затем доводят объем раствора водой до 5 см³. К нейтральному раствору прибавляют избыток бромной воды до появления желтой окраски раствора. Избыток брома удаляют раствором гидразина солянокислого или сернокислого, добавляя его по каплям до исчезновения окраски брома. Затем приливают 3,5 см³ пиридинсульфанилового реактива, перемешивают и сразу же измеряют оптическую плотность анализируемого раствора по отношению к контрольному, приготовленному со всеми компонентами, кроме оттона.

3.4.5. Обработка результатов

Содержание цианистых соединений в пересчете на цианионы (X_1) , мг на 1 кг, вычисляют по формуле

$$X_1 = \frac{C \cdot 50}{m \cdot 4},$$

где C — содержание цианионов, найденное по градуировочному графику, мкг;

т — масса навески кормового метионина, г;

50; 4 — постоянные коэффициенты.

За окончательный результат испытания принимают среднее арифметическое результатов двух параллельных определений, допустимые расхождения между которыми не должны превышать 0.5 мг на 1 кг.

Пределы допустимого значения абсолютной суммарной погрешности результата анализа $\pm 0.4\,\%$ при доверительной вероятности P=0.95.

3.5. Определение массовой доли мышьяка

Сущность метода заключается в образовании оранжевой или желтой окраски соединений мышьяка на бумаге, пропитанной дихлоридом ртути.

3.5.1. Аппаратура, материалы, реактивы

Весы лабораторные общего назначения по ГОСТ 24104 2-го-класса точности с наибольшим пределом взвешивания 200 г.

Колба 2—100—2 по ГОСТ 1770.

Прибор для определения мышьяковистых соединений по ГОСТ 10485 (чертеж), диаметр трубки 10 мм.

Пипетка 4 (5) —2 и 6 (7) —5 по ГОСТ 1770. Цилиндры 1—10 и 1 (3) —25 по ГОСТ 1770.

Вата медицинская гигроскопическая по ГОСТ 5556, пропитанная раствором уксуснокислого свинца и высушенная при температуре окружающей среды. Хранят в закупоренных банках. Тампониз ваты в приборе меняют после каждого определения.

Ангидрид мышьяковистый по ГОСТ 1973.

Вода дистиллированная по ГОСТ 6709, свежепрокипяченная.

Водорода перекись по ГОСТ 10929.

Калий йодистый по ГОСТ 4232, раствор с массовой долей $15\,\%$.

Кислота серная по ГОСТ 4204, х.ч., концентрированная и раствор концентрацией c ($^{1}/_{2}$ $H_{2}O_{4}$) = 2 моль/дм³ (2 н.).

Кислота соляная по ГОСТ 3118.

Натрия гидроокись по ГОСТ 4328, раствор концентрации c (NaOH) = 2 моль/дм³ (2 н.).

Олово металлическое гранулированное.

Олово хлористое.

Ртуть хлорная для электроники (производство ЧССР), насыщенный спиртовой раствор.

Спирт этиловый ректификованный технический по ГОСТ 18300.

Свинец уксуснокислый по ГОСТ 1027, раствор с массовой долей 10%.

Фенолфталеин 0,1% раствор.

Фильтр беззольный «белая лента». Фильтр смачивают насыщенным спиртовым раствором хлорной ртути, дают спирту испариться повторяют это 4—5 раз, после чего бумагу высушивают при температуре окружающей среды. Хранят в закупоренных банках.

Цинк металлический гранулированный, не содержащий мышьяка; готовят следующим образом: кусочки металлического цинка

обрабатывают соляной кислотой для очистки его поверхности, промывают водой и хранят под водой.

3.5.2. Приготовление растворов сравнения

Раствор А.

0,132 г мышьяковистого ангидрида помещают в мерную колбу вместимостью 500 см³, растворяют в 10 см³ раствора гидроокиси натрия, нейтрализуют в присутствии фенолфталенна раствором серной кислоты концентрации 2 моль/дм³, доводят свежепрокипяченной водой до метки.

Раствор Б.

1 см³ раствора А помещают в мерную колбу вместимостью 100 см³ и доводят свежепрокипяченной водой до метки. 1 см³ раствора Б содержит 0,002 мг мышьяка.

Раствор хлористого олова.

100 г металлического олова растворяют в 100 см³ соляной кислоты до прекращения выделения водорода, выдерживают в холодильнике в течение нескольких дней в склянке с пробкой, в которую вставлена капиллярная трубка. Полученный раствор содержит 40—45% хлористого олова.

3.5.3. Проведение испытания

1,00 г кормового метионина помещают в колбу для испытания на мышьяк, приливают 20 см³ концентрированной серной кислоты и кипятят до обугливания, но не менее 40 мин. Затем в горячий раствор приливают по стенке колбы перекись водорода порциями по 3—4 см³ до обесцвечивания раствора, нагревают еще 10—15 мин и после охлаждения до температуры окружающей среды приливают 20 см³ воды, не допуская сильного разогревания, охладив до комнатной температуры. Затем прибавляют 10—12 капель раствора хлористого олова, 2 г гранулированного цинка и сразу закрывают колбу пробкой со вставленной в нее верхней частью прибора. Содержимое колбы осторожно взбалтывают и оставляют на 1 ч.

Параллельно в других таких же приборах проводят контрольные опыты со всеми растворами и с добавлением 0,5; 1,0 и 1,5 см³

раствора Б.

Через 1 ч кружки бумаги, взятые из приборов, помещают в раствор йодистого калия. Через 10 мин раствор йодистого калия сливают, кружки бумаги тщательно промывают несколько раз водой декантацией в том же стакане и сушат между листками фильтровальной бумаги.

Окраска полоски фильтровальной бумаги, взятой из прибора с метионином, не должна первышать окраску бумаги в контрольном опыте (с 1 см³ раствора Б), которая соответствует 2,0 мг/кг мышьяка.

Примечание. Окраску контрольных растворов следует закреплять чо ГОСТ 10485, используя расплавленный воск.

3.6. Определение массовой доли остатка после просева

3.6.1. Аппаратура

Весы лабораторные общего назначения по ГОСТ 24104 2-го класса точности с наибольшим пределом взвешивания 200 г. Сито диаметром не менее 150 мм с отверстиями диаметром

1 MM.

3.6.2. Проведение испытания

100,0 г кормового метионина просеивают через сито в течение 1 мин ручным способом, делая 100-120 движений в минуту. Размах колебаний около 10 см.

По окончании просеивания остаток из сита переносят на бумагу, затем снова помещают в середину сита, так как часть пыли метионина остается на краях сита, и проводят дополнительное просеивание в течение 10 с.

Кормовой метионин, оставшийся на сите, взвешивают с пог-

решностью не более 0,1 г.

Допускается просеивать метионин с помощью вибрационных механических сит в течение 1 мин.

3.6.3. Обработка результатов

Массовую долю остатка после просева на сите (X_2) в процентах вычисляют по формуле

$$X_2 = \frac{m_1 \cdot 100}{m},$$

где m — масса навески кормового метионина, г;

 m_1 — масса остатка кормового метионина на сите, г.

За окончательный результат испытания принимают среднее арифметическое результатов двух параллельных определений, допустимые расхождения между которыми не должны превышать 0.2%

Пределы допускаемого значения абсолютной суммарной погрешности результата анализа $\pm 0.1\%$ при доверительной вероятности P = 0.95.

3.7. Определение содержания фтора

Сущность метода заключается в кислотном разложении пробы с последующим потенциометрическим определением фторида с фторселективным электродом.

3.7.1. Аппаратура, материалы, реактивы

Весы лабораторные общего назначения по ГОСТ 24104 2-го класса точности с наибольшим пределом взвешивания 200 г.

Иономер ЭВ-74 с погрешностью измерения 5 мВ или другого типа с аналогичными характеристиками.

Мешалка магнитная.

Колбы 1(2) - 50 - 2, 1(2) - 500 - 2, 1(2) - 1000 - 2 по ГОСТ 177°.

Колбы Кн-1-250-14/23 ТС по ГОСТ 25336.

Электрод вспомогательный лабораторный хлорсеребряный ЭВЛ-1M3.

Электрод фторидный ЭF-VI.

Пипетки 8—2—0,1; 4—2—1; 6—2—5; 2—2—50 по ГОСТ 20292. Стакан полиэтиленовый вместимостью 70 см³.

Цилиндр 1-25 по ГОСТ 1770.

Чашка ЧКЦ-2—500 по ГОСТ 25336.

Водорода перекись по ГОСТ 10929.

Калия гидроокись по ГОСТ 24363, раствор концентрацией c (КОН) = 0,1 моль/дм³ (0,1 н.) и массовой долей 40%.

Калий азотнокислый по ГОСТ 4144.

Кислота соляная по ГОСТ 3118, концентрированная.

Кислота уксусная по ГОСТ 61, ледяная.

Натрий уксуснокислый 3-водный по ГОСТ 199.

Натрий фтористый по ГОСТ 4463, подсушенный при 150°С в течение 1 ч.

Бумага индикаторная универсальная с рН 1—10.

Бумага фильтровальная лабораторная по ГОСТ 12026.

Вода дистиллированная по ГОСТ 6709.

3.7.2. Подготовка к испытанию

3.7.2.1. Приготовление растворов сравнения

Раствор \hat{A} готовят по ГОСТ 4212, 1 см³ раствора A содержит 1 мг фтора.

Раствор Б.

50 см³ раствора А помещают в мерную колбу вместимостью 500 см³ и разбавляют водой до метки. 1 см³ раствора Б содержит 100 мкг фтора. Используют в день приготовления.

3.7.2.2. Приготовление буферного раствора

259 г уксуснокислого натрия растворяют в воде, добавляют 20 см³ уксусной кислоты и 101 г азотнокислого калия. После растворения солей раствор переносят в мерную колбу вместимостью 1000 см³ и доливают водой до метки. Буферный раствор имеет рН 5,5.

3.7.3. Подготовка к работе электрода

Новый фторидный электрод выдерживают 24 ч в растворе фтористого натрия концентрации $1\cdot 10^{-3}$ моль/дм³. Затем тщательно промывают водой и проверяют кругизну характеристики (S) электрода (правильность работы) в соответствии с техническим описанием и методикой проверки на электрод фторидный $\Im F\text{-VI}$.

При ежедневной работе его хранят, погрузив в раствор фторида натрия концентрации $1\cdot 10^{-4}$ моль/дм³. При длительных

перерывах в работе электрод хранят в сухом состоянии.

Температура растворов сравнения, по которым строят градуировочный график, и анализируемых раствором не должна отли-

чаться более чем на 1°C. Измерение потенциала (мВ) проводят при температуре от 18 до 22°C.

3.7.4. Построение градуировочного графика

В мерные колбы вместимостью 50 см³ помещают 0; 0,1; 0,25; 0,5; 1,0; 2,5; 5,0 см³ раствора Б, прибавляют по 5 см³ раствора гидроокиси калия концентрации 0,1 моль/дм³, 5 см³ буферного раствора, доливают водой до метки и перемешивают. Затем раствор из мерной колбы переливают в полиэтиленовый стакан, опускают электроды в раствор, перемешивают на магнитной мешалке 3 мин до установления равновесного потенциала и записывают показания прибора (мВ).

Перед измерением фторидный электрод промывают водой и

промакают фильтровальной бумагой.

Измерение электродвижущей силы (ЭДС) проводят последовательно, начиная с раствора контрольного образца. По полученным значениям потенциала строят градуировочный график, откладывая на оси абсцисс логарифм концентрации фтора, мкг/см³, а на оси ординат — потенциалы, мВ. Значения С и 1g С для растворов градуировочного графика приведены в табл. 2.

Таблица 2

С, <u>мкг</u> см³	lg C
0	0,699
0,2	0,301
0,5	0
1,0	0,301
2,0	0,699
5,0	1,000

Стабильность градуировочного графика периодически проверяют по нескольким растворам шкалы, крутизну фторидного электрода — ежедневно.

3.7.5. Проведение испытания

Около 1,00 г кормового метионина помещают в коническую колбу, которую ставят в чашку с водой, имеющую температуру от 111 до 13°С. При перемешивании приливают 5 см³ соляной кислоты. Затем к смоченной навеске приливают осторожно по каплям 2 см³ перекиси водорода. Полученный гидролизат разбавляют 15 см³ воды, нейтрализуют раствором гидроокиси калия с массовой долей 40% до рН 4—5 (по индикаторной бумаге), количественно переносят в мерную колбу вместимостью 50 см³, добавляют 5 см³ буферного раствора и доливают водой до метки.

Раствор из мерной колбы переливают в полиэтиленовый стакан, опускают электроды, перемешивают 3 мин на магнитиой мешалке и записывают равновесное значение потенциала (мВ). 3.7.6. Обработка резильтатов

Содержание фтора (X_3) , мг на 1 кг. вычисляют по формуле

$$X_3 = \frac{C \cdot V}{m}$$
,

где С — массовая доля фтора в анализируемом растворе, равная антилогарифму концентрации, соответствующей измеренному потенциалу, мкг/см3:

V — объем анализируемого раствора, см³;

т — масса навески метионина кормового, г.

Для контроля правильности определения рекомендуется анализировать пробу с первым раствором градуировочного графика.

За окончательный результат испытания принимают среднее арифметическое результатов двух параллельных определений, допустимые расхождения между которыми не должны превышать 15%.

Пределы допускаемого значения относительной суммарной погрешности результата анализа ±15% при доверительной вероятности P = 0.95.

3.8. Определение содержания свинца и кадмия Сущность метода заключается в концентрировании свинца и кадмия в виде диэтилдитиокарбаматов, извлечении образовавшихся комплексов хлороформом, реэкстракции металлов соляной кислотой и их электрохимическом определении.

3.8.1. Аппаратура, материалы, реактивы

Полярограф ПА-2 или аналогичного типа с чувствительностью определения 10-7 А и режимом дифференциальной импульсной

полярографии.

Полярографическая ячейка: двухгорлая конусообразная колба вместимостью 15 см³ с отверстием для слива или полярографическая ячейка без впаянной проволоки со сменным платиновым электродом.

Электроды: капельный ртутный с длиной капилляра 150 мм и внутренним диаметром 0.08 мм; донная ртуть (контакт осущест-

вляется через платиновую проволоку).

Весы лабораторные общего назначения по ГОСТ 24104 2-го класса точности с наибольшим пределом взвешивания 200 г.

Воронка делительная ВД-1-250 ХС по ГОСТ 25336.

Колбы 2-10-2 по ГОСТ 1770. Колбы 2-50-2 по ГОСТ 1770.

Пипетки 7—2—1; 7—2—10; 7—2—20 по ГОСТ 20292.

Стаканы 8—1—100 ТС по ГОСТ 25336.

Цилиндр 1(3)—50 по ГОСТ 1770.

Вода дистиллированная по ГОСТ 6709.

Гелий газообразный или азот газообразный по ГОСТ 9293, очищенный пропусканием через раствор пирогаллола А.

Глицерин по ГОСТ 6259, разбавленный дистиллированной водой 1:1.

Калия гидроокись по ГОСТ 23463, раствор концентрации c (КОН) = 2 моль/дм³ (2 н.) и раствор с массовой долей 37%.

Кадмий хлористый 2,5-водный по ГОСТ 4330.

Кислота соляная по ГОСТ 3118, раствор концентрации c (HCl) = 1 моль/дм³ (1 н.).

Метионин фармакопейный.

Натрия N,N-диэтилдитиокарбамат по ГОСТ 8864, раствер с массовой долей 1%.

Пирогаллол A; раствор готовят следующим образом: 44 г пирогаллола A растворяют в 132 см³ 37% раствора гидроокиси калия.

Ртуть по ГОСТ 4658, марка РО или очищенная.

Свинец двухлористый.

Хлороформ по ГОСТ 20015.

3.8.2. Приготовление растворов сравнения

Раствор А. 0,1342 г двухлористого свинца растворяют в воде в мерной колбе вместимостью 100 см³. 1 см³ раствора содержит 1 мг свинца.

Раствор Б. 0,1016 г хлористого кадмия растворяют в воде в мерной колбе вместимостью $200~{\rm cm^3}$. 1 ${\rm cm^3}$ содержит 0,25 мг кадмия.

Раствор В. 1 см 3 раствора А и 1 см 3 раствора Б разбавляют водой в мерной колбе вместимостью 100 см 3 . 1 см 3 раствора содержит 10,0 мкг свинца и 2,5 мкг кадмия.

3.8.3. Построение градуировочного графика

Для построения градуировочного графика готовят серию растворов, содержащих 2,0 и 0,5; 4,0 и 1,0; 8,0 и 2,0; 10,0 и 2,5 свинца и калмия соответственно.

Для этого к навеске 5,00 г фармакопейного метионина приливают 0,2; 0,4; 0,8; 1,0 см³ раствора В и 30 см³ раствора гидроокиси калия концентрации 2 моль/дм³. После полного растворения метионина к каждому раствору приливают по 10 см³ раствора глицерина и по 10 см³ раствора диэтилдитиокарбамата. Полученные растворы тщательно перемешивают, переносят в делительную воронку и в течение 3 мин встряхивают с 10 см³ хлороформа. Хлороформную фазу отделяют в другую делительную воронку, приливают 10 см³ раствора соляной кислоты и проводят реэкстракцию свинца и кадмия в течение 30 с. Водную фазу отделяют, промывают 5 см³ хлороформа, переносят в полярографическую ячейку и после продувки водного слоя гелием в течение 10 мин полярографируют при соблюдении следующих условий:

режим записи — дефференциальный импульсивный, диапазон развертки потенциалов — минус 0,1 — минус 1,5 В;

скорость развертки — 4 или 5 мВ/с;

чувствительность — $5 \cdot 10^{-6}$ A/см;

высота столба ртути — 65 см;

амплитуда импульса — 50 мВ;

потенциал полуволны свинца минус 0,48 В; потенциал полуволны кадмия минус 0,70 В.

Измеряют высоту полярографических волн каждого элемента и по усредненным значениям строят два градуировочных графика, откладывая по оси абсцисс количество свинца и кадмия в микрограммах, а по оси ординат — высоту соответствующей волны в

миллиметрах.

3.8.4. Проведение испытания

От 1,00 до 5,00 г кормового метионина растворяют в 30 см³ раствора гидроокиси калия концентрацией 2 моль/дм³, далее определение ведут, как при построении градуировочного графика.

Анализируемый раствор полярографируют 3—4 раза и по усредненным значениям высоты волны находят массу свинца и кад-

мия в анализируемом объеме.

3.8.5. Обработка результатов

Содержание свинца (X_4) и кадмия (X_5) , мг в 1 кг, вычисляют по формуле

$$X_{i} = \frac{C_{1}}{m},$$

$$X_5 = \frac{C_2}{m},$$

где C_1 — масса свинца, найденная по соответствующему градуировочному графику, мкг;

С2 — масса кадмия, найденная по соответствующему градуировочному графику, мкг;

т — масса навески метионина, г.

За окончательный результат испытания принимают среднее арифметическое результатов двух параллельных определений, допустимое относительное расхождение между которыми не должно превышать 10%.

Пределы допускаемого значения относительной суммарной погрешности результата анализа $\pm 15\,\%$ при доверительной вероят-

ности P = 0.95.

3.9. Определение содержания ртути — по ГОСТ 28178.

4. ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

4.1. Кормовой метионин перевозят в крытых транспортных средствах всеми видами транспорта в соответствии с правилами перевозок взрывоопасных грузов, действующими на данном виде транспорта.

По железной дороге упакованную продукцию транспортируют в контейнерах, повагонно и мелкими отправками.

Размещение и крепление контейнеров на открытом железнодорожном подвижном составе должно проводиться в соответствии с правилами погрузки и крепления грузов, утвержденными Министерством путей сообщения СССР.

4.2. Допускается по согласованию с потребителем кормовой метионин, упакованный в мешки, перевозить в двухслойных пакетах из термоусадочной пленки. Размер пакета $1260 \times 1050 \times 1500$ мм.

4.3. Қормовой метионин хранят в упаковке изготовителя в закрытых неотапливаемых помещениях.

В местах хранения кормового метионина знак безопасности — по ГОСТ 12.4.026.

5. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

5.1. Изготовитель гарантирует соответствие кормового метионина требованиям настоящего стандарта при соблюдении условий транспортирования и хранения.

5.2. Гарантийный срок хранения кормового метионина — 1 год со дня изготовления.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством химической про-

ИСПОЛНИТЕЛИ

- П. А. Пирогов, Т. В. Гордышева, Т. Н. Козлова, Ж. Р. Жукова, А. В. Карпович, Н. Н. Михайлова, Н. В. Стригина, В. С. Балакин, Л. А. Вострикова, Г. А. Попова, Т. Л. Толстых
- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 29.06.89 № 2268
- 3. СРОК ПЕРВОЙ ПРОВЕРКИ СТАНДАРТА IV кв. 1993 г.
- 4. B3AMEH ΓΟCT 23423-79
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДАННЫЕ

Обозначение НТД, на который д. чча ссылиа	Номер пункта, подпункта
FOCT 12.1.044—84 FOCT 12.1.007—76 FOCT 12.4.026—76 FOCT 61—75 FOCT 199—78 FOCT 1027—67 FOCT 1770—74 FOCT 2226—88 FOCT 22493—75 FOCT 3118—77 FOCT 4109—79 FOCT 4159—79 FOCT 4159—79 FOCT 4212—76 FOCT 4222—76 FOCT 4232—74 FOCT 438—77 FOCT 438—77 FOCT 438—77 FOCT 438—77 FOCT 458—73 FOCT 5566—81 FOCT 5821—78 FOCT 5821—78 FOCT 6259—75 FOCT 6709—72	1.3.1 1.3.2 4.3 3.7.1 3.7.1 3.5.1 3.3.1; 3.4.1; 3.5.1; 3.7.1; 3.8.1 3.5.1 1.4.1 3.3.1 3.4.1; 3.5.1; 3.7.1; 3.8.1 3.4.1 3.7.1 3.3.1 3.4.1; 3.5.1 3.4.1; 3.5.1 3.5.1 3.4.1; 3.5.1 3.5.1 3.6.1 3.7.2.1 3.8.1 3.7.1 3.8.1 3.7.1 3.8.1 3.7.1 3.8.1 3.7.1 3.8.1 3.7.1 3.8.1 3.7.1 3.8.1 3.7.1 3.8.1 3.7.1 3.8.1 3.7.1 3.8.1 3.7.1 3.8.1 3.7.1 3.8.1 3.7.1 3.8.1 3.7.1 3.8.1 3.7.1 3.8.1 3.7.1 3.8.1 3.8.1 3.7.1 3.8.1

Обозначение НТД, на который дана ссылка	Номер пункта, подпункта
OCT 8464—79	3.4.1
OCT 8864—71	3,8,1
OCT 9293-74	3.8.1
OCT 9338-80	1.4.1; 1.4.3
OCT 10163—76	3.3.1
OCT 10485—75	3.5,1
OCT 10929—76	3.5.1; 3.7.1
OCT 1202676	3.7.1
OCT 13647—78	3 . 4.,1
OCT 14192—77	1,5.2
OCT 15846—79	1.4.3
OCT 17065—77	1.4.1
OCT 18300—87	3.5.1
OCT 19433—88	1.5.2; 2.2
OCT 20015—74	3.8.1
OCT 20292—74	3.3.1; 3.4.1; 3.7.1; 3.8.1
OCT 21119.1—75	3.3,4
OCT 21119.10—75	3.3.5
OCT 24104—88	3.3.1; 3.4.1; 3.5.1;
CCT 04262 00	3.6.1; 3.7.1; 3.8.1
OCT 24363—80	3.7.1; 3.8.1
OCT 25336—82	3.3.1; 3.7.1; 3.8.1
OCT 26319—84	1.4.4
FOCT 27068—86 FOCT 28179—89	3.3.1 3,9

Изменение № 1 ГОСТ 23423—89 Метионин кормовой. Технические условия Утверждено и введено в действие Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 29.12.90 № 3748 Дата Бведения 01.03.91

Вводную часть дополнить абзацем: «Требования настоящего стандарта являются обязательными».

Пункт 1.4.1 дополнить абзацем (после первого): «допускается по согласованию с потребителем кормовой метионин упаковывать в мягкие специализированные контейнеры разового использования типов МКР-1,0 С; МКР-1,0 С-1,5; МКР-1,0, М-0,8; МКР-1,0 М-1,0 или другие аналогичные контейнеры, изготовленные по нормативно-технической документации».

Пункт 1.4.4. Исключить слова: «по ГОСТ 26319».

(Продолжение см. с. 114)

Пункт 1.5.2 дополнить абзацем: «При отгрузке метионина в мягких контейнерах этикетку прикрепляют внутри влагонепроницаемого пакета или вклады.

вают в карман контейнера».

Пункт 2.3. Второй абзац изложить в новой редакции: «Допускается точечные пробы отбирать из заполненных на потоке мешков или мягких контейнеров. отобранных в начале, середине и конце формирования партии перед их зашиванием (завязыванием). Точечные пробы отбирают из 5 % упаковочных единиц (мешков) и 10 % мягких контейнеров, но не менее трех мешков или трех контейнеров».

Пункт 3.2.2 дополнить абзацем (после первого): «Из мягкого контейнера

отбирают три точечные пробы: одну в середине и две по краям». Пункт 3.9. Заменить ссылку: ГОСТ 28178 на ГОСТ 28612.

(ИУС № 5 1991 г.)

Редактор Т. И. Василенко Технический редактор Л. А. Никитина Корректор А. С. Черноусова

Сдано в наб. 01.08.89 Подп. в печ. 28.09.89 1,5 усл. печ. л., 1,5 усл. кр.-отт. ,1,37 уч.-изд. л. Тираж 10 000