

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ГАЗОДИНАМИКА

БУКВЕННЫЕ ОБОЗНАЧЕНИЯ ОСНОВНЫХ ВЕЛИЧИН

ГОСТ 23199—78

Издание официальное

ГАЗОДИНАМИКА

Буквенные обозначения основных величин

ГОСТ 23199—78

Gas dynamics Basic letter symbols

Постановлением Государственного комитета стандартов Совета Министров СССР от 30 июня 1978 г. № 1759 срок введения установлен

с 01.01 1980 г.

Настоящий стандарт устанавливает основные буквенные обозначения и индексы в газодинамике. Буквенные обозначения соответствуют МС ИСО 31 и рекомендации ИСО Р 31.

Буквенные обозначения и индексы, установленные настоящим стандартом, обязательны для применення в документации всех видов, учебной, научно-технической и справочной литературе.

Для некоторых величин приведены запасные буквенные обозначения, которые следует применять взамен основных обозначений в гех случаях, когда употребление последних может привести к недоразумению вследствие обозначения в пределах одного текста одной и той же буквой разных величин.

1. БУКВЕННЫЕ ОБОЗНАЧЕНИЯ ОСНОВНЫХ ВЕЛИЧИН

Таблица 1

Наименование величины	Б укв енно е обозначение		Пояснение
	основ- ное	запас- ное	
1. Викрь скорости	Ω	ω	
2. Давление в потоке 3. Диамегр обтекаемого тела или проходного сечения канала	p d	D	
4. Длина обтекаемого тела или ка- нала	1	L	
5. Доля частиц в двухфазной сме- си массовая	2		_
6. Импульс тяги	1		$I = \int_{0}^{t} Pd^{t}$
7. Количество теплоты, подводи- мой (отесдимой) к потоку	Q		
8. Концентрация частиц счетная 9. Коэффициент восстановления полного давления	n v	σ	$v = \frac{p_{02}}{p_{01}}$
 Вязкость потока динамическая; коэффициент вязкости потока динамический 		יני	
11. Вязкость потока кинематичес- кая, коэффициент вязкости потока кинематический	1		
12. Коэффициент диффузии	D		
 Коэффициент расхода Коэффициент сопротивления 	μ c _D	l de	
15. Коэффициент теплоотдачи от потока к стенке или от стенки к по-	α		
току 16. Коэффициент теплопроводности потока	λ		
17. Коэффициент трения при внешнем обтекании тела	c_f		
18. Коэффициент трения при тече- нии в трубах	£	ζ,λ	
19. Масса газа 20. Напряжение в потске касательное	m T		
21. Напряжение в потоке нормаль-	σ		
ное 22. Объем газа	ν		
23. Отношение массовых расхс дов частиц и газа в двухфазном потоке	W		

Продолжение табл. 1

Наименование величины	Буквенное обозначение		Пояснение
	ное Основ-	запас- ное	
24. Отношение удельных теплоем- костей; показатель адиабаты	۲	×	
25. Плотность потока 26. Площадь проходного сечения	P A	S,F	
канала		- /-	
27. Постоянная газовая	R		
28. Потенциал скорости	φ	Φ	
29. Потери удельного импульса 30. Проекция скорости на ось х	ς μ	v _x	
31. Проекция скорости на ось у	v	v_y	ĺ
32. Проекция скорости на ось г	w	vz	
33. Работа газа	W	L	į
34. Радиус сбтекаемого тела или	r	R	
проходного сечения канала	l	l	1
35. Расход массовый	m	G	
36. Расход объемный	l v	Q	
37. Сила воздействия потока	F	P	
38. Сисрость газа	V	1 *	ł
39. Скорость в одномерном прибли-	w	l u	
жении	1	ļ	1
40. Скорость приведенная	l c	Ì]
41. Скорость газа абсолютная 42. Скорость звука	a	ł	t .
43. Скорость обтекания относитель-		Į	
ная		İ	Į.
44. Скорость окружная (перенос-	u	1	i
ная)			\$
45. Степень нерасчетности струи			<u>}</u>
(отношение давления в выходном сечении канала к давлению внешней		1	1
среды)	ĺ	1	İ
46. Степень турбулентности	3	į.	ļ
47. Температура потока в граду-	t	ļ	İ
сах Цельсия	T	Ì	1
48. Температура потока термодина-	1 1	!	1
мическая	1	1	Į.
49. Теплоємкость потока (при по- стоянном давлєнии или постоянном			<u> </u>
объеме) удельная	C ₂	1	
50. Толщина вытеснения погранич-		1	\
ного слоя	8*]
51. Толщина пограничного слоя	ð]	
52. Толщина потери импульса по-		1	}
граничного слоя	8**		
53. Толщина потери энергии по-	8***	1	
граничного слоя 54. Тяга	P		1

Наи менование величины	Буквенное обозначение		Продолжение табл
	основ- ное	запас-	Пояснение
55. Угол Маха 56. Угол наклона стенки канала 57. Функция давления газодинами- еская	α θ p(λ)		$p(\lambda) = \left(1 - \frac{\gamma - 1}{\gamma + 1} \lambda^2\right)^{\frac{\gamma}{\gamma - 1}}$
58. Функция импульса газодинами- еская	z(λ)		$z(\lambda) = \lambda + \frac{1}{\lambda}$
59. Функция плотности газодина- ическая	ρ(λ)		$\rho(\lambda) = (1 - \frac{\gamma - 1}{\gamma + 1}\lambda^2)^{\frac{1}{\gamma} - 1}$
60. Функция расхода газодинами- еская	<i>q</i> (λ)		$q(\lambda) = \left(\frac{\gamma+1}{2}\right)^{\frac{1}{\gamma-1}} \lambda \left(1 - \frac{1}{\gamma-1}\right)^{\frac{1}{\gamma-1}} \lambda \left(1 - \frac{1}{\gamma-1}\right)^{\frac{1}{\gamma$
61, Функция температуры газоди- памическая	Τ(λ)		$-\frac{\gamma-1}{\gamma+1}\lambda^2\right)^{\frac{\gamma}{\gamma-1}}$ $T(\lambda)=1-\frac{\gamma-1}{\gamma+1}\lambda^2$
62. Функция тока 63. Циркуляция скорости 64. Число Архимеда 65. Число Вебера 66. Число Грасгофа 67. Число Кнудсена 68. Число Маха 70. Число Нуссельта 71. Число Пекле 72. Число Прандтля 73. Число Стантона 74. Число Стантона 75. Число Фурда 77. Число Фурде 78. Число Эйлера 80. Ширина обтекаемого тела или	ψΓAre KRe KNu Per Re Sth Foc Eu b	Ma	
81. Энергия потока внутренняя 82. Энергия потока внутренняя удельная	E e	U	
83. Энтальпия потока 84. Энтальпия потока удельная 85. Энтропия потока 86. Энтропия потока	I i S s	H	

2. ИНДЕКСЫ БУКВЕННЫХ ОБОЗНАЧЕНИЙ ВЕЛИЧИН

Таблица 2

Призняк величины	Индекс		
	основ- йой	39118С- ЙЫЙ	Пример
Нижние индексы			
1. Бесконечный	∞	}	
2. Двухфазный	s	}	
3. Диффуэнонный	s D f)	
4. Замороженный) f	}	
5. Заторможенный	0	\ . '	
6. Начальный	Н	2	
7. Относящийся к выходному сече-	а	2	
нию канала		((
 Относящийся к критическому се- чению канала 	1	1	a_*
9. Относящийся к стенке канала	l w	cr	
10. Равновесный	ë	{ ``	
11. Турбулентный	l T	ĺ	
12. Удельный	y	}	$I_{\mathbf{v}}$
	} ~	ļ	}
Верхние индексы	}		
13. Безразмерный	_	\	F
14. Пульсационный	Į.	1	u'

Редактор Р. С. Федорова Технический редактор В. Ю. Смирнова Корректор Р. В. Ананьева

Сдано в набор 07.07.78 Подп. в печ. 04.10.78 0,5 п. л. 0,26 уч.-изд. л. Тир. 12000 Цена 3 коп.