БРОНЗЫ БЕЗОЛОВЯННЫЕ

Метод спектрального анализа по металлическим стандартным образцам с фотоэлектрической регистрацией спектров

ΓΟCT 20068.2—79

Tinless bronze. Method of spectral analysis of metal standard specimens with spectrum photo-electric record

ОКСТУ 1709

Дата введения 01.07.80

Настоящий стандарт распространяется на безоловянные бронзы марок БрА5, БрА7, БрАМц9-2, БрАМЦ10-2, БрАЖМц10-3-1,5, БрАЖН10-4-4, БрАЖНМц9-4-4-1, БрКМц3-1, БрБ2, БрБНТ1,7, БрБНТ1,9, БрКд1, БрХ-1, БрАЖ9-4 и БрКН1-3 по ГОСТ 18175 и устанавливает метод спектрального анализа по металлическим стандартным образцам (СО) с фотоэлектрической регистрацией спектра.

Метод основан на возбуждении спектра дуговым униполярным разрядом, или низковольтным искровым разрядом, или дуговым разрядом переменного тока с последующей регистрацией его оптическим квантометром. Метод позволяет определять в бронзах железо, никель, марганец, цинк, олово, свинец, мышьяк, алюминий, кремний, титан, бериллий, кадмий в диапазоне массовых долей, указанных в табл. 1.

Таблица 1 Диапазон определяемых массовых долей элементов в зависимости от марки сплава

Марка сплава	Определяемый элемент	Диапазон кон- центраций, %	Марка сплава	Определяемый элемент	Диапазон кон- центраций, %
БрА5; БрА7	Кремний Железо Олово Мышьяк Свинец Цинк Никель Марганец	0,06-0,15 0,2-0,8 0,03-0,2 0,003-0,02 0,02-0,15 0,2-0,8 0,2-0,8 0,4-0,8	БрАЖ9-4	Кремний Олово Мышьяк Свинец Цинк Никель Марганец Железо	0,07-0,3 0,05-0,4 0,005-0,06 0,008-0,07 0,25-1,6 0,3-1,5 0,2-1,0 1,0-4,5
БрАМи9-2; БрАМи10-2	Кремний Олово Железо Мыпьяк Свинец Цинк Никель Марганец	0,08-0,5 0,03-0,5 0,2-1,5 0,004-0,15 0,015-0,4 0,35-2,0 0,2-1,6 0,8-2,9	БрАЖМц10-3-1,5	Кремний Олово Свинец Цинк Никель Железо Марганец	0,07-0,25 0,07-0,2 0,015-0,05 0,2-1,0 0,3-1,0 1,5-4,5 0,4-2,5

Издание официальное

Перепечатка воспрещена

С. 2 ГОСТ 20068.2—79

Продолжение табл. 1

Марка сплава	Определяемый элемент	Диапазон кон- центраций, %	Марка сплава	Определяемый элемент	Диапазон кон- центраций, %
БрАЖН10-4-4; БрАЖНМп9-4-4-1	Кремний Олово Мышьяк Свинец Цинк Марганец	0,05-0,3 0,04-0,4 0,0015-0,09 0,015-0,15 0,15-0,8 0,1-0,8	БрКН1-3	Алюминий Олово Железо Мышьяк Свинец Цинк Марганец Никель	0,01-0,03 0,05-0,2 0,05-0,4 0,001-0,005 0,08-0,25 0,05-0,25 0,05-0,5 2,0-4,0
БрКМц3-1	Олово Железо Свинец Цинк Никель Кремний Марганец	0,1-0,4 0,2-0,5 0,015-0,05 0,2-0,9 0,15-0,5 2,0-4,0 0,5-1,8	БрАМц9—2; БрАМц10—2; БрАЖМц 10—3—1,5; БрАЖН10—4—4; БрАЖ9—4; БрАЖНМц 9—4—4—1	Алюминий	7,5—11,5
БрБ2; БрБНТ1,7 БрБНТ1,9	Кремний Алюминий Железо Свинец	0,03-0,4 0,03-0,4 0,03-0,4 0,002-0,02	БрБ2; БрБНТ1,9	Цинк Никель Олово Бериллий	0,04—0,5 0,1—2,0 0,03—0,2 0,1—3,0
	Никель Титан	0,1-0,8	БрКо1	Кадмий	0,5—1,4
		1,12 1,00	БрХ-1	Никель Цинк Кремний	0,008-0,03 0,01-0,10 0,03-0,10

Сходимость и воспроизводимость результатов анализа характеризуется величинами допускаемых расхождений, приведенными в табл. 2, при доверительной вероятности P = 0.95.

Таблица 2

Определяемая примесь	Допускаемое расхождение двух результатов параллельных определений d_2 , %	Допускаемое расхождение двуж результатов анализа D_2 , %
Железо	0.0030 + 0.07C	0.0040 + 0.10C
Марганец	0.0064 + 0.07C	0.0084 + 0.10C
Кремний	0.0051 + 0.07C	0.0067 + 0.10C
Свинец	0.0002 + 0.12C	0.0002 + 0.16C
Бериллий	0,18C	0,23C
Никель	0.0103 + 0.07C	0.0135 + 0.10C
Цинк	0,0026 + 0,12C	0.0034 + 0.16C
Олово	0.0024 + 0.07C	0.0032 + 0.09C
Мышьяк	0,0001 + 0,15C	0,0001 + 0,20C
4 люминий	0,0008 + 0,12C	0.0010 + 0.16C
Гитан	0,0015 + 0,12C	0.0019 + 0.16C
Кадмий	0,18C	0,23C

Примечания:

(Измененная редакция, Изм. № 2).

^{1.} При проверке выполнения установленных нормативов допускаемых расхождений результатов параллельных определений за $C = (C_1 + C_2)/2$ принимают среднеарифметическое первого (C_1) и второго (C_2) результатов параллельных определений данной примеси в одной и той же пробе.

^{2.} При проверке установленных нормативов допускаемых расхождений результатов анализа за $C = (C_1 + C_2)/2$ принимают среднеарифметическое двух сопоставляемых результатов анализа.

1. ОБЩИЕ ТРЕБОВАНИЯ

- 1.1. Общие требования к методу анализа по ГОСТ 25086.
- 1.2. Систематическая проверка воспроизводимости результатов анализа проб по ГОСТ 18242. (Введен дополнительно, Изм. № 2).

2. АППАРАТУРА И МАТЕРИАЛЫ

Фотоэлектрическая установка (квантометр) типа МФС-8.

Генератор типа УГЭ-4.

Для регистрации излучения с помощью квантометра ДФС-10М линии мышьяка (234,98 нм) и «внутреннего стандарта» (фон-228,3 нм) применяют фотоумножители типа ФЭУ-5, которые устанавливают без зеркал. Для линий остальных элементов и других «внутренних стандартов» (см. табл. 3) используют фотоумножители типа ФЭУ-4 и фотоэлементы Ф-1.

Электроды из меди марки М-1 или из угля марки С-3 в виде прутков диаметром 6—7 мм, заточенные на полусферу или усеченный конус.

Приспособление для заточки угольных и медных электродов, станок модели КП-35.

Токарный станок для заточки СО и анализируемых проб на плоскость типа ТВ-16.

Стандартные образцы, изготовленные по ГОСТ 8.315.

Допускается использование другой аппаратуры, оборудования, материалов и реактивов при условии получения метрологических характеристик не хуже установленных настоящим стандартом. Средства измерения должны быть аттестованы в соответствии с ГОСТ 8.326*.

Разд. 2. (Измененная редакция, Изм. № 2).

3. ПОДГОТОВКА К АНАЛИЗУ

Подготовка анализируемых образцов и СО к анализу должна быть однотипной для каждой серии измерений. Образец должен представлять собой темплет или кусок произвольной формы. Масса пробы и СО не должны отличаться более чем в два раза.

Подготовку образца (или СО) проводят зачисткой одной из его граней на плоскость напильником или металлорежущим инструментом (станком) без охлаждающей жидкости и смазки. При экспонировании каждого спектра зачищенные поверхности должны представлять собой плоскую площадку диаметром не менее 10 мм без раковин, царапин, трещин и шлаковых включений. Перед экспонированием спектров для снятия поверхностных загрязнений анализируемые образцы и СО протирают этиловым спиртом.

Разд. 3. (Измененная редакция, Изм. № 2).

4. ПРОВЕДЕНИЕ АНАЛИЗА

Анализируемый образец или CO зажимают в нижнем зажиме штатива и подводят под угольный (или медный) электрод так, чтобы расстояние от обыскриваемого участка до края образца было не меньше пятна обыскривания (2—5 мм).

Между концами электродов, раздвинутыми на $(1,5\pm0,02)$ мм, зажигают дугу переменного тока силой 3—8 A, или низковольтную искру емкостью 40 мк Φ , индуктивностью 500 мк Γ н и силой 2,5—3 A, или униполярную дугу (при включении образца в качестве анода дуги) силой 2,5 A, питаемые с помощью генератора УГ Θ —4 от сети (220 \pm 5) B.

Режим управления источника — фазовый. Для источников возбуждения спектра — дуга переменного тока и низковольтная искра, фазу поджига устанавливают равной 90° , а для униполярной дуги — 125° . Ширина входной щели квантометра ДФС-10M составляет 0.02-0.07 мм. Время обжига 10-15 с, время экспозиции не более 90 с. Освещение входной щели квантометра производят с помощью растрового конденсора. От каждого CO и образца получают по два показания регистрирующего устройства.

Длины волн аналитических линий, линий «внутренних стандартов», значение массовых долей элементов и источники возбуждения спектра приведены в табл. 3.

^{*} В Российской Федерации действуют ПР 50.2.009-94

Таблица 3 Длины волн аналитических линий, линий «внутренних стандартов», диапазоны определяемых массовых долей элементов и источников возбуждения спектра

Марка сплава	Определяе- мый элемент	Аналити- ческая линия, нм	Линия «внутреннего стандарта», нм	Значения массовых долей, %	Источник возбуждения спектра
БрА7; БрА5	Кремний Железо	288,16 371,99	Медь 510,55 Медь 510,55	0,06-0,15 0,2-0,8	
	Олово	283,99	Медь 510,55	0,03-0,2	п
	Мышьяк	234,98	Фон 228,30	0,003-0,02	Дуга переменного тока
	Свинец	405,78	Медь 510,55 Медь 510,55	0,02-0,15 0,2-0,8	
	Цинк Никель	472,22 341,48	Медь 510,55	0,2-0,8	
	Марганец	403,07	Медь 510,55	0,4-0,8	
БрАМц9-2;	Кремний	288,16	Медь 510,55	0,08-0,5	Дуга переменного тока
• ,	Олово	283,99	Мель 510,55	0,03-0,5	или низковольтная искра
БрАМц10-2	Железо	371,99	Мель 510,55	0,2-1,5	1
_	Мышьяк	234,98	Фон 228,30	0,004-0,15	Дуга переменного тока
	Свинец	405,78	Медь 510,55	0,015-0,4	Униполярная дуга
	Цинк	472,22	Медь 510,55	0,35—2,0	
	Никель	341,48	Медь 510,55	0,2—1,6	Низковольтная искра
	Марганец	482,35	Медь 510,55	0,8-2,9	
БрАЖ9-4	Кремний	288,16	Медь 510,55	0,07-0,3	Дуга переменного тока
	Олово	283,99	Медь 510,55	$\left\{ \begin{array}{c} 0.07 - 0.3 \\ 0.05 - 0.4 \end{array} \right\}$	или низковольтная искра
	Мышьяк	234,98	Фон 228,30	0,005-0,06	Дуга переменного тока
	Свинец	405,78	Медь 510,55	0,008-0,07	Униполярная дуга или дуга переменного тока
	Цинк	472,22	Медь 510,55	0,25—1,6	
	Никель	341,48	Медь 510,55	0,3—1,5	Дуга переменного тока
	Марганец	403,07	Медь 510,55	0,2—1,0	или низковольтная искра
	Железо	358,12	Медь 510,55	1,0-4,5	Низковольтная искра
БрАЖМц	Кремний	288,16	Медь 510,55	$\left[\begin{array}{c} 0.07 - 0.25 \\ 0.07 - 0.2 \end{array} \right]$	Дуга переменного тока
10-3-1,5	Олово	283,99	Медь 510,55	1 - 1 1 - 1 - 1	или низковольтная искра
	Свинец	405,78	Медь 510,55	0,015—0,05	Униполярная дуга или
	Harres	472,22	Медь 510,55	0,2—1,0	дуга переменного тока
	Цинк Никель	341,48	Медь 510,55	$\left\{ \begin{array}{c} 0,2-1,0\\ 0,3-1,0 \end{array} \right\}$	Дуга переменного тока или низковольтная искра
					или низковольтная искра
	Железо	358,12	Медь 510,55	$\begin{bmatrix} 1,5-4,5 \\ 0,4-2,5 \end{bmatrix}$	Низковольтная искра
	Марганец	482,35	Медь 510,55	0,4—2,5	
БрАЖН	Кремний	288,16	Медь 510,55	0,05-0,3 0,04-0,4 }	Дуга переменного тока
10-4-4;	Олово	283,99	Медь 510,55		или низковольтная искра
БрАЖНМц	Мышьяк	234,98	Фон 228,30	0,0015—0,09	Дуга переменного тока
9-4-4-1	Свинец	405,78 472,22	Медь 510,55 Медь 510,55	0,015—0,15 0,15—0,8	Униполярная дуга Дуга переменного тока
	Цинк Марганец	403,07	Медь 510,55	$\left\{ \begin{array}{c} 0,15-0,8\\ 0,1-0,8 \end{array} \right\}$	или низковольтная искра
 БрКМц3-1	Олово	283,99	Медь 510,55	0,1-0,4	
Phranda.	Железо	371,99	Медь 510,55	0,1-0,4	
	Свинец	405,78	Медь 510,55	0,15-0,05	Дуга переменного тока
	Цинк	472,22	Медь 510,55	0,15-0,05	L'Ila Hopemennoi o Toka
	Никель	341,48	Медь 510,55	0,15-0,5	
	Кремний	288,16	Медь 510,55	2,0-4,0	
	Марганец	482,35	Медь 510,55	0,5-1,8	

Окончание табл. 3

Марка сплава	Определяе- мый элемент	Аналити- ческая линия, нм	Линия «внутреннего стандарта», нм	Значения массовых долей, %	Источник возбуждения спектра
БрБ2; БрБНТ1,7; БрБНТ1,9	Кремний Алюминий Железо Свинец Никель Титан	288,16 396,15 358,12 405,78 341,48 453,31	Медь 510,55 Медь 510,55 Медь 510,55 Медь 510,55 Медь 510,55 Медь 510,55	0,03-0,4 0,03-0,4 0,03-0,4 0,002-0,02 0,1-0,8 0,05-0,35 }	Дуга переменного тока Низковольтная искра
БрКН1-3	Алюминий Олово Железо Мышьяк Свинец Цинк Марганец Никель	396,15 283,39 358,12 234,98 405,78 472,22 403,07 341,48	Медь 510,55 Медь 510,55 Медь 510,55 Фон 228,30 Медь 510,55 Медь 510,55 Медь 510,55 Медь 510,55	0,01—0,03 0,05—0,2 0,05—0,4 0,001—0,005 0,08—0,25 0,05—0,25 0,05—0,5 2,0—4,0	Дуга переменного тока Низковольтная искра
БрАМц9—2; БрАМц10—2; БрАЖМц 10—3—1,5; БрАЖН 10—4—4; БрАЖ9—4; БрАЖНМц 9—4—4—1	Алюминий	396,1	Медь 510,55	7,5—11,5	Униполярная дуга
БрБ2; БрБНТ1,9	Цинк Олово Бериллий Никель	334,5 326,2 234,8 341,48	Медь 510,55 Медь 510,55 Медь 510,55 Медь 510,55	0,4-0,5 0,03-0,2 0,1-3,0 0,1-2,0 }	Дуга переменного тока Низковольтная искра
БрКо1	Кадмий	226,58	Медь 291,12	0,5—1,4	Низковольтная искра
БрХ-1	Никель Цинк Кремний	341,48 334,50 288,10	Медь 249,20 Медь 249,20 Медь 249,20	0,008-0,003 0,01-0,10 0,03-0,10 }	Дуга переменного тока

Допускается применение других аналитических линий, линий «внутренних стандартов», источников возбуждения спектров при условии получения метрологических характеристик не хуже установленных настоящим стандартом.

Сигналы регистрируют в соответствии с инструкцией по эксплуатации прибора.

Разд. 4. (Измененная редакция, Изм. № 2).

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

Градуировочные графики строят в координатах: $n-\lg C$ и (или) n-C.

Основным методом является метод «трех эталонов». Допускается применение других методов построения графика, например метода твердого градуировочного графика, метода контрольного эталона и т. д.

За окончательный результат анализа принимают среднеарифметическое результатов двух параллельных определений, соответствующих двум отсчетам регистрирующего устройства.

Допускаемые расхождения двух параллельных определений и двух результатов анализа не должны превышать величин, указанных в табл. 2.

Контроль точности результатов анализа проводят по ГОСТ 25086 с использованием Государственных отраслевых стандартных образцов или стандартных образцов предприятий.

Разд. 5. (Измененная редакция, Изм. № 2).

С. 6 ГОСТ 20068.2—79

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Министерством цветной металлургии СССР
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 29.10.79 № 4102
- 3. B3AMEH FOCT 20068.2-74

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер раздела, пункта
ГОСТ 8.315—97	2
ГОСТ 8.326—89	2
ΓΟCT 18175—78	Вводная часть
ΓΟCT 18242—72	1.2
ΓΟCT 25086—87	1.1, 5

- Ограничение срока действия снято по протоколу № 7—95 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 11—95)
- 6. ИЗДАНИЕ с Изменениями № 1, 2, утвержденными в июне 1984 г., ноябре 1989 г. (ИУС 9—82, 2—90)