

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ТРАНЗИСТОРЫ БИПОЛЯРНЫЕ

МЕТОДЫ ИЗМЕРЕНИЯ ВРЕМЕННЫХ ПАРАМЕТРОВ

ГОСТ 18604.26-85 (СТ СЭВ 4757-84)

Издание официальное

Joem 18604. 26-85 929. N 1991 cm 28.06 90 epox geneslux rhofun 20 01.01.93. 1. llego n 10, 1990-1

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ
МОСКВА

ЗЫНЧЕЛОПИЯ ИЧОТЭИЕНАЧТ

ΓΟCT 18604.26-85

Методы измерения временных параметров

[CT C3B 4757—84]

Bipolar transistors.
Methods of time parameters measurement

OKI 62 2300

Постановлением Государственного комитета СССР по стандартам от 20 декабря 1985 г. № 4534 срок действия установлен

с 01.07.86 до 01.07.91

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на биполярные транзисторы и устанавливает методы измерения временных параметров: времени задержки $t_{\rm 3d}$, времени нарастания $t_{\rm нp}$, времени включения $t_{\rm вкл}$, времени рассасывания $t_{\rm pac}$, времени спада $t_{\rm cn}$, времени выключения $t_{\rm выкл}$.

Общие требования при измерении и требования безопасности

— по ГОСТ 18604.0—83.

Стандарт полностью соответствует СТ СЭВ 4757—84.

1. ПРИНЦИП И УСЛОВИЯ ИЗМЕРЕНИЯ

1.1. Значения временных параметров определяют измерением интервалов времени в соответствии с определениями временных параметров, приведенными в ГОСТ 20003—74.

1.2. Условия и режим измерения временных параметров должны соответствовать установленным в стандартах или технических

условиях на транзисторы конкретных типов.

2. ΑΠΠΑΡΑΤΥΡΑ

2.1. Временные параметры следует измерять на установке, электрическая структурная схема которой приведена на черт. 1.

Издание официальное

Перепечатка воспрещена

 \star

© Издательство стандартов, 1986

Допускается включать импульсные измерители тока в любой части измеряемой цепи.

Конкретную схему измерения приводят в стандартах или технических условиях на транзисторы конкретных типов.

GI-генератор однополярных насыщающих импульсов, G2-генератор однополярных запирающих импульсов PAI, P42-импульсные измерители тока, VT-испытуемый транзистор, Z-ограничитель напряжения; RI-резистор нагрузки, R2, R5-делитель напряжения, R3, R4-резисторы в цепи базы, P_t —измеритель интервалов времени, C-блокиро вочный конденсатор, G_k- источник постоянного напряжения коллектора

Черт 1

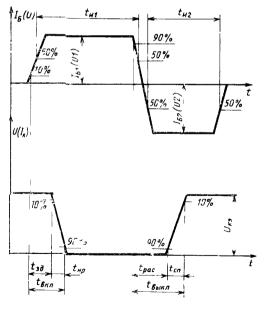
2.2. Параметры импульсов на выходе генераторов G1 и G2 в соответствии с диаграммой временных параметров, приведенной на черт. 2, должны соответствовать следующим требованиям:

длительность насыщающего импульса $t_{\rm и1}$ не должна быть менее 1,5 $t_{\rm Bh,1\,max}$ при измерении параметров $t_{\rm 31}$, $t_{\rm .p.}$ $t_{\rm Bk,1}$ и не менее 5 $t_{\rm pac\,max}$ при измерении параметров $t_{\rm pac}$, $t_{\rm cn}$, $t_{\rm B,k,1}$, где $t_{\rm Bh,1\,max}$ и $t_{\rm pac\,max}$ соответственно максимальное время включения и максимальное время рассасывания, которые устанавливают из диапазона измерения конкретной измерительной установки,

длительность фронта насыщающего импульса при измерении параметра $t_{\text{в.л.}}$ не должна превышать 0,3 $t_{\text{нзм.}}$, а при измерении параметров $t_{\text{з.т.}}$ и $t_{\text{г.р.}}$ — 0,5 $t_{\text{нзм.}}$, где $t_{\text{нзм.}}$ — время одного из указанных параметров;

длительность насыщающего импульса в технически обоснованных случаях может быть меньше 5 $t_{\rm pac\ max}$. Конкретное значение $t_{\rm H1}$ указывают в стандартах или технических условиях на транзисторы конкретных типов;

длительность запирающего импульса $t_{\rm и2}$ не должна быть менее максимального значения $t_{\rm выкл\,max}$, которое устанавливают из диапазона измерения конкретной измерительной установки;


неравномерность вершины импульса не должна превышать 5 % амплитудного значения импульса;

длительность выброса на вершине импульса не должна превышать минимального значения измеряемого интервала времени t_{\min} , определяемого рабочим диапазоном конкретной измерительной установки;

амплитуда выбросов на вершине импульса не должна превышать 10 % амплитудного значения импульса;

длительность изменения полярности тока базы от момента, когда спад насыщающего импульса достигнет уровня 90 % амплитудного значения $I_{\rm B1}$ до момента нарастания запирающего импульса до уровня 90 % амплитудного значения $I_{\rm B2}$ должна быть не более 0,5 $t_{\rm cn\ min}$, где $I_{\rm B1}$ — ток базы (насыщающий), $I_{\rm E2}$ — ток базы (запирающий), $t_{\rm cn\ min}$ — минимальное значение измеряемого времени спада;

погрешность установки уровней отсчета временных параметров не должна выходить за пределы $\pm 3~\%$ по отношению к амплитудному значению импульса $U_{\rm K9}$ (или $I_{\rm K}$), где $U_{\rm K9}$ — постоянное напряжение коллектор-эмиттер, $I_{\rm K}$ — ток коллектора;

Черт. 2

скважность насыщающего импульса и амплитуда напряжения между импульсами должны быть такими, чтобы они не влияли

на результаты измерения. Значения их указывают в стандартах или технических условиях на транзисторы конкретных типов;

погрешность установления амплитуды импульсов токов базы не должна выходить за пределы $\pm 10 \%$.

2.3. Вместо генераторов однополярных импульсов G1 и G2

допускается применять импульсные генераторы тока. Один из генераторов однополярных импульсов может быть за-

менен источником постоянного напряжения.

При замене генератора G1 источником постоянного напряжения схему измерительной установки (см. черт. 1) модифицируют в схему с постоянным насыщающим и импульсным запирающим токами, а при замене генератора G2 источником постоянного напряжения — в схему с импульсным насыщающим и постоянным запирающим токами.

При измерении временных параметров t_{33} , t_{BD} и t_{BKR} генера-

тор $\hat{G}2$ может отсутствовать.

2.4. В качестве токосъемных элементов вместо измерителей тока PA1 и PA2 допускается использовать резисторы, трансформаторы тока и другие элементы, не влияющие на результат измерения временных параметров.

Импульсные измерители тока РА1 и РА2 могут отсутствовать, если обеспечена установленная точность задания токов базы и

коллектора.

2.5. Ограничитель напряжения Z предназначен для защиты перехода эмиттера транзистора от перенапряжения обратной полярности и для ограничения напряжения холостого хода на зажимах контактного устройства при отключении испытуемого тран-

Для транзисторов малой мощности при длительности импульса менее 200 нс ограничитель напряжения в цепи базы испытуе-

мого транзистора может отсутствовать.

2.6. Индуктивность цепи L, Γ н, в которой протекают импульсные токи коллектора и эмиттера, рассчитывают по формуле

$$L \leqslant rac{t_{\min} \cdot R_1}{5}$$
 ,

где t_{\min} — минимальный измеряемый интервал времени;

R₁ — значение сопротивления резистора нагрузки. 2.7. Емкость между коллекторным выводом контактного устройства и корпусом $C_{\kappa}^{'}$, Φ , для подключения к установке испытуемого транзистора рассчитывают по формуле

$$C_{\kappa}' \ll \frac{t_{\min}}{5R_1}$$
.

Емкость между базовым выводом контактного устройства и корпусом $C_6^{'}$, Φ , для испытуемого транзистора рассчитывают по формуле

$$C_{\delta}' \ll \frac{I_{\text{Blmin}} \cdot t_{\text{min}}}{5U_{\text{B}} \cdot t_{\text{Hac max}}}$$
,

где $I_{\rm Bimin}$ — минимальное значение тока базы (насыщающего); $U_{\rm B9\; Hac\; max}$ — максимальное напряжение насыщения база-эмиттер, указанное в стандартах или технических условиях на транзисторы конкретных типов.

2.8. Погрешность сопротивления резисторов R1-R5 не долж-

на превышать 1 %.

2.9. Делители напряжения R2, R5 должны быть компенсиро-

ванными и не искажать форму выходного сигнала.

2.10. Измеритель интервалов времени P_t подключают к коллектору или к резистору нагрузки R1 непосредственно или через делитель напряжения R2, R5.

Время нарастания переходной характеристики измерителя ин-

тервалов времени P_t не должно быть более 0,3 t_{\min} .

При использовании осциллографа в качестве измерителя интервалов времени P_t его синхронизация может быть внутренней или внешней от генераторов G1 или G2 в зависимости от измеряемого параметра.

Для измерения временных параметров допускается применять

внутренние или внешние регулируемые линии задержки.

Пример использования однолучевого осциллографа в качестве измерителя интервалов времени приведен в справочном приложении.

2.11. Погрешность установления импульсного тока коллектора

не должна выходить за пределы ±10 %.

2.12. Максимально допустимая основная погрешность измерительной установки $\delta_{\rm осн}$ при измерении параметров $t_{\rm рас}$, $t_{\rm выкл}$, $t_{\rm вкл}$ длительностью более 5 нс не должна выходить за пределы $\pm 10~\%$ конечного значения предела измерения и $\pm 15~\%$ измеряемого значения — в начале рабочего участка шкалы.

Максимально допустимая основная погрешность измерительной установки $\delta_{\rm och}$ при измерении параметров $t_{\rm cn}$, $t_{\rm hp}$, $t_{\rm 3d}$ длительностью более 5 нс не должна выходить за пределы ± 15 % конечного значения предела измерения и ± 20 % измеряемого значения — в начале рабочего участка шкалы.

Максимально допустимая основная погрешность измерительной установки с цифровым отсчетом $\delta_{\text{осн}}$ при измерении значений временных параметров длительностью более 5 нс не долж-

на выходить за пределы $\pm 10~\%$ измеряемого значения и ± 2 знака младшего разряда дискретного отсчета.

3. ПОДГОТОВКА И ПРОВЕДЕНИЕ ИЗМЕРЕНИЯ

- 3.1. Испытуемый транзистор подключают к установке и устанавливают режимы измерения, заданные в стандартах или технических условиях на транзисторы конкретных типов: постоянное напряжение коллектор-эмиттер $U_{\rm K3}$, импульсный ток коллектора $I_{\rm K.u}$, ток базы $I_{\rm B1}$ (импульсный или постоянный насыщающий ток) для измерения параметров $t_{\rm 34}$, $t_{\rm Hp}$, $t_{\rm Bh}$, ток базы $I_{\rm B2}$ (импульсный запирающий ток) для измерения параметров $t_{\rm pac}$, $t_{\rm cn}$, $t_{\rm Bh}$, напряжение на ограничителе напряжения Z.
- 3.2. При использовании одноканального осциллографа в качестве измерителя интервалов времени P_{ℓ} , его подключают сначала на вход испытуемого транзистора (или на вход генератора G1 или G2) для калибровки начала отсчета, затем на выход испытуемого транзистора для отсчета интервала времени.

3.3. Отсчет производят в соответствии с определениями временных параметров и диаграммой временных параметров (см. черт. 2). При этом допускается:

при измерении времени спада устанавливать другие уровни отсчета, что оговаривают в стандартах или технических условиях на транзисторы конкретных типов;

при измерении времени рассасывания и времени выключения за начало отсчета устанавливать момент, когда фронт запирающего импульса достигнет 90 % его амплитудного значения;

устанавливать начало отсчета в момент, когда временная диаграмма тока базы пересекает нулевой уровень;

концом отсчета считать момент, когда спад выходного импульса достигнет 90%-ного амплитудного значения.

3.4. Пример измерения временных параметров импульсных транзисторов, у которых $U_{\rm K}$ Э $_{\rm нас\ 1^4H}$ > 0,1 $U_{\rm K}$ Э, приведен в справочном приложении.

4. ПОКАЗАТЕЛИ ТОЧНОСТИ ИЗМЕРЕНИЯ

- 4.1. Показатели точности измерения времени задержки, времени нарастания, времени спада и времени рассасывания должны соответствовать установленным в стандартах или технических условиях на транзисторы конкретных типов.
- 4.2. Границы интервала в, в котором с установленной вероятностью 0,997 находится погрешность измерения, определяют по формуле

$$\delta = \pm \sqrt{\delta_{\text{осн}}^2 + \delta_{\text{реж}}^2}, \text{ при этом}$$
 для $t_{\text{зл}} \delta_{\text{реж}} = \sqrt{(\delta_{I_{\text{El}}})^2 + (\delta_{I_{\text{K}}})^2};$ для $t_{\text{нр}} \delta_{\text{реж}} = \frac{1}{\ln \frac{n-0.1}{n-0.9}} \cdot \frac{0.8n}{(n-0.1) \cdot (n-0.9)} \cdot \sqrt{(\delta_{I_{\text{El}}})^2 + (\delta_{I_{\text{K}}})^2};$ для $t_{\text{сп}} \delta_{\text{реж}} = \frac{1}{\ln \frac{n-0.9}{n-0.1}} \cdot \frac{0.8n}{(n-0.1) \cdot (n-0.9)} \cdot \sqrt{(\delta_{I_{\text{El}}})^2 + (\delta_{I_{\text{K}}})^2};$

для $t_{\mathsf{pac}} \delta_{\mathsf{pe}_{\mathsf{H}}} = \sqrt{\delta_1^2 + \delta_2^2}$. где $\delta_{\text{реж}}$ — погрешность задания режима измерения, устанавли-

ваемая в стандартах или технических условиях на транзисторы конкретных типов;

 $\delta_{I_{\rm B1}}$ — погрешность насыщающего тока базы;

 $\overline{\delta}_{I_{\text{K hac}}}$ — погрешность насыщающего тока коллектора $I_{\rm K\ hac};$

n — степень насыщения, определяемая по формуле

$$n = \frac{I_{\rm B1} \cdot h_{\rm 219}}{I_{\rm K, Hac}};$$

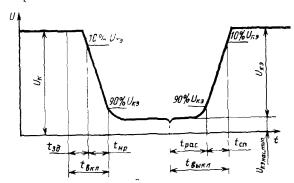
$$\delta_1 = \frac{1}{\ln \frac{n+s}{1+s}} \cdot \frac{n}{n+s} \cdot \sqrt{(\delta_{I_{\rm B1}})^2 + (\delta_{I_{\rm K, Hac}})^2;}$$

$$\delta_2 = \frac{1}{\ln \frac{n+s}{1+s}} \cdot \frac{(1+n) \cdot s}{(n+s) \cdot (1+s)} \cdot \sqrt{(\delta_{I_{\rm B2}})^2 + (\delta_{I_{\rm K, Hac}})^2;}$$

где s — степень рассасывания, определяемая по формуле

$$s = \frac{I_{\text{B2}} \cdot h_{219}}{I_{\text{K Hac}}} .$$

1. ПРИМЕР ИСПОЛЬЗОВАНИЯ ОДНОЛУЧЕВОГО ОСЦИЛЛОГРАФА В КАЧЕСТВЕ ИЗМЕРИТЕЛЯ ИНТЕРВАЛОВ ВРЕМЕНИ


Начало времени рассасывания и времени выключения следует брать от нулевого уровня тока базы при изменении его полярности от плюс $I_{\rm E1}$ до минус $I_{\rm E2}$.

Начало отсчета времени рассасывания и времени выключения допускается устанавливать по кратковременному выбросу на импульсе напряжения $U_{K\mathfrak{I}}$, которое указано в конкретных схемах измерения и вершина которого совпадает с нулевым уровнем тока базы при изменении полярности от плюс I_{B1} до минус I_{B2} .

Для более точной фиксации начала отсчета по выбросу напряжения допускается кратковременно увеличивать чувствительность осциллографа.

2. ПРИМЕР ИЗМЕРЕНИЯ ВРЕМЕННЫХ ПАРАМЕТРОВ ИМПУЛЬСНЫХ ТРАНЗИСТОРОВ, У КОТОРЫХ $U_{{ m K}{\Im}_{ m Hac\ TBm}} >$ 0,1 $U_{{ m K}{\Im}}$

Отсчет временных параметров производят в соответствии с диаграммой, приведенной на чертеже.

Отсчет ведут по импульсу напряжения коллектора при выполнении следующих условий:

от источника постоянного напряжения коллектора устанавливают напряжение, рассчитываемое по формуле

$$U_{K} = U_{K\Theta} + U_{K\Theta_{HAC,TMB}}$$

где $U_{\mathrm{K} \ni}$ — постоянное напряжение коллектор-эмиттер, указанное в стандартах или технических условиях на транзисторы конкретных типов;

 $U_{{\rm K9}_{
m H\,ac\,\, THR}}$ — типовое значение напряжения насыщения коллектор-эмиттер $U_{{
m K9}_{
m Hac}}$, указанное в стандартах или технических условиях на транэнсторы конкретных типов.

Редактор Т. С. Шеко Технический редактор М. И. Максимова Корректор А. И. Зюбан

Сдано в наб. 09.01.86 Подп. в печ. 07.03.86 0,75 усл. п. л. 0,75 усл. кр.-отт. 0,54 уч.-нэд. л. Тираж 10000 Цена 3 коп.