

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

БУМАГА И КАРТОН

МЕТОД ОПРЕДЕЛЕНИЯ ЛОСКА

FOCT 12921-80

Издание официальное

РАЗРАБОТАН Министерством целлюлозно-бумажной промышленности

ИСПОЛНИТЕЛИ

Г. А. Кундзич, канд. техн. наук; М. Г. Зальцман

ВНЕСЕН Министерством целлюлозно-бумажной промышленности

Зам. министра Г. Ф. Пронин

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам 13.08. 1980 г. № 4219

СТАНДАРТ СОЮЗА ГОСУДАРСТВЕННЫЙ

БУМАГА И КАРТОН Метод определения лоска

Paper and board Method for determination of gloss.

FOCT 12921-80

> Взамен **FOCT 12921--67**

Постановлением Государственного комитета СССР по стандартам от 13 августа 1980 г. № 4219 срок действия установлен

c 01.01. 1983 r. до 01.01. 1988 г.

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на бумагу и картон и устанавливает метод определения лоска.

Стандарт не распространяется на фотографическую бумагу, а также на бумагу и картон с показателем лоска ниже 5%.

Сущность метода заключается в измерении интенсивности световых потоков, зеркально и нормально отраженных от испытуемого образца, освещаемого параллельным пучком света под углом 45°.

1. ОТБОР ПРОБ

1.1. Отбор пробных листов — по ГОСТ 8047—78.

2. АППАРАТУРА И МАТЕРИАЛЫ

2.1. Для проведения измерений должен применяться фотоэлектрический фотометр по нормативно-технической документации. удовлетворяющий следующим требованиям.

Источник света фотометра должен соответствовать стандартному источнику А по ГОСТ 7721—76.

Оптическая система осветителя должна обеспечивать освещение испытуемого образца параллельным пучком света под углом $(45.0 \pm 0.5)^{\circ}$.

Угол расхождения лучей в пучке не должен превышать 2°; пучок должен освещать на образце участок с линейными размерами не менее 8 мм.

Фотометр должен иметь два приемника света одинаковой конструкции, установленные под углами $(45.0\pm0.5)^{\circ}$ и $(0+0.5)^{\circ}$ от нормали к поверхности образца.

Оптические оси приемников света должны находиться в плоскости, проходящей через нормаль к образцу и оптическую ось осветителя; отклонение от плоскости не должно превышать 0,3 мм на 100 мм длины оптической оси приемника света.

В фокальной плоскости объектива приемника света должна быть установлена диафрагма с отверстием; диаметр отверстия должен в 1,4—1,6 раза превышать наибольший размер изображения тела накала источника света, создаваемого объективом в плоскости диафрагмы.

На индикатор от электрической схемы прибора должен поступать сигнал, соответствующий разности:

$$I_{45}$$
—0,7 I_{0} ,

где I_{45} — интенсивность светового потока, регистрируемая приемником света, установленным под углом 45°;

 I_0 — интенсивность светового потока, регистрируемая приемником света, установленным под углом 0°.

Фотометр должен иметь два диапазона измерений в процентах: (0-100):

(0-10).

Относительная погрешность фотометра не должна превышать 2.5%.

Фотометр должен быть укомплектован калибровочной пластиной из цветного оптического стекла марки TC3 по ГОСТ 23136—78. Пластина должна быть откалибрована с абсолютной погрешностью, не превышающей 1 %, при этом за 100% лоска принимают интенсивность светового потока, зеркально отраженного под углом 45° от поверхности черного полированного стекла с показателем преломления 1.54.

3. ПОДГОТОВКА К ИЗМЕРЕНИЯМ

- 3.1. От пробных листов произвольно отбирают 5 листов бумаги или картона, из которых вырезают 10 испытуемых образцов размерами $(60\pm5)\times(80\pm5)$ мм, при этом большая сторона образца должна быть параллельна машинному направлению бумаги или картона.
- 3.2. Образцы бумаги или картона должны быть чистыми, без пятен, складок, моршин, перегибов и других повреждений.

4. ПРОВЕДЕНИЕ ИЗМЕРЕНИЙ

4.1. Измерения производят при температуре окружающего воздуха $(25\pm10)^{\circ}$ С, относительной влажности, не превышающей 80%, и отсутствии заметных вибраций.

4.2. Производят калибровку фотометра по калибровочной пластине, при этом индикатор устанавливают на отметку, соответст-

вующую значению лоска калибровочной пластины.

- 4.3. Вместо калибровочной пластины в фотометр поочередно помещают испытуемые образцы так, чтобы они своим наибольшим размером располагались вдоль измерительного окна фотометра и отсчитывают показания индикатора лоска с точностью до 0,5 деления шкалы.
- 4.4. Измерения лоска проводят отдельно на верхней и сеточной сторонах образцов бумаги или картона.

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

5.1. За результат испытания принимают среднее арифметическое значения лоска обеих сторон бумаги или картона, выраженное в процентах.

При наличии указаний в стандартах на продукцию лоск бумаги или картона определяют отдельно для верхней или сеточной стороны.

Результат испытания выражают ближайшим числом, кратным 0.5.

5.2. Максимальная абсолютная погрешность определения лоска не превышает $\pm 1.5\%$.

Редактор *Т. В Смыка* Технический редактор *О Н Никитина* Корректор *В И Кануркина*

основные единицы си

	Единица						
Величина	Наименование	Обозначение					
		русское	международное				
длин 4	метр	м	m				
MACCA	килограмм	кг	kg s				
ВРЕМЯ	секунда	c	s s				
СИЛА ЭЛЕКТРИЧЕСКОГО ТОКА	ампер	A	l A				
ТЕРМОДИНАМИЧЕСКАЯ							
ТЕМПЕРАТУРА	кельвин	ĸ	K				
количество вещества	моль	моль	mol				
СИЛА СВЕТА	кандела	кд	cd				
дополнительные единицы си							
Плоский угол	радиан	рад	rad				
Телесный угол	стеради ан	ср	sr				

производные единицы си,имеющие собственные наименования

Величина	Единица		Выражение производной единицы	
	наименование	обозна <i>ч</i> ение	через другие единицы СИ	через основные единицы СИ
Частота	герц	Гц		c-1
Сила	ньютон	H		M KΓ C ^{−2}
Давление	паскаль	Па	H/M^2	m ⁻¹ ⋅ K r ⋅ C ⁻²
Энергия, работа, количество теплоты	джоуль	Дж	Нм	M ² · ICF · C ⁻²
Мощность, поточ энсргии	ватт	Вт	Дж/с	M ² ·Kr C ^{−3}
Количество эчектричества,				
электрический заряд	кулон	Кл	Аc	c A
Электрическое напряжение,				
электрический потенциал	вольт	В	Br/A	M ² ·KΓ·C ⁻³ ·A ⁻¹
Электрическая емкость	фарада	Ф	Кл/В	M ⁻² ·Kr ⁻¹ C ⁴ A ²
Электрическое сопротивление	ом	Ом	B/A	M ² Kr c ⁻³ ·A ⁻²
Электрическая проводимость	сименс	См	A/B	M-2-Kr-1-C3-A2
Поток магнитной индукции	вебер	Вб	Вс	M2-KIC2 -A-1
Магнитная индукция	тесла	Тл	Вб/м²	Kr·c ⁻² ·A ⁻¹
Индуктивность	генри	Гн	B6/A	M ² KΓ C ⁻² A ⁻²
Световой поток	люмен	лм	-	кд ср
Освещенность	люкс	лк	_	м−2 кд ср }
Активность нуклида	беккерель	Бк	-	c ¹
Доза излучения	грэи	$\Gamma_{\mathbf{P}}$	¦ –	M² · C ⁻²

^{*} В эти два выражения входит, наравне с основными единицами СП, дополнительная единица—стерадизы.