Государственная система обеспечения единства измерений

ЕДИНИЦЫ ВЕЛИЧИН

Издание официальное

Предисловие

1 РАЗРАБОТАН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт метрологии им. Д.И. Менделеева» (ФГУП «ВНИИМ им. Д.И. Менделеева»), Техническим комитетом по стандартизации ТК 206 «Эталоны и поверочные схемы»

ВНЕСЕН Госстандартом России

2 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол № 22 от 6 ноября 2002 г.)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004—97	Код страны по МК (ИСО 3166) 004—97	Наименование национального органа по стандартизации
Азербайджан	AZ	Азгосстандарт
Армения	AM	Армгосстандарт
Беларусь	BY	Госстандарт Республики Беларусь
Грузия	GE	Грузстандарт
Казахстан	KZ	Госстандарт Республики Казахстан
Кыргызстан	KG	Кыргызстандарт
Российская Федерация	RU	Госстандарт России
Таджикистан	TJ	Таджикстандарт
Туркменистан	TU	Главгосслужба «Туркменстандартлары»
Узбекистан	UZ	Узгосстандарт

- 3 Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 4 февраля 2003 г. № 38-ст межгосударственный стандарт ГОСТ 8.417—2002 введен в действие в качестве государственного стандарта Российской Федерации с 1 сентября 2003 г.
 - 4 B3AMEH ΓΟCT 8.417—81
 - 5 ИЗДАНИЕ (февраль 2010 г.) с Поправкой (ИУС 12—2003)

© ИПК Издательство стандартов, 2003 © СТАНДАРТИНФОРМ, 2010

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Российской Федерации без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1 Область применения		1
2 Нормативные ссылки		1
3 Определения		1
4 Общие положения		1
5 Единицы Международной системы единиц	(СИ)	2
6 Единицы, не входящие в СИ		8
	вначений десятичных кратных и дольных единиц	
СИ		11
8 Правила написания обозначений единиц.		12
Приложение А Единицы количества информ	ации	15
Приложение Б Правила образования когерен	тных производных единиц СИ	16
Приложение В Соотношение некоторых вне	системных единиц с единицами СИ	16
Приложение Г Рекомендации по выбору дес	ятичных кратных и дольных единиц СИ	18
Приложение Д Библиография		27

Государственная система обеспечения единства измерений

ЕДИНИЦЫ ВЕЛИЧИН

State system for ensuring the uniformity of measurements. Units of quantities

Дата введения 2003-09-01

1 Область применения

Настоящий стандарт устанавливает единицы физических величин (далее — единицы), применяемые в стране: наименования, обозначения, определения и правила применения этих единиц.

Настоящий стандарт не устанавливает единицы величин, оцениваемых по условным шкалам¹⁾, единицы количества продукции, а также обозначения единиц физических величин для печатающих устройств с ограниченным набором знаков (по ГОСТ 8.430).

2 Нормативные ссылки

В настоящем стандарте использована ссылка на следующий стандарт:

ГОСТ 8.430—88 Государственная система обеспечения единства измерений. Обозначения единиц физических величин для печатающих устройств с ограниченным набором знаков

3 Определения

В настоящем стандарте применены термины в соответствии с [1].

4 Общие положения

- 4.1 Подлежат обязательному применению единицы Международной системы единиц²⁾, а также десятичные кратные и дольные этих единиц (разделы 5 и 7).
- 4.2 Допускается применять наравне с единицами по 4.1 некоторые единицы, не входящие в СИ, в соответствии с 6.1 и 6.2, их сочетания с единицами СИ, а также некоторые нашедшие широкое применение на практике десятичные кратные и дольные перечисленных в настоящем пункте единиц.
- 4.3 Временно допускается применять наравне с единицами по 4.1 единицы, не входящие в СИ, в соответствии с 6.3, а также некоторые получившие распространение кратные и дольные единицы и сочетания этих единиц с единицами по 4.1 и 4.2.
- 4.4 В разрабатываемых или пересматриваемых документах, а также в других публикациях значения величин выражают в единицах СИ, десятичных кратных и дольных этих единиц, и (или) в единицах, допустимых к применению в соответствии с 4.2.

Допускается в указанных документах применять единицы по 6.3, срок изъятия которых будет установлен в соответствии с международными соглашениями.

¹⁾ Под условными шкалами понимают, например, Международную сахарную шкалу, шкалы твердости, светочувствительности фотоматериалов.

²⁾ Международная система единиц (международное сокращенное наименование — SI, в русской транскрипции — СИ) принята в 1960 г. XI Генеральной конференцией по мерам и весам (ГКМВ) и уточнена на последующих ГКМВ [2].

- 4.5 Во вновь принимаемых нормативных документах на средства измерений предусматривают их градуировку только в единицах СИ, десятичных кратных и дольных этих единиц или единицах, допустимых к применению в соответствии с 4.2 и 4.3.
- 4.6 Разрабатываемые или пересматриваемые нормативные документы на методики поверки средств измерений предусматривают поверку средств измерений, градуированных в единицах, установленных в настоящем стандарте.
- 4.7 Учебный процесс (включая учебники и учебные пособия) в учебных заведениях основывают на применении единиц в соответствии с 4.1—4.3.
- 4.8 При договорно-правовых отношениях в области сотрудничества с зарубежными странами, а также в поставляемых за границу вместе с экспортной продукцией (включая транспортную и потребительскую тару) технических и других документах применяют международные обозначения единиц.
- В документах на экспортную продукцию, если эти документы не отправляют за границу, допускается применять русские обозначения единиц.
- 4.9 В нормативных, конструкторских, технологических и других технических документах на продукцию различных видов применяют международные или русские обозначения единиц.

При этом независимо от того, какие обозначения использованы в документах на средства измерений, при указании единиц величин на табличках, шкалах и щитках этих средств измерений применяют международные обозначения единиц.

- 4.10 В публикациях допускается применять либо международные, либо русские обозначения единиц. Одновременное применение обозначений обоих видов в одном и том же издании не допускается, за исключением публикаций по единицам величин.
- 4.11 Характеристики и параметры продукции, поставляемой на экспорт, в том числе средств измерений, могут быть выражены в единицах величин, установленных заказчиком.
- 4.12 Единицы количества информации, используемые при обработке, хранении и передаче результатов измерений величин, указаны в приложении А.

5 Единицы международной системы единиц (СИ)

5.1 Основные единицы СИ указаны в таблице 1.

Таблица 1 — Основные единицы СИ

Величин	a	Единица			иница	
	D		Обозн	ачение		
Наименование	Размер- ность	Наимено- вание	между- народное	русское	Определение	
Длина	L	метр	m	М	Метр есть длина пути, про- ходимого светом в вакууме за интервал времени 1/299 792 458 s [XVII ГКМВ (1983 г.), Резолюция 1]	
Macca	М	килограмм	kg	КГ	Килограмм есть единица массы, равная массе международного прототипа килограмма [I ГКМВ (1889 г.) и III ГКМВ (1901 г.)]	
Время	Т	секунда	s	c	Секунда есть время, равное 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133 [XIII ГКМВ (1967 г.), Резолюция 1]	

Величина			Единица				
	Размер-	Обозначение					
Наименование	ность	Наимено- вание	между- народное	русское	Определение		
Электрический ток (сила электрического тока)	I	ампер	A	A	Ампер есть сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 m один от другого, вызвал бы на каждом участке проводника длиной 1 m силу взаимодействия, равную 2 · 10 ⁻⁷ N [МКМВ (1946 г.), Резолюция 2, одобренная IX ГКМВ (1948 г.)]		
Термодинамичес- кая температура	Θ	кельвин	K	K	Кельвин есть единица термодинамической температуры, равная 1/273,16 части термодинамической температуры тройной точки воды [XIII ГКМВ (1967 г.), Резолюция 4]		
Количество ве- щества	N	МОЛЬ	mol	моль	Моль есть количество вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 kg. При применении моля структурные элементы должны быть специфицированы и могут быть атомами, молекулами, ионами, электронами и другими частицами или специфицированными группами частиц [XIV ГКМВ (1971 г.), Резолюция 3]		
Сила света	J	кандела	cd	кд	Кандела есть сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540 · 10 ¹² Hz, энергетическая сила света которого в этом направлении составляет 1/683 W/sr [XVI ГКМВ (1979 г.), Резолюция 3]		

Примечания

- 1 Кроме термодинамической температуры (обозначение T), допускается применять также температуру Цельсия (обозначение t), определяемую выражением $t = T T_0$, где $T_0 = 273,15$ К. Термодинамическую температуру выражают в кельвинах, температуру Цельсия в градусах Цельсия. По размеру градус Цельсия равен кельвину. Градус Цельсия это специальное наименование, используемое в данном случае вместо наименования «кельвин».
- 2 Интервал или разность термодинамических температур выражают в кельвинах. Интервал или разность температур Цельсия допускается выражать как в кельвинах, так и в градусах Цельсия.
- 3 Обозначение Международной практической температуры в Международной температурной шкале 1990 г., если ее необходимо отличить от термодинамической температуры, образуют путем добавления к обозначению термодинамической температуры индекса «90» (например, T_{90} или t_{90}) [3].

(Поправка).

- 5.2 Производные единицы СИ
- 5.2.1 Производные единицы СИ образуют по правилам образования когерентных производных единиц СИ (приложение Б).
- 5.2.2 Примеры производных единиц СИ, образованных с использованием основных единиц СИ, приведены в таблице 2.

Т а б л и ц а 2 — Примеры производных единиц СИ, наименования и обозначения которых образованы с использованием наименований и обозначений основных единиц СИ

Величина		Единица				
Наименование	Размерность	Наименование	Обозначение			
Паименование	газмерноств	Пануснование	международное	русское		
Площадь	L^2	квадратный метр	m ²	м ²		
Объем, вместимость	L^3	кубический метр	m ³	M ³		
Скорость	LT ⁻¹	метр в секунду	m/s	м/с		
Ускорение	LT^{-2}	метр на секунду в квадрате	m/s ²	м/с ²		
Волновое число	L-1	метр в минус первой степени	m ⁻¹	m ⁻¹		
Плотность	$L^{-3}M$	килограмм на кубический метр	kg/m ³	кг/м ³		
Удельный объем	$L^{3}M^{-1}$	кубический метр на килограмм	m ³ /kg	м ³ /кг		
Плотность электри- ческого тока	$L^{-2}I$	ампер на квадратный метр	A/m ²	А/м ²		
Напряженность маг- нитного поля	$L^{-1}I$	ампер на метр	A/m	А/м		
Молярная концентрация компонента	L ⁻³ N	моль на кубический метр	mol/m ³	моль/м ³		
Яркость	$L^{-2}J$	кандела на квадратный метр	cd/m ²	кд/м ²		

- 5.2.3 Производные единицы СИ, имеющие специальные наименования и обозначения, указаны в таблице 3. Эти единицы также могут быть использованы для образования других производных единиц СИ (таблица 4).
 - 5.2.2, 5.2.3 (Поправка).
- 5.2.4 Единицы СИ электрических и магнитных величин образуют в соответствии с рационализованной формой уравнений электромагнитного поля. В эти уравнения входит магнитная постоянная μ_0 вакуума, которой приписано точное значение, равное $4\pi~10^{-7}$ H/m или $12,566~370~614...\cdot10^{-7}$ H/m (точно).
- В соответствии с решениями XVII Генеральной конференции по мерам и весам ГКМВ (1983 г.) о новом определении единицы длины метра значение скорости распространения плоских электромагнитных волн в вакууме c_0 принято равным 299 792 458 m/s (точно).
- В эти уравнения входят также электрическая постоянная ε_0 вакуума, значение которой принято равным 8,854 187 817...·10⁻¹² F/m (точно).
- 5.2.5 С целью повысить точность размеров производных электрических единиц на основе эффекта Джозефсона и квантового эффекта Холла Международным комитетом мер и весов (МКМВ) с 1 января 1990 г. введены условные значения константы Джозефсона $K_{\rm J-90}=4,835979\cdot 10^{14}$ Hz/V (точно) [МКМВ, Рекомендация 1, 1988 г.] и константы Клитцинга $R_{\rm K-90}=25812,807~\Omega$ (точно) [МКМВ, Рекомендация 2, 1988 г.].

Примечание — Рекомендации 1 и 2 МКМВ не означают, что пересмотрены определения единицы электродвижущей силы — вольта и единицы электрического сопротивления — ома Международной системы единиц.

Таблица 3 — Производные единицы СИ, имеющие специальные наименования и обозначения

Величина	Единица				
Патриморания	Door comerce our	Наименование	Обозн	ачение	Выражение через основные и
Наименование	Размерность	паименование	междуна- родное	русское	производные единицы СИ
Плоский угол	1	радиан	rad	рад	$m \cdot m^{-1} = 1$
Телесный угол	1	стерадиан	sr	ср	$\mathbf{m}^2 \cdot \mathbf{m}^{-2} = 1$
Частота	T ⁻¹	герц	Hz	Гц	s ⁻¹
Сила	LMT ⁻²	ньютон	N	Н	m·kg·s ⁻²
Давление	$L^{-1}MT^{-2}$	паскаль	Pa	Па	$m^{-1}\cdot kg\cdot s^{-2}$
Энергия, работа, количество теплоты	L ² MT ⁻²	джоуль	J	Дж	m ² ⋅kg⋅s ⁻²
Мощность	$L^2 MT^{-3}$	ватт	W	Вт	m ² ·kg·s ⁻³
Электрический заряд, количество электричества	TI	кулон	С	Кл	s-A
Электрическое напряжение, электрический потенциал, разность электрических потенциалов, электродвижущая сила	L ² MT ⁻³ I ⁻¹	вольт	V	В	m ² ·kg·s ⁻³ ·A ⁻¹
Электрическая емкость	$L^{-2} M^{-1} T^4 I^2$	фарад	F	Φ	$m^{-2} kg^{-1} s^4 A^2$
Электрическое сопротив- ление	$L^2MT^{-3}I^{-2}$	ОМ	Ω	Ом	$m^2 \cdot kg \cdot s^{-3} \cdot A^{-2}$
Электрическая проводи- мость	$L^{-2}M^{-1}T^3I^2$	сименс	S	См	$m^{-2}\cdot kg^{-1}\cdot s^3\cdot A^2$
Поток магнитной индук- ции, магнитный поток	L ² MT ⁻² I ⁻¹	вебер	Wb	Вб	$m^2 \cdot kg \cdot s^{-2} \cdot A^{-1}$
Плотность магнитного потока, магнитная индукция	$MT^{-2} I^{-1}$	тесла	Т	Тл	kg·s ⁻² ·A ⁻¹
Индуктивность, взаимная индуктивность	L ² MT ⁻² I ⁻²	генри	Н	Гн	$m^2 \cdot kg \cdot s^{-2} \cdot A^{-2}$
Температура Цельсия	Θ	градус Цельсия	°C	°C	K
Световой поток	J	люмен	lm	ЛМ	cd·sr
Освещенность	$L^{-2}J$	люкс	lx	лк	m ⁻² ·cd·sr
Активность нуклида в радиоактивном источнике (активность радионуклида)	T ⁻¹	беккерель	Bq	Бк	s ⁻¹
Поглощенная доза ионизирующего излучения, керма	$L^2 T^{-2}$	грей	Gy	Гр	m ² ·s ⁻²
Эквивалентная доза ионизирующего излучения, эффективная доза ионизирующего излучения	L ² T ⁻²	зиверт	Sv	Зв	m ² ·s ⁻²

Окончание таблицы 3

Величина		Единица			
			Обозн	Выражение через	
Наименование	енование Размерность		междуна- родное	русское	основные и производные единицы СИ
Активность катализатора	NT ⁻¹	катал	kat	кат	mol·s ⁻¹

Примечания

- 1 В таблицу 3 включены единица плоского угла радиан и единица телесного угла стерадиан.
- 2 В Международную систему единиц при ее принятии в 1960 г. на XI ГКМВ (Резолюция 12) входило три класса единиц: основные, производные и дополнительные (радиан и стерадиан). ГКМВ классифицировала единицы радиан и стерадиан как «дополнительные, оставив открытым вопрос о том, являются они основными единицами или производными». В целях устранения двусмысленного положения этих единиц Международный комитет мер и весов в 1980 г. (Рекомендация 1) решил интерпретировать класс дополнительных единиц СИ как класс безразмерных производных единиц, для которых ГКМВ оставляет открытой возможность применения или неприменения их в выражениях для производных единиц СИ. В 1995 г. ХХ ГКМВ (Резолюция 8) постановила исключить класс дополнительных единиц в СИ, а радиан и стерадиан считать безразмерными производными единицами СИ (имеющими специальные наименования и обозначения), которые могут быть использованы или не использованы в выражениях для других производных единиц СИ (по необходимости).
 - 3 Единица катал введена в соответствии с резолюцией 12 XXI ГКМВ [4].

Таблица 4 — Примеры производных единиц СИ, наименования и обозначения которых образованы с использованием специальных наименований и обозначений, указанных в таблице 3

Величина		Единица			
			Обозн	ачение	Выражение через
Наименование	Размерность	Наименование	междуна- родное	русское	основные и производные единицы СИ
Момент силы	L^2 MT $^{-2}$	ньютон-метр	N·m	Н∙м	m ² ·kg·s ⁻²
Поверхностное натяжение	MT ⁻²	ньютон на метр	N/m	Н/м	kg·s ⁻²
Динамическая вязкость	$L^{-1}MT^{-1}$	паскаль-секунда	Pa·s	Па-с	$m^{-1}\cdot kg\cdot s^{-1}$
Пространственная плотность электрического заряда	L ⁻³ TI	кулон на кубический метр	C/m ³	Кл/м ³	m ^{−3} ·s·A
Электрическое смещение	L ⁻² TI	кулон на квадратный метр	C/m ²	Кл/м ²	m ^{−2} ·s·A
Напряженность электри- ческого поля	LMT ⁻³ I ⁻¹	вольт на метр	V/m	В/м	$\mathbf{m} \cdot \mathbf{kg} \cdot \mathbf{s}^{-3} \cdot \mathbf{A}^{-1}$
Диэлектрическая прони- цаемость	$L^{-3}M^{-1}T^4I^2$	фарад на метр	F/m	Ф/м	$m^{-3}\cdot kg^{-1}\cdot s^4\cdot A^2$
Магнитная проницае- мость	LMT ⁻² I ⁻²	генри на метр	H/m	Гн/м	m·kg·s ⁻² ·A ⁻²

Окончание таблицы 4

Величина		Единица					
			Обозі	начение	Выражение через		
Наименование	Размерность	Наименование	междуна- родное	русское	основные и производные единицы СИ		
Удельная энергия	L ² T ⁻²	джоуль на килограмм	J/kg	Дж/кг	m ² ⋅s ⁻²		
Теплоемкость системы, энтропия системы	L ² MT ⁻² Θ ⁻¹	джоуль на кельвин	J/K	Дж/К	$m^2 \cdot kg \cdot s^{-2} \cdot K^{-1}$		
Удельная теплоем- кость, удельная энтропия	L ² T− ² Θ− ¹	джоуль на килограмм- кельвин	J/(kg·K)	Дж/(кг-К)	$m^2 \cdot s^{-2} \cdot K^{-1}$		
Поверхностная плот- ность потока энергии	MT ⁻³	ватт на квадратный метр	W/m ²	Вт/м²	kg·s ⁻³		
Теплопроводность	LMT $^{-3}\Theta^{-1}$	ватт на метр-кельвин	W/(m·K)	Вт/(м·К)	$m \cdot kg \cdot s^{-3} \cdot K^{-1}$		
Молярная внугренняя энергия	$L^2MT^{-2}N^{-1}$	джоуль на моль	J/mol	Дж/моль	m ² ·kg·s ⁻² ·mol ⁻¹		
Молярная энтропия, молярная теплоемкость	$L^2MT^{-2}\Theta^{-1}N^{-1}$	джоуль на моль-кельвин	J/(mol·K)	Дж/(моль·К)	m ² ·kg·s ⁻² ·K ⁻¹ ·mol ⁻¹		
Экспозиционная доза фотонного излучения (экспозиционная доза гамма- и рентгеновского излучений)	M ⁻¹ TI	кулон на килограмм	C/kg	Кл/кг	kg ⁻¹ ·s·A		
Мощность поглощен- ной дозы	L ² T ⁻³	грей в секунду	Gy/s	Гр/с	m ² ⋅s ⁻³		
Угловая скорость	T ⁻¹	радиан в секунду	rad/s	рад/с	s ⁻¹		
Угловое ускорение	T-2	радиан на секунду в квадрате	rad/s ²	рад/с ²	s ⁻²		
Сила излучения	L ² MT ⁻³	ватт на стерадиан	W/sr	Вт/ср	m ² ⋅kg⋅s ⁻³ ⋅sr ⁻¹		
Энергетическая яр- кость	MT ⁻³	ватт на стерадиан- квадратный метр	W/(sr·m ²)	Вт/(ср·м ²)	kg·s ⁻³ ·sr ⁻¹		

Примечание— Некоторым производным единицам СИ в честь ученых присвоены специальные наименования (таблица 3), обозначения которых записывают с прописной (заглавной) буквы. Такое написание обозначений этих единиц сохраняют в обозначениях других производных единиц СИ (образованных с использованием этих единиц) и в других случаях.

5.2.6 Обозначения производных единиц, не имеющих специальных наименований, должны содержать минимальное число обозначений единиц СИ со специальными наименованиями и основных единиц с возможно более низкими показателями степени, например:

Правильно: Неправильно: $A/kg; A/k\Gamma$ $C/(kg\cdot s); K\pi/(k\Gamma \cdot c)$ $\Omega \cdot m; Om \cdot M.$ $V \cdot m/A; B \cdot M/A$ $m^3 \cdot kg/(s^3 \cdot A^2); M^3 \cdot K\Gamma/(c^3 \cdot A^2).$

6 Единицы, не входящие в СИ

- 6.1 Внесистемные единицы, указанные в таблице 5, допускаются к применению без ограничения срока наравне с единицами СИ.
- 6.2 Без ограничения срока допускается применять единицы относительных и логарифмических величин. Некоторые относительные и логарифмические величины и их единицы указаны в таблице 6.
- 6.3 Единицы, указанные в таблице 7, временно допускается применять до принятия по ним соответствующих международных решений.
- 6.4 Соотношения некоторых внесистемных единиц с единицами СИ приведены в приложении В. При новых разработках применение этих внесистемных единиц не рекомендуется.

Таблица 5 — Внесистемные единицы, допустимые к применению наравне с единицами СИ

	Единица						
Наименование величины		Обозна	чение		Область		
	Наименование	междуна- родное	русское	Соотношение с единицей СИ	применения		
Macca	тонна	t	т	$1\cdot10^3$ kg	Все области		
	атомная едини- ца массы ^{1), 2)}	u	а.е.м.	1,6605402·10 ⁻²⁷ kg (приблизительно)	Атомная физика		
Время ^{2), 3)}	минута час сутки	min h d	мин ч сут	60 s 3600 s 86400 s	Все области		
Плоский угол ²⁾	градус ^{2), 4)} минута ^{2), 4)} секунда ^{2), 4)}	'	° ′ ″	$(\pi/180)$ rad = 1,745329· 10^{-2} rad $(\pi/10800)$ rad = 2,908882· 10^{-4} rad $(\pi/648000)$ rad = 4,848137· 10^{-6} rad	Все области		
	град (гон)	gon	град	$(\pi/200)$ rad = 1,57080·10 ⁻² rad	Геодезия		
Объем, вмести- мость	литр ⁵⁾	1	л	1·10 ⁻³ m ³	Все области		
Длина	астрономичес- кая единица световой год парсек	ua ly pc	а.е. св.год пк	$1,49598\cdot10^{11}$ m (приблизительно) $9,4605\cdot10^{15}$ m (приблизительно) $3,0857\cdot10^{16}$ m (приблизительно)	Астрономия		
Оптическая сила	диоптрия	_	дптр	1·m ^{−1}	Оптика		
Площадь	гектар	ha	га	1·10 ⁴ m ²	Сельское и лесное хозяйство		

Окончание таблицы 5

	Единица							
Наименование величины		Обозн	ачение	C				
	Наименование	междуна- родное	русское	Соотношение с единицей СИ	Область применения			
Энергия	электрон-вольт	eV	эВ	1,60218·10 ⁻¹⁹ Ј (приблизительно)	Физика			
	киловатт-час	kW∙h	кВт∙ч	3,6·10 ⁶ J	Для счетчиков электри- ческой энергии			
Полная мощ- ность	вольт-ампер	V-A	B-A		Электротехника			
Реактивная мощность	вар	var	вар		Электротехника			
Электрический заряд, количество электричества	ампер-час	A∙h	А·ч	3,6·10 ³ C	Электротехника			

¹⁾ Здесь и далее см. ГСССД 1—87 [5].

- ²⁾ Наименования и обозначения единиц времени (минута, час, сутки), плоского угла (градус, минута, секунда), астрономической единицы, диоптрии и атомной единицы массы не допускается применять с приставками.
- ³⁾ Допускается также применять другие единицы, получившие широкое распространение, например неделя, месяц, год, век, тысячелетие.
 - 4) Обозначения единиц плоского угла пишут над строкой.
- $^{5)}$ Не рекомендуется применять при точных измерениях. При возможности смешения обозначения l («эль») с цифрой 1 допускается обозначение L.

Таблица 6 — Некоторые относительные и логарифмические величины и их единицы

	Единица				
Наименование величины		Обозначение			
	Наименование	между- народное	русское	Значение	
1 Относительная величина (безразмерное отношение физической величины к одноименной физической величине, принимаемой за исходную): КПД; относительное удлинение; относительная плотность; деформация; относительные диэлектрическая и магнитная проницаемости; магнитная восприимчивость; массовая доля компонента; молярная доля компонента и т. п.	процент промилле миллионная доля	1 % ‰ ppm	1 % ‰ млн ^{—1}	$ \begin{array}{c} 1\\ 1 \cdot 10^{-2}\\ 1 \cdot 10^{-3}\\ 1 \cdot 10^{-6} \end{array} $	

Окончание таблицы б

			E	циница
Наименование величины	Наимено-	Обозна	ичение	
	вание	между- народное	русское	Значение
2 Логарифмическая величина (логарифм безразмерного отношения физической величины к одноименной физической величине, принимаемой за исходную): уровень звукового давления; усиление, ослабление и т. п. ²⁾	бел ¹⁾	В	Б	1 В = $\lg (P_2/P_1)$ при $P_2 = 10$ P_1 1 В = $2 \lg (F_2/F_1)$ при $F_2 = \sqrt{10}$ F_1 , где P_1 , P_2 — одноименные энергетические величины (мощность, энергия, плотность энергии и т. п.); F_1 , F_2 — одноименные «силовые» величины (напряжение, силатока, напряженность поля и т. п.)
	децибел	dB	дБ	0,1 B
3 Логарифмическая величина (логарифм безразмерного отношения физической величины к одноименной физической величине, принимаемой за исходную): уровень громкости	фон	phon	фон	1 phon равен уровню громкости звука, для которого уровень звукового давления равногромкого с ним звука частотой 1000 Hz равен 1 dB
4 Логарифмическая величина (логарифм безразмерного отношения физической величины к одноименной фи-	октава	_	OKT	1 октава равна $\log_2 (f_2/f_1)$ при $f_2/f_1 = 2$;
зической величины к одноименной физической величине, принимаемой за исходную): частотный интервал	декада	_	дек	$f_2/f_1=10$, где f_1,f_2 — частоты
5 Логарифмическая величина (натуральный логарифм безразмерного отношения физической величины к одноименной физической величине, принимаемой за исходную)	непер	Np	Ηπ	1 Np = 0,8686 B = 8,686 dB

Примечания

1 При выражении в логарифмических единицах разности уровней мощностей или амплитуд двух сигналов всегда существует квадратичная связь между отношением мощностей и соответствующим ему отношением амплитуд колебаний, поскольку параметры сигналов определяют для одной и той же нагрузки Z, т. е. $\frac{F_2^2}{Z}/\frac{F_1^2}{Z} = F_2^2/F_1^2 = P_2/P_1$.

В теории автоматического регулирования часто определяют логарифм отношения $F_{\rm BbIX}/F_{\rm BX}$. В этом случае между отношением мощностей и отношением соответствующих напряжений нет квадратичной зависимости. Вместе с тем по ранее сложившейся практике применения логарифмических единиц, несмотря на отсутствие квадратичной связи между отношением мощностей и соответствующим ему отношением амплитуд колебаний, и в этом случае принято единицу «бел» определять следующим образом:

1 В =
$$\lg (P_{\text{вых}}/P_{\text{вх}})$$
 при $P_{\text{вых}} = 10 P_{\text{вх}}$,

1 В = 2 lg (
$$F_{\text{вых}}/F_{\text{вх}}$$
) при $F_{\text{вых}} = \sqrt{10} \; F_{\text{вх}}$.

Задача установления связи между напряжениями и мощностями, если ее ставят, решается путем анализа электрических или других цепей.

2 В соответствии с международным стандартом МЭК 27-3 при необходимости указать исходную величину ее значение помещают в скобках за обозначением логарифмической величины, например для уровня звукового давления: $L_{\rm p}$ (re 20 µPa) = 20 dB; $L_{\rm p}$ (исх. 20 мкПа) = 20 дБ (ге — начальные буквы слова reference, т. е. исходный). При краткой форме записи значение исходной величины указывают в скобках за значением уровня, например 20 dB (ге 20 µPa) или 20 дБ (исх. 20 мкПа) [6].

Таблица 7 — Внесистемные единицы, временно допустимые к применению

Наименовани е величины	Обозначение		Соотношение	Область применения	
	Наименование	между- народное	русское	с единицей СИ	
Длина	морская миля	n mile	миля	18 52 m (точно)	Морская навигация
Macca	карат	_	кар	2·10 ⁻⁴ kg (точно)	Добыча и произ- водство драгоценных камней и жемчуга
Линейная плот- ность	текс	tex	текс	1·10 ⁻⁶ kg/m (точно)	Текстильная про- мышле ннос ть
Скорость	узел	kn	уз	0,514(4) m/s	Морская навигация
Ускорение	гал	Gal	Гал	0.01 m/s^2	Гравиметрия
Частота враще- ния	оборот в секунду оборот в минуту	r/s r/min	об/с об/мин	$\begin{array}{c} 1 \text{ s}^{-1} \\ 1/60 \text{ s}^{-1} = 0.016(6) \text{ s}^{-1} \end{array}$	Электротехника
Давление	бар	bar	бар	1·10 ⁵ Pa	Физика

7 Правила образования наименований и обозначений десятичных кратных и дольных единиц СИ

7.1 Наименования и обозначения десятичных кратных и дольных единиц СИ образуют с помощью множителей и приставок, указанных в таблице 8.

Таблица 8— Множители и приставки, используемые для образования наименований и обозначений десятичных кратных и дольных единиц СИ

Десятичный		Обозначени	е приставки	Десятичный		Обозначение приставки	
множитель	Приставка	между- народное	русское	множитель	Приставка	между- народное	русское
10 ²⁴	иотта	Y	И	10-1	деци	d	д
10 ²¹	зетта	Z	3	10-2	санти	c	С
10 ¹⁸	экса	E	Э	10-3	милли	m	M
10 ¹⁵	пета	P	П	10-6	микро	μ	MK
10 ¹²	тера	Т	T	10-9	нано	n	н
109	гига	G	Γ	10-12	пико	р	п
106	мега	M	M	10-15	фемто	f	ф
103	кило	k	K	10-18	атто	a	a
10^{2}	гекто	h	Γ	10-21	зепто	Z	3
101	дека	da	да	10-24	иокто	у	и

7.2 Присоединение к наименованию и обозначению единицы двух или более приставок подряд не допускается. Например, вместо наименования единицы микромикрофарад следует писать пикофарад.

Примечания

- 1 В связи с тем, что наименование основной единицы массы килограмм содержит приставку «кило», для образования кратных и дольных единиц массы используют дольную единицу массы грамм (0,001 kg), и приставки присоединяют к слову «грамм», например миллиграмм (mg, мг) вместо микрокилограмм (µkg, мккг).
 - 2 Дольную единицу массы грамм допускается применять, не присоединяя приставку.
- 7.3 Приставку или ее обозначение следует писать слитно с наименованием единицы или, соответственно, с обозначением последней.
- 7.4 Если единица образована как произведение или отношение единиц, приставку или ее обозначение присоединяют к наименованию или обозначению первой единицы, входящей в произведение или в отношение.

Правильно: килопаскаль-секунда на метр (kPa·s/m; кПа·с/м).

Неправильно: паскаль-килосекунда на метр (Pa·ks/m; Па·кс/м).

Присоединять приставку ко второму множителю произведения или к знаменателю допускается лишь в обоснованных случаях, когда такие единицы широко распространены и переход к единицам, образованным в соответствии с первой частью настоящего пункта, связан с трудностями, например: тонна-километр ($t\cdot km$; $t\cdot km$), вольт на сантиметр (V/cm; B/cm), ампер на квадратный миллиметр (A/mm^2 ; A/mm^2).

- 7.5 Наименования кратных и дольных единиц исходной единицы, возведенной в степень, образуют, присоединяя приставку к наименованию исходной единицы. Например, для образования наименования кратной или дольной единицы площади квадратного метра, представляющей собой вторую степень единицы длины метра, приставку присоединяют к наименованию этой последней единицы: квадратный километр, квадратный сантиметр и т. д.
- 7.6 Обозначения кратных и дольных единиц исходной единицы, возведенной в степень, образуют добавлением соответствующего показателя степени к обозначению кратной или дольной единицы исходной единицы, причем показатель означает возведение в степень кратной или дольной единицы (вместе с приставкой).

 Π р и м е р ы 1 5 km² = 5(10³ m)² = 5·10⁶ m².

2 250 cm³/s = $250(10^{-2} \text{ m})^3/\text{s} = 250 \cdot 10^{-6} \text{ m}^3/\text{s}$.

3 $0.002 \text{ cm}^{-1} = 0.002(10^{-2} \text{ m})^{-1} = 0.002 \cdot 100 \text{ m}^{-1} = 0.2 \text{ m}^{-1}$.

7.7 Рекомендации по выбору десятичных кратных и дольных единиц СИ даны в приложении Г.

8 Правила написания обозначений единиц

- 8.1 При написании значений величин применяют обозначения единиц буквами или специальными знаками (...°, ...', ...'), причем устанавливают два вида буквенных обозначений: международное (с использованием букв латинского или греческого алфавита) и русское (с использованием букв русского алфавита). Устанавливаемые стандартом обозначения единиц приведены в таблицах 1—8.
- 8.2 Буквенные обозначения единиц печатают прямым шрифтом. В обозначениях единиц точку как знак сокращения не ставят.
- 8.3 Обозначения единиц помещают за числовыми значениями величин и в строку с ними (без переноса на следующую строку). Числовое значение, представляющее собой дробь с косой чертой, стоящее перед обозначением единицы, заключают в скобки.

Между последней цифрой числа и обозначением единицы оставляют пробел.

Правильно: Неправильно: 100 kW; 100 кВт 80 % 80% $20 ^{\circ}\text{C}$ $(1/60) \text{ s}^{-1}$.

Исключения составляют обозначения в виде знака, поднятого над строкой, перед которыми пробел не оставляют.

Правильно:

Неправильно:

20°.

20°.

8.4 При наличии десятичной дроби в числовом значении величины обозначение единицы помещают за всеми цифрами.

Правильно: 423,06 m; 423,06 м 5,758° или 5°45,48′ или 5°45′28,8″.

Неправильно: 423 m 0,6; 423 м, 06 5°758 или 5°45′,48 или 5°45′28″,8.

8.5 При указании значений величин с предельными отклонениями числовые значения с предельными отклонениями заключают в скобки и обозначения единиц помещают за скобками или проставляют обозначение единицы за числовым значением величины и за ее предельным отклонением.

Правильно:

Неправильно:

 $(100,0 \pm 0,1)$ kg; $(100,0 \pm 0,1)$ KT 50 g \pm 1 g; 50 r \pm 1 r.

 100.0 ± 0.1 kg; 100.0 ± 0.1 kg

Неправильно:

 $v = 3.6 \, s/t \, km/h$

где *s* — путь, m;

t — время, s.

 $50 \text{ r} \pm 1 \text{ r}.$ $50 \pm 1 \text{ g}; 50 \pm 1 \text{ r}.$

8.6 Допускается применять обозначения единиц в заголовках граф и в наименованиях строк (боковиках) таблиц.

Пример 1

Номинальный расход, m ³ /h	Верхний предел показаний, m ³	Цена деления крайнего правого ролика, m ³ , не более
40 и 60	100 000	0,002
100, 160, 250, 400, 600 и 1 000	1 000 000	0,02
2 500, 4 000, 6 000 и 10 000	10 000 000	0,2

Пример 2

Наименование показателя	Значение при тяговой мощности, kW				
Transcrobative notasarcin	18	25	37		
Габаритные размеры, тт:					
длина	3 080	3 500	4 090		
ширина	1 430	1 685	2 395		
высота	2 190	2 745	2 770		
Колея, тт	1 090	1 340	1 823		
Просвет, тт	275	640	345		

8.7 Допускается применять обозначения единиц в пояснениях обозначений величин к формулам. Помещать обозначения единиц в одной строке с формулами, выражающими зависимости между величинами или между их числовыми значениями, представленными в буквенной форме, не допускается.

Правильно: v = 3.6 s/t, где v = 0.6 скорость, km/h; s = 0.000 гд, m; t = 0.000 гд, s.

8.8 Буквенные обозначения единиц, входящих в произведение, отделяют точками на средней линии как знаками умножения. Не допускается использовать для этой цели символ «х».

Правильно:	Неправильно:
N·m; H·м	Nm; Нм
$A \cdot m^2$; $A \cdot m^2$	Am ² ; Ам ²
Pa·s: Па·с.	Pas; Пас.

В машинописных текстах допускается точку не поднимать.

Допускается буквенные обозначения единиц, входящих в произведение, отделять пробелами, если это не вызывает недоразумения.

8.9 В буквенных обозначениях отношений единиц в качестве знака деления используют только одну косую или горизонтальную черту. Допускается применять обозначения единиц в виде произведения обозначений единиц, возведенных в степени (положительные и отрицательные).

Если для одной из единиц, входящих в отношение, установлено обозначение в виде отрицательной степени (например, s^{-1} , m^{-1} , K^{-1} , c^{-1} , m^{-1} , K^{-1}), применять косую или горизонтальную черту не допускается.

$$\begin{array}{lll} & \Pi \text{равильно:} & \text{Неправильно:} \\ W \cdot m^{-2} \cdot K^{-1}; \ B_{T \cdot M}^{-2} \cdot K^{-1} & W/m^2/K; \ B_{T}/m^2/K \\ & \frac{W}{m^2 \cdot K}; \ \frac{B_T}{M^2 \cdot K} & \frac{W}{\frac{m^2}{K}}; \ \frac{B_T}{K}. \end{array}$$

8.10 При применении косой черты обозначения единиц в числителе и знаменателе помещают в строку, произведение обозначений единиц в знаменателе заключают в скобки.

Правильно: Неправильно: m/s; M/c m/s; M/c $W/(m\cdot K); BT/(M\cdot K).$ $W/m\cdot K; BT/M\cdot K.$

8.11 При указании производной единицы, состоящей из двух и более единиц, не допускается комбинировать буквенные обозначения и наименования единиц, т. е. для одних единиц указывать обозначения, а для других — наименования.

Правильно:Неправильно:80 км/ч80 км/час80 километров в час.80 км в час.

 $8.12\,$ Допускается применять сочетания специальных знаков: ...°, ...', ...", % и % с буквенными обозначениями единиц, например ...°/s.

ПРИЛОЖЕНИЕ А (справочное)

Единицы количества информации

Таблина А.1

	Единица					
Наименование величины	Наимено-	Обозначение			Примечание	
	вание	между- народное	русское	Значение		
Количество информации ¹⁾	бит ²⁾ байт ^{2), 3)}	bit B (byte)	бит Б (байт)	1 1 Б = 8 бит	Единица информации в двоичной системе счисления (двоичная единица информации)	

- 1) Термин «количество информации» используют в устройствах цифровой обработки и передачи информации, например в цифровой вычислительной технике (компьютерах), для записи объема запоминающих устройств, количества памяти, используемой компьютерной программой.
- 2) В соответствии с международным стандартом МЭК 60027-2 единицы «бит» и «байт» применяют с приставками СИ (таблица 8 и раздел 7) [7].
- $^{3)}$ Исторически сложилась такая ситуация, что с наименованием «байт» некорректно (вместо $1000=10^3$ принято $1024=2^{10}$) использовали (и используют) приставки СИ: 1 Кбайт = 1024 байт, 1 Мбайт = 1024 Кбайт, 1 Гбайт = 1024 Мбайт и т. д. При этом обозначение Кбайт начинают с прописной буквы в отличие от строчной буквы «к» для обозначения множителя 10^3 .

ПРИЛОЖЕНИЕ Б

(обязательное)

Правила образования когерентных производных единиц СИ

Когерентные производные единицы (далее — производные единицы) Международной системы единиц, как правило, образуют с помощью простейших уравнений связи между величинами (определяющих уравнений), в которых числовые коэффициенты равны 1. Для образования производных единиц обозначения величин в уравнениях связи заменяют обозначениями единиц СИ.

 Π р и м е р — Единицу скорости образуют с помощью уравнения, определяющего скорость прямолинейно и равномерно движущейся материальной точки

$$v=\frac{s}{t}$$
,

где v — скорость;

s — длина пройденного пути;

t — время движения материальной точки.

Подстановка вместо s и t обозначений их единиц СИ дает

$$[v] = [s]/[t] = 1 \text{ m/s}.$$

Следовательно, единицей скорости СИ является метр в секунду. Он равен скорости прямолинейно и равномерно движущейся материальной точки, при которой эта точка за время 1 s перемещается на расстояние 1 m.

Если уравнение связи содержит числовой коэффициент, отличный от 1, то для образования когерентной производной единицы СИ в правую часть подставляют обозначения величин со значениями в единицах СИ, дающими после умножения на коэффициент общее числовое значение, равное 1.

Пример — Если для образования единицы энергии используют уравнение

$$E = \frac{1}{2} m v^2 ,$$

где E — кинетическая энергия;

m — масса материальной точки;

v — скорость движения материальной точки, —

то для образования когерентной единицы энергии СИ используют, например, уравнение

$$[E] = \frac{1}{2} (2[m] \cdot [v]^2) = \frac{1}{2} (2 \text{ kg}) (1 \text{ m/s})^2 = 1 \text{ kg·m/s}^2 \cdot \text{m} = 1 \text{ N·m} = 1 \text{ J}$$

или

$$[E] = \frac{1}{2} [m] (\sqrt{2} [v])^2 = \frac{1}{2} (1 \text{ kg}) (\sqrt{2} \text{ m/s})^2 = 1 \text{ kg·m/s}^2 \cdot \text{m} = 1 \text{ N·m} = 1 \text{ J}.$$

Следовательно, единицей энергии СИ является джоуль (равный ньютон-метру). В приведенных примерах он равен кинетической энергии тела массой 2 kg, движущегося со скоростью 1 m/s, или же тела массой 1 kg, движущегося со скоростью $\sqrt{2}$ m/s.

ПРИЛОЖЕНИЕ В

(справочное)

Соотношение некоторых внесистемных единиц с единицами СИ

Таблица В.1

	Единица					
Наименование величины		Обозн	ачение			
	Наименование	между- народное	русское	Соотношение с единицей СИ		
Длина	ангстрем икс-единица	Å X	Å икс-ед.	1·10 ⁻¹⁰ m 1,00206·10 ⁻¹³ m (приблизительно)		
Площадь	барн	ь	б	1·10 ⁻²⁸ m ²		
Macca	центнер	q	Ц	100 kg		
Телесный угол	квадратный градус	€	€	3,0462 ·10 ⁻⁴ sr		
Сила, вес	дина килограмм-сила килопонд грамм-сила понд тонна-сила	dyn kgf kp gf p tf	дин кгс — гс — тс	1·10 ⁻⁵ N 9,80665 N (точно) 9,80665 N (точно) 9,80665·10 ⁻³ N (точно) 9,80665·10 ⁻³ N (точно) 9806,65 N (точно)		

		Единица			
Наименование величины		Обозн	ачение		
	Наименование	между- народное русское		Соотношение с единицей СИ	
Давление	килограмм-сила на квадратный сантиметр килопонд на квадратный сантиметр миллиметр водяного столба миллиметр ртутного столба торр	kgf/cm ² kp/cm ² mm H ₂ O mm Hg Torr	кгс/см ² — мм вод.ст. мм рт.ст. —	98066,5 Ра (точно) 98066,5 Ра (точно) 9,80665 Ра (точно) 133,322 Ра 133,322 Ра	
Напряжение (ме- ханическое)	килограмм-сила на квадратный миллиметр килопонд на квадратный миллиметр	kgf/mm ² kp/mm ²	кгс/мм ² —	9,80665·10 ⁶ Ра (точно) 9,80665·10 ⁶ Ра (точно)	
Работа, энергия	эрг	erg	эрг	1·10 ⁻⁷ J	
Мощность	лошадиная сила	_	л.с.	735,499 W	
Динамическая вязкость	пуаз	P	П	0,1 Pa·s	
Кинематическая вязкость	стокс	St	Ст	1·10 ⁻⁴ m ² /s	
Удельное электрическое сопротивление			Ом·мм²/м	1·10 ⁻⁶ Ω ·m	
Магнитный по- ток	максвелл	Mx	Мкс	1·10 ⁻⁸ Wb	
Магнитная ин- дукция	гаусс	Gs	Гс	1·10 ^{−4} T	
Магнитодвижу- щая сила, разность магнитных потен- циалов	гильберт	Gb	Гб	$(10/4\pi) A = 0,795775 A$	
Напряженность магнитного поля	эрстед	Oe	Э	$(10^3/4\pi) \text{ A/m} = 79,5775 \text{ A/m}$	
Количество теплоты, термодинамический потенциал		cal cal _{th}	к ал к ал _{тх}	4,1868 J (точно) 4,1840 J (приблизи- тельно)	
(внутренняя энергия, энтальпия, изохорно-изотермический потенциал), теплота фазового превращения, теплота химической реакции	калория 15-градусная	cal ₁₅	кал ₁₅	4,1855 J (приблизи- тельно)	
Поглощенная доза ионизирующе-го излучения, керма	рад	rad, rd	рад	0,01 Gy	
Эквивалентная доза ионизирующе-го излучения, эффективная доза ионизирующего излучения	бэр	rem	бэр	0,01 Sv	

Окончание таблицы В.1

	Единица					
Наименование величины		Обозн	ачение			
	Наименование	между- народное	русское	Соотношение с единицей СИ		
Экспозиционная доза фотонного из- лучения (экспози- ционная доза гамма- и рентгеновского из- лучений)	рентген	R	P	2,58·10 ⁻⁴ С/Кg (точно)		
Активность нуклида в радиоактивном источнике (активность радионуклида)	кюри	Ci	Ки	3,70·10 ¹⁰ Вq (точно)		
Длина	микрон	μ	MK	1⋅10 ⁻⁶ m		
Угол поворота	оборот	r	об	$2\pi \text{ rad} = 6,28 \text{ rad}$		
Магнитодвижу- щая сила, разность магнитных потен- циалов	ампер-виток	At	ав	1 A		
Яркость	нит	nt	нт	1 cd/m ²		
Площадь	ap	a	a	100 m ²		

ПРИЛОЖЕНИЕ Г (рекомендуемое)

Рекомендации по выбору десятичных кратных и дольных единиц СИ

- Г.1 Выбор десятичной кратной или дольной единицы СИ определяется удобством ее применения. Из многообразия кратных и дольных единиц, которые могут быть образованы с помощью приставок, выбирают единицу, позволяющую получать числовые значения, приемлемые на практике.
- В принципе кратные и дольные единицы выбирают таким образом, чтобы числовые значения величины находились в диапазоне от 0,1 до 1000.
- Γ .1.1 В некоторых случаях целесообразно применять одну и ту же кратную или дольную единицу, даже если числовые значения выходят за пределы диапазона от 0,1 до 1000, например в таблицах числовых значений для одной величины или при сопоставлении этих значений в одном тексте.
- Г.1.2 В некоторых областях всегда используют одну и ту же кратную или дольную единицу. Например, в чертежах, применяемых в машиностроении, линейные размеры всегда выражают в миллиметрах.
 - Г.2 В таблице Г.1 указаны рекомендуемые для применения кратные и дольные единицы СИ.

Представленные в таблице Γ .1 кратные и дольные единицы СИ для данной величины не следует считать исчерпывающими, так как они могут не охватывать всех величин, применяемых в развивающихся и вновь

возникающих областях науки и техники. Тем не менее, рекомендуемые кратные и дольные единицы СИ способствуют единообразию представления значений величин, относящихся к различным областям науки и техники.

В таблице Γ .1 указаны также получившие широкое распространение на практике кратные и дольные единицы, применяемые наравне с единицами СИ.

- Γ .3 Для величин, не указанных в таблице Γ .1, используют кратные и дольные единицы, выбранные в соответствии с Γ .1.
- Г.4 Для снижения вероятности ошибок при расчетах десятичные кратные и дольные единицы рекомендуется подставлять только в конечный результат, а в процессе вычислений все величины выражать в единицах СИ, заменяя приставки степенями числа 10.

Таблица Г.1

		Обозн	ачения	
Наименование величины	единиц СИ	рекомендуемых кратных и дольных единиц СИ	единиц, не входящих в СИ	кратных и дольных единиц, не входящих в СИ
	Час	гь I Пространство и в	ремя	
Плоский угол	rad; рад (радиан)	mrad; мрад µrad; мкрад	° (градус) ′ (минута) ″ (секунда)	_
Телесный угол	sr; ср (стерадиан)	_	_	
Длина	т; м (метр)	km; км cm; см mm; мм µm; мкм nm; нм	_	_
Площадь	m²; м²	km ² ; км ² dm ² ; дм ² cm ² ; см ² mm ² ; мм ²	_	_
Объем, вмести- мость	т ³ ; м ³	dm ³ ; дм ³ cm ³ ; см ³ mm ³ ; мм ³	l(L); л (литр)	hl (hL): гл dl (dL); дл cl (cL); сл ml (mL); мл
Время	s; с (секунда)	ks; кс ms; мс µs; мкс ns; нс	d; сут (сутки) h; ч (час) min; мин (минута)	_
Скорость	m/s; м/с	_	_	km/h; км/ч
Ускорение	m/s ² ; м/с ²	_	_	
	Часть II Период	цические и связанные	с ними явления	
Частота периоди- ческого процесса	Нz; Гц (герц)	THz; ТГц GHz; ГГц MHz; МГц kHz; кГц	_	_
Частота вращения	$s^{-1}; c^{-1}$	_	min ⁻¹ ; мин ⁻¹	_
		Часть III Механика		
Macca	kg; кг (килограмм)	Mg; Мг g; г mg; мг µg; мкг	t; т (тонна)	Mt; Mт kt; кт dt; дт
Линейная плот- ность	kg/m; кг/м	mg/m; мг/м или g/km; г/км	_	_

		Обозначения							
Наименование величины	единиц СИ	рекомендуемых кратных единиц СИ	единиц, не входящих в СИ	кратных и дольных единиц, не входящих в СИ					
Плотность (плот- ность массы)	kg/m³; кг/м³	Mg/m ³ ; Мг/м ³ kg/dm ³ ; кг/дм ³ g/cm ³ ; г/см ³	t/m³; т/м³ или kg/l; кг/л	g/ml; г/мл g/l; г/л					
Количество дви- жения	kg·m/s; кг·м/с	_	_	_					
Момент коли- чества движения	kg·m²/s; кг·м²/с	_	_	_					
Момент инерции (динамический мо-мент инерции)	kg·m²; кг·м²	_	_	_					
Сила, вес	N; Н (ньютон)	MN; MH kN; кН mN; мН µN; мкН	_	_					
Момент силы	N·m; H·м	MN·m; MH·м kN·m; кН·м mN·m; мН·м µN·m; мкН·м	_	_					
Давление	Ра, Па (паскаль)	GPa; ГПа МРа; МПа кРа; кПа mPa; мПа μРа; мкПа	_	_					
Нормальное напряжение; касательное напряжение	Ра, Па	GPa; ГПа МРа; МПа kPa; кПа	_	_					
Динамическая вязкость	Ра·s; Па·с	mPa·s; мПа·с	_	_					
Кинематическая вязкость	m ² /s; м ² /с	mm ² /s; мм ² /с	_	_					
Поверхностное натяжение	N/m; H/м	mN/m; мН/м	_	_					
Энергия, работа	Ј; Дж (джоуль)	ТЈ; ТДж GЈ; ГДж MЈ; МДж kJ; кДж mJ; мДж	_	_					
Мощность	W; Вт (ватт)	GW; ΓΒτ MW; MΒτ kW; κΒτ mV; мΒτ μW; мκΒτ	_	_					

	Обозначения				
Наименование величины	единиц СИ	рекомендуемых кратных и дольных единиц СИ	единиц, не входящих в СИ	кратных и дольных единиц, не входящих в СИ	
		Часть IV Теплота			
Термодинамичес- кая температура	К; К (кельвин)	MK; MK kK; κK mK: мK μK; мкK	_	_	
Температура Цельсия	°C; °С (градус Цель- сия)	_	_	_	
Температурный интервал	K; K °C; °C	_	_	_	
Температурный коэффициент	K ⁻¹ ; K ⁻¹	_	_	_	
Теплота, количество теплоты	Ј; Дж	ТЈ; ТДж GЈ; ГДж МЈ; МДж kJ; кДж mJ; мДж	_	_	
Тепловой поток	W; Bt	kW; кВт	_	_	
Теплопровод- ность	W/(m·K); BT/(m·K)	_	_	_	
Коэффициент теплопередачи	W/(m ² ·K); B _T /(m ² ·K)	_	_	_	
Теплоемкость	Ј/К; Дж/К	kJ/K; кДж/К	_		
Удельная тепло- емкость	J/(kg·K); Дж/(кг·K)	kJ/(kg·K); кДж/(кг·K)	_	_	
Энтропия	Ј/К; Дж/К	kJ/K; кДж/К	_	_	
Удельная энтро- пия	J/(kg·K); Дж/(кг·К)	kJ/(kg·K); кДж/(кг·K)	_	_	
Удельное коли- чество теплоты	J/kg; Дж/кг	MJ/kg; МДж/кг kJ/kg; кДж/кг	_	_	
Удельная теплота фазового превраще- ния	J/kg; Дж/кг	MJ/kg; МДж/кг kJ/kg; кДж/кг	_	_	
	Часть \	У Электричество и маг	тнетизм		
Электрический ток, сила электрического тока	А; А (ампер)	kA; кА mA; мА µА; мкА nA; нА pA; пА	_	_	
Электрический заряд (количество электричества)	С; Кл (кулон)	kC; кКл µС; мкКл пС; нКл pC; пКл	А·h; А·ч (ампер-час)	_	

	Обозначения				
Наименование величины	единиц СИ	рекомендуемых кратных и дольных единиц СИ	единиц, не входящих в СИ	кратных и дольных единиц, не входящих в СИ	
Пространственная плот- ность электрического заряда	С/m³; Кл/м³	С/mm ³ ; Кл/мм ³ MC/m ³ ; МКл/м ³ С/cm ³ ; Кл/см ³ кС/m ³ ; кКл/м ³ mC/m ³ ; мКл/м ³ µС/m ³ ; мкКл/м ³	_	_	
Поверхностная плотность электрического заряда	C/m ² ; Кл/м ²	MC/m ² ; MКл/м ² C/mm ² ; Кл/мм ² C/cm ² ; Кл/см ² kC/m ² ; кКл/м ² mC/m ² ; мКл/м ² µC/m ² ; мкКл/м ²	_	_	
Напряженность электрического поля	V/m; B/M	MV/m; MB/m kV/m; κB/м V/mm; B/мм V/cm; B/cм mV/m; мВ/м μV/m; мкВ/м	_	_	
Электрическое напряжение, электрический потенциал, разность электрических потенциалов, электродвижущая сила	V; В (вольт)	MV; MB kV; кВ mV; мВ mV; мкВ nV; нВ	_	_	
Электрическое смещение	С/т²; Кл/м²	С/cm ² ; Кл/см ² kС/cm ² ; кКл/см ² mС/m ² ; мКл/м ² µС/m ² ; мкКл/м ²	_	_	
Поток электрического смещения	С; Кл	MC; МКл kC; кКл mC; мКл	_	_	
Электрическая емкость	F; Ф (фарад)	mF; мФ μF; мкФ nF; нФ pF; пФ fF; фФ aF; aΦ	_	_	
Диэлектрическая проницаемость, электрическая постоянная	F/m; Ф /м	pF/m; пΦ/м	_	_	
Поляризованность	С/т²; Кл/м²	С/cm ² ; Кл/см ² kC/cm ² ; кКл/см ² mC/m ² ; мКл/м ² µC/m ² ; мкКл/м ²	_	_	
Электрический момент диполя	С·т; Кл·м	_	_	_	
Плотность электричес- кого тока	A/m ² ; A/м ²	MA/m ² ; MA/m ² A/mm ² ; A/mm ² A/cm ² ; A/cm ² kA/m ² ; κΑ/m ²	_	_	

	Обозначения				
Наименование величины	единиц СИ	рекомендуемых кратных и дольных единиц СИ	единиц, не входящих в СИ	кратных и дольных единиц, не входящих в СИ	
Линейная плотность электрического тока	A/m; A/м	kA/m; кА/м A/mm; А/мм A/cm; А/см	_	_	
Напряженность маг- нитного поля	А/т; А/м	kA/m; кА/м A/mm; А/мм A/cm; А/см	_	_	
Магнитодвижущая сила, разность магнитных потенциалов, магнитный потенциал	А; А (ампер)	kA; кА mA; мА	_	_	
Магнитная индук- ция, плотность магнит- ного потока	Т; Тл (тесла)	mT; мТл µТ; мкТл nT; нТл	_	_	
Магнитный поток	Wb; Вб (вебер)	mWb; мВб	_	_	
Магнитный вектор- ный потенциал	Т·т; Тл·м	kT·m; кТл·м	_	_	
Индуктивность, вза- имная индуктивность	Н; Гн (генри)	kH; кГн mH; мГн µH; мкГн nH; нГн pH; пГн		_	
Магнитная проницаемость, магнитная постоянная	H/m; Гн/м	μΗ/m; мкГн/м nH/m; нГн/м	_	_	
Магнитный момент	A·m ² ; A·m ²	_	_	_	
Намагниченность	A/m; A/M	kA/m; кА/м A/mm; А/мм	_	_	
Магнитная поляри- зация	Т; Тл	mT; мТл	_	_	
Электрическое сопротивление, активное сопротивление, модуль полного сопротивления, реактивное сопротивление	Ω; Ом (ом)	ΤΩ; ΤΟΜ GΩ; ΓΟΜ ΜΩ; ΜΟΜ kΩ; κΟΜ mΩ; мОм μΩ; мКОМ	_	_	
Электрическая проводимость, активная проводимость, модуль полной проводимости	S; См (сименс)	kS; κCm mS; мCм μS; мкСм nS; нСм pS; пСм	_	_	
Реактивная проводи- мость	S; CM	kS; кСм mS; мСм µS; мкСм	_	_	
Разность фаз, фазовый сдвиг, угол сдвига фаз	rad; рад (радиан)	mrad; мрад µrad; мкрад	° (градус)	_	

Продолжение таблицы Г.1

	Обозначения				
Наименование величины	единиц СИ	рекомендуемых кратных и дольных единиц СИ	единиц, не входящих в СИ	кратных и дольных единиц, не входящих в СИ	
Удельное электричес- кое сопротивление	Ω ·m; Ом·м	GΩ · m; ΓΟM · M MΩ · m; ΜΟΜ · M kΩ · m; κΟΜ · M Ω · cm; ΟΜ · CM mΩ · m; мОМ · M μΩ · m; мКОМ · M nΩ · m; нОМ · M	_	_	
Удельная электричес- кая проводимость	S/m; Cм/м	MS/m; MСм/м kS/m; кСм/м	_	_	
Магнитное сопротив- ление	H ⁻¹ ; Гн ⁻¹	_	_	_	
Магнитная проводи- мость	Н; Гн	_	_	_	
Активная мощность	W; BT	TW; TBT GW; FBT MW; MBT kW; kBT mW; MBT µW; MKBT nW; HBT	V-A; B-A (вольт-ампер — единица полной мощности) var; вар (вар — единица реактивной мощности)	_	
Энергия	Ј; Дж	ТЈ; ТДж GЈ; ГДж МЈ; МДж kJ; кДж	– eV; эВ (электрон-вольт)	kW·h; кВт·ч (киловатт-час) —	
Час	сть VI Свет и связанн	ые с ним электромаг	нитные излучения		
Длина волны	т; м	μm; мкм nm; нм pm; пм	_	_	
Волновое число	m ^{−1} ; м ^{−1}	ст ⁻¹ ; см ⁻¹	_	_	
Энергия излучения	Ј; Дж		_	_	
Поток излучения, мощность излучения	W; Bt	_	_	_	
Сила излучения	W/sr; B _T /cp		_	_	
Спектральная плот- ность силы излучения	W/(sr·m); Bt/(cp·м)		_	_	
Энергетическая яр- кость	W/(sr·m ²); Вт/(ср·м ²)	_	_	_	
Спектральная плот- ность энергетической яркости	W/(sr·m ³); BT/(cp·m ³)	_	_	_	
Облученность	W/m ² ; B _T /м ²		_	_	
Спектральная плот- ность облученности (энер- гетической освещенности)	W/m ³ ; B _T /m ³	_	_	_	

	Обозначения				
Наименование величины	единиц СИ	рекомендуемых кратных и дольных единиц СИ	единиц, не входящих в СИ	кратных и дольных единиц, не входящих в СИ	
Энергетическая све- тимость	W/m ² ; B _T /м ²	_	_	_	
Сила света	cd; қд (кандела)		_	_	
Световой поток	lm; лм (люмен)	_	_	_	
Световая энергия	lm·s; лм·с	_	lm·h; лм·ч	_	
Яркость	cd/m ² ; кд/м ²	_	_	_	
Светимость	lm/m ² ; лм/м ²	_	_	_	
Освещенность	lx; лк (люкс)	_	_	_	
Световая экспозиция	lx·s; лк·с	_	_	_	
Световая эффективность	lm/W; лм/Вт	_	_	_	
	y _a	сть VII Акустика			
Период	s; c	ms; мс µs; мкс	_	_	
Частота периодичес- кого процесса	Нz; Гц	МНz; МГц kHz; кГц	_	_	
Длина волны	т; м	тт; мм	_	_	
Звуковое давление	Ра; Па	mРа; мПа μРа; мкПа	_	_	
Скорость колебания частицы	m/s; м/c	mm/s; мм/c	-	_	
Объемная скорость	m ³ /s; м ³ /с	_	_	_	
Скорость звука	m/s; м/c	_	_	_	
Поток звуковой энергии, звуковая мощность	W; BT	kW; кВт mW; мВт µW; мкВт pW; пВт	_	_	
Интенсивность звука	W/m ² ; Вт/м ²	mW/m ² ; мВт/м ² μW/m ² ; мкВт/м ² pW/m ² ; пВт/м ²	_	_	
Удельное акустическое сопротивление	Ра·s/m; Па·с/м	_	_	_	
Акустическое сопро- тивление	Pa·s/m ³ ; Па·с/м ³	_	_	_	
Механическое сопро- тивление	N·s/m; H·c/м	_	_	_	
Эквивалентная пло- щадь поглощения поверх- ностью или предметом	т ² ; м ²	_	_	_	
Время реверберации	s; c	_	_	_	

Окончание таблицы Г.1

	Обозначения					
Наименование величины	единиц СИ	рекомендуемых кратных и дольных единиц СИ	единиц, не входящих в СИ	кратных и дольных единиц, не входящих в СИ		
	Часть VIII Физі	ическая химия и молек	ч <u> </u>			
Количество ве- щества	mol; моль (моль)	kmol; кмоль mmol; ммоль µmol; мкмоль	_	_		
Молярная масса	kg/mol; кг/моль	g/mol; г/моль	_	_		
Молярный объем	m ³ /mol; м ³ /моль	dm³/mol; дм³/моль cm³/mol; см³/моль	l/mol; л/моль (L/mol)	-		
Молярная внут- ренняя энергия	J/mol; Дж/моль	kJ/mol; кДж/моль	_	_		
Молярная эн- тальпия	J/mol; Дж/моль	kJ/mol; кДж/моль	_	_		
Химический по- тенциал	J/mol; Дж/моль	kJ/mol; кДж/моль	_	_		
Молярная тепло- емкость	J/(mol·K); Дж/(моль·К)	_	_	_		
Молярная энтро- пия	J/(mol·K); Дж/(моль·K)	_	_	_		
Молярная кон- центрация компо- нента	mol/m ³ ; моль/м ³	mol/dm³; моль/дм³ kmol/m³; кмоль/м³	mol/l; моль/л (mol/L)	_		
Удельная адсорб- ция	mol/kg; моль/кг	mmol/kg; ммоль/кг	_	_		
Массовая кон- центрация компо- нента	kg/m ³ ; кг/м ³	mg/m³; мг/м³ mg/dm³; мг/дм³	mg/l; мг/л (mg/L)	_		
	Часть	IX Ионизирующие изл	учения			
Поглощенная доза ионизирующего излучения, керма	Gy; Гр (грей)	TGy; TΓp GGy; ΓΓp MGy; ΜΓp kGy; κΓp mGy; мΓp μGy; мκΓp	_	_		
Активность нуклида в радиоактивном источнике (активность радионуклида)	Вq; Бк (беккерель)	ЕВq; ЭБк РВq; ПБк ТВq; ТБк GВq; ГБк МВq; МБк kВq; кБк	_	_		
Эквивалентная доза ионизирующего излучения, эффективная доза ионизирующего излучения	Sv; Зв (зиверт)	mSv; мЗв	_	_		

Г.5 В таблице Г.2 указаны получившие распространение единицы некоторых логарифмических величин.

Таблица Г.2

Наименование логарифмической величины	Обозначение единицы	Исходное значение величины
Уровень звукового давления	dB; дБ	2·10 ⁻⁵ Pa
Уровень звуковой мощности	dB; дБ	$10^{-12} \mathrm{W}$
Уровень интенсивности звука	dB; дБ	10^{-12} W/m^2
Разность уровней мощности	dB; дБ	_
Усиление, ослабление	dB; дБ	_
Коэффициент затухания	dB; дБ	_

ПРИЛОЖЕНИЕ Д (справочное)

Библиография

- [1] РМГ 29—99 Государственная система обеспечения единства измерений. Метрология. Основные термины и определения. Минск: МГС по стандартизации, метрологии и сертификации, 2000
- [2] Международная система единиц (СИ). Севр, Франция: МБМВ, 1998
- [3] Международная температурная шкала 1990 г. (МТШ-90). ВНИИМ им. Д.И. Менделеева, 1992
- [4] Отчет XXI Генеральной конференции по мерам и весам (октябрь 1999 г.). Севр, Франция: МБМВ, 1999
- [5] Таблицы стандартных справочных данных. Фундаментальные физические константы. ГСССД 1—87. М.: Изд-во стандартов, 1989
- [6] Международный стандарт МЭК 27-3 Логарифмические величины и единицы. Женева: МЭК, 1989 (Изменение № 1, 03.2000)
- [7] Международный стандарт МЭК 60027-2 Телекоммуникация и электроника. Женева: МЭК, 2000

УДК 53.081:006.354 MKC 17.020

T80

ОКСТУ 0008

Ключевые слова: единица, величина, физическая величина, единица физической величины, когерентная единица, размерность, безразмерная величина, система единиц, Международная система единиц (СИ)

Редактор *Н.В. Таланова*Технический редактор *В.Н. Прусакова*Корректор *М.В. Бучная*Компьютерная верстка *И.А. Налейкиной*

Подписано в печать 10.02.2010. Формат $60 \times 84^{-1}/8$. Бумага офсетная. Гарнитура Таймс. Печать офсетная. Усл.печ.л. 3,72. Уч.-изд.л. 3,10. Тираж 110 экз. Зак. 103.

ФГУП «СТАНДАРТИНФОРМ», 123995 Москва, Гранатный пер., 4. www.gostinfo.ru info@gostinfo.ru