НАСОСЫ КОНДЕНСАТНЫЕ ЭНЕРГЕТИЧЕСКИХ БЛОКОВ АЭС

ОБЩИЕ ТЕХНИЧЕСКИЕ УСЛОВИЯ

Издание официальное

УДК 621.67:006.354

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

НАСОСЫ КОНДЕНСАТНЫЕ ЭНЕРГЕТИЧЕСКИХ БЛОКОВ АЭС

Общие технические условия

ΓΟCT 24465—**80**

Condensate pumps for nuclear power plant.
General technical requirements

MKC 23.080 27.120.99 ΟΚΠ 36 3131

Постановлением Государственного комитета СССР по стандартам от 19 декабря 1980 г. № 5894 дата введения установлена

01.01.82

Ограничение срока действия снято Постановлением Госстандарта СССР от 27.06.91 № 1125

Настоящий стандарт распространяется на центробежные конденсатные насосы в горизонтальном (KcA) или вертикальном (KcBA) исполнении с приводом от электродвигателя, предназначенные для перекачивания конденсата отработанного пара стационарных паровых турбин и конденсата греющего пара из теплообменных аппаратов энергетических блоков атомных электростанций (AЭC), а также атомных теплоэлектроцентралей (АТЭЦ).

Конденсат должен иметь водородный показатель pH 6.8-9.2, радиоактивность не более $3.7\cdot10^6$ Бк·м $^{-3}$ и не должен содержать твердых частиц размером более 0.1 мм и концентрацией более 5 мг/л.

(Измененная редакция, Изм. № 2).

1. ОСНОВНЫЕ ПАРАМЕТРЫ И РАЗМЕРЫ

1.1. Основные параметры насосов для номинального режима должны соответствовать указанным в табл. 1.

Рекомендуемые рабочие части характеристик насосов указаны на чертеже.

Издание официальное

Перепечатка воспрещена

Издание (март 2004 г.) с Изменениями № 1, 2, утвержденными в августе 1982 г., марте 1986 г. (ИУС 12—82, 6—86).

© Издательство стандартов, 1981

Таблица 1

Масса, кг, не более		3080 3300 2950		4030	3870	5040		7500		13130		3440		*				
Габаритные размеры, мм, не более	Высо-	2050	1900		7100	5090		3285		3860 3440 1515		0101	*					
	Дли-	1350			1450		1490		1100	1900		2020		*				
	Ши-	1220	1090	1220	0071	0741	1330	1320	1625	1800	1860		1750		*			
а перекачи- иденсата на ос, не более	ô	125				135	200	160	155	125		70	125		125	70	125	1
Температура перекачи- ваемого конденсата на входе в насос, не более	×	398				408	473	433	428	398		343			398	343	398	
991	К.п.л., %, не менее			73		9/	77		80)		84		79		80		
	Мошность, кВт	154	229	196	375	263	272	404	505	632	599	585	1141	968	291	742	1195	1547
Частота вращения	906/мин	1480								740		2975		985		1480		
Час Враш	c_1	24,7								12,3		49,6		16,4	24,7			
Давление на входе в насос, не более	KFC/CM ²	10	2,5	1,5	10	2,7	16	12	7,0	3,0	0.0	2,0	15,0	2.5	2,2	0,5	1,5	2,5
	МПа	0,981	0,245	0,147	0,981	0,265	1,569	1,177	0,686	0,294	0.106	0,170	1,471	0,245	0,245	0,049	0,147	0,245
Допускаемый запас, м		2,0		2,7	2,5	2,9	36	۲,7	3,0	4,5	2,3	2,8	22	25	3,5		4,5	
Напор <i>H</i> , м (пред. откл. +5 —3 %)		220	210	160	220	125	135	180	001	190	120	95	240	170	45	100	170	220
ча Q	М ³ /ч	200	320	360	500	630	059	700	900	1040	1500	1850	1500	1850	2000		2200	
Подача Q	м³/с	0,056	0,089	0,100	0,139	0,175	0,181	0,194	0,250	0,289	0,417	0,514	0,417	0,514	0,556		0,611	
	KcBA 200—220 (KcB 200—220—2)	KcBA 320-210	KcBA 360–160 (KcB 360–160)	KcBA 500—220 (KcB 500—220—2)	KcBA 630–125 (KcB 630–125)	KcBA 650—135	KcBA 700—180	KcBA 900-180	KcBA 1000-190	KcBA 1500-120	(KcB 1500—120)	KcA 1500-240	(IIH 1500—240)	KcBA 2000—45	KcBA 2200-100	KcBA 2200—170	KcBA 2200—220	

* Неуказанные значения габаритных размеров и масс будут внесены в таблицу после освоения насосов соответствующих типоразмеров.

Примечания: 1. В скобках (для справок) указаны обозначения насосов, действовавшие до введения настоящего стандарта. 2. Ширина насосов указана по габаритам входного и напорного патрубков.

KcBA 200-220 KcBA 320-210 KcBA 500-220 KcBA 1000-190 KcA 1500-240 Н. м 300 KcBA 2200-220 250 KcBA 2200-170 200 KcBA 700-180 KcBA 360-160 KcBA 900-180 150 KcBA 630-125 KcBA 1500-120 KcBA 650-135, KcBA 2200-100 100 KcBA 2000-45 50 30<u>100</u> 700 800 900 10**00** 2000 25**00** 200 300 400 500 600 1500 0,15 0,20 0.30 0,40 0,50 0,60 0,70 Q, M³/4 0,05 0,06 0,08 0,10

Рабочие части характеристик Q-H

 Π р и м е р у с л о в н о г о о б о з н а ч е н и я центробежного конденсатного насоса в горизонтальном исполнении для АЭС с подачей 0,417 м³/с (1500 м³/ч) и напором 240 м:

Hacoc KcA 1500-240 ΓΟCT 24465-80

То же, в вертикальном исполнении с подачей $0.139 \text{ m}^3/\text{c}$ (500 m^3/q) и напором 220 м:

При модернизации насосов (или совершенствовании конструкции без изменения подачи и напора) в обозначение насоса через тире следует вводить цифры, указывающие порядковый номер модернизации по системе нумерации предприятия-изготовителя.

(Измененная редакция, Изм. № 2).

1.2. Насосы должны иметь постоянно падающую напорную характеристику в интервале подач от 20 до 110 % номинальной.

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

- 2.1. Насосы должны изготовляться в соответствии с требованиями настоящего стандарта и технических условий на насосы конкретных типоразмеров по рабочим чертежам, утвержденным в установленном порядке.
- 2.2. Корпуса насосов должны соответствовать требованиям «Правил устройства и безопасной эксплуатации оборудования атомных электростанций, опытных и исследовательских ядерных реакторов и установок», утвержденных Госгортехнадзором СССР и Госкомитетом по использованию атомной энергии СССР.
- 2.3. Насосы должны изготовляться в климатическом исполнении УХЛ категории размещения 4 по ГОСТ 15150—69.
 - 2.4. Группа надежности насосов І по ГОСТ 6134—87.
- 2.5. В насосах или на их плитах (рамах) должны быть предусмотрены регулирующие устройства для выверки их положения на фундаменте и места для установки уровня.

2.6. Суммарные внешние утечки жидкости через концевые уплотнения ротора насоса не должны превышать $0.1 \, \mathrm{m}^3/\mathrm{u}$.

Отвод утечек должен быть организованным.

2.7. Наработка на отказ — не менее 6300 ч.

Установленный ресурс до капитального ремонта — не менее 25000 ч.

Установленный срок службы до списания — 30 лет.

Критерии отказов и предельных состояний должны быть указаны в технических условиях на конкретную продукцию.

(Измененная редакция, Изм. № 2).

- 2.8, 2.9. (Исключены, Изм. № 2).
- 2.10. Необходимое снижение напора насосов при эксплуатации достигается обточкой рабочих колес по наружному диаметру до 5 % его первоначального значения в соответствии с эксплуатационной документацией.
- 2.11. Конструкция насосов должна быть рассчитана для установки их на АЭС в сейсмических районах.
- 2.12. Показатели ремонтопригодности насосов должны быть указаны в технических условиях на насос конкретного типоразмера.
- 2.13. Среднее квадратическое значение вибрационной скорости, измеренное на корпусах подшипников насоса, не должно быть более 4,5 мм/с.

(Измененная редакция, Изм. № 2).

2.14. Наружные поверхности насоса должны иметь лакокрасочные покрытия.

Класс покрытия насоса — не ниже VI, условия эксплуатации покрытия — 8 по ГОСТ 9.032—74.

(Измененная редакция, Изм. № 1).

2.15. Колеса и роторы в сборе должны быть отбалансированы. Класс точности балансировки -3 по ГОСТ 22061-76.

(Введен дополнительно, Изм. № 2).

3. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 3.1. Общие требования безопасности насосов по ГОСТ 12.2.003—91.
- 3.2. Муфта, соединяющая валы насоса и привода, должна быть ограждена.

Конструкция ограждения должна исключать возможность его снятия без применения инструмента.

3.3. На каждом насосе и крупногабаритных деталях должны быть предусмотрены места для строповки при выполнении погрузочно-разгрузочных, монтажных и ремонтных работ.

Места и схемы строповки насоса должны быть указаны на монтажном чертеже.

- 3.4. Направление вращения ротора насоса должно быть обозначено стрелкой на корпусе насоса, окрашенной в красный цвет.
 - 3.5. В насосах должны быть предусмотрены:

устройства для визуального наблюдения за наличием масла в подшипниках;

гнезда для установки датчиков дистанционного контроля температуры подшипников насоса.

- 3.6. Техническое обслуживание насоса, связанное с его частичной разборкой, подтяжкой резьбовых соединений, заменой масла и т. д., должно производиться после его останова и остывания.
- 3.7. Конструкция насосов и объем защиты должны обеспечивать нормальную их работу без обслуживающего персонала и автоматический останов агрегата при снижении давления ниже допустимого в напорном патрубке насоса и в масляной магистрали (для насосов с принудительной системой смазки).

Контроль технического состояния насоса должен проводиться с применением индивидуальных средств защиты органов слуха в течение 15 мин в смену.

Эксплуатация насосов без средств защиты и контрольно-измерительных приборов не допускается.

3.8. Октавные уровни звуковой мощности L_P и корректированные уровни звуковой мощности L_{PA} насосных агрегатов при комплектовании их электродвигателями 1-го класса по ГОСТ 16372—93 не должны превышать значений, указанных в табл. 2.

При применении электродвигателей 2-го и 3-го классов по ГОСТ 16372—93 уровни звуковой мощности насосных агрегатов должны быть ниже указанных в табл. 2 на 5 и 10 дБ*A*, соответственно.

Таблина 2

Обозначение насоса	Октавн	Корректированные уровни звуковой							
	63	125	250	500	1000	2000	4000	8000	мощности L_{PA} , дБ A
KcBA 200—220 KcBA 320—210 KcBA 360—160 KcBA 500—220 KcBA 630—125 KcBA 650—135 KcBA 700—180 KcBA 900—180 KcBA 1000—190 KcBA 1500—120 KcBA 1500—240 KcBA 1000—190	82 125 125 105 127 128 128 129 129 129 122 116 129	91 118 118 105 120 121 121 122 122 115 111 122	97 112 112 103 114 115 115 116 116 109 107 116	101 109 109 103 111 112 112 113 113 106 107	106 106 106 105 108 109 109 110 110 110 103 107	105 104 104 103 106 107 107 108 108 101 105 108	100 102 102 101 104 105 105 106 106 99 102 106	92 100 100 93 102 103 104 104 97 100 104	110 111 111 111 113 114 114 115 115 108 112
KcBA 2000—45 KcBA 2200—100 KcBA 2200—170 KcBA 2200—220	* * *	* * *	* * * *	_* _* _* _*	_* _* _* _*	* * *	-* -* -* -*	* * *	_* _* _* _*

^{*} Неуказанные значения октавных уровней и корректированных уровней звуковой мощности будут внесены в таблицу после освоения насосов соответствующих типоразмеров.

(Измененная редакция, Изм. № 2).

4. КОМПЛЕКТНОСТЬ

4.1. Насосы должны быть укомплектованы:

электродвигателем;

соединительной муфтой;

запасными частями, специальным инструментом и приспособлениями в соответствии с ведомостью ЗИП:

контрольно-измерительными приборами и вспомогательным оборудованием в соответствии с техническими условиями на насос конкретного типоразмера.

4.2. К насосам должна быть приложена эксплуатационная документация по ГОСТ 2.601—95 в соответствии с техническими условиями на насосы конкретных типоразмеров.

5. ПРАВИЛА ПРИЕМКИ

5.1. Правила приемки насосов — в соответствии с техническими условиями на насосы конкретных типоразмеров.

6. МЕТОДЫ ИСПЫТАНИЙ

- 6.1. Методы испытаний насосов в соответствии с техническими условиями на насосы конкретных типоразмеров.
- 6.2. Общие требования к проведению измерений вибрации по ГОСТ 20815—93, ГОСТ 25275—82.
 - 6.3. Методы определения шумовых характеристик по ГОСТ 12.1.028—80*.
 - 6.2, 6.3. (Введены дополнительно, Изм. № 2).

7. МАРКИРОВКА, УПАКОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

7.1. Маркировка, упаковка, транспортирование и хранение — в соответствии с техническими условиями на насосы конкретных типоразмеров.

^{*} На территории Российской Федерации действует ГОСТ Р 51402—99.

8. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- 8.1. Изготовитель должен гарантировать соответствие насосов требованиям настоящего стандарта при соблюдении правил транспортирования, хранения, монтажа и эксплуатации, установленных настоящим стандартом и эксплуатационной документацией.
- 8.2. Гарантийный срок эксплуатации насосов с учетом использования запасных частей 24 мес со дня ввода насосов в эксплуатацию.

Редактор Л.В. Афанасенко Технический редактор О.Н. Власова Корректор Е.Д. Дульнева Компьютерная верстка Л.А. Круговой

Изд. лиц. № 02354 от 14.07.2000. Сдано в набор 10.03.2004. Уч.-изд. л. 0,70. Тираж 132 экз.

Подписано в печать 29.03.2004. С 1315. Зак. 350. Усл. печ. л. 0,93.

Отпечатано в филиале ИПК Издательство стандартов — тип. «Московский печатник», 105062 Москва, Лялин пер., 6. Плр № 080102